
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master Thesis

Optimal configuration of security
controls in software networks

Supervisor
Prof. Cataldo Basile
Prof. Antonio Lioy
Dr. Fulvio Valenza

Candidate

Andrea Della Chiesa

Academic Year 2019-2020

To my grandmother

Summary

Nowadays, words like cloud-computing, cyber-security and datacenters are often used as keywords
to define the modern Internet technologies. In the last decades, we assisted to a rapid growth in
the use of the Internet, both for business and private users. Nonetheless, the migration to the
“connected world” nhas brought new research topics and technology innovations. yt9 By using
virtualization techniques, it is possible to abstract the physical resources and assign them dy-
namically to the users. This has allowed the development of the Network Function Virtualization
(NFV) which has been empowered with Software Defined Networks (SDN) technologies. Creat-
ing virtual machines, attaching them to virtual networks, replicating or migrating them are easy
operations that can be done in software networks. Moreover, deploying network services became
faster and intuitive, ensuring high availability and fast provisioning.

Never like in this period we assisted on how the Internet technologies are fundamental to
provide remote business services, maintain contacts with other peoples or to give important com-
munications and informations. Along with the growth of these technologies, the risks associated
to cyber-attacks became not negligible. Cyber-security is one of the central themes nowadays,
and several business companies has focused its researches on this topic.

Cloud-security became fundamental to ensure the protection of the cloud environments, it has
to implement optimized security mechanisms to provide a fast reaction to each possible attack.
Data protection it is one of the most important task in a cloud environment, because on these
years, the amount of private or business sensitive informations that flows in the datacenters has
grown exponentially.

These systems, however, do not provide the same elasticity and optimization techniques when
security requirements need to be enforced. It is therefore important to define new methods and
tools to support administrators in security-related tasks. Such results could extend the benefits
and the flexibility of the modern Internet technologies also to security, providing fast, optimized,
and on-demand security services.

This thesis work aims to provide an automatic security controller, employable in various cloud
infrastructures, which optimizes the distribution of the firewalls filtering rules over the cloud
environment.

4

Acknowledgements

During this five-year journey I have enriched my technical background, but most of all I have
understood what are my interests and objectives for the future.

I would like to acknowledge my supervisors, Prof. Basile and Prof. Lioy whos gave me the
possibility to work on interesting research matters, in a productive and stimulant environment.
Moreover I would like to acknowledge Dr. Valenza for his continuous presence during the research
work, helping me in technical and practical issues.

Then, I would like to acknowledge my parents, who gave me the possibility to realize my
objectives. During these years they always believed in me, supporting me in every moment of
this journey. I would like to thank my brother, who is my wingman in every moment of my life.
Finally, my grandparents and all my relatives, whose support was always present.

I want to acknowledge Igor, for all the moments we had shared and for its contribution in this
thesis work.

A special thank to my friends, who always included me, despite the distance between us. Last
but not least, I want to thank my roommates, with whom I have shared beautiful moments during
these years.

This is the end of a beautiful path, I have faced difficult moments, but most of them led to
great successes. I will never forget this period of my life, and I know that this is the starting point
for a new chapter of my life.

5

Contents

1 Introduction 9

2 Background 12

2.1 Computing virtualization . 12

2.1.1 Network virtualization . 13

2.2 Cloud computing . 14

2.2.1 Serivce models . 15

2.2.2 Cloud security . 16

2.2.3 Cloud toolkits . 17

2.3 Firewalls and policies . 18

2.3.1 Packet filters . 18

2.3.2 Policies . 20

3 State of the art 25

3.1 Network Function Virtualization . 25

3.1.1 ETSI NFV Architecture . 26

3.1.2 Virtual Network Function . 27

3.2 Software Defined Networking . 27

3.2.1 OpenFlow . 29

3.3 Network Security Function . 29

3.3.1 Interface to Network Security Functions (I2NSF) 30

4 Goals 31

4.1 Goals definition . 31

4.2 Use-case definition . 32

5 Components analysis 35

5.0.1 Computing . 35

5.0.2 Networking . 36

5.0.3 Security . 37

6

6 Solution design 40

6.1 High level design . 40

6.2 Distribution design . 41

6.2.1 Iptables . 42

6.2.2 OpenFlow . 44

6.3 Workflow . 45

6.4 REST service . 46

6.4.1 REST . 46

6.4.2 REST service design . 47

7 Implementation 49

7.1 Proof-of-Concept . 49

7.2 Policy representation . 50

7.3 Distribution implementation . 51

7.3.1 Iptables . 51

7.3.2 OpenFlow . 55

7.4 REST service . 58

7.4.1 Multi-threading . 58

7.4.2 Lifecycle management . 60

8 Testing 61

8.1 Test design . 61

8.2 Policy optimization . 65

8.2.1 OpenStack security groups . 66

8.2.2 Optimization tool . 67

8.2.3 Performances . 68

8.3 Distribution optimization . 71

8.3.1 OpenStack security groups . 73

8.3.2 Optimization tool . 74

8.3.3 Performances . 76

8.4 Test conclusions . 77

9 Conclusions 78

9.1 Future works . 79

9.1.1 High level security . 79

9.1.2 Security softwares . 79

9.1.3 Cloud architectures . 80

7

A Programmer manual 82

A.1 Physical topology . 82

A.1.1 Architecture . 82

A.1.2 Modify the tool . 85

A.2 Distribution tool . 86

A.2.1 Tool architecture . 86

A.2.2 Modify the tool . 88

A.3 RESTful web service . 89

A.3.1 Architecture . 89

A.3.2 Modify the tool . 90

B REST APIs 91

Bibliography 92

8

Chapter 1

Introduction

Internet has became one of the central themes of the modern era, Cyber security, Cloud computing,
datacenters, are some of the most common words used in the last years. These technologies,
nowadays, are the central core of most of the business activities around the world and the number
of services offered is growing constantly.

According to Statista, in 2018, the public cloud computing market is projected to be worth
around 141 billion U.S. dollars [28]. As shown in Figure 1.1 the market has seen massive growth
over the past decade, skyrocketing from a value of less than six billion dollars a decade ago. By
2020, the projected increase in cloud adoption will reach almost 240 billion dollars.

Along with this rapid and fast growing expansion of cloud services, the necessity of powerful
infrastructures, computing devices and storage systems became unavoidable. Moreover, every
provider must ensure a certain level of security to its customers, in terms of data protection,
service availability and identity management respecting users privacy rights.

The aspects of this extraordinary evolution brought to the research challenging problems and
interesting topics. Technologies like Software-Defined-Networks (SDN) and Network-Function-
Virtualization (NFV) has a central role in the development of efficient and optimized services
to cope with the ever-growing traffic. These technologies exploits virtualization techniques to
provide network functions and services, with all the advantages of the virtualized environments
such as scalability, replication, fast provisioning and optimized resource allocation.

5,82 8,68
15,08

25,5

40,96

58,61

78,42
87

114

146

178

208

236

0

25

50

75

100

125

150

175

200

225

250

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

M
ar

ke
t

in
 b

ill
io

n
 U

.S
. d

o
lla

rs

Figure 1.1. Total size of the public cloud computing market from 2008 to 2020 [28]

9

Introduction

Cyber-security nowadays is a trending topic, companies has invested billions to improve the
security of its services due to the insane amount of data and traffic that it is necessary to manage
to provide a market competitive service. Moreover, the number of attacks directed to cloud
services is growing as fast as the cloud expansion.

Attacks to the cloud infrastructures could damage business, but also private users. Data loss
or leakage, could be catastrophic for companies and it could compromise their business activities.
Denial-of-Service (DoS) attacks aim to damage the service availability of a provider damaging
everyone is using the services. To overcome these problems it is necessary to provide fast, easy,
on-demand security services that can be utilized in every environment at any time.

The SECaaS (Security-as-a-Service) paradigm fits these requirements, providing a rapid secu-
rity service to the customers. It offers, in a cloud environment, a series of customizable security
services. The customer can exploit the pay-per-use approach using only the services needed for
its business requirements.

These systems, however, do not provide the same elasticity and optimization techniques when
security requirements need to be enforced. Often, network administrators have to manually
configure the security devices, which is known to be an error-prone task. Indeed, several analyses
demonstrated that, in most of the cases the cyber-attacks are caused by human errors. Moreover,
due to the rapid migration and relocation mechanisms provided in software networks, manual
reconfigurations of security control need to be done too frequently.

Firewalls and Intrusion-Detection-Systems (IDS) became fundamental for traffic filtering and
attacks prevention, but with the growth of the amount of traffic that needs to be processed, they
has to be powerful and fast enough to handle it.

This thesis work aims to provide an automatic security controller, employable in various cloud
infrastructures, which optimizes the distribution of the firewalls filtering rules over the cloud
environment. The application will perform an optimization over several security policies and, ac-
cording to the pattern of traffic targeted by the filtering rules, it perform an optimized distribution
of them.

To achieve these objectives it is necessary to understand the infrastructure of a cloud environ-
ment and its applications (e.g. OpenStack, Kubernetes), and using them to build an optimization
and distribution model.

In this work the distribution aspects are highlighted, studying how the infrastructure relay on
SDN and NFV technologies and how to exploit them to perform the optimized distribution. Once
identified the type of the available filtering points in the infrastructure and how to use them, I’ve
implemented the distribution process.

For each type of filtering point, it is necessary to study its technology and how to apply security
policy on them. The next phase consists in the distribution process: given a filtering policy and a
target on which inject the rules, the tool will automatically load the filtering rules needed, using
the proper commands or protocols.

The application will follow the SECaaS approach providing a full compatibility with sev-
eral cloud software. Moreover the objective is to support the cloud providers in the security
optimization, getting high performances without the necessity to improve the physical devices
specifications.

To prove the effectiveness of the optimization, several performance tests are done highlighting
the difference between the standard security mechanisms provided by standard cloud toolkits (e.g.
OpenStack) and the realized optimization tool. The metrics used to prove the efficiency of the
tool were the network bandwidth and latency and the overall CPU consumption.

The tests highlights the performance gain of the policy optimization due to the reduction of
the number of rules. They showed that an optimized policy, without anomalies or redundancies,
could reduce the overall number of rules that need to be injected on the devices, with a consequent
increase in performance. Moreover, the optimized distribution process leads to a significative
improvement, loading the rules only on the devices interested by the traffic pattern they identify.

10

Introduction

This thesis work is divided in the following chapters and topics.

❼ Chapter 2 presents an introduction to the concepts used in this work (Ch. 2),

❼ Chapter 3 is an overview of the current State-of-the-art and which are the current research
topics (Ch. 3),

❼ Chapter 4 defines the goals of the project (Ch. 4),

❼ Chapter 5 contains analysis of the infrastructures and components used in this work (Ch.
5),

❼ Chapter 6 introduces how the solution is designed (Ch. 6),

❼ Chapter 7 presents the implementation of the project (Ch. 7),

❼ Chapter 8 shows the results of the testing activities (Ch. 8),

❼ Chapter 9 resumes the conclusions and introduces an overview of the possible future works
(Ch. 9),

❼ Appendix A is the programmer manual and contains the instruction to extend the func-
tionalities (Appx. A),

❼ Appendix B summarizes all the available REST API (Appx. B).

11

Chapter 2

Background

In this chapter there is an overview of the main technologies used in this thesis work.

2.1 Computing virtualization

Virtualization is the process of running a virtual instance of a computer system in a layer ab-
stracted from the actual hardware.

Applications that run on virtualized Operating Systems (OSs) have the same behavior as they
runs on a dedicated machine. These virtual systems are called Virtual Machines (VMs).

Virtualization can be used by everyone, from private users that want to run applications
designed for a different OS without installing it, to big companies that want to consolidate different
systems on a single hardware device.

This consolidation process lead to an efficient use of the hardware resources, avoiding to use an
entire, powerful machine for a single low-consuming service. Therefore, the power consumption
of a machine that runs several VMs inside, is lower than having a single machine per application.

We can define two types of operating system:

❼ Guest OS, is the OS that runs on the VMs, it should not be aware of running in an virtualized
environment;

❼ Host OS, is the OS that includes the Hypervisor and it is responsible of hardware virtual-
ization and VMs management and orchestration.

The hypervisor is the software that lay between hardware and VMs. It is responsible of the
orchestration and the management of the Virtual Machines.

Hypervisors can be Type-1 or Type-2, the former is installed directly on the underlying hard-
ware, the latter is a normal application that runs on a Operating System (e.g. VirtualBox).
Today there’s another type of hypervisors that uses technologies like Kernel-based Virtual Ma-
chine (KVM) to virtualize systems using directly the underlying hardware, but running as a
normal application installed in the OS.

Hypervisor have to ensure complete isolation between VMs, because a fault in a VM should
not compromise the functionalities of the others. Moreover hypervisor has to be secure because a
security issue in the hypervisor can make vulnerable all the VMs that runs on it.

Virtualization techniques bring several advantages in terms of agility, consolidation and isola-
tion.

❼ Agility: virtualization extend VMs controllability, in fact is possible to pause/restart it,
migrate it on another host, duplicate it or change the amount of resources assigned to it.
Moreover with virtualization is possible to add/remove peripherals, simulating them without
touching the real hardware.

12

Background

❼ Consolidation: aggregating VMs into a single physical server can reduce the overall energy
consumption. It optimizes the utilization of the physical resources avoiding to have multiple
servers that runs a single application.

❼ Isolation: critical application can be isolated in different VMs avoiding that malicious actions
on a VMs can interfere with applications running on other VMs.

Figure 2.1. Computing virtualization

Figure 2.1 shows how a set of physical servers can be instantiated on a single physical device
with different virtualized environments.

Nevertheless, virtualization is computationally expensive and it can be difficult to obtain
high performance in an virtualized environment. Some solution was introduced (e.g. hardware
offloading) but achieving high performances is still one the main challenges.

2.1.1 Network virtualization

Virtualization introduces additional requirements for networking because is necessary to guarantee
the communication between VMs and between the physical network and the virtualized machines.
It may be also necessary to assign different IP addresses to the VMs and configure additional
network services (e.g. firewall, load balancers, etc.).

The main idea is to create a virtual topology that acts as the physical one. The VMs can be
connected at Ethernet (L2) or IP (L3) level.

❼ L2 connection: connecting VMs at Ethernet level can be done with a virtual switch, imple-
mented in software, that runs inside the physical server. Alternatively the connection can
be done by the physical Network Interface Card (NIC) or by an external switch connected
to the server.

❼ L3 connection: there are two possible implementation to provide L3 connection between
VMs: native networking and overlay networking.

– With Native networking the IP addresses of the VMs are given according to the un-
derlying network. It may be necessary to introduce VLANs to ensure communication
between VMs. For this approach is necessary the cooperation of the network provider
to guarantee the connectivity.

13

Background

– Using Overlay networking the IP addresses of the VMs are hidden to the network
infrastructure. The physical network is decoupled from the virtual one and it is not
necessary to add specific routes for VMs communication. If VMs are running in differ-
ent physical hosts it may be necessary to implement tunneling mechanism (e.g. GRE,
VxLAN).

SDN technologies can improve the performances of virtualization ensuring fast and reliable
connections between VMs and providing context-based traffic forwarding. Moreover, these tech-
nologies decouples data plane from control plane, centralizing into a single controller the entire
network management.

2.2 Cloud computing

Virtualization techniques provide elasticity in resource assignment. With this approach machines
no longer need particular characteristics of performances (e.g. CPU, RAM, Storage, etc.) because
resources are assigned depending on the actual need.

Customers can buy a large number of servers with same performances and hardware specifica-
tion and consolidate them in a single datacenter, using virtualization to implement their services.
Commercial-Off-The-Shelf (COTS) are products that are ready-made and available for sale to the
general public, they are widely used to implement cloud architectures and datacenters.

When public datacenters came to the market the concept of Cloud Computing started to
appear. According to National Institute of Standards and Technology (NIST), Cloud Computing
can be defined as: “a model for enabling ubiquitous, convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal management effort or
service provider interaction” [6].

With cloud computing users can buy exactly the amount of resources they need, with a pay-per-
use approach. Moreover, the user can be “unaware” of underlying technologies and infrastructure.

Elasticity is one of the main advantages of cloud computing, resources can be scaled automat-
ically and dynamically, according to the actual needs. Cloud Provider can also offer geo-localized
services on their datacenters around the world, optimizing latency and response time. Users
can specify preferences about data localization, but cloud provider does not provide informations
about the exact location of the provided resources.

Data availability and reliability is enforced with cloud solutions, ensuring redundancy, repli-
cation of data and business continuity with always-on servers. Services can be reached from
anywhere on every kind of device via standard Internet connections.

Cloud services deployment can be divided in four models.

❼ Private, all the physical infrastructure is property of the user. Is up to the user implementing
security, power, locals and machines, moreover it has to keep applications updated and sort
possible problems.

❼ Dedicated Hosting, customer uses hardware, locals, internet connection, buildings and elec-
trical power offered by the provider to deploy his services. This approach is useful for remote
computation of resources expensive programs

❼ Public, this model abstracts the final user to the infrastructure. All the operations afore-
mentioned have to be performed by the cloud provider.

❼ Hybrid, is possible to mix the previous approaches having physical and virtual server running
together according to the customer needs.

Cloud computing requires a reliable and performing Internet connection to work properly. In
fact, without Internet is impossible to access to public cloud features, moreover cloud applications

14

Background

are not appropriate for “low-latency purposes” due to Internet latency. Users, using cloud features,
partially lose control over their data. Knowing the exact location of data, and who is the legal
owner of the data may be a not negligible problem. Another issue may be what it is necessary to
do with data after the end of cloud provider operations and how data destruction has to be done.

2.2.1 Serivce models

Cloud computing architectures are defined using a series of service models, according to the cus-
tomer needs. It is possible to buy the physical machines and implementing all the infrastructure,
or even buy a complete ready-to-use cloud application.

Figure 2.2. Cloud computing service models

As shown in Figure 2.2, these services models have been grouped into four main classes.

❼ Hardware-as-a-Service (HaaS): the cloud provider offers all the physical hardware needed by
the customer. It provides locals, electrical power, air cooling systems, internet connection,
physical access security, etc. It can be useful for remote computation, when the user’s
application needs high computational resources, or for security reasons. The customer has
to manage the network configuration, load-balancers, VMs, databases, etc.

❼ Infrastructure-as-a-Service (IaaS): the customer can purchase almost unlimited instances
and virtual machines. Usually clients can manage their VMs via Application Programming
Interfaces (APIs) or via web dashboards. The cloud provider heavily exploits virtualization
mechanisms to create execution environments identical to the physical ones. Users can
create databases and connect them to the VMs via virtualized networks. The customer is
responsible of the security of his applications because a weakness in an user application may
expose VMs and the underlying infrastructure to unauthorized accesses. Vendor have to
ensure service availability according its Service Level Agreement (SLA) with the customer.

❼ Platform-as-a-Service (PaaS): Cloud Platform Services provide components to design cus-
tom software independently from the underlying OS and infrastructure. Customers can
build their middleware without worries about scalability, reachability and traffic balancing,

15

Background

all these detail are hidden to the user. With PaaS there is a complete interaction with
databases, messaging-services and other accessory services that allow them to implement a
complete cloud application in few lines of code. Nevertheless, PaaS can bring some prob-
lems of compatibility with certain programming languages, moreover legacy systems may
have integration problems and they may need to be customized. There is a problem known
as “vendor lock-in” because technologies and implementations used by a provider may be
not compatible with another vendor. If the vendor has not provisioned migration policies,
switching to alternative PaaS may not be possible without affecting the business.

❼ Software-as-a-Service (SaaS): cloud providers can offer complete cloud application to the
users. They don’t need to write lines of code or to think about software compatibility and
maintenance. Vendors have to ensure service availability and reliability, but also data pro-
tection and consistency. With this approach, software installations are no longer required,
moreover vendor has to offer technical assistance to the customers. These ready-made ser-
vices can be accessed over the Internet, simplifying their utilization. Cloud services can
suffer a lack of features with the respect of the “client” version of the software. Moreover,
integrating cloud application with existing architecture may be an hard job. With SaaS, the
problem of vendor lock-in is still present because not every provider follows standard APIs
and protocols, so migrating to another vendor is not an easy task. Security is an important
key point of SaaS, in fact, using cloud services, users agree to the transfer of sensitive busi-
ness information in the backend datacenters network, this rise new security issues that need
to be handled.

2.2.2 Cloud security

Security is one of the topmost concerns of any computing model and cloud computing is not
an exception. Cloud security focuses on what measures is necessary to adopt to ensure secure
services and architecture to customers. To implement secure services is necessary to know cloud
infrastructures, possible configurations, how the service is provided, where are data stored and
technologies used to store them.

Cloud security is a fact that concerns the provider, but also the customer: the former must
ensure security of its own infrastructure as well as of the clients data and applications, the latter
must verify and make sure that the provider has employed all possible security measures to make
the services secure. For this reason a Service Level Agreement (SLA) between Cloud Service
Provider (CSP) and the customer underline the main security aspects of the cloud solution.
Customers have to explain clearly what security requirements they have.

In cloud environment there are multiple threats that have to be addressed in order to ensure a
reliable and secure service. Most of the threats concern about customers’ data location, utilization
and protection. There are also threats associated to account hijacking and identity theft, which
have to be addressed by the customer enforcing his account access methods. Multi-tenancy cloud
environments that exploit virtualization techniques have to ensure isolation between users avoiding
possible VM-to-VM or VM-to-VMM attacks.

Vendors have to ensure also a complete destruction and sanitization of users’ data after the end
of service. This practice prevents malicious data recovery attempts, avoiding sensitive information
thefts.

Cloud applications, have to be redesigned to implement native security functions. The paradigm
of defense-in-depth, shown in Figure 2.3, represent the typical architecture of an application that
follow security principles. It consists in different consequent levels of protection, so an attacker
has to break through these layers to get access to the resources. It is necessary to have a separa-
tion of privileges and duties across employers and to set-up a control an monitoring mechanism
to guarantee internal access security.

16

Background

Implementing security may be challenging in cloud environments, for this reason the con-
cept of SECurity-as-a-Service (SECaaS) was born. With SECaaS customers can offload to the
cloud provider the implementation of most of the security aspects needed. This approach has
several advantages such as, elasticity, fast-provisioning, scalability and continuous software up-
dates. Therefore customers don’t have to implement and maintain all the security aspect of their
deployments, manage log files or keep monitoring activities in the datacenter.

SECaas covers most of the security necessities of a typical cloud environment such as: identity
and access management, data loss prevention, web and email security and encryption. It also
follow the pay-per-use approach.

Figure 2.3. Defense in depth reference scheme

Cloud providers have to ensure complete availability for their services, because every downtime
of a server may potentially lead to a damage to the business continuity of the customer. Building
multi-tier architectures provides resiliency against Distributed-Denial-of-Service attacks.

2.2.3 Cloud toolkits

Virtual machines provide elasticity and flexibility, but managing several VMs may become a
problem. Performing actions like migrating the VM, start and stop different VMs or splitting the
infrastructure across multiple tenants in large datacenters with hundreds of servers can become
unfeasible.

With cloud toolkits is possible to have a global view of the datacenter. The cloud provider is
able to instantiate VMs, migrate VMs across different hosts, set up security features or split the
underlying infrastructure with multiple tenants.

These applications provide an higher-level of abstraction of resources and allow vendosr to
consolidate into a single application the complete control of the infrastructure. A cloud toolkit
can be defined as an operating system for the cloud infrastructure.

A cloud toolkit can communicate with different and heterogeneous technologies such as the
hypervisor, the storage system and the network resources.

❼ Hypervisor is responsible to orchestrate and manage the life-cycle of the VMs in the dat-
acenter. It is responsible of virtualizing physical resources and manage access to them by
the VMs. Hypervisor realizes also monitoring functions, sending real-time data to the cloud
infrastructure and performing resource scaling as needed.

❼ Storage system is necessary to store data about tenants, configuration and VMs virtual
disks. It’s up to the provider ensure data redundancy and availability.

17

Background

❼ Network resources ensure VM-to-VM communication, but also to allow VMs to communi-
cate with Internet destinations, and, in some cases, to let VMs being reachable from outside
the datacenter.

Toolkits often provides an easy and intuitive Web interface (WebUI), besides the classic Com-
mand Line Interface (CLI). These web application usually exploit REST APIs to communicate
with underlying infrastructure and realize all the functions required by a datacenter.

Most of these applications are open-source (e.g. OpenStack, Apache CloudStack, Eucalyptus,
etc.), but there are also proprietary services (e.g. VMWare).

2.3 Firewalls and policies

In this section packet filters and security policies are introduced.

2.3.1 Packet filters

With the expansion of Internet technologies and infrastructures across the world, network security
became a key point in the research and industrial communities.

The number of threats and possible attacks is increasing continuously, therefore firewalls be-
came indispensable in all kind of infrastructures, from enterprise networks to home network.

A firewall is a network element that controls the traversal of packets across the boundaries of
a secured network based on a specific security policy [9]. It is responsible of filtering packets that
don’t respect filtering rules defined according to the security policy requirements.

These rules, forming an ordered set, are composed of matching fields (e.g. IP addresses,
protocols, ports) that leads to an action that has to be executed on the matching packet. This
action can be deny if the packet has to be discarded or allow if the packet meets the requirements
to enter in the network. If a packet matches a rule, the corresponding action is executed, otherwise
it is executed the default action which can also be allow or deny. In the following Table 2.1, a
typical firewall packet filtering policy, is represented.

Priority
Source Source Destination Destination

Protocol Action
IP address port IP address port

r1 1 130.162.0.1 * * 80 TCP ALLOW
r2 2 130.162.0.0/24 * * 80 TCP DENY
r3 3 130.162.0.1/24 * 130.162.0.1/24 * TCP ALLOW
r4 4 130.162.0.1/24 * 130.162.0.1/24 * UDP ALLOW
r5 5 * * 130.162.3.1 * * DENY
r6 6 * * 130.162.3.0/24 0-1024 TCP ALLOW
r7 7 * * 130.162.3.0/24 * * DENY
...

default ∞ * * * * * DENY

Table 2.1. A typical firewall packet filtering policy

Rules matching is a computationally expensive task because, often, the default action of a
security policy is deny and rules are written as exception. The decision process could be slowed
down because it is necessary to evaluate an high number of rules before performing the action.
Therefore is important to check if there are some rules that are in conflict to resolve them allowing
packets to traverse a smaller number of rules.

18

Background

To understand rules conflicts is necessary to classifying all the possible relations between rules.
According to the H. Hamed and E. Al-Shaer work about the taxonomy of policy conflicts [10], it
is possible to identify four conflict types.

❼ Exactly matching rules (Rx = Ry): Rules Rx and Ry are exactly matched if each field in
the two rules is equal.

❼ Disjoint rules (Rx .// Ry): Rules are completely disjoint if every field of Rx is neither a
subset nor a superset and not equal to the corresponding fields in Ry. Given two fields of
Rx, if one is a subset, superset or equal to the corresponding field of Ry and the other is
not a subset, superset or equal to the corresponding field of Ry, the two rules are defined
as partially disjoint [11].

❼ Correlated rules (Rx ./ Ry): Rules are correlated if at least one field of Rx is a subset of the
corresponding field in Ry and the rest of the fields of Rx are supersets of the corresponding
field in Ry.

❼ Inclusively matching rules (Rx ⊆ Ry): Rules are inclusively matched if they are not exactly
matched, and every field of Rx is a subset or equal to the corresponding field in Ry. In this
case Ry is defined as superset match and Rx as subset match.

If rules are not completely disjoint a packet may match more than one rule. In this case rules
can be defined as dependent and their order must be preserved for the firewall policy to operate
correctly [12]. Two dependent rules that have different actions, gain a different level of precedence
depending of rule position inside the firewall. Therefore, is important to preserve rule ordering to
avoid that some packet may be discarded or accepted in contrast with the original security policy.

To solve these problems it may be useful to implement optimization algorithms that can
improve firewall performances. These algorithms focus mainly on dynamic rule-ordering opti-
mization [12], and on dynamic optimization of packet matching [13].

Thanks to these optimizations, is possible to realize ad-hoc rules that match most of the
packets that will be discarded. Then, these rule may be put on top levels of firewall tables,
avoiding to traverse a large number of rules and gain high performances.

For each policy a resolution strategy is defined, it describes which rule action has to be executed
if a packet matches more than one rule. Some standard resolution strategies are:

❼ First Matching Rule (FMR): the first matching rule action is executed.

❼ Allow Takes Precedence (ATP): if two matching rules have conflicting actions, the allow
action is chosen.

❼ Deny Takes Precedence (DTP): if two matching rules have conflicting actions, the deny
action is chosen.

❼ Most Specific Takes Precedence (MSTP): the rules that matches more packet fields is chosen.

❼ Least Specific Takes Precedence (LSTP): the rules that matches less packet fields is chosen.

There are several implementations of firewall policies, but the most common and used has deny
as default action with FMR as resolution strategy. Matching fields are usually Source/Destination
IP address, Source/Destination Port and Protocol, they are known as the 5-tuple.

19

Background

2.3.2 Policies

A security policy specify the security requirements that the system must satisfy and the threats
it must resist [14]. A policy can contain a large number of filtering rules and if they are not
completely disjoint may bring to several policy anomalies. These anomalies may occur in the
same device (intra-policy anomalies) or between different devices (inter-policy anomalies).

Intra-policy anomalies

Intra-policy anomalies occurs when a packet matches two or more rules in the same firewall
security policy. According to the F.Valenza and M.Cheminod work about the firewall anomalies
resolution strategies [15], these kind of anomalies can be divided in sub-optimization anomalies
and conflict anomalies:

❼ Sub-optimization anomalies: this kind of anomalies arise when there are redundant or irrel-
evant rules in the policy, so is possible to optimize the security policy by removing rules or
by editing them. These anomalies can be divided in four sub-categories.

– Intra-policy Exception: this anomaly occurs when a following rule is a superset of a
preceding rule and its action is different. This situations often happen when is necessary
to make exclusion from a general filtering rule. The problem is that some accepted
traffic may be blocked from a following rule.

– Intra-policy Redundancy: if a packet matches two rules that have the same actions,
these two rules are redundant. Rule Rx is redundant to Ry if Rx precedes Ry and
Ry inclusively matches Rx and the two rules have similar actions. This anomaly can
increase the total number of rules in a security filtering policy, reducing the overall
performances of the firewall.

– Intra-policy Duplication: it is similar to redundancy but the two rules have to exact
match. These rules match the same packet and have the same action, so the removal
of one of these rule will not change the policy behaviour.

– Intra-policy Irrelevance: according to the E. Al-Shaer and H. Hamed work about the
the policy anomalies in distributed firewalls [11], this anomaly occurs when a rule do not
match any traffic that flows in the firewall. For example, if a rule contains unreachable
IP Addresses in the Source/Destination IP Address fields, this rule is irrelevant. This
rule should be removed from the policy because it causes an unnecessary processing
and a consequent decrease in performances.

❼ Conflict anomalies: occur when two rules match the same packets, but the respective actions
are different. Rule ordering became crucial for the security policy, because the first rule that
matches the packet executes its actions. If not resolved this anomalies may lead to allowing
unwanted traffic or deny some authorized packets. Unlike sub-optimization anomalies, policy
conflicts have to be resolved by the network administrator, because it is not possible to
compute automatically the right filtering decision. These anomalies can be divided in three
sub-categories.

– Intra-policy Shadowing: this anomaly occur when a rule matches all the packet of a
following rule with a different action. The shadowed rule will never have an effect
in the policy. Rule Ry is shadowed by rule Rx if Rx precedes Ry and Ry inclusively
matches Rx and the two rules have different actions. It may ne useful, in case of this
kind of rule relation, to put the superset rule after the subset one.

– Intra-policy Correlation: if two rules are correlated and their actions are different, rule
ordering became crucial for the outcome of the security policy. In this case, some
packets match both rules, but the respective filtering actions are different. The user
have to choose the rule order to solve this issue.

20

Background

– Intra-policy Contraddiction: arises if two rules exactly match, but their actions ar
different. Is not possible to automatically remove one of the rule because their action
are different, therefore is necessary that the network administrator has to resolve this
conflict manually.

Policy anomalies

Intra-policy anomalies

Sub-optimization anomalies

Exception Redundancy Duplication Irrelevance

Conflict anomalies

Shadowing Correlation Contraddiction

Inter-policy anomalies

Shadowing Sporiousness

Figure 2.4. Taxonomy of policy anomalies

In Table 2.4, a hierarchical representation of the principal policy anomalies, is shown.

Inter-policy anomalies

When the security requirements affect multiple domains, it is necessary to ensure the protection
using multiple filtering devices. These devices may be managed by different network administra-
tor, so guarantee a certain level of security may result a difficult operation. Devices in the path
of a flow that preceding other devices are called upstream device, whereas devices following are
called downstream device. The device that is located closest to the flow destination is called the
most-downstream device, the device closest to flow source is called the most-upstream device [11].

With these types of network architecture, checking only the presence of intra-policy anomalies
is not enough to ensure proper operation. Conflict could exist between policies of different fire-
walls. These conflict can occur when a downstream device block traffic permitted by an upstream
device and viceversa. These anomalies can be divided in two main categories.

❼ Inter-policy Shadowing: this anomalies arise when an upstream policy discard all or some
of the traffic allowed by a downstream policy. If the downstream rule Rd and the upstream
rule Ru inclusively match we have partial shadowing, we have complete shadowing if the
Rd and Ru exact match. This anomaly is a problem, because some desired traffic may be
dropped from upstream devices.

❼ Inter-policy Spuriousness: this anomalies occur when an upstream policy allows all or some
of the traffic blocked by a downstream policy. If the downstream rule Rd and the upstream
rule Ru inclusively match we have partial spuriousness, we have complete spuriousness if
the Rd and Ru exact match. Spurious traffic, therefore, is authorized to travel across the
network until it reach the downstream device that will discard it. Inter-policy spuriousness is
a critical anomaly in network security, because it expose the underlying network to unwanted
traffic and potential attacks (e.g. DDoS, Port Scanning, etc.) [10].

Identifying the anomalies between policies is a key point for a correct and efficient network
security administration. There are automatic tools that can resolve some of the conflicts, but in
some case human intervention is unavoidable.

21

Background

Policy representation

To better understand policies and the behaviour they assume when more policies are put together,
it may be useful to adopt a intuitive policy representation.

Referring to the C. Basile, A. Cappadonia, A. Lioy work about the policy transformation
techniques [16], we can use a geometric model to represent security policies.

This model is composed by several elements.

❼ Rules ri = (ci, ai) can be as a condition clause ci and an action ai.

❼ Actions ai represent the behaviour that a firewall needs to follow when a packet match the
corresponding rule. The action can be accept if the packet can pass through the device or
deny if it necessary to discard it. Actions are organized into an action set A = {A,D}.

❼ Condition clause ci = s1× s2× . . .× sm ⊆ S1×S2× . . .×Sm = S is a subset of the selection
space S. The condition clause generate an hyper-rectangle.

❼ Selection space S is formed by the Cartesian product of selectors Si. A selector represent
the field that the packet will match (e.g. Source/Destination IP Address, HTTP Contents,
etc.).

❼ Packets xi can be mapped to the selectors or to the decision space. A packet match happen
if the packet mapped to the selector of the condition belongs to the condition.

s1

s2

S1

S2

x1

x2
c

.

.

Figure 2.5. Geometric representation of a policy rule

For example, according to Figure 2.5, packet x1 is not matching the policy rule, whereas packet
x2 mapped on the selectors S1 and S2 belongs to the condition c.

In this geometric model a policy can be expressed as a four-tuple (R,<, E, d).

❼ R = {ri}i, i ∈ [1, n] is a set of n rules that compose the policy.

❼ R : 2R → A is the resolution strategy, it determines the action to execute if a packet matches
more than one rule. For example, First Matching Rule (FMR), is a resolution strategy that
uses a priority to determine the rule action. If a packet matches two rules and the resolution
strategy is FMR, the action of the rule with highest priority is executed.

❼ E is the set of external data associated to the rules. These data are used by the resolution
strategy to determine the action, in case of multiple packet matches (e.g. priority values,
etc.).

❼ d is the default action of the policy. This action is executed when a packet do not match
any of the rules in the policy.

22

Background

Figure 2.6. Policy anomalies with geometrical rule representation

Figure 2.6 shows how the policy anomalies can be represented using the geometrical rule repre-
sentation. Modelling policy rules geometrically, enables union, intersection, set minus operations
among policy rules. These action are used to find rule relations and anomalies, implementing
resolution and reconciliation algorithms on the policies.

Semantics-preserving morphism

The concept of semantics-preserving morphism or simply morphism is a transformation of a the
policy representation that keeps the policy unchanged [16].

The objective of the morphism is to find an equivalent simplier and optimized policy rep-
resentation, that can become useful if a policy contains a large number of rules. The resulting
policy uses FMR as resolution strategy, so the concept of rule precedence is still present with this
approach.

To achieve this result, the first step is to generate from the original policy an intermediate
representation called canonical form. This representation is based entirely on set operation, which
helps in conflict resolution and policy manipulation.

A composition between rules is generated when two rules overlaps, it is made by the condition
clause intersection of the two rules and the action resulting by the application of the resolution
strategy. Given a policy, is possible to define its closure as the set of all the possible composition
of the policy rules.

Using the semi-lattice representation of a policy, the management of the canonical form of a
policy is easier and more intuitive [16].

The result of this manipulation is a new policy composed by a set o rules ordered by priority.
The first rule has the minimum priority value that correspond to the higher priority.

Figure 2.7. A policy FMR-morphism example

As shown is Figure 2.7, the morphism starts from the original policy expressed in its canonical
form (a) with the corresponding rule action. Then with the semi-lattice representation a cover-
graph is generated (b). Finally, the resulting rule are exported with the respective priorities (c).
It’s clearly visible that the rule r2 is removed from the original policy due to its redundacy with
the rule r1.

With morphism is possible to reduce the number of rules in a policy, removing irrelevant and
redundant rules.

23

Background

Policy reconciliation

Policy reconciliation is the process that takes as input a set of policies and produces in output a
single resultant policy. This process can be extremely useful if there are multiple filtering points
across a single flow path because it produces a single equivalent policy.

Reconciliation also resolve contradictions between rules in different policies. The resulting
policy contains the set of non-conflicting rules and for each resolved contradiction it generates a
new rule.

Reconciliation is done using the semi-lattice representation, the same used for FMR-Morphism
technique because it simplify the policy representation and allow to manage easily precedence
constraints between rules.

This approach needs complete access to all the policies in order to manage them and produce
a single resulting policy. If some policies cannot be accessed or modified is necessary to employ
the policy chaining.

The process consist, firstly, in a creation of a new rule set containing all the rules of the policies.
Then it is necessary to define a reconciled resolution strategy because the resolution strategy used
in the policies only works on rule from the original policy rule set.

After the reconciled resolution strategy is defined, the resulting policy will contain the set of
non-conflicting rule and the set of rules produced by the resolution strategy. Therefore, the last
step is to define a default action, using the reconciliation strategy between the default action of
the input policy set.

Reconciliation is extremely useful if it is necessary to compute the resulting policy of a series
of filtering point. It also exposes all the inter-policy anomalies and correlations that could remain
hidden before the process.

Implementing a preventive policy analysis can be extremely useful for network security ad-
ministrators, especially if there are a large number of policies that need to be enforced. These
mechanisms expose anomalies, conflict and allow administrators to solve them getting lighter
policies with a reduced number of rules.

Moreover, finding intra-policy or inter-policy conflicts and anomalies is extremely important
in computer security, because if a conflict remains hidden, it may lead to serious vulnerabilities
and possible external attacks.

24

Chapter 3

State of the art

In this chapter there is an overview of the state-of-the-art of the modern network virtualization
technologies.

3.1 Network Function Virtualization

Today’s networks are filled with a massive and ever-growing variety of network functions that cou-
pled with proprietary devices, which leads to network ossification and difficulty in network man-
agement and service provision. Network Function Virtualization (NFV) is a promising paradigm
to change such situation by decoupling network functions from the underlying dedicated hardware
and realizing them in the form of software, which are referred to as Virtual Network Functions
(VNFs) [1].

This paradigm forces Telecommunications Service Providers (TSPs) to re-invent their net-
works, building it more dynamic and service-aware.

NFV allows for the consolidation of many network equipment types onto high volume servers,
switches and storage, which could be located in data centers, distributed network nodes and at
end user premises [2].

A service can be divided into different VNFs, implemented in software, running in various
physical servers. This functions can also be relocated from a data center into another, without
the necessity to buy specific hardware.

NFV is based on three main pillars.

❼ Decoupling software from hardware: dedicated hardware is no longer required, because
VNFs are implemented in software running on Commercial-Off-The-Shelf (COTS) hardware.
Using this approach is possible to develop independently hardware components and network
softwares. TSPs can use virtualization techniques to optimize their resources according with
their needs. They can also use an hybrid approach mixing virtualized resources with physical
ones.

❼ Flexible deployment: without the necessity to have hardware and software on the same
device, is possible to assign the same physical machine to different functions at time. It is
also possible to run the same software on different machines with the same result. Services
deployment become faster and flexible, with better performances and short configuration
times.

❼ Dynamic scaling: this separations allow services to scale better, especially for virtualized
enviroments, because is possible to assign quickly more or less resources, depending on the
actual necessity. TSPs can offer services according to traffic conditions, or geographical
localization of the customers (e.g. deploying services in a specific data center).

25

State of the art

NFV can bring benefits to network carriers, reducing capital investment and energy consump-
tion, implementing a lower-cost agile network infrastructure. It can reduce the time to market of
a new service, changing the classic deployment cycle and introducing services based on customer
necessities.[3]

One of the main challenges of NFV paradigm is how to migrate from the existing and con-
solidated network infrastructure to virtualized enviroments ensuring the same performances and
making the customer unaware of the change.

3.1.1 ETSI NFV Architecture

In October 2013 the European Telecommunications Standards Institute (ETSI) released a docu-
ment that explains the NFV architecture. This document shows that NFV can be divided into,
NFV Infrastructure (NFVI), NFV Management and Orchestration (MANO) and Virtual Network
Function (VNF). In the following Figure 3.1, the ETSI NFV reference architecture, is represented.

Figure 3.1. ETSI NFV reference architecture [4].

❼ NFV Infrastructure (NFVI): corresponds to data plane, it forwards data and provides the
physical resources for running VNFs. It is composed of COTS hardware which provides
the compute and storage capacities and network elements to guarantee the communication
between the nodes. There is a virtualization layer between physical infrastructure and
virtual resources. It exploits hypervisors to split physical resources across virtual machines.
This layer guarantee a level of isolation between VMs sharing the same underlying hardware.
Virtual resource layer is divided in virtual storage, compute and network. VNFs runs on
these virtual resources in various VMs.

❼ NFV Management and Orchestration (MANO): is responsible of coordination of the entire
NFV architecture. It handles the virtualization mechanism, life cycle of VNFs instances,
distribution of hardware resources, modules and interfaces connections, etc. It is divided in
Virtualized Infrastucture Manager (VIM) that controls physical resources, NFV Orchestra-
tor (NFVO) that manages VNFs life cycle and assign NFVI resources and VNF Manager
(VNFM) that manages the instances of VNFs. This roles are partially overlapping, so they
are usually implemented in a single entity.

❼ VNF Layer: it contains all the VNF instances, it abstract the underlying physical layer.

26

State of the art

These instances are organized by Element Managers (EMs). EMs realizes monitoring, con-
figuring functions for a specific VNF. It’s collaboration with VNFM is crucial for correct
and efficient VNFs deployment.

3.1.2 Virtual Network Function

A VNF is the virtualization of a Network Function (NF), it has to provide the same functionalities
of the physical implementation of it. Exploiting cloud computing paradigm is possible to divide
VNFs in components, like microservices, and run them on several VMs across a single or multiple
datacenters.

According to NFV paradigm, VNFs have to follow some technical requirements to work prop-
erly. These can be summarized in four main categories.

❼ Performance: VNFs usually runs on general-purpose servers, therefore performances can
be different from the corresponding physical version implemented on the hardware device.
It may be necessary to build efficient algorithms to split network services across different
VNFs in various VMs. To guarantee certain levels of throughput or latency, is necessary a
continuous communication between VNFM and underlying NFV infrastructure,responsible
to gather real-time network performance informations.

❼ Manageability: VNFs should be instantiated in every moment and in every location by
the NFV infrastructure, it should also dynamically allocate and scale physical resources for
them. VNFs can be easily interconnected with simple interfaces achieving Service Func-
tion Chaining (SFC) between them. To ensure a good level of service quality, network
operators may provide redundant instances: this requirement can be achieved using recent
Cloud Computing techniques. Also running software should be re-designed to bring crucial
informations about performances to NFV infrastructure.

❼ Reliability and Stability: moving into virtualized enviroment could bring several reliability
problems. Network operators should guarantee the same Service Level Agreement (SLA)
with customers, implementing automatic handlers for all the new points of failures generated
by this migration to virtual appliances. Software must be implemented assuring resilience
and stability. Migration is another important parameter for VNFs, in fact all instances
should be migrated safely without data loss or service unavailability.

❼ Security: as VNFs are implemented on third-party data centers, data protection became a
crucial aspect for network operators. Furthermore the physical layer is shared between VMs,
bringing important isolations problems. This increase the overall load on Intrusion Detection
Systems (IDSs). New security threats can be introduced by the underlying network and
storage hardware. Is important to ensure that all the instances are isolated from each
other since a failure/attack in one service does not affects other instances. Moreover, these
software-based components may be offered by different vendors, potentially creating security
holes due to integration complexity [3].

3.2 Software Defined Networking

Modern networks are composed by a set of network devices, designed in hardware with Appli-
cation Specific Integrated Circuits (ASICs) and chips required to achieve high throughput and
performances. However, these devices presents lack of flexibility and extensibility. A network
operator is forced to use a set of predefined commands to configure these devices and it is not
possible to support different protocol or applications.

With hardware devices is difficult to implement policies like traffic-shaping or pay-per-use
services, furthermore, ensuring the continuity of service in case of maintenance operations, is an
hard challenge.

27

State of the art

To overcome such limitations, a new idea of “programmable-newtorks” is emerging, in partic-
ular the concept of Software Defined Networking (SDN). SDN can be defined as: “an emerging
architecture that is dynamic, manageable, cost-effective, and adaptable. This architecture decou-
ples the network control and forwarding functions enabling the network control to become directly
programmable and the underlying infrastructure to be abstracted for applications and network
services” [5].

Open Network Fundation (ONF) defined a reference model for SDN architecture, it consist in
three layers: infrastructure layer, control layer and application layer, as illustrated in Figure 3.2.

❼ Infrastructure layeris composed of smart switching devices compatible with upper layers and
protocols. These devices are responsible of the data plane, they perform packet processing
according to the rules given by the SDN Controller, they also provide informations about
network topology, network usage and real-time traffic statistics. Unlike common network
devices, these devices can perform a programmable per-flow forwarding (e.g. they can
forward packets matching certain conditions to a specific output port).

❼ in the control layer are placed the SDN Controllers. It is a layer that bridges the com-
munications between Application layer and Infrastructure layer. It provides Application
Programming Interfaces (APIs) to the upper layer. Through this APIs, applications can
gather information about network usage and use them to configure controllers. Controllers
access to Infrastructure layer devices via protocols that allows the remote configuration of
them. This layer is responsible of east-bound communication with control planes that not
are not running SDN to maintain compatibility with classic networks.

❼ Application layer contains SDN user applications. With these application is possible to
use the north-bound interfaces brought by Control layer to configure underlying switching
devices. These applications can implement standard network functions (e.g. firewall, router,
load balancers, etc.). With SDN application is possible to implement also policies of traffic
shaping configuring a different per-user packet processing.

Figure 3.2. SDN Reference model

It is possible to create multiple virtual SDN networks (vSDNs) on a single physical network.
The network is split into multiple “slice” and each of them is assigned to a tenant. Each tenant
can operate with his “slice” independently from other tenants.

Controllers can be centralized or distributed. In case of distributed controllers is necessary
to define the controller-to-controller communication. A single, centralized controller represent a
single point of failure, thus it may be useful to define backups controller in case of failures.

28

State of the art

SDN, with the separation of control plane from data plane, brings several benefits to today’s
network management activities. It can enhance configurations, allowing for automatic and dy-
namic network management. It can implement packet forwarding not only at switching level, but
also at data link layer, breaking the barrier of layering [7]. Performances can be incremented with
SDN networks thanks to real-time network status and centralized control. Network operators
have a “big-switch” vision of the underlying network, thus they can implement optimized and
adaptive algorithms for traffic steering, increasing the overall performances. Lastly, SDN offers
a platform for new network designs experimentation due to its capability to create and manage
isolated virtual networks.

SDN and NFV are complementary technologies because the former ensures smart traffic steer-
ing and the latter provides virtualizable and scalable network functions. These paradigms have
similar goals, but they use different approach to achieve them, NFV focuses more on computing
while SDN focuses on optimized network path.

3.2.1 OpenFlow

OpenFlow is the protocol that defines the interfaces between Infrastructure layer and the Control
layer. It ensures the communication between the SDN Controller and the underlying OpenFlow
switch with a secure TCP channel.

OpenFlow switches contains one or more flow-tables whose flows can be inserted, deleted or
updated by the controller via OpenFlow. This flows consist of match-fields used to match incoming
packets, this fields can be headers, ingress port or metadata. For each flow is present a set of
actions that must be applied on each matching packets, these action can modify packet fields, drop
the packet or simply forward it to another port. Counters are also present in OpenFlow flows,
they collect network statistics that can be used to increase the overall SDN network performance.

Rule injection can be done proactively (before receiving packets rules are generated by the
controller and loaded into the switch) or reactively (when the switch receive a packet it sends it
to the controller that will generate the proper rule).

OpenFlow supports fine-grained or aggregated rules, it depends on what granularity is needed
and where is located the OpenFlow switch (e.g. backbone, edge).

When a packet doesn’t match a flow it can be forwarded to another table/rule, sent to the
controller or dropped, this behavior depends on the instruction written in the table-miss.

With OpenFlow it is possible to define multiple controller for a single switch and a single
controller can manage different switches.

3.3 Network Security Function

According to the Internet Engineering Task Force (IETF) definition: “Network Security Function
(NSF) is a function that ensures Confidentiality, Integrity and Availability (CIA) to network
communications” [8]. Its goal is to block or mitigate malicious activities.

NSFs can be provided to the customers by different vendors or they can be open source
technologies, moreover these functions can be implemented on physical or virtual infrastructures.
To achieve automatic adaptation, distribution and deployment of NSFs, NFV technologies can be
heavily used.

These functions can operate at every level of OSI Protocol stack. With NSFs is possible
to provide services as firewalls, Intrusion Prevention/Detection Systems (IDS/IPS), Application
Visibility and Control (AVC), Sandboxes, Distributed Denial of Service (DDoS) mitigation, etc.

Multiple NSFs can be combined together to create a security service provided to the customer.

NSFs should provide a set of Security capabilities that are independent from the security
controller that will manage them. This capabilities should be expressed in a vendor-neutral way,
so is not needed to know products and technologies during network security design.

29

State of the art

Service providers need standard interfaces to manage and orchestrate NFSs. Interface to
Network Security Function (I2NSF) aims to realize these required interfaces.

3.3.1 Interface to Network Security Functions (I2NSF)

In 2014 the IETF started a working group to define a standard model for a set of software interfaces
that allows service providers to manage NFSs. According to IETF definition [8]: “The goal of
I2NSF is to define a set of software interfaces and data models for controlling and monitoring
aspects of physical and virtual NSFs, enabling clients to specify rulesets.”

To manage and control NSFs is necessary that the controller is capable to inject rules or
execute query according to the requirements.

I2NSF divides the interfaces in two levels:

❼ Capability layer, indicates how the controller can manage and monitor NSFs. NFSs have
to support this rules defined from I2NSF;

❼ Service layer, indicates how clients can send security policies to the controller, that will
apply them according to his capabilities defined in Capability layer.

A client can interact with the controller, via interfaces defined in Service layer, or directly with
the NSFs using the Capability layer interfaces.

30

Chapter 4

Goals

In this chapter the thesis objectives are analyzed, introducing an application of the project on a
real use-case.

4.1 Goals definition

Network Function Virtualization (NFV) and Software Defined Networking (SDN), as shown in
Section 3.1 and Section 3.2 are fast-growing technologies that are taking part in the modern
network and infrastructures design processes. Moreover, with the rapid growth of cloud-based
applications, the amount of traffic handled by datacenters will increase as well.

These technologies are constantly improved and updated to ensure high performances under
heavy traffic loads. The development of new infrastructures and protocols (e.g. OpenFlow)
ensures short response times, fast traffic routing and reliable connections. The same does not
apply to security-related operations. Network administrators, in most of the cases, are forced to
configure manually a large-number of devices, which is known to be an error-prone task. Moreover
the security systems do not provide the same flexibility as the network operations.

Figure 4.1 shows a reference scheme of a traditional security architecture.

Figure 4.1. A reference scheme for a traditional security architecture

31

Goals

Security requirements are often defined by the user using high level policies, but the distribu-
tion process is not as flexible as the policy definition. There are some proprietary systems that
perform filtering policy distribution over cloud infrastructures, but they are often not optimized
to scale up with high numbers of rules.

This thesis work is focused on the realization of a security system that performs an optimized
distribution of high level policies on the provided cloud infrastructure. The objective is to realize
a security controller, compatible with most of the cloud architectures, that optimizes the rule
distribution process.

By means of this tool an administrator will not have to manually configure the security devices,
reducing the possibility of misconfigurations. Moreover, if the topology of the infrastructure
changes, the tool can reconfigure all the firewalls automatically enforcing the same security policy.

The SECurity-as-a-Service (SECaaS) paradigm is the key point of this thesis work, because the
idea is to implement a service that is agnostic to the technologies used in the cloud environments.
Given the model of the infrastructure (physical hosts, virtual switches, virtual machines, etc.)
and the high level security policies, the tool will perform an optimized rule distribution.

This project embraces the microservices paradigm, splitting a centralized security module into
small independent services that communicates each other.

One main idea to improve over the state of the art, is to exploit the filtering points already
present in a cloud environment to split the security policies into multiple devices. With this
approach, it is possible to avoid increasing the number of devices in the infrastructure, reducing
the overall costs.

As an additional requirement, this thesis aims at making the tool as close as possible to a
product, compatible with every cloud architecture, easy and intuitive to use. The project will
bring an overall simplification of the security operations, without decreasing the strength of the
protection.

The final objective is to simplify all the security operations, removing the necessity to man-
ually load the filtering rules on each device. Policies can be defined by the customer remotely,
and once they are received by the security controller it distributes them automatically over the
infrastructure. The process could lead to significant performance improvements, short response
times and an easy security management.

4.2 Use-case definition

In this section a definition of the possible use-cases related to this project is provided. The use-
cases are a possible representation of the utilization of this project in a real business environment.

Nowadays small and big enterprises are migrating to cloud infrastructures to host their business
services. In this case the amount of employed virtual resources may be huge, so an adequate secu-
rity system is needed. Moreover, a single enterprise can be divided into several semi-independent
entities to manage different business functions.

According to the enterprise internal architectures, two main use-cases were identified: Stan-
dalone and Holding company.

Standalone company

This section shows how the optimization tool could improve the security performances in a small
company environment.

A small company usually has all the business sectors under a single hierarchical structure.
This model can be reflected to the cloud infrastructure used by the company.

In a standalone company the regulations and standards are valid for the entire structure. In the
same way the security policies need to be applied to all the resources. In this case concentrating
all the security policies in a single filtering point, should be avoided for several reasons.

32

Goals

❼ Single point of failure: if the element that applies the security functions goes down (e.g.
attacks, maintenance, etc.), the entire security can be compromised.

❼ Performances: the number of rules may become relevant and aggregating them in a single
point may reduces the overall performance, requiring more powerful and expensive resources.

In this scenario, an optimized distribution process splits the rules into multiple filtering points,
lightening the single device and gaining in performance.

Distributing the security policies over the infrastructure contributes to reduce the possibility
that a cyber-attack can compromise the entire structure. In case of attack it is possible to perform
a different distribution, isolating the targeted area and continuing the business activity. More-
over, it is possible to apply the Defense-in-depth paradigm, creating multiple layers of defensive
mechanisms improving the overall protection.

All the modification to the rule distribution affects the performances, so limiting the overall
number of rules is a crucial task that needs to be handled to guarantee a certain performance
level.

Holding company

The second use-case concerns the application of the optimization tool in a big, structured business
company.

An holding company is a company that is composed by several semi-autonomous business
units. In this case all the sub-sectors of the holding company are independent with autonomous
regulations and governance policies. The main enterprise, however, issues a series of regulations
that the business-units have to follow.

This infrastructure can be reflected into a cloud environment, where the main company rents
from a Cloud Service Provider (CSP) a series of services. Then the holding company may assign
to each unit a portion of the cloud infrastructure on which apply their policies.

In this case there are multiple security policies that needs to be loaded into the cloud envi-
ronment. Starting from the CSP policies, they have to be applied to the entire datacenter, the
holding policies have to be applied to all the underlying business-units, finally each autonomous
entity has its personal security requirements.

Figure 4.2. A reference scheme for a holding company cloud architecture

33

Goals

The optimization process removes all the conflicts that could be present between the different
policies. The distribution process loads the rules only in the filtering points interested by the
traffic pattern identified by the rule. This leads to a performance improvement, because the
number of rules that needs to be evaluated by the single filtering device is reduced.

As illustrated in Figure 4.2, if an holding company is composed by three business-units, and
for each unit a private network is assigned (i.e. 10.0.0.0/24, 20.0.0.0/24 and 30.0.0.0/24).
The cloud provider filtering rules could be distributed on the “most-external” device, because it
have to filter all the traffic directed to the datacenter. The holding company security policies
could be distributed on the filtering points that connect the private subnets to the datacenter
because all the business-units have to follow main company policies. Finally, the filtering rules
related to a specific entity could be loaded only to the devices connected to the respective subnet
(e.g. 10.0.0.0/24 related rules should not be loaded into 20.0.0.0/24 devices).

34

Chapter 5

Components analysis

OpenStack is a cloud operating system that controls large pools of compute, storage, and network-
ing resources throughout a datacenter, all managed and provisioned through APIs with common
authentication mechanisms [17].

It provides an intuitive web dashboard, providing to the administrator an easy control and
management of the infrastructure.

It is composed by different plug and play components that can be activated when needed. They
provide different services and they are all controllable from the same dashboard or command line
interface (CLI). Moreover OpenStack provides a set of REST APIs to control and manage all the
plugins.

In the thesis project, a basic deployment of the OpenStack suite was used, with compute,
deployment, network, security and storage services.

❼ Compute: for computing, the Nova plugin, using kvm as virtualization method;

❼ Network : the network management service is Neutron, using openvswitch as switch virtu-
alization method;

❼ Storage: for storage, Cinder plugin with a 500GB dedicated hard disk.

❼ Image store: all the images used for instances deployment, are managed by Glance service.

After OpenStack installation, it was analyzed how virtual switches and virtual machine were
deployed on the physical hosts.

5.0.1 Computing

Virtual machines are deployed on the compute nodes, it is up to the Nova service choose what is
the best machine where to launch an instance.

The deployment of new instances can be easily done via web dashboard with which it is
possible to assign the required resources (e.g. CPU, RAM, Storage memory) and to select the
image to boot from the Glance store.

When an instance is booted up is possible to get SSH access via the dashboard or via CLI
from the network node. Moreover it is possible to register some SSH keys to the instance to get
secure access from different hosts.

35

Components analysis

5.0.2 Networking

With Neutron plugin is possible to create internal or external networks. The former represent
a virtual network used inside OpenStack, to ensure communication between virtual machines,
usually not reachable from outside. The latter is a network slice of the external, usually public,
network. A router interface it usually attached to the external network, this allow the virtual
instances to communicate with external destinations.

All the virtual machines are connected to a virtual switch called br-int. This switch, is
usually an OpenFlow switch, but OpenStack supports other type of devices (e.g. Linuxbridge).
This virtual device performs all the traffic forwarding operations and can be considered, for each
physical OpenStack node, the central networking point.

The network node is the physical host responsible for network management and virtual ma-
chines communication. It implements all the virtual routers used to interconnect virtual subnets.
This particular node, has an extra virtual switch, other than br-int, called br-ex. This switch
it is used to connect all the OpenStack infrastructure to the external public network.

It is possible to associate a “floating IP” address to an instance, making it reachable from
external sources. A “floating IP” is an IP address of the external network addresses pool. After
the IP assignment the instance will have two IP addresses: the one that belongs to the internal
subnet and the one that belongs to the external network.

The communication between OpenStack physical hosts is done by a VxLAN tunnel. Another
virtual switch, called br-tun, is responsible of tunnel management.

Figure 5.1. OpenStack internal architecture

Figure 5.1 can be used as a reference model to understand OpenStack internal architecture
and packet flows.

Packet flows

First of all, is necessary to understand how the communication is realized between physical hosts.
A packet that needs to travel from different OpenStack hosts, goes through the br-tun switch
where it is enveloped into the tunnel packet. Then, the packet is sent, through the primary
network interfacem, to the destination host. When the packet is received, it is extracted from the
tunnel envelope and it is processed according to the destination.

36

Components analysis

To better understand what filtering points are available to perform security operation, different
communication scenarios were identified. This cases summarize the possible communications
between OpenStack instances and Internet.

❼ Service-to-Service: this traffic pattern represent the internal communication between two
services inside the same virtual machine. In this case the packet remains inside the instance.
Therefore, from outside, the packet is completely hidden.

❼ VM-to-VM: this traffic pattern represent the internal communication between two Open-
Stack instances. This case produces different behavior depending on which physical host
the instances are running, and which subnets they belong to.

– Same subnet: if the two instances belong to the subnet, the traffic path depends from
which physical host is running the virtual machines.

✯ Same host: if the two instances are on the same host, the packets go through the
br-int switch directly to the destination instance. Using Figure 5.1 as example,
a packet from VM2 to VM3, goes through the br-int switch via qvo virtual
interfaces, reaching the destination directly.

✯ Different hosts: to reach an instance on a different host, is necessary to pass
through the br-tun switch using the VxLAN tunnel. For example, if VM2 sends a
packet to VM1, the packet travels through br-int switch, it reaches br-tun switch
via path-tun interface and from there the destination host with the modalities
explained above. When the packet is received, it is sent to the br-int switch via
patch-int interface and it finally reaches the destination instance.

– Different subnet: if the two instances belong to different subnet is necessary to pass
through the Network node. When the packet reaches this node, it is sent to the
router namespace that performs the routing operations and send back the packet to
the destination address. For example if VM2 and VM3 belong to different subnets,
when the packet reaches the Network node, it is forwarded to the qrouter namespace
via the qr interface and the is sent back, after routing operations, to the destination.

❼ VM-to-External: this traffic pattern represent the communication between an instance and
the external network. In this case, the packet reaches the network node as previously
explained and from there it is sent to the br-ex switch via the int-br-ex interface. Through
the secondary network interface, the packet is sent on the external network and from there
to the “external world” as a normal packet. Moreover, if the instance has a “floating IP”
associated, the source address of the exiting packet will the associated IP address. Otherwise,
if the instance is internal, the source IP address will be the IP address of the virtual router
interface exposed on the external network.

Understanding traffic flows is fundamental to design a security controller that can optimize
the rule distribution across the filtering points of the infrastructure.

5.0.3 Security

OpenStack implements a security mechanism based on security groups. A security group is a set
of filtering rules, if it is added to an instance during the creation process, the instance will perform
security actions according to the rules in the security group.

The implementation of this security system is done by OpenStack using Iptables. Iptables
is used to set up, maintain, and inspect the tables of IP packet filter rules in the Linux kernel.
Several different tables may be defined. Each table contains a number of built-in chains and may
also contain user-defined chains. Each chain is a list of rules which can match a set of packets.
Each rule specifies what to do with a packet that matches [21]. The rule examination process is
iterative, so if a rule do not match the following rule is examined.

In particular, for each virtual instance two Iptables chain are created: one to handle ingress
traffic and one to handle egress traffic. If a security group is assigned to a virtual machine all the

37

Components analysis

rules loaded into the security group are converted in Iptables rule and loaded in the respective
chain.

All the traffic from the standard FORWARD chain all the traffic is redirected to the neutron-

openvswi-sg-chain chain and from there to the respective ingress or egress instance chain.

Figure 5.2 represents the default security group management view of the web dashboard. From
the management page is possible to add/remove rules, it is also possible to create new custom
security groups and assign them to the instances.

Figure 5.2. OpenStack security groups management page

In the following example is shown how the security group is represented in Iptables for the
instance 20.0.0.144. In particular the default security group allows ICMP, SSH, Web Ingress
connection and all the Egress connections.

✩ Chain neutron-openvswi-i102f5ce6-b (1 references)

✩ target prot opt source destination

✩ RETURN all -- anywhere anywhere state RELATED,ESTABLISHED

✩ RETURN udp -- anywhere 20.0.0.144 udp spt:bootps dpt:bootpc

✩ RETURN udp -- anywhere 255.255.255.255 udp spt:bootps dpt:bootpc

✩ RETURN tcp -- anywhere anywhere tcp dpt:http-alt

✩ RETURN tcp -- anywhere anywhere tcp dpt:ssh

✩ RETURN icmp -- anywhere anywhere

✩ RETURN all -- anywhere anywhere match-set NIPv40fe52ebc-da15-42b1-b0a1- src

✩ RETURN tcp -- anywhere anywhere tcp dpt:8000

✩ DROP all -- anywhere anywhere state INVALID

✩ neutron-openvswi-sg-fallback all -- anywhere anywhere

In this case the default rule is DENY, so all the unmatched traffic will flow into another Iptables
chain (neutron-openvswi-sg-fallback) that has only one action:

Chain neutron-openvswi-sg-fallback (8 references)

target prot opt source destination

DROP all -- anywhere anywhere /* Default drop rule for unmatched traffic. */

38

Components analysis

Filtering points

From the OpenStack infrastructure analysis multiple filtering points were found on which dis-
tribute security policies. As shown in Figure 5.1 is possible to perform filtering actions in various
location with different technologies.

In particular, it is possible to apply filtering actions inside an instance (Iptables), in the virtual
switches (OpenFlow) and in the physical hosts (Iptables) of the OpenStack deployment.

This aspect can exploited to increase performances, because a single filtering point can be
splitted in multiple ones according to the filtering rule matching fields.

The problem with Iptables is its low efficiency when the number of filtering rules grows.
Performing some performance tests and using the network bandwidth as metric, it emerged that
it decrease as a negative exponential with the number of rules.

OpenVSwitch (OVS) technology uses a cache based data-structure to store the flows. In
particular, in OVS an exact-match cache (EMC) stores the action performed on a packet, avoiding
to search to the corresponding flow when another packet with the same header enters the switch.
Moreover all the flows a stored in an hash data structure that uses the packet header as hash key
(Datapath classifier), to speed up the searching process. In Figure 5.3, a representation of the
internal OpenVSwith architecture is shown.

Iptables performs a linear search, resulting slower than OVS in the searching process, on the
other side rule injection in Iptables is faster because it does not need to fill a complex data
structure like OVS.

Figure 5.3. OpenVSwitch internal data-structures

The analysis of the filtering points available in a standard OpenStack deployment and the
various technologies used, brought to the project several starting points to build an optimization
model and consequentely the distribution process. In particular the guidelines to design the
security controller focus on the OVS optimization process and fast lookup, limiting the Iptables
functionalities to the strictly necessary.

39

Chapter 6

Solution design

This chapter explains the design of the project and the implementation choices.

6.1 High level design

With the infrastructure analysis, several filtering points emerged. They can be used to optimize
the rule distribution across the infrastructure, avoiding to concentrate all the filtering policies on
a small amount of physical nodes.

In a cloud environment, as mentioned in Section 4.2, security policies comes from various
entities (e.g. CSP, enterprise administration or autonomous business units). It is therefore nec-
essary to processing the policies, removing unnecessary rules or policy conflicts. A policy conflict
may weakens the overall security, making some elements vulnerable, so they need to be addressed.
Moreover, performing operation between the policies, reduces the total number of rules that needs
to be injected. This leads to a performance gain in injection time, optimization time and resource
consumption.

In Figure 6.1, a reference scheme for the project design is represented.

Policies are managed by the external library PolicyToolLib. Using this library it is possible to
handle all the intra/inter-policy conflicts, removing them or notifying the user if an anomaly is
not addressable.

Before implementing the distribution process is necessary to understand how and where the
rules should be injected.

For this purpose, in collaboration with another student, a distribution model and an optimiza-
tion model was realized. The aim of the optimization model is to compute the the better place
where rules needs to be injected, to optimize certain performance parameters.

The model took as input the physical infrastructure and the security policies and creates two
models.

❼ Distribution model : in this phase, a distribution model is created. This model contains, for
each rule, the list of available filtering point to inject the rule. A filtering point is elected as
available if is on the traffic path related to the filtering rule. If a filtering point is not on the
traffic path, it will not receive a single packet of the communication, so is not considered
for the distribution process.

❼ Optimization model : in this phase, the optimization model uses the data in the distribution
model created, to optimize rule distribution. The outcome of this operation consists in a
set of rules for each filtering point that need to be injected. It optimize the rule injection
according to the filtering point performances data and to the distribution model.

40

Solution design

After this operation, for each filtering node, a list of rules to inject will be available, so the
distribution process can start.

The distribution process consists in identifying the type of the filtering point on which the
rules need to be injected. It uses two modules that handles the rule loading using Iptables or
OpenFlow. According to the technology used in the filtering point, the process performs the
conversion of the filtering rule into the set of necessary commands or messages.

PolicyToolLib
Optimization

tool

Distribution
tool

OpenFlow
module

RESTIptables module

Distribution
outcome

Figure 6.1. High level design scheme

The tool provides a REST service that allows the users to manage the data-strcutures used in
the distribution process. Moreover, it give information about the distribution process and offers
some API to manage the life cycle of the tool.

In this thesis work, the distribution process is designed and implemented. At the end of the
implementation a series of performance tests are done to see if the distribution process brought
improvements to the overall infrastructure performances.

6.2 Distribution design

The optimization process produces a set of rules for each filtering point in the OpenStack deploy-
ment. Each filtering point category needs a different distribution process design because it uses
different technologies.

For Iptables rules we need to distinguish from instances and physical hosts, because despite
the final commands are the same, it is not always possible to reach the virtual machine via SSH
connection.

In the case of virtual switches the technologies used are completely different, so it is necessary
to implement an OpenFlow controller to manage flows injection to the switches.

In both cases is necessary a translation from the filtering policy to the commands to execute
to inject the rules on the target host or virtual switch.

41

Solution design

6.2.1 Iptables

Iptables is a tool, present in Linux kernel, it implements a series of traffic filtering functions using
a simple set of commands.

According to Iptables man-page [21], there some useful commands that allow the user to
customize filtering rules and tables in the host:

❼ iptables -L [chain]: list all rules in the selected chain. If no chain is selected, all chains
are listed;

❼ iptables -F [chain]: flush the selected chain (all the chains in the table if none is given;

❼ iptables -N chain: create a new user-defined chain by the given name;

❼ iptables -X chain: delete the optional user-defined chain specified;

❼ iptables -A chain rule-specification: append one or more rules to the end of the
selected chain;

❼ iptables -D chain rule-specification/rulenum: delete one or more rules from the
selected chain;

❼ iptables -I chain rulenum rule-specification: insert one or more rules in the se-
lected chain as the given rule number.

Therefore, it is necessary to perform a translation from a series of filtering rules to the list of
necessary commands. A validity check is necessary to build correct commands without producing
errors or malformed rules.

These commands needs to be executed directly on the host that will perform filtering actions.
In this work, Iptables rule injection was divided in two scenarios, according to the distribution/op-
timization process outcome.

Physical hosts

If a rule needs to be loaded into one of the OpenStack deployment hosts, we need to divide this
scenario in two more cases. These cases depends on which hosts the rule will be loaded compared
to the host on which the tool is executed.

❼ Local host : if the filtering rules will be injected on the same physical host on which the tool
is running, the Iptables commands can be launched locally;

❼ Remote host : if the target host is a remote host, it necessary to open an SSH connection to
that host and launch Iptables commands remotely.

For this reason two different rule injection mechanisms are implemented, the former based on
a local command execution and the latter based on a SSH connection.

Loading filtering rules on the physical hosts should be avoided because the deployment nodes
have to handle the virtualization mechanisms other than all the OpenStack infrastructure. More-
over they have to handle all the traffic that flows in the infrastructure, so the performances are
not as good as the virtual instances.

42

Solution design

Instances

To inject rules on virtual machines is necessary to get SSH access to them. In cloud architectures,
like OpenStack, it can be a problem, because an instance can be launched on a private virtual
network, unreachable from the external networks.

OpenStack offers a web-console, allowing administrators to control virtual machines directly
from the dashboard. This approach is extremely useful for a quick, intuitive and simple instance
management. For this project, instead, this type of console access is not applicable to an automatic
optimization tool, so it was necessary to find another way to get access to virtual machines console.

Exploring OpenStack internal architecture, it is possible to understand that the Network node
is responsible of the connection between the instances and the “external world”. In particular
every virtual router in the deployment (if its routes are correctly configured) can reach every
instance in the deployment, altough they are in private networks.

Every virtual router is represented as a Linux network namespace. On namespaces, it is
possible to launch commands in the same way as the standard CLI. This mechanism was exploited
to get SSH access to the virtual machines from every host that runs the program. These commands
can be only launched on the Network node because is the only node of the OpenStack deployment
that has the access to the virtual routers of the topology.

This procedure is divided in two sub-cases depending on which host the tool is running:

❼ Network node: if the tool is running on the Network node the commands to get access to
instances can be launched locally;

❼ Other nodes: if the tool is not running on the Network node these commands need to be
executed using an SSH connection.

Is important to notice that if a virtual machine has a “floating IP” exposed on the external
network, rules can be injected directly on the instance. The procedure is the same previously
described as “Remote host” rule injection.

Requirements

To guarantee security to SSH connection we imposed two constraints:

❼ Administrator account : every physical host or virtual machine must have an account that
is enabled to launch Iptables commands, on which log in to from SSH connections;

❼ SSH Keys: to guarantee secure connections all the instances and the physical hosts must
have the SSH key of the host on which the tool is running, saved as “authorized-keys”. In
this way, password authentication is not required, improving connections security.

43

Solution design

6.2.2 OpenFlow

OpenFlow switches were born to perform fast, context-based forwarding. The forwarding decision
is taken based on the flows loaded into the device. This flows consist of match-fields used to match
incoming packets, this fields can be headers, ingress port or metadata. For each flow is present
a set of actions that must be applied on each matching packets, these action can modify packet
fields, drop the packet or simply forward it to another port.

Flows are grouped in tables, these tables are ordered by the table-id parameter. When a packet
is received it explores the tables until a matching flow is found and the corresponding action is
taken. If no flows are found the default action is taken.

The flows are saved using a multi-level hash structure, using the match fields as a key the
corresponding flow is retrieved from the table without performing a linear lookup. Moreover, if
a packet matches a flow, its header is saved in a cache along with the taken action. In this way
if another packet with the same header is received, the corresponding action is taken without
perform the flow table lookup.

The flows can be loaded into the switch from the provided CLI interface, or by using a remote
controller via TCP connection. A virtual switch can be connected to several controllers and the
single controller can manage different switch a the same time.

We decided to use these flows as filtering rules using only two actions:

❼ DROP: to drop the matching packet;

❼ NORMAL: to let the standard network stack processing the packet;

Flows can be injected from an OpenFlow controller directly into the virtual switch, the injec-
tion process is done with a flowmod message that contains the flow parameters that need to be
injected. A flowmod message is composed by various parameters:

❼ Match: the fields of the packets used to match the flow

❼ Action: the action to execute on the matching packet

❼ Flow properties: these parameters are used to specify additional properties such as the
priority of the flow, the table on which load the flow or the timeout after which the flow is
removed from the table.

Managing flows injection it is possible to realize a stateless packet filetring directly inside the
virtual switch, gaining in performance due to the efficiency of this devices.

In this work the OpenFlow flow injection was divided in three main phases.

❼ Controller initialization: in this phase the controller is initialized, all the parameters are
configured. At the end of this phase the controller will be running, with all the virtual
switches connected to it and ready to receive new flows.

❼ Rule conversion: in this phase the security policy rules are converted into OpenFlow com-
patible messages. A single rule can be represented with multiple flows.

❼ Flow injection: in this phase all the generated messages are sent to the virtual switch. The
controller sends message via TCP connection initialized in the startup phase.

Requirements

To work properly it is necessary that all virtual switches in the deployment has configured, as
controller, the host that will run the distribution tool. This can be easily done specifying the IP
address and the port of the TCP connection on which the controller is going to listen for new
connections.

44

Solution design

6.3 Workflow

In this section is shown the distribution process workflow, starting from the end of the optimization
process, through the distribution outcome.

Starting from the list to rule to inject is necessary to understand what kind of filtering point
is the target. In case of an Iptables rule injection the process depends on the location of the
target filtering point. If the command can be executed locally, it is done via Runtime Java class,
otherwise the Jsch library is used to create an SSH channel and launch the commands remotely.

To inject rules in OpenFlow virtual switches it is necessary to generate the corresponding
messages that will be sent to the devices with the Floodlight library. The library provides
all the methods to instantiate a complete OpenFlow controller that implements all the necessary
functions to manage the virtual switches. For sake of clarity, the controller initialization procedure
is omitted from the workflow scheme, shown in Figure 6.3.

START

Iptables
or Open-

Flow?

Iptables
command
creation

OpenFlow
flows creation

Local or
remote?

Local command
dispatch

Remote
command
dispatch

FlowAdd
message
dispatch

STOP

Iptables OpenFlow

local remote

Figure 6.2. Distribution workflow

45

Solution design

6.4 REST service

To manage all the tool functions, a REST web-service was implemented. This service allows
the users to manage the interaction with the optimization tool, loading input data or getting
distribution outcome information.

6.4.1 REST

Definition

REST is acronym for REpresentational State Transfer. It is architectural style for distributed
hypermedia systems.

As shown in Figure 6.3, it is usually implemented as a web-server interface on which perform
HTTP Requests. It communicates to the main application engine to process the requests and it
give back a response according to the operation outcome.

An interface to be considered as RESTful need to follow these principles:

❼ Client-server, separating user interface from the internal data computation, a RESTful
service is portable across a large variety of devices;

❼ Stateless, all the requests can not be based on the server contents, and should contain all
the informations needed to be processed;

❼ Cacheables, the requests should be marked as cacheable or not-cacheable. If a resource is
cacheable the client can use its cached response data for the following requests;

❼ Layered system, all the resources should be disposed in hierarchical layers such that each
component can interact only with its immediate layer;

Resources

The key abstraction of information in REST is a resource. Any information can be represented
as a resources (e.g. documents, images, etc.). To identify a resource a resource identifier is used.,
while a media-type is used to describe the type of the resource.

Figure 6.3. REST architecture reference scheme

Usually REST resources are identified by the URI (Uniform Resource Identifier), using them
it is possible to reach all the resources directly. It resemble a directory tree reflecting the level of
hierarchy.

Further, resource representations shall be self-descriptive: the client does not need to know
what represents the resources. It should act on the basis of media-type associated with the
resource.

46

Solution design

Methods

To get resource informations, update a resource or delete them, it possible to use all the HTTP
methods available (e.g. GET, POST, DELETE, etc.). Using them through a request generator (e.g.
Postman) all the operation can be performed, and the resources can be edited or visualized.

The Hypermedia as the Engine of Application State (HATEOAS) paradigm is a component of
the REST application architecture that distinguishes it from other network application architec-
tures. With HATEOAS, a client interacts with a network application whose application servers
provide information dynamically through hypermedia. A REST client needs no knowledge on
how to interact with the server except for the understanding of hypermedias.

In this work all the resources provides a set of links that can be used to reach another resource
directly, without requiring additional informations.

6.4.2 REST service design

The optimization tool used to getting the list of rules to distribute into multiple filtering points
needs several inputs data. These input files (XML files) represents all the information that the
tool needs to perform an optimization process.

The inputs can be divided in five main resources:

❼ Deployment, contains all the physical topology resources such as physical hosts, virtual
switches and service nodes;

❼ Landscape, contains all the logical topology resources such as firewalls, filtering zones,
virtual hosts and links;

❼ Entities, contains all the entities that are managing the infrastructure, for each entity
there is a security policy containing different rules;

❼ FilteringPoints, contains the list of exclusions from rule distribution and the list of service
node enabled to L7 filtering (middleboxes);

❼ SelectorTypes, contains the selector types used for rule parsing and optimization.

Based on this division, the REST service was designed to bring several methods covering the
most important resources needed by the Optimization tool. Moreover an extra section (Tool) was
added to manage the tool functionalities.

Starting from deployment sub-structure is possible to perform POST and GET requests to
load and visualize the entire physical topology. GET requests are available for all levels of the
deployment structure, but is only possible to execute DELETE and PUT actions for service nodes.
This choice was made because in architectures like OpenStack, to modify physical hosts involved
in the deployment is necessary to re-deploy the entire OpenStack suite. Moreover creating new
virtual switch and attach them to the infrastructure is not an easy task, so it probably means that
the entire deployment will change. Service nodes are prone to continuous changes, for example,
in OpenStack, creating or deleting a virtual machine is an easy task that can be executed often
and for that reason needs to be supported by REST methods

For the logical deployment (landscape) it is possible perform GET request to get the entire
logical topology, the single service node and the related services. POST request are enabled for
the entire landscape, while PUT request can be done only for service nodes and services. The
same behavior is applying for DELETE request. This choice was taken because adding or remove
firewalls, links or filtering zones is not a frequent operation, while updating service nodes by
adding/removing services is a common task that have to be supported by the tool.

47

Solution design

Entities element can be retrieved and created via GET and POST request, like previous sub-
root elements. In this case on all resources is possible to execute GET, PUT and DELETE actions.
Therefore an user can create/update/remove an entity with all its rules or perform the same
actions on a single rule in an entity security policy.

With the Tool structure is possible to manage the program functions like rule distribution,
printing a summary of the distribution process or shutdown the services. In particular tool lifecycle
is managed via OPTIONS requests, while the outcome of the distribution can be retrieved via GET

request.

The complete list of available REST API can be found in the Appendix B.

48

Chapter 7

Implementation

This chapter explains how the solution is implemented, from the distribution process to the
implementation of the REST service.

7.1 Proof-of-Concept

For the Proof-of-Concept realization, two physical machines were employed. These machines were
used to host the OpenStack deployment, dividing equally the modules across them. In particular,
the first machine is delegated to the control, network and storage modules. The compute and
deployment modules are running on both machines to divide the amount of resources needed by
the instance deployment.

Figure 7.1. Deployed infrastructure scheme

As shown is Figure 7.1 , the machines communicates through a private network (192.168.0.0/24).
This network is realized through a router connected to the home-private-network provided by the
ISP.

49

Implementation

The distribution tool is running on the network node, because is the most strategic point
to reach all the virtual instances of the deployment. Nevertheless, it can be launched on every
physical node of the OpenStack deployment, with a little performance reduction due to additional
SSH connections.

The machines are two Intel NUC NUC5i5MYHE.

❼ CPU : Intel Core i5-5300U, Dual-core, 2.30 GHz;

❼ RAM : 16 GB, DDR3;

❼ Operating system: Ubuntu Server 18.04 LTS;

7.2 Policy representation

Security policies are characterized by a set of filtering rule and a default action that needs to be
executed on the packet if it do not match any rules. To perform optimization and distribution
operations on the policy it is necessary to find a clear representation of them.

In this work an XML representation is chosen because it better highlight the nesting properties
and it is ideal to enhance the element unique attributes. Moreover, XML provides a validation
mechanism using an XSD schema, this operation ensure the correctness of the input data, avoid
small errors that, in a security context may lead to dangerous situations.

The security policies are divided according to the entity that owns the security policy. These
entities can be either the Cloud Service Provider (CSP) or the autonomous companies that are
using the cloud infrastructure.

In the following code snippet there is an example of a typical set of security policies.

<Entities xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="xml_policy.xsd">

<Entity Label="ISP" ISP="true" Subnet="0.0.0.0/0">

<Policy>

<PolicyName>fw0</PolicyName>

<PolicyType>FILTERING</PolicyType>

<DefAction>DENY</DefAction>

<Rule Action="ALLOW" Label="e0r1">

<Priority>1</Priority>

<Selector Label="Source Port">0-65535</Selector>

<Selector Label="Destination Port">0-65535</Selector>

</Rule>

<Rule Action="ALLOW" Label="e0r2">

<Priority>1</Priority>

<Selector Label="Protocol Type">1</Selector>

</Rule>

</Policy>

</Entity>

<Entity Label="entity-1" ISP="false" Subnet="10.0.0.0/24">

<Policy>

<PolicyName>fw0</PolicyName>

<PolicyType>FILTERING</PolicyType>

<DefAction>DENY</DefAction>

50

Implementation

<Rule Action="ALLOW" Label="e1r1">

<Priority>1</Priority>

<Selector Label="Source Address">10.0.0.0-10.0.0.255</Selector>

</Rule>

<Rule Action="ALLOW" Label="e1r2">

<Priority>1</Priority>

<Selector Label="Destination

Address">10.0.0.0-10.0.0.255</Selector>

</Rule>

</Policy>

</Entity>

</Entities>

In the example above there are two entities, the CSP and the entity-1. Both security policies
are filtering policies and they both have DENY as default action, so they will drop all the traffic
which not match the ALLOW rules.

In particular the provider first rule (e0r1) allows all the TCP/UDP traffic with any source/des-
tination port and with any source/destination IP address, while the second rule (e0r2) enables
the ICMP protocol from any source/destination.

The entity-1 enables all the IP traffic from and to his subnet (10.0.0.0/24).

The result of the optimization process will produce a set of rules that allow TCP, UDP and
ICMP protocol limited to the 10.0.0.0/24 subnet. In this way the rules will be injected only
on the filtering points related to the entity-1 subnet and not on others. This could avoid the
injection of unuseful rules on filtering points that are not reached by that traffic pattern.

7.3 Distribution implementation

According to the filtering point type (Iptables, OpenFlow) the distribution process has some
difference due to the different technologies used.

Rule distribution is divided in two main modules:

❼ Iptables, it is responsible of rule commands building and rules injection/removal for virtual
machines and physical hosts;

❼ OpenFlow, it is responsible of virtual switch management and flows injection/removal.

The distribution process is started after the optimization model is complete, and for each
filtering point a set of rules to inject are available. The abstract class FilteringPoint expose
the public abstract void injectRules() method that can be called to starts the injection
process on each filtering point, according to its type.

7.3.1 Iptables

The distribution process for Iptables starts from the conversion of each GenericRule object to
inject into Iptables commands. This process produces a set of commands that need to be executed
on the target host. At this point, according to the target host type, the commands are launched
locally, via SSH connection, or through the network node.

All the classes mentioned in this section are located in the source folder named it.policy-

orchestration.iptables.

51

Implementation

Rule conversion

The conversion process is realized in IptablesCommandGenerator and IptablesParametersGenerator

classes. The former manages the creation or the deletion of Iptables chains and the rule inser-
tion/removal, the latter generates the parameters for the created command (e.g. rule matching
fields). Both classes are not instantiable, for that reason they have private constructor.

For example the function public static LinkedHashSet<String> appendRule(GenericRule

rule, String table, String chain) generates the Iptables command that appends a rule in
the chain passed as parameter.

1 public static LinkedHashSet<String> appendRule(GenericRule rule, String

table, String chain) {

2

3 // Getting parameters

4 LinkedHashSet<String> parameters =

IptablesParametersGenerator.generateParameters(rule);

5

6 // Initialize command set

7 LinkedHashSet<String> commands = new LinkedHashSet<String>();

8

9 // For each parameter insert the iptables command

10 for (String p : parameters) {

11 commands.add("sudo iptables -t " + table + " -A " + chain + p);

12 }

13 return commands;

14 }

This function calls the generateParameters method of IptablesParametersGenerator class.
The method perform the conversion from a GenericRule to the Iptables command (a LinkedHashSet
<String> object). This conversion is done getting all the matching fields of the rule and for each
field one or multiple commands strings are built

The function returns a set of commands because it is possible that a GenericRule object
contains a series of matching field not representable with a single Iptables command (e.g. different
transport protocols specification), so it may be necessary to build multiple commands for the single
filtering rule. The commands are stored in a LinkedHashSet data structure, to avoid possible
duplicates.

The following code snipped is taken from the mehtod getSourceIPParameters of Iptables-
ParametersGenerator:

1 // For each IP Address range in the selector generate the parameter

2 for (Pair<String, String> ranges : ips.getRangesStr()) {

3 if (list.isEmpty()) {

4 srcIPParameters.add(" -m iprange --src-range " + ranges.getKey() +

"-" + ranges.getValue());

5 } else {

6 // Otherwise merge previous parameters

7 for (String prev : list) {

8 srcIPParameters.add(prev + " -m iprange --src-range " +

ranges.getKey() + "-" + ranges.getValue());

9 }

10 }

11 }

52

Implementation

In particular this portion of code inspects the Source IP address field of the rule and adds/merges
it to the Iptables command already built (e.g. withDestination IP address). If it is the first field
that needs to be converted, the string is simply added to the list without merging with previous
ones. The Iptables module iprange is used to represent IP address ranges in Iptables commands.

Local dispatch

If commands need to be executed locally the dispatching process is handled by SystemCommandManager

class. This class is an implementation of the abstract class CommandDispatcher. Calling the
public void dispatch(LinkedHashSet<String> commands) method, the commands passed as
argument are launched according to the dispatcher type (e.g. Local, SSH).

The following code snippet shows how the commands are launched locally. The method
exec(String command) of the Runtime class is responsible of command execution. Therefore,
the error stream of the process is redirected to a buffered reader, so if an error occurs, it can be
catched and an Exception can be thrown.

1 // Execute commands

2 for (String c : commands) {

3 try {

4 // Create exec process

5 Process process = Runtime.getRuntime().exec(c);

6

7 // Read output

8 BufferedReader br = new BufferedReader(new

InputStreamReader(process.getErrorStream()));

9

10 ...

11

12 }

13 }

Remote dispatch

To dispatch commands remotely it is necessary to setup an SSH connection to the target host.
To do that, we used the JSch library [23], it provides all the methods to create custom SSH
connections and execute remote commands.

The class JschSessionManager is responsible to initialize the connection, it extend CommandDispatcher

abstract class, so it implements the public void dispatch(LinkedHashSet<String> commands)

method.

Command injection works in three main phases.

❼ Session creation: in this phase the SSH connection is set up, configuring the key path,
username, host and connection port. This is done in the createSession() method that
returns a Session object.

1 // Add the private key path

2 jsch.addIdentity(privateKeyPath);

3

4 // Initialize a new session

5 session = jsch.getSession(username, domain, 22);

6

7 // Set key authentication

8 session.setConfig("PreferredAuthentications", "publickey");

53

Implementation

The last method, sets the authentication method via SSH keys, avoiding password authen-
tication.

❼ Channel initialization: in this phase the exec channel is opened and configured for the
created sesssion. The exec channel execute a command remotely via an SSH connection.
This is done in the createChannel(Session session) method that returns a ChannelExec

object.

❼ Command execution: in this phase the commands are launched on the remote host. All
the iptables are concatenated in a single string, avoiding to set up multiple SSH con-
nections. This is done in the runRemoteCommands(LinkedHashSet<String> commands,

ChannelExec channel) method.

1 StringBuffer sb = new StringBuffer();

2

3 // Build commands

4 for (String command : commands) {

5 sb.append(command + ";");

6 }

7

8 // Set commands to the channel

9 channel.setCommand(sb.toString());

10

11 // Launch command

12 channel.connect();

13

14 // Read input to wait command execution

15 checkErrorOutput(channel);

When the connect() method in called, the commands are executed. If some error occurs
the method checkErrorOutput(channel) will throw an SshConnectionException. If an
exception is thrown a rollback process begins removing all the added rules and shutting
down the tool. This because a fail on a single rule injection may compromise the entire
system security.

Instances dispatch

To launch commands on the OpenStack running instances, it is necessary to prepend "sudo

ip netns <router-namespace-id>" before each Iptables command. This string executes the
commands within the router namespace, in this way, all the instances can be reached while they
are in private networks.

This commands must be launched on the Network node (locally or via SSH), because it is
the only node that contains all the virtual routers in the deployment. On the network node, it is
possible to know which are the virtual routers namespaces typing: sudo ip netns.

54

Implementation

7.3.2 OpenFlow

The distribution process for OpenFlow switches is done via Floodlight Java library. This library
implements an OpenFlow controller directly in the Java environment. All the classes involved in
this session are in the it.polito.policyorchestration.floodlight source folder.

Controller initialization

The Floodlight main module is initialized at tool startup. It implements the Runnable class that
runs the module in a separate thread. The initialization phase is based on the floodlight.properties
configuration file, it is possible to choose the modules to launch and to customize some parameters
(e.g. connection port, etc.).

All the modules can be easily extended with custom methods, implementing the associated
interfaces. After controller initialization the dispatcher module is created, it will be loaded into
every VirtualSwitch object, to start flows injection. The dispatcher module is responsible of the
creation of the OpenFlow messages used to add/remove flows in the switches.

The Floodlight main module is started with the following function:

1 @Override

2 public void run() {

3 try {

4 loader.runModules();

5 } catch (FloodlightModuleException e) {

6 logger.error("Failed to run controller modules", e);

7 System.exit(1);

8 }

9 }

The method is an override of the run() method of the Runnable class, when it is called the
execution starts on another thread gaining in parallelism and performances. It starts all the
loaded modules enabling virtual switch connection and flow injection.

In the thesis project three modules are principally used.

❼ StaticEntryPusher : is the module responsible for flows injection. It is in charge to send
OpenFlow flowmod, ensuring that the virtual switch receives the message correctly.

❼ MessageHandler : is the module responsible of sending/receiving OpenFlow messages. In
the project this module was extended to implement the shutdown procedure. When called,
it removes all the injected flows and send an OFBarrierRequest message to all the connected
switches.

1 for (IOFSwitch sw : switchManager.getActiveSwitches()) {

2 // Create BarrierRequest Message

3 OFBarrierRequest barrier =

sw.getOFFactory().buildBarrierRequest().setXid(999).build();

4 // Send message

5 while (!sw.write(barrier)) {}

6 // Update waiting response map

7 waitingResponse.put(sw.getId(), true);

8 }

55

Implementation

This message, in OpenFlow, is a synchronization message, when received by the switch
it performs all the previous queued actions, then sends back an OFBarrierReply message.
After the messages are sent, all the switches are put in the waitingResponse data-structure.

When a reply is received the corresponding switch is disconnected, and when all the switches
are disconnected the shutdown procedure continues until the end of the program.

❼ SwitchListener : is the module that handles switch connection and state changes. When a
switch is connected to the controller the following method is triggered.

1 @Override

2 public void switchActivated(DatapathId arg0) {

3 synchronized (dispatcher) {

4 dispatcher.notifyAll();

5 logger.warn("Notifying waiting rule dispatcher");

6 }

7 }

This method wakes up all the FlowDispatcher object that are waiting for switch connec-
tion before send the OFFlowAdd message. All the virtual switches are identified with the
DatapathId, that is a 6 Byte identification number similar to a MAC Address.

The following code snippets shows how the FlowDispatcher checks, with the OFSwitchManager
Floodlight module, if the switch with the given DatapathId is connected. If the switch is
not already connected the Floodlight threads goes in waiting mode until SwitchListener
module wakes it up.

1 // This additional while loop is made to prevent spurious notifications

2 while ((sw = switchManager.getActiveSwitch(DatapathId.of(id))) == null) {

3 try {

4 logger.warn("Waiting switch " + id + " become active");

5 this.wait(30000);

6 if (!tries) {

7 tries = true;

8 } else {

9 throw new FlowDispatcherException("The virtual switch is not

connected to the controller");

10 }

11 ...

12 }

If, after 30”, the switch is not connected to the controller, there is a problem in some
configurations (e.g. wrong datapath id), so an Exception is thrown and the tool needs to
be stopped.

Flows injection

In this phase every rules that will be injected into the virtual switch, needs to be converted into
the corresponding OpenFlow flow. In particular the process is done into FlowDispatcher class
that offers these two methods.

❼ public void dispatch(String id, GenericRule rule): this method is divided in two
main blocks: the former is a synchronized block that waits for the virtual switch connection,
while the latter generates the message and sends using the StaticEntryPusher Floodlight
module.

56

Implementation

In the following code snippet it is possible to see how the flows are injected into the virtual
switch.

1 // Getting all flows

2 LinkedList<OFFlowAdd> flows = generateFlows(rule, ofFactory);

3 for (OFFlowAdd f : flows) {

4 String flowname = f.getMatch() + " - " + rule.getName();

5

6 // Push the flow into the switch

7 entryPusher.addFlow(flowname, f, sw.getId());

8

9 // Update the list of added flows

10 flowsAdded.add(flowname);

11

12 logger.info("Flow " + f.getMatch() + f.getActions() + " pushed into

switch " + sw.getId());

13 }

Moreover the created flows are saved into a data-structure, that ensures the flow removal
operation during the shutdown process.

❼ LinkedList<OFFlowAdd> generateFlows(GenericRule rule, OFFactory factory): this
method perform the conversion from a GenericRule object into one or multiple OpenFlow
flows. The conversion uses principally the MatchBuilder class provided by Floodlight li-
brary to generate the matching field of the flow (e.g. source/destination IP address, Ports,
etc.).

Then for each flows it sets the corresponding action, in particular, if no action is set the
corresponding action will be DROP:

1 // Generate actions

2 if (rule.getAction() == FilteringAction.ALLOW) {

3 OFActionOutput normal =

factory.actions().buildOutput().setPort(OFPort.NORMAL).build();

4 actionList.add(normal);

5 }

When the flow action are set up, it is necessary to setup additional flow parameters as
timeouts, destination tables, priorities:

1 // Generate flows

2 for (Match m : flowMatches) {

3 flows.add(factory.buildFlowAdd().setBufferId(OFBufferId.NO_BUFFER)

4 .setHardTimeout(3600).setIdleTimeout(3600).setPriority(32768)

5 .setMatch(m).setActions(actionList).setTableId(TableId.of(60))

6 .build());

7 }

57

Implementation

During creation process, several optimization are performed on the rules that will be injected,
especially for transport ports and Ip addresses match fields.

❼ Port ranges: a range of ports it is usually expressed as "startPort-endPort". In OpenFlow
notation it is not possible to use this representation. To avoid to create a flow for each port,
OpenFlow offers a “masked notation” mechanism to represent port ranges.

For example, according to the official man-page of the ovs-ofctl command [24], the rep-
resentation of the 1000-1999 range can be implemented with a series of port/mask tuple:
0x03e8/0xfff8, 0x03f0/0xfff0, 0x0400/0xfe00, 0x0600/0xff00, 0x0700/0xff80,

0x0780/0xffc0, 0x07c0/0xfff0, avoiding to inject a thousand of flows. This representa-
tion resemble to the “IP address/netmask” notation used to represent subnets.

This process is implemented into the PortRangeManager class.

❼ IP address ranges: Similar to previous section, an IP address range can be represented as
a series of subnets. It reduces a lot the total number of flows that need to be generated
from a single filtering rule. For example to represent all the addresses from 10.0.0.64 to
10.0.0.85, instead of using all the twenty-one addresses, only three subnets are needed:
10.0.0.64/28, 10.0.0.80/30, 10.0.0.84/31. This process ensure a great reduction in
number of flows and a consequent performance gain.

The conversion process is implemented into the IPRangeManager class.

7.4 REST service

The REST service is the main interface to interact with the tool. When the tool is launched it
starts a web-server on which the REST service will run. The web-server is completely embedded
inside the program, so it is not necessary to use external tools to expose the REST APIs.

The particularity of the REST services is that they have to be completely stateless, every
method invoked by an HTTP request is not aware to current server state. Moreover this service
is implemented following the multi-thread and parallelism approach. The REST module runs on
a separate thread and for each new method invocation a new thread is launched.

7.4.1 Multi-threading

This multi-thread approach may cause problems when the data structures are shared between
REST threads. When some data can be used by multiple threads a series of synchronization
problems may arise (e.g. deadlocks, race conditions, etc.).

In this case, a synchronization problem may lead to inconsistent data representation and wrong
results. For example if the distribution process is launched and in the same time some data
modification requests are performed, the process may lead to unwanted results or simultaneous
access errors.

To solve this problem the PolicyOrchestrationService was implemented. This class con-
tains only synchronized methods. A synchronized method in Java ensures that only one thread
at time can invoke it. Using this technique all the data-structures used inside these methods are
protected from synchronization problem.

There are two classes that need synchronized accesses to their data: InfrastructureManager
and LifecycleManager.

❼ InfrastructureManager contains all the information about the data-structures used by the
distribution tool. It modelize the physical topology, the logical topology and all the filtering
policies that needs to be loaded into the infrastructure.

❼ LifecycleManager: it is responsible to the program life cycle, it perform the host initial-
ization and it starts the shutdown process.

58

Implementation

Without synchronization these classes may use the same objects leading to an unwanted be-
haviour.

The PolicyOrchestrationService is used not only by the REST server, because all the
methods needed to perform optimization, distribution, input/output are defined in it.

Topology management

A typical example to better understand how this class works consist in the update operation of
the infrastructure. It is represented by the InfrastructureManager class and it is one of the
most important parts of the distribution tool. It contains all the informations needed by the tool
to distribute filtering rules, for that reason it is necessary that the access to the data structured
is synchronized between all the operating threads.

The following code snippet shows how a service node creation is managed by the class:

1 public synchronized ServiceNode loadNodeElement(String IP, String label,

String nodeIP, NodeElement node){

2

3 ...

4

5 // Get deployment

6 Deployment deployment = getDeployment();

7

8 // Get PhysicalHost

9 PhysicalHost h = deployment.searchPhysicalHost(IP);

10 if (h == null) {

11 throw new NotExistingPhysicalHostException();

12 }

13

14 // Get virtual switch

15 VirtualSwitch vsw = h.searchVSwitch(label);

16 if (vsw == null) {

17 throw new NotExistingVirtualSwitchException();

18 }

19

20 // Get performance Factory

21 PerformanceToolFactory pf = new

PerformanceToolFactory(deployment.getPerformanceType());

22

23 // Create service node

24 ServiceNode s = PhysicalTopologyFactory.createNode(deployment, node, pf);

25

26 // Add service node to deployment

27 vsw.addServiceNode(s);

28

29 ...

30

31 }

A ServiceNode is an object that represent the node on which services are running. In the case
of an OpenStack deployment it is the representation of an instance running in the deployment.
This function represent the creation of a new virtual machine in the OpenStack deployment,
therefore this instance will be deployed on a specific physical node and then attached to a virtual
switch according to the already presented infrastructure scheme.

59

Implementation

The first part of the method performs a validation on the loaded data structures to see if the
ServiceNode object can be created in that position. In particular it checks if the physical node
and the virtual switch on which the element will be loaded are present in the Deployment data
structure.

If the validity check is satisfied the ServiceNode is created and added to the specified virtual
switch, otherwise an Exception is raised and the rollback operation is done.

7.4.2 Lifecycle management

The REST service can manage the life cycle of the program with two “special” APIs. At the
/api/tool/ URI there are three resources that can be exploited to manage tool functionalities.

❼ /start: this API is reachable with an OPTIONS request. It starts the entire distribution
process from the optimization tool to the rule injection. It is an unique block because all
the actions that are done during this process should be referring to the same data-structure,
avoiding all the problems previously mentioned.

In particular this function takes the loaded data-structures (e.g. topology, policies, etc.) and
starts the distribution process. It consist, firstly, in a policy refinement process to remove
all the rules anomalies that can be found in a security policy (Section 2.3.2). Then the
optimization tool produces for each filtering point the corresponding list of filtering rules.
Finally the rules are distributed according to the type of the filtering host.

❼ /stop: this API is reachable with an OPTIONS request. It begins the shutdown process,
removing all the rules loaded into the filtering points. In particular, this procedure flushes
all the created Iptables chain and it remove them.

Then all the OpenFlow flows are removed, ending with the synchronization procedure with
the virtual switches. During this process a OFBarrierRequest with a particular ID are sent
to all the virtual switches. When all replies are received it means that all the switches have
completed all the operation and they can be shut disconnected.

❼ /output: this API is reachable with an GET request. It shows the output of the distribution
process or an 404 - Not found error if the distribution process is not completed. The
output is an XML file containing a list of filtering points with the list of injected rules.

60

Chapter 8

Testing

The optimization tool, before starting the distribution process, performs two operations on the
given security policies. Firstly it optimizes them removing all the conflicts and the redundancy in
the policies, then it perform a reconciliation process with the security policy given by the CSP.
These operations can reduce drastically the number of rule that needs to be injected into the
filtering points.

After the policies are ready to be inserted, the optimization tool realized by Igor Ferretti
computes all the filtering points interested bt the rule matching traffic. This operation prevent
the insertion insert of a filtering rule in a device not “touched” by that traffic pattern.

These scenarios are used to test out the tool, verifying the performance gain obtained by the
optimization and distribution process.

8.1 Test design

The tests are implemented to highlight the differences between OpenStack security and the ad-
vantages of using the optimization/distribution tool, realized in this thesis work.

Several metrics are used to measure performances, analyzing which of them are the most
important in a business scenario. Moreover, the test-cases are divided in two main sections.

❼ Policy optimization: this test case shows how an huge set of rules can be reduced into
a smaller one. This leads to a gain in performances because the resource needed by the
filtering points depends on the number of rule that needs to process.

❼ Distribution optimization: this test case shows how a set of filtering rules can be distributed
according to the traffic identified by the policy. Instead of putting all the rules in the same
filtering point, distributing them across the infrastructure leads to a performance gain.

All the tests are performed using an infrastructure that reminds to the real use-case. Several
business units are deployed in it with autonomous security policies to recreate an environment
similar to the final use of the project.

In some test cases the security policies are filled with unnecessary filtering rules to highlight
the optimization process, while in other cases they are not optimized on purpose to highlight the
distribution process.

61

Testing

Metrics

To test the performances several metrics are used, in particular the chosen metrics are CPU utiliza-
tion, network latency and bandwidth. The performances are a key point in a cloud environment
both for client and for the provider. A performing network connection with high bandwidth and
small latency is always appreciated by the customers, but to achieve this it may be necessary
for the provider to have powerful hardware due to the resource consumption required by cloud
services.

For each metric measurement a different tool is used.

❼ CPU utilization: for this metric we used the standard top program available on every Linux
distribution. It provides a dynamic real-time view of a running system. It displays a list of
currently running processes and the resources consumption summary [18]. Executing top

program the shell will print the following output:

✩ top

✩ top - 18:53:02 up 0 min, 0 users, load average: 0.52, 0.58, 0.59

✩ Tasks: 4 total, 1 running, 3 sleeping, 0 stopped, 0 zombie

✩ %Cpu(s): 0.3 us, 0.8 sy, 0.0 ni, 98.8 id, 0.0 wa, 0.1 hi, 0.0 si, 0 st

✩ KiB Mem: 16663516 total, 10118300 free, 6315864 used, 229352 buff/cache

✩ KiB Swap: 29221116 total, 29221116 free, 0 used. 10213920 avail Mem

✩ PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

✩ 1 root 20 0 8892 312 272 S 0.0 0.0 0:00.07 init

✩ 7 user 20 0 16776 3440 3328 S 0.0 0.0 0:00.08 bash

✩ 39 user 20 0 17624 2048 1516 R 0.0 0.0 0:00.00 top

❼ Latency : to measure network latency the ping and nping tools are used. These tools mea-
sure the Round Trip Time (RTT) between two hosts during a standard ping exchange. The
RTT is the time needed for a signal to be sent plus the time needed by the acknowledge-
ment of that signal to be sent back. Nping can generate network packets for a wide range
of protocols, allowing users full control over protocol headers [19]. To evaluate the latency
performances the following command are launched:

✩ sudo ping -c 1000 -i 0.005 -q -s 1000 destination-IP

✩ sudo nping -H --no-crypto -c 1000 --send-eth --data-len 1000 --delay 5ms

--tcp -p 80 destination-IP

The commands launch a series of 1000 ping messages, every 5 ms. Every packet size is
1000 Bytes.

❼ Bandwidth: represents the maximum amount of data successfully exchange in a communi-
cation path. To measure network bandwidth the iPerf3 tool is used. It is a tool for active
measurements of the maximum achievable bandwidth on IP networks. It supports tuning
of various parameters related to timing, buffers and protocols [20].

✩ iperf3 -s -f K

✩ iperf3 -c server-IP -f K

The first command is needed on the destination machine to initialize the iPerf3 service,
while the second command is executed on the source machine and it starts the bandwith
measurement.

62

Testing

Infrastructure

According to Figure 8.1 and Figure 8.2, the tests are performed on an infrastructure similar to a
real-use case. In particular the cloud environment is divided in four semi-autonomous sub-units.
A private subnet is assigned to each entity (from 10.0.0.0/24 for the entity-1 to 40.0.0.0/24

for the entity-4).

Figure 8.1. The infrastructure used to perform the performance tests

The entities subnets are connected to the external network through a virtual router. This
router is responsible to ensure communication between entity subnets and between the VMs and
the external destinations. It performs NAT functions, translating the private IP addresses of
the VMs into the public address exposed on the external network, making the communication
possible.

It is possible to assign to each virtual machine a floating IP address, a public address announced
by the router to the external network. Using floating IPs it is possible to make the VMs in the
private networks reachable from the external networks.

The virtual machines are instances of Cloud Ubuntu 16.04 operating system, each of them is
provided with the following specifications.

❼ CPU : 2 Virtual CPUs are assigned to each VM. Using KVM as virtualization type, each
virtual CPU consists in a thread assigned to the KVM process that handles the virtualization
of the machine.

63

Testing

❼ RAM : Each instance is provided with 1GB of RAM. Due to its optimization for cloud
environments Cloud Ubuntu do not requires high resources to perform basic operations and
it offers all the functionalities required to perform the performance tests.

❼ Storage: Each VM has a 4GB dedicated virtual disk. The management of the storage disks
is managed by the Cinder module using a dedicated 512GB physical hard-disk reserved and
formatted ad-hoc.

According to the OpenStack infrastructure reference scheme (Figure 5.1), the instances are
deployed on both physical hosts. The location on which an instance will “spawn” is chosen by
the Nova scheduler module that computes, when an VM is launched, which is the best host to
deploy it. The network node is responsible of the routing operations, it ensures the communication
between virtual instances and between the VMs and the public Internet.

Finally, all the instances are interconnected through the br-int virtual switches that will be
strongly used as a suitable filtering point to apply security policies due to its high performances.

Figure 8.2. Logical representation of the infrastructure

64

Testing

8.2 Policy optimization

In OpenStack it is possible to load security policies using the Security Groups (Section 5.0.3).
This operation can be done using the web dashboard, exploiting the provided REST APIs or by
CLI. Loading a security policy in OpenStack security group consists in a creation of Iptables rules
in the chains related to the virtual machines associated to the security group.

The objective of this section is to show how the policy optimization is a crucial activity that
needs to be done before performing the rule distribution. This operation reduces the total number
of rule to inject leading to a dramatic increase of the performances. The optimization process is
done using the PolicyToolLib library.

To demonstrate how the policy optimization works this XML file was used:

<Entities xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="xml_policy.xsd">

<Entity Label="ISP" ISP="true" Subnet="0.0.0.0/0">

<Policy>

<PolicyName>fw0</PolicyName>

<PolicyType>FILTERING</PolicyType>

<DefAction>DENY</DefAction>

<Rule Action="ALLOW" Label="e0r1">

<Priority>1</Priority>

<Selector Label="Source Port">0-65535</Selector>

<Selector Label="Destination Port">0-65535</Selector>

</Rule>

<Rule Action="ALLOW" Label="e0r2">

<Priority>1</Priority>

<Selector Label="Protocol Type">1</Selector>

</Rule>

</Policy>

</Entity>

<Entity Label="entity-1" ISP="false" Subnet="10.0.0.0/24">

<Policy>

<PolicyName>fw0</PolicyName>

<PolicyType>FILTERING</PolicyType>

<DefAction>DENY</DefAction>

<Rule Action="ALLOW" Label="e1rA">

<Priority>1</Priority>

<Selector Label="Source Address">10.0.0.0-10.0.0.255</Selector>

</Rule>

<Rule Action="ALLOW" Label="e1rB">

<Priority>1</Priority>

<Selector Label="Destination

Address">10.0.0.0-10.0.0.255</Selector>

</Rule>

<Rule Action="ALLOW" Label="e1r1">

<Priority>2</Priority>

<Selector Label="Source Port">0</Selector>

<Selector Label="Protocol Type">6</Selector>

</Rule>

<Rule Action="ALLOW" Label="e1r2">

<Priority>2</Priority>

<Selector Label="Source Port">1</Selector>

<Selector Label="Protocol Type">6</Selector>

</Rule>

65

Testing

...

<Rule Action="ALLOW" Label="e1r3">

<Priority>2</Priority>

<Selector Label="Source Port">10000</Selector>

<Selector Label="Protocol Type">6</Selector>

</Rule>

</Policy>

</Entity>

</Entities>

The XML file defines two entities: the CSP and the entity-1 associated to the subnet 10.0.0.0/24.
The CSP security policies allows all the TCP, UDP and ICMP traffic while it blocks all the other
type of packets, while the entity-1 one allows all the IP traffic from/to his subnet (rule e1rA and
e1rB), with a series of rules that allows TCP traffic with a determined Source Port.

The series of “extra” TCP rules of the entity-1 are logically unuseful and redundant, because
the e1rA and e1rB allows all the IP traffic, so it is unnecessary to specify accepting rules for
transport layer traffic. This choice was made on purpose because it better highlight the differences
between OpenStack security mechanisms and the optimization/distribution tool. In this case the
performance data are taken starting from 10 filtering rules up to 10000.

The performances measurements are taken based on the communication between two virtual
machine of the entity-1 in particular the 10.0.0.1 and the 10.0.0.2 instances.

8.2.1 OpenStack security groups

The result of injecting the rules using OpenStack Security Groups is a set of Iptables rules ap-
pended to each virtual machine reserved chain. This happens because OpenStack do not perform
any optimization on the given security rules, moreover each virtual machine that is assigned to
a security group is converted in an Iptables chain on which all the rules loaded in the security
group are injected. The chains are spliy in Ingress/Egress, according to the rule parameters.

The following figure shows a portion of an Iptables chain related to the Ingress traffic of a
virtual machine running on the deployment. In particular it shows that all the TCP rules are
appended to the chain sequentially.

...

RETURN tcp -- anywhere anywhere tcp spt:ftp

RETURN tcp -- anywhere anywhere tcp spt:telnet

RETURN tcp -- anywhere anywhere tcp spt:24

RETURN tcp -- anywhere anywhere tcp spt:smtp

RETURN tcp -- anywhere anywhere tcp spt:26

RETURN tcp -- anywhere anywhere tcp spt:27

RETURN tcp -- anywhere anywhere tcp spt:28

...

This process leads to an huge amount of rules injected into each Iptables chain, with a con-
sequent performance reduction. This expression shows how much rules will be injected starting
from a single security policy:

Ri = Rp ∗ C (8.1)

where Ri is the total number of injected rule, Rp is the number of rules in the security policy and
C is the number of Iptables chains related to the virtual machine assigned to the security group.

66

Testing

8.2.2 Optimization tool

Using the optimization tool the security policies are transformed to remove unnecessary rules,
gaining in performances. The first action that is done on the policy is to make the entities policies
compatible with the CSP one. This process is done because the CSP security constraints have
higher priority against entities, so an entity can not provide security policies that are in contrast
with the provider.

In this case the e1rA and e1rB are merged with the CSP security policies. The result of this
operation is a set of rules that enables TCP, UDP and ICMP traffic for the 10.0.0.0/24 network.
All the “extra” TCP rules are therefore merged into the TCP enabling rule.

This optimization reduces drastically the number of rules. According to the OpenStack in-
frastructure, these rules are injected into the virtual machines and in all the virtual switches
connected to the entity-1 dedicated subnet.

...

table=60, n_packets=576, n_bytes=123716, tcp,nw_src=10.0.0.0/24 actions=NORMAL

table=60, n_packets=0, n_bytes=0, udp,nw_src=10.0.0.0/24 actions=NORMAL

table=60, n_packets=0, n_bytes=0, icmp,nw_src=10.0.0.0/24 actions=NORMAL

table=60, n_packets=0, n_bytes=0, tcp,nw_dst=10.0.0.0/24 actions=NORMAL

table=60, n_packets=0, n_bytes=0, udp,nw_dst=10.0.0.0/24 actions=NORMAL

table=60, n_packets=0, n_bytes=0, icmp,nw_dst=10.0.0.0/24 actions=NORMAL

...

The above picture shows a portion of the flow table of a virtual switch internal to the Open-
Stack deployment. It is highlighted that the rules are translated to a set of rules that allows TCP,
UDP and ICMP traffic from (nw_src) and to (nw_dst) the 10.0.0.0/24 subnet.

The details of the optimization process can be found in the Igor Ferretti work, that is focusing
on the optimization and the distribution model.

67

Testing

8.2.3 Performances

In the following graphs is shown the performance comparison between OpenStack security system
and the optimized rule distribution. The tests are done with the previously defined tools measuring
the network latency, bandwidth and the CPU consumption.

Latency test

Figure 8.3 shows that the Round Trip Time (RTT), expressed in milliseconds, degrades as a
straight line with the increase of the rule numbers.

The Round Trip Time is the amount of time needed by a signal to go to his destination and
back. If the number of rules, that need to be processed by the devices on the path through the
destination is high, the amount of time needed by the signal to reach his destination increases as
well.

From 0 to 1000 rules both OpenStack security and the optimization tool has the same per-
formances. After 1500 rules the two lines diverge drammatically until they reach a difference of
450 ms at 10000 rules.

150

200

250

300

350

400

450

500

550

600

650

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

R
TT

 [
m

s]

Number of rules

ROUND TRIP TIME (RTT)

Optimization tool OpenStack

Figure 8.3. Latency test report for policy optimization

This behaviour shows how the high number of rules loaded with OpenStack security groups
impact dramatically on the performances. The optimization process consists in the removal of all
the redundancies and anomalies between filtering rules in a security policy. For example, if a rule
is shadowed by another one, the rule will be removed and therefore not injected in the device.

The test is made to highlight the rule removal process, defining a large set of filtering rules
full of anomalies. The results shows that all the additional rules are removed correctly, leaving
the policy with only few filtering rules.

68

Testing

Bandwidth test

Figure 8.4 shows that the bandwidth performance degrades as a negative exponential with the
increase of the rule numbers. From 0 to 100 rules both OpenStack security and the optimization
tool has the same performances.

The network bandwidth can be defined as the maximum amount of data that can be trans-
mitted on a link in a certain amount of time. If the computation time needed by the filtering
devices to elaborate the filtering decision is short, the resulting bandwidth is high. This because
the in the same amount of time it is possible to process and elaborate more data.

After 100 rules the two lines diverge drammatically until they reach a difference of 1300 MB/s

at 10000 rules.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

B
an

d
w

id
th

 [
M

B
/s

]

Number of rules

BANDWIDTH

Optimization tool OpenStack

Figure 8.4. Bandwidth test report for policy optimization

When the number of rules increases, the slope can be defined as a negative exponential be-
cause of the TCP window scaling. The TCP window is the maximum amount of data that can
be transmitted over a TCP connection before getting the acknowledgment back. This window is
automatically adjustable by the end-points of the connection, according to the congestion con-
ditions. If the receiver is able to process a large amount of data, the window is extended to its
maximum (65,535 B), otherwise the window is shrank to reduce the packet loss.

In this case the TCP window scaling process stabilizes the slope of the network bandwidth,
because the amount of packet sent is proportional to the time needed to process them.

As previously mentioned, the optimization process reduces the total number of rules, getting
high bandwidth values and maximizing the TCP window.

69

Testing

CPU consumption test

Figure 8.5 shows that the CPU consumption (in percentage) performance degrades linearly with
the increase of the rule numbers. Immediately the difference between OpenStack security and the
optimization tool became visible.

Injecting only a few rules the CPU consumption remains stable near 0-1%, while with standard
Security Groups the resource utilization relative to the Iptables rule processing grows up to 20%

at 10000 rules.

0,00

1,75

3,50

5,25

7,00

8,75

10,50

12,25

14,00

15,75

17,50

19,25

21,00

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

C
P

U
 [

%
]

Number of rules

CPU CONSUPTION

Optimization tool OpenStack

Figure 8.5. CPU consumption test report for policy optimization

The CPU consumption is measured on the device in which the filtering rules are loaded. The
value used as a reference for the measurement is the Software Interrupt Context (softirq or si).
This value indicates the percentage of CPU used for the processing of the software interrupts,
which are triggered by the packet processing actions, like packet filtering.

With the increase of the number of rules, the amount of CPU needed to process the filtering
decision became high. To determine the decision, the device needs to analyze all the rules in the
security policy, until it finds a matching rule, or until it reaches the default rule.

Optimizing the total number of rules, it is possible to avoid to process unnecessary redundant
rules, saving many CPU cycles.

70

Testing

8.3 Distribution optimization

Security policies can contain a list of filtering rules related to different targets. In the use-cases
defined in this thesis work a company may be divided in several independent sub units, so for the
main company, it can be necessary to define a different security policy for each business unit that
owns.

In this section is shown the performance difference resulted in using OpenStack security groups
and the optimization/distribution tool. The metrics used for the tests are the same used before,
using the same tools. In this test case each entity security policy is filled with a large number of
rules to highlight the difference of performances. The objective of this test-case is to show how
distributing the rules according to the relative target could bring a performance improvement in
terms of Bandwidth and Latency.

Is known that the rules used in this test case can be optimized reducing the total number of
them, but this choice was made because the tests focus on the distribution process and not on
the policy optimization (as in the previous section).

The XML file used for this test case is the following:

<Entities xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="xml_policy.xsd">

<Entity Label="CSP" ISP="true" Subnet="0.0.0.0/0">

<Policy>

<PolicyName>fw0</PolicyName>

<PolicyType>FILTERING</PolicyType>

<DefAction>DENY</DefAction>

<Rule Action="ALLOW" Label="R1">

<Priority>1</Priority>

<Selector Label="Source Port">0-65535</Selector>

<Selector Label="Destination Port">0-65535</Selector>

<Selector Label="Protocol Type">1</Selector>

</Rule>

</Policy>

</Entity>

<Entity Label="entity-1" ISP="false" Subnet="10.0.0.0/24">

<Policy>

<PolicyName>fw0</PolicyName>

<PolicyType>FILTERING</PolicyType>

<DefAction>DENY</DefAction>

<Rule Action="DENY" Label="e1r1a">

<Priority>1</Priority>

<Selector Label="Destination

Address">10.0.0.0-10.0.0.255</Selector>

<Selector Label="Source Address">130.192.0.0</Selector>

</Rule>

<Rule Action="DENY" Label="e1r2a">

<Priority>1</Priority>

<Selector Label="Destination

Address">10.0.0.0-10.0.0.255</Selector>

<Selector Label="Source Address">130.192.0.1</Selector>

</Rule>

...

71

Testing

<Rule Action="DENY" Label="e1r10000a">

<Priority>1</Priority>

<Selector Label="Destination

Address">10.0.0.0-10.0.0.255</Selector>

<Selector Label="Source Address">130.192.0.100</Selector>

</Rule>

<Rule Action="ALLOW" Label="e1rA">

<Priority>1</Priority>

<Selector Label="Source Address">10.0.0.0-10.0.0.255</Selector>

</Rule>

<Rule Action="ALLOW" Label="e1rB">

<Priority>1</Priority>

<Selector Label="Destination

Address">10.0.0.0-10.0.0.255</Selector>

</Rule>

</Policy>

</Entity>

...

<Entity Label="entity-4" ISP="false" Subnet="40.0.0.0/24">

<Policy>

<PolicyName>fw0</PolicyName>

<PolicyType>FILTERING</PolicyType>

<DefAction>DENY</DefAction>

<Rule Action="DENY" Label="e4r1a">

<Priority>1</Priority>

<Selector Label="Destination

Address">40.0.0.0-40.0.0.255</Selector>

<Selector Label="Source Address">130.192.0.0</Selector>

</Rule>

<Rule Action="DENY" Label="e4r2a">

<Priority>1</Priority>

<Selector Label="Destination

Address">40.0.0.0-40.0.0.255</Selector>

<Selector Label="Source Address">130.192.0.1</Selector>

</Rule>

...

<Rule Action="DENY" Label="e4r10000a">

<Priority>1</Priority>

<Selector Label="Destination

Address">40.0.0.0-40.0.0.255</Selector>

<Selector Label="Source Address">130.192.0.100</Selector>

</Rule>

<Rule Action="ALLOW" Label="e1rA">

<Priority>1</Priority>

<Selector Label="Source Address">40.0.0.0-40.0.0.255</Selector>

</Rule>

72

Testing

<Rule Action="ALLOW" Label="e4rB">

<Priority>1</Priority>

<Selector Label="Destination

Address">40.0.0.0-40.0.0.255</Selector>

</Rule>

</Policy>

</Entity>

</Entities>

The XML files defines, other than the Cloud Service Provider (CSP) entity, four other entities
(entity-1, entity-2, entity-3, entity-4). The CSP, in this test case, is assumed to allow all the
TCP, UDP and ICMP traffic, without limitations, while each entity security policy allows the
outgoing/ingoing traffic from/to the internal network (rule e1rA and e1rB).

Moreover each entity blocks the traffic that is coming from a set of IP address, varying on the
number of rules chosen for the performance misuration. In this case the performance data are
taken starting from 10 filtering rules up to 10000.

The performances measurements are taken based on the communication between two virtual
machine of the entity-1 in particular the 10.0.0.1 and the 10.0.0.2 instances.

8.3.1 OpenStack security groups

In OpenStack, using security groups, the policies are loaded in the Iptables of the physical hosts
that performs the computing operations. In particular for each virtual machine an Iptables chain
is assigned, and each rule in the security group is loaded into it.

In this case the traffic is simply forced to flow through the chain and if it matches some rules
the corresponding action will be taken.

In the following picture is visible how rules are added by OpenStack to Iptables, in particular
is shown the Ingress traffic chain of the 10.0.0.2 instance:

target prot opt source destination

...

DROP all -- 130.192.0.4 anywhere destination IP range 10.0.0.0-10.0.0.255

DROP all -- 130.192.0.4 anywhere destination IP range 20.0.0.0-20.0.0.255

DROP all -- 130.192.0.4 anywhere destination IP range 30.0.0.0-30.0.0.255

DROP all -- 130.192.0.4 anywhere destination IP range 40.0.0.0-40.0.0.255

DROP all -- 130.192.0.5 anywhere destination IP range 10.0.0.0-10.0.0.255

DROP all -- 130.192.0.5 anywhere destination IP range 20.0.0.0-20.0.0.255

DROP all -- 130.192.0.5 anywhere destination IP range 30.0.0.0-30.0.0.255

DROP all -- 130.192.0.5 anywhere destination IP range 40.0.0.0-40.0.0.255

...

It is clearly visible that for each filtering rule the corresponding Iptables line is generated
by OpenStack and loaded into the respective chain. The problem is that the 10.0.0.2 will not
receive traffic directed to the 20.0.0.0/24 network, so in this case the number of loaded rules
are four time the real need. This causes a performance decrease that could be resolved using an
optimized distribution process.

73

Testing

8.3.2 Optimization tool

In this work a distribution optimization process is realized to overcome the previously detected
problems. During the analysis several possible filtering points were found to be available to
perform security operations.

In particular the distribution process, after the intra/inter-policy optimization phase, takes
in account the traffic pattern targeted by the rules and computes an optimal distribution model.
The outcome of the process is, for each fitering point, the list of filtering rules that cover the
traffic pattern handled by the filtering point. In particular on the Iptables tables of the virtual
machines only the rules relative to the instance subnet will be injected.

In the following figures are shown the Iptables of the virtual machines 10.0.0.1 and 20.0.0.1:

target prot opt source destination

...

DROP all -- 130.192.0.4 anywhere destination IP range 10.0.0.0-10.0.0.255

DROP all -- 130.192.0.5 anywhere destination IP range 10.0.0.0-10.0.0.255

DROP all -- 130.192.0.6 anywhere destination IP range 10.0.0.0-10.0.0.255

DROP all -- 130.192.0.7 anywhere destination IP range 10.0.0.0-10.0.0.255

DROP all -- 130.192.0.8 anywhere destination IP range 10.0.0.0-10.0.0.255

...

RETURN icmp -- anywhere anywhere destination IP range 10.0.0.0-10.0.0.255

RETURN tcp -- anywhere anywhere tcp destination IP range 10.0.0.0-10.0.0.255

RETURN udp -- anywhere anywhere udp destination IP range 10.0.0.0-10.0.0.255

DROP all -- anywhere anywhere

Figure 8.6. Iptables view of the 10.0.0.1 instance

target prot opt source destination

...

DROP all -- 130.192.0.4 anywhere destination IP range 20.0.0.0-20.0.0.255

DROP all -- 130.192.0.5 anywhere destination IP range 20.0.0.0-20.0.0.255

DROP all -- 130.192.0.6 anywhere destination IP range 20.0.0.0-20.0.0.255

DROP all -- 130.192.0.7 anywhere destination IP range 20.0.0.0-20.0.0.255

DROP all -- 130.192.0.8 anywhere destination IP range 20.0.0.0-20.0.0.255

...

RETURN icmp -- anywhere anywhere destination IP range 20.0.0.0-20.0.0.255

RETURN tcp -- anywhere anywhere tcp destination IP range 20.0.0.0-20.0.0.255

RETURN udp -- anywhere anywhere udp destination IP range 20.0.0.0-20.0.0.255

DROP all -- anywhere anywhere

Figure 8.7. Iptables view of the 20.0.0.1 instance

In the example, the rules regarding the 20.0.0.0/24 network are not loaded on the 10.0.0.1

instance. Using this approach the traffic flows in less filtering rules than using OpenStack security
groups.

74

Testing

The process takes in account also the virtual switches that interconnects the virtual instances
as shown in the following figure:

...

table=60, n_packets=0, ip,nw_src=130.192.0.4,nw_dst=10.0.0.0/24 actions=drop

table=60, n_packets=0, ip,nw_src=130.192.0.5,nw_dst=10.0.0.0/24 actions=drop

table=60, n_packets=0, ip,nw_src=130.192.0.6,nw_dst=10.0.0.0/24 actions=drop

table=60, n_packets=0, ip,nw_src=130.192.0.7,nw_dst=10.0.0.0/24 actions=drop

table=60, n_packets=0, ip,nw_src=130.192.0.8,nw_dst=10.0.0.0/24 actions=drop

...

table=60, n_packets=0, ip,nw_src=130.192.0.4,nw_dst=20.0.0.0/24 actions=drop

table=60, n_packets=0, ip,nw_src=130.192.0.5,nw_dst=20.0.0.0/24 actions=drop

table=60, n_packets=0, ip,nw_src=130.192.0.6,nw_dst=20.0.0.0/24 actions=drop

table=60, n_packets=0, ip,nw_src=130.192.0.7,nw_dst=20.0.0.0/24 actions=drop

table=60, n_packets=0, ip,nw_src=130.192.0.8,nw_dst=20.0.0.0/24 actions=drop

...

table=60, n_packets=0, n_bytes=0, udp,nw_dst=20.0.0.0/24 actions=NORMAL

table=60, n_packets=0, n_bytes=0, tcp,nw_dst=20.0.0.0/24 actions=NORMAL

table=60, n_packets=0, n_bytes=0, icmp,nw_dst=20.0.0.0/24 actions=NORMAL

table=60, n_packets=0, n_bytes=0, tcp,nw_dst=10.0.0.0/24 actions=NORMAL

table=60, n_packets=0, n_bytes=0, icmp,nw_dst=10.0.0.0/24 actions=NORMAL

table=60, n_packets=0, n_bytes=0, udp,nw_dst=10.0.0.0/24 actions=NORMAL

Figure 8.8. Virtual switch br-int flow table

In Figure 8.8 is shown the content of the flow table of the virtual switch br-int that inter-
connects the instances. Since this switch is the same for all the traffic directed to the virtual
machines it is necessary to load all the filtering rules in the policy on the device. However, due to
the high optimization done by the OpenVSwitch data structures the flows loaded into the switch
are not affecting the performances tests.

The tests are based on a data exchange between two VMs, so the traffic pattern between them
is the same for the entire test duration. In this way the packet headers are cached by the virtual
switch avoiding to perform for each packet the flow research. Performing a direct access to the
resources the performance increase is an immediate consequence.

75

Testing

8.3.3 Performances

In the following graphs is shown the performance comparison between OpenStack security system
and the optimized rule distribution. The tests are done with the previously defined tools measuring
the network latency and the bandwidth.

Latency test

The following graph shows that, as expected, the performance behaviour is the same for OpenStack
and the distribution tool, because both of them inject the filtering rules using Iptables. The
difference in performances is noticeable as a different line slope, because the number of rules
injected in the single device is lower than using OpenStack.

The distribution process injects the rules into different devices according to the traffic pattern
the rules identifies. In this test case the measurements are done on the receiving device, highlight-
ing the differences using OpenStack and the optimization tool. In particular, the target device
is on the 20.0.0.0/24 subnet. In this case there are four entities that defines the same security
policies. Using the distribution process the amount of rules injected in each filtering point is four
times less than using OpenStack.

Under 200 rules the difference is not noticeable, because the computation time is negligible
compared to the latency measurement. The difference became relevant after 500 rules, with a
difference of 200 ms at 10000 rules.

150

200

250

300

350

400

450

500

550

600

650

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

R
TT

 [
m

s]

Number of rules

ROUND TRIP TIME (RTT)

Optimization tool OpenStack

Figure 8.9. Latency test report

.

Figure 8.9 shows that performing a distribution over the filtering points according to the traffic
pattern brings several benefits to the performances, reducing the latency due to the exploration
of all the filtering rules in the Iptables chains.

76

Testing

Bandwidth test

The following Figure 8.10 shows that the bandwidth performance degrades as a negative expo-
nential with the increase of the rule numbers. Using both OpenStack and the filtering tool do not
change the performance trend, but it changes the maximum values that can be reached during
the tests.

In particular it is visible that, using the distribution tool, the number of filtering rules that
are injected into the single device became a quarter of the ones inject using OpenStack. The
performance graph reflects precisely this behaviour: at 10000 rules the maximum bandwidth
value obtainable using the distribution tool is the same as using OpenStack with 4000 rules.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

B
an

d
w

id
th

 [
M

B
/s

]

Number of rules

BANDWIDTH

Optimization tool OpenStack

Figure 8.10. Bandwidth test report

In this test case is clearly visible how Iptables affects the performances, while OpenVSwitch do
not contribute to them. Using the distribution tool, the rules will be injected also in the virtual
switches composing the cloud infrastructure, but the high performances of these devices makes
its contribute to the performance tests negligible.

8.4 Test conclusions

The testing phase showed how performing an optimized distribution could improve the perfor-
mances of a cloud infrastructure. In particular it emerged that the first optimization can be done
directly on the security policies, removing all the possible conflicts and reducing, consequently,
the total number of rules to inject. If the number of rules in the security policy became higher
a smart distribution process could reduce the performance degradation. Finally exploiting other
technologies has demonstrated that it could lead to important results.

77

Chapter 9

Conclusions

This thesis work was part of a bigger project, realized with another student, with ambitious
objectives in SDN and NFV research fields. It was necessary to focus on communication and
collaboration because the two parts were complementary but independent, so integrate them
together could become complicated and prone to errors.

The first phase of this work was the documentation of the background notions needed to
understand the problem and start designing a solution. It was important to focus on what is the
current “state-of-the-art” to design an innovative solution that can exploit modern technologies
and overcome to business requirements of the market.

The research was not limited to the theoretic approach because the final goal was to build a
tool, ready to be integrated in a framework. The main objective was to find a way to enhance
the performance of security controllers over cloud infrastructures, simplify the management tasks
done by the administrators, and providing an automatic configuration system for the security
devices.

To achieve this objective, it was necessary to study how a cloud architecture works in de-
tail. OpenStack was chosen as a study case because it better represent both the NFV and SDN
concepts, in a simple and intuitive environment. Studying this Virtual Infrastructure Manager
(VIM) was possible to identifying several filtering points across the infrastructure available for
the security policy enforcement. Performing several tests on them was possible to identify their
performance trend and to understand their behavior under heavy load situations.

In particular in OpenStack the security mechanism is handled by Security Groups that reflects
security policies on the Iptables of the infrastructure physical nodes. Iptables is extremely easy to
use, but its performances, when the number of rules starts to grow, are not enough to overcome
the modern Cloud Computing requirements.

The study on the OpenStack infrastructure shows that it was possible to exploit the virtual
switches used by the VIM for traffic forwarding between virtual machines, to convert them in
filtering devices. Due to the design of OpenVSwitch devices, it is possible to obtain high perfor-
mances in terms of network and resource consumption. This result was unexpected and it brought
the research objective to find a way to exploit this technology for the main project goal.

In my thesis work, the objective was to implement the distribution module that, given the
rules and the relative filtering points to inject them, loads the rules on the respective “virtual
device”.

Before implementing the distribution process was necessary to create a process to convert the
security policies received as input into commands that can be executed on the devices. It was
therefore necessary to perform a conversion mechanism that takes as input the single filtering rule
and produces the set of commands (Iptables) or messages (OpenFlow) that needs to be launched
on the relative filtering point.

78

Conclusions

The tool was validated using automated test, verifying both the efficiency of the optimization
process and the performance gain relative to the rule distribution.

The test results proved that an optimization process of the cloud infrastructure could lead to
a significant gain in performance. In particular, due to the OpenVSwitch design, it is possible to
gain high performance, with no decreases despite the rise in number of filtering rules. The results
confirmed the success of the research work and offers a set of key points on which focus in future
works.

9.1 Future works

The results of this thesis work highlighted the importance of the optimization of a cloud infras-
tructure, moreover it brought different sections on which it is possible to concentrate future works
and projects.

The tool was realized according to the microservices paradigm, building a series of independent
modules. Each of these modules can be extended and integrated to other projects.

9.1.1 High level security

In this work, the objective was to find a way to exploit several filtering points to improve the
performances of security controllers. The filtering functions are limited to the transport layer
security. This choice was made because the main objective of the project was to find an efficient
optimization and distribution model for a cloud infrastructure.

Future project may enhance high level security providing support for application level and
stateful connections. To achieve this it necessary to extend the rule conversion modules adding
the support for high level rules and policies.

It is important to mention that OpenVSwitch performs an enhanced and optimized packet
filtering based only on the packet headers. This allows it to have high performances, because it
uses hash based data structures and caches to store the flows and retrieve them based on the
packets headers. However, it is not possible to perform high level traffic filtering on the virtual
switches and it is necessary to use other security softwares.

Stateful packet filtering can be implemented both in Iptables and in OpenVSwitch devices.
Both of them are based on the conntrack Linux kernel module that stores information about the
state of a connection in a memory structure that contains the source and destination IP addresses,
port number pairs, protocol types, state, and timeout. This module do not perform traffic filtering
but can be exploited to perform filtering operations on the incoming traffic.

The stateful filtering discards all the packets not related to any existing TCP connection
(that has completed the SYN/SYN-ACK/ACK procedure). This process discard all the packets with
anomalous TCP flags, avoid common attacks such as port scanning or system fingerprinting.

9.1.2 Security softwares

Computing security offers a large number of applications and softwares that can be used to perform
security operation. In the realized tool there is a support for Iptables because it is the application
used by OpenStack to provide security fuctions to the infrastructure.

The Iptables module is completely independent from other modules and can be excluded if an
infrastructure do not uses the same application to bring security features.

Therefore, it is possible to implement an additional module that implements the management
of another application that offers different features. Squid is a caching proxy for the Web sup-
porting HTTP, HTTPS, FTP, and more. It reduces bandwidth and improves response times
by caching and reusing frequently-requested web pages [26]. It can be also used as a filter for

79

Conclusions

HTTP, HTTPS and FTP requests because it performs a deep packet inspection not possible with
Iptables.

To add the support of another software it necessary to implement a module that, given a
filtering rule as input, produces a set of commands that produces the expected result on the
application. Once the corresponding commands are generated, the command dispatcher module
can be used specifying the destination to launch the command on the target.

The module offers the possibility to launch commands locally or remotely using SSH, providing
maximum flexibility and compatibility with every infrastructure. Is worthless to mention that to
perform remote command injection it is necessary to have a fully operational SSH connection
with authentication based on SSH keys to improve the security of the connection.

9.1.3 Cloud architectures

In the modern Internet, cloud computing technologies became a primary resource to deploy cloud
services and applications. To deploy cloud application was necessary to develop cloud toolkits
that allows the administrator to manage easily the architecture. These applications are called
Virtual Infrastructure Manager (VIM) and they provide all the necessary services to manage
virtual machines, virtual networks, databases, etc.

In this thesis work OpenStack is chosen as a reference on which focus the tool deployment.
Due to its usability and elasticity it was rated as the best test bed on which perform the required
researches. Nowadays there are several VIM available on the market (OpenStack, Kubernetes,
Nebula, etc.) so it may be useful to extend the tool compatibility with others cloud operating
systems.

To achieve this it is necessary to understand how is the internal infrastructure of the service
that is going to be supported. Knowing how the traffic flows, how the virtual machines communi-
cates each other or how they are interconnected is a key point to implement the features needed
for the optimization process.

Figure 9.1. Kuberentes infrastructure reference scheme

According to Figure 9.1, in Kubernetes infrastructure there is a master node and several
computing nodes (minions) [27].

Services are running in container inside the PODs, which can be virtual machines or physical
hosts. Moreover K8s do not give any information on how the internal infrastructure should be
designed, it only gives some constraints that need to be followed to ensure the correct behaviour
of the toolkit.

80

Conclusions

Several projects deploy Kubernetes using an infrastructure similar to OpenStack, using virtual
switches to interconnect the pods. These switches are often based on the OpenVSwitch project
due to its extremely efficient behaviour also when the number of filtering rules became huge.

Is important to understand how the virtual machine are interconnected, if some virtual switch
can be used as filtering point and eventually how to inject the security policy on the “devices”.

81

Appendix A

Programmer manual

In this section the tool architecture and all its feature are explained in details, with a code function
presentation for each part of the tool. The code language chosen for the orchestration tool is Java
and also all the additional tools, are written in the same language, in this way they could be
integrated. The input and the output data are XML files and validated by XSD schemas, they
are handled by APIs provided by Java for the XML Processing (JAXB). The architecture presents
REST APIs to perform input/output operations and to manage the program lifecycle. In this
tool there are external libraries from different projects:

❼ Policy management, it.polito.policytoollib, to use directly the source code;

❼ Virtual switch managment, floodlight.jar ;

❼ Server, tomcat-dbcp.jar, tomcat-embed-core.jar, tomcat-embed-el.jar, tomcat-embed-jasper.jar,
tomcat-embed-websocket.jar.

❼ Resource dependency management, hk2-api-2.6.1.jar, hk2-core-2.6.1.jar, hk2-locator-2.6.1.jar,
hk2-utils-2.6.1.jar ;

❼ Jersey and JAXB, jaxrs-ri-2.30.1.jar ;

❼ SAT Solver, com.microsoft.z3.jar

A.1 Physical topology

The physical infrastructure needs to be modelized inside the tool to have a clear view of how
physical nodes, virtual switches and virtual machines are deployed in the environment. With this
model all the physical parameters needed by the tool (e.g. IP addresses, usernames, virtual switch
identifiers) are stored inside the respective objects. Every component of the deployment contains
a rule dispatcher that is called every time a rule needs to be injected into the device.

A.1.1 Architecture

The model is represented by the package it.polito.policyorchestration.impl.topology.physical
and contains an abstract class that represents the filtering points in the infrastructure, extended
by several sub-classes.

❼ class Deployment contains all the physical hosts and represents the infrastructure which
the tool is running on. One or more virtual switch are stored inside PhysicalHost object,
and every virtual switch contains a list of ServiceNode objects. A ServiceNode is an object
that represents the infrastructure element which contains one or more services (e.g. Virtual-
Machines, POD). A deployment is characterized by a Virtual Infrastructure Manager (VIM)
(e.g. OpenStack, Kubernetes, etc.). The Deployment object has the following methods:

82

Programmer manual

– public LinkedList<PhysicalHost> getPhysicalHostList()

returns the list of PhysicalHost objects loaded in the deployment;

– public PhysicalHost searchPhysicalHost(String ip)

returns the physical host with the given IP address, or null if the host is not present
in the deployment;

– public LinkedList<VirtualSwitch> getVirtualSwitches()

returns the list of VirtualSwitch objects loaded in the deployment;

– public VirtualSwitch searchVirtualSwitch(String label)

returns the virtual switch with the given datapath-id (label), or null if the virtual
switch is not present in the deployment;

– public LinkedList<ServiceNode> getServiceNodes()

returns the list of ServiceNode objects loaded in the deployment;

– public ServiceNode searchServiceNode(String ip)

returns the service node with given IP address, or null if the service node is not present
in the deployment;

– public ServiceNode removeServiceNode(String ip)

removes the service node with given IP address from the the deployment, it returns
the removed service node, or null if the service node is not present in the deployment;

– public void setFloodlightRuleDispatcher(FlowDispatcher dispatcher)

sets, for each virtual switch, the Floodlight flow dispatcher module to inject OpenFlow
flows;

– public void initializeIptables()

initialize, for each physical node and service node, the Iptables chain where rules will
be injected after distribution process;

– public void cleanup()

removes, for each physical node and service node, the Iptables rules injected by the
tool;

– public void resetFlags()

resets the isExcluded and isMiddlebox flags of the FilteringPoints that compose
the deployment;

– public LinkedList<FilteringPoint> getFilteringPoints()

returns the list of FilteringPoints that compose the deployment.

❼ abstract class FilteringPoint: this class is an abstract class, it represents a device in
which rules can be inserted. It contains all the variables that are in common between all
the filtering points of the environment. The shared variables are:

– private String identifier

is the unique identifier of the filtering point, it can be an IP address for ServiceNode

and PhysicalHost objects, or it can be the Datapath-id of a VirtualSwitch;

– private PerformanceTool performance

is the performance tool used to compute the performance rating of the filtering point,
according to the number of rule that will be injected on it. The performance rating is
used by the distribution tool to find the proper device to inject rules;

– private boolean isExcluded

indicates if the filtering points is excluded from the rule distribution process;

– private LinkedList<GenericRule> ruleList

contains the list of rules loaded into the device;

– private Action defalutAction

represents the default action of the filtering point, it is set based on the entity policy
default action;

FilteringPoint class, other than default getters and setters, has the following methods:

83

Programmer manual

– LinkedList<GenericRule> addRuleList(LinkedList<GenericRule> ruleList)

add all the of the list passed as parameters to the object’ rule list. If the number of
rule exceed the maximum number that the physical host can support, the maximum
number of rules will be inserted. This methods returns null if all rules were inserted
correctly, otherwise it return a list containing the exceeding rules;

– public void addRule(GenericRule rule)

adds a single rule to the object rule list;

– public void printInjectableRules()

prints all the rules that are loaded inside the object;

– public abstract void injectRules()

starts the rule injection process, the rule injection process is different accordingly to
the filtering point type.

– public int compareTo(FilteringPoint fp)

overrides the default comparator for FilteringPoint objects, the result depends of
the performance rating given by the performance tool;

This class is extended by three classes that represent the different types of filtering point
that the tool supports:

– class PhysicalHost: this class represents a physical host in the infrastructure, it is
identified by an IP address. It contains the list of virtual switches, where service nodes
will attach to communicate. Each PhysicalHost has a CommandDispatcher object
that contains all the required libraries to dispatch system commands locally or via
SSH connections (e.g. Iptables rule injection commands). PhysicalHost class has the
following methods:

✯ public void startup()

initializes the physical host creating a new Iptables chain, where rules will be
inserted. After chain creation it inject a rule in existing chains to redirect all
traffic to the newly created one;

✯ public void shutdown()

removes all injected rules and created chains, restoring previous state;

✯ public void addVirtualSwitch(VirtualSwitch sw)

adds a new VirtualSwitch object to the virtual switch list;

✯ public String getSecurityUserName()

returns the username needed to log into the machine from remote hosts. This user
must be enabled to run Iptables commands inside the machine.

– class VirtualSwitch: this class represents a virtual switch where service nodes will
be attached. Every virtual switch has a rule dispatcher that will inject filtering rules.
In case of OpenFlow switches it uses the Floodlight library to create custom flows and
inject them into the switch. VirtualSwitch class has the following methods:

✯ public void addServiceNode(ServiceNode n)

adds a ServiceNode object to the virtual switch node list;

✯ public ServiceNode removeServiceNode(ServiceNode n)

removes a service node from the list. It returns the removed ServiceNode object
or null if the object is not present in the list.

✯ public VSWTypeElement getType()

returns the type of the virtual switch (e.g. OVS, LINUXBRIDGE, etc.);

– class ServiceNode: this class represents the element in the infrastructure in which
services are running (e.g. a virtual machine, a Kubernets pod, etc.). It is identified
by an IP address and contains the list of services that are running on it. Like physical
hosts it contains a CommandDispatcher object for rule loading. ServiceNode class has
the following methods:

✯ public void startup()

initialize the physical host creating a new Iptables chain, where rules will be in-
serted. After chain creation it inject a rule in existing chains to redirect all traffic
to the newly created one;

84

Programmer manual

✯ public void shutdown()

removes all injected rules and created chains, restoring previous state;

✯ public void setMiddleBox(boolean isMiddleBox)

marks the service node as a middlebox. A middlebox is a service node capable of
traffic routing in which is possible to apply traffic filtering policies;

✯ public boolean isMiddleBox()

returns true if the service node is also a middlebox, false otherwise;

✯ public void addService(Service s)

adds a Service object to the services list;

✯ public void deleteService(String port)

removes a service from the list. It returns the removed Service object or null if
the object is not present in the list.

✯ public NodeTypeElement getType()

returns the type of the service node (e.g. VM, POD, etc.);

❼ class PhysicalTopologyFactory: is the class that manage all physical topology object
creation and initialization. It can not be instantiated bacause it has private constructor.
PhysicalTopologyFactory class has the following methods:

– public static Deployment createDeployment(DeploymentElement dep)

creates a new Deployment object from a DeploymentElement. The DeploymentElement
object is the result of XML parsing process done by JAXB Framework. This method val-
idates the element passed as parameter, using the PhysicalTopologyValidator class
and if the element is correct starts to create the Deployment adding physical hosts,
virtual switches and service nodes. It also instantiate the PerformanceToolFactory

object;

– public static PhysicalHost createPhysicalHost(Deployment dep, HostElement

host, PerformanceToolFactory pf)

creates, after proper element validation, a new PhysicalHost object from a HostElement;

– public static VirtualSwitch createVSwitch(Deployment dep, VSwitchElement

vswitch, PerformanceToolFactory pf)

creates, after proper element validation, a new VirtualSwitch object from a VSwitchElement;

– public static ServiceNode createNode(Deployment dep, NodeElement serviceNode,

PerformanceToolFactory pf)

creates, after proper element validation, a new ServiceNode object from a NodeElement;

A.1.2 Modify the tool

It is possible to extend the FilteringPoint class adding new types of filtering point. Currently
the tool is supporting physical hosts, virtual switches and service nodes as filtering point. It is
necessary to implement the void injectRules() method, defining how rules will be inserted into
the defined filtering point. It will be necessary to add the element to the XML and extend the
input reading module.

85

Programmer manual

A.2 Distribution tool

The model tool is represented by the package it.polito.policyorchestration.impl.optimiza-
tion.distribution and it splits one equivalent firewall into many different distributed firewall
in a physical and virtual deployment. It distribute the rules only on the nodes where the traffic
could flows and it minimize the number of rules injected using the performance tool. Distribution
tool produce the output follows the workflow:

❼ reads the rules to be injected;

❼ reads the available filtering points where the rules could be injected;

❼ for each rule compute all the possible path from each destination to each sending machines;

❼ for each node on the path set that is a possible candidate to host the rule;

❼ create all the equation to be passed to a SAT solver;

❼ distribute the rule on each chosen filtering point.

A.2.1 Tool architecture

The tool architecture is made up of a class that handles the distribution of the rules. It exploits
the features of another class used to represent the deployment architecture through an interface
and the performance tool to optimized the distribution. The main class structure is the following:

❼ RuleDistributorTool is the class that handles the rule distribution, it knows only the set
of rules and the set of filtering points associated to each rule. The class present the following
methods:

– public RuleDistributorTool(InfrastructureManager tool)

is the constructor that has an InfrastructureManager as parameter, in which there are
the rules and all the informations used to optimized the distribution;

– public void injectRules()

is the method that, for each filtering point available, calls the methods that inject the
rules associated into it self;

– private void findAllTheRulesForEachFilteringPoint()

is a method that for each rule find a path, that means fining all the filtering points,
between the receiving point and the transmission point. In other words a rule could be
matched by a traffic pattern, this method find all the destination points for this type
of traffic and for each one find where the rule must be placed or could be place in a
such way that the number of filtering point chosen is the minimum;

– private void createBooleanVerticalEquationsForTheModel()

is a method that builds a boolean equation for each filtering point. The purpose of this
equation is set a variable Pn,i, that could be true or false, and represents if the rule n
must be injected on the filtering point i ;

– private void createBooleanHorizontalEquationsForTheModel()

is a method that builds a boolean equation for each rule. The purpose is imposed that
if a rule, which as the same action of the default action, could be injected must be
injected but at least one time;

– private void optimizeModel()

is a method that create a real cost equation by sum all the performance of each filtering
point. At the end this function is minimize and the model is compute;

– private void distributeRulesAsModel()

is a method that read the result of the computation of the optimizer and set for each
filtering points their rules.

86

Programmer manual

❼ DeploymentStructure: it is the interface for the deployment structure that is independent
from the environment, it has two methods:

– LinkedList<DeploymentNode> getAllFilteringPoints()

returns all the filtering point of the deployment structure

– public LinkedList<TreeNode> getConditionClausePoints(ConditionClause c)

is a method that is useful to retrieve one or more filtering points and end-points into
the tree structure.

❼ TreeStructure: it is the class that handles the structure of the deployment and implements
the DeploymentStructure interface, it is in charge of modelling the physical and the virtual
points and create a tree where they are placed. This class has the following methods:

– public TreeStructure(InfrastructureManager tool, LinkedList<IpSelector>

internalSubnetList)

is the constructor of the class, the parameters are the InfrastructureManager tool

used to retrieve the physical and virtual environment and the LinkedList<IpSelector>
internalSubnetList that is a list of all the subnet present inside the deployment. This
last parameter is useful to understand if the traffic pattern is from or to external points
or internal ones;

– private void populateTree() is the method that build the tree with the information
of the InfrastructureManager tool;

❼ DeploymentNode: it is the interface for the deployment node that is independent from the
deployment structure used, it has two important methods:

– LinkedList<String> getORPointPath(ConditionClause arrival,

ConditionClause departure, IpSelector subnet)

is the method that finds the minimal set of possible filtering points from the end-point
arrival to any departure points. The last parameter subnet identify the entity that
own the rule for which the method try to find a path for the corresponding traffic
pattern. This method is based on ten models (see Appendix ??) that the single node
could be, it chooses what kind of model it is;

– public LinkedList<String> getANDPointsPath(ConditionClause arrival,

ConditionClause departure, IpSelector subnet)

is the method that finds the minimal set of necessary filtering points from the end-point
arrival to any departure points. The last parameter subnet identify the entity that
own the rule for which the method try to find a path for the corresponding traffic
pattern. This method is based on ten models (see Appendix ??) that the single node
could be, it chooses what kind of model it is;

❼ TreeNode: it is the class that represent a single node inside the tree structure and implements
the DeploymentNode interface. All the TreeNode that are internal nodes are filtering points,
on the contrary the leaf nodes are the services with an IPaddress and a Port associated.
The class has the following instance variables:

– private String label

identifies the node;

– private TreeNode parent

is the variable pointer to the parent node, this is always not null except for the root
element;

– private List<TreeNode> children

is the list of the pointers to all the children of the node, this list is always notEmpty

except for the leaf elements;

– private FilteringPoint filteringPoint

is the pointer to the physical or virtual filtering point of the InfrastructureManager;

87

Programmer manual

– private LinkedList<ConditionClause> childConditionClauseList

is the list of all the end-points under this node, that means all the end-points that are
reachable from this node passing through its children;

– private LinkedList<ConditionClause> fatherConditionClauseList

is the list of all the end-points above this node, that means all the end-points that are
reachable from this node passing thought its parent.

– public TreeNode(FilteringPoint filteringPoint, boolean isGateway,

ConditionClause externalConditionCaluse)

is the first constructor of the class, filteringPoint is the element of the deploy-
ment, isGateway identify if this node reach directly the exterior of the deployment,
externalConditionCaluse represent all the destination that are external to the de-
ployment;

– public TreeNode(String label, boolean isService, boolean isRoot,

ConditionClause externalConditionCaluse)

is the second constructor of the class, it is useful because both root element and leaf
elements are not related to any filteringPoint or could not be gateway;

– public void addChildConditionClause(ConditionClause c)

public void addChildConditionClauseList(LinkedList<ConditionClause> cl)

public LinkedList<ConditionClause> getChildConditionClauseList()

private boolean hasChildrenConditionClause(ConditionClause c)

they are methods that manage the instance variable childConditionClauseList;

– public void addFatherConditionClauseList(LinkedList<ConditionClause> cl)

public LinkedList<ConditionClause> getFatherConditionClauseList()

private boolean hasFatherConditionClause(ConditionClause c)

they are methods that manage the instance variable fatherConditionClauseList;

A.2.2 Modify the tool

It is possible to change the model tree of the deployment with other model, as chain or graph.
Currently it supports only the tree model because it is the mostly used physical and logical
topology that avoids possible loops, besides that the work related to this thesis is based on an
OpenStack deployment. To change the model representation must add a new class that substitutes
the TreeStructure class and implements the deploymentStructure interface. Then a new class
is needed to substitute the TreeNode class that implements the deploymentNode interface. All
the interface’s methods must be implemented following the previous definition.

88

Programmer manual

A.3 RESTful web service

The RESTful web service allows the users to store and retrieve informations about the infrastruc-
ture on which our tool is operating. It permits to manage physical/logical topology and filtering
policies given by the security administrator.

The REST resource classes are implemented in the it.polito.policyorchestration.rest.resources
package and all the classes in the package will be loaded into the Jersey servlet at startup.

To manage HTTP requests, a PolicyOrchestrationService object is injected into resources
every time a REST method is called. It is responsible to maintain synchronization between
requests, avoiding race conditions.

A.3.1 Architecture

The PolicyOrchestrationService contains the InfrastructureManager object and the LifecycleManager
as attributes. The former contains all the object that represent the infrastructure (e.g. Deployment,
Landscape, Entities, etc.), the latter offers the methods to manage the lifecycle of the program.

This class offers the following methods:

❼ public PolicyOrchestrationService(InfrastructureManager infrastructureManager)

is the constrcutor method that has InfrastructureManager as parameter in input;

❼ public synchronized void start()

starts the rule distribution process. It starts with an initialization of all the infrastructure
elements (e.g. physical hosts, virtual switches, etc.) inserting some traffic redirection to be
able to perform filtering operations. The it starts the distribution process, optimizing rule
positions and finally inserting them;

❼ public synchronized void shutdown()

closes the program with the cleaning of all the rules injected;

❼ public synchronized void setDeployment(Deployment d)

public synchronized void setLandscape(Landscape l)

public synchronized void setSelectorTypes(SelectorTypes s)

public synchronized void setEntities(Entities e)

these methods are the ”setters” for the InfrastructureManager Object;

❼ public synchronized void getDeployment(Deployment d)

public synchronized void getLandscape(Landscape l)

public synchronized void getSelectorTypes(SelectorTypes s)

public synchronized void getEntities(Entities e)

these methods are the ”getters” for the InfrastructureManager Object;

❼ public synchronized DeploymentElement getDeploymentElement(boolean onlyNet-

workNodes, UriInfo root)

creates the DeploymentElement from the loaded Deployment, there are also the same
method for PhysicalHostElement, VirtualSwitchElement and ServiceNodeElement;

❼ public synchronized Deployment loadDeployment(DeploymentElement root)

initializes the Landscape object;

❼ public synchronized LandscapeElement getLandscapeElement(String type, UriInfo

root)

creates the LandscapeElement from the loaded Landscape, there are also the same method
for LandscapeHostElement and LandscapeServiceElement;

❼ public synchronized Landscape loadeLandscape(LandscapeElement net)

initializes the Landscape object;

89

Programmer manual

❼ public synchronized EntitiesElement getEntitiesElement(boolean onlyISP, UriInfo

root)

creates the EntitiesElement from the loaded Entities, there are also the same method
for EntityElement and RuleElement;

❼ public synchronized Entities loadEntities(EntitiesElement ent)

initializes the Entities object;

❼ public synchronized FilteringPoints getFilteringPoints(String type, UriInfo root)

creates the FilteringPointsElement from the loaded FilteringPoints, there are also the
same method for ExclusionElement and MiddleBoxElement;

❼ public synchronized void loadFilteringAndExclusions(FilteringPoints fp)

updates the environment according to file passed as parameter, it set filtering point (VM
that acts as router and packet filter) and it sets the excluded physical topology elements;

❼ public synchronized DistributionOutcome getDistributionOutput()

returns the output of the distribution process.

A.3.2 Modify the tool

To implement new REST methods, it is necessary to add an API on the preferred resource path.
All the operation on the InfrastructureManager data should be executed in PolicyOrchestrationService

class in a synchronized context to preserve the correct concurrency. For example, if we want
to implement methods to add/remove a virtual switch from the Deployment element, we need to
add a method in the DeploymentResources class, that handles the PUT, DELETE requests. Then
is necessary to implement in the PolicyOrchestrationService class the method to add/remove
a virtual switch from the Deployment element loaded in InfrastructureManager object.

90

Appendix B

REST APIs

All the resources are under the root folder api/

Resource Method Path Description

Deployment

GET /deployment Read physical topology informations

GET /deployment/{IP} Read a physical host informations

GET /deployment/{IP}/{label} Read a virtual switch informations

GET /deployment/{IP}/{label}/{nodeIP} Read a service node informations

POST /deployment Load physical topology structure

PUT /deployment/{IP}/{label}/{nodeIP} Update or create a service node

DELETE /deployment/{IP}/{label}/{nodeIP} Delete an existing service node

Landscape

GET /landscape Read logical topology informations

GET /landscape/{nodeIP} Read a service node informations

GET /landscape/{nodeIP}/{port} Read a service informations

POST /landscape Load logical topology structure

PUT /landscape/{nodeIP} Update or create a service node

PUT /landscape/{nodeIP}/{port} Update or create a service

DELETE /landscape/{nodeIP} Delete an existing service node

DELETE /landscape/{IP}/{port} Delete an existing service

Entities

GET /entities Read entities informations

GET /entities/{label} Read an entity informations

GET /entities/{label}/{rulelabel} Read a filtering rule informations

POST /entities Load entities structure

PUT /entities/{label} Update or create an entity

PUT /entities/{label}/{rulelabel} Update or create a filtering rule

DELETE /entities/{label} Delete an existing entity

DELETE /entities/{label}/{rulelabel} Delete an existing filtering rule

FilteringPoints

GET /filteringpoints Read middleboxes and exclusions informations

POST /filteringpoints Load middleboxes and exclusions structure

PUT /filteringpoints/middleboxes/{nodeIP} Add a service node to the middleboxes list

DELETE /filteringpoints/exclusions/{id} Add an element to the exclusions list

DELETE /filteringpoints/middleboxes/{nodeIP} Remove a service node to the middleboxes list

SelectorTypes
GET /selectors Read selector types informations

POST /selectors Load selector types structure

Tool

GET /tool/output?type= Read distribution outcome informations

OPTIONS /tool/start Starts rule distribution procedure

OPTIONS /tool/stop Starts tool shutdown procedure

Table B.1. Available REST APIs

91

Bibliography

[1] Bo Yi, Xingwei Wang, Keqin Li, Sajal k. Das, Min Huang, “A comprehensive survey of
Network Function Virtualization”, Computer Networks, Vol. 133 May 2018, pp. 212-262,
DOI 10.1016/j.comnet.2018.01.021

[2] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De Turck, Raouf
Boutaba, “Network Function Virtualization: State-of-the-Art and Research Challenges”,
IEEE Communications Surveys & Tutorials, Vol. 18, No. 1, Firstquarter 2016, pp. 236-262,
DOI 10.1109/COMST.2015.2477041

[3] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, Seungjoon Lee, “Network function virtualization:
Challenges and opportunities for innovations”, IEEE Communications Magazine, Vol. 53, No.
2, February 2015, pp. 90-97, DOI 10.1109/MCOM.2015.7045396

[4] ETSI, “Network Functions Virtualisation (NFV): Architectural Framework”, [On-
line], https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.02.01_60/gs_

nfv002v010201p.pdf

[5] Open Networking Foundation (ONF), “Software-Defined Networking (SDN) Definition”, [On-
line], https://www.opennetworking.org/sdn-definition/

[6] National Institute of Standards and Technology (NIST), “The NIST Definition
of Cloud Computing”, [Online], https://nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800-145.pdf

[7] Wenfeng Xia, Yonggang Wen, Chuan Heng Foh, Dusit Niyato, Haiyong Xie, “A Survey on
Software-Defined Networking”, IEEE Communications Surveys & Tutorials, Vol. 17, No. 1,
Firstquarter 2015, pp. 27-51, DOI 10.1109/COMST.2014.2330903

[8] Internet Engineering Task Force - IETF, “Interface to Network Security Functions (i2nsf)”,
[Online], https://datatracker.ietf.org/wg/i2nsf/about/

[9] Ehab S. Al-Shaer, Hazem H. Hamed, “Firewall Policy Advisor for anomaly discovery and rule
editing”, IFIP/IEEE Eighth International Symposium on Integrated Network Management,
Colorado Springs (USA), 2003, pp. 17-30, DOI 10.1109/INM.2003.1194157

[10] Hazem H. Hamed, Ehab S. Al-Shaer, “Taxonomy of conflicts in network security policies”,
IEEE Communications Magazine, Vol. 44, No. 3, March 2006, pp. 134-141, DOI 10.1109/M-
COM.2006.1607877

[11] Ehab S. Al-Shaer, Hazem H. Hamed, “Discovery of policy anomalies in distributed fire-
walls”, IEEE INFOCOM 2004, Vol. 4, Hong Kong, 2004, pp. 2605-2616, DOI 10.1109/INF-
COM.2004.1354680

[12] Hazem H. Hamed, Ehab S. Al-Shaer, “Dynamic Rule-Ordering Optimization for High-
Speed Firewall Filtering”, Proceedings of the 2006 ACM Symposium on Information, Com-
puter and Communications Security, Taipei (Taiwan), March 2006, pp. 332-342, DOI
https://doi.org/10.1145/1128817.1128867

[13] Hazem H. Hamed, Adel El-Atawy, Ehab S. Al-Shaer, “On Dynamic Optimization of Packet
Matching in High-Speed Firewalls”, IEEE Journal on Selected Areas in Communications,
Vol. 24, No. 10, October 2006, pp. 1817-1830, DOI 10.1109/JSAC.2006.877140

[14] David D. Clark, David R. Wilson, “A Comparison of Commercial and Military Computer
Security Policies”, 1987 IEEE Symposium on Security and Privacy, Oakland (USA), 1987,
pp. 184-184, DOI 10.1109/SP.1987.10001

[15] Fulvio Valenza, Manuel Cheminod, “An Optimized Firewall Anomaly Resolution”, Journal
of Internet Services and Information Security (JISIS), Vol. 10, No. 1, February 2020, pp.
22-37, DOI 10.22667/JISIS.2020.02.29.022

92

https://doi.org/10.1016/j.comnet.2018.01.021
https://doi.org/10.1109/COMST.2015.2477041
https://doi.org/10.1109/MCOM.2015.7045396
https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.02.01_60/gs_nfv002v010201p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.02.01_60/gs_nfv002v010201p.pdf
https://www.opennetworking.org/sdn-definition/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://doi.org/10.1109/COMST.2014.2330903
https://datatracker.ietf.org/wg/i2nsf/about/
https://doi.org/10.1109/INM.2003.1194157
https://doi.org/10.1109/MCOM.2006.1607877
https://doi.org/10.1109/MCOM.2006.1607877
https://doi.org/10.1109/INFCOM.2004.1354680
https://doi.org/10.1109/INFCOM.2004.1354680
https://doi.org/https://doi.org/10.1145/1128817.1128867
https://doi.org/10.1109/JSAC.2006.877140
https://doi.org/10.1109/SP.1987.10001
https://doi.org/10.22667/JISIS.2020.02.29.022

Bibliography

[16] Cataldo Basile, Alberto Cappadonia, Antonio Lioy, “Network-Level Access Control Policy
Analysis and Transformation”, IEEE/ACM Transactions on Networking, Vol. 20, No. 4,
August 2012, pp. 985-998, DOI 10.1109/TNET.2011.2178431

[17] OpenStack project, https://www.openstack.org/software/
[18] Linux top man page, http://man7.org/linux/man-pages/man1/top.1.html
[19] Nping project, https://nmap.org/nping/
[20] iPerf3 project, https://iperf.fr/
[21] Iptables project, https://linux.die.net/man/8/iptables
[22] Open vSwitch project, https://www.openvswitch.org/
[23] JSch project, http://www.jcraft.com/jsch/
[24] ovs-ofctl command man-page, https://www.systutorials.com/docs/linux/man/

8-ovs-ofctl/

[25] Floodlight project, https://floodlight.atlassian.net/wiki/
[26] Squid project, http://www.squid-cache.org/
[27] Kubernetes project, https://kubernetes.io/it/
[28] Global public cloud computing market 2008-2020, https://www.statista.com/

statistics/510350/worldwide-public-cloud-computing/

93

https://doi.org/10.1109/TNET.2011.2178431
https://www.openstack.org/software/
http://man7.org/linux/man-pages/man1/top.1.html
https://nmap.org/nping/
https://iperf.fr/
https://linux.die.net/man/8/iptables
https://www.openvswitch.org/
http://www.jcraft.com/jsch/
https://www.systutorials.com/docs/linux/man/8-ovs-ofctl/
https://www.systutorials.com/docs/linux/man/8-ovs-ofctl/
https://floodlight.atlassian.net/wiki/
http://www.squid-cache.org/
https://kubernetes.io/it/
https://www.statista.com/statistics/510350/worldwide-public-cloud-computing/
https://www.statista.com/statistics/510350/worldwide-public-cloud-computing/

	Introduction
	Background
	Computing virtualization
	Network virtualization

	Cloud computing
	Serivce models
	Cloud security
	Cloud toolkits

	Firewalls and policies
	Packet filters
	Policies

	State of the art
	Network Function Virtualization
	ETSI NFV Architecture
	Virtual Network Function

	Software Defined Networking
	OpenFlow

	Network Security Function
	Interface to Network Security Functions (I2NSF)

	Goals
	Goals definition
	Use-case definition

	Components analysis
	Computing
	Networking
	Security

	Solution design
	High level design
	Distribution design
	Iptables
	OpenFlow

	Workflow
	REST service
	REST
	REST service design

	Implementation
	Proof-of-Concept
	Policy representation
	Distribution implementation
	Iptables
	OpenFlow

	REST service
	Multi-threading
	Lifecycle management

	Testing
	Test design
	Policy optimization
	OpenStack security groups
	Optimization tool
	Performances

	Distribution optimization
	OpenStack security groups
	Optimization tool
	Performances

	Test conclusions

	Conclusions
	Future works
	High level security
	Security softwares
	Cloud architectures

	Programmer manual
	Physical topology
	Architecture
	Modify the tool

	Distribution tool
	Tool architecture
	Modify the tool

	RESTful web service
	Architecture
	Modify the tool

	REST APIs
	Bibliography

