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Introduction

The following work of thesis is aimed to deeply analyse the effects of reac-

tion wheels (RWs) on the attitude control of a small satellite, also known as

CubeSat. In particular, it has been studied how the RWs affect the pointing

stability of a telescope, mounted on the satellite, when it is necessary per-

forming a photometric analysis of a target star. The strong interest behind

the study of the RWs effects is due to the their huge impact on the quality of

stars observation. Indeed, the RWs tend to induce an oscillating motion on

the satellite which strongly influences the telescope pointing stability. There-

fore, if the telescope is not stable enough, the measured stars brightness will

be strongly different from the real one and this situation compromises the

photometric analysis of the target star, which is incredibly useful to study

the stellar activity, transiting exoplanets or other astrophysical phenomena.

As mentioned before, the telescope is located inside a satellite whose dimen-

sions are really small. The CubeSats are specific types of satellites conceived

to significantly reduce in the costs. For this reason, the first element that

must be reduced is the dimension. For instance, as it will be described in the

following chapter, a 3U (three units) CubeSat has the following dimensions:

10x10x30 cm. Therefore, the system under analysis is really compact. An-

other key element about the costs reduction is the shrunk launch expenses

due to the decreased fuel amount related to the low weight of these satel-

lites. Moreover, there is a continuous research of low cost electronic and

non-electronic devices, to be put inside the satellite, able to guarantee a

good level of quality despite of their cost. This is done to decrease, as much

as possible, the expenses related to the satellite.

All the analyses of this thesis has been performed on a 3U CubeSat.

The first step towards the final goal is to understand, at first, what reaction
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INTRODUCTION v

wheels are and how they are employed to control the satellite attitude and,

then, what are the effects that strongly influence the pointing performance.

A reaction wheel is, basically, a flywheel connected to an electric motor which

is suitably supplied to make the wheel rotate. This is one of lots of actuator

that can be used to modify the attitude of satellite. However, the reaction

wheels are chosen among the other devices, for the application under anal-

ysis, because they are cheaper, smaller and lighter and offer a continuous,

smooth and moderately intense control action, which allows to obtain a really

precise pointing action. The reaction wheels are located inside the satellite

according to specific configurations. Their working principle is quite simple

since they exploit the angular momentum conservation principle to put the

satellite in motion. Indeed, when a RW is activated by the electric motor,

through a suitable torque, since the overall angular momentum must not

vary, the reaction wheel produces on the CubeSat a torque equal and oppo-

site to the received one and in this way it starts the rotation of the satellite.

However, the motion of the RWs is a source of disturbances that modify

the desired CubeSat attitude. In particular, they create a kind of oscillating

motion, called jitter, which affect the telescope pointing stability. The main

reasons behind these disturbances are the shift of the center of mass from the

central rotation axis (static unbalance) and the inclination of the principal

axis of inertia with respect to the rotation axis (dynamic unbalance). The

disturbances model is a bit more complex since they are represented by a

sum of sinusoidal waves (harmonic analysis) where the static and dynamic

unbalance are defined by the first harmonic, which is the stronger contribu-

tion among all the other harmonics.

The characterization of the disturbances is done through a set of forces and

pure torques expressed in the wheels reference frames, that are located at the

wheels center. These pure moments and the ones coming from the forces are

responsible for the attitude modification with respect to an inertial reference

frame.

The second step of this work of thesis is to start evaluating the objectives of

the control structure and defining all the elements that compose the closed

loop system. About the main objectives, it is important to highlight that a

disturbance-free analysis of the system has been necessary in order to eval-
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uate the basic performance of the control system. In particular, it has been

evaluated the value of the RMS pointing error that can be reached before

the application of the disturbances. Then, it has been studied the effect of

the disturbances on the pointing error with particular attention to the am-

plitude of the oscillating signal and, therefore, the influence on the overall

RMS value. Indeed, if the main objective of the disturbance-free analysis is

to try having a small RMS pointing error, the fundamental goal of the distur-

bances analysis is to reduce the amplitude of the oscillations of the error. As

mentioned before, a quite strong oscillation can deeply affect the telescope

pointing stability which results in a poor photometric analysis. Moreover,

the study of the control system performance can be enriched with the effect

of the uncertainty related to some parameters of the CubeSat (Plant). This

means that it is possible to evaluate how a variation of the plant charac-

teristic, blinded to the controller, can modify the overall performance and,

so, to identify robustness properties of the specific controller. However, this

analysis has not been performed in this thesis, but it has been considered as

future works.

Instead, about the control system structure, it is really important to high-

light that it varies, more or less significantly, according to the kind of con-

troller that is employed in the overall system. It is worth saying that, before

studying the controller structure, two important systems has been analysed

through their constitutive equations: the satellite (known as plant, with a

non-linear dynamic) and the reaction wheels set (actuators). Then, accord-

ing to the controller type, another fundamental system has been studied i.e

the reference generator, which is responsible to generate the signal that must

be tracked.

As far as the controller is concerned, it must be noticed that digital con-

trollers have been considered. Actually, the quantization process and its

effects have been neglected and only a discrete approach has been evaluated.

Therefore, it has been necessary to introduce a zero-order hold to apply the

control signal to the actuator, which is a continuous time system.

The starting point has been the analysis of the most used control approach

(defined in this thesis as benchmark controller), which is, basically, character-

ized by a non-linear PD controller or a non-linear PD with some feedforeward
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terms. After a theoretical analysis of the controller contribution to the point-

ing error and to the disturbances attenuation, according to specific values of

the controller parameters, a simulation approach has been considered. In

particular, the results coming from two simulation environments has been

deeply evaluated. The first one is MATLAB/Simulink, where the simulation

scheme is characterized by a set of MATLAB functions plus integrators (when

necessary), in order to represent the state equations or in general the charac-

terizing equations of each subsystem. The second one is EICASLAB, which is

a software suite produced by the company EICAS Automazione S.p.a where

this thesis has been developed. This software was born to allow the imple-

mentation of professional controllers for lots of scientific fields, in particular

the aerospace one. Its key characteristic is the C-code implementation of all

the subsystems that compose the overall control scheme. Therefore, since

the controller must be implemented in C-code, this is a quite useful initial

step towards a real implementation of the controller on a target board, that

can be employed in a real application.

Once the knowledge coming from the benchmark control system has been

considered, the core of the work of thesis has been developed. This is the

personal contribution to the subject under analysis. Therefore, a new con-

trol approach has been studied in order to evaluate its effect on the telescope

pointing, with and without reaction wheels disturbances. The new approach

is characterized by an input-output feedback linearization controller, which

is aimed to cancel the non-linearities of the plant. As it will be deeply dis-

cussed, the system under analysis is a MIMO one and the application of

the feedback linearization allows to implement a specific decoupling in SISO

subsystems. Once this procedure has been completed, another controller re-

sponsible for managing the input-output dynamic has been designed, to be

placed before the previous one. In particular, two different types of con-

troller has been tested in order to highlight important differences between

them and with respect to the benchmark controller. The first one follows

the pole placement technique, where the position of the desired closed loop

pole is defined. Then, through suitable matrices, a specific linear control law

is designed in order to respect the poles position. The second one exploits

the sliding mode control theory. This approach leads to the definition of a
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non-linear control law due to the presence of a specific non-linear term which,

in general, guarantees robustness to the control system. As it will be deeply

developed, this approach is based on the formulation of the so called ”sliding

surface”, which is a specific multi-dimensional entity that must be reached by

the system trajectory (starting from the initial condition) in order to guar-

antee the convergence of the outputs to the desired reference signals. Also in

this case, after a deep theoretical analysis of the control system behaviour,

specific simulations schemes have been developed, in the MATLAB/Simulink

and EICASLAB environment, to verify the performance of the control sys-

tem.

Once all the simulations results have been collected, a careful analysis of

each of them and a deep cross-comparison have been conducted to highlight

pros and cons of the different control approaches that have been studied. In

particular, the simulations results have been useful to evaluate whether the

new control approach is worth being implemented in a real application.



Chapter 1

CubeSats and Reaction Wheels

1.1 A brief overview on CubeSats

A CubeSat is a kind of small satellite that was initially conceived for educa-

tional purposes. However, since 2012 a huge number of CubeSats have been

employed for real aerospace applications. There are lots of reasons behind

their success. The key element of the CubeSats is saving money. Indeed, in

the satellite world, there is a continuous research on how reducing implemen-

tations expenses (when this is possible according to the specific application).

The first element related to the costs reduction is the decreased dimensions

of a CubeSat, which is defined as a small satellite. It is worth noticing that

the small satellites classification involves structures whose weight goes from

0.1 g (zepto satellites) to 500Kg (mini satellites).

The CubeSats are cube-shaped satellites where a specific measurement unit

is defined, known as U, that corresponds to a 10x10x10 cm cube. This is

the smallest CubeSat possible. All the other configurations are defined as

integer multiples of the unit U and , basically, are built by assembling more

cubes together. For example, it is possible to consider a 3U or 6U satellite,

whose dimensions are respectively 10x10x30 cm and 10x20x30 cm. Figure

2.1 shows a basic representation of CubeSat 1U , 3U and 6U .

The second element related to the cost reduction is that the launch expenses

are significantly shrunk. Indeed, since the CubeSat weight is not so high, it

is not necessary a huge amount of fuel to put it in the Earth’s orbit. More-

1
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Figure 1.1: Schematic representations of CubeSats

over, in order to be compliant with the cost reduction philosophy, there is

a constant research of electronic and non-electronic devices, to be placed in

the satellite, characterized by a proper trade off between costs and quality,

according to the specific objectives that the missions wants to reach.

The CubeSats are basically composed by six subsystems, as mentioned in [5]

and shown in figure 2.2:

• Structure: CubeSats are basically composed by aluminium alloys.

• Communication system: for ground communications (transmission

and reception of signals), CubeSats employ an antenna that exploits

bands like VHF, UHF or X.
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• Power system: it is characterized by solar panels or batteries. Solar

panel are more used then batteries since the latter need more space

and, in general, they increases the overall system complexity.

• Control: the control system is useful to keep the satellite in a specific

attitude with respect to a reference frame. It is worth saying that the

control subsystem involves also the actuator (like reaction wheels) and

attitude determination systems (like star trackers).

• Computing system: this system is used for many operations like

health monitoring, payload data processing and analysis, etc.

• Payload: the characteristics of this subsystem strongly depend on the

mission objectives. For instance, it could be a telescope to perform

stellar observations.

Figure 1.2: A 3U CubeSat with its subsystems [11]

CubeSats are in general placed on a LEO orbit (Low Earth Orbit) whose

altitude varies from 160Km to 2000Km with an eccentricity less than 0.25,

with an orbital period strictly related to the altitude. An example of Cube-

Sat is the 6U one employed in the NASA/JPL and MIT project known as

ASTERIA (Arcsecond Space Telescope Enabling Research in Astrophysics),
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shown in figure 2.3. The main goal of the ASTERIA mission was to obtain

arcsecond-level pointing error with respect to the desired star, in order to

perform a correct photometric analysis, which is a fundamental element to

correctly study stellar activities, transiting planets and other astrophysical

phenomena. In particular, the ASTERIA mission was able to reach a RMS

pointing error of 0.5 arcseconds, over 20 minutes of observation, which is

much lower than the preliminary requirement of 5 arcseconds.

Figure 1.3: ASTERIA 6U CubeSat [13]
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1.2 Reaction wheels for attitude control

This section will focus on some important aspects of the reaction wheels

that are usually employed in CubeSat. The starting point will be the anal-

ysis of some charactetistic of these actuators, followed by the explanation of

their working principle. Then, it will be introduced a brief overview on the

marketplace availability about RWs. Finally, the most important aspect of

RWs will be deeply analysed i.e. the disturbances produced by the wheels

rotation. In particular, it will be shown the state of art about disturbances

modelling and then its application to the specific case analysed in this work

of thesis.

1.2.1 Working principle

A reaction wheel is an actuator, placed inside the satellite, responsible for the

spacecraft attitude modification with respect to an inertial reference frame.

It is composed by a flywheel connected to an electrical motor, in general a

DC-Brushless, which makes the wheel rotate, as shown by figure 1.4. They

Figure 1.4: A real reaction wheel [3]

are greatly used in CubeSats due to the reduced dimensions and so weight

and their ability of producing a continuous, smooth and moderately intense

control action which is fundamental to have a precise pointing action. More-

over, by using a reaction wheel it is completely avoided the problem of using

propulsion devices which require a suitable amount of propellant and, there-

fore, their management is more expensive. Then, since a reaction wheel is

in general lighter than other kinds of actuators, the expenses related to the
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launch operations are significantly shrunk due to the reduced amount of nec-

essary fuel to put the satellite in the Earth’s orbit.

To understand the working principle of a reaction wheel, let’s consider the

system in figure 1.5, which is composed by a cubic satellite body and a RW,

where the vehicle (satellite bus plus RW) body frame is placed in its CoM

and the axes coincide with the principal axes of inertia. A reaction wheel

exploits the angular momentum conservation principle which states that:”in

absence of external applied moments, the total angular momentum of the sys-

tem, evaluated in an inertial frame, does not vary”. Therefore, with respect

to the system in figure, it is possible to write the following relation:

Mext = ḢI = Ḣ
(sc)
I + Ḣ

(w)
I ⇒ 0 = ḢI = Ḣ

(sc)
I + Ḣ

(w)
I (1.1)

or equivalently

HI = H
(sc)
I + H

(w)
I = const (1.2)

where the subscript I defines that the specific quantity is evaluated in the

Figure 1.5: Schematic representation of cubic satellite with reaction wheel

inertial reference frame, the superscript (sc) refers to the spacecraft total

angular momentum variation and (w) specifies the wheel angular momentum

variation. It is really important to highlight that, as discussed in [8], H
(sc)
I

defines the total angular momentum of all the rigid body i.e. the spacecraft

body plus the reaction wheel mass concentrated at its center of mass. Instead,
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H
(w)
I represents the net angular momentum of the reaction wheel about its

center of mass. Moreover, both HI and H
(sc)
I are referred to the overall

system center of mass (spacecraft/satellite body+wheel).

Therefore, when the electric motor of the RW puts in rotation the flywheel, by

applying a suitable torque, the latter exerts the same torque in magnitude but

opposite in sense to the satellite, since the angular momentum conservation

principle must be verified. In this way, the satellite will start rotating, in

the opposite sense with respect to the RW one, about an axis parallel to the

RW rotation axis and passing through the center of mass (indeed, since the

RW applies only a torque, the rotation will necessary be about the CoM).

For the situation of figure 1.5, the satellite will start rotating about the body

frame x-axis With this mechanism it is possible to change the attitude of

the CubeSat. It is interesting to notice that, the CoM of the satellite bus is

very close to the overall spacecraft one, due to the really small contribution

coming from the RW mass. So, if we neglect this difference, the CoM of the

satellite bus coincides with the spacecraft one. This means that it is not

important where the RW is placed (always on a plane parallel to the one

in figure), because the spacecraft will rotate always about an axis passing

through the CoM.

As it will be shown later, the same approach is considered when more than

one RW is placed inside the spacecraft. In general, it is needed at least three

reaction wheels (suitably placed) to perform a complete attitude change. For

instance, it is possible to have three orthogonal wheels, as shown in figure

1.6, in order to rotate the spacecraft about all its three body axes.

Figure 1.6: Schematic representation of cubic satellite with 3 orthogonal RWs
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1.2.2 Marketplace availability nowadays

Nowadays, there are lots of reaction wheel models which can fit every mission

objectives. By the way, it is crucial to properly choose the reaction wheels

on the basis of the space mission requirements. Indeed, as mentioned by

[2], there is a four-steps procedure that must be followed to choose the best

reaction wheels.

1. Specification of the mission parameters: the complete set of op-

erations that the satellite needs to perform must be clearly defined.

2. Definition of the satellite design specifications: it is important to

check the design characteristic of the satellite, in order, for instance, to

choose the correct size of the RWs with respect to the available volume.

3. Definition of technological devices: it is crucial to understand the

characteristics of all the satellite components and subsystems. Indeed,

the RWs have to properly work together with all the other elements of

the satellite.

4. Specification of the key performance criteria: it is fundamental

to figure out how to evaluate the available RWs on the marketplace

with respect to the most relevant criteria for the specific applications.

Some of the key performance criteria are the following ones:

1. Size and weight.

2. Attitude control sensitivity and precision.

3. Redundancy i.e. presence of a fourth wheel

In the following part, it will be shown some of the available reactions wheel

in the marketplace, as mentioned in [2].
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RW210 and RW400 by Hyperion Technologies

These two kinds of wheels, shown in figure 1.7, have different characteristic

that fit well with different type of CubeSats. Indeed, the RW210 is in general

mounted on CubeSats from 1U to 3U . Instead, the RW400 is used inside

bigger satellites like 6 to 12U . By the way, they have specific dimensions and

weight that make them suitable only for the above CubeSats. The cage of the

RW210 and RW400 have respectively the following dimensions and weight:

25x25x15mm and about 21 g. Instead, the RW400 dimensions and weight

are about 50x50x27mm and 155 g. Consequently, the maximum torque that

they can produce is linked to their dimensions. In particular, the RW210

is able to exert a maximum torque of 0.1mNm and the RW400 provides a

torque up to 12mNm. Moreover, both the wheels include a simple dedicated

controller.

Figure 1.7: RW210 (left) and RW400 (right) [2]

RW-0.01 by Sinclair Interplanetary

Figure 1.8 shows the RW-0.01, whose cage dimensions are 50x50x30mm

and a weight of 120 g. In this case, the maximum produced torque is about

1mNm in both directions. Due to its dimensions, it is suitable for CubeSats

over 6U . This RW, like all Sinclair Interplanetary’s ones, is equipped with a

digital processor and it can be commanded by using a serial bus to obtain the

desired speed, momentum or torque. Moreover, this wheel is able to provide

all the desired telemetric data useful to check the health of the wheel.
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Figure 1.8: Sinclair Interplanetary RW-0.01 [2]

MAI-400 by Adcole Maryland Aerospace

The MAI-400 reaction wheel, shown by figure 1.9, has a really compact struc-

ture characterized by the following dimensions and weight: 33x33x38mm

and 110 g. According to these dimensions, this RW is suitable for 3U Cube-

Sats. The produced torque is up to 0.635mNm. The motor drive electronics

of this reaction wheel is located on a 1.3x1.3′′ PCB, which contains an ARM

Cortex CPU.

Figure 1.9: MAI-400 RW [2]
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1.2.3 RWs disturbances: state of art and its applica-

tion

1.2.3.1 State of art about disturbances modelling

The main problem related to the reaction wheels is the presence of some

disturbances due to their the rotational motion. As it will be deeply analysed,

these disturbances are represented by a set of forces (with their moments)

and pure moments, which can have a huge impact on the pointing stability

of the satellite telescope. Indeed, if there is not an acceptable stability of

the telescope with respect to the target star, its photometric study will be

strongly inaccurate. This situations will lead, in turns, to an unreliable

study about, for example, the stellar activity or transiting exoplanets or

other astrophysical phenomena. The following part will analyse the state

of art about the reaction wheels disturbances modelling. However, before

evaluate how disturbances are modelled, it is crucial to understand how they

are produced. The two relevant sources of disturbances are known as static

imbalance/unbalance and dynamic imbalance/unbalance.

Static unbalance

The first source is due to an asymmetric distribution of the flywheel mass in

radial direction, which leads to a shift of the center of mass with respect to

the point where the axis of rotation passes. This situation can be modelled

with a symmetric-balanced wheel with an additional mass placed on the

lateral surface of the wheel, as shown in figure 1.10. The small cubic mass is

known as imbalance/unbalance mass. When the wheel is put in rotation, on

the unbalance mass acts a centrifugal force expressed as

Fc = msac = ms
v2

rs
= msrsΩ

2 (1.3)

where m, r,Ω are respectively the weight of the unbalance mass, its distance

from the rotation axis and the angular speed. From this formula is defined

the parameter known as static imbalance as mr = Fc
Ω2 . The values of Fc and

Ω2 are determined thorough specific measurements by using a dynamometer.

So, the wheel is connected to this dyanamometer and it is put in rotation

at different values of speed. Then, a set of force and torques is measured
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Figure 1.10: Static unbalance modelling [4]

and expressed with respect to the reference frame of the measurement de-

vice. Therefore, the obtained signals are expressed as Fx, Fy, Fz,Mx,My,Mz.

These are the disturbances that the reaction wheel produces. However, since

the forces and torques must be referenced with respect to the center of wheel,

the moments expression must be modified in this way:

M
′
= MDF − rDF×FDF (1.4)

where M
′
,MDF , rDF ,FDF corresponds to the modified moments, the mo-

ments referenced to the dynamometer frame, the distance between the origin

of the dyanmometer frame and the center of the wheel and the forces with

respect to the measurement device frame. So, it is possible to express the

new set of forces and moments as Fx, Fy, Fz,M
′
x,M

′
y,M

′
z. In particular, the

amplitude spectrum of all these quantities is defined by considering different

values of wheel speed, in order to build the so called waterfall plot. Now, the

Fc of the formula (1.3) is defined as the first harmonic amplitude that can be

extracted from the waterfall plot of the signals Fx. In particular, it is evalu-

ated the amplitude of the first harmonic in correspondence of the maximum

rotational speed Ω. It is worth noticing that, for each of the measured sig-

nals, a specific harmonic analysis is done. This means that, the expression of

all the forces and torques is represented by a summation of sinusoidal waves
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with specific amplitude and frequency, as mentioned by [12]:

Fx(t) =
N∑
i=1

Fxi(Ω(t))sin(2πhiΩ(t)t+ φFradi ) (1.5)

Fy(t) =
N∑
i=1

Fyi(Ω(t))sin(2πhiΩ(t)t+ φFradi +
π

2
) (1.6)

Fz(t) =
N∑
i=1

Fzi(Ω(t))sin(2πhiΩ(t)t+ φFaxiali ) (1.7)

where hi defines the harmonic coefficient, Ω(t) is the rotational speed ex-

pressed in Hz and φFradi , φFaxiali represent random initial phases in the interval

[0, 2π). Figure 1.11 provides a graphical representation of the first five har-

monics related to static imbalance, where each harmonic is defined by a mass

placed at a specific radius from the rotation axis and by a rotation frequency

expressed through the product hiΩ. In particular, figure 1.11 depicts the first

five contributions of equations (1.5) and (1.6). The X-Y-Z frame is the wheel

coordinate system, placed at its center. Moreover, it is interesting to notice

the analogy of figure 1.11 with respect to figure 1.10 about the first harmonic

contribution i.e. harmonic whose coefficient is 1. Indeed, the contribution

coming from the centrifugal force of the unbalance mass ms is defined by the

first harmonic of Fx(t) and Fy(t).

Figure 1.11: Disturbances harmonic model of the static imbalance [12]

Some comments must be done about these expressions. First of all, the am-

plitude of the sinusoidal waves can be represented by a proportional relation
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with respect to Ω2 as F (Ω(t)) = CiΩ
2 where Ci is the specific coefficient

related to the ith harmonic, as mentioned by [10]. Then, the contribution

coming from the disturbance along the Z-axis can be neglected. Furthermore,

as mentioned by [12], the amplitudes of the sinusoidal waves along the X-axis

and Y-axis are considered equal i.e. Fxi(Ω(t)) = Fyi(Ω(t)).

In this work of thesis, it will be considered only the first harmonic (funda-

mental) contribution, since it is the most relevant one. Finally, it must be

pointed out the role that these disturbances will play in the satellite attitude

modification. Indeed, the forces Fx and Fy produce moments with respect

to the center of mass of the satellite, as it will be discussed in the following

part.

Dynamic unbalance

The second source of disturbances is known as dynamic imbalance/unbalance

which is determined by the inclination of the principal axis of inertia with

respect to rotation axis, caused by an asymmetric mass distribution along

the axial direction. This situation can be modelled by two cubic masses md

placed on the lateral surfaces of the wheel, at rd distance from the rotation

axis and characterized by the h separation between them along the axis of

rotation, as shown by figure 1.12. In this situation, the centrifugal forces,

Figure 1.12: Dynamic unbalance modelling [4]
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acting on both the masses, produce a couple of forces characterized by the

following moment expression (pure moment):

τ = Fch = mdach = md
v2

rd
h = mdrdhΩ2 (1.8)

From this relation, the dynamic imbalance parameter can be computed as

mdrdh = τ
Ω2 where the values of τ and Ω2 are taken from the previously

mentioned waterfall plot related to the moment along the X-axis M ′
x (for

notation simplicity expressed as Mx). In particular, as before, it is considered

the first harmonic contribution at the maximum wheel speed.

As seen for the static imbalance, also in this case the measured moments

Mx,My,Mz are expressed through a summation of sinusoidal wave [12], as

follows:

Mx(t) =
N∑
i=1

Mxi(Ω(t))sin(2πhiΩ(t)t+ φMrad
i ) (1.9)

My(t) =
N∑
i=1

Myi(Ω(t))sin(2πhiΩ(t)t+ φMrad
i +

π

2
) (1.10)

Mz(t) =
N∑
i=1

Mzi(Ω(t))sin(2πhiΩ(t)t+ φMaxial
i ) (1.11)

where hi defines the harmonic coefficient, Ω(t) is the rotational speed ex-

pressed in Hz and φMrad
i , φMaxial

i represent random initial phases in the inter-

val [0, 2π). Figure 1.13 represents the first three harmonic of the moments

related to the dynamic imbalance. In particular, this figure shows the first

three harmonic contribution expressed by equations (1.9) and (1.10). Also

in this case, it is worth evaluating the analogy of figure 1.12 with respect to

figure 1.13 about the first harmonic contribution. Indeed, the contribution

coming from the moment of centrifugal forces acting on the unbalance masses

md is defined by the first harmonic of Mx(t) and My(t) (planar contribution).

Finally, the same fundamental comments done for the static imbalance about

the proportionality relation about the amplitude of sinusoids, the negligi-

ble contribution of axial component, the equality of the sinusoids amplitude

about X and Y axes and the evaluation of only the fundamental harmonic

contribution (due to its relevancy with respect to the other harmonics) can

be repeated in this case.
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Figure 1.13: Disturbances harmonic model of dynamic imbalance [4]

1.2.3.2 State of art concepts application

In following part, the concepts previously analysed will be applied to the

specific case evaluated in this work of thesis. The starting point is the def-

inition of the satellite structure with reaction wheels. Figure 1.14 shows a

cubic satellite of 3U (10 cm along z-axis, 10 cm along y-axis and 30 cm along

x-axis) with three orthogonal reaction wheels attached to the spacecraft bus.

This structure differs from the one shown by figure 1.6, about the RWs po-

sitions, and it has been considered to make the analysis simpler. As it is

easy to see, the rotation axis (Z-axis in green) of the three reaction wheels

is aligned with the body frame axes of the bus and this coordinate system is

placed in the bus center of mass G.

Now, the expressions of the pure moments and forces (with the relative mo-

ments) coming from the static and dynamic imbalance have to be applied to

the situation in figure 1.14. So, first of all, it is fundamental to define the ro-

tation matrices that characterize the wheels frame orientation with respect to

the bus frame. As it is possible to see, the RF of wheel 1 is rotated clockwise

about the y-axis of the body frame of an angle equal to 90◦ i.e. the rotation

angle α is equal to −π
2
. The rotation matrix that describes this situation is

given by (1.12). Then, the wheel 2 RF is rotated counter-clockwise about

the body x-axis of 90◦ i.e. α = π
2

and the relative rotation matrix is (1.13).

Finally, the RF of wheel 3 is not subject to any rotation, which means that
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Figure 1.14: Representation of 3U CubeSat with 3 reaction wheels

its rotation matrix coincides with the identity matrix I, as shown by (1.14).

RB
W1

=

 cos(α) 0 sin(α)

0 1 0

−sin(α) 0 cos(α)

 α=−π
2=

0 0 −1

0 1 0

1 0 0

 (1.12)

RB
W2

=

1 0 0

0 cos(α) −sin(α)

0 sin(α) cos(α)

 α=π
2=

1 0 0

0 0 −1

0 1 0

 (1.13)

RB
W3

= I =

1 0 0

0 1 0

0 0 1

 (1.14)

Furthermore, as mentioned in the previous section, only the first harmonic

contribute is considered. This means that, for each reaction wheel, the follow-

ing forces and pure moments expression (in the wheels frame) is evaluated:

Fx(t) = CsΩ
2sin(2πhiΩ(t)t+ φFradi ) (1.15)
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Fy(t) = CsΩ
2sin(2πhiΩ(t)t+ φFradi +

π

2
) (1.16)

Mx(t) = CdΩ
2sin(2πhiΩ(t)t+ φMrad

i ) (1.17)

My(t) = CdΩ
2sin(2πhiΩ(t)t+ φMrad

i +
π

2
) (1.18)

where Cs = 170mg·mm and Cd = 57, 000mg·mm2 are the coefficients that

represent the static and dynamic imbalance. Their values are defined accord-

ing to [11].

Now, it is possible to study all the wheel contributions about disturbances, in

the reference frame of the satellite bus. However, before starting this anal-

ysis, it is important to make the following comment: for the computation

of the forces moments, in the expression of the distance between the bus

CoM (G) and the wheels center, the height of the wheels has been neglected.

Therefore, the distances are simply characterized by the half of the bus di-

mensions.

Reaction Wheel 1

Reaction wheel 1 is characterized by the following disturbance moments

MW1 = [Mx
1 My

1 0]T , expressed in the wheel frame. So, their expression

in the bus reference frame is:Mx
B

My
B

M z
B

 = RB
W1

MW1 =

0 0 −1

0 1 0

1 0 0


Mx

1

My
1

0

 =

 0

My
1

Mx
1

 (1.19)

Instead, the disturbance forces in the wheel frame are FW1 = [F x
1 F y

1 0]T .

And their specific expression in the bus frame is:

FB
W1

=

F x
B

F y
B

F z
B

 = RB
W1

FW1 =

0 0 −1

0 1 0

1 0 0


F x

1

F y
1

0

 =

 0

F y
1

F x
1

 (1.20)

Then, the distance between the bus center of mass and the wheels center,

in the bus frame, useful to compute the moments of the forces, is RCM1
B =

[−RCM1 0 0]T , where RCM1 = 0.15m. Finally, the moments of the forces
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are: Mx
B

My
B

M z
B

 = RCM1
B ×FB

W1
=

−RCM1

0

0

×
 0

F y
1

F x
1

 =

 0

RCM1F
x
1

−RCM1F
y
1

 (1.21)

Reaction Wheel 2

In a similar way, reaction wheel 2 disturbance moments, expressed in the

wheel frame, are MW2 = [Mx
2 M

y
2 0]T . Therefore, their expression in the bus

reference frame is:Mx
B

My
B

M z
B

 = RB
W2

MW2 =

1 0 0

0 0 −1

0 1 0


Mx

2

My
2

0

 =

Mx
2

0

My
2

 (1.22)

The disturbance forces in the wheel frame are FW2 = [F x
2 F y

2 0]T . And their

specific expression in the bus frame is:

FB
W2

=

F x
B

F y
B

F z
B

 = RB
W2

FW2 =

1 0 0

0 0 −1

0 1 0


F x

2

F y
2

0

 =

F x
2

0

F y
2

 (1.23)

Furthermore, the distance between the bus center of mass and the wheels

center, in the bus frame, useful to compute the moments of the forces, is

RCM2
B = [0 − RCM2 0]T , where RCM2 = 0.05m. Finally, the moments of the

forces are:

Mx
B

My
B

M z
B

 = RCM2
B ×FB

W2
=

 0

−RCM2

0

×


0

F x
2

0

F y
2

 =

−RCM2F
y
2

0

RCM2F
x
2

 (1.24)
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Reaction Wheel 3

Finally, the same procedure is repeated for wheel 3. Then, its disturbance

moments, in the wheel frame, are MW3 = [M3
x M

3
y 0]T . And their expression

in the bus frame is:Mx
B

My
B

M z
B

 = RB
W3

MW3 =

1 0 0

0 1 0

0 0 1


Mx

3

My
3

0

 =

Mx
3

My
3

0

 (1.25)

Instead, the disturbance forces in the wheel frame are FW3 = [F x
3 F y

3 0]T and

their specific expression in the bus frame is:

FB
W3

=

F x
B

F y
B

F z
B

 = RB
W3

FW3 =

1 0 0

0 1 0

0 0 1


F x

3

F y
3

0

 =

F x
3

F y
3

0

 (1.26)

Moreover, the distance between the bus center of mass and the wheels center,

in the bus frame, useful to compute the moments of the forces, is RCM3
B =

[0 0RCM3 ]
T , where RCM3 = 0.05m. Finally, the moments of the forces are:Mx

B

My
B

M z
B

 = RCM3
B ×FB

W3
=

 0

0

RCM3

×
F x

3

F y
3

0

 =

−RCM3F
y
3

RCM3F
x
3

0

 (1.27)

So, the total disturbance moments acting on the satellite, expressed in the

bus reference frame, can be defined by summing all the contributions coming

from the three wheels, related to the pure moments and the forces moments,

as shown by (1.28).Mx
B

My
B

M z
B

 =

Mx
2 +Mx

3 −RCM2F
y
2 −RCM3F

y
3

My
1 +My

3 +RCM1F
x
1 +RCM3F

x
3

Mx
1 +My

2 −RCM1F
y
1 +RCM2F

x
2

 (1.28)



Chapter 2

The attitude control problem

In this chapter, the general aspects of the control system used to manage

the satellite attitude will be analysed. First of all, it is crucial to define

all the objectives of the attitude control, in order to understand what the

control system is supposed to do. Then, the general structure of the overall

system must be defined. In particular, it is necessary to deeply characterize

every single subsystem through its function and constitutive equations. In

particular, it will be given the full description of the satellite model (from

now on called plant) and the actuator one (an electric motor used to drive the

flywheel). Instead, only a general characterization of the reference generator,

the control input system and the controller will be provided in this chapter,

since their structure changes according to the type of control strategy that is

adopted. However, about the reference generator, even though its structure

is subject to the above-mentioned variations, there is a specific part that does

not change. This one, as it will be shown, comes from the general activity that

the whole control system must perform and it is related to the orbital motion

of the satellite and its goal i.e. pointing the target star. The full analysis of

these subsystem will be performed in the chapter 3 and 4. Finally, it will be

shown how the control system can be implemented in the two simulations

environments analysed in this work of thesis: MATLAB/Simulink and the

company’s software EICASLAB.

21
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2.1 Main goals of the attitude control

The objectives definition of a control system is a fundamental step that must

be carefully carried out. Indeed, it has to be clear what the overall system

should do, in order to be able implementing the correct structure of each

subsystem that composes the whole control environment.

For the situation under analysis, the main objective is to manage the point-

ing action of the satellite telescope towards a specific target star. Indeed, as

mentioned in the previous chapter, a CubeSat is often equipped with a tele-

scope used to perform a photometric analysis of the desired star. Through

a correct photometric evaluation, it is possible to study the stellar activities

or transiting exoplanets or other astrophysical phenomena. In this work of

thesis, the following scenario has been considered:

• a 3U CubeSat with three orthogonal reaction wheels, as previously

shown by figure 1.14.

• a circular Low Earth Orbit (LEO) with 0◦ of inclination and altitude

of 600Km.

• a target star in the same plane of the orbit, as it will be analysed, and

about 4, 22 ly (light years) distant from the satellite orbit.

For the attitude control, it is important to consider two main reference

frames: the inertial frame fixed in the orbit center (which coincides also

with Earth center) and the body frame fixed in the satellite center of mass.

The first one has the z-axis orthogonal to the plane of the orbit and exiting

from it. The remaining axes, that complete the right-hand frame, lay on

the orbital plane. Instead, the satellite frame is initially considered with all

the three axes parallel to the fixed frame. It must be pointed out that the

orientation representation of the cubic-shaped satellite is done through the

relative position of its frame with respect to the inertial one. In particular, as

it will be mentioned later, the attitude representation is done by considering

the three angles of the Tait-Bryan convention.

Now, if only the orbital motion effects are considered (i.e. without activating

the controller), the following situation occurs: the satellite in the Earth orbit
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is characterized by a translational motion of its CoM and a rotational one

about an axis passing through it. For the case under analysis, the z-axis of

two reference frames are parallel and it is considered a rotation about this

axis. This means that the satellite reference frame continuously changes its

orientation with respect to the inertial frame, by performing a rotation about

the z-axis. The detailed analysis of the complete scenario will be considered

in the following sections.

Therefore, according to a specific reference input, which takes into account

the orbital motion of the satellite around the Earth, the controller must be

able to change the spacecraft orientation such that the telescope points the

target star in the best way possible i.e. by ensuring a theoretically zero error

between the actual position and the desired one.

2.2 A general control scheme and its subsys-

tems

A general representation of the attitude control scheme is given by figure

2.1. It is possible to identify 7 subsystems related by direct and feedback

connections. It is worth highlighting that there are two feedback paths, both

ending in the control inputs block and starting respectively from the plant

and the actuators block. As it will be analysed later, the output signal of the

plant enters the control inputs block and it is properly elaborated with the

signals coming from the reference generator block, to produce the specific

output of the control inputs subsystem. Instead, the actuators signal will

only transit through the control inputs block and go to the sampler one.

Figure 2.1: General attitude control scheme
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So, the 7 subsystems are:

• Plant: it is one of the core subsystems of the overall scheme, since it de-

fines the element that must be controlled i.e. the cubic-shaped satellite.

Its description is split in two part: the dynamics and the kinematics.

The first one is represented by the relation between torques coming

from the actuators and the derivative of the satellite angular velocity

(and so its integral i.e. the angular speed). The second one defines the

link between the angular speed and the specific representation of the

satellite attitude. In this work of thesis, the quaternion one has been

used.

• Actuators: they are the subsystems responsible for the application

of the specific control action to the plant. In the following scenario,

they are defined by a set of three reaction wheels that, as mentioned in

chapter 1, are essentially composed by flywheels driven by electric mo-

tors, which provides torques of suitable values to control the spacecraft

attitude. In this thesis, the description of these subsystems is given

by the constitutive equations of a DC motor. Moreover, as it will be

shown later, a simple but fundamental control must be considered in

order to obtain a suitable torque-command scheme and to neglect the

motors dynamics.

• ZOH: it is the acronym of Zero Order Holder and it, basically, plays the

role of a digital to analog converter (DAC). It must be highlighted that,

in this thesis project, it has been considered only a discrete controller

and not a proper digital one. This means that the effects coming from

the quantization operation are neglected and only the discrete time

properties have been considered. So, the ZOH implements an holding

action on the samples coming from the controller (i.e. it keeps constant

the value of a sample for the duration of the sampling period) in order to

build a continuous-time signal starting from a discrete one. Therefore,

it is a crucial interface between the discrete time world (the controller)

and the continuous time one (actuators and plant).

• Controller: it is the other core part of the overall system because it



CHAPTER 2. THE ATTITUDE CONTROL PROBLEM 25

is responsible for the control command generation, necessary to obtain

the desired satellite attitude. Basically, it receives specific signals, as

shown in figure 2.1, and makes some computations to generate the

control output. As mentioned before, a discrete-time controller has

been considered which is able to produce suitable values of control

torque at specific time instants, spaced by the sampling period (control

samples). Its structure is strongly related to the control strategy. For

this reason, the specific implementation of the controller will be given

directly in the dedicated chapters.

• Sampler: this subsystems is the complementary one of the ZOH. In-

deed, it characterizes an analog to digital converter (DAC). As men-

tioned before, since the quantization procedure is neglected, the only

operation to be analysed is the sampling one. Therefore, this system

is responsible for providing the proper control inputs to the controller

block at equally spaced time instants (samples). The temporal distance

between them is the sampling period.

• Control inputs block: this block is responsible for the generation of

the control inputs required by the controller to produce the suitable

control action (the command torques). The control inputs derive from

some elaborations of the reference signals and the ones coming from

the plant (feedback path). Also in this case, the implementation of

this block is linked to the specific controller structure. So, its detailed

analysis will be provided in the proper chapters.

• Reference generator: this is the other key subsystem of the control

scheme. Indeed, it plays a fundamental role because the signal that

must be tracked (the desired satellite attitude) is produced by this

system. For the application under analysis, the reference signals are

the Tait-Bryan angles (Cardan angles) related to the wanted orientation

and, as mentioned at the beginning of this chapter, the objective is to

point the satellite telescope towards the target star. However, these

reference angles are not directly injected in the control inputs block,

but they are subject to some elaborations. The kind of computations
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that must be done on the angles is strictly related to the specific control

strategy. Therefore, in the chapter 3 and 4, it will be also given the

complete specific implementation of this block.

Plant

The plant is the main subsystem of the overall control scheme because it

represents the object the has to be controlled. In particular, it is applied a

control action such that the orientation of the satellite is properly modified.

Indeed, the goal is to point the telescope towards the target star so that a

precise photometric analysis can be performed. In order to understand how

the attitude can be changed, it is crucial to deeply study the equations that

characterize this system. The plant structure can be divided in two main

parts: the first one deals with the dynamics and the second one describes

the kinematics. Figure 2.2 represents, once again, the physical structure of

the plant, with its three actuators, that has been considered in this work of

thesis. Therefore, the overall system is given by a 3U cubic-shaped satellite

bus with three identical orthogonal reaction wheels attached to it. As already

mentioned in chapter 1, this kind of structure differ from the one of figure 1.6,

about the RWs positions, and it has been considered to make the analysis

simpler.

Satellite dynamics

The satellite dynamics is described by the well-known Euler’s moments equa-

tion which must consider not only the satellite body but also the contribution

coming from the three reaction wheels. Therefore, as mentioned by [8], the

angular momentum variation of the complete system, expressed in the iner-

tial reference frame, can be computed as:

Mext
I = ḢI = Ḣ

(sc)
I + Ḣ

(w)
I where Ḣ

(w)
I =

3∑
i=1

Ḣ
(wi)
I (2.1)

As already mentioned in section 1.2.1, the subscript I defines that the spe-

cific quantity is evaluated in the inertial reference frame, the superscript

(sc) is linked to the spacecraft total angular momentum variation, (wi) is
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Figure 2.2: Representation of 3U CubeSat with 3 reaction wheels

related to the i-th wheel angular momentum variation and Mext describes

the external torque applied to the overall system (both environmental and

on-board torque disturbances and other control actions different from the

reaction wheels ones). It is really important to highlight that, as discussed

in [8], H
(sc)
I defines the total angular momentum of all the rigid body i.e.

the spacecraft body plus the reaction wheels masses concentrated at their

center of mass. Instead, H
(wi)
I represents the net angular momentum of the

i-th reaction wheel about its center of mass. Moreover, H
(sc)
I is referred to

the overall system center of mass (spacecraft/satellite body+wheel). Now, it

is crucial to highlight that, for the following analysis, the angular momenta

will be always expressed in the vehicle frame (the one placed in G, as shown

by figure 2.2). So, from now on the following quantities are considered H
(sc)
B ,

H
(w)
B and Mext

B which are simply projections of H
(sc)
I , H

(w)
I and Mext

I in the

vehicle fixed frame.

Since all the angular momenta are expressed in the vehicle frame, which is
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non-inertial, the relation given by (2.1) modifies in the following way:

Mext
B = [Ḣ

(sc)
B + ω×H

(sc)
B ] + [Ḣ

(w)
B + ω×H

(w)
B ] (2.2)

where

H
(sc)
B = J(sc)ω and Ḣ

(sc)
B = J(sc)ω̇ (2.3)

H
(w)
B =

3∑
i=1

H
(wi)
B =

3∑
i=1

J(wi)ω(i) and Ḣ
(w)
B =

3∑
i=1

Ḣ
(wi)
B =

3∑
i=1

J(wi)ω̇(i)

(2.4)

Now, it is important to analyse the meaning of the following quantities:

• ω = [ωx ωy ωz]
T and ω̇ = [ω̇x ω̇y ω̇z]

T are the satellite angular speed

and its derivative expressed in the satellite frame.

• ω(i) and ω̇(i) are the angular speed and its derivatives of the i-th reac-

tion wheels, always expressed in the satellite fixed frame. In particular,

they can be written as ω(i) = ω+ Ω(i) and ω̇(i) = ω̇+ Ω̇(i) where Ω(i) is

the relative angular speed of the i-th wheel with respect to the space-

craft. E.g. ω(1) = [ωx ωy ωz]
T + [ω

(1)
rel 0 0]T = [ωx + ω

(1)
rel ωy ωz]

T

and ω̇(1) = [ω̇x ω̇y ω̇z]
T + [ω̇

(1)
rel 0 0]T = [ω̇x + ω̇

(1)
rel ω̇y ω̇z]

T .

• J(sc) is the inertia matrix, evaluated with respect to the center of mass

of the whole system, of the satellite bus plus the three wheels masses

concentrated at their center of mass. However, in this work of thesis, it

has been neglected the contribution of three wheels masses (because in

general it is not so relevant). Therefore, the satellite bus center of mass

coincides with the overall system CoM (point G in figure 2.2). Then,

for the inertia matrix computation, it has been simply considered an

homogeneous rectangular cuboid, as in figure 2.2, where the center of

mass coincides with the geometrical center. About the body frame, its

origin is placed in the CoM and it is coincident with the principal axes

of inertia. Therefore, the matrix can be written as:

J(sc) =

Jx 0 0

0 Jy 0

0 0 Jz

 =


m
12

(h2
s + w2

s) 0 0

0 m
12

(h2
s + d2

s) 0

0 0 m
12

(w2
s + d2

s)


(2.5)
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where the mass m is equal to 5Kg, the height hs = 10 cm = 0.1m, the

width ws = 10 cm = 0.1m and the depth ds = 30 cm = 0.3m.

• J(wi) is the i-th reaction wheel inertia matrix, evaluated in its center

of mass and expressed in the vehicle fixed frame. As shown by figure

2.2, the z-axis (rotation axis) of each RW is aligned with the vehicle

frame axes and the other RWs frame axes are parallel to the remaining

satellite axes. So, at first, the inertia matrix of each wheel is expressed

in its own reference frame (wheel frame) and then, through suitable

rotation matrix, is evaluated in the vehicle frame. In the wheels frames

(which are aligned with their principal axes), the inertia matrices are

expressed by:

J
(w1)
W = J

(w2)
W = J

(w3)
W =

β 0 0

0 β 0

0 0 JRW

 (2.6)

Then, since the rotation matrices of the three wheels frame with respect

to the satellite one are:

RB
W1

=

 cos(α) 0 sin(α)

0 1 0

−sin(α) 0 cos(α)

 α=−π
2=

0 0 −1

0 1 0

1 0 0

 (2.7)

RB
W2

=

1 0 0

0 cos(α) −sin(α)

0 sin(α) cos(α)

 α=π
2=

1 0 0

0 0 −1

0 1 0

 (2.8)

RB
W3

= I =

1 0 0

0 1 0

0 0 1

 (2.9)

the wheels inertia matrices in the satellite frame are:

J
(w1)
B = RB

W1
J

(w1)
W (RB

W1
)T =

JRW 0 0

0 β 0

0 0 β

 (2.10)
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J
(w2)
B = RB

W2
J

(w2)
W (RB

W2
)T =

β 0 0

0 JRW 0

0 0 β

 (2.11)

J
(w3)
B = RB

W3
J

(w3)
W (RB

W3
)T =

β 0 0

0 β 0

0 0 JRW

 (2.12)

In this work of thesis, the contribution coming from the inertia com-

ponents about the wheels axes that do not have a relative motion with

respect to the satellite i.e. β is neglected (due to the non-relevant con-

tribution in the equation (2.2)). Therefore, the only component that

has been considered is the one related to the relative rotation i.e. JRW .

In this way, it is possible to build a single diagonal matrix which in-

volves all the inertia contributions of the three wheels:

J(w) =

JRW 0 0

0 JRW 0

0 0 JRW

 (2.13)

Therefore, it is possible to write (2.4) as follows:

H
(w)
B =

3∑
i=1

H
(wi)
B = J(w)ω(w) and Ḣ

(w)
B =

3∑
i=1

Ḣ
(wi)
B = J(w)ω̇(w)

(2.14)

where ω(w) = [ωx + ω
(1)
rel ωy + ω

(2)
rel ωz + ω

(3)
rel ]

T .

Now, if there are not any kind of external disturbances and only the control

action coming from the three reaction wheels is considered, Mext = 0 and the

angular momentum conservation holds. Indeed, in this case, ḢI = Ḣ
(sc)
I +

Ḣ
(w)
I = 0 ⇒ H

(sc)
I + H

(w)
I = const. Therefore, by considering all the above

information, it is possible to rewrite the equation (2.2) in the following way:

ω̇ = J(sc)−1
(−ω×(J(sc)ω + H

(w)
B ) + τ ) (2.15)

Equation (2.15) describes the dynamics of the satellite (plant). It is impor-

tant to make some comments about (2.15). The term H
(w)
B is the same of

(2.14) and τ defines the control torque coming from the reaction wheels, ex-

pressed as τ = −Ḣ
(w)
B .
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Now, the reaction wheels are put in rotation by the electric motors through

the application of a suitable torque that, for each wheel, can be obtained by

using the Euler’s equation, as mentioned by [8]. It is important to remind

that all the angular momenta are expressed in the vehicle frame, so, the

Euler’s equation for the i-th wheel is:

M
(i)
B = Ḣ

(i)
B + ω×H

(i)
B (2.16)

As it will be shown in the following example, since the rotation axis of each

wheel is aligned with the vehicle frame axes, the motor torque for each wheel

is described only by the vectorial component of (2.16) in correspondence of

the proper satellite frame axis i.e. the specific component of Ḣ
(i)
B . The other

term that appears in (2.16) is simply a gyroscopic effect, already shown by

equation (2.2). The wheel 1 situation is taken as example. As shown by

figure 2.2, the wheel 1 has the rotation axis aligned with the x-axis of the

satellite frame. So:

M
(1)
B =

M0
0

 Ḣ
(1)
B =

JRW 0 0

0 0 0

0 0 0


ω̇x + ω̇

(1)
rel

ω̇y

ω̇z

 (2.17)

ω×H
(1)
B =

ωxωy
ωz

×
JRW 0 0

0 0 0

0 0 0


ωx + ω

(1)
rel

ωy

ωz

 (2.18)

therefore M0
0

 =

JRW (ω̇x + ω̇
(1)
rel)

0

0

+

 0

JRW ωz (ωx + ω
(1)
rel

−JRW ωy (ωx + ω
(1)
rel

 (2.19)

Equation (2.19) shows that the motor torque applied to the flywheel, ex-

pressed in the satellite frame, is M = JRW (ω̇x + ω̇
(1)
rel) which is the first com-

ponent of Ḣ
(1)
B and also the first component of Ḣ

(w)
B in the equation (2.14).

A similar analysis can be done for the other wheels.

So, it has been shown that the torque applied by the reaction wheels to the

satellite is the same but opposite to the one produced by the electric motor.

Therefore, it is possible to write for the wheel 1 τx = −M = −JRW (ω̇x+ ω̇
(1)
rel)
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where τx is the first component of the previous quantity τ . The same rea-

soning must be done for wheel 2 and 3.

Finally, it is important to notice that in presence of external disturbances,

both environmental and on-board, the quantity τ of equation (2.15) must

include the disturbance contribution. In this work of thesis, the only dis-

turbances that have been analysed are the ones coming from the reaction

wheels, described in section 1.2.3, which are considered on-board distur-

bances. Therefore, the expression (1.28) must be added to the control torque

coming from the reaction wheel such that τ = τc + Mdist
B = −Ḣ

(w)
B + Mdist

B .

Moreover, it is important to clarify that for the analysis of the overall vehi-

cle dynamics and wheels disturbances the following situation has been con-

sidered: all the reaction wheels rotate with respect to their CoM and the

principal axis of inertia, even though in section 1.2.3 it has been stated that

the disturbances are given by the shift of the CoM with respect to the axis

of rotation and the tilt of the principal axis with respect to it. Then, to

represent the effect of these two situations, the torque contributions given by

(1.28) are added to equation (2.15), as previously mentioned.

Kinematics

The satellite kinematics deals with the relation between the angular speed ω

and specific quantities used to represent the attitude of the spacecraft. In this

thesis, it has been chosen the quaternions approach to represent the vehicle

orientation. Indeed, they do not introduce the singularity problem when

the integration procedure is performed to obtain the entities that describe

the attitude. It is important to highlight that, as will be shown later, the

quaternions description is strictly related to the Tait-Bryant angles, which

give a clearer representation of the satellite orientation.

So, as mentioned at the beginning of this chapter, the satellite attitude and

so the kinematics are studied by considering two reference frames. The first

one is inertial and fixed in the center of the satellite orbit. The second

frame is non-inertial and fixed in the CoM of the satellite (point G of figure

2.2). The orientation of the satellite frame is expressed with respect to the

inertial one by considering a set of three angles. As mentioned before, in this
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thesis, the Tait-Bryan convention is used. It considers three angles known as

φ, θ, ψ and states that the satellite orientation is given by considering three

consecutive rotations in the following way: each elementary rotation must

be done about x, y and z axis of the inertial fixed frame. Where the angle

φ describes the rotation about the x-axis , θ about the y-axis and ψ about

the z-axis. This means that the rotation matrix used to represent the overall

rotation (given by the composition of the elementary rotations) is defined by

pre-multiplying the matrix of the x-axis rotation with the y-axis one and, in

turns, this must be pre-multiplied by the z-axis matrix.

However, this is not the only interpretation of the Tait-Bryan convention.

Indeed, it is possible to consider the extrinsic interpretation, which is the

above-mentioned one, and the intrinsic interpretation. This one states that

the satellite orientation can be defined by considering a first rotation of ψ

about the z-axis of the inertial frame. Then, the second rotation must be

performed about the new y-axis of the mobile frame (i.e the satellite frame).

The related angle is θ. Finally, the third rotation must be done about the

new x-axis of the mobile frame and the angle that describes this motion is

φ. So, as it is possible to see, the first rotation is done with respect to the

inertial frame and the others are done about the satellite body frame as it

changes its orientation. This is the interpretation that has been considered

in this work of thesis since it the most suitable to understand the vibrational

motion of the satellite telescope due to the reaction wheels disturbances.

Now, the first step is to define the constitutive equations of the satellite

kinematics. As mentioned before, the quaternion approach is used such that

the following relation can be written:

q̇ =
1

2
Ω q (2.20)

where q = [q0 q1 q2 q3] = [q0 q] and q̇ are respectively the quaternion related

to the specific attitude configuration and its derivative. It can be noticed

that the generic quaternion q is composed by a scalar part q0 and a vectorial
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one q = [q1 q2 q3]. Instead, Ω is the angular speed matrix defined as:

Ω =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx

ωz ωy −ωx 0

 (2.21)

It is quite interesting to notice that the kinematics analysis exploits the values

of the angular speed ω, coming from satellite dynamics part and in particular

from the integration procedure of equation (2.15), to define the quaternion

derivative q̇ and through an integration the attitude quaternion q.

The second step is to figure out the relation between the attitude quaternion

and the Tait-Bryan angles. To do so, it is fundamental to define the trans-

formation/rotation matrix T, that is another way to represent the relative

orientation of the satellite frame with respect to the inertial one. This ma-

trix is also called DCM (Direction Cosine Matrix) and it can be written with

respect to the generic quaternion q as follows:

T =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (2.22)

Once the DCM is known, the Tait-Bryan angles φ, θ, ψ can be computed as:

φ = atan2(T32, T33) (2.23)

θ = atan2(−T31, sin(φ)T32 + cos(φ)T33) (2.24)

ψ = atan2(−cos(φ)T12 + sin(φ)T13, cos(φ)T22 − sin(φ)T23 (2.25)

Actuators

The actuator is the device used to apply the specific control law to the plant.

It is an interface between the controller and system to be controlled, able

to convert the signal coming from the control device into a suitable one for

the plant. For the attitude control analysed in this thesis, the actuator is a

reaction wheel which is basically a flywheel driven by an electric motor. In
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general, the electric motor is a DC-Brushless but, in this thesis, a DC motor

has been considered to simplify the whole analysis. Moreover, it is important

to remind that, in order to completely control the satellite attitude, at least

three reaction wheels must be used. In the following part, at first, it will be

considered the case of a satellite with one reaction wheel and, then, it will

be given a generalization with three RWs. Now, let’s imagine to have the

satellite in figure 2.2 but with only one wheel. For example, the wheel 3 i.e.

the one aligned with the satellite z-axis. With only one wheel, it is possible to

have just a planar motion which means that the only allowed rotation takes

place in the plane x-y of the satellite frame. In this situation, the dynamics

equation (2.15) can be simplified by considering that the gyroscopic term is

null. So, the equation related to the only axis about which the rotation takes

place can be written as:

ω̇z =
1

Jz
τz (2.26)

or equivalently:

ω̇s =
1

Jsc
Msc (2.27)

Instead, about the reaction wheel, its dynamics equation has been analysed

in the previous section (from equation (2.16) to (2.19)) and it is strictly

related to DC motor equations as follows:
V = RMI + E

E = KV ωrel

M = KMI

˙ωW = 1
JRW

M

(2.28)

The block scheme representing equations (2.27) and (2.28) is shown by figure,

as mentioned in [14]. Some comments about figure 2.3 are necessary to better

understand the meaning of the quantities involved in the scheme.

V and RM are the command voltage and motor resistance. Instead, KM and

KV are respectively the torque constant, which links the armature current IM

and the produced torque M , and the speed constant that relates the relative

speed of the motor with respect to the spacecraft and the back electromotive

force E (indeed, the satellite is considered the stator of the DC motor and it
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Figure 2.3: Block scheme of satellite plus one reaction wheel

moves. Moreover, the rotor/flywheel moves with respect to the satellite). It is

important to notice that if the MSK (Meter Second Kilogram) measurement

units are used, it is possible to consider KM = KV = K. Then, JRW is the

inertia of the flywheel about the axis where the rotation takes place (which

is the same of (2.6)) and Jsc is the inertia of the satellite always related to

the only axis along which it can rotate. As it is possible to see from figure 2.3

and deeply analysed in the previous section, ωW is the reaction wheel speed

intended as the sum of the satellite speed plus the relative motion between

them i.e. ωW = ωsc + ωrel. For this reason, it is important to compute the

difference ωW − ωsc to get the relative speed used to determine the back

electromotive force. Finally, it can be noticed that, as seen in the previous

section, the torque applied to the satellite Msc is equal and opposite to the

one applied by the motor to the flywheel. This is the reason why there is a

minus sign that relates the torque M and Msc.

Now, the scheme in figure 2.3 has to be modified in order to build a torque

command structure instead of a voltage command one, as mentioned by [14].

This new scheme is shown by figure 2.4 and it involves some new blocks with

respect to the previous structure. At first, Tc is the torque command that

comes from the controller (in particular from the ZOH) and it is converted in

a current command. Then, there is a current limitation to produce the torque

limitation (Mmax) that characterizes all the reaction wheels. A summing

node between the current command and the actual motor current produces
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Figure 2.4: Satellite plus one reaction wheel with torque command

a specific signal for the controller K∗

s
. This is an integral controller with gain

K∗, which is fundamental to build a relation between the torque command

and the actual motor torque such that the motor dynamics can be neglected.

The controller output is the voltage that must be applied to the motor.

However, it is evident the presence of a voltage limitation since there is a

maximum value of voltage that can be applied to the motor. Then, the other

blocks of the scheme are the same ones of the previous structure (figure 2.3).

Now, it is important to show the transfer function that relates the torque

command and actual motor torque. By considering figure 2.3 and 2.4, it is

possible to write the following relation:

M(s)

Tc(s)
=

K∗

RM

s+ K∗

RM

=
1

1 + sRM
K∗

(2.29)

This transfer function is obtained by considering that 1
Jsc
� 1

JRW
. Then, if

the control gain K∗ is chosen such that K∗ � K2

JRW
, the following relation

holds M≈Tc and so all the motor dynamics can be neglected.

Now, a brief discussion on the motor parameters RM and K must be done.

The datasheet of a wheel similar to the one used in this thesis (i.e. MAI-200

by Adcole Maryland Aerospace) provides the values of the maximum voltage

and the maximum torque. Then, to compute the values of the resistance RM

and constant K of the DC motor model, the following procedure has been

applied. The mechanical characteristic of a DC motor is shown in figure

2.5. This characteristic moves parallel to itself when the applied voltage

changes. So, at the maximum voltage is possible to evaluate the maximum

torque Mmax and the maximum relative speed ωmax. Figure 2.5 highlights



CHAPTER 2. THE ATTITUDE CONTROL PROBLEM 38

Figure 2.5: DC motor mechanical characteristic

this situation. Now, according to the first three motor equation of (2.28),

the relation between the torque and the speed is given by:

M = K
V

RM

−K2ωrel
RM

(2.30)

therefore, the characteristic points Mmax and ωmax are expressed as:Mmax = K Vmax
RM

ωmax = Vmax
K

(2.31)

where the additional data ωmax is given by [10]. From (2.31), the desired

quantities are determined as:K = Vmax
ωmax

RM = K Vmax
Mmax

= V 2
max

ωmaxMmax

(2.32)

Now, the previous analysis is extended to the three reaction wheels case. To

do so, it is fundamental to consider that the gyroscopic term in the equation

(2.15) is always compensated/cancelled by including it in the control signal.

This means that the control torque can be written as τc = τ
′
c +(ω×(J(sc)ω+

H
(w)
B ) and equation (2.15) becomes

ω̇ = J(sc)−1
τ

′

c (2.33)



CHAPTER 2. THE ATTITUDE CONTROL PROBLEM 39

Since the matrix J(sc)−1
is diagonal, the results is a decoupled dynamics where

each component of τ
′
c acts exclusively on the correspondent component of ω̇.

Moreover, from the equation (2.29), it has obtained the approximated equal-

ity between the torque command and the motor torque that, with the minus

sign, acts on the satellite. So, as mentioned before, the motor dynamics can

be neglected. This situation leads to represent the overall system of three

reaction wheels and the satellite bus through an equivalent scheme composed

by three structures like figures 2.3 and 2.4 where each of them describes the

complete vehicle dynamics along the specific frame axis. It is clear that,

in these three structure, the torque command Tc coincides with the proper

component of the quantity τ
′
c and each inertia term 1

Jsc
must be defined by

the specific axis contribution (e.g. 1
Jx

). All this structure will be shown in

detail in the chapter related to the MATLAB/Simulink implementation.

Finally, it is important to highlight that all the analysis carried out in this

section refers to a free-disturbance case. As it will be shown in the simula-

tion implementation sections, to take into account the reaction wheel distur-

bances, it is simply necessary to add their contribution to the torque applied

by reaction wheels to the satellite (i.e. Msc in figure 2.3).

Reference generator

The reference generator is the subsystem responsible for producing the sig-

nals that must be tracked. However, the specific reference signals vary with

the kind of control strategy. Anyway, there is a part of the reference com-

putation procedure that is independent from the specific control approach

and it is the determination of the reference angles related to the orientation

that the satellite must follow. This orientation is defined through the relative

attitude of the satellite frame with respect to the inertial one, fixed in the

orbit, and it follows the Tait-Bryan convention.

Before analysing the reference computation procedure, it is fundamental to

state that this kind of structure has been considered only from an academic

point of view and only computer simulations have been performed. This

means that it has been evaluated as an analog/continuous time system (as

shown by figure 2.1), which not a good solution for a practical implemen-
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tation due to its high complexity, as it will be shown in the following part.

The best practical solution requires a micro-controller, so a digital/discrete

time structure. The choice of this kind of implementation is compliant with

the academic background about the digital control field. Therefore, in this

thesis, the only important elements are the outputs provided by this block

rather than the implementation type.

In order to understand how the references angles can be computed, the sce-

nario represented by figures 2.6 and 2.7 has to be considered.

Figures 2.6 (a), (b), (c), (d) show in 3D and 2D how the satellite reference

frame change its orientation during the orbital motion. Moreover, the red

dot represents the target star.

Now, it is crucial to say that the satellite telescope is considered coincident

with the x-axis of the satellite frame and it passes through the central point

of the focal plane. Therefore, the objective of the control is to point the

x-axis towards the target star. Figure 2.7 shows the orientation that the

satellite must have, in the same orbital point of figure 2.6 (b) and (d), in

order to perform a perfect pointing action.

To compute the reference angle that must be tracked, the scenario in figure

2.8 has to be considered. The objective is to find the angle α. To do so, it

is necessary to apply the law of the cosines and the law of sines. In partic-

ular, the first one is used to compute the quantity dsb and the second one

for α. Before analysing the computation procedure, the meaning of all the

quantities involved in the scenario of figure 2.8 has to be cleared.

• Ror: it represents the radius of the orbit, whose value is given by

the sum between the mean Earth radius and the orbit altitude. So,

Ror = RE + a = 6378 + 600Km = 6978Km.

• dso: it defines the distance between the orbit and the target star. Its

value is about 4.22 ly (light years) = 4·1013Km.

• dsb: it characterizes the distance between the target star and the ori-

gin of the satellite reference frame (placed in its CoM). Its value is

computed through the law of cosines.

• α: it is the angle between the segments Ror+dso and dsb. As it is shown
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(a) 3D view-initial position (b) 3D view-generic position

(c) 2D view-initial position (d) 2D view-generic position

Figure 2.6: 3D and 2D view of the orbital motion scenario
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(a) 3D view-pointing action (b) 2D view-pointing action

Figure 2.7: Represantation of the pointing action

Figure 2.8: Schematic scenario for the α angle computation
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by figure 2.8, it is also the angle between a line parallel to the x-axis

of the inertial frame and the segment dsb. This angle is computed by

using the law of sines.

• ψ: it defines the angle between the segment that connects the origin

of the inertial frame and the origin of the satellite frame (i.e. Ror) and

the x-axis of the inertial frame. This angle is computed by considering

the following situation: the satellite travels on an orbit whose radius is

Ror = 6978Km. The velocity of the spacecraft CoM is given by v =√
µ
Ror

where µ = 0.3989 · 1015 m3

s
is the Earth gravitational parameter.

Since the following relation between the linear velocity and the angular

one holds v = ωpsiRor, it is possible to compute the angular velocity

as ωpsi = ωz = v
Ror

. Finally, the angle ψ is given by ψ = ωpsi t + ψ0

where ψ0 is the initial angle, assumed equal to 0, as shown by figure

2.1 (c). It is worth noticing that ψ is the angle of the spacecraft frame

with respect to the inertial frame and it varies along all the orbit.

As mentioned before, the law of cosines (2.34) and the law of sines (2.35)

are used to determine the quantities dsb and α.

dsb =
√
R2
or + (Ror + d2

so − 2Ror(Ror + dso)cos φ (2.34)

Ror

sinα
=

dsb
sinψ

⇒ sinα =
Ror

dsb
sinψ ⇒ α = asin

(Ror

dsb
sinψ

)
(2.35)

Now, it is possible to define the reference angles that must be tracked by the

control system. They are represented by φref , θref and ψref and assume the

following values:

φref = 0 (2.36)

θref = 0 (2.37)

ψref =

−α 0 ≤ ψ ≤ π

α π < ψ < 2π
(2.38)

Some important comments must be made about (2.36), (2.37) and (2.38).

φref and θref are set to 0 because, as mentioned before, the target star is
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in the orbit plane and so the only angle that must be modified (due to

the orbital motion) is ψref . It is fundamental to highlight that these three

angles are defined according to the Tait-Bryan convention, which can have

two interpretations as mentioned in section 2.2 about the plant kinematics.

Instead, the angle ψref is set to ±α since the orientation that the satellite

must have is expressed with respect to the inertial frame and, as shown by

figure, the rotation that has to be performed to point the x-axis towards the

target star is a clockwise one of α (i.e. ψref = −α) in the first half of the

orbit and a counter-clockwise one of α (i.e ψref = α) in the second half of

the orbit.

It is fundamental to highlight that once that the angle ψ belongs to the

interval (π
2
, 3

2
π), the day-time phase of the orbital motion occurs. In this

situation, the satellite attitude must be modified such that the solar panel

point the Sun. However, as it can be notice from (2.38), the reference angles

do not change. The reason behind this unmodified references is that if the

solar panels of the satellite are placed such that the unit vectors normal

to their surfaces are anti-parallel to the vehicle frame x-axis, the reference

angles (2.36), (2.37) and (2.38) can be considered a good choice in terms of

Sun-pointing to allow the accumulators charging operation.

Instead, when the angle ψ satisfies the relation 3
2
π ≤ ψ ≤ 5

2
π, the nigh-time

phase begins. In this situation, the satellite orientation must be changed to

guarantee the target star pointing.

Finally, it is also important to notice that when ψ > π (2.34) and (2.35)

must be modified by substituting cos φ with cos (2π − φ) and sin φ with

sin (2π − φ).

2.3 MATLAB/Simulink implementation

MATLAB/Simulink is a software tool used to perform simulations of control

systems. As it will be shown later, to build a simulation scheme, a set of

specific blocks are used. In particular, for the structure analysed in this

thesis, the main blocks are integrators, with specific initial conditions, and

MATLAB function blocks which allow to implements the state equations

of each subsystem. In this way, it has been possible to build a structure
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that is able to provide the system outputs, through the integration of the

differential state equations. Other blocks will be shown in the next figures

and their functions will be explained during the specific analysis.

Plant

The Simulink scheme of the plant is shown by figure 2.9. It is immediately

evident the two main parts that characterize this subsystem: dynamics and

kinematics. As mentioned in section 2.2 and shown by figure 2.9, the dy-

Figure 2.9: Simulink plant structure

namics block takes as inputs the satellite-applied torque Ts (control torque

plus disturbances) and the contribution coming from the actuators hRW and

it produces as output the spacecraft angular speed w. A detailed implemen-

tation of this block is given by figure 2.10. The MATLAB function labelled

Figure 2.10: Plant dynamics block

as Dynamics is used to implement the equation (2.15). Then, the integrator

block is responsible for the integration operation so that the angular speed

w can be computed from its derivative wd. This block contains the speed

initial condition, describing the orbital angular motion of the satellite before

the control action activation. Moreover, it is important to highlight that Ts
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and hRW of the Simulink scheme coincide respectively with τ and H
(w)
B of

(2.15).

Instead, the kinematics implementation is sketched in figure 2.11. Also in

Figure 2.11: Plant kinematics

this case, there is a MATLAB function called Kinematics which is used to

represent the relation between the quaternion derivative and angular speed,

as shown by (2.20). Then, the integrator block, whose initial condition is

qinit = [1 0 0 0]T (i.e. no initial rotation with respect to the inertial frame,

as mentioned in section 2.2 about the reference generation), is employed to

compute the attitude quaternion q. Moreover, there is another block labelled

as unit quaternion which is used to set the quaternion norm to 1. Actually,

the quaternions describing rotations are already unit quaternion. However,

due to computational error, their norm slightly differs from 1. For this rea-

son, it is important to consider this block.

It is fundamental to highlight that, as it will be shown in chapters 3 and 4,

the plant outputs q and w of figure 2.9 follow a feedback path towards the

control inputs block. Finally, it must be pointed out that the attitude quater-

nion is injected in another block (not shown in figure 2.9) which extracts the

Tait-Bryan angles from it. This operation is really important since allows

to compute the pointing error, intended as difference between the reference

angles and the actual ones.

Actuators

The complete Simulink scheme of the three reaction wheels is shown by figure

2.12. There are four main blocks and three of them represent the RWs used

to apply the control torque to the satellite. Each of them takes as inputs

the specific axial component of the control/command torque (e.g. the third

block, which describes the reaction wheel aligned with the z-axis of the vehicle
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Figure 2.12: Actuators scheme

frame, receives the signal Tcz) and the axial component of the satellite speed

(e.g. wz). As outputs, the RWs block provide the specific wheel/motor torque

Tw, the absolute wheel angular speed wRW and the relative speed with respect

to the satellite wrel. All the motor torques are grouped through a mux block

to create a vectorial structure and it is considered the opposite value (−1

block) to determine the torque that must be applied to the satellite, according

to the analysis made in section 2.2. Moreover, the absolute angular speeds of

the wheels are used to compute the angular momenta hRW (block on the lower

right angle of the figure 2.12) used in the satellite dynamics equation. Instead,

the relative velocities are injected in the RWs disturbances block to compute

all the disturbances produced by these actuators. By the way, the above-

mentioned block is sketched in figure 2.13. The three blocks implement the

disturbances acting on each axis of the vehicle frame, according to analysis

made in section 1.2.3 and the relations (1.28). As it is possible to see, if a

frame axis is considered (e.g. x-axis), the disturbance about it is given by the

contributions coming from the wheels aligned with the other two axes (e.g.

y-axis and z-axis). These disturbances are linked to the relative speeds of the

wheels, as mentioned in section 1.2.3. This is the reason why each block of

figure 2.13 has the quantity wrel as input. Then, as shown by figure 2.12, the

three disturbance contributions are grouped by using a mux and summed to



CHAPTER 2. THE ATTITUDE CONTROL PROBLEM 48

Figure 2.13: RWs implementation

the opposite of the wheel/ motor torque −Tw, in order to be applied to the

plant.

Finally, the detailed structure of a reaction wheel is shown by figure 2.14

(as example it is considered the z-axis wheel). This is the same scheme

Figure 2.14: Structure of z-axis reaction wheel

analysed in the section 2.2 (figure 2.3 and 2.4). So, as mentioned before,

the overall actuators structure is given by three block schemes as figure 2.14.

The only difference is that, in the previous analysis, an equivalent scheme

has been considered, characterized by the decoupled dynamics expression,

due to the gyroscopic compensation, such that the terms 1
Jsc

and the net

control/command torques (i.e. without the compensation) could be directly

considered. Instead, figure 2.14 shows the real implementation scheme. It

must be highlighted that the two schemes are completely analogous.
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Reference generator

Finally, the first part of the reference generator implementation is shown by

figure 2.15. The MATLAB function contains the expressions of the law of

Figure 2.15: First part of the reference generator structure

sines and cosines used for computing the reference angle ψref , as described by

(2.34), (2.35) and (2.38). The input of the MATLAB function is simply the

relation that determines the ψ angle due to the orbital motion, as described

by ψ = ωpsi t + ψ0 where ψ0 is the initial angle, assumed equal to 0. The

angles φ and θ are set to 0, according to (2.37) and (2.38), and they complete

the reference angles vector angr of figure 2.15.

2.4 EICASLAB implementation

EICASLAB is a software suite developed by EICAS Automazione S.p.A.,

the company where this work of thesis has been developed. It was born to

allow a professional implementation of control systems to be used in different

fields like the aerospace one. The main characteristic of this software is the C

code-based implementation. Indeed, every subsystem of the control structure

requires a specific development in C code. As it will be mentioned in the

following chapters, this is a really useful approach since to build a controller

for a real application, the C code of the control law is required. Indeed, this

code must be loaded in a target board. Therefore, in this work of thesis, the

usage of the EICASLAB suite has represented a step towards a possible real

implementation. The following part will briefly analyse how the subsystems

mentioned in this chapter have been built in EICASLAB.
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Plant and Actuators

Figure 2.16 shows the EICASLAB block related to the plant, the actuators

and the disturbances produced by the latter. Inside this block, there is the

Figure 2.16: Plant, actuators and disturbances block

C code describing all the dynamics of the actuators (including the integral

control used to define the torque command and to neglect the motors dy-

namics), the plant and the RWs disturbances. In particular, the C code is

divided in three main functions called Initialization, Execution and Output.

which are called by the solver to get the simulation results. In the Initial-

ization function there are the initial values for the desired variables, like the

states, and it is called once at the beginning of the simulation. The Execution

function performs all the computations linked to the state equations. It must

be highlighted that this function is used by the integration routine which is

responsible for solving the specific differential equations. Finally, the Output

function is used to define the output equations needed for the computation of

all the block output variables. As shown by figure 2.16, the input is the con-

trol/command torque Tctrs. Instead, the output y contains the quaternion

attitude q, the satellite angular speed ω and the actuators angular momenta

which can be labelled as hRW , as in the MATLAB/Simulink implementation.

As shown by figure 2.16, the output follows a feedback path that ends in the

control inputs block, as it will be deeply analysed in the following chapters.

By exploring the C code of this block is possible to find the specific imple-

mentations of the state equations that characterize the actuators dynamics

(according to (2.28) and the schemes of figures 2.3 and 2.4) and the plant

dynamics (2.15) and kinematics (2.20). This C code is characterized by suit-



CHAPTER 2. THE ATTITUDE CONTROL PROBLEM 51

able functions that have been built for this work of thesis and grouped in

a specific library. Moreover, the code lines for the disturbances description

follow the analysis made in section 1.2.3 and the relation (1.28). Finally, it

must be highlighted this simulation block produces also the Tait-Bryan an-

gles (not shown in figure 2.16 but in the following chapters), that are injected

in another block responsible for the computation of the difference between

the reference angles and the actual ones.

Reference generator

The block shown by figure 2.17 represents the overall reference generator

structure. In particular, inside it, there are the C code functions used to

implement the first part of the reference generation, as mentioned in 2.2.3.

Also in this case, there are the three main functions Initialization, Execution

and Output. However, in this situation, it has been decided to use only the

Output function, and leaving empty the other ones, since no initialization has

been necessary and the Execution function could be included in the Output

one because, from a logical point of view, the distinction between them could

be neglected.

The code lines of this block mainly refer to the law of sines and cosines,

which allow to determine the reference angle ψr, as shown by (2.34), (2.35)

and (2.38). Moreover, it is possible to notice the two constant/step references

φr and θr whose values are set to 0 according to (2.36) and (2.37). These

reference variables are the inputs of the reference generator block since are

useful to build the complete reference angles variable, labelled as angr. Fi-

nally, it is important to highlight that this block contains also the code lines

related to the second part of the reference generation, which is specific for

each kind of control strategy and it will be deeply analysed in the following

chapters.

Figure 2.17: Reference generator block



Chapter 3

Benchmark control system

This chapter deals with a particular control approach used in many attitude

modification procedures. Indeed, there are lots of papers, like [1] and [9] that

exploit this control strategy or a similar one, characterized by small modi-

fications/additions with respect to the one that has been considered in this

work of thesis. As it will be shown in section 3.2, the controller considered in

the benchmark control system is a non-linear PD one. Instead, the modified

controller mentioned before, simply consider an additional feedforward term

with respect to the basic PD structure. The first step, towards the analy-

sis of the benchmark control system, will be the evaluation of that part of

the reference generator which, as mentioned in chapter 2, changes according

to specific control approach. Moreover, the structure of the control inputs

subsystem will be considered since it is also subject to the specific control

methodology.

The second step is the theoretical analysis of the PD controller structure,

starting from the expression of the control signal. After that, the relation

between the desired orientation angles and the actual ones will be shown,

in the free-disturbance case. Then, the effect of the RWs disturbances on

the actual attitude angles will be pointed out. This will be a crucial part of

the chapter since it allows to understand how RWs disturbances can affect

the pointing stability of the satellite telescope. Finally, it will be shown how

the overall simulation scheme, and in particular the controller structure, has

been built both in MATLAB/Simulink and EICASLAB.

52
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3.1 Reference generator and control inputs:

specific analysis

As mentioned before, the two subsystems known as reference generator and

control inputs have a variable structure according to the control methodology.

In this section, their specific structure will be analysed. Since in the previous

chapter it has been pointed out that the plant kinematics is characterized

by the quaternion description, the same approach has to be followed for

these subsystem. This means that the reference signal and the control input

must be quaternions. Moreover, as it will be shown later, there is another

kinematic variable that is used to define the control action i.e. the satellite

angular speed. Therefore, the reference generator and control inputs block

will also produce specific signals related to the angular velocity

Reference generation

The reference generation procedure is characterized by two parts, as men-

tioned in chapter 2. The first one, that deals with the definition of the

Tait-Bryan angles to be tracked, has been already analysed in the previ-

ous chapter. Now, it is fundamental to define the second part which is

related to the implementation of the reference signals used to build the con-

trol variable. The starting point is the definition of the reference quaternion

qref coming from the Tait-Bryan angles φref , θref , ψref , expressed by (2.36),

(2.37) and (2.38). As stated in section 2.2, the Tait-Bryan convention de-

fines the rotation matrix between the inertial fixed frame and the satellite

mobile frame as a sequence of multiplications among the elementary rota-

tions matrices. According the extrinsic interpretation, the rotation matrix

about x-axis is pre-multiplied by the one related to the y-axis rotation and,

in turn, pre-multiplied by the matrix linked to the z-axis rotation. It is im-

portant to remind that all the rotations are performed about the fixed frame

axes. Equivalently, the intrinsic interpretation states that the rotation ma-

trix about the z-axis must be post-multiplied by the one related to the y-axis

rotation, which is post-multiplied by the x-axis matrix. In this case, the first

rotation is about the reference frame z-axis and the others are performed
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with respect to the mobile frame axes as it changes orientation.

In the same way, it is possible to define the complete quaternion that de-

scribes the general attitude, given by the sequence of three elementary rota-

tions. Therefore, for the reference quaternion, the following relation holds:

qref = qψ⊗ qθ⊗qφ (3.1)

where 
qψ =

[
cos
(
ψ
2

)
0 0 sin

(
ψ
2

)]T
qθ =

[
cos
(
θ
2

)
0 sin( θ

2
) 0
]T

qφ =
[
cos
(
φ
2

)
sin(φ

2
) 0 0

]T (3.2)

are the quaternions describing the elementary rotations about x, y and z axis.

It is important to highlight that ⊗ defines the quaternion product. Once the

attitude quaternion is built, another signal must be computed: the reference

angular speed related to the specific time trend of the Tait-Bryan reference

angles. To do so, it is used the following relation:

ωref =

ωxrefωyref
ωzref

 =

1 0 −sin(θref )

0 cos(φref ) sin(φref )cos(θref )

0 −sin(φref ) cos(φref )cos(θref )


φ̇refθ̇ref

ψ̇ref

 (3.3)

It is important to point out that relation (3.3) is valid only for the Tait-Bryan

convention and, as it is possible to notice, it requires the knowledge of the

reference angles and their derivatives.

Control inputs

This subsystem is responsible for the generation of proper signals required

by the controller to define the control action. In order to determine these

signals, some computations must be done on the reference variables and the

output ones. Indeed, the inputs of this subsystem are the reference quater-

nion qref , the reference angular speed ωref , the actual attitude quaternion q

and the satellite angular speed ω. The last two characterize the feedback

path starting from the plant.

The first computation is the difference between ωref and ω such that the

angular speed error is defined as ωe = ωref − ω.
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The second computation deals with the reference and actual quaternions.

However, instead of considering the difference between them, another ap-

proach is used, conceptually identical to the difference operation. For this

reason a new quaternion is introduced, called error quaternion qe. As men-

tioned by [1], it is defined as the quaternion that starting from the actual

attitude q provides the desired orientation qref , by considering an extrinsic

rotation i.e. qe⊗ q = qref . From this definition, the following relation holds:

qe =

[
qe0

qe

]
= qref⊗ q−1 = qref⊗ q∗ (3.4)

where the inverse quaternion q−1 coincides with the conjugate one q∗, since

the attitude is represented by the unit quaternion q.

Finally, it is important to highlight that, as it will be shown in the following

section and in the simulation schemes, the control variable requires other two

signals: the actual satellite angular speed ω and the reaction wheels angular

momenta H
(w)
B , as described by equation (2.14), which come from the feed-

back paths starting from the actuators and plant. Therefore, these signals

can also be considered as part of the control inputs block, even though no

modification is made to them, but they simply pass across the system and go

to the sampler. Moreover, it is important to highlight that this system has

been considered as an analog/continuous time structure since, as displayed

by figure 2.1. From a practical point of view, its implementation is a little

bit more complex than the one that can be developed with a digital/discrete

system (micro-controller), due to the nature of the quaternion product. Any-

way, an analog implementation is not so hard, since relation (3.4) involves

basically summations, subtractions, products and signs inversions.

3.2 Benchmark controller general analysis

The benchmark control system for the satellite attitude modification is based

on a non-linear PD (Proportional-Derivative) controller, also defined in this

thesis benchmark controller. Figure 3.1 shows the overall control scheme. Be-

fore starting the study, it must be highlighted that all the analysis is made by

considering the overall control scheme as a continuous-time structure. Then,
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Figure 3.1: Complete control scheme

since the control strategy analysed in this thesis is based on a digital/discrete

controller, some comments will be made in order to clarify the passage from a

total continuous-time system to an hybrid structure (discrete controller plus

actuators and plant that are continuous-time structures).

The expression of the control variable, which is the set of three torques that

the RWs must apply to the satellite, is given by equation (3.5). This relation

is mentioned by [1] and [9]. The latter shows a more explicit form that will

be analysed later.

τc = J(sc)KP qe + J(sc)KD ωe +ω×(J(sc)ω+ H
(w)
B ) = τ

′

c +ω×(J(sc)ω+ H
(w)
B )

(3.5)

where KP is the proportional gain matrix, qe is the vectorial part of the error

quaternion, KD is the differential gain matrix, ωe is the angular speed error

and ω×(J(sc)ω+ H
(w)
B ) is the term used for the gyroscopic compensation. As

it is possible to see, the relation includes two linear terms given by KP qe

and KD ωe and one non-linear term i.e. ω×(J(sc)ω + H
(w)
B ). The variable

τ
′
c can be defined as the net control torque. The reason why this control

structure is called PD will be explained later. It is fundamental to highlight

that equation (3.5) defines the first element of the quantity τ shown by figure

3.1. Indeed, as mentioned in section 2.2, the variable τ of equation (2.15) can

be expressed as τ = τc + Mdist
B , where τc is the control torque applied by the

RWs to the satellite and Mdist
B defines the RWs disturbances. The latter, for

notation simplicity, will be written as Mdist. Moreover, the relation among

the control commands Tc, the actual torques produced by the DC motors

M on the flywheels and the ones applied by the RWs to the satellite τc has

been deeply described in section 2.2.
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The first step of the analysis focuses on some simplifications about all the

quaternions used in the overall control scheme of figure 3.1. As mentioned

by [1], the quaternion that describes the general orientation of a satellite can

be approximated by the relation (3.6), if the well-known angles φ, θ and ψ

assume small values.

q =


1

1
2
φ

1
2
θ

1
2
ψ

 (3.6)

Now, let’s recall the definition of error quaternion i.e. qe = qref⊗ q−1 =

qref⊗ q∗. By exploiting the situation expressed by (3.6), if the quaternions q

and qref are sufficiently close such that the error quaternion qe can describe

a small rotation, the following relation holds:

qe =


1

1
2
(φref − φ)

1
2
(θref − θ)

1
2
(ψref − ψ)

 (3.7)

This result can be proved by considering a nominal quaternion q0 around

which q and qref are supposed to lay. This means that q and qref are suf-

ficiently close to the nominal attitude q0. This quaternion is considered a

linearisation point for the kinematics equation (2.20). In this work of thesis,

q0 = [1 0 0 0]T which is the initial attitude condition, as mentioned in the

previous chapter. According to the above-mentioned situation, q and qref can

be written as:

q =


1

1
2
φ

1
2
θ

1
2
ψ

 qref =


1

1
2
φref

1
2
θref

1
2
ψref

 (3.8)

Now, by performing the quaternion product qref⊗ q∗ and considering the first

order approximation, it is obtained relation (3.7). An interesting observation,

that will be used in the following analysis, must be made about relation

(3.7). As pointed out by [1], from the vectorial parts of qe, it is possible

to recover the angles by multiplying the expressions by 2. Therefore, from
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the error quaternion can be recovered the differences between the reference

angles and actual angles, that define the error angles. Now, by inserting the

first relation of (3.8) in the kinematics equation (2.20) and considering the

first order approximation, the following relation holds:φ̇θ̇
ψ̇

 =

ωxωy
ωz

 (3.9)

Expression (3.9) defines the linearised kinematics equation, where, as men-

tioned before, q0 is the linearisation point. Finally, it is easy to see that this

reasoning can be applied to the reference quaternion (and so to the reference

angles) and the reference angular speeds such that:φ̇refθ̇ref

ψ̇ref

 =

ωxrefωyref
ωzref

 (3.10)

The second step of the analysis deals with the gyroscopic compensation term

and the net control torque. As it can be easily seen, the gyroscopic compen-

sation allows to remove the non-linearity of the dynamics equation (2.15),

such that it can be rewritten as

ω̇ = J(sc)−1
(τ
′

c + Mdist) (3.11)

Instead, according to the previous analysis about the linearised kinematics,

the net control torque can be written as:

τ
′

c = J(sc)K
′

P

φref − φθref − θ
ψref − ψ

+ J(sc)KD

ωxref − ωxωyref − ωy
ωzref − ωz

 (3.12)

where it must be considered that KP = 2 K
′
P , in order to recover the error

angles from the error quaternion. Now, by adding (3.12) into (3.11), consid-

ering that differentiation of (3.9) is given by [φ̈ θ̈ ψ̈]T = [ω̇x ω̇y ω̇z]
T = ω̇ and

taking into account (3.9)-(3.10), relation (3.13) is obtained.φ̈θ̈
ψ̈

 = K
′

P

φref − φθref − θ
ψref − ψ

+ KD

φ̇ref − φ̇θ̇ref − θ̇
ψ̇ref − ψ̇

+ J(sc)−1
Mdist (3.13)
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So, as it is possible to notice, (3.12) and (3.13) are characterized by the pro-

portionality relation with respect to the error angles and their differentiation.

For this reason, this controller is called PD.

Starting from relation (3.13), it is possible to determine two useful vectorial

transfer functions: the first one describes the time evolution of the actual

attitude angles when the desired ones are considered as inputs of the system.

The second one considers as inputs the RWs disturbances and highlights their

influence on the actual attitude angles. Now, before computing the tfs, it is

important to notice that if the matrix K
′
P and KD are chosen to be diagonal,

as shown by (3.14), it is obtained a decoupled structure where each input

affect only the correspondent output. This situation is still valid for Mdist,

since J(sc)−1
is a diagonal matrix.

K
′

P =

kP φ 0 0

0 kP θ 0

0 0 kP ψ

 K
′

D =

kDφ 0 0

0 kDθ 0

0 0 kDψ

 (3.14)

So, let’s consider the first vectorial transfer function which involves the refer-

ence angles and the actual ones. To do so, first of all the quantity J(sc)−1
Mdist

is set to 0 and, then, it is performed a separation of the considered variables,

such that the following relations can be written:
φ̈+ kDφ φ̇+ kP φ φ = kDφ φ̇ref + kP φ φref

θ̈ + kDθ θ̇ + kP θ θ = kDθ θ̇ref + kP θ θref

ψ̈ + kDψ ψ̇ + kP ψ ψ = kDψ ψ̇ref + kP ψ ψref

(3.15)

By considering the Laplace transformation of (3.15), the following transfer

functions can be considered:

φ(s)

φref (s)
=

kDφ s+ kP φ
s2 + kDφ s+ kP φ

θ(s)

θref (s)
=

kDθ s+ kP θ
s2 + kDθ s+ kP θ

ψ(s)

ψref (s)
=

kDψ s+ kP ψ
s2 + kDψ s+ kP ψ

(3.16)
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A mentioned by [9], it is possible to choose all the proportional coefficients as

kP = ω2
n and the derivative ones like kD = 2 ζ ωn, such that the denominators

of (3.16) coincide with the one of the classical 2nd order transfer function.

Moreover, it can be noticed the presence of a zero at s = − kP
KD

= −ωn
2 ζ

.

Anyway, it is fundamental to highlight that the DC-gain of all the transfer

functions is equal to 1. All the effects related to this kind of transfer function

will be analysed in chapter 5, which deals with the specific simulation results.

Finally, it must be pointed out that, to determine (3.16), all the initial condi-

tions about the angles (both reference and actual ones) and their derivatives

are considered 0. Actually, there are some non-zero initial conditions i.e. the

initial angular speeds, as mentioned in sections 2.2. However, these values

are quite small and they can be considered zero.

Instead, the second vectorial transfer function describes the influence of

the reaction wheel disturbances on the time evolution of the actual atti-

tude angles. In this case, starting from equation (3.13), the reference angles

φref , θref , ψref are set to 0. So, the following relations hold:
φ̈+ kDφ φ̇+ kP φ φ = J−1

x Mdist
x

θ̈ + kDθ θ̇ + kP θ θ = J−1
y Mdist

y

ψ̈ + kDψ ψ̇ + kP ψ ψ = J−1
z Mdist

z

(3.17)

By applying the Laplace transformation to (3.17), the following transfer func-

tions can be written:

φ(s)

Mdist
x (s)

=
J−1
x

s2 + kDφ s+ kP φ

θ(s)

Mdist
y (s)

=
J−1
y

s2 + kDθ s+ kP θ

ψ(s)

Mdist
z (s)

=
J−1
z

s2 + kDψ s+ kP ψ

(3.18)

The coefficients kP and kD are always set to ω2
n and 2 ζ ωn. In this case,

the DC-gain is expressed by J−1

kP
. This relation is really important since it

will allow to explain all the system behaviours experienced in the simulations

(chapter 5). Finally, the comment made for the initial conditions of (3.16) is
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still valid for (3.18).

Now, it is important to clarify a particular aspect of the control system shown

by figure 3.1. It is evident that the overall scheme is hybrid, which means

that includes both continuous-time subsystems and discrete-time ones. Their

interfaces are managed by the sampler and ZOH. As mentioned before, all

the previous analysis is based on a full continuous-time structure. However,

the controller is defined by a static relation which means that there are only

suitable gains that multiply specific variables. So, the discretization of the

control law (3.5) does not modify the specific relation. However, when a

discrete controller is obtained by a continuous one, the dynamics of the ZOH

must be included in the plant+actuator structure. Since in this work of thesis

the above-mentioned situation has been neglected (only because the thesis

aims to perform an initial study of the whole attitude control problem with

RWs and their influence), the sampling time has been chosen smaller than

the one coming from the specific selection rules. In this way, the input signal

to the actuators block (coming from the ZOH ) is more similar to the one

that can be obtained with a full continuous-time control scheme (where there

is not a ZOH ) and so the ZOH dynamics can be, more or less, considered

negligible.

3.3 MATLAB/Simulink implementation

Figure 3.2 shows the complete simulation scheme developed in MATLAB-

Simulink. As it is possible to see, there are some extra block with respect to

scheme of figure 3.1. Indeed, the conversion from quaternions to Tait-Bryan

angles is performed by the q-ang conversion block. Then, the output of the

latter is injected in the summing node so that the difference between the

reference quantities angr and the actual ones ang is computed. The result

of this operation produces the signal labelled as angrade , which defines the

error angles expressed in radians. Since the analysis of the pointing stability

is made by considering all the angles expressed in arcseconds, the rad to as

block is responsible for this transformation.

The following part will focus one the detailed implementations of the refer-

ence generator, control inputs and controller block.
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Figure 3.2: Complete Simulink scheme

Reference generator

As mentioned in section 3.1, the reference generation changes its structure

according to the control strategy. Figure 3.3 shows the complete Simulink

implementation of this block. The first part of the reference generation pro-

Figure 3.3: Complete reference generator structure

cedure has been deeply analysed in section 2.3. So, once the reference angles

are known, two fundamental operations must be done to fully define all the

necessary reference signals. The first one deals with the angles transforma-

tion into quaternion and it is performed by the MATLAB function labelled

as ang-q conversion. It basically implements relation (3.1). Instead, the sec-

ond operation is the reference angular speed computation. It is managed

by the MATLAB function wr computation of figure 3.3, which implements

relation (3.3). As already mentioned in section 2.2, this operation requires

the knowledge of the reference angles and their derivatives. For this reason,

there is a derivative block before the above-mentioned MATLAB function.
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Control Inputs

The control inputs block, responsible for the generation of the signals that

are used to compute the control action, is sketched in figure 3.4. Two main

Figure 3.4: Control inputs block

operations are performed by this block: the error quaternion computation

qref⊗ q∗, according to relation (3.4), and the angular speed error definition

ωe = ωref − ω. The first one has been implemented through a MATLAB

function and the second one by using a summing block. Finally, as men-

tioned in section 3.1, signals ω and hRW (which is equivalent to H
(w)
B of

equation (3.5)), of figure 3.4, are the other two outputs of this subsystem

and exit it without being subject to any modification. They will be used by

the controller block to compute the gyroscopic compensation term. Finally,

about the sampler implementation, it is important to notice that the solver

performs operation at discrete time instants, both when major and minor

steps are considered. In particular, only the final results at major steps are

considered as outputs. So, since the controller is simply composed by static

elements i.e. gain, the only operation that must be performed is the con-

struction of a continuous time variable from a discrete one with the specific

sampling time. The sampling operation is automatically considered when

the specific sample is computed and then kept constant for all the sampling

interval.
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Controller

The control action/law given by (3.5) is simply implemented thorough a

MATLAB function, as shown by figure 3.5. So, all the signals coming from

the control inputs block are injected in the MATLAB function which pro-

duces the control/torque command Tc. This is a vectorial discrete signal and

it must be subject to the ZOH operations, before entering the actuator block

of figure 3.2. It is important to mention that variables J(sc), KP and KD of

equation (3.5) are defined inside the MATLAB function.

Figure 3.5: Control inputs block

3.4 EICASLAB implementation

The whole control scheme developed in EICASLAB is shown by figure 3.6.

Some important comments are necessary to clarify the differences between

this scheme and the Simulink one of figure 3.2. First of all, it can be noticed

Figure 3.6: Overall control scheme
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the AD and DA blocks. Indeed, since this software suite is used to build pro-

fessional control systems, it is not possible to substitute them with a simple

sampler and a zero order holder. However, since the analysis performed in

this thesis neglects the contribution coming from the quantization process,

it has been implemented the best possible approximation. Therefore, it has

been chosen the smallest resolution of this two subsystem, in order to mit-

igate the quantization effects. It is important to highlight that resolution

value is constrained by the specific values interval of the quantities to be

converted and by the available number of bits. Since the two converters can

manage at most integer variables of 32 bits, this value represents the maxi-

mum number of available bits. Moreover, to know in advance the interval of

values assumed by the variables, some Simulink simulation have been used.

The other difference is about the on-line computation of the RMS pointing

error, in a specific time interval of observation. Indeed, in Simulink scheme

does not appear this implementation because there has been the possibility

to compute it off-line by using MATLAB. In EICASLAB this operation is

performed by the block labelled as pointing error and angle error which is

also responsible for the computation of the difference between the reference

angles and the actual ones.

Reference generator

Figure 3.7 shows the reference generator block structure. As already men-

tioned in section 2.4, the subsystem behaviour is described by a set of C code

lines. The first part of the reference generation has been already discussed

Figure 3.7: Reference generator block

in the above-mentioned section. The second one is mainly an extension of

the previous part since it includes the computation of the following quanti-

ties: reference quaternion qr, reference angular speed wr and reference angles
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angr. As shown by figure 3.7, they are the outputs of this subsystem. The

C code of the reference generation second part is always implemented in the

Output function, as already mentioned in section 2.4, and it is defined by

some specific functions which are used to build equations (3.1) and (3.3),

including the differentiation of the reference angles. These ones are the step

inputs φr, θr, set to 0, and the internal reference angle ψr which is computed

according to the procedure explained in section 2.2 and 2.4.

Control inputs

The EICASLAB implementation of the control inputs system is sketched

in figure 3.8. It receives the signals qref , wref from the reference generator

and yp from the plant and produces the variable ref , which contains all the

quantities used to compute the control command. In particular, yp is defined

by the actual quaternion q, the angular speed ω and the wheels angular

momenta H
(w)
B . Instead, ref contains the error quaternion qe, the angular

speed error ωe, the angular speed ω and the wheels angular momenta H
(w)
B .

Also in this block, only the Output function has been used to develop the C

code of relation (3.4) and the angular speed error, for the same reasons men-

tioned in section 2.4 about the reference generator. Finally, it is important

to highlight sampler implementation is simply performed by considering the

specific simulation settings. Indeed, the Control Inputs block is solved for

discrete time instants spaced by the simulation step that is taken equal to

the sampling time.

Figure 3.8: EICASLAB control inputs block
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Controller

Finally, the controller structure is depicted by figure 3.9. The reference sig-

nals cref come from the AD block which, in turn, are produced by the control

inputs subsystem. Since these signals are subject to the analog to digital con-

version, they are represented in C by 32 bits integer variables, as mentioned

before. The C code implementation of the controller exploits only the Output

function and it is basically divided in three parts: the pre-processing section,

the main computation one and the post-processing procedure. The first one

is used to get real numbers from the integer ones. Basically, it is performed

the DA operation in order to work with the actual values of the variables and

not with the converted ones. So, specific code lines are written to implement

this conversion. It is interesting to notice that the quantities coming from

the pre-processing procedure are defined by the C variable type double.

Once these computations are done, the core part of the controller block is

considered. Indeed, specific functions are used to develop relation (3.5) which

defines the control command.

Then, the post-processing phase is used to transform the real numbers that

characterize the control variable in the required integer representation, since

the output Tc must be represented by 32 bit integer variables to be sent to

the DA block of figure 3.6. Therefore, a set of code lines are used to perform

this AD operation. Finally, it is important to highlight that the controller

C code has been developed by taking into account a memory usage opti-

mization procedure which tends to avoid any kind of memory waste. This is

operation is very useful for a potential future real implementation.

Figure 3.9: Controller structure



Chapter 4

New approach for the control

system

The core part of this thesis aims to study a new kind of approach to control

the satellite attitude with RWs. So, the main objective is to understand if

this new methodology is as valid as the one seen in the previous chapter by

considering both the free-disturbances case and its behaviour in presence of

RWs disturbances. As it will be clarified later, this control strategy can be

split in two parts: the first one is known as feedback linearisation and its

purpose is to create some linear relations starting from non-linear ones. In

particular, it will be considered the input-output linearisation. The second

part deals with the real control action and two different controllers will be

analysed: a linear one based on the pole placement approach and a non-linear

controller which exploits the sliding mode theory.

The chapter will start with the analysis of the feedback linearisation control

strategy. So, it will be considered a theoretical part about the main aspects

of this strategy and how it has been applied to the situation analysed by this

work of thesis. In particular, it will be given the equations that define the

relation between the attitude Cardan angles and the specific input signals

(both references and disturbances).

Once the first control structure is defined, it is possible to choose the real

control action responsible for managing the system dynamics. Indeed, it will

be shown two kinds of controllers both from a generic theoretical point of

68
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view and from the specific application one. As mentioned before, these two

methodologies are the pole placement and the sliding mode. Also in these

cases, it will be analysed the above-mentioned input-output relations.

Then, the discussion will focus on the analysis of the specific reference gen-

eration since, as mentioned many times in the previous chapters, it varies its

structure according to the selected control approach. So, it will be defined

all the reference signals that are used to compute the specific control action.

Moreover, it will be evaluated the structure of the Control Inputs subsystem,

since it is also subject to the specific type of control system. Finally, the

simulations schemes developed in MATLAB/Simulink and EICASLAB will

be deeply analysed.

4.1 Feedback linearisation approach

This section aims to provide some basic notions about the feedback linearisa-

tion (FL) control strategy and how it has been applied to the system analysed

in this thesis. It is important to say that all the theoretical background about

this control methodology comes from [6].

The first part of this chapter deals with the generic notions about feedback

linearisation, in particular for SISO (Single Input-Single Output) systems.

Then, the extension to MIMO (Multi Input-Multi Output) system will be

deeply analysed, since the system under analysis is a MIMO one. Anyway,

the theory about SISO systems is really important because, as it will be

mentioned later, the MIMO system described in this thesis can be split in

three SISO structures.

The feedback linearisation approach is, in general, really used because it

allows to transform non-linear relations into linear ones. So, the systems

subject to this procedure move from non-linear to linear. The main goal of

feedback linearisation is to determine a specific control input able to can-

cel the non-linearities of the system under analysis. In this way, an exact

linearisation is performed and not an approximated one. This is the key

characteristic of the feedback linearisation methodology. As mentioned by

[6], the feedback linearisation theory is strongly related to the Lie derivative

concept. Without going into detail about this aspect, it is simply sufficient
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to say that given two functions f(x) : Rn → Rn and, h(x) : Rn → R with

continuous partial derivatives of any desired order, the Lie derivative of h

with respect to f is a scalar function expressed as:

Lf h = ∇h f ∈ R where ∇h =
∂h

∂x
=

[
∂h

∂x1

∂h

∂x2

...
∂h

∂xn

]
∈ Rn (4.1)

If a SISO system, described by ẋ = f(x, u) and y = h(x), is considered, the

following illustrative relations hold:ẏ = ∇ẋ = Lf h

ÿ = ∇(Lf h)ẋ = L2
f h

(4.2)

Before going into detail with the feedback linearisation theory, it must be

pointed out that this approach is characterized by two possible implemen-

tations: the input-state linearisation and the input-output linearisation. In

this work of thesis, the second structure has been considered.

SISO system case

Let’s consider a generic non-linear SISO system represented by the following

affine form: ẋ = f(x) + g(x)u

y = h(x)
(4.3)

where x ∈ Rn, y ∈ R and u ∈ R define respectively the state, the output and

the input. Now, the key element of the feedback linearisation procedure is

the following one, as mentioned by [6]: differentiating persistently the output

y until the input variable u appears. Then, define u in order to remove the

non-linearities. Therefore, by exploiting and extending the first relation of

(4.3), it is possible to write the following expression:

ẏ = ∇h(x)ẋ = ∇h(x)(f(x) + g(x)u) = Lf h(x) + Lg h(x)u (4.4)

So, if the Lie derivatives of h with respect to g is different from zero in some

region Λ ∈ Rn (NB: x ∈ Λ), the input variable can be written as follows:

u =
1

Lg h(x)
(v − Lf h(x)) (4.5)
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By applying this input, the system described by (4.3) becomes a linear one,

characterized by equation (4.5).

ẏ = v (4.6)

where the variable v is a suitable control signal able to define a specific

dynamic for the output y. Equation (4.6) shows that the system output

is given by the integration of the control command v. Now, it must be

pointed out that if Lg h(x) is always null, it is necessary to perform another

differentiation of the output.

ÿ = L2
f h(x) + Lg(Lf h(x))u (4.7)

Now, the following relations hold if the quantity Lg(Lf h(x)) is not null in

some region Λ
′
:

u =
1

Lg(Lf h(x))
(v − L2

f h(x)) (4.8)

ÿ = v (4.9)

In this case, the application of the input u (4.8) leads to establish a double

integration relation between the output y and the suitable control input v.

All this steps must be repeated if the quantity at the denominator of the

input u is always zero.

So, the general case can be expressed by (4.10) and (4.11).

u =
1

Lg(L
γ−1
f h(x))

(v − Lγf h(x)) (4.10)

y(γ) = v (4.11)

where γ≤n is the differentiation order. Also in this case, (4.10) holds in some

region Λ
′′

where Lg(L
γ−1
f h(x)) 6= 0.

The feedback linearisation procedure is characterized by a coordinates trans-

formation. As it will be mentioned later, it is possible to consider new state

variables known as external state µ and internal state ξ. Therefore, suitable

differential equations are, in general, considered, related to the external dy-

namics and the internal ones.
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Let’s start by considering the following state equation which involves only

the external state µ: µ̇ = Aµ+Bv

y = µ1

(4.12)

where

A =



0 1 0 0 ... 0

0 0 1 0 ... 0

... ... ... ... ... ...

... ... ... ... ... ...

0 0 ... ... 0 1

0 0 ... ... 0 0


B =



0

0

...

...

0

1


µ =



µ1

µ2

...

...

...

µγ


=



y

ẏ

ÿ

...

...

y(γ−1)


(4.13)

Relation (4.12) describes the so-called external dynamics and it is known as

companion form. Now, there exists a more complete structure to represent

the above-mentioned variables transformation induced by the feedback lin-

earisation process. It is called normal form and it takes into account both

the external dynamics and the internal one, as shown by (4.14).

µ̇ =



µ2

...

...

µγ

a(µ, ξ) + b(µ, ξ)u


ξ̇ = w(µ, ξ)

y = µ1

(4.14)

where µ ∈ Rγ and ξ ∈ Rn−γ represent respectively the external state, as

mentioned before, and the internal one. The complete set of new state vari-

ables (µ, ξ) is called normal state. It is easily to understand that the second

differential equation of (4.14) characterizes the internal dynamics, which do

not depend on the system input. Finally, it is interesting to notice that

functions a and b of (4.14) are defined as a(µ, ξ) = a(x) = Lγf h(x) and

b(µ, ξ) = b(x) = Lg(L
γ−1
f h(x)).
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MIMO systems case

Now, let’s generalize the previous analysis to the MIMO systems case, as

shown by [6]. Suppose to have a system described by (4.3) where, in this

case, x ∈ Rn, u ∈ Rnu and y ∈ Rny . So, more then one input and output are

considered. The input-output linearisation follows the same steps shown for

the SISO systems case. Therefore, it is necessary to differentiate each output

yi until at least one input appears. Once the differentiation procedure is

completed, the following relation holds:
y

(γ1)
1

y
(γ2)
2

...

y
(γny)
ny

 = α(x) + β(x)u (4.15)

where

α(x) =


Lγ1f h1(x)

Lγ2f h2(x)

...

L
γny
f hny(x)

 and β(x) =


Lg(L

γ1−1
f h1(x))

Lg(L
γ2−1
f h2(x))

...

Lg(L
γny−1

f hny(x))

 (4.16)

It is important to highlight that for each output, a relative degree γi and a

specific region Λi ∈ Rn is considered. Moreover, a general region Λ ∈ Rn is

defined as Λ = ∩
i
Λi. Now, if matrix β is invertible on Λ, the input u assumes

this form:

u = β−1(x)


v1 − Lγ1f h1(x)

v2 − Lγ2f h2(x)

...

vny − L
γny
f hny(x)

 (4.17)

With (4.16), it is possible to get ny linear relations like:

y
(γi)
i = vi (4.18)

Equation (4.18) shows that the output yi is affected only by the corresponding

input vi, which means that a decoupled system is obtained. Finally, it must

be pointed out that the sum of all the relative degrees γi defines the total
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relative degree γ. As it will be mentioned later, γ defines the number of

external states µ and the difference n−γ characterizes the number of internal

states ξ.

Input-output feedback linearisation for attitude control

This section deals with the application of the previous concepts about MIMO

systems to the attitude control analysed by this work of thesis. Indeed,

the equations that govern the satellite dynamics and kinematics show that

the system under analysis is a MIMO one. Therefore, the starting point is

equations (2.15) and (2.20), displayed below.ω̇ = J(sc)−1
(−ω×(J(sc)ω + H

(w)
B ) + τ )

q̇ = 1
2
Ω q

(4.19)

If no disturbance acts on the system, it is possible to write τ = τc =

τ
′
c +ω×(J(sc)ω + H

(w)
B ). By inserting this relation into (4.19), the following

structure is obtained: ω̇ = J(sc)−1
τ

′
c

q̇ = 1
2
Ω q

(4.20)

or in the extended form:

ω̇x = J−1
x τ

′
cx

ω̇y = J−1
y τ

′
cy

ω̇z = J−1
z τ

′
cz

q̇0 = −1
2
(ωxq1 + ωyq2 + ωzq3)

q̇1 = 1
2
(ωxq0 + ωzq2 − ωyq3)

q̇2 = 1
2
(ωyq0 − ωzq1 + ωxq3)

q̇3 = 1
2
(ωzq0 + ωyq1 − ωxq2)

(4.21)
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Now, in order to be compliant with (4.3) for MIMO systems, the following

situation occurs:

f(x) =



0

0

0

−1
2
(ωxq1 + ωyq2 + ωzq3)

1
2
(ωxq0 + ωzq2 − ωyq3)

1
2
(ωyq0 − ωzq1 + ωxq3)

1
2
(ωzq0 + ωyq1 − ωxq2)


g(x) =



J−1
x 0 0

0 J−1
y 0

0 0 J−1
z

0 0 0

0 0 0

0 0 0

0 0 0


h(x) =

q1

q2

q3



(4.22)

x =



ωx

ωy

ωz

q0

q1

q2

q3


=

[
ω

q

]
u = τ

′

c =

u1

u2

u3

 =

τ
′
cx

τ
′
cy

τ
′
cz

 (4.23)

From (4.24), it is clear that the system output is defined by the vector y =

[y1 y2 y3]T = [q1 q2 q3]T , which coincides with the quaternion vectorial part

q. The next step is to start differentiating each output until an input appears.

Output 1

y1 = q1 and ẏ1 = q̇1 =
1

2
(ωxq0 + ωzq2 − ωyq3) (4.24)

Since in both relations of (4.22) there is not an input, it is necessary to

differentiate again.

ÿ1 = q̈1 =
1

2
(q0ω̇x + ωxq̇0) +

1

2
(q2ω̇z + ωz q̇2)− 1

2
(q3ω̇y + ωy q̇3) (4.25)

By substituting (4.21) into (4.24), the following expression can be written:

ÿ1 = −1

4
q1(ω2

x + ω2
y + ω2

z) +
1

2
J−1
x q0u1 −

1

2
J−1
y q3u2 +

1

2
J−1
z q2u3 (4.26)

The differentiation procedure must be stopped since (4.26) contains at least

one input. So, the relative degree is γ1 = 2.
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Output 2

y2 = q2 and ẏ2 = q̇2 =
1

2
(ωyq0 − ωzq1 − ωxq3) (4.27)

Also in this case, another differentiation is required

ÿ2 = q̈2 =
1

2
(q0ω̇y + ωy q̇0)− 1

2
(q1ω̇z + ωz q̇1) +

1

2
(q3ω̇x + ωxq̇3) (4.28)

By substituting (4.21) into (4.28), the result is:

ÿ2 = −1

4
q2(ω2

x + ω2
y + ω2

z) +
1

2
J−1
x q3u1 +

1

2
J−1
y q0u2 −

1

2
J−1
z q1u3 (4.29)

Relation (4.29) contains at least one input. So, the relative degree is γ2 = 2.

Output 3

y3 = q3 and ẏ3 = q̇3 =
1

2
(ωzq0 + ωyq1 − ωxq2) (4.30)

It is evident that another differentiation must be performed.

ÿ3 = q̈3 =
1

2
(q0ω̇z + ωz q̇0) +

1

2
(q1ω̇y + ωy q̇1)− 1

2
(q2ω̇x + ωxq̇2) (4.31)

By putting (4.21) into (4.31), the following relation holds:

ÿ3 = −1

4
q3(ω2

x + ω2
y + ω2

z)−
1

2
J−1
x q2u1 +

1

2
J−1
y q1u2 −

1

2
J−1
z q0u3 (4.32)

Some inputs are involved in relation (4.32). Therefore, the relative degree is

γ3 = 2.

All these results allow to build the structure expressed by (4.15).ÿ1

ÿ2

ÿ3

 =

−
1
4
q1(ω2

x + ω2
y + ω2

z)

−1
4
q2(ω2

x + ω2
y + ω2

z)

−1
4
q3(ω2

x + ω2
y + ω2

z)


︸ ︷︷ ︸

α(x)

+


1
2
J−1
x q0 −1

2
J−1
y q3

1
2
J−1
z q2

1
2
J−1
x q3

1
2
J−1
y q0 −1

2
J−1
z q1

−1
2
J−1
x q2

1
2
J−1
y q1 −1

2
J−1
z q0


︸ ︷︷ ︸

β(x)

u1

u2

u3


(4.33)

Therefore, the vectorial input u, used to perform the input-output linearisa-

tion, is given by (4.34), according to (4.17).

u = β−1(x)(v − α(x)) (4.34)
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where v = [v1 v2 v3]T is the control input used to define the specific dynamics

for the system outputs. Indeed, the final relations, coming from the feedback

linearisation procedure, are: 
ÿ1 = v1

ÿ2 = v2

ÿ3 = v3

(4.35)

Finally, it must be highlighted that, for simplicity, the global region Λ, where

the matrix B(x) is invertible, has not been theoretically determined. How-

ever, through simulations, it has been checked if the intervals of values inside

which the system states move are such that the matrix invertibility is possi-

ble.

Now, the new state equation, describing the external dynamics, is built by

considering the extension of (4.12) to MIMO systems.µ̇ = Aµ+Bv

y = Cµ
(4.36)

where

A =



0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0


B =



0 0 0

1 0 0

0 0 0

0 1 0

0 0 0

0 0 1


C =

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

 (4.37)

µ =



µ1

µ2

µ3

µ4

µ5

µ6


=



µ1
1

µ1
2

µ2
1

µ2
2

µ3
1

µ3
2


=



y1

ẏ1

y2

ẏ2

y3

ẏ3


=



q1

q̇1

q2

q̇2

q3

q̇3


v =

v1

v2

v3

 (4.38)

From (4.37) and (4.38), it is easy to notice that, for the external dynamics,

the MIMO system (4.36) is composed by three decoupled SISO subsystems,
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which can be defined by their own companion form, as shown by (4.39).

Indeed, this result is compliant with the decoupling effect of matrix β(x).

µ̇1 = A1µ1 +B1v1

y1 = C1µ1

µ̇2 = A2µ2 +B1v2

y2 = C2µ2

µ̇3 = A3µ3 +B1v3

y3 = C3µ3

(4.39)

where

A1 = A2 = A3 =

[
0 1

0 0

]
B1 = B2 = B3 =

[
0

1

]
C1 = C2 = C3 =

[
1 0

]
(4.40)

µ1 =

µ1
1

µ1
2

 =

y1

ẏ1

 =

q1

q̇1



µ2 =

µ2
1

µ2
2

 =

y2

ẏ2

 =

q2

q̇2



µ3 =

µ3
1

µ3
2

 =

y3

ẏ3

 =

q3

q̇3



(4.41)

Moreover, it is important to highlight that, in this thesis, only the external

dynamics (and so the companion form are) have been analysed. The internal

dynamic and its characteristics have been evaluated directly in the simula-

tion environment, as it will be mentioned later. Therefore, the normal form

has been neglected. Anyway, it is important to notice that since the total

relative degree γ is equal to 6, the number of external states µ is 6 and the

number of internal states ξ is 1.
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Another important step in the feedback linearisation procedure is the so-

called state transformation. Therefore, the following equations put in evi-

dence the link between each external state µi and the classical system states

x. 

µ1 = µ1
1 = q1

µ2 = µ1
2 = q̇1 = 1

2
(ωxq0 + ωzq2 − ωyq3)

µ3 = µ2
1 = q2

µ4 = µ2
2 = q̇2 = 1

2
(ωyq0 − ωzq1 + ωxq3)

µ5 = µ3
1 = q3

µ6 = µ3
2 = q̇3 = 1

2
(ωzq0 + ωyq1 − ωxq2)

(4.42)

These transformations are fundamental since they allow to compute the ex-

ternal states, necessary for the control variable (v) implementation.

Before analysing the effects of RWs disturbances on the satellite attitude,

when it is controlled thorough a feedback linearisation method, it is worth

noticing the following situation. Expression (4.35) shows the linear rela-

tions between the chosen output y1 = q1, y2 = q2 and y3 = q3 and the

corresponding control commands v1, v2 and v3. By recalling equation (3.6),

which approximates the generic attitude quaternion as q = [q0 q1 q2 q3]T =

[1 1
2
φ 1

2
θ 1

2
ψ]T , if small angles are considered, (4.35) can be rewritten as:

q̈1 = 1
2
φ̈ = v1 ⇒ φ̈ = 2v1

q̈2 = 1
2
θ̈ = v2 ⇒ θ̈ = 2v2

q̈3 = 1
2
ψ̈ = v3 ⇒ ψ̈ = 2v3

(4.43)

So, (4.43) defines the link between the control inputs and the Cardan angles.

Now, let’s analyse the effect of RWs disturbances on the input-output feed-

back linearisation. The starting point is relation (4.19). Indeed, by con-

sidering some disturbances acting on the system, it is possible to write

τ = τc + Mdist = τ
′
c +ω×(J(sc)ω+ H

(w)
B ) + Mdist and (4.19) becomes (4.41).ω̇ = J(sc)−1
(τ

′
c + Mdist)

q̇ = 1
2
Ω q

(4.44)
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or equivalently 

ω̇x = J−1
x (τ

′
cx +Mdist

x )

ω̇y = J−1
y (τ

′
cy +Mdist

y )

ω̇z = J−1
z (τ

′
cz +Mdist

z )

q̇0 = −1
2
(ωxq1 + ωyq2 + ωzq3)

q̇1 = 1
2
(ωxq0 + ωzq2 − ωyq3)

q̇2 = 1
2
(ωyq0 − ωzq1 + ωxq3)

q̇3 = 1
2
(ωzq0 + ωyq1 − ωxq2)

(4.45)

From now on, τ
′
c = u as before and Mdist = d.

By recalling equations (4.25), (4.28), (4.31) and substituting (4.45), the fol-

lowing relations hold:

ÿ1 =

(
−1

4
q1(ω2

x + ω2
y + ω2

z) +
1

2
J−1
x q0u1 −

1

2
J−1
y q3u2 +

1

2
J−1
z q2u3

)
︸ ︷︷ ︸

v1

+

+

(
1

2
J−1
x q0d1 −

1

2
J−1
y q3d2 +

1

2
J−1
z q2d3

) (4.46)

ÿ2 =

(
−1

4
q2(ω2

x + ω2
y + ω2

z) +
1

2
J−1
x q3u1 +

1

2
J−1
y q0u2 −

1

2
J−1
z q1u3

)
︸ ︷︷ ︸

v2

+

+

(
1

2
J−1
x q3d1 +

1

2
J−1
y q0d2 −

1

2
J−1
z q1d3

) (4.47)

ÿ3 =

(
−1

4
q3(ω2

x + ω2
y + ω2

z)−
1

2
J−1
x q2u1 +

1

2
J−1
y q1u2 +

1

2
J−1
z q0u3

)
︸ ︷︷ ︸

v3

+

+

(
−1

2
J−1
x q2d1 +

1

2
J−1
y q1d2 +

1

2
J−1
z q0d3

) (4.48)
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therefore

ÿ1 = q̈1 = v1 +

(
1
2
J−1
x q0d1 − 1

2
J−1
y q3d2 + 1

2
J−1
z q2d3

)

ÿ2 = q̈2 = v2 +

(
1
2
J−1
x q3d1 + 1

2
J−1
y q0d2 − 1

2
J−1
z q1d3

)

ÿ3 = q̈3 = v3 +

(
−1

2
J−1
x q2d1 + 1

2
J−1
y q1d2 + 1

2
J−1
z q0d3

)
(4.49)

By recalling (4.38), which shows the relations between a quaternion compo-

nent and an external state, and writing q0 as function of the external states

i.e. q0 =
√

1− (µ1
1)2 − (µ2

1)2 − (µ3
1)2, the following non-linear companion

form can be written.

µ̇1
1 = µ1

2

µ̇1
2 = v1 + 1

2
(
√

1− (µ1
1)2 − (µ2

1)2 − (µ3
1)2J−1

x d1 − µ3
1J
−1
y d2 + µ2

1J
−1
z d3)

µ̇2
1 = µ2

2

µ̇2
2 = v2 + 1

2
(µ3

1J
−1
x d1 +

√
1− (µ1

1)2 − (µ2
1)2 − (µ3

1)2J−1
y d2 − µ1

1J
−1
z d3)

µ̇3
1 = µ3

2

µ̇3
2 = v3 + 1

2
(−µ2

1J
−1
x d1 + µ1

1J
−1
y d2 +

√
1− (µ1

1)2 − (µ2
1)2 − (µ3

1)2J−1
z d3)

y = [µ1
1 µ2

1 µ3
1]T

(4.50)

Relation (4.5) shows that two inputs are now acting on the external dynamics:

the control input v and the disturbance d.

Finally, also in this case, the approximation given by (3.6) can be exploited

to write the following relations:
φ̈ = 2v1 + J−1

x d1 − ψJ−1
y d2 + θJ−1

z d3

θ̈ = 2v2 + ψJ−1
x d1 + J−1

y d2 − φJ−1
z d3

ψ̈ = 2v3 − θJ−1
x d1 + φJ−1

y d2 + J−1
z d3

(4.51)

It is crucial to remind that (4.51) is valid if small angles φ,θ and ψ are

considered. Now, by using the first order approximation i.e. the products
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between the system variables φ, θ, ψ and d1, d2, d3 are considered negligible,

the following relations hold:
φ̈ = 2v1 + J−1

x d1

θ̈ = 2v2 + J−2
y d2

ψ̈ = 2v3 + J−1
z d3

(4.52)

The expressions given by (4.52) highlight how the two system inputs influence

the time trend of the Cardan angles. In the following sections, it will be

deeply analysed these relations, by considering the reference signals instead

of the control inputs. To do so, the techniques used to implement the control

command v must be analysed.

4.2 Linear controller: pole placement design

The feedback linearisation approach is able to build linear relations between

the outputs and specific control inputs, which are user-defined. Therefore, in

order to impose a particular dynamic to the system under analysis, a suitable

controller must be added in series with the feedback linearisation structure.

In this section, a linear controller, based on the pole placement approach, will

be analysed. The complete control scheme and the detail of the controller

structure are given by figures 4.1 and 4.2. Before analysing the design phases

Figure 4.1: Complete control structure

of the linear controller, an important comment must be made about the struc-

tures of figures 4.1, 4.2 and the input-output linearisation, discussed in the
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Figure 4.2: Detail of the controller block

previous section. The feedback linearisation approach previously developed,

is based on the assumption that all the control scheme is a continuous time

structure. However, as shown by figure 4.1, a hybrid system is considered

which means that there exist an interaction between the discrete time con-

troller and the continuous time plant (with the actuator). This interaction

is managed by two interfaces i.e. sampler and ZOH, as mentioned in chapter

3. So, in order to mitigate undesired effects coming from the discrepancy

between the actual situation and the theoretical one, it has been considered

a sufficiently small sampling time. Indeed, in general, the dynamics of the

ZOH should be considered in the controller design. However, for simplicity,

this situation has been neglected and a suitably small sampling period has

been considered to reduce the effect of this approximation, as mentioned be-

fore. This consideration is also valid for the linear controller since it is a

discrete time system too and, as it will be shown later, it has been treated

as a continuous time structure.

Now, all the necessary steps to build the linear controller must be analysed.

The starting point is the companion forms of each SISO subsystems, given

by (4.39). For each of them, the following control law is designed:

vi = −Ki
c µ

i +N i ri (4.53)

Relation (4.53) describes a static state feedback control law, where Ki
c is a

suitable matrix such that the closed loop system has the eigenvalues placed

in specific positions, N i is a gain used to make the system DC-gain unitary

and ri is the reference signal, which is described by a quaternion component.



CHAPTER 4. NEW APPROACH FOR THE CONTROL SYSTEM 84

Therefore, the closed loop state equation is:µ̇i = (Ai −BiKi
c) +BiN iri

yi = Ciµi
(4.54)

It is important to highlight that the existence of matrix Ki
c is subject to the

controllability condition. In particular, it can be shown that Ki
c is a 1x2

matrix, which can be written as Ki
c = [ki1 k

i
2]. So, by fixing the eigenval-

ues/poles as λ1/2 = −ζωn±ωn
√

1− ζ2 the control gains ki1, k
i
2 can be easily

determined. Now, after some computations, it is possible to compute the

close loop transfer functions between the i-th output and reference input as

G0(s) = Yi(s)
Ri(s)

= Ci(sI − (Ai − BiKi
c)
−1BiN i. Therefore, since the DC-gain

is defined as lims→0G0(s) and the objective is to force it to 1, the gain N i is

determined by N i = (Ci(BiKi
c − Ai)−1Bi)−1.

By recalling expression (4.35), which shows the main relations obtained af-

ter the input-output linearisation, and applying the control law (4.53), the

following relation can be written:

ÿi = vi = −Ki
c µ

i +N iri = −ki2ẏi − ki1y +N iri (4.55)

or equivalently

ÿi + ki2ẏi + ki1y = N iri (4.56)

By exploiting the Laplace transformation, (4.57) holds:

Yi(s)

Ri(s)
=

N i

s2 + ki2s+ ki1
(4.57)

This is the same close loop transfer function considered in the previous anal-

ysis. It can be shown that N i = ki1 = ω2
n and ki2 = 2ζωn, according to the

pole placement procedure and the objective of a unitary DC-gain. It is im-

portant to remind that yi and ri are described by a quaternion component.

So, by considering the well-known approximation between the quaternion

component and the Cardan angle (relation (3.6)), the transfer function given

by (4.57) describes also the link between the actual angle and the reference
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one. Therefore, the following relations can be considered:

Φ(s)

Φr(s)
=

N1

s2 + k1
2s+ k1

1

Θ(s)

Θr(s)
=

N2

s2 + k2
2s+ k2

1

Ψ(s)

Ψr(s)
=

N3

s2 + k3
2s+ k3

1

(4.58)

At first, the controller parameters of each SISO subsystem can be chosen as

k1
1 = k2

1 = k3
1, k1

2 = k2
2 = k3

2 and N1 = N2 = N3. It is important to highlight

that all these relations characterize the free-disturbances case. Moreover, as

already mentioned in the previous section, the internal dynamic equation

has been neglected, for simplicity. However, it has a strong influence on the

output tracking. Indeed, if the internal dynamics is asymptotically stable,

the output is able to track the desired reference as t → ∞. If this situation

is not satisfied, the output will never reach the desired value. In this thesis,

the influence of the internal dynamics on the overall system has been studied

through simulations.

Now, the impact of the reaction wheels disturbances on the system outputs

can be evaluated. To do so, expression (4.52) must be recalled and modified

as follows: 
φ̈+ k1

2 φ̇+ k1
1 φ = J−1

x d1

θ̈ + k2
2 θ̇ + k2

1 θ = J−1
x d2

ψ̈ + k3
2 ψ̇ + k3

1 ψ = J−1
x d3

(4.59)

By using the Laplace transformation, (4.60) holds.

Φ(s)

D1(s)
=

J−1
x

s2 + k1
2s+ k1

1

Θ(s)

D2(s)
=

J−1
y

s2 + k2
2s+ k2

1

Ψ(s)

D3(s)
=

J−1
z

s2 + k3
2s+ k3

1

(4.60)
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It is easy to notice that, to build (4.59), the well-known relation (3.6) has

been used and the reference signals have been set to 0.

Some final comments must be done. First of all, the transfer functions given

by (4.58) and (4.60) are computed by considering all the variables initial

conditions null. However, as already mentioned in chapter 3, there are some

non-zero initial conditions, which can be considered negligible. Furthermore,

it is interesting to notice that relations (4.58) and (4.60) are similar to (3.16)

and (3.18). So, it has been found out that the, with a linear controller, the

feedback linearisation approach provides quite similar results to the classical

PD controller, when small Cardan angles are considered. Finally, it must be

highlighted that the control system behaviour analysed in this chapter will

be deeply evaluated in chapter 5, where different simulations will be studied.

4.3 Non-linear controller: sliding mode de-

sign

The current section deals with another kind of controller to be put always

in series with the feedback linearisation structure. The main difference with

the previous one is the non-linearity that characterizes this new controller.

The design methodology is known as sliding mode. At first, a theoretical

introduction about the sliding mode approach applied to SISO systems will be

given. Then, the extension to MIMO systems will be considered As already

mentioned, since the feedback linearisation controller produces the previously

mentioned decoupling, the MIMO systems can be treated as three SISO

subsystems. After that, it will show the application of this control approach

to the attitude control of the small satellite. In particular, at first it will

be shown the relation between the output and the reference signal in the

disturbances-free case. Then, the influence of the reaction wheels on the

control system will be analysed. Finally, it is important to highlight that the

theory background about the sliding mode control, that will be analysed in

the following part, is taken from [7].
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Sliding mode for SISO systems

Let’s consider a non-linear SISO system given by (4.3) and its companion

form described by (4.12) and (4.13). The objective of a control system is to

make the output y track the reference signal r. The sliding mode approach

is based on the design of the so-called sliding surface, which is defined as:

S(t) = {x ∈ Rn : s(x, t) = 0} where s(x, t) = ỹ(γ−1) + kγ ỹ
(γ−2) + ...+ k2ỹ

(4.61)

Function s(x, t) is such that s : Rn+1 → R. Moreover, relation (4.61) intro-

duces some quantities whose meaning must be explained. At first, ỹ is called

tracking error and it is defined as ỹ = r−y. Then, γ is the well-know relative

degree that characterizes the input-output linearisation. Instead, ỹ(γ−i) is the

(γ − i)-th derivative of the tracking error ỹ. Finally, the coefficients ki are

selected such that the roots of the polynomial given by (4.62) have negative

real part.

P (λ) = λγ−1 + kγλ
γ−2 + ...+ k2 (4.62)

P (λ) is a fundamental element of the sliding mode theory. Indeed, if the

system trajectory (i.e. the set of points in the state space describing the

system state evolution) is constrained to the sliding surface, the tracking error

ỹ will tend to zero according to the roots of the polynomial. In order to prove

the above-mentioned property, it simply necessary to compute the Laplace

transformation of the equation s(x, t) = 0, which leads to P (s)Ỹ (s)−P0(s) =

0 ⇒ Ỹ (s) = P0(s)
P (s)

. P (s) is the polynomial given by (4.62) expressed in the

Laplace variable s and P0(s) is the polynomial that takes into account the

initial conditions. So, as it is possible to see, the tracking error ỹ follows

a time trend based on the roots of P (λ). However, this result is based on

the assumption that the trajectory is on the sliding surface and it does not

move from that. Indeed, it is possible to have the following scenarios: 1)

the trajectory is on the surface at a certain time instant but it does not

remain there for successive instants; 2) the trajectory is completely outside

the sliding surface. Since the objective is to constrain the trajectory to the

surface for every time instant, it is fundamental to build a specific control

law to achieve the desired goal. With this control law, the surface can be

defined as invariant and attractive. An invariant surface is such that if the
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trajectory is on it, it will remain there. Instead, the surface is attractive if it

is able to force on it a trajectory that lies outside. Now, let’s analysed the

contribution of these definition to the control law structure.

Consider to have a trajectory that lies on the sliding surface at a certain

time instant t0. According to (4.61), the system state at t0 is an element of

S(t) and s(x(t0), t0) = 0. To make the surface invariant, it is necessary to

have ṡ = 0. So, the differentiation of (4.61) is considered and relation (4.14)

from the feedback linearisation procedure must be recalled. The latter states

that the γ-th derivative of the output can be written as y(γ) = a(x) + b(x)u.

Therefore:

ṡ = 0⇒ ỹ(γ) + kγ ỹ
(γ−1) + ...+ k2

˙̃y = 0 (4.63)

which leads to (4.64), by substituting ỹ(γ) = r(γ)− y(γ) = r(γ)− a(x)− b(x)u.

r(γ) − a(x)− b(x)u+ kγ ỹ
(γ−1) + ...+ k2

˙̃y = 0 (4.64)

The control input expression can be obtained from (4.64), in the following

way:

u =
1

b(x)

(
r(γ) − a(x) + kγ ỹ

(γ−1) + ...+ k2
˙̃y

)
(4.65)

Once that the invariance property has been analysed, it is fundamental to

characterize the attractiveness of the surface. The surface S(t) is considered

attractive if s(x, t)ṡ(x, t) < 0 ∀x, t. So, suppose that, at a time instant t0,

the trajectory is considered outside the sliding surface. To make it attractive

is simply necessary to add a specific term to (4.65), as follows:

u =
1

b(x)

(
r(γ) − a(x) + kγ ỹ

(γ−1) + ...+ k2
˙̃y + k1sign(s(x(t), t))

)
(4.66)

The derivative of s(x, t) is expressed by:

ṡ(x, t) = r(γ)− a(x)− b(x)u+ kγ ỹ
(γ−1) + ...+ k2

˙̃y = −k1sign(s(x, t)) (4.67)

Then, it can be noticed that ṡ = −k1 < 0 when s(x, t) > 0, so s(x, t)ṡ(x, t) <

0. Instead, ṡ = k1 > 0 when s(x, t) > 0, therefore s(x, t)ṡ(x, t) < 0. In both

the cases, the above-mentioned property is satisfied i.e s(x, t)ṡ(x, t) < 0. So,

the surface is attractive and, in particular, the trajectory (starting from the

initial condition at t0) moves on the surface in finite time, as clearly stated by
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[7]. It is important to highlight that the additional term sign(s(x, t)) could

lead to the so-called chattering which is defined by high frequency oscillations

of the trajectory around the surface. For this reason, it is in general replaced

by a sigmoid function like σ(ηs(x, t)) = tanh(ηs(x, t)).

Now, it is quite easy to see that relation (4.66) can also be written as:

u =
1

b(x)
(v − a(x)) =

1

Lg(L
γ−1
f h(x))

(v − Lγf h(x)) (4.68)

which is the well-know equation characterizing the input-output linearisation.

Therefore, relation (4.69) defines the control input that modifies the system

dynamics.

v = r(γ) + kγµ̃γ + ...+ k2µ̃2 + k1σ(ηs(x, t)) (4.69)

The generic variable µ̃i is defined as µ̃i = µri − µi = r(i−1) − y(i−1) = ỹ(i−1).

It can be noticed that the reference variable and its derivatives have been

renamed as µri. Relation (4.69) is characterized by the non-linear term

k1σ(ηs(x, t)) which increases the controller robustness, as it will be shown in

the simulation results. All the parameters that appear in the control law are

properly chosen to obtain the desired performance, as it will be analysed in

chapter 5. In particular, it must be highlighted that the close loop system

dynamic, near the sliding surface, is imposed by the coefficients k2, k3, ..., kγ

which define the roots of P (λ). Finally, as it is possible to see, relation (4.69)

involves the external state µ, already defined in the feedback linearisation

section. About the internal state/dynamic, it must be highlighted that it is

fundamental for the tracking properties. Indeed, it must be asymptotically

stable to achieve the desired tracking. This situation has been considered

also for the linear controller of the previous section.

Sliding mode for MIMO systems: attitude control ap-

plication

The characterization of the sliding mode approach for MIMO systems is,

now, directly given by considering its application to the attitude control of

the small satellite analysed in this thesis. The starting point is relations

(4.15) and (4.16), proposed once again below, which describe the result of
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the feedback linearisation procedure.
y

(γ1)
1

y
(γ2)
2

...

y
(γny)
ny

 = α(x) + β(x)u (4.70)

where

α(x) =


Lγ1f h1(x)

Lγ2f h2(x)

...

L
γny
f hny(x)

 and β(x) =


Lg(L

γ1−1
f h1(x))

Lg(L
γ2−1
f h2(x))

...

Lg(L
γny−1

f hny(x))

 (4.71)

Now, from the input-output linearisation, input u is expressed by:

u = β−1(x)(v − α(x)) (4.72)

which leads to the well-known decoupling, expressed as:

y
(γi)
i = vi (4.73)

In order to keep this decoupling, the sliding surface surface is defined as

follows:

S(t) = {x ∈ Rn : s(x, t) =


s1(x, t)

s2(x, t)

...

sny(x, t)

 = 0} (4.74)

where 
s1(x, t)

s2(x, t)

...

sny(x, t)

 =


ỹ

(γ1−1)
1 + kγ1 ỹ

(γ1−2)
1 + ...+ k2ỹ1

ỹ
(γ2−1)
2 + kγ2 ỹ

(γ2−2)
2 + ...+ k2ỹ2

...

ỹ
(γny−1)
ny + kγny ỹ

(γny−2)
ny + ...+ k2ỹny

 (4.75)

Basically, this formulation consider a MIMO system as ny SISO subsystems,

each of them characterized by a function si(x, t), which involves specific co-

efficients ki, the i-th tracking error ỹi = ri − yi and its derivatives until the

order γi − 1. As already mentioned in the feedback linearisation section, γi
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is the relative degree associated with the i-th output yi.

So, for each SISO subsystem, the corresponding control input vi can be writ-

ten as:

vi = r
(γi)
i + kγi ỹ

(γi−1)
i + ...+ k2ỹi + k1σ(ηisi(x, t)) (4.76)

Now, the application to the system under analysis is considered. At first,

relation (4.39) must be recalled, which defines the companion form of the

overall MIMO system expressed as the composition of three SISO subsystems.

In this case, the number of input is ny = 3 and all the relative degrees are γi =

2. Since the external state characterizing each SISO subsystem is expressed

by µi, as shown by (4.41), it is possible to consider µir = [µir1 µ
i
r2

]T = [ri ṙi]
T .

Then, the following relation holds: µ̃i = [µ̃i1 µ̃
i
2]T = [ỹi ˙̃yi]

T . Therefore,

functions si(x, t) and control commands vi can be rewritten as:s1(x, t)

s2(x, t)

s3(x, t)

 =

 ˙̃y1 + k2ỹ1

˙̃y2 + k2ỹ2

˙̃y3 + k2ỹ3

 =

µ̃1
2 + k2µ̃

1
1

µ̃2
2 + k2µ̃

2
1

µ̃3
2 + k2µ̃

3
1

 (4.77)


v1 = r̈1 + k2µ̃

1
1 + k1σ(η1s1(x, t))

v2 = r̈2 + k2µ̃
2
1 + k1σ(η2s2(x, t))

v3 = r̈3 + k2µ̃
3
1 + k1σ(η3s3(x, t))

(4.78)

In this case (4.73) becomes (4.79), as already analysed in the feedback lin-

earisation section. 
ÿ1 = v1

ÿ2 = v2

ÿ3 = v3

(4.79)

By substituting (4.78) in (4.79), the following relations hold, in the free-

disturbance case: 
ÿ1 = r̈1 + k2µ̃

1
1 + k1σ(η1s1(x, t))

ÿ2 = r̈2 + k2µ̃
2
1 + k1σ(η2s2(x, t))

ÿ3 = r̈3 + k2µ̃
3
1 + k1σ(η3s3(x, t))

(4.80)

It is important to remind that each output represents the specific component

of the actual attitude quaternion and so, the reference signals are quaternion
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components too. Moreover, it is possible to recall the approximation between

quaternion and Cardan angles, given by (3.6), and substitute the quaternion

component with the half of the correspondent angle. Indeed, the above

mentioned relation states that [q1 q2 q3]T = [φ
2
θ
2
ψ
2
]T . The same can be done

for the reference quaternion and angles. Due to the non-linearity introduced

by the control action, the time evolution of each output, when the reference

signals are applied, has been studied through specific simulations.

Instead, when reaction wheels disturbances act on the system, relation (4.80)

can be modified by taking into account relation (4.50). Therefore:

ÿ1 = r̈1 + k2µ̃
1
1 + k1σ(η1s1(x, t))+

+
1

2
(
√

1− (µ1
1)2 − (µ2

1)2 − (µ3
1)2J−1

x d1 − µ3
1J
−1
y d2 + µ2

1J
−1
z d3) =

= r̈1 + k2µ̃
1
1 + k1σ(η1s1(x, t)) +

1

2
J−1
x d1

(4.81)

ÿ2 = r̈2 + k2µ̃
2
1 + k1σ(η2s2(x, t))+

+
1

2
(µ3

1J
−1
x d1 +

√
1− (µ1

1)2 − (µ2
1)2 − (µ3

1)2J−1
y d2 − µ1

1J
−1
z d3) =

= r̈2 + k2µ̃
2
1 + k1σ(η2s2(x, t)) +

1

2
J−1
y d2

(4.82)

ÿ3 = r̈3 + k2µ̃
3
1 + k1σ(η3s3(x, t))+

+
1

2
(−µ2

1J
−1
x d1 + µ1

1J
−1
y d2 +

√
1− (µ1

1)2 − (µ2
1)2 − (µ3

1)2J−1
z d3) =

= r̈3 + k2µ̃
3
1 + k1σ(η3s3(x, t)) +

1

2
J−1
z d3

(4.83)

It is important to notice that the last equality of (4.81), (4.82) and (4.83)

comes from the small approximation, where the first quaternion component

q0 (the term described by the square root) can be considered equal to 1 (cf

(3.6)), and from a first order approximation (the product between variables

i.e. disturbances and external state, that is the quaternion component, can

be considered negligible). As it is possible to notice, relations (4.81), (4.82)

and (4.83) are quite complex and introduce non-linearities, even after the

above-mentioned approximations. This is due to the sigmoidal contribution

coming from the sliding mode control command. Therefore, the time trend

of the outputs, when both the reference signals and the disturbances act on

the system, has been evaluated directly through simulations.
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Figures 4.3 and 4.4 depict the overall control structure and the detail of

the controller block. Both of them show new variables with respect to the

previous analysis i.e. rγi , µr and µ̃. They are simply the composition

of the previous mentioned quantities rγii , µir and µ̃i, in the following way:

rγi = [r̈1 r̈2 r̈2 ]T , µr = [µ1
r µ

2
r µ

3
r]
T and µ̃ = [µ̃1 µ̃2 µ̃3]T . As mentioned in

the linear controller section, it must be highlighted that all the control sys-

tem structure has been considered as a continuous time one, from a pure

theoretical point of view. Indeed, the feedback linearisation approach, devel-

Figure 4.3: Complete control structure

oped in the specific section, is based on the assumption that all the control

scheme is a continuous time structure. Therefore, the sliding mode controller

(which is placed in series with the FL block, as shown by figure 4.4) is also

considered as a continuous time system, according to the previous theoreti-

cal analysis. However, as shown by figure 4.3, the practical implementation

Figure 4.4: Detail of the controller block

of the overall control scheme is defined by a hybrid system, which means
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that there exist an interaction between the discrete time controller and the

continuous time plant (with the actuator), suitably managed by the sampler

and ZOH blocks. So, in order to mitigate undesired effects coming from this

discrepancy between the actual situation and the theoretical one, it has been

considered a sufficiently small sampling time. Actually, the dynamic of the

ZOH should be considered in the controller design. However, for simplicity,

this situation has been neglected and a suitably small sampling period has

been considered to reduce the effect of this approximation, as mentioned be-

fore. Then, it must be highlighted that the internal dynamic formulation has

been neglected, for simplicity, and its effect on the output tracking has been

directly evaluated through simulations.

4.4 Reference generator and control inputs:

specific analysis

This section aims to briefly describe how the reference signals and the control

inputs are generated, both for the pole placement approach and the sliding

mode method. It must be highlighted that the first part of the reference

generation has been already analysed in section 2.2 and it deals with the

computation of the reference Cardan angles. Therefore, according to the

specific control methodology, the second part must be discussed.

Pole placement approach

The pole placement methodology is based on a static state feedback con-

trol law, as shown by (4.53). So, according to this relation, it is neces-

sary to compute only the reference quaternion and, then, consider for each

control command vi the specific quaternion component qrefi that describes

the reference signal ri. To do so, a conversion from the reference Cardan

angles φref , θref , ψref , to the reference quaternion must be performed, ac-

cording to relations (3.1) and (3.2). They, basically, compute the quater-

nion products among the three elementary quaternions that can be associ-

ated with each reference angle. The result is the total reference quaternion

qref = [qref0 qref1 qref2 qref3 ]
T . Therefore, the signal r shown by figures 4.1
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and 4.2 is represented as r = [r1 r2 r3]T = [qref1 qref2 qref3 ]
T . Instead, the

Control Inputs subsystem of figure 4.1, in this case, does not perform any

operation on its inputs since, to build the control action, it is not necessary

any manipulation of these variables.

Sliding mode method

This control philosophy requires a more complex structure for the reference

generator block, with respect to the pole placement approach. Indeed, as

displayed by figure 4.3, this block provides as outputs r(γi) and µr, which can

be expressed, according to the analysis of section 4.3, as:

r(γi) =

r̈1

r̈2

r̈3

 =

q̈ref1q̈ref2
q̈ref3

 (4.84)

µr =

µ1
r

µ2
r

µ3
r

 =



µ1
1r

µ1
2r

µ2
1r

µ2
2r

µ3
1r

µ3
2r


=



qref1
q̇ref1
qref2
q̇ref2
qref3
q̇ref3


(4.85)

So, these relations show that the reference quaternion vectorial part and its

derivative are necessary. This means that, once the reference Cardan angles

are computed, the usual angle-quaternion conversion is performed. Then,

the vectorial part of the resulting quaternion is extracted and the differenti-

ation of each component is performed. In particular, it is necessary a double

differentiation.

Instead, the Control Inputs block of figure 4.3 is responsible for the compu-

tation of µ̃, which represents the difference between the µr and µ. Therefore,
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the following structure is considered:

µ̃ =

µ1
r − µ1

µ2
r − µ2

µ3
r − µ3

 =



µ1
1r − µ

1
1

µ1
2r − µ

1
2

µ2
1r − µ

2
1

µ2
2r − µ

2
2

µ3
1r − µ

3
1

µ3
2r − µ

3
2


=



qref1 − q1

q̇ref1 − q̇1

qref2 − q2

q̇ref2 − q̇2

qref3 − q3

q̇ref3 − q̇3


(4.86)

Finally, it must be pointed out that all the other inputs of the above-

mentioned block are not subject to any manipulation, as shown by figure

4.3.

4.5 MATLAB/Simulink implementation

This section aims to show how the overall control schemes, previously anal-

ysed, have been developed in MATLAB/Simulink. Before starting the spe-

cific analysis for both the control approaches, the common element between

them must be described i.e. the feedback linearisation controller plus the

gyroscopic compensation. Figure 4.5 shows its structure. The system im-

Figure 4.5: Structure of the FL controller with the gyroscopic compensation

plementation is characterized by two MATLAB functions. The first one is

used to implement the control input coming from the input-output linearisa-

tion, according to relation (4.33) and (4.34). The second one implements the

gyroscopic compensation, that removes the non-linearity from the satellite
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dynamic equation (2.15). Then, both the outputs of the MATLAB functions

are summed to get the vectorial torque command Tc. All this structure is

compliant with the theoretical analysis of section 4.1. In the following part,

the specific control structures with their subsystems will be analysed.

Pole placement design

The overall control scheme for the pole placement approach is depicted by

figure 4.6. As it is possible to see, this figure introduces some new blocks with

respect to figure 4.1. In particular, it can be noticed the output, the q-ang

conversion and rad to as blocks. The first one is simply used to describe the

h(x) function of the MIMO system, which is responsible for the output defi-

nition. It is important to remind that the output y is the key element of the

input-output linearisation procedure. Instead, the second block is respon-

sible for the computation of the Cardan angles, given the specific attitude

quaternion. Finally, the third block is used to convert the error angles (given

by the differences between reference and actual angles) expressed in radians

into arcseconds, since the pointing stability of the telescope is evaluated in

this way.

Figure 4.6: Pole placement method complete control structure
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Reference generator

The following figure shows the Simulink implementation of the reference gen-

eration procedure, described in section 4.4. From figure 4.7, it is clear that the

Figure 4.7: Reference generator block

reference signal r coincides with the vectorial part of the quaternion coming

from a simple conversion described by (3.1) and (3.2), as mentioned in sec-

tion 4.4. This computation is carried out by the MATLAB function labelled

as ang-q conversion. Moreover, figure 4.7 shows that one of its outputs is the

reference angles variable angr, which is fundamental for the computation of

the error angles. Finally, before analysing the controller implementation, it

must be pointed out that the Control Inputs block implementation will not

be shown since it does not perform any variables manipulation, according to

the analysis made in section 4.4.

Controller

This section deals with the development of the core structure of the whole

control scheme. Figure 4.8 (a) depicts the complete controller structure,

made by two contributions: the feedback linearisation block, already analysed

at the beginning of section 4.4, and the linear controller block. Instead,

figure 4.8 (b) displays the specific implementation of the pole placement

controller. The latter is characterized by the state feedback control law given

by (4.53), expressed in a compact way. Indeed, all the three reference signals

(quaternion components), included in the vectorial variable r, are multiplied

by the same gain N, which is compliant with the analysis of section 4.2

(N1 = N2 = N3 = N). Instead, a suitable matrix, labelled as Km, is used to

perform all the multiplications between the external state µ and the control

matrices Ki
c, mentioned by (4.53) and (4.54). According to the notations of
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(a) Complete controller structure

(b) Linear controller detail

Figure 4.8: Pole placement plus FL controller

section 4.2, matrix Km can be written as:

Km =

K1
c 01×2 01×2

01×2 K2
c 01×2

01×2 01×2 K3
c

 =

k1
1 k1

2 0 0 0 0

0 0 k2
1 k2

2 0 0

0 0 0 0 k3
1 k3

2

 (4.87)

and variable µ follows the formulation given by (4.38). In this way, it has

been possible to implement equation (4.53) for each SISO subsystem, by

summing the outputs from the gain blocks of figure 4.8 (b). The result is

the vectorial control variable v = [v1 v2 v3].

Sliding mode method

Figure 4.9 shows the overall control scheme used when a sliding mode ap-

proach is considered. The major part of the scheme is equal to the one

proposed by figure 4.6, about the pole placement approach. The only differ-

ences refer to the Reference Generator, Control Inputs and Controller blocks.

Therefore, the specific blocks for the sliding mode design are directly anal-

ysed.
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Figure 4.9: Sliding mode approach complete control structure

Reference generator

The reference generation implementation, for the sliding mode approach, is

displayed by figure 4.10. According to the analysis made in section 4.4,

Figure 4.10: Reference generation for the sliding mode approach

the first step towards the reference computation is the conversion from the

Cardan reference angles to the corresponding quaternion. As usual, this op-

eration is carried out by the MATLAB function labelled as ang-q conversion.

Then, since the desired variables are the components of the vectorial part, a

demux block is used to split it into its constitutive elements i.e. qref1 , qref2



CHAPTER 4. NEW APPROACH FOR THE CONTROL SYSTEM 101

and qref3 , according to the notation of section 4.4. Now, the objective is

to build the reference variable µr expressed by (4.85). Therefore, suitable

derivative blocks and a mux one are used to compute the quaternion com-

ponents derivatives and to collect them together with the above-mentioned

reference component. Moreover, since the second derivatives of each quater-

nion component is needed to build variable r(γi) of (4.84) (named rgi in figure

4.10), the first derivatives are collected through a mux and then injected into

a derivative block. Finally, the output variable angr can be noticed, as usual

used for the error angles computation.

A brief comment must be made about the Control Inputs block of figure

4.9. This subsystem is simply responsible for the computation of µ̃ (named

mutilde in the above-mentioned figure), as expressed by (4.86). This is the

only manipulation required before considering the controller structure, as

clearly depicted by figure 4.9.

Controller

Finally, the controller development is considered. Its structure is split in two

parts, as shown by figure 4.11: the feedback linearisation and gyroscopic com-

pensation and the non-linear controller, designed with the sliding mode tech-

nique. Since the feedback linearisation structure has already been discussed,

the following analysis focuses on the non-linear controller block, shown by

figure 4.11 (b). It is clear from the above-mentioned figure that the three

MATLAB functions are used to implement relation (4.78), which defines the

structure of the control command v = [v1 v2 v3]T . According to (4.78), to

build such vectorial control variable, for each SISO subsystem described in

section 4.2, is required the knowledge of r(γ1), r(γ2), r(γ3) (components of the

vector given by (4.84) and named rg1, rg2,rg3 in figure 4.11 (b)) and variable

µ̃ expressed by (4.86). In particular, this vectorial variable is split into its

sub-vectorial components, as mentioned by (4.86), and the latter are injected

in the MATLAB functions. It is evident from figure 4.11 (b) that all the nec-

essary splitting and merging operations are performed through demux and

mux blocks.
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(a) Complete controller structure

(b) Non-linear controller detail

Figure 4.11: Sliding mode controller
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4.6 EICASLAB implementation

This section deals with the implementation of the whole control schemes in

the EICASLAB environment. At first, it will be analysed the structure re-

lated to the pole placement design. Then, the sliding mode control scheme

will be evaluated. Before starting the analyses, some comments must be

made. In both the simulation schemes there will be the AD and DA blocks.

As already mentioned in chaper 3 section 3.4, EICASLAB was born with the

objective of building professional control schemes, therefore it is not possi-

ble to substitute the above-mentioned blocks with a simple sampler and a

zero order holder. However, since this work of thesis neglects the contribu-

tion coming from the quantization process, the best possible approximation

has been implemented. So, the smallest resolution for this two subsystems

has been chosen and the quantization effects have been mitigated. It is im-

portant to highlight that the resolution value is constrained by the specific

values interval of the quantities to be converted and by the available number

of bits. Since the two converters can work at most with integer variables of 32

bits, this value represents the maximum number of available bits. Moreover,

to know in advance the interval of values assumed by the variables, some

Simulink simulation have been used.

Furthermore, it must be pointed out that there will be another difference

between the EICASLAB simulation schemes and the Simulink ones. Indeed,

in the first ones there will be a specific block that perform an on-line compu-

tation of the RMS pointing error, in a specific time interval of observation.

Instead, in the Simulink schemes of figures 4.6, 4.9 this block does not ap-

pear because there has been the possibility to make the above-mentioned

computation off-line by using MATLAB.

Pole placement methodology

Figure 4.12 depicts the overall control scheme used when a pole placement

controller is employed. It is quite easy to recognize all the subsystems de-

scribed in section 4.2 and in chapter 2. As in the Simulink scheme of figure

4.9, there is a specific block responsible for the angles error computation.

This block is labelled as Pointing error and angle error and it is also respon-
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sible for the RMS pointing error, as mentioned at the beginning of section

4.6. In the following parts, the implementation of the Reference and Lin-

ear controller will be analysed. About the Control inputs block, it will be

briefly analysed in the Reference generator section, since it does not require

a detailed analysis.

Figure 4.12: Pole placement-based control scheme

Reference generator

The EICASLAB block representing the reference generation structure is

shown by figure 4.13. As it is possible to see, it has two inputs given by

the reference angles φref and θref and produces as outputs the reference an-

gles variable, labelled as angr, and the specific reference signal r, which are

injected in the Control inputs block. The first output is composed by the

above-mentioned angles and the third one computed by this block. To do

so, specific C code lines have been written, as mentioned in section 2.4. The

second output is the vectorial variable containing the usual reference quater-

nion components, according to the analysis made in section 4.4. To compute

it, the C code of relation (3.1) has been implemented, which simply defines

the angle-quaternion conversion. Also in this case, only the Output function

has been used, as already done for the control scheme of chapter 3. Finally,

a brief comment on the Control inputs block is necessary. As already men-

tioned, it does not perform any variable manipulation, so the variables are

simply merged and injected in the controllers block. These variables are: the

reference signal r, the external state µ, the vectorial angular velocity and

the actual attitude quaternion ω, q (i.e. the plant state labelled as xp) and

the reaction wheels angular momenta variable hRW , which coincides with the

well-known quantity H
(w)
B of chapter 2.
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Figure 4.13: Reference generation block

Controller

Finally, figure 4.14 depicts the block of the main part of the whole control

scheme i.e. Linear and FL controllers. It is characterised by the C code lines

needed to implement both the control structures. Also in this case, like the

controller of chapter 3, it has been used only one of the three main functions

that define the C code structure of any EICASLAB simulation block i.e. the

Output function. This has been divided in three portions: the pre-processing

part, the main computation section and the post-processing portion. This is

the same structure used for the PD controller of chapter 3. So, in the same

way, the pre-processing part is used to implement the DA operation on the

variable labelled as cref , in order to work with the analogic variables and

not with the converted/digital ones. This means that all the manipulations

performed by the main computation part are done with respect to variables

values that are real numbers and not suitable integers coming from the AD

block of figure 4.12. It is important to remind that cref is a vectorial variable

that contains all the outputs coming from the Control inputs block. These

quantities have been mentioned before, at the end of the Reference generator

analysis.

Instead, the main computation section is composed by specific C functions to

implement relations (4.34) and (4.53), that define the input-output linearisa-

tion and the pole-placement control law. As mentioned before, since all the

variables subject to manipulations are real number, they are represented by

the C variable type double.

Finally, the post-processing portion is responsible for implementing the AD

operation on the output produced by the main computation part i.e. the

vectorial control torque. In this way, the torque command is converted from

double to int (32 bit integer) and injected in the DA block shown by figure

4.12. This variable is labelled as Tc, as displayed by figure 4.12 and 4.14.
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Figure 4.14: Controller structure

Sliding mode approach

Figure 4.15 shows the complete control scheme used in presence of a sliding

mode controller. It is quite easy to see that the scheme is really similar to the

one describing the pole placement approach. Therefore, it will be directly

described the subsystems that differ from the above-mentioned structure i.e.

the Reference and Non-linear and Feedback Linearisation Controllers. About

the Control inputs block, also in this case, it will be given a brief analysis, in

the Reference generator section, since it does not require a detailed discus-

sion.

Figure 4.15: Sliding mode-based control scheme

Reference generator

The block responsible for the reference generation is shown by figure 4.16.

As it is possible to see, it has the usual two inputs given by the reference

angles φref and θref and produces as outputs the reference angles variable,

labelled as angr, the second derivatives of reference signals rgi, according to

the relative degrees of each output analysed in section 4.1, and the reference

variable for the external state, labelled as µr. All these variables have been

analysed in section 4.4. This block contains the C code lines necessary to

build all the above-mentioned variables. In particular, it must be pointed out

that once the reference angles and the correspondent quaternion have been

computed, as usual, the components of the vectorial part are injected into

a specific function to compute the first and second derivatives. Then, the
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variable rgi has been built with all the second derivatives. Instead, the refer-

ence components and their first derivatives are used to define the variable µr.

It is important to remind that everything is compliant with the theoretical

analysis made in section 4.4 and the previous ones. Also in this case, only

the Output function has been used. Finally, a brief comment on the Control

inputs block must be done. This structure, as already mentioned, is respon-

sible only for the computation of the variable µ̃, labelled as µt in figure 4.16.

Its structure is given by (4.86). The other variables that enter the block are

not subject to any manipulation and they are simply merged and injected

in the controllers block, after the AD conversion. These variables are the

second derivatives of the reference signal r(γi) (labelled as rgi, the vectorial

angular velocity and the actual attitude quaternion ω, q (i.e. the plant state

labelled as xp) and the reaction wheels angular momenta variable hRW , which

coincides with the well-known quantity H
(w)
B of chapter 2.

Figure 4.16: Reference generation block

Controller

Figure 4.17 displays the key block of the whole scheme i.e. the Non-Linear

(NL) and Feedback Linearisation (FL) Controllers. It is characterised by the

C code lines needed to implement these two control structures. Also in this

case, it has been used only the Output function, which has been divided in the

same three portions described for the pole placement controller. Therefore,

since the structure is identical to the previous one, it is only necessary to make

a brief comment on the main computation section. This portion is basically

defined by C functions which implement relations (4.34) and (4.78), that

define the input-output linearisation and the sliding mode control law.

Figure 4.17: Controller structure



Chapter 5

Simulation results and

comparisons

This is the final chapter of the thesis, which aims to show the simulation re-

sults about the attitude control performed with the different control systems

analysed in the previous chapters. The discussion of the simulation results

will be split in two parts: the first one will refer to the disturbances-free

case, in order to study the basic behaviour of the specific control system.

In this situation, only the reference signal has been considered as input and

the system output response, in presence of different values of the controller

parameters, has been studied. So, some comments will be made about the

effect of the parameters modification on the output time trend. As already

mentioned in the previous sections, the main variables of the attitude con-

trol system are the error angles, which are used to understand how much the

telescope is far from the target star. Moreover, a brief analysis of the control

variable will be performed in order to understand if, in some situations, the

actuator saturation takes place. It is necessary to evaluate the behaviour

of the control system without any disturbance, since it is fundamental to

figure out if the specific control law can be suitable for the attitude control

of a small satellite. Instead, the second part of the simulation result analysis

deals with the control system behaviour when reaction wheels disturbances

act on it. It is quite important to highlight that the only disturbance con-

tribution comes from the RWs and all the environmental ones have been

108
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neglected, since the objective of this thesis is to perform an initial analysis of

the RWs disturbances impact on the overall control structure and how they

can be attenuated through the controller parameters. So, all the obtained

results about the telescope pointing error will be in general quite lower than

the ones characterizing all the papers related to the RWs disturbances effect.

This situation will be analysed in the specific section. Also in this simula-

tion case, it will be evaluated the time trend of the error angles, in order

to understand how much the oscillations induced by the reaction wheels dis-

turbances affect the pointing stability of the telescope. Moreover, a brief

discussion about the disturbances and the control inputs will be performed.

Finally, some comments and comparisons will be made about the simula-

tion results obtained with the the three control structures. Before starting

the discussion, it is important to highlight that even though the control sys-

tems simulations have been performed in both the well-known environments

i.e. MATLAB/Simulink and EICASLAB, almost all the figures that will be

shown in the following part refer to the Simulink implementation and only

some pictures will refer to the EICASLAB one. This situation is simply due

to space problems and to avoid making the analysis too redundant.

5.1 Simulations without disturbances

As mentioned in the chapter introduction, this section focuses on the simula-

tion results analysis of the three control systems, previously analysed, when

only the reference signal is applied. Therefore, no disturbance has been con-

sidered in the following simulations. As mentioned before, it will be shown

the time trend of the three error angles defined as the difference between the

reference Cardan angles φref , θref , ψref and the ones describing the actual

satellite attitude φ, θ, ψ, expressed in arcseconds, since it is the measurement

unit used in this kind of applications. Furthermore, the control torque ap-

plied by each reaction wheel to the satellite will be studied. The order that

will be followed for the simulations analysis is the same of the previous theo-

retical description. So, at first the PD controller will be evaluated and, then,

the feedback linearisation structure plus the linear and non-linear controller

will be analysed.
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PD controller

The Proportional-Derivative controller is characterized by a control variable

expressed by (3.5) which can be suitably modified by considering the small

angle approximation (3.6). Moreover, this control law includes the gyroscopic

compensation term, used to remove the non-linearity of equation (2.15).

Therefore, the net control torque is expressed by (3.12), which clearly high-

lights that proportionality to the error angles and their derivatives through

the matrix K
′
P and K

′
D. Now, as mentioned before, these matrices are diag-

onal, so that a decoupled system is obtained, and all the coefficients for each

matrix (relation (3.14)) are equal. Now, by recalling that these coefficients

have been considered as kP = ω2
n and kD = 2ζωn, the following time trend

for the error angles are considered, when specific variations of ωn and ζ take

place. It is quite important to highlight that the following figures refer only

to the error angle relative to the z-axis of the body frame ψe, since the only

non-zero reference angle is ψref and the initial conditions are related only to

the angle ψ, as mentioned in chapter 2. So, the other error angles φe and

θe are always null. Figures 5.1, 5.2/5.3 and 5.4 highlight the time trend of

the error angle on the body frame z-axis ψe, when a variable ωn and a fixed

ζ are considered. It is quite evident that an increase of ωn makes the error

convergence faster and it also reduces its maximum absolute value. Instead,

an increase of ζ leads to a more damped behaviour of the error. This situa-

tion is well-evident through a comparisons among the scenarios described by

figures 5.1, 5.2 and 5.4 (Simulink environment). Figure 5.3 shows the error

time trend when the control system simulation is performed in EICASLAB.

So, it easy to notice that almost the same results of figure 5.2 have been ob-

tained. The small differences are due to the quantization procedure effects,

which have been mitigated as much as possible.
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Figure 5.1: Error angle ψe when ωn ∈ {0.5, 2, 8} and ζ = 0.2375
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Figure 5.2: Error angle ψe when ωn ∈ {0.5, 2, 8} and ζ = 0.475
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Figure 5.3: EICASLAB simulation results of ψe when ωn ∈ {0.5, 2, 8} and

ζ = 0.475
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Figure 5.4: Error angle ψe when ωn ∈ {0.5, 2, 8} and ζ = 0.95
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Now, it is really interesting to point out that a particular behaviour takes

place when ωn = 8 and ζ = 0.2375. As it is possible to see from figures 5.1,

with the above-mentioned values, the error angles is not as damped as in the

cases represented by ωn = 0.5, 2. This situation is due to the influence of

the DC motors dynamics on the overall system. As mentioned in chapter 2,

the coefficient K∗ has been used to neglect the motor dynamic. This means

that in the scenario of figure 5.1 the values of this gain is not high enough

to consider negligible the actuator dynamic. Instead, for the other situations

this value is quite good and an increase of it does not leads to strong mod-

ification of the error angle trend. Therefore, the solution to this problem is

to increase the value of K∗. Figures 5.5 and 5.6 display the scenarios before

and after the coefficient increment. So, it is evident, from the comparison

between these figures, that with a higher K∗ the ψe trend is more damped

and aligned with the other situations.
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Figure 5.5: Error angle ψe when ωn = 8 and ζ = 0.2375 before the K∗

increment
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Figure 5.6: Error angle ψe when ωn = 8 and ζ = 0.2375 after the K∗ incre-

ment

Finally, it is interesting to show that an increase of ωn produces a quite strong

increment of the control command (variable Tc in the Simulink schemes),

higher than the one obtained with an increment of ζ for a fixed ωn. However,

due to the limitation of the actuator torque, even if a high K∗ is consid-

ered, there will be a strong difference between the torque command and the

torque produced by the motor if the control command exceeds too much

the saturation value of the actuator. Figure 5.7 and 5.8 depict this situation,

characterized by an high value of K∗. In particular, figure 5.7 shows the time

trend of the torque command when it does not exceed the limit value (fixed

at 0.635mNm) and the correspondent motor torque, which is quite similar

the previous one. Instead, figure 5.8 displays the scenario when the torque

command exceeds (not too much) the saturation value. In this case, the

motor torque starts moving away from the control command, even though

the coefficient K∗ is quite high.
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Figure 5.7: Torque command vs motor torque when ωn = 2 and zeta = 0.95
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Figure 5.8: Torque command vs motor torque when ωn = 8 and zeta = 0.95
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Feedback linearisation approach with a linear controller

This section aims to show the simulation results obtained with a feedback

linearisation approach plus a linear controller, designed with the pole place-

ment technique. In this case, as mentioned in section 4.2, the control law

for each Cardan angle is characterized by the matrix Ki
c and the gain N i, as

shown by relation (4.53). These two parameters are determined by choosing

the desired poles/eigenvalues positions and, in this thesis, they have been

defined as λ1/2 = −ζωn ± ωn
√

1− ζ2. Therefore, as displayed in chapter 4,

the coefficients of Ki
c are equal to ω2

n and 2ζωn and the gain N i coincides

with first element of Ki
c i.e. ω2

n. So, also in this case, different graphs will be

shown by considering suitable variations of ωn and ζ. It is quite interesting to

remind that the transfer function between reference angle and actual one is

very similar to the one determined for the PD controller case. In particular,

the following figures will show that, for the situation analysed in this thesis,

the two control approaches (PD and FL plus a linear controller) produce the

same simulation results. Also in this case, only ψe will be shown. Figures

5.9, 5.10/11 and 5.12 clearly show that the time trend of ψe is identical to

the one obtained with the Proportional-Derivative control. Therefore, the

same comments about the effect of ωn and ζ variation can be made in this

situation. Figure 5.11 displays the simulation results obtained by using the

EICASLAB environment. They are almost identical to the ones of figure 5.10

and, consequently, of figures 5.2/5.3. Moreover, it is also evident from figure

5.9 the effect of the DC motor dynamic on the angle error when ωn = 8 and

ζ = 0.2375. Also in this case, an increment of K∗ leads to a more damped

trend, as mentioned in the previous section for the PD control. Finally, the

increase of ωn produces the same time trend for the torque command and

motor torque seen before. Therefore, a too high value of this coefficient leads

to overcome the actuator saturation level and to determine an augmented

discrepancy between the two torques.
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Figure 5.9: Error angle ψe when ωn ∈ {0.5, 2, 8} and ζ = 0.2375
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Figure 5.10: Error angle ψe when ωn ∈ {0.5, 2, 8} and ζ = 0.475
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Figure 5.11: EICASLAB simulation results of ψe when ωn ∈ {0.5, 2, 8} and

ζ = 0.475
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Figure 5.12: Error angle ψe when ωn ∈ {0.5, 2, 8} and ζ = 0.95
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Feedback linearisation method with a non-linear con-

troller

As mentioned in chapter 4, the feedback linearisation approach has been

used together with a non-linear controller, developed through the sliding

mode methodology. In this case, the specific control law for each Tait-Bryan

angles is characterized by three parameters, as mentioned by (4.78): k1, k2

and η. The following figures describe the behaviour of the only variable of

interest i.e. ψe, when a suitable variation of these coefficients is considered.

The first figure (5.13) shows the time trend for the initial scenario, where

k1 = 0.5, k2 = 0.5 and η = 1, and two cases where only a variation is consid-

ered. In the first one, only η is modified and set to 10. Instead, the second

one is characterized by the variation of k2, imposed equal to 4. As it is pos-

sible to notice, by modifying η (the parameter that defines the non-linearity)

a strong reduction of the maximum absolute value of the error is attained.

However, it can be seen a small reduction of the convergence speed. A quite

similar behaviour can be obtained through the modification of k2. In this

situation, the maximum value is a little bit higher than the previous case

but, anyway, much lower than the initial one.

Figures 5.14/5.15 depict an augmented analysis of the error trend, by con-

sidering other kinds of variation. In particular, two scenarios are added to

the previous analysis i.e. the modification of the coefficient k1 = 2 and the

contemporary change of k1 = 2, k2 = 4. In the first case, it is easily to notice

that the variation of k1 produces worse results in terms of maximum value,

even though it tends to keep unaltered the convergence speed of the initial

scenario. Instead, the second case shows a strong improvement with respect

to the initial condition and also a better behaviour of the error with respect

to all the situations analysed so far. Indeed, the maximum absolute value

is lower and also the convergence velocity is a little bit higher. Figure 5.15

shows the EICASLAB results relative to this augmented analysis of ψe. It is

evident that they are almost equal to the ones displayed by figure 5.14.

Finally, figure 5.16 display the complete analysis of ψe, by considering other

two double variations and a triple one. The first double modification involves

k2 = 0.5 and η = 10 and shows a reduced maximum value with respect to the
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case where k1 = 2, k2 = 4, η = 1 and an unmodified convergence speed. In-

stead, the contemporary modification of k1 = 2 and η = 10 produces an even

smaller value of the maximum error, but it is characterized by a very small

convergence speed. Finally, the triple variation described by k1 = 2, k2 = 4

and η = 10 generates the best possible result in terms of maximum error and

convergence velocity. From all these simulations, it can be noticed that no

tracking problem has been experienced. Therefore, the internal stability of

the system, mentioned in chapter 4, can be considered asymptotically stable.
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Figure 5.13: First analysis of error angle ψe with variation of k1, k2, η
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Figure 5.14: Second analysis of error angle ψe with variation of k1, k2, η
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Figure 5.15: EICASLAB second analysis of the error angle ψe with variation

of k1, k2, η

0 1 2 3 4 5 6 7 8 9 10

-160

-140

-120

-100

-80

-60

-40

-20

0

k
1
=0.5  k

2
=0.5  =1

k
1
=0.5  k

2
=0.5  =10

k
1
=0.5  k

2
=4  =1

k
1
=2  k

2
=0.5  =1

k
1
=2  k

2
=4  =1

k
1
=0.5  k

2
=4  =10

k
1
=2  k

2
=0.5  =10

k
1
=2  k

2
=4  =10

Figure 5.16: Final analysis of error angle ψe with variation of k1, k2, η
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Now, it is interesting to notice that for almost all the scenarios, the initial

value of K∗ is such that the DC motor dynamic does not strongly influence

the error trend, since its increment does not lead to consistent modifications.

The only exceptions occur when both k1 and/or k2 and η are modified. The

following figure shows the scenario represented by the triple parameter vari-

ation with respect to the initial case.
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Figure 5.17: ψe with k1 = 2, k2 = 4, η = 10 and different values of K∗

Finally, it is important to highlight that there are two scenarios where the

torque command exceeds the limit value and , therefore, a consistent discrep-

ancy between the motor torque and the command one occurs even though

the coefficient K∗ assumes a very high value. These situations are character-

ized by: 1) k1 = 2, k2 = 0.5, η = 10 2) k1 = 2, k2 = 4, η = 10. Figure 5.15

depicts the latter situation, when a very high value is considered for K∗.
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Figure 5.18: Torque command vs motor torque with k1 = 2, k2 = 4, η = 10

and high value of K∗
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5.2 Simulation results with disturbances

This section aims to analyse the effects of the RWs disturbances on the three

error angles that characterize the pointing action of the satellite telescope.

Figure 5.19 clearly depicts what happens, in general, on the focal plane of the

telescope when the spacecraft is subject to the reaction wheels disturbances.

It is important to point out that for each wheel the disturbances are expressed

by relation (1.15) to (1.18), which highlight the sinusoidal/oscillating trend

of these variables. As already mentioned in chapter 1, the only contribution

analysed in this thesis comes from the fist/fundamental harmonic, which pro-

duces the most relevant effect.

The above-mentioned figure shows the equivalent motion of the target star

on the focal plane, even though it is clear that the star is still and the ele-

ment that moves is the satellite. Anyway, it is a good method to represent

the impact of the disturbances on the pointing stability. The control system

objective is making the target star motion as close as possible to the central

point of the focal plane, such that a reliable. photometric analysis can be

obtained.

Figure 5.19: Example of the target star motion on the telescope focal plane

[10]

In the following parts, it will be shown the time trends of the three Cardan

angles errors φe, θe and ψe, when different control approaches are considered.

The analysis will start with the PD control simulation results and, then, it

will focus on the feedback linearisation approach with the addition of the lin-

ear and non-linear control. Before starting the discussion, it is fundamental to
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highlight that all the obtained results, about the oscillating behaviour of the

three error angles, are characterized by values that are quite lower than the

ones that can be obtained in general and mentioned in different papers about

the reaction wheels impact on a small satellite attitude. The reason of this

situation is basically due to total absence of environmental disturbances like

gravity gradient, magnetic effects and aerodynamic drag. Indeed, since this

work of thesis aims to perform an initial analysis of the RWs disturbances ef-

fect on the telescope pointing stability, all the above-mentioned disturbances

have been neglected. However, these external disturbances lead to a strong

counteraction of the controller command which, in turn, generates a higher

rotation speed of the actuator and so disturbances with higher frequency and

amplitude. Therefore, in this situation, the values of the three Cardan error

angles are much higher than the ones presented in this thesis.

PD controller

As already mentioned in section 5.1, the PD controller is characterized by two

matrices whose values are related to the coefficients ωn and ζ. The following

figures shows the time trend of the angle errors φe, θe, ψe when different

values for these parameters are considered.

Figures from 5.20 to 5.24 depict the error angles associated to the x, y and

z axis of the body frame φe, θe and ψe at steady state, by considering three

plots characterized by a variable value of ζ and ωn. As it is possible to see,

φe and θe have a high frequency oscillating behaviour due to the disturbances

effect. In particular, from figures 5.20 and 5.22 it is evident that an increasing

of ωn with ζ = 0.95 (third plots) leads to an attenuation of the maximum

error, which is the main objective of the control system. Instead, when

fixed values ζ = 0.2375 and ζ = 0.475 are considered, the increment of

ωn from 0.5 to 2 produces a higher maximum value for the error. This

situation does not take place when the value of ωn is equal to 8. Indeed,

a strong reduction of the error occurs. All these results are coherent with

the specific transfer functions that describe the effect of the disturbances on

actual attitude angles. Moreover, from figures 5.21 and 5.23 it can be noticed

that with ωn = 0.5 and variable ζ the maximum value of the errors is almost
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the same. A different situation occurs when ω = 2 and ωn = 8, since an

increment of ζ generates an evident reduction of the error values.

Figure 5.24 displays the trend of ψe. It is quite clear that this variable is

not subject to any variation with respect to the disturbances-free case. This

results can be explained in the following way: since the target star lays in the

same plane of the orbit and the satellite starts with the body frame z-axis

orthogonal to the orbit plane and, so, x and y lay on this plane, the main

control action that must be applied to point the telescope towards the star

refers to the angle related to the z-axis i.e. ψ. Instead, when disturbances

act on the x and y axis, the control action used to take the attitude angles

φ and θ to the reference values i.e. zero is quite modest. Therefore, the

main control action leads to a higher steady state rotational speed of the

reaction wheel aligned with the z-axis than the ones related to the other

wheels. Subsequently, since the disturbances amplitude is proportional to

the square of the wheel rotational speed, as mentioned by relations (1.15) to

(1.18), the disturbance that the z-wheel produces on the body frame axes x

and y is quite stronger than the ones produced by the x-wheel and y-wheel

on the z axis of the body frame, which are basically negligible.

Moreover, it must be pointed out that a higher value of K∗ does not lead

to consistent modifications of the errors trend. The only exception is the

behaviour of ψe when ωn = 8 and ζ = 0.2375, as deeply analysed in section

5.1.

Finally, from the above-mentioned simulation results has been possible to

compute the RMS of φe and θe, at steady state. In particular, the RMS of φe

varies from a minimum value of 0.0064 arcsec to a maximum one of 0.0332

arcsec. Instead, the RMS of θe spans from 0.0013 arcsec to 0.0064 arcsec.

The minimum values for ψe and θe are obtained with ωn = 8 and ζ = 0.95.

Instead, the maximum ones with ωn = 2 and ζ = 0.2375. Clearly, for all

the other values of the parameters, the RMS assumes a value between the

minimum and maximum one.

Furthermore, figures 5.25 and 5.26 depicts the simulation results of φe and θe,

obtained with the EICASLAB environment when ωn∈{0.5 2 8} and ζ = 0.475.

These plots are more or less equal to the second graph of figures 5.20 and

5.22 in the time interval t ∈ [220 225] s.
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Figure 5.20: Error angle ψe with fixed ζ and variable ωn
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Figure 5.21: Error angle ψe with variable ζ and fixed ωn
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Figure 5.22: Error angle θe with fixed ζ and variable ωn
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Figure 5.23: Error angle θe with variable ζ and fixed ωn
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Figure 5.24: Error angle ψe

Figure 5.25: EICASLAB results of φe ωn ∈ {0.5 2 8} and ζ = 0.475
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Figure 5.26: EICASLAB results of θe when ωn ∈ {0.5 2 8} and ζ = 0.475

Feedback linearisation with the linear controller

As already mentioned in section 5.1, the feedback linearisation method with

the linear controller, designed with the pole placement technique, leads to

identical results to the PD control ones. So, also in this case will be shown

the time trend of the error angles when different values of ωn and ζ are

considered. Then, the comments made in the previous section, about the

disturbances attenuation for φe and θe and the invariance of ψe with respect

to the disturbances-free case, as well as all the other comments, can be re-

proposed for this control strategy. Figures 5.27 to 5.31 clearly confirm what

has been said. Moreover, the RMS values computed for the PD controller

case are the same ones obtained with this control technique. Finally, figures

5.32 and 5.33 display the EICASLAB simulation results of φe and θe when

ωn ∈ {0.5 2 8} and ζ = 0.475, as already done for the PD control.
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Figure 5.27: Error angle φe with fixed ζ and variable ωn
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Figure 5.28: Error angle φe with variable ζ and fixed ωn
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Figure 5.29: Error angle θe with fixed ζ and variable ωn
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Figure 5.30: Error angle θe with variable ζ and fixed ωn
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Figure 5.31: Error angle ψe

Figure 5.32: EICASLAB results of φe when ωn ∈ {0.5 2 8} and ζ = 0.475
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Figure 5.33: EICASLAB results of θe when ωn ∈ {0.5 2 8} and ζ = 0.475

Feedback linearisation with the non-linear controller

Now, the time trend of the error angles φe, θe and ψe is analysed, when

a feedback linearisation approach with the non-linear controller, developed

with the sliding mode methodology, is used. As stated in section 5.1, the

main controller parameters for each control law, associated with a Cardan

angle, are k1, k2 and η. The following figures put in evidence how these

parameters can be chosen to reduce the effect of the RWs disturbances. Also

in this case, the steady state behaviour of the error angles will be analysed.

Figures 5.34 and 5.35 show the oscillating behaviour of φe and θe, when a

suitable combination of the three control parameters is considered. The first

plot highlights the maximum value reduction that occurs when the increase

of η = 10 or k2 = 4 takes place, with respect to the initial condition charac-

terized by k1 = 0.5, k2 = 0.5 and η = 1. So, it is very clear that by increasing

η a higher reduction of the error is obtained than the one related to the k2

increment. Anyway, these two scenarios are not so different.

Instead, the second plot focuses on the increment of k1 = 2 and the double

variation of k1 = 2 and k2 = 4. It is important to remind that these varia-

tions are referenced to the initial scenario. Therefore, in this case, the value

of η is still equal to 1. It is evident that the only increment of k1 leads to

a very small attenuation of the error with respect to the initial case. So, it

produces worse results with respect to the cases characterized by k1 = 0.5,

k2 = 0.5, η = 10 and k1 = 0.5, k2 = 4 and η = 1. Instead, when the double
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modification occurs a good attenuation takes place. This situation is quite

similar to the one described by the only variation of η = 10 (actually, it is

a little bit worse) and a little better than the scenario given by the k2 = 4

change.

The third plot points out the effects of two double variations and a triple

modification. Indeed, in the first case the parameters are k1 = 0.5, k2 = 4,

η = 10, in the second scenario k1 = 2, k2 = 0.5, η = 10 and in the third

situation k1 = 2, k2 = 2, η = 10. It is immediately evident that the first

scenario produces better results than all the previous cases. Then, the max-

imum error is further reduced by considering the parameters related to the

second and third situation. In particular, the results obtained with the triple

parameters variation are a bit better than the ones characterizing the double

modification k1 = 2, η = 10.

Instead, figure 5.36 highlights the same situation that occurs with the PD

control and the feedback linearisation approach with the linear controller. In-

deed, the time trend of ψe does not change with respect to the disturbances-

free case. The reason behind this situation has been explained in the previous

part.

It is important to highlight that an increase of K∗, with respect to the chosen

value, does not lead to consistent modifications of the errors trend. The only

exception is represented by ψe when both k1 and/or k2 and η are changed,

as discussed in section 5.1.

Moreover, the RMS values of φe and θe , at steady state, have been computed.

In particular, the RMS of φe oscillates from 0.0042 arcsec and 0.0262 arc-

sec. Instead, θe varies from 0.00084 arcsec and 0.0053 arcsec. The minimum

values are obtained with k1 = 2, k2 = 4, η = 10. The maximum ones with

k1 = 0.5, k2 = 0.5, η = 1. For all the other simulation scenarios the RMS

values are inside the intervals defined by the minimum and the maximum.

Finally, figures 5.37 and 5.38 show the EICASLAB results of φe and θe, when

these three scenarios are considered: 1) k1 = 0.5, k2 = 4, η = 10, 2)k1 = 2,

k2 = 0.5, η = 10, 3) k1 = 2, k2 = 4, η = 10. These plots are more or less

coincident with the ones sketched by the third graph of figures 5.34 and 5.35.
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Figure 5.34: Error angle φe with variablek1, k2 and η
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Figure 5.35: Error angle θe with variable k1, k2 and η
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Figure 5.36: Error angle ψe with variable k1, k2 and η

Figure 5.37: EICASLAB results of φe with fixed η = 10 and variable k1, k2



CHAPTER 5. SIMULATION RESULTS AND COMPARISONS 137

Figure 5.38: EICASLAB results of θe with fixed η = 10 and variable k1, k2

5.3 Comments and comparisons

Before making some comments and comparisons about the the results ob-

tained with the three different control approaches, it must be pointed out

that the choice of setting the control laws parameters, related to a single

Cardan angle, equal to each other has been made to simplify all the sim-

ulation operations. It is quite evident, from the theoretical analyses made

in chapter 2, 3 and 4, that it is possible to have different values for each

of the three control laws. Therefore, by considering the specific set of con-

troller parameters for each Tait-Bryan angle, one of the results shown in the

previous figures can be obtained. Moreover, it must be pointed out that for

all the simulations the steady state angular speed of the wheel aligned with

the z-axis, which is the one related to the most relevant control action, has

assumed more or less the same value. This means the disturbances produced

by this wheel on the x and y axis of the body frame have been characterized

by almost the same amplitude and frequency value.

About the time trend of the error angles, displayed in the previous sections,

it can be noticed that in the disturbances-free case, the PD control and the

feedback linearisation approach with the linear controller produce in some

situations oscillating behaviour during the transient, which can be suitably

damped by increasing the coefficient ζ. This situation, instead, never occurs

with the FL plus the non-linear controller method. Indeed, it is always ob-

tained a not oscillating time trend of the error angle ψe. Anyway, all the
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three control systems are able to produce quite good results when suitable

sets of parameters are chosen for the control law. This means that the new

approach proposed in this thesis can be considered a valid alternative to the

classical PD structure. Indeed, with the pole placement approach, the same

result of the PD control can be obtained. And, quite good performance can

also be attained with the sliding mode technique.

Instead, when the RWs disturbances act on the overall system, it has been

noticed that all the three control methodology are able to provide good at-

tenuation of the oscillating time trend of φe and θe, by properly modifying the

specific parameters. Therefore, also in this case, the new control approach

can be considered as valid as the Proportional-Derivative one, which is in

general the most used technique.

Finally, it is important to highlight that the non-linear controller can provide

robustness to the control system due to its non-linear term, characterized by

the sigmoidal function. This can be a key characteristic that can lead to pre-

fer this control strategy rather than the previous ones, when the knowledge

of the satellite inertia matrix is not perfect. As it will be mentioned in the

conclusive chapter, it can be a really interesting future work to be developed.



Conclusions and future works

This thesis has been developed with the specific purpose of performing an

initial analysis of the reaction wheels disturbances effects on the attitude

control system of a small satellite (a 3U CubeSat) and understanding if a

new control approach, based on the feedback linearisation, could be as valid

as the classical method characterized by the PD control. So, it has been

noticed that the reaction wheels produce a sum of sinusoidal disturbances,

whose amplitude and frequency increase with the rotational speed, when they

are employed for the attitude control. Consequently, the satellite telescope

is subject to an oscillating/vibrating motion, known as jitter, which can

strongly influence the desired photometric analysis. Therefore, the control

system must be able to reduce as much as possible the amplitude of the

disturbances and so decreasing the amplitude of error angles oscillations. By

the way, the classical PD approach is able to achieve the above-mentioned

objective, as shown in chapter 5. Moreover, it has been discovered that

also this different control strategy ensures as good performance as the one

that can be obtained with the classical methodology. In particular, it has

been found out that the FL approach with a linear controller, based on the

pole placement technique, produces the same results of the Proportional-

Derivative method. Therefore, it can be definitely stated that the proposed

control structure can be employed for the attitude control of a small satellite,

when three reaction wheels are used as actuators.

Now, some future works that can be developed will be analysed.

• Environmental disturbances: this work of thesis has neglected any

kind of disturbances comes from the environment like gravity gradient,

magnetic effects and aerodynamic drag. As already mentioned they
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can lead to an augmented control action and, consequently, higher ro-

tational speeds of the RWs, which would produce disturbances with

higher amplitude. So, in a future work they must be included in the

control system structure.

• Satellite inertia matrix uncertainty: another possible element that

can be considered is the uncertainty related to the inertia matrix of the

spacecraft. So, at first, it is possible to vary all or some elements of the

matrix but blinding these variations to the controller, in order to verify

potential robustness properties of the control system. By the way,

the sliding mode control has been chosen for this reason. Indeed, the

non-linear sigmoidal term inside the control law is used to increase the

robustness of the controller. Therefore, suitable comparisons between

the robustness of a PD controller and the sliding mode one can be

developed.

• A/D and D/A effects: the effects coming from the conversion op-

erations can also be considered. So, it can be analysed how much the

quantization process influences the control performance. Moreover, it

is also interesting to evaluate the impact of different sampling time

values.

• Practical implementation: since with the EICASLAB software the

C code of the controller has been written, another interesting future

work could be the development of the control law on a specific target

board, in order to move towards a real practical implementation. For

instance, by exploiting the support given by EICASLAB to Arduino

board, it is possible to use it for the controller and a myRio board, by

National Instruments, to simulate the plant and all the other subsys-

tems. In this way a Hardware in the Loop procedure can be analysed.
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