
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering
Data Science

- & -

UNIVERSITAT POLITÈCNICA
DE CATALUNYA (UPC) - BarcelonaTech

FACULTAT D’INFORMÀTICA DE BARCELONA (FIB)

Master in Innovation and Research in Informatics
High Performance Computing

Developed during an Internship at the
Barcelona Supercomputing Center (BSC)

Master Thesis

Tracing methodologies and tools for
Artificial Intelligence and Data Mining

Java applications

Supervisors

Prof. Maria Luisa GIL GOMEZ†

Prof. Paolo GARZA††

Author

Roberto STAGI

†Department of Computer Architecture (DAC), UPC
††DAUIN, Politecnico di Torino

July 2020

Acknowledgements

This is the final act of 5 years of University studies. Five years of fun, of
hard work, of travels, of study, of learning. Impossible to talk about everyone or
everything, there’s a lot to thank for. A big thank you:

To my two supervisors, prof. Marisa Gil Gomez and prof. Paolo Garza, for
their guidance and patience.

To all my professors and their collaborators. I may have had a better feeling
with some rather than others, but I learned a lot from every single one of them.

To all my work and university colleagues. Especially to my colleagues from
the PoliTOcean student team, for the endless working nights spent together, and
to my colleagues at the BSC, who supported me during the development of this
thesis.

To the people who developed and who answer on Stack Overflow, that saved
my life more times than I’d like to admit.

To my mother, my number one supporter and communicator of any achieve-
ments of mine to the world.

To my father, who made me passionate of computer science and always
supported me in pursuing my dreams.

To my brother, who just graduated too—congrats bro.

To my grandparents, who still have to understand exactly what I’m studying,
but still have been unconditionally supporting me.

To all my uncles, aunts, cousins and the rest of the family, for whom I am the
“white sheep”, and to which I’m grateful for all the love they’ve showed me for my
whole life.

To all my historical friends “from the South”, the friends of a lifetime. Espe-
cially to Giulia and Chiara, who have always been there in my times of need.

i

To all my friends from Turin; especially to the “Germogli” group, with whom
I shared most of my days in the place I’ve called home in the last years, and to
Marco, who also helped me with Maven.

To the “Carbonara Polo Gang” from Denmark and to the “Italians BCN” from
Barcelona, my families during my two wonderful Erasmus experiences.

To anyone who doesn’t fall in any specific group, but still has played a central
role in my life and without whom I wouldn’t be the man who’s writing these
words.

Last, but not least, to my beloved girlfriend, who colors my days even when
long distances are between us. To her, my greatest thank you, and my truest love.
I love you, Cristina.

ii

“Successful people keep moving.
They make mistakes, but they don’t quit.”

— Conrad Hilton

iii

Abstract

Supercomputing and Artificial Intelligence have been behind the scenes of many re-
cent discoveries. From an implementation point of view, nowadays they use parallel
and distributed approaches, that best fit the modern hardware architecture. In
this context, the Java programming language plays a marginal role. However, Java
is still in high demand, it is employed in AI and runs effectively on supercomputers.
Even if a smaller set of programmers use it for HPC (High Performance Computing)
applications, its influence in the AI world is not negligible and it deserves a larger
attention to the tools that support its development in such environment.
An important tool to improve HPC programs is Performance Analysis, that is
concerned with achieving efficient utilisation of system resources. A common
technique is to collect trace data and then analyse it for possible causes of poor
performance. The Performance Tools department of the Barcelona Supercomputing
Center (BSC), is in charge of developing this kind of tools, and this thesis has been
carried out as an intern in this department. For this reason the base of the work
is going to be on the two main tools developed there: Extrae and Paraver. The
former is the program needed to extract information, while the second one is used
to show them.
The state of the art of Extrae’s instrumentation for Java is poorly implemented.
Out of some basic features to trace basic thread events, using the instrumentation
of pthreads (on which all Java threads are mapped), it does not give much valuable
information. A study on the state of the art is covered in chapter 2.
Since Extrae is implemented in C, generating probes and wrappers would not be
an issue for other C-implemented programs, and it obviously results to be harder
to do for Java programs. For this reason, in chapter 3 there is an overview of the
approaches that can be used to generate the traces for a Java program.
The approach that is then developed is going to be based on an event-driven
platform offered by the JVM (the JVM TI), united to the extension for the Java
language that implement aspect-oriented programming paradigm (AspectJ). The
development of this platform follows in chapter 4 and chapter 5, and it will be
applied on two real frameworks for Java (Hadoop and Spark) in chapter 6, where
also discussions on the whole work of the thesis can be found.
The scope of this thesis has not been on delivering a final product, rather than
defining some methodologies that can be employed to instrument any kind of Java
framework.

iv

Table of Contents

List of Tables ix

List of Figures x

Acronyms xii

1 Introduction 1

1.1 Context: High Performance Computing, Artificial Intelligence and
Java . 1

1.1.1 Java-powered AI and Data Mining 2

1.1.2 Distributed Java in HPC . 3

1.1.3 Performance analysis . 4

1.2 MareNostrum Tools Environment 5

1.2.1 Paraver . 5

1.2.2 Extrae . 7

1.3 Problem Statement and Goal . 8

1.4 Materials and Methods . 9

2 Extrae for JAVA: State of the Art 10

2.1 The example program . 10

2.2 Generate the traces . 13

2.3 Pthread instrumentation . 14

v

2.4 Traces analysis . 15

2.5 Extrae Java API through JNI implementations 17

2.6 Experimental features . 19

2.6.1 Java Virtual Machine Tool Interface 19

2.6.2 AspectJ for User Functions 19

2.7 Meet extraej . 20

2.8 Where to go from here . 22

3 Java Tracing Methodologies 24

3.1 Linker Preload approach . 24

3.2 Event-driven instrumentation . 25

3.3 Bytecode and Native Instrumentation 26

3.3.1 Bytecode manipulation in C and Java 27

3.3.2 Native methods instrumentation 27

3.4 Aspect Oriented Programming approach 28

3.5 Discussion on the methodology to adopt 28

4 Basic threads instrumentation with the JVM TI 30

4.1 JVM Tool Interface preliminaries 30

4.1.1 JVM TI Events . 30

4.1.2 JVM TI Initialization and Callbacks 31

4.2 Tracing platform implementation 33

4.3 Thread identifier and Backend . 34

4.3.1 Defining the identifier . 34

4.3.2 Backend implementation . 35

4.4 Notify the new threads . 37

4.5 Tracing the events . 39

4.5.1 Events IDs . 39

vi

4.5.2 Probes implementation . 40

4.5.3 JVM TI Callbacks . 41

4.5.4 Paraver states semantics . 43

4.5.5 Tracing the remaining events 45

4.6 Discussion of the partial results . 46

4.6.1 Traces analysis . 46

4.6.2 Thread IDs . 46

4.6.3 Would JVM internal instrumentation provide any added value? 47

5 AspectJ and other improvements 48

5.1 Setting user class path to extraej 48

5.2 AspectJ for Instrumentation . 50

5.2.1 Introduction to AspectJ . 50

5.2.2 What to trace using AspectJ 51

5.2.3 JNI implemented probes . 52

5.2.4 Instrumentation aspects implementation 54

5.2.5 Compiling everything and setting the agent 55

5.2.6 Resulting traces and discussion 57

5.3 Events values: a better view . 57

6 Applications and Discussion 63

6.1 Analyzing Hadoop MapReduce . 63

6.1.1 The example program . 63

6.1.2 Resulting Traces . 65

6.1.3 Probes-Application interference 66

6.1.4 Steps towards instrumentation 67

6.2 Analyzing Spark . 69

6.2.1 The example program . 69

vii

6.2.2 Resulting traces . 70

6.2.3 Instrumentation overhead 71

6.2.4 Steps toward instrumentation 72

6.3 Tracing overhead analysis . 72

6.4 Discussion . 73

7 Conclusions 76

7.1 Further improvements . 77

7.2 Final considerations . 78

A Environment set-up 79

A.1 GitHub . 79

A.2 Examples of usage . 80

A.2.1 Set-up . 80

A.2.2 Docker image build . 80

A.2.3 Running the program . 80

A.2.4 Show the traces . 81

A.2.5 Examples . 81

B Useful Code 82

Bibliography 90

viii

List of Tables

2.1 Currently traced states for Java threads instrumentation 17

4.1 Summary table for the traced Thread events and related states. The
events marked with an asterisk * are disabled when pthread tracing
is enabled. 45

5.1 Events values mapping for Paraver. Valid for EVT_BEGIN only, when
the original event value is EVT_END (that is 0) the new event value
will be 0. 59

6.1 Time taken by instrumented and non-instrumented runs on the
Spark example . 72

6.2 Resulting time measurements from tracing overhead analysis. Graph-
ically depicted in Figure 6.7 . 73

ix

List of Figures

1.1 Two Planetary Nebulas photographed by the Hubble Telescope [3] . 1

1.2 How the map-reduce framework works. The nodes can be virtualized
using containers. 4

1.3 MareNostrum 4 [15] . 5

1.4 Example of traces analysis using Paraver, taken from the BSC
website [16] . 6

1.5 Paraver traces generation, taken from the BSC website [19] 7

2.1 PiExample flow chart and expected threads behaviour 11

2.2 PiExample resulting traces. At the bottom a legend for the colors is
reported . 14

2.3 Trace of serial PiExample execution 16

2.4 PiExample trace guessed explanation 16

2.5 Explanation of JNI implemented Extrae wrappers 18

2.6 Trace showing the user functions for the PiExample program 20

3.1 Visual explanation of event-driven approach 25

3.2 Visual explanation of the bytecode instrumentation approach 27

4.1 Example of traces without a defined thread identifier 34

4.2 Trace with the new thread notification mechanism 39

4.3 Traces with Thread Running state and thread names given by the
JVM TI . 44

x

4.4 Traces with all the JVM TI events traced 45

5.1 Instrumentation process using AspectJ compilation 56

5.2 Traces of an instrumented application, with the new traced states:
Scheduling and Group Communication 58

5.3 Traces of an instrumented application, focus on the main part. It
can be noticed the scheduling state on the main thread, while it is
generating Thread-0 and Thread-1, and also the notification event
on Thread-1 that “unlocks” Thread-0 from the waiting state. . . . 58

5.4 PiExample trace with the Java Paraver view 62

5.5 New example trace with the Java Paraver view 62

6.1 Word Count map-reduce application workflow (image from DZone [34]) 64

6.2 Hadoop execution states traces . 66

6.3 Hadoop execution Java events traces 67

6.4 IntelliJ CPU profiler output for Hadoop WordCount program. It
should be read from bottom to top, considering that each function
is the caller on the one on top of it. The wider the function area is,
the more it has been detected in the samples. 68

6.5 Spark execution traces: Application States 70

6.6 Spark execution traces: Java Events. On top of the Exception
and Waiting events, on the top thread it can be seen the Garbage
Collection event happening. 71

6.7 Overhead generated by the different mechanisms used to trace the
events. Data taken from Table 6.2 75

xi

Acronyms

AI

Artificial Intelligence

AOP

Aspect Oriented Programming

API

Application Programming Interface

BSC

Barcelona Supercomputing Center

HPC

High Performance Computing

JNI

Java Native Interface

JVM

Java Virtual Machine

JVM TI

Java Virtual Machine Tool Interface

xii

Chapter 1

Introduction

1.1 Context: High Performance Computing,
Artificial Intelligence and Java

Supercomputing and Artificial Intelligence are among the most important outcomes
of the last decades. Both of them have been behind the scenes of many recent
discoveries, correctly credited to other classes of instrumentation (e.g. the Hubble
telescope), but that required supercomputing and AI as the enabling tools for large
datasets processing—usually referred to as “Big Data” [1] [2].

Figure 1.1: Two Planetary Nebulas photographed by the Hubble Telescope [3]

AI applications, from Deep Learning to Data Mining, going through Neural Net-
works and Clustering algorithms, together with most of the applications in general,

1

Introduction

have been switching from a sequential paradigm to parallel and distributed ap-
proaches, that best fit the new hardware. The High Performance Computing (HPC)
discipline is at the heart of these developments.

HPC is a field of endeavor that relates to all facets of technology, methodology, and
application associated with achieving the greatest computing capability possible at
any point in time and technology. The action of performing an application on a
supercomputer is widely termed “supercomputing” and is synonymous with HPC
(T. Sterling et al [1, p. 3]).

In this context, the Java programming language plays a marginal role. Languages
such as R and Python are much more common when manipulation of Big Data
and statistic analysis are the primary goals [4]. However, Java is still in high
demand, it is employed in AI and runs effectively on supercomputers. Even if a
smaller set of programmers use it for HPC applications, its influence in the AI
world is not negligible and it deserves a larger attention to the tools that support
its development in such environment.

1.1.1 Java-powered AI and Data Mining
The high and always increasing demand of AI features has affected almost all the
programming languages. Research institutions and companies started to invest
on AI and Machine Learning [5]. Java, as one of the most common languages,
got a bunch of new libraries to enable the developers to access this various world,
made of statistics and algorithms. Among all the frameworks for AI, Machine
Learning and Data Mining, the ones listed below are probably the most common
ones employed with Java. Worthy to be in a resume and capable of figuring in the
skills requirement of some tech careers.

Weka The Waikato Environment for Knowledge Analysis (Weka) is an open
source software developed at the University of Waikato, in New Zealand. The Weka
workbench is a collection of machine learning algorithms and data preprocessing
tools, providing a Java library and a graphical User Interface to train and validate
data models. It is among the most common Machine Learning frameworks for Java,
since it was one of the first ones and it is still maintained [6].

Apache Spark MLlib Apache Spark is an open-source distributed general-
purpose cluster-computing framework. Spark provides an interface for programming
entire clusters with implicit data parallelism and fault tolerance. Spark Core
provides distributed task dispatching, scheduling, and basic I/O functionalities,
exposed through an application programming interface (for Java, Python, Scala,
and R) centered on the Resilient Distributed Dataset (RDD) abstraction. RDD is

2

Introduction

a read-only multiset of data items distributed over a cluster of machines, that is
maintained in a fault-tolerant way [7]. Spark MLlib is a distributed machine-learning
framework on top of Spark Core that implements many machine learning and
statistical algorithms, simplifying large scale machine learning pipelines [8].

Apache Mahout Apache Mahout is a distributed linear algebra framework,
written in Java and Scala, whose architecture is built atop a scalable distributed
platform. Although Apache Spark is the recommended one, Mahout supports
multiple distributed back-ends. The framework features console interface and
Java API, that give access to scalable algorithms for clustering, classification, and
collaborative filtering [9].

1.1.2 Distributed Java in HPC
The above frameworks are not thought for an HPC environment. The standard
implementation of Weka, for example, is designed to run on standard machines (like
PCs, laptops or small servers), with most of the algorithms implemented sequentially.
This makes it difficult to gain advantage of a strongly parallel architecture like a
supercomputer. Spark and Mahout, instead, run both on a distributed platform,
which means that they’re designed to run on a cluster of different machines instead
of a unique system. Java is indeed perfectly suitable to work on a distributed
environment, usually using frameworks like MapReduce1, whose most common
implementation is Apache Hadoop, written in Java.

Spark has its own core that work in a similar fashion, Mahout runs on a distributed
backend and Weka too can go distributed with some packages, running on frame-
works such as Spark or Hadoop [11]. All of them rely directly or indirectly on the
map-reduce framework.

Although a supercomputer and a distributed environment, made of nodes connected
over a network, are similar from the physical perspective, they’re much different
when speaking about logic organization. Nevertheless, a distributed system can
be deployed on a supercomputer, by keeping the logic organization and taking
advantage of its computational power. Such emulated environment can be reached
with the use of software containers.

Software containers are a form of OS-level virtualization introduced by Docker.
Even if an emulated distributed system can be made of Docker containers, the BSC

1MapReduce is a programming model for processing big data sets with a parallel, distributed
algorithm on a cluster. A MapReduce program is composed of a map procedure, which performs
filtering and sorting, and a reduce method, which performs a summary operation [10].

3

Introduction

Figure 1.2: How the map-reduce framework works. The nodes can be virtualized
using containers.

choice for MareNostrum is Singularity, another type of software containers created
as an alternative to Docker for Clusters HPC environments.

Singularity enables users to have full control of their environment. Singularity
containers can be used to package entire scientific workflows, software and libraries,
and even data [12]. Distributed applications based on Hadoop or Spark can run on
supercomputers, by using virtualized clusters made of Singularity containers.

1.1.3 Performance analysis
Quoting prof. Jesus Labarta, one of my professors at the UPC, «measurement
techniques are “enablers of science”. They are present everywhere, and so they
are in Computer Science. In the specific case of HPC, they are represented by the
performance analysis tools.»

Parallel program performance analysis and tuning is concerned with achieving
efficient utilisation of system resources. One common technique is to collect trace
data and then analyse it for possible causes of poor performance. The objective is to
gather insights, both qualitative and quantitative, in order to increase predictability,
build confidence and properly suggest improvements in the software [13].

A great way to describe the observed behaviour is through performance models,
which take in consideration multiple model factors based on specific metrics (load
balance, communication efficiency, etc.), making it easier to understand where to
act.

4

Introduction

1.2 MareNostrum Tools Environment
The work in the present thesis is carried out as an intern at the Barcelona Super-
computing Center (BSC), that has one of the most powerful supercomputers in
the world. It is situated right next to the Campus North of the UPC.

The BSC supercomputer is called MareNostrum (Figure 1.3), and it is at its 4th
version. With 6,470.8 TFlop/s of max performance, at the time of writing the
MareNostrum occupies the 30th position among the most powerful supercomputers
in the world, according to the top500 list [14]. It has 165,888 cores, divided on
3,456 nodes, and counts more than 300 TB of memory [15].

Figure 1.3: MareNostrum 4 [15]

The MareNostrum software environment is based on the SUSE Linux Enterprise
Server Operating System. There are several available modules ready to be loaded,
and many of them are developed within the BSC research departments. Among
these modules, we find the performance analysis tools developed at the Performance
Tools Department of the BSC: Extrae and Paraver.

1.2.1 Paraver
Paraver is developed to visually inspect the behaviour of an application and then
to perform detailed quantitative analysis. It has a clear and modular structure,
which gives to the user expressive power and flexibility.

The Paraver trace format has no semantics. Thanks to that, supporting new
performance data or new programming models requires only capturing such data

5

Introduction

in a Paraver trace. Moreover, the metrics are not hardwired on the tool, but
programmed. To compute them, the tool offers a large set of time functions, a
filter module, and a mechanism to combine two time lines.

Paraver is not tied to any programming model, as long as the model used can be
mapped in the three levels of parallelism expressed in the Paraver trace [16].

Figure 1.4: Example of traces analysis using Paraver, taken from the BSC
website [16]

A Paraver trace file has three types of records: state, event and communication.
The state is a record associated to a thread for a specific time interval (running,
idle, synchronization, communicating, etc.). The event record is a punctual event
that happen on one object, encoded in two integers (type and value). Finally, the
communication event relates two objects in two points in time, representing a pair
of events in two different threads and a relationship between the event happening
in the first thread and the second [17].

The Paraver trace file is a set of three textual files containing the application
activity (.prv), the labels associated to the numerical values (.pcf) and the resource
usage (.row). Currently, there are several ways to generate Paraver trace-files, like
Extrae, Dimemas or other Translators (Figure 1.5) [18]. The tool on which this
thesis will focus is Extrae, the core of the instrumentation package developed at
the BSC.

6

Introduction

Figure 1.5: Paraver traces generation, taken from the BSC website [19]

1.2.2 Extrae
Extrae is a tool that uses different interposition mechanisms to inject probes into
the target application, in order to gather information regarding the application
behaviour and performance. It uses different interposition mechanisms to inject
the probes, and generates trace-files for an analysis carried after the termination of
the program [20].

The most common interposition mechanism consists in using the Linker Preload,
that expects to set the LD_PRELOAD environment variable to the path of the Extrae
tracing library before executing the target program. In this way, if the pre-loaded
library contains the same symbols of other libraries loaded later, it can implement
some wrappers for the functions valuable to get data from. This is what Extrae
does for most of the instrumented programming models.

Another mechanism consists in manually inserting some probes. On top of the in-
strumented frameworks, Extrae provides an API which gives the user the possibility
to manually instrument the application and emit its own events.

Extrae is subjected to different settings, configured through an XML file specified
in the EXTRAE_CONFIG_FILE environment variable. These settings have the control
on almost everything in the instrumentation process. They can enable the instru-
mentation of some libraries instead of others, the hardware counters, the sampling
mode, etc. The tracefiles generated by Extrae are formatted to comply with the
Paraver trace format.

Extrae supports different programming models (like MPI, OpenMP, CUDA, etc.)
and also basic threads instrumentation and events tracing in Python, Java and
C/C++ (instrumenting the pthread library, in addition to the above mentioned
programming models).

The instrumentation for Java, which is the main focus for this thesis, is poorly

7

Introduction

implemented. It supports just a basic thread instrumentation, by tracing only the
Running state, the Exception event and the Garbage Collection event. The features
currently implemented for Java instrumentation are explained in chapter 2.

1.3 Problem Statement and Goal
At the BSC, tracing a Java program is something that has not been given much
attention. In the BSC performance tools, Java is poorly instrumented, relies on
just few events that do not give enough valuable information on what the program
does and how it is improvable.

The contributions of this work aim to:

• Design and implement a Java instrumentation platform, on top of one of the
BSC performance tools: Extrae;

• Find some patterns and methodologies that can help analysing Java applica-
tions in an HPC environment;

• Doing so, with keeping a focus on the AI frameworks, which represent a large
portion of the Java applications that typically run on supercomputers.

Since I developed this thesis as an intern at the Barcelona Supercomputing Center
(BSC), the starting basis for the work will be the BSC performance tools. The
interest for the company—and so my job as an intern—was to improve such tools
(Extrae, mainly) and to gain the right experience in analyzing the typical HPC
applications implemented in Java.

In order to do so, the thesis will be developed starting from an analysis of the
state of the art of Extrae for Java (chapter 2), by instrumenting an example
multi-threaded program. It follows a discussion about the different possibilities of
instrumentation methodologies (chapter 3), before actually implementing a solution
that tries to trace the Java threads and related events (chapter 4 and chapter 5),
in order to get some traces detailed enough to properly study the behaviour of an
application.

Finally, the platform is tested against two distributed frameworks: Hadoop and
Spark. The study ends with a discussion of the results (chapter 6) and a conclusion
(chapter 7), which wrap everything up and give a sense to what has been done and
what can be improved.

8

Introduction

1.4 Materials and Methods
If not specified, all the executions reported in this thesis ran on a Dell XPS15
9570, with an Intel i7-8750H CPU at 2.20GHz and 32GB of DDR4 RAM. The
programming tools employed in the work have been the following:

• Visual Studio Code for all the C/C++ code

• Jetbrains IDEA IntelliJ for all the Java/AspectJ code

• Docker to virtualize the OS and the tools environment

• GitHub to store all the code and manage Extrae’s pull requests and versioning

All the examples are easily reproducible thanks to the virtualization offered by
the Docker image. The image is based on OpenSUSE, provides the BSC tools
(Extrae and Paraver) and all the other dependencies (AspectJ, Java, etc.) are
installed and ready to be used. The reason behind choosing OpenSUSE is because
of the MareNostrum 4 Operating System (SUSE Linux Enterprise Server), of which
OpenSUSE—being its free version—is the most similar OS that could be virtualized
with a Docker image.

An explanation of the usage of the environment, including the steps to build and
setup the image, as well as the instructions on how to run the examples, is present
in appendix A.

9

Chapter 2

Extrae for JAVA: State of
the Art

This chapter will go through the state of the art of Extrae’s instrumentation for Java.
It is not totally absent, but its tracing capabilities are currently poorly implemented.
The discovery of the available features will be carried out by looking at one at the
Extrae’s Java example, provided in the Extrae package, which calculates the π
number with a parallel algorithm. By analyzing it, this chapter will cover all the
aspects of how Extrae traces the Java threads: how it gathers the data and spot
the events, how it is launched and what are the experimental features that were
added. Additionally, the generated traces will be analyzed in order to understand
what events are missing.

2.1 The example program

The program that is going to be analyzed is a simple algorithm to calculate π. It
does so 5 times: the first time with a sequential algorithm, the other four with a
parallel implementation, respectively with 1, 2, 4 and 8 threads.

10

Extrae for JAVA: State of the Art

The main class is shown in Code 2.11. A scheme of the expected behaviour is
reported in Figure 2.1.

Code 2.1: PiExample.java
1 pub l i c c l a s s PiExample
2 {
3 pub l i c s t a t i c void main (St r ing [] a rgs)
4 {
5 P iS e r i a l p i s = new P i S e r i a l (s t ep s) ;
6 p i s . c a l c u l a t e () ;
7

8 PiThreaded p i t 1 = new PiThreaded (steps , 1) ;
9 p i t 1 . c a l c u l a t e () ;

10

11 PiThreaded p i t 2 = new PiThreaded (steps , 2) ;
12 p i t 2 . c a l c u l a t e () ;
13

14 PiThreaded p i t 4 = new PiThreaded (steps , 4) ;
15 p i t 4 . c a l c u l a t e () ;
16

17 PiThreaded p i t 8 = new PiThreaded (steps , 8) ;
18 p i t 8 . c a l c u l a t e () ;
19 }
20 }

Figure 2.1: PiExample flow chart and expected threads behaviour

1The real Extrae’s example contains some time measurements and print messages. Here just
the main instructions are reported for brevity.

11

Extrae for JAVA: State of the Art

The PiThreaded class (Code 2.2) is responsible to create and run the threads.

Code 2.2: PiThreaded.java
1 pub l i c c l a s s PiThreaded
2 {
3 long m_n;
4 double m_h;
5 Vector<PiThread> m_threads ;
6

7 pub l i c PiThreaded (long n , i n t nthreads)
8 {
9 m_n = n ;

10 m_h = 1.0 / (double) n ;
11

12 m_threads = new Vector<PiThread>(nthreads) ;
13 f o r (long i = 0 ; i < nthreads ; i++) {
14 m_threads . addElement (
15 new PiThread (m_h,
16 (n/ nthreads) ∗ i ,
17 (n/ nthreads) ∗(i +1)−1)
18) ;
19 }
20 }
21

22 pub l i c void c a l c u l a t e ()
23 {
24 /∗ Let the threads run ∗/
25 f o r (i n t i = 0 ; i < m_threads . s i z e () ; i++)
26 (m_threads . get (i)) . s t a r t () ;
27

28 /∗ Wait f o r t h e i r work ∗/
29 f o r (i n t i = 0 ; i < m_threads . s i z e () ; i++) {
30 m_threads . get (i) . j o i n () ;
31 }
32 }
33

34 pub l i c double r e s u l t ()
35 {
36 double r e s = 0 . 0 ;
37 f o r (i n t i = 0 ; i < m_threads . s i z e () ; i++) {
38 /∗ reduce the value to r e s u l t ∗/
39 r e s += (m_threads . get (i)) . r e s u l t () ;
40 }
41 re turn r e s ;
42 }
43 }

12

Extrae for JAVA: State of the Art

The classes PiThread and PiSerial, here omitted for brevity, are both responsible
for the actual calculation, but the former extends Java’s Thread class.

2.2 Generate the traces
Generating the traces for a Java program is done using a launcher script installed
by Extrae, named extraej. Assuming to use the Extrae XML file contained in
the examples, and assuming to have the Java class to test (named PiExample in
this case) in the Class Path2, the following command will launch the program and
generate the traces:

EXTRAE_CONFIG_FILE=extrae.xml extraej -- PiExample

This command will generate a file called PiExample.prv (the name is specified
in the extrae.xml file). By analyzing the file using Paraver, the result is shown
in Figure 2.2. As it can be seen, there are not much states shown, but there are
several threads detected and traced. These threads look too many compared to
the ones expected (Figure 2.1). Such apparent inconsistency will be analyzed in
section 2.4.

As described in the Introduction, the most common way to instrument an application
using Extrae is by using the LD_PRELOAD environment variable. This mechanism
can be used for any program running “directly” on Linux. For this reason, even if
it does not directly affect the Java program, it can be used to instrument the Java
Virtual Machine (JVM).

Having a look at the extraej script, focusing on the part responsible to launch
the program with instrumentation (Code 2.3), it can be seen how it actually
uses the LD_PRELOAD method. An explanation of extraej code can be found in
section 2.7.

Code 2.3: Extract of extraej showing the launching command
191 LD_PRELOAD=${ pre load } \
192 CLASSPATH=${cp} \
193 ${JAVA} ${@}

2The class path is the path where the applications, including the JDK tools, look for user
classes. The default value of the class path is “ . ” (dot), meaning that only the current directory
is searched. Specifying either the CLASSPATH variable or the -cp command line switch overrides
this value [21]. By default, extraej does not override it, and so the compiled .class file must
be in the current directory, or the CLASSPATH variable should be set accordingly.

13

Extrae for JAVA: State of the Art

Figure 2.2: PiExample resulting traces. At the bottom a legend for the colors is
reported

However, Extrae does not provide any direct instrumentation of the JVM. So how
can it extract such data, without any ad-hoc instrumentation probes? The answer
can be found in a mechanism that is not strictly related to Java, but to C and
Linux: pthreads.

2.3 Pthread instrumentation
Pthread is one of the libraries instrumented by Extrae. The probes injection to
trace the states of the Linux threads is done by implementing the wrappers of the
valuable pthread functions like pthread_create or pthread_join.

The Java Virtual Machine (JVM) is mostly implemented in C, and for its Linux
implementation each Java Thread is mapped on a POSIX thread (pthread) [22].
It is for this reason that Extrae’s pthread instrumentation is effective with Java
programs too.

However, this instrumentation is not enough to show all the details of a Java
execution. Based on this result, it looks like that out of the pthread creation and
termination no other pthread calls are employed in the JVM. As an example, it
can be seen how in Figure 2.2 the synchronization operations present in the Java

14

Extrae for JAVA: State of the Art

implementation (Code 2.2, the calls to .join()) are not traced3.

To let Extrae use pthread instrumentation, it must be enabled in the extrae.xml
file as in the following piece of code.

Code 2.4: Extract of the extrae.xml config file
13 <pthread enabled=" yes ">
14 <lock s enabled=" no " />
15 <counter s enabled=" yes " />
16 </pthread>

2.4 Traces analysis
By looking at the traces, several threads can be seen running throughout the
process. The reported events include just “running”, “join” and “I/O” events.
Without knowing anything about the code and with such poor data gathered by
the performance analysis, it would have been almost impossible to understand what
each thread is doing. Recalling what the program does, it seems that the number
of threads should be lower than the ones appearing on the traces. Indeed, the total
should be 1 + 1 + 2 + 4 + 8 = 16 threads, but on the traces the number of threads
is 37.

To understand what is going on, one could try to execute the program with a
different number of threads, to see how this additional number of threads behaves.
By trying to instrument the sequential single-threaded program, the resulting traces
are the one in Figure 2.3.

The first thread looks exactly the same, while in the second one there are some
differences related to the absence of the other threads (the yellow chunks are
missing). The threads numbered from 3 to 22, instead, look the same in both of the
tracefiles. A guess4 that can be made is that such threads are inherently launched
by the JVM for each execution (Figure 2.4).

As we will see in the following chapters, this guess will appear to be mostly
correct.

3On top of that, I tried debugging by inserting breakpoints to other pthread calls which were
never called. However, this is information is not important. As it will be discussed in later
chapters, the tracing activity does not need pthread instrumentation in any case.

4The methodology behind performance analysis expects some level of “guessing” when looking
at the traces.

15

Extrae for JAVA: State of the Art

Figure 2.3: Trace of serial PiExample execution

Figure 2.4: PiExample trace guessed explanation

The states shown in the traces (as it is shown in Figure 2.4) are reported in
Table 2.1.

These states are valuable, but they’re not enough to understand the behaviour of
an application. For example, if we didn’t know that, we could not say that the main
thread was waiting for all the other threads before going forward. It can be deduced
of course, but the state of “waiting” is not traced, so that is one event missing. All
the valuable events that can be traced will be discussed in chapter 4.

16

Extrae for JAVA: State of the Art

State Color State description
Idle black The thread stop existing

Running blue The thread is running, that is: it was
created and it has not been destroyed yet

Not created white The time before the thread was created
Scheduling and Fork/Join yellow The thread is launching new threads

Input/Output dark yellow The traces are being flushed on disk

Others light green Other traced events, not covered by the
above states

Table 2.1: Currently traced states for Java threads instrumentation

2.5 Extrae Java API through JNI
implementations

When installing Extrae with Java enabled, this will install a basic instrumentation
library based on JNI bindings5. The purpose of this library is to inject probes
manually, by putting events in certain positions of the code during the development
phase. This kind of events, however, do not provide any way to signal new threads,
but rather they are used as “markers” for specific portions of code, relying on other
mechanisms to discover on which thread they’re being called—like the pthreads
identifiers, in relation to the pthread instrumentation seen earlier.

The JNI implemented library is like a normal class, but with native methods instead
of the standard ones. The implementation of these method is made in C language,
which has to use specific functions signatures in order to be recognized by Java. In
Code 2.5 and Code 2.6 can be seen an extract of the JNI bindings implemented in
Extrae.

In brief, thanks to JNI, this implementation allows to call the Extrae API for custom
events instrumentation—which is written in C—directly from Java code.

5JNI stands for Java Native Interface. The JNI is a native programming interface. It allows
Java code that runs inside a JVM to interoperate with applications and libraries written in other
programming languages, such as C, C++, and assembly. [23].

17

Extrae for JAVA: State of the Art

Code 2.5: Native methods inside the Java class. The System.loadlLibrary call
dynamically loads the JNI bindings from a shared library
package es . bsc . c epbatoo l s . ex t rae ;

pub l i c f i n a l c l a s s Wrapper
{

s t a t i c { System . loadLibrary (" j ava t r a c e ") ; }
. . .
pub l i c s t a t i c nat ive void Event (i n t type , long value) ;
pub l i c s t a t i c nat ive void Eventandcounters (i n t type , long value) ;
. . .

}

Code 2.6: C implementation of the “javatrace” library, that will be associated to
the Java native methods. Notice the name of the function, that must report the
package, class and method name separated by a _.
. . .
JNIEXPORT void JNICALL
Java_es_bsc_cepbatools_extrae_Wrapper_Event (JNIEnv ∗env ,

j c l a s s jc , j i n t id , j l o ng va l)
{

Extrae_event ((extrae_type_t) id , (extrae_value_t) va l) ;
}

JNIEXPORT void JNICALL
Java_es_bsc_cepbatools_extrae_Wrapper_Eventandcounters (

JNIEnv ∗env , j c l a s s jc , j i n t id , j l ong va l)
{

Extrae_eventandcounters ((extrae_type_t) id , (extrae_value_t) va l) ;
}
. . .

Figure 2.5: Explanation of JNI implemented Extrae wrappers

18

Extrae for JAVA: State of the Art

2.6 Experimental features
Besides the features presented in this chapter, Extrae’s reference presented a couple
described as “experimental”. Such features were implemented by BSC performance
tools collaborators, who don’t work at the BSC anymore. For this reason, some
of them were never fully implemented, and some others were not working due to
some bugs accumulated in years of lack of maintenance.

All of them are explained here in this section.

2.6.1 Java Virtual Machine Tool Interface
The first one is a tracing platform based on the the JVM Tool Interface (JVM TI),
a native programming interface thought for tools development. It provides both a
way to inspect the state and to control the execution of applications running in the
JVM. JVM TI supports the full breadth of tools that need access to JVM state,
including but not limited to: profiling, debugging, monitoring, thread analysis and
coverage analysis tools. It is available as an API for C/C++, and once the library
is implemented, it can be used as an agent for the JVM [24].

Comes naturally to think that it would be a useful tool to be used to gather data
for the traces, and it actually is. The idea was to implement it in Extrae, and
inject it as an agent when executing the program with extraej.

However, despite being present among the features, it was never fully implemented.
It was thought to be used as a threads-tracing mechanism instead of pthread, but
its only use ended to be tracing the garbage collection events. The problem in
using for threads too was about identification, because the JVM does not provide
the JVM TI with a unique ID for the threads, which is instead required by Extrae’s
architecture. Indeed, this one was one of the issues addressed (and solved) in this
thesis.

2.6.2 AspectJ for User Functions
The second experimental feature sees AspectJ, an Aspect Oriented Programming6

extension for Java, as the tool to generate the events for the user functions. In
this context, the “user functions” are those functions that the user would like to
see on the traces. It should basically do what the JNI bindings were designed
for, but in an automatic way by wrapping the target functions with some events,
traced by Extrae—and so, placing custom events without modifying the code.

6An introduction to AOP can be found in the next chapter.

19

Extrae for JAVA: State of the Art

Indeed, wrapping the methods with some code is basically the main purpose of
AspectJ—and more in general of the Aspect Oriented Programming paradigm.
The wrapper code calls the JNI implemented Extrae API library introduced in the
previous section to trace the user functions events. The target user functions are
listed in a file, whose path is passed to Extrae through the XML configuration file
(i.e. extrae.xml).

This feature was also not working, but this time due to some bugs in the installation
process. Once fixed, it was possible to use the “User functions” configuration of
Paraver to look at them (Figure 2.6).

Figure 2.6: Trace showing the user functions for the PiExample program

2.7 Meet extraej
Finally, since it will be modified throughout the thesis, the state of the art version
of extraej is worth a mention.

As said previously, extraej is a bash script made to launch Java applications with
instrumentation. It gets some simple optional parameters:

• -v makes execution verbose;

• -keep saves the temporary files for a future use;

• -reuse <dir> to reuse previously instrumentation files (kept using -keep).

The structure of the script is quite simple. It works with some environment variables,
that point to the different Extrae libraries. The main part makes all the checks
for a safe execution, parses parameters and XML config file, generates the aspects
for the user functions (if specified in the config file) and finally executes the Java

20

Extrae for JAVA: State of the Art

application. The main part of extraej (lightened of the trivial checks) is reported
in Code 2.7.

Code 2.7: Main part of extraej
#!/ bin /bash
. . .
Parse e x t r a e j parameters
parse_parameters " ${@} "

Do we support AspectJ ?
i f [[−x " ${AJC} "]] ; then

. . .
parse c on f i g f i l e

parse_xml ${EXTRAE_CONFIG_FILE}

do we have user f un c t i on s to instrument ?
i f [[${#MemberArray [@] } −gt 0]] ; then

tmpdir=‘mktemp −d ex t r a e j .XXXXXX‘

generate_aspects

compile the generated a spec t s
CLASSPATH=${ASPECTWEAVER_JAR} : ${EXTRAEJ_JAVATRACE_PATH} : ${

CLASSPATH} \
${AJC} \
−inpath . \
−s ou r c e r oo t s ${ tmpdir }/ a spec t s \
−d ${ tmpdir }/ instrumented
i f [[" ${?} " −ne 0]] ; then

d i e " Error ! ${AJC} f a i l e d "
f i

execute_java ${ tmpdir }/ instrumented : ${ASPECTWEAVER_JAR} : ${
CLASSPATH} \

${EXTRAEJ_LIBPTTRACE_PATH} \
"$@"

. . .
e l s e
We don ’ t support AJC. Let ’ s execute the code with Extrae support
execute_java " ${CLASSPATH} " \

${EXTRAEJ_LIBPTTRACE_PATH} \
"$@"

f i
. . .

And execute_java is implemented as follows (Code 2.8). It receives the class path
and the preload as arguments, it checks for the JVM TI library availability and in
case sets it as the agent.

21

Extrae for JAVA: State of the Art

Code 2.8: Implementation of execute_java procedure
execute_java () {

l o c a l cp=${EXTRAEJ_JAVATRACE_PATH} : $1 # Class path
s h i f t
l o c a l pre load=$1 # Preload l i b r a r y (LIBPTTRACE)
s h i f t

Check whether Extrae supported JVMTI
i f [[! −r ${EXTRAEJ_LIBEXTRAEJVMTIAGENT_PATH}]] ; then
LD_LIBRARY_PATH=‘dirname ${EXTRAEJ_LIBEXTRAEJVMTIAGENT_PATH} ‘ : ${
LD_LIBRARY_PATH} \
LD_PRELOAD=${ pre load } \
CLASSPATH=${cp} \

${JAVA} ${@}
e l s e
LD_LIBRARY_PATH=‘dirname ${EXTRAEJ_LIBEXTRAEJVMTIAGENT_PATH} ‘ : ${
LD_LIBRARY_PATH} \
LD_PRELOAD=${ pre load } \
CLASSPATH=${cp} \

${JAVA} −agentpath : ${EXTRAEJ_LIBEXTRAEJVMTIAGENT_PATH} ${@}
f i

}

2.8 Where to go from here
In this overview there are some specific issues that emerged.

The first issue to be addressed is the lack of specific events related to Java. The
only ones traced by Extrae totally rely on the pthreads instrumentation. Moreover,
as pointed out in section 2.4, the traced events and states are not detailed enough
to give a proper idea of the behaviour of an application.

The second one is the presence of some bugs on the already present Java instru-
mentation, that make Extrae not working properly with Java programs. Mainly,
these bugs are related to installation issues, which used to make unavailable some
features when trying to use them. Although this process has been carried out in
parallel to the rest of the work, the bug-fixing operations will be omitted in the
thesis discussion—unless they are particularly related to the objective, or some
interesting cause and solution were found.

The final one is the absence of a mechanism to trace distributed applications.
Since it is probably the most common way of executing Java on HPC, it would be
interesting to inspect this field and try to find a solution for this problem.

These issues will be the basis of the work developed next. Although not all of them

22

Extrae for JAVA: State of the Art

have been studied throughout the thesis, they have been all kept in mind when
discussing the different approaches and developing the solutions to the various
problems.

23

Chapter 3

Java Tracing
Methodologies

The main focus of this thesis is on Extrae, because the main issue is on extracting
the application performance details from Java program, and not on how to visualize
them. Indeed, as it has been said in the Introduction, Paraver is quite flexible and
does not need any change in the code to effectively depict the events for a new
instrumented framework.

Since Extrae is implemented in C, generating probes and wrappers would not be
an issue for other C-implemented programs. Unfortunately, generating traces for a
Java program cannot be so straight forward, but there are some approaches that
could be tried out to extract the data needed to generate an effective trace. In this
chapter there is an overview of the approaches studied in this thesis.

NB: all the discussed approaches, in order to trace the events, need to interface with
Extrae’s functions at some point. Such events must be coded and globally identified
through the use of some constants. However, besides this small clarification, all
the implementation details of such approaches are left for the next chapters.

3.1 Linker Preload approach
Once got used to Extrae, the first approach that comes to mind is the one of
instrumenting the JVM using the linker preload. This kind of instrumentation
expects to find the valuable functions inside the JVM, in order to define some
wrappers for them, with the purpose of injecting the probes responsible for the
tracing activity.

24

Java Tracing Methodologies

Although valuable for many frameworks, in this case this approach has not been
analyzed at all. JVM internals are not standardized, and so they are not defined
and immune to changes. There is no way to know that some function used in one
version will be maintained in successive releases. For this reason, despite being
worth a mention because of its relatedness with Extrae’s standard approach, it will
not be discussed further—except for possible comparison purposes.

3.2 Event-driven instrumentation
A more convenient way to trace the JVM states would be by catching the JVM
events. This kind of work can be done thanks to the interface provided by the Java
language: the JVM Tool Interface (JVM TI).

This approach expects to use an event-driven platform, in which the events launched
by the JVM are catched by some functions containing the tracing instructions. The
JVM TI allows to do that by setting user-defined callbacks, able to catch several
JVM events—like thread start and end, method entry and exit, garbage collection,
object allocation, etc. [25]

Figure 3.1: Visual explanation of event-driven approach

JVM events are essential for profiling programs, but basing the whole instrumenta-
tion on them would be somehow limiting. There are many different events catchable,
but there may be interesting data depending on specific functions that do not raise
any event. For example, many frameworks use busy-waiting loops implemented

25

Java Tracing Methodologies

in custom functions to wait for something, instead of the native Object.wait()
method—that raises an event.

The JVM TI provides two events that may be useful in this case: method entry
and method exit events. Such events are raised for each method executed by the
JVM, respectively at entry and exit point. To trace some interesting methods it
would be enough to monitor all these JVM events, waiting for the interesting ones
to trace them using Extrae. Using these events is highly discouraged by the JVM
TI reference guide, because of its large impact on performance. Speaking of traces
in general, if the retrieved information is valuable, the great overhead generated by
a callback function for each method can be acceptable. However, the problem of
instrumenting specific functions can be solved in other ways, as it is going to be
explained in the following sections.

3.3 Bytecode and Native Instrumentation
Another approach is by instrumenting the specific Java methods, using a technique
called “bytecode instrumentation”.

Bytecode instrumentation is a way of injecting custom instructions inside other
classes, without directly modifying the code. The JVM provides some events and
control functions to transform the bytecode of classes and methods and, if enabled
to do it, it fires an event when a class or a method are loaded. In both cases,
it provides the possibility to catch the event and to read the loaded bytecode,
in order to modify it1 and re-load it again. This possibility is given through
the Instrumentation API, available for both the Java language, in the package
java.lang.instrument, and for the JVM TI, through a specific set of events and
functions.

Since the injected instructions are in form of bytecodes, the instrumentation probes
need to be in a form of callable Java methods. In the case of Extrae, since it is
written in C language, such methods must rely on JNI implementations of the
probes, either directly (the injected bytecodes call a JNI implemented method) or
indirectly (the injected bytecodes call a Java method, which in the end calls one or
more JNI implemented methods). The JNI implementations need to be written in
C language, and these must rely on the Extrae’s functions to trace the events.

1According to JVM TI reference guide [25], the modifications inserted through bytecode
instrumentation can only be purely additive. Moreover, it is not possible to add new methods
inside a class o to modify the signature of the other methods.

26

Java Tracing Methodologies

Figure 3.2: Visual explanation of the bytecode instrumentation approach

3.3.1 Bytecode manipulation in C and Java
Injecting bytecode is conceptually easy to understand, but the implementation can
be tricky. The JVM provides all the tools to catch when the compiled binary is
loaded and to retrieve the related bytecodes. However, these bytecodes are returned
in a form of nothing more than long arrays of bytes. Injecting the bytecodes in
this binary, requires essentially an intelligent array manipulation work. There are
several frameworks implemented in Java for bytecode manipulation2, but none is
available for C language3.

A nontrivial problem is represented by exceptions handling. For its nature, bytecode
instrumentation is simply an addition in given program places. For this reason, if
the program raises an exception before reaching the end of the method, it would
never execute the bytecodes responsible to trace the end of the event. A possible
solution would be to catch the event of the Exception raise—available for the
JVMTI—and to develop a mechanism to trace the end of the currently traced
method.

3.3.2 Native methods instrumentation
Native methods are those methods available to be called in Java, but implemented
natively in C language. As for the probes discussed in the previous section, this
can be done thanks to the JNI. Having a C-implementation, these methods are
not compiled in bytecodes, and so are not suitable to be instrumented by injecting
bytecodes. This problem is solved by the Instrumentation API, both for Java and
the JVM TI, which provides a way to change the name of natively implemented

2Among the most popular, there are ASM [26] and Javassist [27]
3To be fair, I could find one for C++ [28], but since Extrae is written in C it resulted to be

quite complex to cross compile it effectively (I tried, but I had many problems at running time
with the linked functions).

27

Java Tracing Methodologies

methods, by adding a prefix, in order to define a wrapper method (in Java).

In addition, native methods instrumentation, together with other problems, can be
solved thanks to the approach explained in the next section: AspectJ.

3.4 Aspect Oriented Programming approach
Aspect Oriented programming (AOP) is a programming paradigm first introduced
by G. Kiczales et al [29], that aims to add additional behavior to existing code
without modifying the code itself. AspectJ, as one of the most popular aspect-
oriented frameworks, has been chosen for this thesis.

The way of using it for tracing purposes is similar to the bytecode instrumentation
approach, with the only difference in the practical implementation. Instead of
using JVM events on loaded classes and inject custom bytecodes, with AspectJ it
is possible to define a “pointcut” for each interesting method, and then defining the
behaviour of the application before and/or after the execution [30]. This behaviour
is implemented as simple Java code and, as it was for the bytecode instrumentation,
it would call the JNI methods to trace the specific events.

For tracing purposes AspectJ looks very powerful, because it combines an easy Java
implementation of the probes (without bytecode manipulation) and the solution to
many problems given by the previous approach, like native methods instrumentation
or exception handling.

3.5 Discussion on the methodology to adopt
Before trying there are no definitive conclusions to make. However, there are some
approaches more promising than others. The solution proposed in this thesis will
not rely on one single approach, but rather a combination of them.

Considering the needs of tracing threads behaviour and specific methods (either
native or standard Java methods), the following configurations are viable solu-
tions.

JVM TI based tracing The JVM TI is responsible to trace the events fired by
the JVM, but also for the bytecode and native methods instrumentation at each
class load time. Exception handling must be managed to keep coherence among
the states, and bytecode needs to be manipulated in native language.

AspectJ based tracing The tracing software would rely totally on AspectJ and
JNI implemented probes. Being based on methods and not JVM events, it needs

28

Java Tracing Methodologies

some care when defining when a new thread is created, since it could happen in
different ways.

JVM TI with the aid of Java instrumentation API The JVM TI is respon-
sible to catch and trace the JVM events, while the Java instrumentation API is
responsible to trace the specific methods. Exception handling must be managed to
keep coherence among the states, and the native methods should be instrumented
using the Java instrumentation API. In the end, JNI methods are needed for the
natively implemented probes.

JVM TI with the aid of AspectJ As the previous case, but employing AspectJ
to trace the Java and native methods. Moreover, exception handling can be omitted,
since adding behaviour at the end of a method can be done even when an exception
is raised, without extra development effort. The drawback, with respect to the
previous method, would be the required dependency of AspectJ, that needs to be
installed and supported by the OS on which Extrae is going to install.

All of the above solutions require the tracing platform to be compiled as a shared
library, in the case of C/C++, or a Java archive (JAR), in case of Java and AspectJ.
In any case, they need to run as a Java agent during the target application
execution.

This thesis considers the JVM TI events as tools of undoubted value. For this reason,
the solution studied in the following chapters is based on the last configuration.
The JVM TI will be employed for basic events tracing. For methods tracing (native
methods included) AspectJ was preferred to bytecode instrumentation because of
its flexibility and ease of use (and maintainability)4.

4As a side note, it would be fair to say that the first solution based totally on JVM TI would
be much appreciated, if Extrae was implemented in C++. Being implemented in C, it makes
bytecode manipulation hard to manage. In C++, instead, there are some frameworks available
that would have made it much simpler. I made an attempt to implement it and try to compile
Extrae by mixing C and C++, but I couldn’t make the linking at run-time to work properly. It
would have been nice to create it externally to Extrae and compare it to the AspectJ solution, in
terms of usability and generated overhead.

29

Chapter 4

Basic threads
instrumentation with the
JVM TI

4.1 JVM Tool Interface preliminaries

4.1.1 JVM TI Events
As said in the previous chapter, one of the features offered by JVM TI is the
possibility of setting some callbacks for certain events. There are several available
(a complete list of such events can be found on the Reference guide [25]), but the
events interesting to be used for tracing purposes are the following:

• Java Thread start: generated by a new thread before its initial method
executes;

• Java Thread end: generated by a terminating thread after its initial method
has finished execution;

• Monitor Wait: sent when a thread is about to wait on an object;

• Monitor Waited: sent when a thread finishes waiting on an object;

• Contended Monitor Wait: sent when a thread is attempting to enter a Java
programming language monitor already acquired by another thread;

• Contended Monitor Waited: sent when a thread enters a Java programming
language monitor after waiting for it to be released by another thread;

30

Basic threads instrumentation with the JVM TI

• Exception: sent when an exception is raised;

• Exception catch: sent when an exception is catched;

• Garbage Collection start: sent when a garbage collection pause begins;1

• Garbage Collection end: sent when a garbage collection pause ends;

For each one of these events, a callback can be set.

4.1.2 JVM TI Initialization and Callbacks
Agent On Load

Implementing an agent with JVM TI requires some simple steps. First of all,
jvmti.h needs to be included. Then, the agent must contain a function called
Agent_OnLoad, whose structure looks as follows:

Code 4.1: JVM TI Agent On Load structure
1 JNIEXPORT j i n t JNICALL
2 Agent_OnLoad(JavaVM ∗vm, char ∗ opt ions , void ∗ r e s e rved)
3 {
4 . . .
5 re turn JNI_OK; // JNI_OK means su c c e s s
6 }

This function is invoked when the agent library is loaded. It is used to set up all
the functionalities that need to be initialized prior to the JVM.

Enabling capabilities and setting the callbacks

Any operation provided by the JVM TI can be done through an environment
object, represented by a structure of type jvmtiEnv. To get this environment,
it is necessary to call a specific function from the JVM reference, passed by the
Agent_OnLoad function.

Code 4.2: JVM TI Environment retrieval
1 s t a t i c jvmtiEnv ∗ jvmti ;
2

3 JNIEXPORT j i n t JNICALL
4 Agent_OnLoad(JavaVM ∗vm, char ∗ opt ions , void ∗ r e s e rved)
5 {

1Only stop-the-world collections are reported, that are fired by the collections during which
all threads cease to modify the state of the JVM.

31

Basic threads instrumentation with the JVM TI

6 /∗ Get JVMTI environment ∗/
7 (∗vm)−>GetEnv(vm, (void ∗∗)&jvmti , JVMTI_VERSION) ;
8

9 . . .
10 }

Before setting the callbacks for the events, it is necessary to enable the related
capabilities.2

Code 4.3: JVM TI capabilities example
1 j vmt iCapab i l i t i e s c a p a b i l i t i e s ;
2

3 /∗ Enable c a p ab i l i t y f o r Garbage Co l l e c t i on events ∗/
4 c a p a b i l i t i e s . can_generate_garbage_col lect ion_events = 1 ;
5 // s e t in the environment
6 (∗ jvmti)−>AddCapabi l i t i e s (jvmti , &c a p a b i l i t i e s) ;

After that, the pointer to the function can be stored into a specific data structure,
which needs to be set in the JVM environment (represented by a jvmtiEnv struc-
ture). The signature of the callback function depends on the event and is reported
in the reference guide [25].

Code 4.4: JVM TI event callback example
1 /∗ Se t t i ng the po in t e r to our ca l l ba ck func t i on ∗/
2 c a l l b a c k s . GarbageCo l l e c t i onStar t = &GarbageCol lector_begin_cal lback ;
3 // s e t in the environment
4 (∗ jvmti)−>SetEventCal lbacks (jvmti , &ca l l back s , s i z e o f (c a l l b a ck s)) ;

Finally, it is necessary to enable the events notifications.

Code 4.5: JVM TI notification enabling example
1 (∗ jvmti)−>SetEventNot i f icat ionMode (jvmti , JVMTI_ENABLE,
2 JVMTI_EVENT_GARBAGE_COLLECTION_START, NULL) ;

Although the JVM TI environment can be stored in a global variable and used
everywhere at any time, all these operations should be preferably executed inside
the Agent_OnLoad function, because enabling events and callbacks are part of those
operations that should be set before the JVM initialization [25].

2A capability is simply the ability of the JVM TI to do some operation.

32

Basic threads instrumentation with the JVM TI

Probes injection

As it can be imagined, the instructions to trace these events (i.e. the probes) will
be contained in the callback functions. One event should be related to one callback,
with its specific constant ID. The implementation details of such probes will be
addressed in the next section.

Compiling the library and setting the agent

The JVM TI needs to be implemented and compiled as a shared library. After
that, it is necessary to tell the JVM to use it as an “agent”, by launching the Java
program with the -agentpath option set to the path of the agent library.

java -agentpath:<path_to_jvmti_agent_library> <target>

The compilation will be managed by the Makefile3, which builds and installs a
shared library named libextrae-jvmti-agent.so. Passing the agent path as the
argument will be managed by extraej (Code 2.3).

4.2 Tracing platform implementation
To start generating effective traces, it is necessary to define how to identify one
thread, how to gather the right events and how to associate the right events to the
right threads. For the Extrae core, two distinct classes of functions are going to be
implemented:

• Probe functions, responsible to trace the specific event;

• Backend functions, responsible to manage the under the cover work, like
notifying a new thread, giving an ID, etc.

More in general, all the Java tracing related code has been organized as follows
(respecting the pre-existing Extrae source files organization):

• tracer/wrappers/JAVA for the above mentioned probe and backend functions;

• java-connector/jni for the JNI methods implementations (will depend on
the previous);

• java-connector/jvmti-agent for the JVM TI shared library that is going
to be the Java agent;

3Extrae uses automake to manage the entire build. The implementation details of the Makefile
will not be explicitly reported.

33

Basic threads instrumentation with the JVM TI

• java-connector/aspectj for the Aspects implementation;

• launcher/java for the extraej launcher script;

• merger/paraver for the code responsible to translate the events into proper
Paraver tracefiles.

Each of the previous directory will contain a Makefile to create the library (be it
a Java archive or a shared library).

4.3 Thread identifier and Backend
4.3.1 Defining the identifier
The main problem of using the JVM TI to notify new threads is the identifier, needed
by Extrae to associate the events to the right threads. When instrumenting with
pthread instrumentation, that value was a pthread key4 set by Extrae. However,
by using the JVM TI to trace the different threads, the pthread instrumentation
must be disabled, and with it also its thread identification mechanism. Without a
defined identifier for each thread, the result would be something like Figure 4.1, in
which the events are inordinately traced all on a unique thread.

Figure 4.1: Example of traces without a defined thread identifier

Although the Java threads have an identifier, this is not available for the JVM
TI5. Since all the Java threads are mapped on pthreads [22], even if they can’t
rely on the same backend functions of pthread instrumentation, they can build the

4pthread_key_t is a type of variable, initialized using the pthread_key_create() function
and set using pthread_setspecific(). The create function shall create a thread-specific data key
visible to all threads in the process. Key values are opaque objects used to locate thread-specific
data. The same key value may be used by different threads, bu the values bound to the key
by pthread_setspecific() are maintained on a per-thread basis and persist for the life of the
calling thread. That means that it can be used to store a different ID for each a thread, retrieving
it when needed using pthread_getspecific(pthread_key) [31].

5In Java, the method Thread.getId() returns a unique ID. However, in the thread data given
by the JVM TI environment, no such ID is present. [25]

34

Basic threads instrumentation with the JVM TI

same mechanism. Following Extrae’s naming convention, the Java instrumentation
backend will be implemented in a file named java_wrapper.c, whose header file
will be java_wrapper.h. Both the files will be contained in the proper directory,
as explained previously.

4.3.2 Backend implementation
Generating the pthread identifier is done using a pthread_key_t global variable,
that needs to be created once for all and then used by each thread to set its own
ID. The creation is contextual to the initialization, so the following solution has
been developed (Code 4.6).

Code 4.6: Extrae Java Backend initialization
1 #inc lude "common . h "
2 #inc lude " thread id . h "
3 #inc lude " wrapper . h "
4 #inc lude <pthread . h>
5

6 s t a t i c pthread_key_t pThread Iden t i f i e r ;
7

8 void Extrae_Java_Backend_init (void)
9 {

10 // i f Extrae d i s ab l ed or pthread t r a c i ng enabled return
11 i f (! EXTRAE_ON() | | Extrae_get_pthread_tracing ()) re turn ;
12

13 // i f not i n i t i a l i z e d , i n i t Extrae
14 i f (! EXTRAE_INITIALIZED()) Extrae_in i t () ;
15

16 // c r e a t e pthread_key
17 pthread_key_create (&pThreadIdent i f i e r , NULL) ;
18 }

For each thread, the ID needs to be set when starting. Moreover, a unique ID
value must be generated. A simple choice for a unique ID, is the current number
of threads. This choice is not perfect, it has some pros and cons6.

Extrae provides some backend functions to interact with the core, including the
ones to define the number of threads.

6The consequences of this approach consist in defining the number of threads as the cumulative
number, instead of the number of active threads. Doing otherwise would lead to duplicated
Thread IDs (for the active ones), which can’t happen for Extrae. The drawback is that defining
the IDs in this way means also that the ID of a terminated thread cannot be re-utilized, making
Paraver to waste much space to represent them in different lines. This approach, compared to
the other solutions, has also some pros. A discussion on this is present in subsection 4.6.2.

35

Basic threads instrumentation with the JVM TI

Code 4.7: Setting the thread ID and changing the number of threads
1 void Extrae_Java_Backend_NotifyNewThread (void)
2 {
3 i f (!EXTRAE_ON() | | !EXTRAE_INITIALIZED() | |

Extrae_get_pthread_tracing ()) re turn ;
4

5 i n t numthreads = Backend_getNumberOfThreads () ;
6 p th r e ad_s e t sp e c i f i c (pThreadIdent i f i e r , (void ∗) ((long) numthreads

)) ;
7 Backend_ChangeNumberOfThreads (numthreads+1) ;
8 }

Being a multi-thread program by definition, a mutex must be added to keep the
operation safe. In addition, Extrae must know the current thread ID to operate
with the tracing operations. For this reason, it needs to know how to retrieve
both the ID and the number of threads at any time (it lets to do so thanks to
Extrae_set_threadid_function and Extrae_set_numthreads_function func-
tions, whose parameters are pointers to functions—see Code 4.8). After some
refactoring, the code looks as in Code 4.8.

Code 4.8: Refactored code to notify a new Java thread in Extrae
1 #inc lude "common . h "
2 #inc lude " thread id . h "
3 #inc lude " wrapper . h "
4 #inc lude <pthread . h>
5

6 s t a t i c pthread_key_t pThread Iden t i f i e r ;
7 s t a t i c pthread_mutex_t pThreadIdenti f ier_mtx ;
8

9 void Extrae_Java_Backend_init (void)
10 {
11 i f (! EXTRAE_ON() | | Extrae_get_pthread_tracing ()) re turn ;
12 i f (! EXTRAE_INITIALIZED()) Extrae_in i t () ;
13

14 // Te l l Extrae how to r e t r i e v e cur rent thread ID
15 Extrae_set_threadid_funct ion (

Extrae_Java_Backend_GetThreadIdentifier) ;
16 // Te l l Extrae how to r e t r i e v e cur rent number o f threads
17 Extrae_set_numthreads_function (

Extrae_Java_Backend_GetNumberOfThreads) ;
18 // I n i t i d e n t i f i e r
19 Extrae_Java_Backend_CreateThreadIdentif ier () ;
20 }
21

22 void Extrae_Java_Backend_CreateThreadIdentif ier (void)
23 {
24 pthread_key_create (&pThreadIdent i f i e r , NULL) ;

36

Basic threads instrumentation with the JVM TI

25 pthread_mutex_init (&pThreadIdenti f ier_mtx , NULL) ;
26 }
27

28 unsigned Extrae_Java_Backend_GetThreadIdentifier (void)
29 {
30 re turn (unsigned) ((long) p th r ead_ge t spe c i f i c (pThread Iden t i f i e r)) ;
31 }
32

33 unsigned Extrae_Java_Backend_GetNumberOfThreads () {
34 re turn (unsigned) Backend_getNumberOfThreads () ;
35 }
36

37 void Extrae_Java_Backend_SetThreadIdentif ier (i n t ID)
38 {
39 p th r e ad_s e t sp e c i f i c (pThreadIdent i f i e r , (void ∗) ((long) ID)) ;
40 }
41

42 void Extrae_Java_Backend_NotifyNewThread (void)
43 {
44 i f (!EXTRAE_ON() | | !EXTRAE_INITIALIZED() | |

Extrae_get_pthread_tracing ()) re turn ;
45

46 pthread_mutex_lock (&pThreadIdenti f ier_mtx) ;
47 i n t numthreads = Backend_getNumberOfThreads () ;
48 Extrae_Java_Backend_SetThreadIdentif ier (numthreads) ;
49 Backend_ChangeNumberOfThreads (numthreads+1) ;
50 pthread_mutex_unlock (&pThreadIdenti f ier_mtx) ;
51 }

4.4 Notify the new threads

Once the backend is ready, it needs to be called by the JVM TI agent7. The
JVM TI’s event JVMTI_EVENT_THREAD_START is going to be used for this purpose.
First of all a callback that calls the backend functions needs to be implemented
(Code 4.9).

7Reminder: the file now is different. So the Java backend functions need to be included.
Moreover, the library needs to be linked using automake.

37

Basic threads instrumentation with the JVM TI

Code 4.9: Thread start event callback
#inc lude " java_wrapper . h "

s t a t i c void JNICALL Extraej_cb_Thread_start (jvmtiEnv ∗jvmti_env ,
JNIEnv∗ jni_env , j th r ead thread)

{
jvmtiThreadInfo t i ;
jvmt iError r ;

r = (∗ jvmti_env)−>GetThreadInfo (jvmti_env , thread , &t i) ;
// check i f i t i s a va l i d thread
i f (r == JVMTI_ERROR_NONE){

Extrae_Java_Backend_NotifyNewThread () ;
}

}

Secondly, by following the same steps explained in section 4.1, the following lines
need to be added to the Agent_OnLoad function (Code 4.10, lightened of the trivial
checks).

Code 4.10: Enabling and setting the callback for the Thread start event
JNIEXPORT j i n t JNICALL
Agent_OnLoad(JavaVM ∗vm, char ∗ opt ions , void ∗ r e s e rved)
{

j i n t rc ;
jvmt iError r ;
j vmt iCapab i l i t i e s c a p a b i l i t i e s ;
jvmtiEventCal lbacks c a l l b a c k s ;

/∗ I n i t backend ∗/
Extrae_Java_Backend_init () ;

/∗ Get JVMTI environment ∗/
rc = (∗vm)−>GetEnv(vm, (void ∗∗)&jvmti , JVMTI_VERSION) ;

/∗ Get/Add JVMTI c a p a b i l i t i e s ∗/
memset(& c a p a b i l i t i e s , 0 , s i z e o f (c a p a b i l i t i e s)) ;
// no c a p a b i l i t i e s r equ i r ed f o r Thread Star t event
r = (∗ jvmti)−>AddCapabi l i t i e s (jvmti , &c a p a b i l i t i e s) ;

/∗ Set c a l l b a c k s ∗/
memset(&ca l l back s , 0 , s i z e o f (c a l l b a c k s)) ;
c a l l b a c k s . ThreadStart = &Extraej_cb_Thread_start ;

r = (∗ jvmti)−>SetEventCal lbacks (jvmti , &ca l l back s , s i z e o f (
c a l l b a c k s)) ;

38

Basic threads instrumentation with the JVM TI

/∗ Enable event n o t i f i c a t i o n ∗/
r = (∗ jvmti)−>SetEventNot i f icat ionMode (jvmti , JVMTI_ENABLE,

JVMTI_EVENT_THREAD_START, NULL) ;

re turn JNI_OK;
}

After the new threads notification mechanism is ready, by instrumenting the same
example of chapter 2, the result is shown in Figure 4.2.

Figure 4.2: Trace with the new thread notification mechanism

As it was explained in section 2.4, the total number of threads should be 16. With
pthread instrumentation it was 37, now it lowered to 19. Since no states are shown,
to understand what is going on more events are necessary.

4.5 Tracing the events

4.5.1 Events IDs
First of all, an event to notify the running thread is needed. What has been done
in the previous section was just a notification to Extrae on the number of threads,
but it does not have any clue if the thread is running or not.

Defining and tracing new event requires two simple steps: creating a constant and
unique event ID and call the Extrae internal functions to trace such event.

In addition to those, to show the events on Paraver, it is necessary to define the
“semantics” of the states generated by those events and some “events description”,
needed to create some configuration files to show those events on Paraver in a

39

Basic threads instrumentation with the JVM TI

custom way8.

The chosen ID must be placed in the events.h file (Code 4.11).

Code 4.11: Java events IDs in events.h (the other IDs were pre-existent)
241 #de f i n e JAVA_BASE_EV 48000000
242

243 #de f i n e JAVA_GARBAGECOLLECTOR_EV 48000001
244 #de f i n e JAVA_EXCEPTION_EV 48000002
245 #de f i n e JAVA_OBJECT_ALLOC_EV 48000003
246 #de f i n e JAVA_OBJECT_FREE_EV 48000004
247 #de f i n e JAVA_THREAD_RUN_EV 48000005 /∗ NEW EVENT ∗/

4.5.2 Probes implementation
After having defined the ID, it needs to be traced. Such event, has a beginning and
an end, so it needs to be traced twice with two different values (0 for the end and 1
for the beginning)9. In order to do that it is necessary to do the following:

• Add the JVM TI Thread End event callback;

• Add two new probes to trace begin and end for the event;

• Call these two probes from the Thread Start and Thread End callbacks.

Again, to follow Extrae’s naming convention, these probes are implemented in a
file called java_probe.c (Code 4.12).

Code 4.12: Probes to trace the Running Thread event in java_probe.c
1 #inc lude "common . h "
2

3 #inc lude " thread id . h "
4 #inc lude " wrapper . h "
5 #inc lude " trace_macros . h "
6

8Until now, the view of Paraver that has been used to show the traces was the “states” view.
That means that shows the state records of the application, which represent intervals of actual
thread status or resource consumption [19]. In addition, the events must have some differentiating
values to let Paraver distinguish them (for example, to give them different colors). These values
cannot be the events IDs alone, but they should be normalized for Paraver. This aspect will be
explained later.

9This choice is also attributable to the Paraver semantics. Once they’re traced, Paraver
normally manages the traces by looking at the “last value” of the events. So, when the event is
traced with value 1 at the beginning, means that the event will remain “Up” until it’s going to
be set to 0 again (the end).

40

Basic threads instrumentation with the JVM TI

7 #inc lude " java_probe . h "
8

9 void Extrae_Java_Probe_Thread_start (void)
10 {
11 i f (! EXTRAE_ON()) re turn ;
12

13 i f (EXTRAE_INITIALIZED() && ! Extrae_get_pthread_tracing ())
14 {
15 Backend_Enter_Instrumentation () ; // Enter ins t rumentat ion

f o r t h i s thread
16

17 /∗ Trace JAVA_THREAD_RUN_EV with EVT_BEGIN value ∗/
18 TRACE_MISCEVENTANDCOUNTERS(TIME, JAVA_THREAD_RUN_EV,

EVT_BEGIN, EMPTY) ;
19 }
20 }
21

22 void Extrae_Java_Probe_Thread_end (void)
23 {
24 i f (! EXTRAE_ON()) re turn ;
25

26 i f (EXTRAE_INITIALIZED() && ! Extrae_get_pthread_tracing ())
27 {
28 /∗ Trace JAVA_THREAD_RUN_EV with EVT_END value ∗/
29 TRACE_MISCEVENTANDCOUNTERS(TIME, JAVA_THREAD_RUN_EV, EVT_END,

EMPTY) ;
30

31 Backend_Leave_Instrumentation () ; // Leave ins t rumentat ion
f o r t h i s thread

32 }
33 }

Notice how it checks for the pthread tracing activity, in order to avoid conflicts
between the different events.

4.5.3 JVM TI Callbacks

Once implemented, these probes can be called by the JVM TI callbacks (Code 4.13).
In addition to just tracing the event, Extrae gives the chance of setting the name
of the thread, by calling the Extrae_set_thread_name function. Since the JVM
TI gives the name of the thread among the info, it can be useful to retrieve this
information (Code 4.13, line 16).

41

Basic threads instrumentation with the JVM TI

Code 4.13: Probes called by the JVM TI agent
1 #inc lude " java_wrapper . h "
2 #inc lude " java_probe . h "
3

4 s t a t i c void JNICALL
5 Extraej_cb_Thread_start (jvmtiEnv ∗jvmti_env , JNIEnv∗ jni_env , j th r ead

thread)
6 {
7 jvmtiThreadInfo t i ;
8 jvmt iError r ;
9

10 i f (thread != NULL)
11 {
12 r = (∗ jvmti_env)−>GetThreadInfo (jvmti_env , thread , &t i) ;
13

14 i f (r == JVMTI_ERROR_NONE && t i . thread_group) {
15 // Not i fy new thread
16 Extrae_Java_Backend_NotifyNewThread () ;
17

18 // Set the name given by Java to the thread
19 unsigned thread id = THREADID;
20 Extrae_set_thread_name (threadid , t i . name) ;
21

22 // Trace the s t a r t event
23 Extrae_Java_Probe_Thread_start () ;
24 }
25 }
26 }
27

28 s t a t i c void JNICALL
29 Extraej_cb_Thread_end (jvmtiEnv ∗jvmti_env , JNIEnv∗ jni_env , j th r ead

thread)
30 {
31 // Trace the end event
32 Extrae_Java_Probe_Thread_end () ;
33 }

Code 4.14: Setting the callback to the JVM TI environment
JNIEXPORT j i n t JNICALL
Agent_OnLoad(JavaVM ∗vm, char ∗ opt ions , void ∗ r e s e rved)
{

. . .
c a l l b a c k s . ThreadEnd = &Extraej_cb_Thread_end ;
. . .
r = (∗ jvmti)−>SetEventNot i f icat ionMode (jvmti , JVMTI_ENABLE,

JVMTI_EVENT_THREAD_END, NULL) ;
. . .
r e turn JNI_OK;

42

Basic threads instrumentation with the JVM TI

}

4.5.4 Paraver states semantics
Finally, to show the results of these events on the trace, the semantics must be
defined. Doing so is necessary to let Paraver know which state correspond to which
event. There are several states in Paraver [19, p. 20], but for now the interesting
ones for the thread execution are: “Idle” and “Running”.

In complex cases, the correlation between states and events may be dependent on
several factors (i.e. an event can generate different states based on the current one),
but for now this definition will be straight forward: when the Thread Running
event begins, the state must be “Running”, when it ends it becomes “Idle”.

To do so, it is enough to tell the merger10 how to interpret the events. The java
functions for the merger are contained in the file merger/paraver/java_prv_
semantics.c, which contains a list of key-value pairs, where the key is the event
ID and the value an handler function for each Java event11. To trace the state, it
was enough to add the handler in the list and a call to the SwitchState function
(Code 4.15). When the value of the event (EvValue) is different from the end, the
state is Up. Otherwise, it would be set down (and other overlapping states are
shown, if any).

Code 4.15: Semantics for the thread running event (java_prv_semantics.c)
SingleEv_Handler_t PRV_Java_Event_Handlers [] = {

{ JAVA_GARBAGECOLLECTOR_EV, JAVA_call } ,
{ JAVA_EXCEPTION_EV, JAVA_call } ,
{ JAVA_THREAD_RUN_EV, JAVA_call } , /∗ NEW HANDLER RECORD ∗/
{ NULL_EV, NULL }

} ;

s t a t i c i n t
JAVA_call (event_t∗ event , unsigned long long current_time ,

unsigned i n t cpu , unsigned i n t ptask , unsigned i n t task ,
unsigned i n t thread , F i l eSet_t ∗ f s e t)

{
unsigned EvType ;
unsigned long long EvValue ;

10By “merger” is simply meant the part of the application responsible to translate all the events
in another format. In the specific case, it is referring to the “Paraver merger”, and so it is the
final part of the instrumentation, in which the events are being reported to a Paraver trace file.

11This list is parsed by Extrae’s merger for Paraver. It simply scans all the lists for all the
instrumented frameworks, calling the right handler based on the event found.

43

Basic threads instrumentation with the JVM TI

EvType = Get_EvEvent (event) ;
EvValue = Get_EvValue (event) ;
switch (EvType)
{

case JAVA_GARBAGECOLLECTOR_EV:
case JAVA_EXCEPTION_EV:

Switch_State (STATE_OTHERS, (EvValue != EVT_END) , ptask , task ,
thread) ;

break ;
case JAVA_THREAD_RUN_EV: /∗ NEW CASE ∗/

Switch_State (STATE_RUNNING, (EvValue != EVT_END) , ptask , task ,
thread) ;
break ;

}

trace_paraver_state (cpu , ptask , task , thread , current_time) ;
trace_paraver_event (cpu , ptask , task , thread , current_time ,

EvType , EvValue) ;

r e turn 0 ;
}

The result of all these operations can be found in Figure 4.3. As it can be seen,
now the traces are showing the running state.

Figure 4.3: Traces with Thread Running state and thread names given by the
JVM TI

44

Basic threads instrumentation with the JVM TI

4.5.5 Tracing the remaining events

The other JVM TI events need to be traced. As it has been done for the running
event, all of them will be associated to a unique ID and to some state in the
Paraver tracefile. Having a look to the list of the interesting JVM TI events
(subsection 4.1.1), there are some missing to trace. In Table 4.1 there are all the
events summarized with the related Extrae event and Paraver state.

Each of them can be traced by using a callback that calls a specific probe. The
resulting traces are shown in Figure 4.4.

Figure 4.4: Traces with all the JVM TI events traced

JVM TI Event Extrae Event Type Event Value Next State
Thread Start* JAVA_THREAD_RUN_EV Begin (1) Running
Thread End* JAVA_THREAD_RUN_EV End (0) Idle
Monitor Wait JAVA_WAIT_EV Begin (1) Synchronization
Monitor Waited JAVA_WAIT_EV End (0) back to previous

Contended Monitor Wait JAVA_WAIT_EV Begin (1) Synchronization
Contended Monitor Waited JAVA_WAIT_EV End (0) back to previous

Exception JAVA_EXCEPTION_EV Begin (1) Others
Exception Catch JAVA_EXCEPTION_EV End (0) back to previous

Garbage Collector start JAVA_GARBAGECOLLECTOR_EV Begin (1) Others
Garbage Collector end JAVA_GARBAGECOLLECTOR_EV End (0) back to previous

Table 4.1: Summary table for the traced Thread events and related states. The
events marked with an asterisk * are disabled when pthread tracing is enabled.

45

Basic threads instrumentation with the JVM TI

4.6 Discussion of the partial results
4.6.1 Traces analysis
In this chapter the platform on which all the tracing activity will rely on has been
implemented. A thread notification system has been designed and the events are
starting being traced.

Moreover, in subsection 4.5.3, a name was set to the thread. Indeed, this name can
be found on the left side of both Figure 4.3 and Figure 4.4. Thanks to that, it is
easy to recognize what these threads are, and for some of them even their purpose
is promptly clear. Although not really informative yet, the traces are becoming to
shape themselves.

4.6.2 Thread IDs
Defining the thread IDs how it is explained in this chapter leads to some conse-
quences. The identification is done by the cumulative number of threads, which
means that the threads take an increasing ID starting from 1, and the terminated
threads will not see their ID re-utilized by other threads. This is the same approach
applied by the pthread instrumentation.

The alternative to this approach would be a mechanism to assign IDs starting from
1, by keeping trace of the available ones and generating new IDs only if all the
previous are still in use. In math symbols, every new notified thread would get as ID
the smallest available m, with: 1 ≤ m ≤ N + 1, N = max{current_thread_IDs}.
In other words, if at a given time the highest ID is N and a new thread is being
notified, this new thread would get N + 1 if and only if all the IDs from 1 to N are
taken by active threads; otherwise, the new thread ID would be the smallest m
available. This approach is the same used by the OpenMP instrumentation.

If for OpenMP this is the only approach that makes sense, for Java threads or
pthreads it makes less sense. This assertion is based on the fact that the OpenMP
threads are simple workers, while the Java threads can be specialized units with
specific names, and making them share the same ID and “line” (on Paraver), would
probably lead to confusions. For this reason, this solution has not been implemented
in this thesis.

However, there are some frameworks that work in a fashion similar to how OpenMP
works for Java12. Such special cases can be dealt separately, or this feature can be
implemented and activated only if needed.

12The ForkJoin framework is often compared to OpenMP, for example.

46

Basic threads instrumentation with the JVM TI

4.6.3 Would JVM internal instrumentation
provide any added value?

As said in the previous chapter, instrumenting the JVM internals would lead to
inconsistencies, soon or later. However, even ignoring this aspect, one doubt can be:
would it be possible to gather more valuable data by instrumenting it anyway?

To discover some relations between the JVM events and its internal functions, I
observed the execution of some Java programs using gdb13. By putting breakpoints
in the JVM TI callbacks, inspecting the call stack and spending some time to
analyze different programs, I discovered that most of the valuable events and
interesting functions correspond to some of the above events. Instrumenting such
functions, would not give any additional information respect to the events and data
provided by the JVM TI. The only exception is the “Object notify” event: when
it happens, always the same internal function is called, but it does not raise any
event. However, Object.notify() is a native method, and it can be instrumented
in other ways.

In conclusion, the JVM TI makes it pointless to even try the manual instrumentation
of the JVM internal functions. And this is also true thanks to the next tool that is
going to be employed in this study, and that will be explained in the next chapter:
AspectJ.

13GDB is the GNU Project Debugger, a debugger that can be used for many languages (C and
C++ included). It allows to set breakpoints, stop the program on certain conditions, inspecting
local variables or the call stack and other helpful operations [32].

47

Chapter 5

AspectJ and other
improvements

The JVM TI gives access to a set of very useful events, which can be effectively
used to trace the threads states. However, there are still other threads missing to
trace, which are not available through the JVM TI. The necessity of a more general
approach raises, an approach that is not tied to the JVM events available via the
Tool Interface, but one that allows to instrument freely some target methods. Such
approach, can be found in the Aspect Oriented Programming, and more specifically
in AspectJ.

However, before diving into the implementation of the AspectJ solution, some
preliminary work is necessary. Indeed, it would not be possible to instrument
complex applications before modifying extraej, because it currently does not
support custom class paths.

Moreover, recalling the discussion about the events information to depict on Paraver
(subsection 4.5.4), the events should be represented in some way other than just
the states records.

These improvements will be studied throughout this chapter.

5.1 Setting user class path to extraej

The state of the art of extraej (section 2.7) needs to be launched in the same
directory of the class to instrument, because the standard class path when launching
a java application is “.” (the current directory). This is limiting for several
reasons:

48

AspectJ and other improvements

• it lets to instrument only the applications that depend only on the JDK, and
not on other frameworks whose classes are placed somewhere else;

• it does not let to instrument most of the applications object of this thesis,
since the frameworks are not part of the JDK;

• seen the previous point, and as it will be discussed in section 5.2, the AspectJ’s
compiler (ajc) needs the classes to instrument in the class path to work.

In order to improve this, an option -cp was added to extraej, and works as
follows:

extraej -cp <DIRECTORY_OR_FILE> -- <TARGET>

That is implemented in order to add to the class path all the containing files if its
a directory, or just the file if not1 (Code 5.1).

Code 5.1: extraej new option implementation
#!/ bin /bash
. . .
parse_parameters () {

. . .
e l i f [[" ${1} " = "−cp "]] ; then

s h i f t
user_cp=${1}

. . .
}
. . .
i f [[" ${user_cp} " != " "]] ; then

i f [[−d " ${user_cp} "]] ; then
f o r cp in $ (l s ${user_cp }) ; do
CLASSPATH=" ${user_cp}/${cp } : ${CLASSPATH} "

done
e l s e

CLASSPATH=${user_cp } : ${CLASSPATH}
f i
echo "Updated Classpath : ${CLASSPATH} "

f i
. . .

1The class path would be enough to point to a directory full of compiled .class files. However,
this way is more general, because if in the directory are present JAR files (which is quite common
when building the dependencies with Maven, for example), they will be added to the class path
too.

49

AspectJ and other improvements

5.2 AspectJ for Instrumentation

5.2.1 Introduction to AspectJ

AspectJ is a framework to implement aspect-oriented programming Java. In
practice, it adds to the Java language just one new concept: a join point. This
is implemented and managed through some new constructs: pointcuts, advice,
inter-type declarations and aspects.

The official “Getting started with AspectJ” guide [33] defines these new elements
as follows:

“A join point is a well-defined point in the program flow. A pointcut picks out
certain join points and values at those points. A piece of advice is code that is
executed when a join point is reached.”

“AspectJ’s aspects are the unit of modularity for crosscutting concerns. They behave
somewhat like Java classes, but may also include pointcuts, advice and inter-type
declarations.”

Code 5.2: Example of an aspect implementation in AspectJ, with some local
attributes and methods, a pointcut to define the type of call to catch and an advice
to add some behaviour one the catched call. The aspects are normally stored in
.aj files.

1 import org . a s p e c t j . lang . r e f l e c t . ∗ ;
2 import java . lang . ∗ ;
3

4 aspect PointObserving {
5 OutputStream logStream = System . e r r ;
6 boolean updatedX = f a l s e ;
7

8 void logChangeX (i n t x) {
9 logStream . p r i n t l n (" about to change X") ;

10 }
11

12 po intcut changeX () : c a l l (void Point . setX (i n t)) ;
13 be f o r e () : changeX () {
14 updatedX = true ;
15 logChangeX () ;
16 }
17 }

50

AspectJ and other improvements

This instrumentation approach is going to use AspectJ just for calling the probes,
which are going to be implemented using JNI2. That means, the pointcuts will be
on the methods to instrument, while the pieces of advice will be implemented in
order to call the JNI methods3, as shown in the example Code 5.3.

Code 5.3: Example of instrumented methods using AspectJ
1 import org . a s p e c t j . lang . r e f l e c t . ∗ ;
2 import bsc . ex t rae . JavaProbes ;
3

4 aspect SomeClassInstrumentation {
5

6 po intcut someOperation () : c a l l (void SomeClass . someMethod (void)) ;
7

8 be f o r e () : someOperation () {
9 JavaProbes . traceSomeEventBegin () ;

10 }
11

12 a f t e r () : someOperation () {
13 JavaProbes . traceSomeEventEnd () ;
14 }
15

16 }

5.2.2 What to trace using AspectJ
Before diving into the development phase, the methods to be instrumented must
be decided.

The first event interesting to gather can be found by looking at the traces given by
the pthread instrumentation (Figure 2.2) and the ones given by the instrumentation
through JVM TI (Figure 4.4). In the second one, even if the synchronization state
is present, the “Scheduling and fork/join” state is totally missing. A thread is in
this state while it is creating a new thread, and in our example such thread creation
is what is done by the Thread.start() method4. So this is the first method to be

2The basic concepts of Pointcut, Advice and Aspect are enough to deliver this job. For this
reason, this brief overview of AspectJ ends here. AspectJ’s power is far beyond solving this simple
task, but all the possible features and complex usages won’t be explained, because not related to
the objective of the thesis. However, any necessary tool will be gradually introduced.

3This is almost how it works with the User Functions, explained in section 2.5. The generation
was different, but the concept of calling the JNI methods inside the pieces of advice was the same.

4Indeed, the Java threads work in this way. In order to run the thread (that means executing
what is contained in the Thread Object’s run method), the start method must be called on the
Thread object (it can be seen in Code 2.2 too).

51

AspectJ and other improvements

traced using AspectJ.

Another event that may be interesting to trace, and of which there are no clue in
JVM TI events, is the monitor notification event (Object.notify()).

These two (Thread.start() and Object.notifiy()) will be the first two instru-
mented methods using AspectJ.

5.2.3 JNI implemented probes
As already stated, the probes must be implemented through JNI bindings, in order
to interoperate with Extrae’s core in C language. In order to implement the probes
using the JNI (recalling section 2.5), it is necessary to define a class with some
native methods (Code 5.4).

Code 5.4: Extrae Java instrumentation probes Class
1 package es . bsc . c epbatoo l s . ex t rae ;
2

3 pub l i c f i n a l c l a s s JavaProbes
4 {
5 s t a t i c { System . loadLibrary (" j ava t r a c e ") ; }
6

7 pub l i c s t a t i c nat ive void ThreadStartBegin () ;
8 pub l i c s t a t i c nat ive void ThreadStartEnd () ;
9

10 pub l i c s t a t i c nat ive void ObjectNot i fyBegin () ;
11 pub l i c s t a t i c nat ive void ObjectNotifyEnd () ;
12 }

As it can be seen by Code 5.4, the loaded library is “javatrace”, the same of
the wrappers in Code 2.5, and also the package is the same. Indeed, the JNI
implemented probes are going to end in the same library, in order to keep the
same dependencies and Makefiles. Indeed, from the implementation point of view,
these probes are not different from the functions of the Java Extrae instrumentation
API, presented in section 2.5.

The probes are implemented in C language as in Code 5.5, and they will be
contained in the same directory of the other JNI bindings (java-connector/jni),
in a file called extrae_javaprobes.c.

Code 5.5: Extrae Java instrumentation probes implementation in C language
1 JNIEXPORT void JNICALL
2 Java_es_bsc_cepbatools_extrae_JavaProbes_ThreadStartBegin (
3 JNIEnv ∗env , j c l a s s j c)
4 {
5 Extrae_Java_Probe_ThreadStart_begin () ;

52

AspectJ and other improvements

6 }
7

8 JNIEXPORT void JNICALL
9 Java_es_bsc_cepbatools_extrae_JavaProbes_ThreadStartEnd (

10 JNIEnv ∗env , j c l a s s j c)
11 {
12 Extrae_Java_Probe_ThreadStart_end () ;
13 }
14

15 JNIEXPORT void JNICALL
16 Java_es_bsc_cepbatools_extrae_JavaProbes_ObjectNotifyBegin (
17 JNIEnv ∗env , j c l a s s j c)
18 {
19 Extrae_Java_Probe_ObjectNotify_begin () ;
20 }
21

22 JNIEXPORT void JNICALL
23 Java_es_bsc_cepbatools_extrae_JavaProbes_ObjectNotifyEnd (
24 JNIEnv ∗env , j c l a s s j c)
25 {
26 Extrae_Java_Probe_ObjectNotify_end () ;
27 }

The probes are implemented as in subsection 4.5.2, in the same file (Code 5.6).
Notice how the Thread Start event checks for the pthread tracing activity, while
the Object Notify event does not. In this way, Extrae can trace the notification
events even during the pthread tracing (as it was already happening for all the
events except from the Thread Running one).

Code 5.6: The new probes implemented in java_probe.c
1 void Extrae_Java_Probe_ThreadStart_begin (void)
2 {
3 i f (!EXTRAE_ON() | | !EXTRAE_INITIALIZED() | |

Extrae_get_pthread_tracing ()) re turn ;
4

5 TRACE_MISCEVENTANDCOUNTERS(TIME, JAVA_THREAD_START_EV, EVT_BEGIN,
6 EMPTY) ;
7 }
8

9 void Extrae_Java_Probe_ThreadStart_end (void)
10 {
11 i f (!EXTRAE_ON() | | !EXTRAE_INITIALIZED() | |

Extrae_get_pthread_tracing ()) re turn ;
12

13 TRACE_MISCEVENTANDCOUNTERS(TIME, JAVA_THREAD_START_EV, EVT_END,
14 EMPTY) ;
15 }
16

53

AspectJ and other improvements

17 void Extrae_Java_Probe_ObjectNotify_begin (void)
18 {
19 i f (!EXTRAE_ON() | | !EXTRAE_INITIALIZED()) re turn ;
20

21 TRACE_MISCEVENTANDCOUNTERS(TIME, JAVA_OBJECT_NOTIFY_EV, EVT_BEGIN,
22 EMPTY) ;
23 }
24

25

26 void Extrae_Java_Probe_ObjectNotify_end (void)
27 {
28 i f (!EXTRAE_ON() | | !EXTRAE_INITIALIZED()) re turn ;
29

30 TRACE_MISCEVENTANDCOUNTERS(TIME, JAVA_OBJECT_NOTIFY_EV, EVT_END,
31 EMPTY) ;
32 }

After that, it is necessary to specify which states they trace. As already said,
the state related to the Thread.start() method is of the type “Scheduling and
Fork/Join”, while the state related to Object.notify() will be one that has not
been mentioned yet: “Group Communication”. Once that everything is set, the
only remaining step is to call the probes and let the tracing happen.

5.2.4 Instrumentation aspects implementation
Implementing the Aspect is quite straight forward. It is necessary to define two
pointcuts to catch the two methods. Moreover, some care is needed in order to
avoid some inconveniences. Since the class Object is being instrumented, and since
all the classes are sub-classes of it, it must be told AspectJ that the events within
the Aspect execution must not be included in the pointcut itself. The code looks
like Code 5.7.
Code 5.7: Extrae.aj: aspect implementation to call the probes before and after
the instrumented methods

1 package ext rae . a spec t s ;
2

3 import org . a s p e c t j . lang . r e f l e c t . ∗ ;
4 import java . lang . ∗ ;
5

6 pub l i c aspect Extrae {
7 // ! with in to avoid inner ob j e c t s ins t rumentat ion
8 po intcut Tread_Create () : ! with in (ext rae . a spec t s . Extrae)
9 && c a l l (∗ java . lang . Thread . s t a r t (. .)) ;

10

11 po intcut Not i fy () : ! wi th in (ext rae . a spec t s . Extrae)
12 && c a l l (∗ java . lang . Object . n o t i f y (. .)) ;

54

AspectJ and other improvements

13

14 be f o r e () : Tread_Create ()
15 {
16 es . bsc . c epbatoo l s . ex t rae . JavaProbes . ThreadStartBegin () ;
17 }
18

19 a f t e r () r e tu rn ing () : Tread_Create ()
20 {
21 es . bsc . c epbatoo l s . ex t rae . JavaProbes . ThreadStartEnd () ;
22 }
23

24 be f o r e () : Not i fy ()
25 {
26 es . bsc . c epbatoo l s . ex t rae . JavaProbes . ObjectNot i fyBegin () ;
27 }
28

29 a f t e r () r e tu rn ing () : Not i fy ()
30 {
31 es . bsc . c epbatoo l s . ex t rae . JavaProbes . ObjectNotifyEnd () ;
32 }
33 }

In order to be available for all the executions in Java, all the aspects are placed
in a specific system directory during the installation. The chosen directory is
${EXTRAE_LIB_DIR}/extraejaspects.

5.2.5 Compiling everything and setting the agent
The aspects can be combined to the actual Java program with an operation called
“Weaving”. This can be delivered in three different ways:

• Compile-time weaving, consisting in compiling the Java and AspectJ source
codes together;

• Post-compile weaving (also sometimes called binary weaving), used with
existing class or JAR files, that are already compiled in bytecodes;

• Load-time weaving (LTW), that expects to defer the binary weaving until a
class loader loads a class file and defines the class to the JVM.

The simplest ones are the first two, while the latter requires some additional settings
and precautions. The one used for the User functions (subsection 2.6.2) is the
second one, and so the proposed solution will use the “Post-compile weaving” as
well. The compilation with AspectJ needs to be done using AspectJ’s own compiler,
named ajc. It is a command similar to javac, and takes some option to define the
source code (aspects file) and the input classes to instrument.

55

AspectJ and other improvements

The AspectJ compiler ajc needs to have in the class path all the classes to weave5.
It will then output the new compiled classes, which will be the ones executed
to gather the traces. Input and output files will all be collected in a temporary
directory: the aspects will be copied inside <temp_directory>/aspects and the
instrumented classes will be placed inside <temp_directory>/instrumented. All
these operations are summarized in Figure 5.1.

Figure 5.1: Instrumentation process using AspectJ compilation

The compilation is going to be implemented inside extraej (Code 5.8), just before
launching the java application.

Code 5.8: Extract of extraej, containing the aspects compilation
tmpdir=‘mktemp −d ex t r a e j .XXXXXX‘
mkdir ${ tmpdir }/ a spec t s

i f [[" ${user_cp} " != " "]] ; then
inpath=${user_cp}

e l s e
inpath=.

f i

5For now, this does not represent a problem, since the instrumented classes are part of the
standard Java language. However, when the classes will be some external frameworks, some care
will be needed when compiling.

56

AspectJ and other improvements

cp −r ${EXTRAEJ_ASPECTS_DIR}/∗ ${ tmpdir }/ a spec t s /

CLASSPATH=${ASPECTJRT_JAR} : ${ASPECTWEAVER_JAR} : ${
EXTRAEJ_JAVATRACE_PATH} : ${CLASSPATH} \

${AJC} \
−1.8 \
−inpath ${ inpath } \
−s ou r c e r oo t s ${ tmpdir }/ a spec t s \
−d ${ tmpdir }/ instrumented

And then, launching the application will be done by adding the directory with the in-
strumented classes <temp_dir>/instrumented to the class path6 (Code 5.9).

Code 5.9: Extract of extraej, containing the Java launching instruction
execute_java ${ tmpdir }/ instrumented : ${ASPECTJRT_JAR} :

${ASPECTWEAVER_JAR} : ${CLASSPATH} \
${EXTRAEJ_LIBPTTRACE_PATH} \
"$@"

All these operations do not alter the original command of execution (the “user class
path” option is not needed, because the instrumentation is on the classes Thread
and Object, which are part of the JDK).

5.2.6 Resulting traces and discussion
To show the new implemented features, a new example Java program has been
instrumented (Figure 5.2).

Without looking at the code, but zooming on the main part (Figure 5.3), the
behaviour of the application can almost be understood with just looking at the
traces. The main thread generates the other two (because no scheduling is present
on the other threads), Thread-0 waits until Thread-1 notifies something, and then,
after some operations, they both die and the program ends (also, the main thread
was waiting for both without doing anything else).

5.3 Events values: a better view
Using Paraver to show the states was enough to understand the program behaviour,
but what about the specific operations? Understanding that a “Group commu-
nication” is related to an Object.notify() call, or that the “Synchronization”

6The first argument of execute_java represents the class path (section 2.7, Code 2.8).

57

AspectJ and other improvements

Figure 5.2: Traces of an instrumented application, with the new traced states:
Scheduling and Group Communication

Figure 5.3: Traces of an instrumented application, focus on the main part. It
can be noticed the scheduling state on the main thread, while it is generating
Thread-0 and Thread-1, and also the notification event on Thread-1 that “unlocks”
Thread-0 from the waiting state.

state is related to Object.wait(), requires a level of knowledge of the Extrae’s
instrumentation package implementation. Moreover, no clue is given about the
“Others” state, or if more events are related to the same state, making them the

58

AspectJ and other improvements

same from the point of view of the state. This may not be a problem, if just a gen-
eral understanding of the program is the finale objective. However, it’s inevitably
a loss of information that can (and should) be fixed.

Fortunately, Paraver is able to show different events with different colors. The
problem is that it bases this differentiation on the value of the event, and not the
type. More specifically, all the events traced so far reported all the same values
when traced: EVT_BEGIN and EVT_END (Code 4.12, Code 5.6). For this reason,
Paraver would not be able to distinguish among the different events.

In order to show the Java events in different colors, an addition to the Paraver
merger7 has been made. When tracing the event, it is mapped to a different pair
type-value. The mapping is shown in Table 5.18.

Extrae event type New type New value Event label
JAVA_GARBAGE_COLLECTOR_EV JAVA_BASE_EV 1 Garbage Collection

JAVA_EXCEPTION_EV JAVA_BASE_EV 2 Exception
JAVA_OBJECT_ALLOC_EV JAVA_BASE_EV 3 Object allocated
JAVA_OBJECT_FREE_EV JAVA_BASE_EV 4 Object freed

JAVA_WAIT_EV JAVA_BASE_EV 5 Monitor wait
JAVA_THREAD_START_EV JAVA_BASE_EV 6 Thread scheduling
JAVA_OBJECT_NOTIFY_EV JAVA_BASE_EV 7 Monitor notify
All the events with value 0 - 0 Outside Java events

Table 5.1: Events values mapping for Paraver. Valid for EVT_BEGIN only, when
the original event value is EVT_END (that is 0) the new event value will be 0.

The mapping is simply implemented as an array of normal C structs, that is
iterated if the event is of one the Java ones. In addition to the mapping, Paraver
requires the configuration to be print on the .pcf file, in order to associate the
event values to the labels. The implementations of the mapping (Code 5.10) and
the printing of the labels configuration for the .pcf file (Code 5.11), are both in
the merger/paraver/java_prv_events.c file.

7The Paraver merger has been introduced in subsection 4.5.4, when talking about the states
semantics).

8On the table it can be seen how the event JAVA_THREAD_RUNNING_EV is not being mapped to
a new event type. The reason behind the choice is based on the fact that it would have made
the trace more confusing then how it would have added value. In this way, the focus can be
on the single operations. Understanding when a thread is generated can be done thanks to the
Thread.start() event. In any case, Paraver allows to add it to the filter in order to show it
together with the other events.

59

AspectJ and other improvements

Code 5.10: Extract of the file java_prv_events.c, mapping
1 void Translate_JAVA_MPIT2PRV (in t typempit , UINT64 valuempit , i n t ∗

typeprv , UINT64 ∗ valueprv)
2 {
3 i n t index = find_event_mpit (typempit) ;
4

5 i f (index >= 0)
6 { // i f found the mapping , change with new type and value
7 ∗ typeprv = event_mpit2prv [index] . type_prv ;
8 ∗ valueprv = (valuempit !=0) ? event_mpit2prv [index] . val_prv : 0 ;
9 }

10 e l s e
11 { // otherwise , keep the input ones
12 ∗ typeprv = typempit ;
13 ∗ valueprv = valuempit ;
14 }
15 }

Code 5.11: Extract of the file java_prv_events.c, printing the labels
1 void JavaEvent_WriteEnabledOperations (FILE ∗ fd)
2 {
3 i n t a t l e a s t on e = FALSE;
4 f o r (unsigned i =0; i < MAX_JAVA_INDEX && ! a t l e a s t on e ; i++)
5 a t l e a s t on e |= event_mpit2prv [i] . in_use ;
6 i f (! a t l e a s t on e) re turn ; // i f none i s used , don ’ t p r i n t anything

and return
7

8 f p r i n t f (fd , "EVENT_TYPE\n") ;
9 f p r i n t f (fd , " 0 %d Java ba s i c events " , JAVA_BASE_EV) ;

10 f p r i n t f (fd , "VALUES") ;
11

12 f p r i n t f (fd , " 0 Outside thread execut ion \n") ;
13 f o r (unsigned i =0; i < MAX_JAVA_INDEX; i++)
14 {
15 i f (event_mpit2prv [i] . in_use) // i f used in the trace , p r i n t

va lue and l a b e l
16 f p r i n t f (fd , "%d %s\n" , event_mpit2prv [i] . val_prv ,

event_mpit2prv [i] . l a b e l) ;
17 }
18 }

The translation function is then called by the trace_paraver_event function,
which is the one that actually prints the numeric values on the trace (Code 5.12).

60

AspectJ and other improvements

Code 5.12: Extract of the file paraver_generator.c, trace_paraver_event
function
void trace_paraver_event (

unsigned i n t cpu , unsigned i n t ptask , unsigned i n t task ,
unsigned i n t thread , unsigned long long time , unsigned i n t type ,
UINT64 value)

{
. . .
i f (type >= MPI_MIN_EV && type <= MPI_MAX_EV)

{
Translate_MPI_MPIT2PRV (type , value , &t ipus , &va lo r) ;

}
e l s e i f (type >= JAVA_MIN_EV && type <= JAVA_MAX_EV) /∗ i f a Java
event ∗/

{
Translate_JAVA_MPIT2PRV (type , value , &t ipus , &va lo r) ; /∗ change
to new type and value ∗/

}
e l s e
{

t i pu s = type ;
va l o r = value ;

}
. . .

}

By instrumenting using this implementation, and by changing the view of Paraver
in order to filter by the JAVA_BASE_EV, the result for the traces are shown in
Figure 5.4 (the PiExample program from chapter 2) and Figure 5.5 (the new
example program of subsection 5.2.6)9.

Using this view, together with the state view, will give an holistic understanding of
the traced events for all the Java applications. This and the other improvements
contained in this chapter will give an additional support for analyzing a real world
case study, which is going to be the topic of the next chapter.

9This configuration can be saved thanks to the Paraver configuration files (with extension
.cfg). The configuration file for this specific view is reported in Appendix B.

61

AspectJ and other improvements

Figure 5.4: PiExample trace with the Java Paraver view

Figure 5.5: New example trace with the Java Paraver view

62

Chapter 6

Applications and
Discussion

The next step in the study, after having developed a baseline tracing platform,
would be to apply it to a real application. This chapter covers the application to
two of the most famous Java frameworks for distributed computations: Hadoop
and Spark.

It follows some discussion on the resulting traces, on the methodology to follow
to instrument them and on the implications of the choices made in the previous
chapters.

6.1 Analyzing Hadoop MapReduce
Hadoop was introduced in chapter 1 as an important framework implementing the
map-reduce paradigm, on which AI applications rely to go distributed (like Weka
or Apache Mahout, but also Spark is related to it). In this context, it is now being
tested in a non-distributed environment, and so on a single JVM. The application
is expected to generate some threads.

6.1.1 The example program
The application that is going to be tested is a Word Count program, a standard
example when coming to applications based on the map-reduce framework. It
expects the mappers to split their portion in all the words they find and count them,
and the reducers to collect all the words of the same kind and merge the related
mappers’ counts. An explanation of the process is shown in Figure 6.1.

63

Applications and Discussion

Figure 6.1: Word Count map-reduce application workflow (image from DZone [34])

The specific code is shown in Code 6.1.

Code 6.1: Hadoop WordCount example program
1 import java . u t i l . S t r ingToken ize r ;
2 import org . apache . hadoop . conf . Con f igurat ion ;
3 import org . apache . hadoop . f s . Path ;
4 import org . apache . hadoop . i o . ∗ ;
5 import org . apache . hadoop . mapreduce . ∗ ;
6 import org . apache . hadoop . mapreduce . l i b . input . Fi leInputFormat ;
7 import org . apache . hadoop . mapreduce . l i b . output . FileOutputFormat ;
8 import org . apache . hadoop . u t i l . Gener icOpt ionsParser ;
9

10 pub l i c c l a s s WordCount {
11

12 pub l i c s t a t i c c l a s s TokenizerMapper
13 extends Mapper<Object , Text , Text , IntWritable >{
14

15 pr i va t e f i n a l s t a t i c IntWritab le one = new IntWritab le (1) ;
16 pr i va t e Text word = new Text () ;
17

18 pub l i c void map(Object key , Text value , Context context
19) throws IOException , Inter ruptedExcept ion {
20 Str ingToken i ze r i t r = new Str ingToken ize r (va lue . t oS t r i ng ()) ;
21 whi le (i t r . hasMoreTokens ()) {
22 word . s e t (i t r . nextToken ()) ;
23 context . wr i t e (word , one) ;
24 }
25 }
26 }

64

Applications and Discussion

27

28 pub l i c s t a t i c c l a s s IntSumReducer
29 extends Reducer<Text , IntWritable , Text , IntWritable> {
30 pr i va t e IntWritab le r e s u l t = new IntWritab le () ;
31

32 pub l i c void reduce (Text key , I t e r ab l e <IntWritable> values ,
33 Context context
34) throws IOException , Inter ruptedExcept ion {
35 i n t sum = 0 ;
36 f o r (IntWritab le va l : va lue s) sum += val . get () ;
37

38 r e s u l t . s e t (sum) ;
39 context . wr i t e (key , r e s u l t) ;
40 }
41 }
42

43 pub l i c s t a t i c void main (St r ing [] a rgs) throws Exception {
44 Conf igurat ion conf = new Conf igurat ion () ;
45 Job job = new Job (conf , "word count ") ;
46 job . setJarByClass (WordCount . c l a s s) ;
47 job . setMapperClass (TokenizerMapper . c l a s s) ;
48 job . setCombinerClass (IntSumReducer . c l a s s) ;
49 job . setReducerClass (IntSumReducer . c l a s s) ;
50 job . setOutputKeyClass (Text . c l a s s) ;
51 job . setOutputValueClass (IntWritab le . c l a s s) ;
52 FileInputFormat . addInputPath (job , new Path (" input . txt ")) ;
53 FileOutputFormat . setOutputPath (job , new Path (" output ")) ;
54 System . e x i t (job . waitForCompletion (t rue) ? 0 : 1) ;
55 }
56 }

6.1.2 Resulting Traces
The program has been analyzed as in previous chapters1, obtaining the traces
shown in Figure 6.2.

The only traced java events, in addition to the thread notification, are the Monitor
Wait event and the Exception event (Figure 6.3). The threads names can give some
clues on the threads objectives, but it is difficult to understand what it is going on
without having more states. This was expected, since the methodology expects to
trace specific frameworks-related events.

1Important! Hadoop dependencies must be specified in the class path:
extraej -cp <path_to_hadoop_jars> -- WordCount

Maven [35] has been used for the dependecies and the pom.xml is reported in Appendix B.

65

Applications and Discussion

Figure 6.2: Hadoop execution states traces

6.1.3 Probes-Application interference

Unfortunately, obtaining traces for a complete execution was not possible, due to
a strange behaviour of the application. Indeed, it appeared to stop prematurely,
without even generating the final output. Without the Extrae instrumentation
(that is, without using the linker preload and the JVM TI agent), the execution
ends normally. As soon as Extrae does something, any application using Hadoop
MapReduce stops before the mapping step, without raising any error or exception
that may give any clue about the problem. This aspect needed more time to
be investigated properly, because the reasons behind this behaviour remained
unexplained.

66

Applications and Discussion

Figure 6.3: Hadoop execution Java events traces

6.1.4 Steps towards instrumentation
In order to understand the new methods to instrument and associate them to specific
events, an operation that can be performed is profiling with some Java profiling tool.
In this specific case, IntelliJ’s “CPU profiling” tool has been employed [36].

The result of this analysis brought a list of interesting functions to instrument. A
good criteria to look at which functions are more interesting to trace, is by looking
at the number of samples in which they were being executed2. By following this
approach, the interesting functions will be detected.

The functions contained in the main file (WordCount$TokenizerMapper.map and
WordCount$IntSumReducer.reducer) can also be instrumented, in order to know
on which threads they are being called, helping to understand which threads are
mappers and which are reducers. Moreover, from the profiling output (Figure 6.4),
it can be seen the under the cover frameworks used for implementing the map-reduce
features: FutureTasks and ThreadPools. Both of them are Java basic classes, not
related to Hadoop, that can be instrumented in order to give information on every

2A profiler normally works with some sampling mechanism, by reporting the function being
executed at each sample.

67

Applications and Discussion

Java application that use them, not just the ones based on Hadoop.

Figure 6.4: IntelliJ CPU profiler output for Hadoop WordCount program. It
should be read from bottom to top, considering that each function is the caller on
the one on top of it. The wider the function area is, the more it has been detected
in the samples.

These various methods can be instrumented with the methodologies exposed in this
thesis. Specifically, AspectJ should be used to catch them and defining the pieces
of advice (Code 6.2). Specific events should be prepared, traced and “interpreted”
from the state point of view. However, this work, applicable to all the kinds of
frameworks, is left as a further improvement.

Code 6.2: An example of how mappers and reducers methods can be instrumented
and traced. The interesting part is the “+” operator, that lets to catch methods
inherited by other classes. Its utility is based on the fact that mappers and reducers—
in Hadoop—must extend two specific Hadoop classes: Mapper and Reducer.

1 pub l i c aspect HadoopMapReduceInstrumentation {
2 po intcut MapperExecution () : c a l l (void org . apache . hadoop .

mapreduce . Mapper+.map (. .)) ;
3 be f o r e () : MapperExecution ()
4 {
5 es . bsc . c epbatoo l s . ex t rae . JavaProbes . MapperBegin () ;
6 }
7 a f t e r () r e tu rn ing () : MapperExecution ()
8 {
9 es . bsc . c epbatoo l s . ex t rae . JavaProbes .MapperEnd () ;

10 }
11

12 po intcut ReducerExecution () : c a l l (void org . apache . hadoop .
mapreduce . Reducer+. reduce (. .)) ;

13 be f o r e () : ReducerExecution ()

68

Applications and Discussion

14 {
15 es . bsc . c epbatoo l s . ex t rae . JavaProbes . ReducerBegin () ;
16 }
17 a f t e r () r e tu rn ing () : ReducerExecution ()
18 {
19 es . bsc . c epbatoo l s . ex t rae . JavaProbes . ReducerEnd () ;
20 }
21 }

6.2 Analyzing Spark
Spark was introduced in chapter 1 as well, and it is another distributed platform like
Hadoop. As in the previous analysis, Spark is going to be tested in a non-distributed
environment, and so on a single JVM that will generate some threads.

6.2.1 The example program
The example program is again a word counter, as in the previous analysis. The
concept behind the execution is very similar, but the implementation with Spark is
much more straight-forward (thanks to the RDD abstraction).

Code 6.3: WordCount program implemented using Spark
1 import org . apache . spark . SparkConf ;
2 import org . apache . spark . api . java . JavaPairRDD ;
3 import org . apache . spark . api . java . JavaRDD;
4 import org . apache . spark . api . java . JavaSparkContext ;
5 import s c a l a . Tuple2 ;
6

7 import java . u t i l . Arrays ;
8

9 pub l i c c l a s s WordCounter {
10 pr i va t e s t a t i c void wordCount (S t r ing f i leName) {
11 SparkConf sparkConf = new SparkConf () . setMaster (" l o c a l ") .

setAppName("JD Word Counter ") ;
12 JavaSparkContext sparkContext = new JavaSparkContext (

sparkConf) ;
13 JavaRDD<Str ing> inpu tF i l e = sparkContext . t e x tF i l e (f i leName) ;
14 JavaRDD<Str ing> wordsFromFile = inpu tF i l e . f latMap (l −> Arrays

. a sL i s t (l . s p l i t (" ")) . i t e r a t o r ()) ;
15 JavaPairRDD countData = wordsFromFile . mapToPair (t −> new

Tuple2 (t , 1)) . reduceByKey ((x , y) −> (in t) x + (i n t) y) ;
16 countData . saveAsTextFi le (" output ") ;
17 }
18

19 pub l i c s t a t i c void main (St r ing [] a rgs) {

69

Applications and Discussion

20 St r ing f i leName = " input . txt " ;
21 wordCount (f i leName) ;
22 }
23 }

6.2.2 Resulting traces

Figure 6.5: Spark execution traces: Application States

The resulting traces present the Monitor Waiting, the Exception and the Garbage
Collection events (Figure 6.6). There are many threads, each one of them with a
specific name that explain their purpose (Figure 6.5). For example, there are some
called “map-output-dispatcher”, which clearly refer to the mapping step of the data.
Others are called “task-result-getter” or “shuffle-client”, which again are relatable
with the MapReduce steps. In this case, as opposed to the Hadoop analysis, the
name of the threads appears to be one of the most important information to get
the general behaviour of the program.

70

Applications and Discussion

Figure 6.6: Spark execution traces: Java Events. On top of the Exception and
Waiting events, on the top thread it can be seen the Garbage Collection event
happening.

6.2.3 Instrumentation overhead
Instrumenting implies some overhead, which for this Spark execution has been
measured. This has been calculated by taking the lowest value of 10 distinct
executions3, all running with a 700MB example input file. Moreover, the data have
been purified from the initialization time of Extrae, JVM and Spark4. The data
are reported in Table 6.1.

3It has been taken the lowest because the execution is always the same, the only differences
can just be introduced by OS scheduling and interrupts, which are not interesting.

4The JVM and Spark initialization can be subjected to instrumentation as well, but it would
be a constant value in any case, which does not change among different applications. For this
reason, they can be neglected.

71

Applications and Discussion

Test Total time Init time Purified time Overhead
Non-instrumented 4.538s 2.338s 2.200s 1x

Instrumented 7.344s 4.634s 2.710s 1.232x

Table 6.1: Time taken by instrumented and non-instrumented runs on the Spark
example

As it can be seen from Table 6.1, the overhead introduced by the Extrae instru-
mentation is ≈ 1.23×.

6.2.4 Steps toward instrumentation
The steps to instrument the Spark framework are similar to the ones explained
previously. In this case, however, it must be pointed out that Spark is written
mainly in Scala5, and not in Java like Hadoop. For this reason, on top of the
events raised by the JVM and catched by the JVM TI (that are still available,
since Scala runs on the JVM), the implementation of the Aspects should be done
in Scala.

Although the compilation cannot be done in the exactly same way, the architecture
of the tracing platform would not vary: it would keep expecting the generation
of some aspects to instrument compiled classes, either Java or Scala being the
programming language originally employed for the implementation.

6.3 Tracing overhead analysis
One interesting data to analyze is the overhead introduced by the tracing activity
and the various instrumentation instructions.

In order to understand how the overhead is generated, the time has been taken
against different configurations, in order to have information on how much overhead
is introduced by each step in the tracing process:

• Without instrumentation: the plain execution, without any agent or preloaded
libraries;

5Scala, already mentioned in chapter 1, is a general-purpose programming language providing
support for both object-oriented programming and functional programming. Its source code is
intended to be compiled to Java bytecode, so that the resulting executable code runs on a Java
virtual machine [37].

72

Applications and Discussion

• JVM TI only: with just the agent and the related callbacks, but without the
calls to the Extrae core functions;

• JVM TI + AspectJ (JNI only): just the agent with the callbacks and the
AspectJ pieces of advice, without calling the Extrae core functions;

• JVM TI + Extrae calls: just the agent and Extrae, without AspectJ;

• Complete instrumentation: with the agent, AspectJ and all the calls to the
Extrae core functions.

The program that has been tested is a simple generation of threads (Code B.5), that
involves both the events generated by the JVM TI and the methods instrumented
using AspectJ.

Test Total time Init time Purified time Overhead
Non-instrumented 1.685s 0.660s 1.025s 1x

JVM TI only 1.810s 0.741s 1.069s 1.043x
JVM TI + AspectJ (JNI only) 2.079s 0.994s 1.085s 1.059x

JVM TI + Extrae calls 2.180s 0.817s 1.363s 1.330x
Complete instrumentation 2.491s 1.063s 1.428s 1.393x

Table 6.2: Resulting time measurements from tracing overhead analysis. Graphi-
cally depicted in Figure 6.7

6.4 Discussion

Thread identification
During these applications, the issue of thread identification can be discussed
again. The threads looked too many, and they could probably be reduced to less
threads.

However, in the case of Hadoop, if the events of being “mappers” or “reducers” are
traced, the problem of using “the same space” for the threads that do different
things is not a problem anymore, because an “Hadoop” view would show these
events in different colors and would make it clear what each thread is up to at any
given time. Moreover, also the threads names are most of the times in the form
“Thread 1.1.x”, so not really explicative of the final purpose of the thread itself,
which is another reason for which the “separation of spaces”, in this case, would
not sacrifice any valuable information.

On the contrary, with Spark the names of the threads were much more important,

73

Applications and Discussion

because they could identify the main operations of a thread without even tracing
new events.

A conclusion that can be made is that leaving one thread identification system for
all the cases is not the best choice. It should be allowed to decide based on the
applications, maybe through an Extrae option in the XML configuration file.

Overhead

The overhead introduced by Extrae does not look so important. For Spark it has
been ≈ 1.23×, but it must be taken into account that for now the instrumentation
is still basic. Considering that a whole framework would be instrumented, it can
be expected that this overhead will increase further. The extent of this increase
cannot be easily predicted.

An idea of how much additional overhead can be reached is given by the analysis
in section 6.3, because in that case the program was almost totally instrumented.
The overhead resulted to be ≈ 1.39×, which can still be considered acceptable.
Indeed, looking at tracing from the perspective of a post-mortem program analysis
(instead of continuous monitoring), the overheads result normally acceptable if they
give valuable information to trace.

74

Applications and Discussion

JVM
TI

JVM
TI +

Asp
ectJ

JVM
TI +

Ext
rae

Com
plet

e In
stru

men
tati

on
1

1.1

1.2

1.3

1.4

1.5

O
ve
rh
ea
d

Tracing overhead

Figure 6.7: Overhead generated by the different mechanisms used to trace the
events. Data taken from Table 6.2

Moreover, as it can be seen from Figure 6.7, the overhead is mainly generated by
the Extrae calls. Thanks to this information, it can be safely asserted that the
mechanisms used to call the Extrae core functions are almost negligible for the
overall tracing platform, since together they add less then 1.1× overhead.

The findings and the methodology
In this chapter the idea was to instrument Hadoop and gather the valuable infor-
mation, by applying the methodologies presented through the whole thesis. This
could not be finished due to the problems occurred and to lack of time. Indeed,
this chapter needs to be taken as a photograph of a partial work.

At the time of writing, the findings given by analyzing Hadoop and Spark with
the current state of the work appear to be poor. However, this does not prove
that the methodology is not valuable. It could not be applied properly and all the
(partial) findings have been reported in this chapter, with no exaggerations, nor
belittlements.

75

Chapter 7

Conclusions

Performance analysis is a powerful tool, especially when considering HPC appli-
cations. The entire thesis has been developed by following this principle, which
is based on the concept that improvements can be made only when a kind of
measurement is available.

Having been developed as an intern at the BSC, this work has been based on
Paraver and Extrae, the two tools developed by the Performance Tools department
of the institute. More specifically, the focus has been on the latter, which needed
to be adapted to trace the right events for Java applications.

The work started with a global understanding of the tools and on the Performance
Analysis techniques. By analyzing an example Java program, it could be possible
to gather an holistic view of these aspects, included a detailed understanding of
the state of the art of Extrae’s Java instrumentation features.

The tracing capabilities for Java were poor, but some experimental features gave the
right cues to continue the work in specific directions, that resulted to be effective
to trace new events. Specifically, the final solution is based on a combination of
JVM TI, AspectJ and JNI. The first one is an interface made available by the
JVM, while the second one is an extension of the Java programming language to
implement aspect-oriented programming in Java program, which has been used
together with JNI to interact with the C-implemented Extrae core.

The event-driven tracing, by using the JVM TI, resulted to be effective. It has
been so especially because of the nature of the events provided by the JVM TI,
since they are specifically designed for similar purposes. Indeed, the JVM TI is
thought to be used by custom profilers and debuggers, which have many things in
common with Extrae. For this reason, the JVM TI is of undoubtable value for a

76

Conclusions

good tracing platform that aims to trace Java applications.

Moreover, AspectJ resulted to be very useful to reach the spots that the JVM TI
events could not reach. Despite being designed for this applications, the JVM TI
was not enough to cover all the possible cases. Extrae usually offers much more
detailed instrumentations when C/C++ programs are under the magnifying glass.
JVM TI needed to be aided somehow, and AspectJ delivers this job admirably. It
can catch almost any point of the execution, by just knowing which methods to
trace (which is an unmissable requirement for any kind of instrumentation, at least
in Extrae).

Finally, all the mechanisms mentioned above have a very low overhead. Most of
the overhead introduced by the instrumentation has been generated by the calls to
Extrae.

7.1 Further improvements
The work in this thesis is not complete and needs certain improvements to be
effectively employed to analyze real-world applications.

First of all, as it was explained in chapter 1, most of the Java applications employed
in an HPC environment run in distributed (simulated) environment. For this
reason, all the work saw in this thesis should also consider the fact of gathering
the traces of multiple JVMs, usually running in different software containers, and
collect them together.

As a side improvement, which is more like a further investigation, it must be
recalled the problems faced during the Hadoop analysis, where the instrumentation
was interfering with the application (which is something that must not happen,
ever). Any test made on other applications did not generate this problem, but time
must be invested to understand the reasons behind this behaviour.

In addition to the distributed tracing, the data on the callers methods can be
traced too. In other instrumented frameworks like MPI or OpenMP, callers provide
a valuable information during Performance Analysis. Moreover, such feature would
be extremely useful when instrumenting new frameworks, because it can basically
substitute the profilers in the job of finding new valuable methods to trace.

Moreover, the differentiated threads IDs management that can be activated or
deactivated depndending on the target applications, explained in section 6.4, has
been left as a further improvement.

Finally, the advanced features of AspectJ can be employed to even further enhance
the detail of the events. For example, AspectJ can differentiate between callers,

77

Conclusions

which in the real world could lead to different kinds of events, like a call to
Object.wait(), that can be a synchronization event or a join event, depending on
which type of object it is called. This was just an example, but AspectJ provides
many interesting features that are worthy to be tried out.

7.2 Final considerations
The whole work in this thesis has been done to develop a methodology to follow,
in order to extract the information to be traced. That means, despite all the
improvements that such platform needs to be claimed as an effective real-world
tool, the main focus was on the tools and on how to employ them for tracing
purposes, rather than the development of a final product—even if, that one is the
final objective and it has been kept clear in mind during the coding phase, trying
to operate with all the best practices.

As said also in the last chapter, the applications are still partial and further improved
tool is needed. But by following the methods showed throughout the thesis, almost
any new framework can be instrumented, with just small code adaptations. The
basis are built, they just need to grow and apply to different applications.

78

Appendix A

Environment set-up

A.1 GitHub

All the files, including source code, scripts and installation files, are stored in a git
repository on my personal GitHub account. The link is the following:
https://github.com/rstagi/thesis

The repository, inside a sub-folder named “installation”, contains a git submodule
which points to a fork of the original Extrae repository. In the fork repository,
under a branch named javatrace, there are all the changes that are being made
in order to extend Extrae’s functionalities for Java.

Moreover, in the root folder there are the Dockerfile (reported in Appendix B) for
the Docker image and the scripts to build the image and running the applications.
Running the application is done inside the Docker container, by using its installed
software for the generation and visualization of the traces. To test such scripts,
there is an “examples” folder with some examples of Java applications, each of them
containing a Makefile to build and run the example within the container.

Finally, a README file is provided to help in using the scripts and the examples,
as well as a folder named “docs” which contains two reports and the present
thesis.

79

https://github.com/rstagi/thesis

Environment set-up

A.2 Examples of usage
A.2.1 Set-up
To set up the environment, it is necessary to clone the repository together with the
submodule. This can be done by running:

git clone https://github.com/rstagi/thesis.git --recursive

A.2.2 Docker image build
To build the Docker image, it is provided a script named build_docker_javatrace.sh,
which can be found in the root directory of the repository and needs to be run
there:

./build_docker_javatrace.sh

This command will at first clean the Extrae submodule (by running a git clean
command inside it) and then it will build the Docker image defined with the
Dockerfile.

An option -pull [<target_branch_or_tag>] can be specified, in order to switch
on a different branch. Normally, the submodule will point to the last commit
associated with the current commit of the “thesis” repository. By adding this
option, the script will switch on the target branch or target if specified, or to
javatrace if no target has been specified after -pull.

The image will be based on OpenSUSE. During the building process, the necessary
tools (like compilers, developers libraries, etc.) will be installed, the installation
files of Extrae (installed by using the sources), Paraver and AspectJ will be copied
inside and used, and finally the image will be tagged as extrae/javatrace.

A.2.3 Running the program
To run and trace a Java program, there is the script run_javatrace.sh. This can
be used in the following way:

run_javatrace.sh [-R] [-show] [-mvn] [-cp <CLASSPATH>] <target>

The target can be either a Java class or a jar file. For the former, which was the
standard mode in which Extrae used to work with Java programs, the class should
be present in the directory where the command is launched or in the classpath. In
both cases, all the files in the target’s directory will be copied inside the Docker
container. The solution is not very elegant, but it’s effective and it makes the
logic behind the script much easier. For the purposes of the analyzed applications

80

Environment set-up

it’s quite enough. The options are not mandatory, and they have the following
meaning:

• -jar: the target is a jar file

• -r, -R: the files will be copied in recursive mode

• -show: once the program terminates, it will automatically run Paraver to
show the trace

• -mvn: to run a maven project with a pom.xml

• -cp: to specify a custom class path

A.2.4 Show the traces
To show the traces generated by a program, in addition to the -show option of the
running script, a new script, named show_trace.sh is provided:

./show_trace.sh <target_prv_file>

All the input files are copied inside the container and Paraver is executed to show
the file.

A.2.5 Examples
As previously stated, there are some examples in the repository. There are several,
but all of them need the Docker to be built first. Moreover, there are the Makefiles
to help in running the examples using the Docker container. The useful targets are
the following:

• make run: runs the program inside the container and copies the files in the
current directory

• make runshow: runs the program as the run target and also shows the traces
using Paraver

• make show: needs to be used after the run or runshow targets and shows the
output trace in Paraver

81

Appendix B

Useful Code

Code B.1: Environment Dockerfile
1 #Based on OpenSUSE Leap
2 FROM opensuse / l eap
3

4 #Dependencies
5 RUN zypper i n s t a l l −y gcc gcc−c++ gcc−f o r t r an b i nu t i l s−deve l which

wget g i t
6 RUN zypper i n s t a l l −t pattern −y devel_C_C++
7 RUN zypper i n s t a l l −y java java−1_8_0−openjdk java−1_8_0−openjdk−

deve l
8 ENV CLASSPATH /usr / l i b 6 4 /jvm/ java −1.8.0−openjdk −1.8.0/ l i b / : ${

CLASSPATH}
9 RUN zypper i n s t a l l −y papi papi−deve l

10 RUN zypper i n s t a l l −y l ibxml2 l ibxml2−deve l
11 RUN zypper i n s t a l l −y libunwind−deve l
12 RUN zypper i n s t a l l −y gtk2−deve l
13 RUN zypper i n s t a l l −y vim
14 RUN zypper i n s t a l l −y bzip2
15 RUN zypper i n s t a l l −y gdb
16

17 #OpenMP
18 RUN zypper i n s t a l l −y libgomp1
19

20 #MPI
21 RUN zypper i n s t a l l −y openmpi openmpi−deve l
22

23 #Aspect j
24 RUN cd /tmp && wget http :// mirror .dkm. cz / e c l i p s e / t o o l s / a sp e c t j /

a spec t j −1 . 9 . 5 . j a r
25 RUN cd /tmp && java −j a r . / a spec t j −1 . 9 . 5 . j a r −to / usr / l i b 6 4 /jvm/ java

−1.8.0−openjdk −1.8.0/

82

Useful Code

26

27 #Paraver cha rac t e r s e t
28 RUN zypper i n s t a l l −y lato−f on t s g l i b c−l o c a l e g l i b c−i18ndata
29 RUN l o c a l e d e f − i en_US −f UTF−8 en_US
30 ENV LANG en_US .UTF−8
31 ENV LANGUAGE en_US : en
32 ENV LC_ALL en_US .UTF−8
33

34 #Paraver
35 RUN cd /tmp && wget f tp . t o o l s . bsc . e s /wxparaver/wxparaver−4.8.2−

Linux_x86_64 . ta r . bz2
36 RUN cd /tmp && tar x j f wxparaver−4.8.2−Linux_x86_64 . ta r . bz2 && mv ./

wxparaver−4.8.2−Linux_x86_64/ / usr / share /wxparaver/
37

38 #Extrae
39 #Uncomment f i r s t l i n e and comment second l i n e to c l one the o r i g i n a l

Extrae package
40 #RUN cd /tmp && g i t c l one https : // github . com/bsc−performance−t o o l s /

ext rae . g i t && cd ext rae
41 RUN cd /tmp && g i t c l one https : // github . com/ r s t a g i / ext rae . g i t && cd

ext rae && g i t checkout j ava t r a c e && g i t pu l l
42 ENV MPI_ROOT /usr / l i b 6 4 /mpi/ gcc /openmpi
43 RUN cd /tmp/ ext rae && ./ boots t rap && ./ con f i gu r e −−with−mpi=${

MPI_ROOT} \
44 −−enable−openmp \
45 −−without−dyninst \
46 −−with−papi=/usr \
47 −−enable−pthread \
48 −−with−java−jdk=/usr / l i b 6 4 /jvm/ java

−1.8.0−openjdk −1.8 .0 \
49 −−with−java−a sp e c t j=/usr / l i b 6 4 /jvm/ java

−1.8.0−openjdk −1.8 .0 \
50 −−with−unwind=/usr \
51 −−without−e l f \
52 −−with−binary−type=64
53 ENV CC gcc
54 ENV CXX g++
55 ENV MPICC ${MPI_ROOT}/ bin /mpicc
56 ENV MPICXX ${MPI_ROOT}/ bin /mpicxx
57 RUN cd /tmp/ ext rae && make −j $ (nproc) && make i n s t a l l
58

59 #Cleaning up
60 RUN rm −r f /tmp/∗
61

62 #Sc r i p t s f o l d e r
63 RUN mkdir −p /home/ j ava t r a c e s
64 RUN chmod 666 −R /home/ j ava t r a c e s
65 WORKDIR /home/ j ava t r a c e s

83

Useful Code

Code B.2: Paraver configuration file for Java: JavaThreads.cfg
1 Con f i gF i l e . Vers ion : 3 . 4
2 Con f i gF i l e .NumWindows : 1
3 Con f i gF i l e . Beg inDescr ipt ion
4 Con f i gF i l e . EndDescr ipt ion
5

6 < NEW DISPLAYING WINDOW Active garbage c o l l e c t o r >
7

8 window_name Java ba s i c events
9 window_type s i n g l e

10 window_id 1
11 window_position_x 388
12 window_position_y 228
13 window_width 600
14 window_height 115
15 window_comm_lines_enabled f a l s e
16 window_flags_enabled f a l s e
17 window_noncolor_mode true
18 window_log i ca l_f i l t e r ed true
19 window_phys ica l_f i l tered f a l s e
20 window_comm_fromto true
21 window_comm_tagsize t rue
22 window_comm_typeval t rue
23 window_units Microseconds
24 window_maximum_y 18.000000000000
25 window_minimum_y 0.000000000000
26 window_compute_y_max f a l s e
27 window_level thread
28 window_scale_re lat ive 1.000000000000
29 window_end_time_relative 1.000000000000
30 window_object appl { 1 , { Al l } }
31 window_begin_time_relative 0.000000000000
32 window_open true
33 window_drawmode 1
34 window_drawmode_rows 1
35 window_pixel_size 1
36 window_labels_to_draw 1
37 window_selected_funct ions { 14 , { {cpu , Act ive Thd} , {appl , Adding } ,

{ task , Adding } , { thread , Last Evt Val } , {node , Adding } , { system ,
Adding } , {workload , Adding } , { from_obj , Al l } , { to_obj , Al l } , {
tag_msg , Al l } , { size_msg , Al l } , {bw_msg, Al l } , {evt_type , =}, {
evt_value , Al l } } }

38 window_compose_functions { 9 , { {compose_cpu , As I s } , {compose_appl ,
As I s } , {compose_task , As I s } , {compose_thread , As I s } , {
compose_node , As I s } , {compose_system , As I s } , {compose_workload ,
As I s } , { topcompose1 , As I s } , { topcompose2 , As I s } } }

39 window_filter_module evt_type 1 48000000
40 window_filter_module evt_type_label 1 " Java ba s i c events "

84

Useful Code

Code B.3: POM file for Hadoop example
1 <?xml ve r s i on=" 1 .0 " encoding="UTF−8" ?>
2 <pro j e c t xmlns=" h t tp : //maven . apache . org /POM/4 . 0 . 0 "
3 xmlns :x s i=" h t tp : //www.w3 . org /2001/XMLSchema−i n s t anc e "
4 xs i : s chemaLocat ion=" h t tp : //maven . apache . org /POM/4 . 0 . 0 h t tp :

//maven . apache . org /xsd/maven−4 . 0 . 0 . xsd ">
5 <modelVersion>4 . 0 . 0</modelVersion>
6 <groupId>org . example</groupId>
7 <a r t i f a c t I d>hadooptest</ a r t i f a c t I d>
8 <ver s i on>1.0−SNAPSHOT</ ve r s i on>
9 <dependenc ies>

10 <dependency>
11 <groupId>org . apache . hadoop</groupId>
12 <a r t i f a c t I d>hadoop−mapreduce−examples</ a r t i f a c t I d>
13 <ver s i on>2 . 7 . 3</ ve r s i on>
14 </dependency>
15 <dependency>
16 <groupId>org . apache . hadoop</groupId>
17 <a r t i f a c t I d>hadoop−mapreduce−c l i e n t−common</ a r t i f a c t I d>
18 <ver s i on>2 . 7 . 3</ ve r s i on>
19 </dependency>
20 <dependency>
21 <groupId>org . apache . hadoop</groupId>
22 <a r t i f a c t I d>hadoop−common</ a r t i f a c t I d>
23 <ver s i on>2 . 7 . 3</ ve r s i on>
24 </dependency>
25 </dependenc ies>
26 <bui ld>
27 <plug in s>
28 <plug in>
29 <groupId>org . apache . maven . p lug in s</groupId>
30 <a r t i f a c t I d>maven−j a r−plug in</ a r t i f a c t I d>
31 <con f i gu r a t i on>
32 <arch ive>
33 <mani fe s t>
34 <addClasspath>true</addClasspath>
35 <c l a s s p a thPr e f i x>l i b /</ c l a s s p a thP r e f i x>
36 <mainClass>org . apache . hadoop . examples .

WordCount</mainClass>
37 </mani fe s t>
38 </ arch ive>
39 </ con f i gu r a t i on>
40 </plug in>
41 <plug in>
42 <groupId>org . apache . maven . p lug in s</groupId>
43 <a r t i f a c t I d>maven−dependency−plug in</ a r t i f a c t I d>
44 <execut i ons>
45 <execut ion>
46 <id>copy</ id>

85

Useful Code

47 <phase>package</phase>
48 <goa l s>
49 <goa l>copy−dependenc ies</ goa l>
50 </ goa l s>
51 <con f i gu r a t i on>
52 <outputDirectory>${ p r o j e c t . bu i ld .

d i r e c t o r y }/ l i b</ outputDirectory>
53 </ con f i gu r a t i on>
54 </ execut ion>
55 </ execut i ons>
56 </plug in>
57 <plug in>
58 <a r t i f a c t I d>maven−assembly−plug in</ a r t i f a c t I d>
59 <con f i gu r a t i on>
60 <arch ive>
61 <mani fe s t>
62 <mainClass>org . apache . hadoop . examples .

WordCount</mainClass>
63 </mani fe s t>
64 </ arch ive>
65 <de s c r i p t o rRe f s>
66 <des c r i p t o rRe f>jar−with−dependenc ies</

de s c r i p t o rRe f>
67 </ de s c r i p t o rRe f s>
68 </ con f i gu r a t i on>
69 </plug in>
70

71 <plug in>
72 <groupId>org . apache . maven . p lug in s</groupId>
73 <a r t i f a c t I d>maven−compi ler−plug in</ a r t i f a c t I d>
74 <ver s i on>3 . 6 . 1</ ve r s i on>
75 <con f i gu r a t i on>
76 <source>1 .8</ source>
77 <ta rg e t>1 .8</ ta r g e t>
78 </ con f i gu r a t i on>
79 </plug in>
80 </ p lug in s>
81 </bu i ld>
82 </ pro j e c t>

86

Useful Code

Code B.4: POM file for Spark example
1 <?xml ve r s i on=" 1 .0 " encoding="UTF−8" ?>
2 <pro j e c t xmlns=" h t tp : //maven . apache . org /POM/4 . 0 . 0 "
3 xmlns :x s i=" h t tp : //www.w3 . org /2001/XMLSchema−i n s t anc e "
4 xs i : s chemaLocat ion=" h t tp : //maven . apache . org /POM/4 . 0 . 0 h t tp :

//maven . apache . org /xsd/maven−4 . 0 . 0 . xsd ">
5 <modelVersion>4 . 0 . 0</modelVersion>
6

7 <groupId>org . example</groupId>
8 <a r t i f a c t I d>sparktestmvn</ a r t i f a c t I d>
9 <ver s i on>1.0−SNAPSHOT</ ve r s i on>

10

11

12 <dependenc ies>
13 <!−− h t t p s : //mvnrepository . com/ a r t i f a c t / org . apache . spark /

spark−core −−>
14 <dependency>
15 <groupId>org . apache . spark</groupId>
16 <a r t i f a c t I d>spark−core_2 .12</ a r t i f a c t I d>
17 <ver s i on>3.0.0− preview2</ ve r s i on>
18 </dependency>
19

20 <dependency>
21 <groupId>jun i t</groupId>
22 <a r t i f a c t I d>jun i t</ a r t i f a c t I d>
23 <ver s i on>4.11</ ve r s i on>
24 <scope>t e s t</ scope>
25 </dependency>
26 </dependenc ies>
27

28 <bui ld>
29 <plug in s>
30 <plug in>
31 <groupId>org . apache . maven . p lug in s</groupId>
32 <a r t i f a c t I d>maven−compi ler−plug in</ a r t i f a c t I d>
33 <ver s i on>2 . 0 . 2</ ve r s i on>
34 <con f i gu r a t i on>
35 <source>1 .8</ source>
36 <ta rg e t>1 .8</ ta r g e t>
37 </ con f i gu r a t i on>
38 </plug in>
39 <plug in>
40 <groupId>org . apache . maven . p lug in s</groupId>
41 <a r t i f a c t I d>maven−j a r−plug in</ a r t i f a c t I d>
42 <con f i gu r a t i on>
43 <arch ive>
44 <mani fe s t>
45 <addClasspath>true</addClasspath>
46 <c l a s s p a thPr e f i x>l i b /</ c l a s s p a thP r e f i x>

87

Useful Code

47 <mainClass>com . journa ldev . sparkdemo .
WordCounter</mainClass>

48 </mani fe s t>
49 </ arch ive>
50 </ con f i gu r a t i on>
51 </plug in>
52 <plug in>
53 <groupId>org . apache . maven . p lug in s</groupId>
54 <a r t i f a c t I d>maven−dependency−plug in</ a r t i f a c t I d>
55 <execut i ons>
56 <execut ion>
57 <id>copy</ id>
58 <phase>package</phase>
59 <goa l s>
60 <goa l>copy−dependenc ies</ goa l>
61 </ goa l s>
62 <con f i gu r a t i on>
63 <outputDirectory>${ p r o j e c t . bu i ld .

d i r e c t o r y }/ l i b</ outputDirectory>
64 </ con f i gu r a t i on>
65 </ execut ion>
66 </ execut i ons>
67 </plug in>
68 </ p lug in s>
69 </bu i ld>
70 </ pro j e c t>

88

Useful Code

Code B.5: TracingOverheadTest.java – Example program to test the overhead
introduced by tracing activity

1 pub l i c c l a s s TracingOverheadTest
2 {
3 pub l i c s t a t i c void main (St r ing [] a rgs)
4 throws Inter ruptedExcept ion
5 {
6 f o r (i n t J=0; J<10000; J++) //10K
7 {
8 Thread t1 = new Thread (new Runnable ()
9 {

10 @Override
11 pub l i c void run ()
12 {
13 }
14 }) ;
15

16 Thread t2 = new Thread (new Runnable ()
17 {
18 @Override
19 pub l i c void run ()
20 {
21 }
22 }) ;
23

24 // Star t both threads
25 t1 . s t a r t () ;
26 t2 . s t a r t () ;
27

28 // Wait f o r both threads
29 t1 . j o i n () ;
30 t2 . j o i n () ;
31 }
32 }
33 }

89

Bibliography

[1] T. Sterling, M. Anderson, M. Brodowicz. High Performance Computing.
Modern systems and practices. Cambridge, MA, USA: Morgan Kauffman,
2018 (cit. on pp. 1, 2).

[2] A. Heck, F. Murtagh. «Artificial intelligence applications for Hubble Space
Telescope operations». In: Knowledge-Based Systems in Astronomy. Heidel-
berg, Germany: Springer, 1989. Chap. 1, pp. 3–31 (cit. on p. 1).

[3] Hubble Telescope photograph. url: https://hubblesite.org/image/4679/
gallery (cit. on p. 1).

[4] Kaggle. 2019 Kaggle ML DS Survey. Tech. rep. Kaggle, 2019 (cit. on p. 2).
[5] International Data Corporation (IDC). «Worldwide Spending on Artificial

Intelligence Systems Will Grow to Nearly $35.8 Billion in 2019». In: Worldwide
Semiannual Artificial Intelligence Systems Spending Guide (2019). url: https:
//www.idc.com/getdoc.jsp?containerId=prUS44911419 (cit. on p. 2).

[6] I.H. Witten, E. Frank, M.A. Hall, C.J. Pal. Data Mining. Practical Ma-
chine Learning Tools and Techniques. Fourth. Cambridge, MA, USA: Morgan
Kauffman, 2017. Chap. Appendix B (cit. on p. 2).

[7] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica. «Spark:
Cluster Computing with Working Sets». In: UC Berkley, California, USA,
June 2011, p. 1. url: https://amplab.cs.berkeley.edu/wp-content/
uploads/2011/06/Spark-Cluster-Computing-with-Working-Sets.pdf
(cit. on p. 3).

[8] E. Sparks, A. Talwalkar. «Spark Meetup: MLbase, Distributed Machine
Learning with Spark». In: San Francisco, California, USA, June 2013. url:
http://www.slideshare.net/chaochen5496/mlllib-sparkmeetup8613fi
nalreduced (cit. on p. 3).

[9] G. Ingersoll. «Introducing Apache Mahout». In: IBM developers Archives
(2009). url: https://www.ibm.com/developerworks/java/library/j-
mahout/ (cit. on p. 3).

90

https://hubblesite.org/image/4679/gallery
https://hubblesite.org/image/4679/gallery
https://www.idc.com/getdoc.jsp?containerId=prUS44911419
https://www.idc.com/getdoc.jsp?containerId=prUS44911419
https://amplab.cs.berkeley.edu/wp-content/uploads/2011/06/Spark-Cluster-Computing-with-Working-Sets.pdf
https://amplab.cs.berkeley.edu/wp-content/uploads/2011/06/Spark-Cluster-Computing-with-Working-Sets.pdf
http://www.slideshare.net/chaochen5496/mlllib-sparkmeetup8613finalreduced
http://www.slideshare.net/chaochen5496/mlllib-sparkmeetup8613finalreduced
https://www.ibm.com/developerworks/java/library/j-mahout/
https://www.ibm.com/developerworks/java/library/j-mahout/

BIBLIOGRAPHY

[10] MapReduce. Wikipedia.org, 2020. url: https://en.wikipedia.org/wiki/
MapReduce (cit. on p. 3).

[11] A. Koliopoulos, P. Yiapanis. F. Tekiner, G. Nenadic, J. Keane. «A Parallel
Distributed Weka Framework for Big Data Mining Using Spark». In: 2015
IEEE International Congress on Big Data. New York, NY, USA, June 2015
(cit. on p. 3).

[12] Singularity. url: https://singularity.lbl.gov (cit. on p. 4).
[13] A. Hondroudakis, R. Procter. The Design of a Tool for Parallel Program

Performance Analysis and Tuning. Edinburgh Parallel Computing Centre.
The University of Edinburgh, 1998 (cit. on p. 4).

[14] TOP500. url: https://www.top500.org (cit. on p. 5).
[15] MareNostrum. url: https://www.bsc.es/marenostrum/marenostrum (cit.

on p. 5).
[16] Paraver: a flexible performance analysis tool. url: https://tools.bsc.es/

paraver (cit. on p. 6).
[17] Paraver. Tool structure: extracting information from records. url: https:

//tools.bsc.es/paraver/tool_structure (cit. on p. 6).
[18] Paraver. Trace Generation. url: https://tools.bsc.es/paraver/trace_

generation (cit. on p. 6).
[19] Paraver Tracefile Description. url: https://tools.bsc.es/doc/1370.pdf

(cit. on pp. 7, 40, 43).
[20] Extrae. url: https://tools.bsc.es/extrae (cit. on p. 7).
[21] PATH and CLASSPATH. The Java Tutorials, Oracle. url: https://docs.

oracle.com/javase/tutorial/essential/environment/paths.html (cit.
on p. 13).

[22] U. Joshi. How Java thread maps to OS thread? url: https://medium.com/
@unmeshvjoshi/how-java-thread-maps-to-os-thread-e280a9fb2e06
(cit. on pp. 14, 34).

[23] Java Native Interface Overview. The Java Native Interface Programmer’s
Guide and Specification. url: https://docs.oracle.com/en/java/javase/
11/docs/specs/jni/intro.html#java-native-interface-overview (cit.
on p. 17).

[24] Java Virtual Machine Tool Interface (JVM TI). Oracle Docs. url: https:
//docs.oracle.com/javase/8/docs/technotes/guides/jvmti/ (cit. on
p. 19).

91

https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/MapReduce
https://singularity.lbl.gov
https://www.top500.org
https://www.bsc.es/marenostrum/marenostrum
https://tools.bsc.es/paraver
https://tools.bsc.es/paraver
https://tools.bsc.es/paraver/tool_structure
https://tools.bsc.es/paraver/tool_structure
https://tools.bsc.es/paraver/trace_generation
https://tools.bsc.es/paraver/trace_generation
https://tools.bsc.es/doc/1370.pdf
https://tools.bsc.es/extrae
https://docs.oracle.com/javase/tutorial/essential/environment/paths.html
https://docs.oracle.com/javase/tutorial/essential/environment/paths.html
https://medium.com/@unmeshvjoshi/how-java-thread-maps-to-os-thread-e280a9fb2e06
https://medium.com/@unmeshvjoshi/how-java-thread-maps-to-os-thread-e280a9fb2e06
https://docs.oracle.com/en/java/javase/11/docs/specs/jni/intro.html#java-native-interface-overview
https://docs.oracle.com/en/java/javase/11/docs/specs/jni/intro.html#java-native-interface-overview
https://docs.oracle.com/javase/8/docs/technotes/guides/jvmti/
https://docs.oracle.com/javase/8/docs/technotes/guides/jvmti/

BIBLIOGRAPHY

[25] Java Virtual Machine Tool Interface (JVM TI) Reference Guide. Oracle Docs.
url: https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.
html (cit. on pp. 25, 26, 30, 32, 34).

[26] ASM. url: https://asm.ow2.io (cit. on p. 27).
[27] Javassist. url: https://www.javassist.org (cit. on p. 27).
[28] JNIF. url: http://sape.inf.usi.ch/jnif (cit. on p. 27).
[29] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J. Loingtier,

J. Irwin. «Aspect-Oriented Programming». In: Palo Alto, CA, USA, 1997
(cit. on p. 28).

[30] The Anatomy of an Aspect. The AspectJ Language. Eclipse Foundation. url:
https://www.eclipse.org/aspectj/doc/released/progguide/language
-anatomy.html#pointcuts (cit. on p. 28).

[31] pthread_key_create(3) - Linux man page. url: https://linux.die.net/
man/3/pthread_key_create (cit. on p. 34).

[32] GDB: The GNU Project Debugger. url: https://www.gnu.org/software/
gdb/ (cit. on p. 47).

[33] Getting started with AspectJ. url: https://www.eclipse.org/aspectj/
doc/released/progguide/starting-aspectj.html (cit. on p. 50).

[34] Word Count Program With MapReduce and Java. url: https://dzone.
com/articles/word-count-hello-word-program-in-mapreduce (cit. on
p. 64).

[35] Maven. url: https://maven.apache.org (cit. on p. 65).
[36] Profiling Tools and IntelliJ IDEA Ultimate. url: https://blog.jetbrains.

com/idea/2020/03/profiling-tools-and-intellij-idea-ultimate/
(cit. on p. 67).

[37] Scala (programming language). Wikipedia.org, 2020. url: https : / / en .
wikipedia.org/wiki/Scala_(programming_language) (cit. on p. 72).

92

https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://asm.ow2.io
https://www.javassist.org
http://sape.inf.usi.ch/jnif
https://www.eclipse.org/aspectj/doc/released/progguide/language-anatomy.html#pointcuts
https://www.eclipse.org/aspectj/doc/released/progguide/language-anatomy.html#pointcuts
https://linux.die.net/man/3/pthread_key_create
https://linux.die.net/man/3/pthread_key_create
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://www.eclipse.org/aspectj/doc/released/progguide/starting-aspectj.html
https://www.eclipse.org/aspectj/doc/released/progguide/starting-aspectj.html
https://dzone.com/articles/word-count-hello-word-program-in-mapreduce
https://dzone.com/articles/word-count-hello-word-program-in-mapreduce
https://maven.apache.org
https://blog.jetbrains.com/idea/2020/03/profiling-tools-and-intellij-idea-ultimate/
https://blog.jetbrains.com/idea/2020/03/profiling-tools-and-intellij-idea-ultimate/
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/Scala_(programming_language)

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Context: High Performance Computing, Artificial Intelligence and Java
	Java-powered AI and Data Mining
	Distributed Java in HPC
	Performance analysis

	MareNostrum Tools Environment
	Paraver
	Extrae

	Problem Statement and Goal
	Materials and Methods

	Extrae for JAVA: State of the Art
	The example program
	Generate the traces
	Pthread instrumentation
	Traces analysis
	Extrae Java API through JNI implementations
	Experimental features
	Java Virtual Machine Tool Interface
	AspectJ for User Functions

	Meet extraej
	Where to go from here

	Java Tracing Methodologies
	Linker Preload approach
	Event-driven instrumentation
	Bytecode and Native Instrumentation
	Bytecode manipulation in C and Java
	Native methods instrumentation

	Aspect Oriented Programming approach
	Discussion on the methodology to adopt

	Basic threads instrumentation with the JVM TI
	JVM Tool Interface preliminaries
	JVM TI Events
	JVM TI Initialization and Callbacks

	Tracing platform implementation
	Thread identifier and Backend
	Defining the identifier
	Backend implementation

	Notify the new threads
	Tracing the events
	Events IDs
	Probes implementation
	JVM TI Callbacks
	Paraver states semantics
	Tracing the remaining events

	Discussion of the partial results
	Traces analysis
	Thread IDs
	Would JVM internal instrumentation provide any added value?

	AspectJ and other improvements
	Setting user class path to extraej
	AspectJ for Instrumentation
	Introduction to AspectJ
	What to trace using AspectJ
	JNI implemented probes
	Instrumentation aspects implementation
	Compiling everything and setting the agent
	Resulting traces and discussion

	Events values: a better view

	Applications and Discussion
	Analyzing Hadoop MapReduce
	The example program
	Resulting Traces
	Probes-Application interference
	Steps towards instrumentation

	Analyzing Spark
	The example program
	Resulting traces
	Instrumentation overhead
	Steps toward instrumentation

	Tracing overhead analysis
	Discussion

	Conclusions
	Further improvements
	Final considerations

	Environment set-up
	GitHub
	Examples of usage
	Set-up
	Docker image build
	Running the program
	Show the traces
	Examples

	Useful Code
	Bibliography

