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Abstract

Major cloud computing providers agree on denoting the Flow Completion Time (FCT)
as one of the primary goals to achieve in the design of a Data Center Network (DCN).
This is motivated by the fact that latency affects the performance of interactive cloud
computer services, such as web search, social networks and online applications, with a
direct impact on the Quality of Experience as perceived by end users, hence ultimately
on provider revenues.

Several approaches in literature rely on priority mechanisms at flow or packet level
and schedulers in the network to reduce the average and tail FCT of latency-constrained
flows. To this purpose, the Shortest Remaining Processing Time (SRPT) scheduling
policy is proven to be optimal when the job size is known in advance. Unfortunately, this
information is rarely available and would require expensive modifications to the protocol
stack. Therefore, some proposals emulate a size-agnostic scheme that gives precedence to
the flow with Least Attained Service (LAS), exploiting a finite number of priority queues
in network switches. The effectiveness of these algorithms largely depends on the number
of priority levels employed. However, DCNs are usually realized with low cost commodity
devices, where only few queues per port - typically two - are vacant.

The contribution of this work is to investigate a design which exploits path abundance
— offered by DCN Fat-Tree topologies — to intelligently route flows across the switching
fabric, depending on their priority. The basic idea is to consider multiple switches as a
whole switch, sharing the priority queues. Flows are scheduled both across priority queues
and across multiple links, thus augmenting the priority granularity with spatial diversity.
In short, flow scheduling is addressed at DC-wide level, considering the queues of different
equal cost links together. Hence, unlike aforementioned techniques, load balancing and
prioritization are jointly analyzed, since load balancing directly depend on flow priorities.
This approach seems appealing for its very limited complexity.

First, an analytical model is provided for the setting of optimal parameters. Then,
it will be shown through a numerical fluid-model simulator that the proposed strategy
indeed is helpful when the flow serving policy is FIFO. Conversely, few unexpected im-
pairments under Processor Sharing discipline have been discovered. They are deeply
analyzed, in relationship to the size of the topology and to the number of priority queues
per interface. Finally, a broad spectrum of packet level simulations in a real data cen-
ter topology have been conducted with OMNeT++ discrete-event simulator, in order to
validate the FCT trends obtained in previous steps.
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Introduction

In the last decades, with the spreading of cloud services accessible to anyone, computing
has undergone a remarkable evolution. Encouraged by the astonishing growth of virtu-
alization technologies in the IT industry, as well as the availability of storage and chips
at ever-more modicum prices, over-the-top (OTT) players like Google, Amazon and Mi-
crosoft, have been building datacenter hotspots all around the world. Their data center
infrastructures house critical applications for most business activities, such as commer-
cial and financial services, Web search, scientific computing, on-demand video streaming,
recommendation systems, not to mention social networking and online gaming. Indeed,
from small enterprises to large corporations it has been a common cost-saving strategy
to offload, up to a certain extent, the deployment and operation of their own information
systems to third parties, the cloud service providers. Computing resources have been be-
ing centralized in data centers facilities and shared among plenty of customers, enabling
better resource utilization.

At the same time, cloud computing posed notable issues in the design, scalability
and mantainance of systems running the aforementioned services. A major challenge
is certainly the design of a huge capacity communication network hosting hundreds of
thousands of servers, while guaranteeing uninterruptible service continuity and relentless
expansion. Unlike traditional TCP/IP networks such as the Internet, the data center
network is characterized by a massive amount of equipment confined in a circumscribed
area and administrated by a single entity, able to embrace changes to legacy protocol
stack in order to accommodate their needs. Vast scientific literature has been produced
by the research community, addressing new solutions for efficient network operations in
the data center. Its peculiar environment have pushed the deployment of unconventional
approaches, such as centralized control and network softwarization (SDN/NFV), laying
the premises for a wide transformation process in the network industry. In this sense,
datacenters can be credited to having represented natural incubators for part of the
evolution of telecommunication networks happening during the last few years. As a
matter of fact, virtualization technologies and control plane programmability would have
become soon disruptive innovations in the networking ecosystem. As a result of this
process, nowadays, Internet Service Providers are trying to convert their infrastructure
towards the same solutions, re-architecting PoPs as small-scale datacenter, with massive
employment of virtualization as regards network functions and devices. Similarly, the
next generation mobile network, 5G, is going to base both its core and edge functions
on the same paradigm, as revealed by its standardization and by the investments in
Multi-access Edge Computing.
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In a Data Center Network (DCN) coexist traffic of a myriad applications and gener-
ally belonging to different tenants, which may have contracted a Service Level Agreement
(SLA) with the provider. In general, flows with different Quality of Service (QoS) de-
mands share the same resources. Some applications require low latency in delivering their
data across servers, whereas others only require huge bandwidth but are less sensitive to
timing constraints. Delays on flows that are generated by interactive applications — like
web search or social networks — have a direct impact on the quality of user experience.
Indeed, the responsiveness of these services is crucial to gain user satisfaction, hold cus-
tomers in the long term and ultimately to determine revenues. As a consequence, all data
center providers seek for traffic control algorithms that accomplish low response times
for this kind of flow, while ensuring maximum resource utilization in the network and
QoS guarantees for coexisting flows. Many of these solutions rely on advanced transport
protocols and schedulers in the network to handle different flows with different priorities.
The goal of this research is to devise a traffic control scheme that improves the perfor-
mances of state-of-the-art schedulers, without introducing additional complexity. As it
will be extensively discussed hereafter, the proposed algorithm aims to exploit one prop-
erty of modern data center topologies to enhance the capabilities of current scheduling
strategies.

The remainder of this work is organized as follows. Chapter 1 is a review of the design
and management principles of data center networks. It describes reference architectures
for modern interconnection fabrics, adopted in practice by main players such as Google
and Facebook. Then, it reports the main characteristics of data center traffic, measured
in production scenarios. Finally, it exposes in details the goals of traffic control schemes
and illustrates the failure of legacy protocols, like the TCP, in meeting applications re-
quirements. Next, Chapter 2 focuses on scheduling disciplines that best perform with
data center’s traffic properties in minimizing the Flow Completion Time (FCT). Some
theoretical background is provided, together with two practical proposals that leverage
switches priority queues (PQ) to target ideal performances. Then, Chapter 3 presents
the key idea of the present work, referred to as spatial diversity. In the first part it is
illustrated qualitatively how it works and why it should give benefits. In the second part,
it is formulated an analytical model that will be used for setting the parameters involved
in the system and adopted in its evaluation in subsequent chapters. Specifically, the val-
idation of the system traversed two stages. Chapter 4 describes a set of results obtained
through a numerical job-level simulator, which neglects all the aspects of a real data
center network implementation, rather it simulates flows as jobs in an equivalent queuing
model. The outcomes of this step have been of uttermost importance for understanding
the advantages and the limitations of the proposed approach. Finally, its implementation
in a data center network is shown in Chapter 5, confirming similar trends to the numerical
model. A broad spectrum of simulations have been carried out with the academic and
educational license of the OMNeT++ framework [3] and the INET library [2]. Computa-
tional resources have been kindly provided by the High-Performance Computing facility
of Politecnico di Torino and required engineering few MPI routines for best appreciating
parallelism gains. Also, a working implementation of Data Center TCP (DCTCP) —
currently not available for the network simulator tool — has been delivered and it will
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be shared with the interested community under open source license.
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Chapter 1

Data center networks

1.1 Interconnection network design

The typical structure of a data center, as shown in Fig. 1.1, is comprised of many racks,
interconnected among each other thanks to a common network infrastructure. A rack is
nothing else than a group of servers physically co-located in a common cabinet, attached
to the same Top of Rack switch (ToR) and thus separated by a single hop. In achieving
the goal of hosting an enormous amount of servers, the principal bottleneck often results
in being the interconnection fabric, usually referred to as Data Center Network (DCN).
Ideally, it should act as a huge switch, able to provide maximum-rate communication
among servers, that is their NIC’s access capacity. At high level, there are fundamen-
tally two ways for practically realizing such infrastructure. The first choice is to rely on
complex specialized solutions, like InfiniBand, or high-performance IP devices with many
ports, that successfully provide bandwidth for thousands of nodes, however incurring in
high deployment and management costs. Conversely, the second possibility is to build
the network infrastructure by simply leveraging on commodity off-the-shelf switches that
are cheaper, already on economy of scale and fully compatible with existing hardware and
operating systems, just as large distributed clusters are made of general purpose cheap
computers. This is usually the design pursued by principal cloud providers, as recently
disclosed by some of them [31, 35]. A major drawback of the latter strategy, is the diffi-
culty in providing full-rate communication among hosts in different racks. In other words,
depending on traffic patterns and especially network topology, it is very hard to place
enough inter-rack capacity - usually referred to as bisection bandwidth - to satisfy the col-
lective demand of all the racks. For this reason, the topology design plays a fundamental
role for the feasibility of scalable and cost-beneficial large datacenters. It is worth noticing
that sometimes, building a DCN with full bisection bandwidth is unnecessary and cost
prohibitive, therefore it is commonly accepted some degree of oversubscription, meaning
that the ratio between total intra-rack and bisection bandwidth is greater than 1. This
choice is acceptable when applications are mostly rack local and statistical multiplexing is
beneficial. In general, a non-oversubscribed network allows greater flexibility in resource
allocation and deployment of applications across racks, leading to higher utilization which
is also important for big cloud providers.
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1 – Data center networks

(a) Leaf-Spine (b) 3-layers Fat-Tree.

Figure 1.1: Interconnection networks. Figures reproduced from [19,28]

Two examples of topology design are provided in Fig. 1.1. The Leaf-Spine (Fig. 1.1a),
is a typical hierarchical architecture, where the interconnection between leaf and spines
switches form a bipartite graph. Despite being popular in campus networks, scaling to
thousands of servers would require having spines with lots of high-capacity ports . A more
flexible solution dates back to the early telephone network, when Charles Clos had to solve
a similar problem and came up with its proposal for multi-stage switching fabrics. Indeed,
the Fat-Tree (Fig. 1.1b), representing the most widely adopted topology, is a folded Clos
network. The main plus of this configuration is the possibility to host as many servers
as desired, using only switches with a fixed number of port k, eventually providing full
bisection bandwidth, just by recursively adding new layers, or stages. Fig. 1.1b shows an
example of 3-layer Fat-Tree with 4 ports switches. Essentially, it is a recursive design, in
which a l-layer network is built by connecting k blocks, called Point of Delivery (POD).
Note that in terms of PODs, a Fat-Tree is actually a Leaf-Spine with k/2 spines and
k POD leafs. Each POD has the same structure of a (l-1)-layer network, unless for
the fact that k/2 ports from those nodes that were the spines of layer l-1 have been
used for interconnecting the POD to the new spines of the l-layer architecture. To put it
differently, the l-layer DCN can become a POD for the (l+1)-layer DCN by disconnecting
k/2 PODs from the spines to and connecting them to a new row of spines (core switches).
The elementary POD is the 2-layer architecture, that can host at most (k/2)2 servers.
Thus, a data center with l stages can support up to kl/2l−1 machines, and this is the
reason behind popularity of Fat-Tree, other than its compatibility with main requirements
for datacenters, such as path diversity, which is important for fault-tolerance and traffic
engineering. Throughout this work, in particular, it will be investigated a flow scheduling
solution that exploits this multi-path property.

1.2 Traffic engineering

Large data centers represent a challenging environment for network designers. They
host many thousands of servers running a myriad of applications belonging to tenants
with heterogeneous QoS demands on a very physically circumscribed network. Data
travel for no more than few hundreds meters with negligible propagation delays, through
links of huge capacities up to 40Gbps and beyond. In such a context, the traditional
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1.2 – Traffic engineering

TCP/IP protocol stack alone operates inefficiently, hence custom transport protocols,
traffic control and traffic management techniques have been deployed. In this section
will be first pointed out common objectives for network operations, then briefly reviewed
the traffic characteristics and the subsequent issues they pose, in order to lay down the
fundamentals of this work and justify the choices for traffic generation undertaken in its
simulative part.

1.2.1 Traffic properties

Several studies has been conducted in literature to characterize the main properties of
traffic in data centers. Traffic characteristics are highly dependent on applications, that
determine flow sizes, flow arrival patterns and the requirements from a network per-
spective. Common applications running in data centers and for which there exist traffic
studies are Web search, data mining (e.g., Hadoop [34]) and cache services. For Web
search queries and the corresponding responses, for example, few packets are enough, so
they generally comprise short flows. Instead, other services such as data mining and batch
computing tasks, may transfer large amount of data. Additionally, long-lived background
connections of large size are continuously present for VM migration, backups, consistency
updates and data replication. A common scenario observed by different studies is that
the majority of flows are short, but overall they do not significantly contribute to the
total traffic, which is mainly carried by few large flows. Measurements from a large cloud
provider production data center reveal that 80% of flows are are less than 10KB and al-
most all flows (99%) are less than [34], while the tail flow size [34], while the tail flow size
10MB and 100MB respectively. Similar trends are claimed by other authors [8, 10, 14],
although flow sizes are slightly different depending on data center services.
Therefore, the first remark is that a variety of flows with different sizes coexists on the
same DCN, the majority of which lasts a couple of packets only.

Frequently, different flow sizes happen to be associated with different QoS require-
ments, whose knowledge drives in the design of transport protocols and traffic control
algorithms and meet application demands. Short flows are typically query traffic, very
sensitive to latency, stemming from the Partition/Aggregate pattern which is widespread
in distributed computing, from social networking content composition to retail and rec-
comendations. According to this paradigm, a task requested at higher layer to an Aggre-
gator, is broken into simpler units that are dispatched along a tree-like logic to lower level
aggregators, that may further break the request into smaller pieces, until they’re finally
handled by worker nodes. The responses of the workers, when ready, are then conveyed
back along the same reversed tree logic to aggregators that put together the results. Key
in this process is that it must complete within strict deadlines, on the order of 10-100ms,
that are determined in order to satisfy the worst-case latency tolerated by the Service
Level Agreement (SLA) with customers, or tenants in cloud computing jargon. Ideally,
application developers should not be concerned of network delays and should be entitled
to employ the time before deadlines to improve final results thus end user satisfaction,
without resorting to the implementation of complex ad-hoc solutions to compensate for
network inefficiency. On the other hand, long flows are mainly comprised of update flows
that carry fresh data for parallel computing jobs (e.g. MapReduce [18]), or transfers for
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data replication across servers, also located in different facilities in the globe. They are
throughput-oriented flows, demanding considerable bandwidth, but they are not sensitive
to delays. Sec. 1.2.2 will highlight some issues deriving from the mix latency critical flows
arising from the partition/aggregate workload with background long-lived connections.

Finally, one may also be interested in understanding the communication patterns to
tailor traffic engineering choices and perform capacity planning. For instance, knowing the
degree of traffic rack locality would allow better awareness in deciding the oversubscription
ratio. To this extent, it is difficult to draw general conclusions and prior studies have given
contradictory results: some work in literature [14] reports a marked locality, whereas some
other observes completely different patterns with traffic not at all rack local. The reason
lies in how applications are deployed across servers and clusters. In the Facebook data
center each machine in assigned a precise role and machines with a same role are grouped
in the same rack. Since Web Servers machines talk primary to Cache Followers machines,
there is substantial intra-rack communication for this service. Conversely, Hadoop traffic
stays 75% of the times in the same rack. What is true in general is that flow arrival rates
are quite high, as many as thousands flows per second per server. Combined with the
fact that the majority of them is short and that their destinations is often randomized
at application level to avoid hot-spots, it follows that the traffic matrix of a data center
network has been revealed to be very fluctuating, unstable and difficult to predict.

1.2.2 Traffic control objectives and challenges

There is unanimous consensus among data center providers in spending big efforts to
minimize the Flow Completion Time (FCT) metric. This is the all-up delay since when
data are requested by a client application to the time they are at its disposal. The
reason behind this interest is that latency directly impacts the quality of experience
(QoE) as perceived by end users and ultimately operator revenues. For interactive Web
applications and online services, the responsiveness determines directly the number of
customers. Since web applications pay also extra delays when traversing the Internet
to reach the end-user, latencies inside the data center must be within tight constraints,
on the order of some milliseconds. Also, low-latency communication is important for
intra-datacenter traffic flows. For example, it enables flexible inter-rack deployment of
micro-services across the network. Micro-services are becoming a widespread architecture
for enterprise applications among system engineers and developers. Therefore, a common
goal is to find efficient traffic control algorithms to handle latency sensitive flows, while
maximizing network utilization which is also important for cost savings. At the same
time, these flows must not degrade significantly the performances of bandwidth-hungry
connections. Usually, different techniques are compared by measuring the average flow
completion time, albeit also tail FCT is important for many applications.

The traffic characteristics illustrated in previous section, produce undesired pattern
and effects on data center networks, which standard TCP transport suffers specifically.
They are queue buildup and incast problems.

1. Queue buildup. On the basis of well-known congestion control mechanisms, tradi-
tional TCP sources increase their window until they experience either a timeout or a
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1.2 – Traffic engineering

packet drop, resulting in the common sawtooth pattern. This causes switch queues
to grow, mainly due to long connections which have time to inflate enough their
window. In the context of traffic depicted in the previous section, this is especially
problematic because long flows sharing the same queues with short flows harvest
much of the buffer space, causing short flows either to queue behind them and
increase their latency, or to experience more penalizing packet drops. The queue
buildup impairment is even more severe in data center networks, since commodity
switches are generally cheap shared buffer architectures, where packets from differ-
ent ports are stored logically in the same memory space. Thus, high utilization of
a single port could degrade the performance of flows traversing a different interface
of the same device.

2. Incast. The incast problem arises from the Partition/Aggregate pattern common
in data centers applications. After the aggregators assign portions of the same
task to different workers, the flows containing the responses tend to be cluster at
the same time on the same switch ports, on the way back towards aggregators.
Such a flow synchronization, in conjunction with the queue buildup phenomenon,
causes synchronized drops even if the flows are short, as in the case of responses to
Web queries. Packet drops, therefore timeouts, are not acceptable for deadline con-
strained flows, typical of the Partition/Aggregate pattern. Again, TCP particularly
suffers this problem [16].

Additional challenges derive from hardware or software features implemented to offload
part of the CPU load, which is created to keep up with high channel capacities of data
centers. Some measurements in production environment reveal that the CPU overhead
caused by TCP at 40Gbps may be as large as 12% of the CPU computation time [23].
This is not acceptable, thus techniques such as Large Send Offload (LSO), Large Receive
Offload (LRO) ir Interrupt Coalescing are being employed. However, these features have
as a downside the generation of bursty traffic [9,13], which has been shown to negatively
impact both delay and throughput [26]. For instance, Interrupt Coalescing is a feature
which allows the NIC to request packets in batches by delaying the interrupts to the CPU.
Similarly, LSO allows TCP to send batches of bytes to the NIC, encharge the latter of
segmenting packets in MTU units. All these techniques interfere with TCP self-clocking,
creating bursts of packets on the links.

A plethora of traffic control strategies and trade-off exists to handle TCP shortcomings
in data center networks. An exhaustive survey about them is provided in [29]. It is out
of the scope of this work to go deeper on all these possible approaches. We tried to
enumerate the most important challenges and in the next chapter we will focus on flow
scheduling.
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Chapter 2

Reducing Flow Completion Time

To the purpose of minimizing the average flow completion time (FCT), a common strategy
is to treat short flows with tight latency constraints differently from the others. This can
be managed with prioritization and scheduling algorithms, for which there already exist
numerous theoretical studies. In the following of this chapter will be reviewed the most
significant of them, with care to their application to datacenter networks [6,10,11,22,24,
27].

2.1 Theoretical scheduling background

At high level, scheduling policies can be classified into two categories, depending whether
or not flow properties — such as size and deadline — are known a priori.

2.1.1 Flow-aware disciplines

Flow-aware disciplines are those techniques that assumes the job characteristics are pre-
cisely known before initiation. While this is often the case for many systems in other
industries like manufacturing, it is not always so in communication networks. Sometimes
the flow size is known exactly, for example when a server is requested a static object
(e.g., a static Web page, a file transfer) or it can be roughly estimated, but generally
speaking this information is either not available or it involves undesired modifications of
the application layer.

The optimal approach to minimize the job completion time for an offline system is the
Shortest Job First (SJF) discipline that consists in serving jobs in decreasing order with
respect to their size. However this policy is not suitable for dynamic contexts where new
jobs can arrive at any time instant. For such scenarios has been adopted a preemptive
version of SJF, known as Shortest Remaining Processing Time (SRPT), which chooses
first the job with shortest time left to its completion, or equivalently in the context of
flow scheduling, the smallest amount of bytes left. SRPT has been proven for long to be
the optimal policy for minimizing the average response time (i.e. FCT) in a single server
system, regardless of the serving time and inter-arrival distribution [32].
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2 – Reducing Flow Completion Time

2.1.2 Flow-agnostic disciplines

In absence of precise knowledge about the flow length, a very effective policy is the dual
approach to SRPT, the so called Least Attained Service (LAS) or Foreground-Background
(FB). LAS is a preemptive scheduler which gives service first to the flow that has trans-
mitted less bytes, serving in processor sharing when there are ties among flows. In other
words, a job retains alone the processor until it is has received the same service of another
jobs in the system or it is preempted by a newly arrived shorter job. If no fresh jobs
arrive, those in the systems prosecute sharing the processor. The main insight of LAS is
to exploit the increasing knowledge about the flow size gained during its service. In fact,
the LAS scheduler becomes more and more confident that a given flow is a large one, as
further of its bytes are transmitted.

LAS is optimal among the flow-agnostic disciplines when the hazard rate of the flow
size distribution is a decreasing function [7]. The hazard rate is defined as the ratio of
the probability density function fX(x) to the survival function:

h(x) = fX(x)
1 − FX(x)

and it is a function that represents the instantaneous failure rate of a quantity. For
instance, it can be seen as the likelihood that the flow size X ends at value x given that x
bytes have already been observed. As a general rule, heavy-tailed distributions exhibit a
decreasing h(x), whereas h(x) is increasing for light-tailed distributions and constant for
the exponential distribution. Thus, LAS works at best under job size distributions that
present high variability, which is a case of interest since they well model data center’s
traffic where a majority of short flows coexists with few very large flows.

At this point, it is interesting to better understand how LAS compares to other
disciplines, such as PS, not only on average but in depth with respect to flow sizes, in order
to quantify its impact on small and large jobs. Also, it would be useful to bound the sub-
optimality of LAS with respect to the SRPT flow-aware scheduler. To this purpose, the
authors of [30] compared different distributions with increasing coefficients of variation,
under LAS, PS and SRPT disciplines. The coefficient of variation C, is a single number
measure of the variability of a distribution and it is expressed as the standard deviation
σ normalized to the mean of the distribution µ:

C = σ

µ

The comparison was based on the average conditional completion time, that is the average
completion time of flows belonging to a given size. Formally, denoting as T the random
variable associated to the completion time and X as the random variable associated to
the flow size, the average conditional completion time is defined as E[T |X = x]. This
is a rather practical quantity to tell how the FCT vary with flow sizes and to highlight
unfairnesses brought by the scheduling policy.

The distributions taken into account were the negative exponential distribution, whose
probability density function rapidly converges to zero, and a set of Bounded Pareto
distributions with varying C, as example of heavy-tailed distributions. Their probability
density functions are given by:
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f(x)Exp = u(x)µe−µx, µ ≥ 0

f(x)BP = αkα

1 − (k/p)α
x−(α+1), k ≤ x ≤ p, 0 ≤ α ≤ 2

For the Pareto distributions, different setting of their parameters correspond to different
C values, but generally it holds C ≫ 1 which means essentially high variability. For the
negative exponential distribution C is constant and equal to 1.

• LAS vs PS. They found that for Pareto distribution with C ≥ 6, LAS outperforms
PS above the 99th percentile of the flow size distribution, that is the conditional
completion time E[T |X = x] is better under LAS than under PS for all but the
largest 0.3% flows. Additionally, even the penalty of the longest flows is within a
factor 2. Notice that it is reasonable to expect some slowdown for very long flows
due to starvation, especially when an elephant flow meet a longer one, which is
queued behind it. Instead, for exponential distribution, flows with size above the
80th percentile are severely penalized using LAS, but overall the average FCT is
still better.
The final message to be derived here is that LAS is always beneficial for the average
flow completion time in respect of PS for distributions with C ≥ 1.

• LAS vs SRPT. This comparison is of interest because it shows quantitatively
the performance gap with the optimal policy. Indeed, it was provided an analytical
expression for the worst case penalty of LAS with respect to SRPT in terms of mean
conditional completion time, valid for every continuous time finite mean and finite
variance distribution. In particular, when applied to Pareto, LAS is very close to
SRPT for all job sizes, with a penalty of 1.25 under all load conditions. This result
is of remarkable importance as essentially states that for heavy-tailed distributions
with high variability there is no significant gain in knowing the flow size beforehand,
but good performances can be achieved with the LAS policy, which is simpler to
implement.

In short, the ideal scheduler is SRPT if detailed flow information are available at
transport upon flow initiation, alternatively LAS is the best choice provided that flow
sizes present high variability. Any practical design proposed in literature and revised in
the following sections aim to approximate any of these targets.

2.2 State-of-the-art implementations

Theoretical results, both for flow-aware and flow-agnostic scheduling disciplines, refer to
a scenario with a single link and do not account at all for the implementation complexity.
A major restraint of LAS and SRPT that limits their practical applicability are the fine-
grained decisions they adopt for flow scheduling. To determine the next job to serve, it
is required to mantain per-flow state information and perform comparisons among them
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at every packet transmission. These operations can be very complicated to implement
at high line rates with thousands of simultaneous flows, as typically happens in DCNs.
(Sec. 1.2.1). Moreover, in a data center network many servers are connected through
a multi-stage switching fabric (Sec. 1.1), which implies that, actually, from source to
destination multiple links are traversed, hence optimizing local decisions does not ensure
global optimality. As a trivial example, consider a situation with three server s1, s2 and
s3 and three flows f1 : s1 −→ s2, f2 : s1 −→ s3 and f3 : s2 −→ s3. With this setting f1
competes against f2 in the access interface of s1, while f2 competes with f3 in the egress
towards s3. If a local scheduler in the outgoing interface of s1 decide to serve f2 before
f1, but a second independent scheduler in the last interface ahead of s3 prioritize f3 over
f2, the choice of the former scheduler would be vanished by the conflicting choice of the
latter, because f2 would delay f1 despite being queued back f3. Therefore, the optimal
scheduling pattern could be achieved by means of a global network view.

The state-of-the-art proposals that address these issues are pFabric [10] and PIAS [11].
They have been taken as the reference model of this work, which will try to extend their
fundamental insights.

2.2.1 pFabric: targeting ideal schedulers

Alizadeh et al. provide a general representation about the problem of scheduling flows
over the data center fabric. Specifically, they abstract the DCN as a giant switch inter-
connecting all the servers, as shown in Fig. 2.1. In this representation all the links are
assumed to be unidirectional, so that leftward there are the servers’ access NICs and
rightward the ToR egress interfaces towards the same servers.

!

1

!

1

Figure 2.1: Datacenter fabric abstraction as a giant switch

Ideal flow scheduling in DCN

Assuming that the fabric can sustain maximum throughput and that flows compete
against each other only at ingress and egress interfaces, the optimal solution to mini-
mize the flow completion time can be found solving a NP-hard problem known as sum-
multicoloring. Nevertheless, a simpler greedy algorithm exists and it has been proven to
be very close to the optimum. Authors referred to this algorithm as the Ideal algorithm
and used it as a baseline for the evaluation of pFabric. Briefly, it consists in a maximal
flow scheduling, where at every new flow arrival or depart, flows are sorted in ascending
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2.2 – State-of-the-art implementations

order of data remaining up to their completion and served with this order. Flows are not
served until there is another flow with less data remaining traversing the same ingress or
egress port. Despite being a simplified model, still the Ideal algorithm is a valid bench-
mark for any design that targets flow completion time minimization, since it is a sort of
best case latency at a desired level of load and over an ideal interconnection network.
At this point, pFabric showcased that it is possible to achieve nearly ideal performances
in a distributed way, treating each interface on its own with local scheduling decisions
and simultaneously rely on minimal transport strategies. In particular, their work can
be summarized in the following key aspects.

1. Knowledge of flow requirements. It is assumed to know at transport layer flow sizes
or flow deadlines for deadline-constrained traffic.

2. Prioritization. Schedulers in the network are priority schedulers. Depending on
the scheduling objective, the packets encode with a priority a different metric, on
which the scheduler choices are based on. For example, to approximate SRPT on
every single link, the priority may indicate the amount of bytes still to transmit for
a given flow. Packets are dequeued and dropped according to their priority.

3. Simple rate-control. Rate control at end hosts is minimal and aims just to avoid
persistent congestion. In fact, contrary to DCTCP (Sec. 5.1.4), even if queue sizes
grow, only the performance of few long flows is significantly impacted, since it is
used a detailed prioritization mechanism both for packet transmission and drops.
Some shrinkage to standard TCP have been described to realize such minimalistic
transport.

Approximate optimality with priority queues

As already mentioned, implementing such a prioritization scheme on available commod-
ity devices is very challenging and for sure would require hardware modifications. The
interested reader could find a possible digital design in the paper of pFabric. The same
source, however, provided also a straightforward solution readily deployable with cur-
rent switches. The idea is to coarse the granularity of the scheduler by adopting only
a finite number of priority levels. Then, packets with different priorities are enqueued
in corresponding priority queues (PQs) and handled with traditional network schedulers
(SP, WRR, WFQ, etc.). In pFabric it is employed a Strict Priority (SP) scheduler, but
in general other choices are not precluded [12]. In short, LAS and SRPT schedulers, as
well as other disciplines, can be emulated by tagging packets with a priority label and
leveraging separated queues in network interfaces. The typical number of priority queues
available in datacenter switches ranges between 2 and 8, albeit it often occurs that some
of them are reserved — more details in Sec. 2.2.2. Of course, increasing the number of
PQs results in better approximation of the ideal scheduling, that implicitly would corre-
spond to having an infinite number of PQs. In fact, the ideal scheduler directly compares
each other all priorities of the packets in the buffer.
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Finally, the FCT gain obtained with this system largely depends on the way flows
are clustered in priority levels. This underlies the need of a careful tuning of a set of
thresholds which split packets among the priorities available. A dedicated section of this
work illustrates some criterion to choose them (Sec. 2.3.1).

2.2.2 PIAS: reference size-agnostic architecture

The next step with respect to pFabric as well as the starting point of this work is PIAS:
Practical Information-Agnostic Scheduler [11]. This proposal is the first which addresses
the scheduling problem without the assumption of an exact prior knowledge about the
flow size. Instead, PIAS tries to mimic a LAS scheduler exploiting the sole knowledge of
the distribution of flow sizes rather than their precise values. Surprisingly, when compared
to pFabric it delivers very similar performances for short flows, that are the more critical
ones (the gap is within 4.9%). At the same time, however, PIAS preserves ease of deploy-
ment with the current switch hardware and the standard distributed congestion-control
algorithms. Summarizing, the two main design principles of PIAS are:

1. Flow-agnostic. It requires only the knowledge of DC-wide flow size distribution,
which can be easily estimated once and updated dynamically. Authors do not ac-
count for any heterogeneity of the distribution across different racks [31], in what
the problem would become quite difficult ot treat with analytical methods. Also
dynamic changes of the distribution along time have been ignored, but the archi-
tecture is flexible enough to adapt to this case.

2. Low complexity. It should be compatible with legacy TCP/IP protocol stack and
readily deployable without touching the hardware of existing devices.

Figure 2.2: PIAS overview

PIAS embraces a Multi Level Feedback Queue (MLFQ) mechanism to resemble the
LAS policy. MLFQ essentially apportion flows in a finite number of priority queues as
proposed in pFabric, but in absence of flow size information flows are dynamically moved
across priority queues. In more details, each packet of a given flow is mapped to a priority
level, inversely proportional to the bytes it has already sent since its beginning. All flows
starts with the highest priority, then longest flows are progressively demoted to lower
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priorities. Packets of same priority are buffered in the corresponding PQ according to a
First-In First-Out (FIFO) order, while packets belonging to different priority queues are
scheduled in Strict Priority (SP). In this way, packets belonging to short flows are always
prioritized over those belonging to long flows, mimicking LAS but without incurring in
the complexity of its implementation, which would require many comparisons. Figure 2.2
clarifies the demotion mechanism. Flow1 is a mice flow and it is entirely served at the
highest priority, whereas Flow2 is an elephant flow and it is gradually de-prioritized up
to the last PQ. Notice that differently from pFabric, all flows traverse highest priorities
in their initial lifetime, since their size is initially obscure. Hence, longer jobs constitute
a small impairment for short ones, that motivates the gap with pFabric.

A key point for this kind of systems is how to choose the demotion thresholds. In fact,
especially when few queues are available, an unbalanced threshold setting may lead to
severe performance degradation. On one hand, thresholds too small cause premature flow
demotion and delays for short flows that get mixed with long flows, on the other hand
if the thresholds are too large, medium and elephant flows overstay in high priorities,
resulting again in worse FCT for delay sensitive flows. The next section will present
simple heuristics and a more refined optimization to find the set of thresholds.

2.3 Setting demotion thresholds
The same authors of PIAS proposed a queueing model to mathematically describe the
dynamics of the system. It has to be remarked that the queueing model captures only
the average flow completion time on a single interface. Therefore, it is assumed that
the flow size distribution is homogeneous over the datacenter fabric so that bottleneck
links observe all the same distribution. With this assumption, the average FCT over the
whole fabric is just a linear rescaling of the average FCT on a single link, therefore the
performance index of any set of thresholds obtained with the model is meaningful for the
whole DCN as well.

In the following of this section, first it is formalized the queueing model along with
its parameters, then it is formulated a non-linear minimization problem that can be
used to optimize demotion thresholds. Finally, two other trivial heuristics for threshold
assignment are reviewed.

2.3.1 An analytical model

The system, shown in Figure 2.3, is thought as a tandem of N subsequent M/M/1 queues.
The customers are flows of size X extracted from a given distribution with cumulative
function F (x) and arriving according to a Poisson process of intensity λ. Queues are lazy
and able to serve at most a maximum amount of bytes for each flow, that depends on
the demotion thresholds. When customers enter the system they are initially served by
the first queue, then either they leave the system if all of their bytes have been served,
or they are demoted to subsequent queue, up to queue N .
Let be Qp(1 ≤ p ≤ N) the N priority queues. Denote with αi the threshold after which
a flow changes its priority from i − 1 to i, where higher priorities correspond to lower
indexes and i ∈ [0, N ]. The upper threshold is always set to αN = ∞ so that all the
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Figure 2.3: Queueing model

largest flows stay in the last queue, similarly α0 = 0 for simplicity. Each queue Qi can
serve at most αi − αi−1 bytes of any customer. In the real MLFQ system (Sec. 2.2.2),
all queues of a given port are orchestrated by a Strict Priority (SP) scheduler, however
this would make the queues dependent on each other complicating the analysis. To avoid
the issue, the queues are treated as if they are independent and their priority hierarchy
is taken into account by adjusting their drain rate µi. In fact, if µ is the overall link
capacity, subsequent queues in the tandem are assigned a drain rate µi equal to the
residual bandwidth left after servicing previous queues. In practice, denote with ρi the
load insisting on Qi, then

µi = µ
i−1∏
j=1

(1 − ρj) (2.1)

Next, for the sake of conciseness let’s indicate with θi ≜ F (αi) − F (αi−1) the probability
that a new flow has size in [αi−1, αi) and abbreviate with the notation F̄ (x) = 1 − F (x)
the survival function of X. The target is to derive the subsequent arrival rates λi. After
service in queue i, a customer leaves the system with a probability pi, that depends on
flow size distribution. In fact, customers who leaves the systems after the i-th queue are
the flows with size in [αi−1, αi), among those with size in [αi−1, ∞). Therefore, pi can be
expressed renormalizing the probability θi as:

pi = θi / F̄ (αi−1)

Consequently, from the definition of θi

1 − pi = F̄ (αi) / F̄ (αi−1)

If the system is stable, the arrival rate of queue i is nothing else than the output rate of
queue i − 1, weighted by the probability of remaining in the system. Therefore:

λi = λi−1(1 − pi−1)

By iterative substitution it is possible to get a general expression for every λi that depends
only on the flow generation intensity λ and the arrival rate at the previous queue λi−1.
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Indeed:

λ1 = λ 1 − p1 = F̄ (α1)/F̄ (α0) = F̄ (α1)
λ2 = λ1(1 − p1) = λF̄ (α1) 1 − p2 = F̄ (α2)/F̄ (α1)
λ3 = λ2(1 − p2) = λF̄ (α2) 1 − p3 = F̄ (α3)/F̄ (α2)
· · · · · ·

In general:

λi = λF̄ (αi−1)

Finally, this rate refers to flow arrivals, whereas thresholds αi are expressed either in
bytes or in packets, because they serve for demotion. It is simple to obtain the byte
arrival rate by scaling λi (flows/sec) of the average traffic size produced by these flows
on queue i. Remember that due to the demotion mechanisms, customers of each queue
are truncated versions of the original flows, whose size ranges in (0, αi − αi−1). and that,
subsequent priority queues observe a flow distribution truncated above αi−1.
It is needed to compute E[Li], the average length of customers served in queue i. It holds:

E[Li] =
∫ αi

αi−1
(x − αi−1)f(x)dx  

(i)

+ (αi − αi−1)
∫ ∞

αi

f(x)dx  
(ii)

(2.2)

(i) Traffic generated by flows with sizes in [αi−1, αi)

(ii) Traffic generated by flows larger than αi

Define the truncated probability density function seen by queue i as:

fi(x) = f(x)
F̄ (αi−1)

It holds:
λi = λ F̄ (αi−1) E[Li]

F̄ (αi−1)
= λE[Li] (2.3)

Summarizing, it was possible to write down all arrival rates λi and all draining rate
µi as function of the flow size distribution and the set of thresholds αi. A summary of all
quantities that have been defined is provided in Table 2.1. These parameters are sufficient
to express the average sojourn time on a single link, so to characterize the performance
of PIAS. The average sojourn time on queue i which comprises the average waiting and
serving time is given by the well-known formula for M/M/1 queues [26]:

E[Ti] = 1
µi − λi

(2.4)

The M/M/1 model holds for every subsequent queue. This follows from Burke’s theo-
rem [15], that states that the outgoing process of an M/M/1 queue is a Poisson process.
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Variable Description
Qi Priority queue i

N Number of priorities i

X Flow size
F (x) Flow size c.d.f.
f(x) Flow size p.d.f.
λi Packet arrival rate at PQ i

µi Drain rate of PQ i

ρi Average load on Qi

Li Customer size at PQ i

Ti Waiting time at PQ i

αi Demotion threshold from Qi−1 to Qi

pi Probability that a flow leaves after Qi

Table 2.1: Variables of the model.

Thus, cascaded queues still observe a Markovian arrival process.
Finally, the total average sojourn time in the tandem of N queues is just a linear com-
bination of E[Ti], where the coefficient that weight the individual sojourn times at any
priority queue are the probabilities that a flow shall traverse the same PQ.

T =
N∑

i=1
θi

N∑
j=i

E[Tj ] (2.5)

Thus, given the flow size distribution it is possible to easily compute the system perfor-
mance according to the model yet presented.

Optimal thresholds

Plainly, it follows that the optimal thresholds αi can be derived solving the non-linear
minimization of T . Notice that they are easily obtainable once all θi are known as

αi = F −1(
i∑

j=1
θj)

Hence, it is possible to solve in θi.

min
{θi}

T =
N∑

i=1
θi

N∑
j=i

Tj

subject to θi ≥ 0 ∀i ∈ [1, N ]
N∑

i=1
θi = 1

(2.6)
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2.3.2 Greedy thresholds

In order to verify the actual gain obtained with optimal demotion levels, it is practical
to compare it against simpler greedy strategies for thresholds assignment. Two intuitive
approach are considered for fast threshold computation: Equal Split (ES) and Load Split
(LS).

Equal Split (ES-N)

The Equal-Split method slices the flow size distribution uniformly in N percentiles. The
resulting thresholds are the corresponding quantiles:

αi = F −1
( i

N

)
, i = 1, .., N − 1

It is easy to observe that this criterion may be largely sub-optimal depending on the
shape of the flow size distribution. In the case of very sharped distributions short flows
are demoted too early to lower priorities, while for heavy-tailed distributions, where high
percentiles correspond to very long flows, latency sensitive flows remains mixed for long
with elephant throughput-oriented streams.

Load Split

Load Split is a technique where the thresholds are chosen in a way to control the amount
of traffic fed in every priority queue. The problem is easy to understand in the simple
case of N=2 priority queues and a single threshold α. Let G(y) be the amount of traffic
generated by flows with size less than y:

G(y) =
∫ y

0
xf(x)dx

The traffic on high priority queue Q0 is derived as the sum of bytes generated by flows
whose size is smaller than the threshold α, and the bytes transmitted by flows larger than
α:

E[L0] =
∫ α

0
xf(x)dx +

∫ ∞

α
αf(x)dx = G(α) + αF̄ (α)

while the traffic on low priority queue is

E[L1] =
∫ ∞

α
(x − α)f(x)dx = E[X] − E[L0]

Then, the traffic on the high priority queue can be controlled solving the following load-
balance equation:

E[L0] = γE[X] (2.7)

A proper choice of γ apportions to the high priority queue a fraction of the average
total traffic E[X] = E[L0] + E[L1]. For example, if a perfect load balancing between the
two queues is desired then it is set γ = 1/2. Extending these equations to the general
case of any number of priority queues is rather simple. The traffic on the i-th queue
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has the same expression of Eq. (2.2). It can be rewritten shortly with the notation just
introduced:

E[Li] = G(αi) − G(αi−1) + αiF̄ (αi) − αi−1F̄ (αi−1)

At this point, similarly to the simple case of two queues, it is enough to solve the following
load-balance equations iteratively for all i = 1, .., N − 1:{

E[Li] = γi E[X], i = 1, .., N − 1∑
i γi = 1, γi ∈ [0,1]

(2.8)

In fact, also in this case it holds ∑N
i=1 E[Li] = E[X].

Proof. In the expansion of
∑N

i=1 E[Li] at each step new terms simplify old terms. Since
α0 = 0 and F̄ (αN ) = 0, it gives

∫ ∞
0 xf(x)dx = E[X].∑N

i=1
E[Li] = · · · +✘✘✘G(αi) − G(αi−1) +✘✘✘✘αiF̄ (αi) − αi−1F̄ (αi−1) + G(αi+1) −✘✘✘G(αi)

+ αi+1F̄ (αi+1) −✘✘✘✘αiF̄ (αi) + · · · = G(αN ) − G(α0) +✘✘✘✘✘⁓0
αN F̄ (αN ) −✘✘✘✘✘⁓0

α0F̄ (α0)
= E[X].
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Chapter 3

The spatial diversity framework

3.1 Extending schedulers with spatial diversity

In the previous chapter have been addressed the scheduling of jobs of variable size in
relation to their probability distribution. Then, there were presented two attempts to ap-
proximate the optimal LAS and SRPT schedulers by leveraging multiple priority queues
at network interfaces. However, one limitation of this approach remains the scarce number
of such priority queues available in commodity switches. In particular, it was mentioned
that a large number of priority levels is demanded to better approximate the reference
scheduling disciplines, in which N → ∞ (Sec. 2.1.2). Unfortunately, devices in mod-
ern DCNs are usually equipped with no more than 8 priority queues per port, whose
majority are reserved for other purposes, like isolating different types of traffic. Indeed,
several transport protocols may coexist in the same network, without necessarily being
designed to be fair with respect to each other. Example of such transports are RDMA [23],
DCTCP [8], standard TCP and UDP. For this reason, it is realistic to assume having at
most N = 2 priority queues in practical cases.
Upon this understanding, the main proposal of this work is to evaluate the possibility
of exploiting the high degree of path diversity typically offered by DCN topologies, in
order to improve the effectiveness of flow scheduling. Large DCN topologies usually are
multilayer recursive Clos networks which offer a variety of equal-cost paths between racks.
Precisely, in the simplest 2-layer Fat-Tree there are a number of paths proportional to
the number of spines K (Sec. 1.1). The key observation is that much like priority queues,
different paths yet are a way for augmenting the granularity of prioritization and for
separating flows with different QoS requirements. The novel paradigm being investigated
aims to exploit spatial-diversity to derive extra priorities and overcome the limitations in
the maximum number of available PQs imposed by a single switch. Indeed, the mecha-
nism of priority demotion, as proposed in PIAS, only shifts long flows across PQs of a
single interface. Instead, we argue that the same demotion could be potentially applied at
DC-level. Consider a Leaf-Spine topology and focus on a single ToR switch (Fig.3.1). The
interfaces from such a ToR towards all spines can be seen jointly as a unique big interface
with K times more priority queues than a port alone. The basic MLFQ (Fig.3.1a) fo-
cuses on the links individually and thanks to demotion moves flows, during their lifetime,
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(a) MLFQ (b) SD-MLFQ

Figure 3.1: Demotion extension with spatial diversity. Red arrows indicate demotion
trajectory of the longest flow. On each switch is reported the priorities it handles. Lower
indexes (and darker colors) correspond to higher priorities.

across priority queues of single interfaces. Therefore, every interface handle the same
priorities and flows are load balanced on different links independently from the prioriti-
zation mechanism. A standard technique for load balancing at flow-level is ECMP, which
derives the next hop from the transport-layer tuple {IP ADDRESSES, PORTS, PROTOCOL
ID}. Instead, our solution in Fig. 3.1b — which we call Spatially-Diverse MLFQ (SD-
MLFQ) — takes advantage of spatial diversity to extend the number of demotion levels
beyond the limitation imposed by the PQs on a single interface. Interfaces from any ToR
to the connected spines are virtually aggregated to offer a wider range of demotion levels.
One new aspect of this novel approach is that a demotion could imply shifting a flow
from one path to another of equal-cost. In that light, the routing — thus load balancing
— over the switching fabric is not blind to the prioritization machinery, but does depend
on it. In general, a flow is moved both across queues and spines, effectively allowing a
global resource exploitation for the demotion scheme. In order to have a clear and direct
notation, the spines are labeled with the priorities handled by their interfaces. Notably,
since the demotions that imply a spatial re-route take place at ToRs, all the interfaces on
the same spine handle the same priorities. Hence, it is enough a single labeling per spine,
valid for all its interfaces. A clear benefit of spatial diversity is that finer granularity
in priorities is achieved even with few queues per port, at the price of a very limited
implementation complexity. Also, elephant flows are better segregated from mice flows,
as after a while they are physically moved to different paths inside the switching fabric.
Despite its simplicity, relevant works exploring this solution in the field of data center
networks seem to be lacking.

3.1.1 Queuing model

To tackle the spatial diversity framework from a conceptual perspective, three queuing
systems are compared. They are shown in Fig.3.2. This is an abstraction of the real data
center topology. At it heart, a Leaf-and-Spine network with K spines can be described as
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(a) Super-Server (b) Independent servers (c) Spatial-diversity

Figure 3.2: Three queuing system comparison.

a queuing system of K parallel G/G/1 servers. Actually, these servers can be equivalently
mapped to the up-send interfaces that connects a ToR switch to all the spines, as well as
to the down-send interfaces from different spines to a single ToR. This mapping with the
leaf-and-spine topology is shown in Fig. 3.3, where the up-send interfaces are the ones
with red texture, whereas the spine down-send interfaces are the ones with light green
texture. Ingress and egress ports that connect end hosts to the datacenter network are
ignored at this stage. This is in contrast with the data center abstraction provided by
pFabric as a giant switch (Fig. 2.1), where the ingress and egress queues represented
the bottleneck where to deploy scheduling strategies, whereas the switching fabric was
assumed to be an ideal non-blocking interconnection. Somehow, differently from state-of-
the-art solutions that focus only on the bottleneck links assuming that the network is able
to sustain maximum throughput with negligible delays, the spatial-diversity approach
shifts the attention to the queues inside the fabric itself and rethink the scheduling with
a global DC view. Therefore, first it will be assessed the impact of spatial diversity with
this simplified model which disregards the hosts and the ingress/egress interfaces, then
we will proceed with the implementation on a simulated DCN afterwards.

From now on the interfaces considered in the abstract queuing model of Fig. 3.2 will

…

ToR 0

Spine	0	 Spine	1 Spine	2

Figure 3.3: Mapping of the model abstraction with DCN topology

be interchangeably referred to as servers or spines (with reference to the mapping with
down-send spine interfaces).

The three systems are different alternatives to handle the same total arrival rate λ
with the same total processing capability µ and the same number of priority demotion
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levels K × N . All systems use the mechanism of priority demotion first introduced by
PIAS (Sec. 2.2.2). Instead, they differ in how priority levels are partitioned on a number
K of parallel servers and, more importantly, in the way they use available servers for flow
demotion. Specifically, the longest flow that experience all possible demotions follows
different trajectory across priority queues and servers. Flow trajectories are represented
with dashed red arrows in Fig. 3.2
The first case (Fig. 3.2a) is to have a single high-capacity server that handles all priorities.
This of course is the absolute best case where resources are fully concentrated, that
provides the smallest delay but does not scale to the dimensions of real systems. It would
be equivalent to realize an entire data center interconnection network with a single device
of astonishing bandwidth. The second case (Fig. 3.2b) is the legacy way to handle priority
demotion, where all servers are treated independently in parallel. Flows are evenly load
balanced on the available servers and moved across priorities of the same server during
their lifetime. In this case the number of demotion levels are limited to N . Finally, the
third case (Fig. 3.2c) is the novel object we want to investigate, where all the flows are
initially sent to the same server, then demoted on the K × N globally available priority
queues. In this case subsequent servers are configured to handle lower and lower priorities,
thus part of the flows are re-routed as a consequence of the spatial-diversity. For this
reason, in the following of this work also the servers and the links will be labeled as "high
priority" or "low priority" for brevity, meaning that they handle high priority traffic or
low priority traffic, respectively.

It was already defined a rigorous mathematical formulation for representing the de-
motion across priority queues in a single servers as a tandem of M/M/1 queues. (§.
2.3.1). The system with spatial diversity introduces a new set of thresholds, which mark
the amount of service after which a flow is rerouted to another server. The next section
presents a complete formulation for modeling spatial-diversity, starting from the model
already defined.

3.2 Mathematical formulation

The introduction of spatial diversity adds a level of complexity to the system. Let’s
formalize the system setup. There are K parallel servers with N priority queues each
one. Thus, there are a total of K × N priority queues. All of them are used to add new
levels for demotion, therefore flows can assume priority p ∈ [1, KN ] with no duplicate
priorities and there are K × N − 1 demotion thresholds. Let’s use the variable j ∈ [1, K]
to index the servers and the variable i ∈ [1, N ] to index the priority queues inside each
server sj . Starting from the highest level of priority p=1 and following descending order
of priority up to p = KN , the priority levels are assigned to servers from the lower index
to the higher index. Thus, server s1 handle priorities p = {1, .., N}, server s2 handle
p = {N +1, ..,2N}, and so on. As in the MLFQ system, whenever a flow at priority p has
received service equal to the next threshold, it is downgraded at priority p + 1. However,
differently from MLFQ, it may happen that priority p is assigned to server sj , while p+1
is handled by server sj+1. In such a case, the flow must be rerouted to a different server.
Thus, two related problems need to be solved: finding the set of thresholds that triggers
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a new flow route from server sj to server sj+1, and finding for each server sj the set of
thresholds that mark the demotion from PQ i to PQ i + 1, when both PQs are in server
s. Let’s denote them as load-balance thresholds and sub-thresholds, respectively.

Terminology

In a system with priority demotion and with spatial diversity, a flow is moved to a
different priority queue (PQ) when the service it has obtained is larger than some
threshold. We say that the threshold push a flow to a new PQ. We recognize two
set of thresholds:

• Load balance thresholds. The set of demotion thresholds that push a flow
in a priority queue on a server different from the server currently handling
the flow itself, implying a flow rerouting.

• Sub-thresholds. The set of thresholds that push a flow in a different priority
queue but in the same server as the one currently handling the flow itself.

Correspondingly, we will refer to as:

• Inter-server[spine] demotion. A priority demotion involving a load bal-
ance threshold.

• Intra-server[spine] demotion. A priority demotion involving a sub-
threshold.

The name load-balance derive from the fact that the values of these thresholds have
strong implications on how the load is distributed across servers. If the thresholds are too
small, flows are early rerouted on low priority paths and the capacity of high priority links
is essentially wasted. For a real data center implementation this would mean a reduction
in the maximum throughput sustained by the switching fabric. As a trivial example,
consider a simple topology with two parallel servers each one of normalized capacity 1.
In this topology there is only a single threshold that may trigger a flow reroute. With an
ideal load balance that evenly distributes the traffic among the two servers, this topology
offers a maximum normalized throughput of 2. However, an inappropriate setting of the
aforementioned demotion threshold that immediately reroutes flows after negligible at-
tained service would in practice reduce the total capacity of 50%. On the other end, still
this threshold could be optimal if considering only micro flows, whereas the equal load
balance which uniformly splits the traffic on available servers may correspond to a bad
demotion threshold for the FCT minimization. In short, a careful tuning of load balance
is a new trade-off that was nonexistent in the legacy MLFQ framework, where traffic was
demoted to different priority queues but always in the same interface (i.e. link), with
zero effects on load balancing. Indeed, a threshold setting that gives an unbalanced load
allocation in the available priority queues affects only the delays but not the maximum
throughput that the network can sustain.
As concerns the sub-thresholds, they push flows to the same kind of intra-server de-
motion already studied for MLFQ. However, MLFQ servers work independently and in
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parallel (Fig. 3.1a) and they are all fed with the same job size distribution. Instead,
SD-MLFQ servers observe a different version of the initial workload. Indeed, subsequent
servers receive only flows larger than the precedent demotion thresholds, thus they han-
dle truncations of the original flow size distribution above increasing percentiles. As a
consequence, while MLFQ thresholds are computed once for all servers, SD-MLFQ sub-
thresholds should be optimized depending on the server they belong to. A clarifying
overview is provided in Fig. 3.4 for the case of K=3 servers s1, s2, s3. Fig. 3.4a is an
example job size distribution, from which new flows are randomly generated. In a data
center network, this would be the DC-wide workload. On the same axes are drawn the
two example split thresholds, denoting the amount of service in kilobytes after which a
flow is rerouted from s1 to s2 and then from s2 to s3. Since all flows enter the system

(a) Workload on s1 (b) Workload on s2 (c) Workload on s3

Figure 3.4: Job size distributions observed by servers s1, s2, s3 in de-
creasing order of priority. Optimal load balance split for λ = 0.9.

through s1, this distribution is also the one observed by the highest priority server s1.
Then, subsequent servers of lower priorities observe left-truncated versions of the initial
workload on s1.

An intuitive solution to address both load balance thresholds and sub-thresholds at
once is to write an extension to the PIAS model that embeds spatial-diversity. This for-
mulation, explained in details below, would in principle guarantee optimal performances.
Indeed, it jointly captures in a unique model all the dynamics of the system.

Optimal solution

The optimization problem Eq. (2.6) can be extended to the case of spatial diversity.
Assume the capacity of a single server to be µ/K, so that the total capacity is always
µ. All the servers work independently with same rate µ/K. Still there is a SP scheduler
orchestrating priority queues in every server, but there is no coordination among different
servers, meaning that there is not a global SP scheduler to discipline the transmission
among distinct servers. Indeed, such a tight control among physically different devices
would be almost impossible to realize in practice, at least packet by packet.
Let the notation µj

i indicate the drain rate of the i-th queue in the j-th server sj (1 ≤
i ≤ N, 1 ≤ j ≤ K), and equivalently use λj

i for the arrival intensities and in general
the superscript j for any quantity already defined for the queues in the basic model in
Sec.2.3.1 but applied to queues inside server sj . A summary of all the quantities involved
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in the queuing model is found in Table 2.1. It follows:

λj
i = λE[Lj

i ]

µj
i = µ

K

i−1∏
l=1

(1 − ρj
l )

θj
i = F (αj

i ) − F (αj
i−1)

E[T j
i ] = 1

µj
i − λj

i

The formulation is essentially the same but with an additional dimension that takes into
account the existence of multiple servers. Every server is modeled as a tandem of N
queues, exactly as in PIAS. Then, there are K of them in parallel. Also, we wrote an
additional constraint Eq. (3.1d) that prevents overloading any spine.

min
{θj

i }
T =

K∑
j=1

N∑
i=1

θj
i

N∑
j=i

T s
j (3.1a)

subject to θs
i ≥ 0 (3.1b)
N∑

i=1
θj

i = 1 ∀j ∈ [1, K] (3.1c)

N∑
i=1

λj
i < µ/K ∀j ∈ [1, K] (3.1d)

This approach would provide optimal load balancing and at the same time would choose
a set of sub-thresholds targeted on the optimal load balance thresholds. Notably, the
optimal solution would never include load balance thresholds that lead to an unbalanced
traffic distribution among the servers, because that would have an overkilling effect on
the delays, which instead the problem tries to minimize. Despite being a clean analytical
formulation, its complexity seems prohibitive. The basic model without spatial diversity
yet was non-convex and presented products and ratios of variables (Sec. 2.3.1). Nonethe-
less, it is still tractable since the number of variables is typically bounded to the (low)
number of PQs available in commodity switches. Instead, in the complete model the
number of variables scales with the product K ×N , where K is usually big for large-scale
data centers. In the next chapter we will provide in more details the CPU-time spent by
two well-known meta-heuristics solvers, specifically PSO [25, 33] and Basin-Hoppin [37]
before to converge. Anyway, if the time scale at which a solution could be found is exces-
sively large, the system would be unable to react promptly to a sudden change of the flow
size distribution. As a consequence, the system would operate for long using thresholds
mismatched with respect to the flow distribution. Therefore, even finding an optimal
solution once does not signify that this approach is feasible for a real datacenter scenario,
where likely the solution must be computed repeatedly as statistics change.
To the purpose of investigating the spatial diversity framework, it has been preferred
to handle the two problems individually. The approach that has been carried out is
decoupled in two sequential steps.
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1. Optimize load-balance thresholds. First it is solved an optimization problem
with the goal of finding the best load partitioning among K servers. Servers are
always assumed to have a single priority (N=1), because for the time being sub-
thresholds are ignored. At the end of this phase a set of K − 1 load balance
thresholds is delivered.

2. Greedy subthresholds. The load-balance thresholds are provided as input of
the second phase. They split the support of the flow size in K disjoint intervals
covering the whole support. The i-th interval contains the sizes of those flows that
end their service in server of priority i. On each interval is computed a set of sub-
thresholds with a greedy algorithm like ES-N or LS-N, but applied to the truncated
distributions (Sec.2.3.2).

3.2.1 Traffic load balancing

Optimize load balance thresholds

For the first phase turns out again to be useful the stochastic queuing model of MLFQ
as provided in PIAS. (Sec.2.3.1-Fig.2.2). Each server is equipped with a single priority
queue per port, therefore the optimal load balance problem can be abstracted with exactly
the same model, where each queue in the tandem maps a server. After all, in this case
priority queues are physically distributed to different servers, instead of being part of the
same interface. They are independent on each other and the strict priority scheduler is
no more involved, as they work in parallel without coordination. Practically, the only
modification is to the queues capacities µi. Remember that in the aforementioned MLFQ
model the strict priority scheduler was described by attenuating the PQ serving rates
µi = µ

∏
i(1 − ρi) for increasing i. Because of servers work in parallel without scheduling,

this expression is not needed anymore and the draining rates just coincide to the same
value:

µi = µ / K, i = 1, .., K

Choose greedy sub-thresholds

Lastly, it is addressed the problem of finding the sub-thresholds. Starting from the
optimal load balance thresholds that have been found in the previous step, each server is
then treated individually. Remember that whatever policy is adopted for sub-thresholds
computation, it has to be applied to all servers individually, since they observe different
flow size distributions. All the threshold computation algorithms defined so far (Sec. 2.3.1,
Sec. 2.3.2) require the knowledge of the flow size distribution. It is pretty straightforward
to obtain the p.d.f. f(x) and the corresponding c.d.f. F (x) as distribution conditioned to
the truncated supports. There are K servers and K − 1 load balance thresholds. For the
sake of conciseness, denote the load balance thresholds αj

N which triggers a flow reroute
from server j to server j + 1 as Ωj . On server j the initial distribution is normalized on
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a new support [Ωj−1, ∞). Thus, from probability theory:

F (x|x > Ωj−1) = F (x) − F (Ωj−1)
1 − F (Ωj−1)

f(x|x > Ωj−1) = f(x)
1 − F (Ωj−1)

(3.2)

Once these distributions are known, nothing is missing to apply the greedy sub-threshold
assignment algorithms depicted in Sec. 2.3.2. For completeness, they are briefly rewritten
under this framework. Define in short:

fT (x) =f(x|x > Ωj−1)
F̄T (x) =F̄ (x|x > Ωj−1).

Enumerate the available server s ∈ {1, .., K}. The goal is to find on all servers a set of
sub-thresholds αs

i to delimit demotion bounds across priority queues i ∈ {1, .., N}.
Equal-Split-N (ES-N) is substantially the same:

αj
i = F −1

T

( i

N

)
(3.3)

Load-Split-N (LS-N) is also very similar. It required the solution of the set of load
balance equations 2.8. The expression of the average traffic E[Lj

i ] on priority i of server
sj is unchanged. However, additional care must be paid to their sum ∑N

i=1 E[Lj
i ]. From

proof 2.3.2, this sum was equal to:

N∑
i=1

E[Lj
i ] =

∫ Ωj

Ωj−1
xfT (x)dx + ΩjF̄T (Ωj) − Ωj−1F̄T (Ωj−1)

and the terms outside the integral always amounted to zero, so that the sum gave∫ Ωj

Ωj−1
xfT (x)dx = E[X]. Instead, in this case they are generally different zero because

the lower threshold αj
0 = Ωj−1 /= 0 and the survival function above the upper threshold

F̄T (αj
N ) = F̄T (Ωj) /= 0. Everything else is the same.

As already mentioned, it is very likely that this approach is sub-optimal. However,
it represents an handful way of computing all the thresholds in order to establish some
understanding about the integration of spatial diversity with an MLFQ system.
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Chapter 4

Numerical analysis

The previous chapter introduced the idea of exploiting spatial-diversity to provide more
priority levels for flow classification. It was discussed why in principle such technique
could yield flow completion time gains, especially when few priority queues are available.
It was explained that adopting a spatial-diversity demotion has strong implication on the
traffic load balancing, since flow routing becomes priority-dependent. A few questions
arises soon: how to choose the thresholds to distribute the load on the topology? What
are the relationships between the priority granularity in single interfaces and spatial
diversity? How to scale spatial diversity with the topology size? The goal of this chapter
is to validate our intuitive hints with numerical results and to shed the light on the
benefits and the restraints of the proposed algorithm. In particular, it will go through an
exhaustive analysis of the system by delivering plenty of numerical experiments obtained
with a custom flow level simulator implemented in Python. This simulator does not
capture any of the complex dynamics inherent to a real packet network, it does not have
any protocol stack implemented neither at traffic sources nor in the switching modules.
Rather, it is a job-oriented queuing simulator that disregards packet level events but
only runs flow arrivals and serve them in generic queues. Its purpose is to provide a
clean baseline numerical analysis not plagued by possible side effects due to network
misconfiguration. Next sections will be an in-depth analysis of dynamics of the spatial
diversity, when varying the dimensionality of the system both in the number of servers
and in the number of priorities.

4.1 Model implementation

4.1.1 Workloads

The performances of the three systems are compared using two empirical flow size dis-
tributions that have been derived from production data centers (Fig. 4.1). Flow size
distribution is shortly termed workload. The first workload has been estimated instru-
menting thousands of servers in a datacenter hosting a Web search [8] application, while
the other refers to data mining tasks [21]. As expected, these distributions have a mix
of short and long flows and both present the high-variability property typical of data
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(a) CDF (b) MWF

Figure 4.1: Workload properties

center traffic (Sec. 1.2.1). Fig. 4.1a shows with solid lines the cumulative density function
of the two empirical workloads, along with two analytical bounded Pareto distributions
(dashed lines), whose parameters have been fitted to the corresponding empirical points.
The bounded Pareto distribution is a truncated version of the Pareto distribution over
the finite support [u, t] and it is well-suited to model heavy-tail characteristics. It has
three parameter: the lower extreme of its support u, the upper extreme t and the shape
parameter α that controls the weight of its tail. The analytical expression of its cdf F (x)
in the interval [u, t] is:

F (x) =
1 −

(u

x

)α

1 −
(u

t

)α , 0 ≤ α ≤ 2 (4.1)

This distribution has been chosen to be used in the analysis due to some graceful prop-
erties. First of all, it is relatively easy to control its variability by a proper tuning of its
parameter α. Values of α close to 2 accentuate the heavy-tail property, while smaller val-
ues of α tend to regularize a bit its behavior. Second, being definite on a limited support
it can be adapted to any minimum and maximum flow size in the datacenter. Third,
the Pareto distribution is scale-invariant, meaning that normalized Pareto distributions
remains Pareto. Nicely, this implies that the workloads observed by subsequent servers
can be always modeled with the same probability distribution, only changing parameters.
After all — as seen in Chapter 3 — these workloads are conditional distribution obtained
with simple normalizations. Last, its mean and its variance — which depend on α —
are finite, thus the problem of finding the shape parameter for any fixed first and second
moment can be smoothly treated numerically. Specifically, for the bounded Pareto, the
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mean and the variance have the following expression:

E[X] = α

(1 − α)(tα − uα)(uαt − tαu)

σ2
X = α

(2 − α)(tα − uα)(uαt2 − tαu2)

The best fit to the empirical distributions has been obtained with a simple Maximum
Likelihood Estimator (MLE). The resulting parameters are reported for both the work-
loads. Let X be the flow size random variable as usual, and write in short notation
BP(u, t, α) the bounded Pareto.

XW S ∼BP(3, 29000, 0.125)
XDM ∼BP(0.1, 100000, 0.26)

The measurement unit for the extremes of the support in this case is kilobytes. The
fitting error is higher for the data mining workload than for the web search. For low
percentiles this is difficult to avoid because a very crude sampling is provided. In fact, on
a total of 11 empirical points, 4 of them are for values above the 90th percentile. Instead,
for high percentiles a better fitting likely could be obtained by weighting more the tail of
the distribution.
The rightmost plot (Fig. 4.1b) completes the picture by showing the Mass-Weighted
Function Mw(x) [17]. This can be seen as the probability that a byte picked at random
belongs to a flow below a given percentile and it is used to characterize the variability of
a distribution. Its name comes from its definition, where job sizes are weighted by their
probability mass:

Mw(x) =
∫ x

0 xf(x)dx

E[X]
It holds: ∫ x

0
xf(x)dx ≤ E[X]

In other words, it is just the average normalized traffic injected by flows shorter than x.
The figure has on the abscissa the percentile rather than the corresponding job size, to
allow the comparison between workloads with different supports on the same axis. If y
is a given percentile, it is evaluated Mw(F −1(y)).
In summary, both distributions exhibit high variability. In the web search case the largest
4% of flows carry half of the total traffic, the data mining is even more skewed: 70% of the
flows are less than 8 packets only, but almost the entire load is sustained by a ridiculous
percentage of flows of about 100MB of size. This suggests that the more challenging
distribution to schedule is the web search, consequently it is the one that will deserve
most of the attention. In fact, recall that an ideal flow-agnostic LAS scheduler guarantees
lower and lower delays as the variability of the distribution increases, both on average
and at high percentiles (Sec. 2.1.2). The theory is confirmed pretty straightforwardly
by the simulation results presented next. Moreover, the web search distribution is also
a lot easier to simulate, since the very long tails of the data mining workload require
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protracted time-consuming simulations before being precisely reproduced. Long flows
occur sporadically, however they give the main contribution to generate a desired load
on the system.

4.1.2 Optimal traffic load balancing

In previous discussions, it was already realized that the spatial diversity framework in-
troduces strong implications on how the load is distributed on the switching fabric. We
decided to solve an optimization problem with the goal of finding the optimal load bal-
ancing and then to treat sub-thresholds a posteriori (Sec. 3.2.1). Thus, we considered
the abstraction of spatial diversity as a queuing system (Sec. 3.1.1) setting N=1 priority
queue per server. With this setup all flow demotions correspond to shifting a flow from
one server to the other. This way, the original problem of jointly optimizing inter and
intra server demotion at once, has been simplified to finding the load balance that mini-
mize the average flow completion time.
In this section we first start by analyze the simpler example of spatial diversity, where
only two M/M/1 servers are deployed in parallel, each of them with only a single priority
queue. In this case there is globally only one threshold, therefore it’s possible to plot the
shape of the cost function and to study its properties. It is worth remarking again that
this threshold is a load balance threshold, therefore the following analysis will refer to
the load balancing minimization problem, where there isn’t any strict priority scheduler
and all servers work in parallel with full capacity µ/K. In other words, there is not any
throttling that would assign only the residual capacity to the low priority server (already
discussed in Sec. 3.2.1). We start initially by solving the formulation for M/M/1 queues,
then we will look for the solution of M/G/1 as well. For the sake of simplicity, we have
implemented a total service rate µ = E[X]. In this way the average load fed in the system

ρ = λ

µ
E[X]

is given only by the flow arrival intensity λ.

Load balance on 2 parallel servers

In the basic case of K=2 parallel servers, it is possible to plot the average sojourn time
when varying the load balance threshold. Figures 4.2a and 4.3a show how the cost
functions look like, for the web search and the data mining workloads, respectively. All
the axes are in log-scale and each curve represents a different normalized traffic λ. The
vertical lines correspond to the split that gives perfect load balance, apportioning half
of the traffic on the high priority server and half on the low priority one. This split
may be interchangeably referred to as perfect split or proportionate split in the following.
Figures 4.2b-4.3b show in parallel the normalized traffic distribution on the two servers,
corresponding to the optimal threshold. One phenomena is visible for both workloads,
confirming previous intuitions. The optimal load balance threshold does not coincide,
broadly speaking, with the proportionate split threshold. Depending on the traffic level at
which the system is operated and the workload, the optimal threshold triggers an earlier or
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(a) Optimal load balance threshold (b) Load distribution per-server

Figure 4.2: Web search workload. Simple case of K=2.

(a) Optimal load balance threshold (b) Load distribution per-server

Figure 4.3: Data mining workload. Simple case of K=2.

later demotion with respect to the perfect split case. Equivalently, the jobs are distributed
unfairly between the two servers (Figures 4.2b-4.3b). Imagine to connect the absolute
minimums of the cost functions. For data mining, the imaginary line would be always in
the leftmost side with respect to the proportionate split. That is, apart from loads close
to saturation, the high priority server is kept as jobless as possible and the majority of
work is sent to the low priority server. Remember that the problem formulation weighted
the average sojourn times in the i-th priority queue with the percentage of flows with size
between the thresholds αi and αi+1. The objective was:

T =
N∑

i=1
θi

N∑
j=i

Tj ,

where θi represented the weights. Since the data mining workload is highly dominated
by short flows, they receive more importance and longer flows are moved soon to another
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path. Plenty of short flows carrying few bytes are kept on a separated link from medium
sized flows and a couple of long flows. Thus, the result is not a surprise but it is coherent
with the flow distribution.
Slightly different trend is observed for web search. Moving from low to high values of λ,
the optimal threshold is initially greater than the perfect split axis, then switches to its left
and finally the two coincide. This is clear from the load distribution on the two servers.
In general, for web search the load remains more balanced between the two servers in
respect to data mining. The more unbalanced split occurs at λ=0.3 where 70% of the
traffic is handled by the low priority server. Instead, data mining has much more extreme
load subdivision, especially for λ=0.1. This is a consequence of the high variability of
the workload: there is six order of magnitude difference between the shortest and the
longest flow and there is a pronounced heavy-tail. Hence in order to have significant
changes on the weights θi the threshold is moved significantly along the heavy-tail. In
other words, the optimal threshold reroute few flows but lot of traffic on the low priority
server. In fact, for λ=0.1 the absolute value of the optimal threshold is much smaller
than the proportionate split threshold, however only a small fraction of flows fits into this
gap. Also, for similar reasoning, the two workloads have different sensitivities to the load
balance threshold optimization. In particular, the web search achieves appreciable FCT
gains starting from medium loads only (λ > 0.5) with a factor 2 gainwhereas at low loads
there is no practical difference with the proportionate split. On the contrary, the data
mining distribution gives theoretically an order of magnitude lower waiting time even
for λ=0.1. Finally, for both cases the objective function becomes much more extremely
curled and steep around the perfect split axis when the load approaches the saturation
value 1. As already remarked, this is inevitable in order to fully exploit all the available
capacity offered by the two parallel servers. At so high load any other traffic split would
overload one of the two links and strongly deteriorate the average completion time of
the flows going through it. Consistently, the cost function grows very rapidly in the
neighborhood of the perfect split threshold value. Indeed, the M/M/1 response time T
grows exponentially close to saturation. Its law (Fig. 4.4) is:

T ∝ 1
1 − ρ

Figure 4.4: M/M/1 response time
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Validity of the optimal load balance model

Summarizing, the above discussion confirms that the web search traffic is harder than
the data mining to cope with. This is the reason why in the following some results are
shown exclusively for this workload. Next, it is consolidated the validity of the stochastic
optimization model with numerical flow level simulations, in particular it is shown the
effective benefit of optimal load balancing. The underlying topology is again the simplest
one, comprised of two parallel M/M/1 servers with no inner prioritization. The serving
discipline is Processor Sharing (PS), implemented with a fluid model where parallel flows
are served with equally subdivided bandwidth. The average normalized flow completion
time (nFCT) has been considered as the primary evaluation metric.

Definition

nFCT: Given a fixed data center topology and pair of source-destination servers,
{s, d}, define FCTopt(x) as the FCT achieved by a flow of length x originated
from s and directed to d in a completely empty DCN at load zero (excluding such
a flow). Let FCT (x) be the FCT of a flow of length x in a DCN in the presence
of other flows. Let X be the set of all possible flow lengths. Define:

nFCT =
∑
x∈X

FCT (x)
FCTopt(x) .

The normalized flow completion time is very similar in spirit to the average slowdown
presented in Sec.2.1.2, but it is more handful as it is dimensionless. Its advantage is to
put all flows on the same comparable scale, permitting a clean visual analysis of fairness
with respect to flow size. By the way, this kind of evaluation is important to us, as spatial
diversity mainly targets short and medium flows by augmenting the priority granularity.
Figures 4.5-4.6 report the nFCT gain obtained thanks to the sole load balance optimizer.
Two different scenarios are compared. Both adopt spatially-diverse MLFQ, but in one

(a) nFCT comparison (b) Per-flow length nFCT. λ =0.99

Figure 4.5: Web Search workload
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(a) nFCT comparison. (b) Per-flow length nFCT. λ =0.99

Figure 4.6: Data Mining workload

case the load balance threshold is optimized, in the other not. The former case is la-
beled as SD-MLFQ-OPT, whereas the latter as SD-MLFQ. Call s0 and s1 the two servers (i.e
links/queues) and Ω the unique demotion threshold. Newly arrived flows always enter
the system through s0 as their attained service equals to 0, then they are rerouted to
the link s1 when server s0 has transmitted Ω of their bytes. As expected, the benefits
on the average completion times are more pronounced for the data mining distribution,
at all loads (Figures 4.5a-4.6a). Even so, appealing phenomena emerge when looking at
the detailed breakdown of the response time versus flow size (Fig.4.5b-4.6b). First fo-
cus on the SD-MLFQ system without load balancing optimization and compare the blue
curves. In web search, the normalized response time curve exhibits a constant plateau
which testify a substantial invariance of the slowdown with respect to the flow length.
Conversely, in data mining there is an abrupt transition to lower response times for flows
longer than 20MB, which roughly corresponds to the demotion threshold adopted in this
case. The difference is justified by the fact that the proportionate split threshold for
data mining cuts the flow size CDF near the 99-th percentile, due to the oft-repeated
heavy-tail characteristic of this workload. Therefore, only few long flows remain to share
the processor of the low-priority server s1. Since the nFCT captures the slowdown in
respect to the ideal case where the flow is serviced alone, it is reduced when less flows
contend the bandwidth. This is true as long as PS all servers use the PS discipline.
Next, let’s concentrate on the spatial diversity with optimal load balancing (green curves),
which is the real experiment needed in order to validate the model. The two workload
perform similarly and have analogous trends. More importantly, the encouraging result is
that short and medium flows indeed take advantage of spatial diversity, as they are sent
through a less loaded path. For the data mining case, there is approximatively a 35%
gain for flows smaller than 6MB. The opposite happens to long jobs, which undergone
the dual effect.
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Finding optimal load balance with Basin-hopping

So far the only scenario that has been investigated is the simple case of two parallel
servers without sub-thresholds. This was useful to get confident with the relationships
between load balance and the spatial diversity demotion mechanism. However, in the
more general setting there might be much more parallel servers and at least two priority
levels per server. The total number of thresholds was reduced by decoupling the load
distribution by the server-local prioritization. Thus, the total complexity only depends
on the number of servers K. Unfortunately, it is still typically high. We approached the
solution with the Basin-hopping algorithm [37], available in the Python scientific library
SciPy [4]. Basin-hopping is a meta-heuristic which provides means of solving non-convex

Figure 4.7: Computation time of optimal load balance thresholds

optimization problems. It operates on an iterative basis by selecting random starting
point in possible solution state-space and performing local minimization. Subsequently
the process is repeated by "hopping" to a different point and re-performing minimum
search. We consider BFGS as a local minimization algorithm, we set a step size equals
to 100 for random perturbation as it was empirically found to be a good trade-off be-
tween convergence speed and accuracy. We then perform 300 iterations for each point
in Fig. 4.7 on a Intel i7-7700k with 16GB of RAM. We noticed that computation time
is load dependent and due to the non-convexity of the cost function it took 10 hours to
converge, in the worst case. This is coherent with what we already observed for the simple
case of one threshold. At low loads the shape of the cost function is almost flat, while at
high load is extremely sharp around the minimum, that is easy to identify. Likely, the
most uncertain situation is at medium loads, where there are frequent local minima. The
hopping process performs repeated local minimizations, thus taking longer time to give
its solution.
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4.2 Dimensioning spatial diversity

In the previous section it was laid down the basic framework of spatial diversity. It was
remarked the fact that adopting spatial diversity translates into a priority-driven load
balancing. At the same time were collected encouraging results about the effectiveness of
the optimal load balancing. It was discussed the impact of two workloads commonly used
as a benchmark in literature. Then, it was solved the optimal load balancing problem
for up to K=9 parallel servers ans shown that for large topologies we may incur in
overwhelming complexity. In all the simple experiments carried out, the servers were
always configured with Processor Sharing service discipline and without priority queues.

This section aims to provide answers to principally two things. The first one is the
behavior of the priority-driven load balancing when increasing the number of server K
up to 9 parallel servers. Thus, we try to evaluate the effects of the load balance thresh-
olds alone with bigger topologies, initially disregarding sub-thresholds again. Second, it
is treated the integration of the priority-driven load balancing with the legacy MLFQ
system. In practice, it is considered the general case where each server has many PQs on
its interfaces used in strict priority. As it will be explained shortly, it turns out that for
both attempts, the performances of the system are highly correlated with the adopted
servicing policy. The two considered cases are the FIFO (FCFS) servers and the usual
PS servers.

4.2.1 Effects of priority queue granularity

First it is addressed the first question: what are the effects of augmenting the spatial
diversity rank?

Terminology

SD-rank: Given a data center topology with S spines — or the equivalent system
of parallel M/M/1 servers where is applied priority-driven load balancing, that
is each server handle a group of priority and a flow is routed depending on its
assigned priority. Let’s define the spatial-diversity rank (SD-rank) as the number
K of servers which handle different priorities.

The spatial diversity ranks tells how many M/M/1 servers (or group of servers) are
considered to be used to implement spatial diversity. For example, suppose there are 4
parallel servers available s0, s1, s2, s3. Consider these two possibilities.

1. Rank 2. The four servers are grouped in two pairs, say (s0, s1), (s2, s3). Spatial
diversity demotion is applied at pair level. This means there is only one load
balance threshold Ω. When the longest flow enters the system, it is sent at random
either on s0 or s1. As soon as the flow has received service Ω it is demoted, again
randomly, either on s3 or s4. In other words, this can be seen as a system of only
two parallel servers with twice the capacity each, where only one rerouting happens
to the longest flow.
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2. Rank 4 (full-rank). The servers are not grouped in any way. All servers partici-
pate to the priority-driven load balance. Therefore, there are 3 thresholds and the
longest flow it is rerouted three times.

In the next experiments (Fig.4.8) is evaluated the full-rank spatial diversity system for
three topologies, corresponding to K = 3, K = 5, K = 9 and for two serving policies:
PS and FIFO. The number of priority queues N is still one per server. Remember that
the numerical simulator is a job level simulator, thus flows are not fragmented in packets
anyhow. This means that the FIFO policy is absolutely non-preemptive for jobs in the
same priority queue. The service of a flow cannot be interrupted and flows arriving in
the meanwhile are queued back in a first-in first-out order. Instead, the PS discipline
subdivides the available capacity among all flows present in the system with a fluid
approximation. Thus, a fresh flow share immediately the service rate granted to its
priority queue with other flows in the same queue. These experiments were carried out

(a) nFCT comparison (b) Per-flow length nFCT (λ=0.9)

Figure 4.8: Web Search workload and FIFO discipline at 99% confidence interval.

both with and without the optimized load balance thresholds. Whenever load balance
thresholds are not optimized, it is used the proportionate split criterion. Experiment
are shown for the web search workload only, which is the more challenging to handle.
The first very positive observation is that, whatever the number of servers, the optimal
load balance wins over the proportionate split. This again confirms the validity of the
queuing model formulation for load balancing. The FIFO policy is clearly unfair with
respect to short flows (Fig.4.8b). This is because without preemption a single elephant
flow could starve a myriad of short flows. This does not happen with PS, because short
flows always share the processor with other longer flows. Indeed, in absolute terms the
PS discipline overcome of two order of magnitude FIFO, remarking the fact that under
the assumption of high variability of the distribution, it is better to adopt a PS policy.
The unfairness of FIFO is mitigated when increasing the spatial diversity rank, because
long flows are demoted earlier and leave quickly high priority servers. Notably, for a
fixed K, having N=1 priority queue is the worst case from the point of view of mice
flow starvation. With N>1 PQs, the service received by a flow on each server would
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(a) nFCT comparison (b) Per-flow length nFCT (λ=0.9)

Figure 4.9: Web Search workload and PS discipline at 99% confidence interval.

be broken in multiple phases, each on a different priority queue. Since the PQs are
scheduled in Strict Priority order and newly arrived flows enter in high priority, a short
flow behind longer ones would have to wait only until the demotion at lower priority of
the flows ahead. Somehow the demotion preempts the long flows, and weaken the impact
of having a FIFO policy on the PQs themselves.
Not surprisingly, when increasing the rank there is not a significant change in the average
flow completion time with PS. In the web search distribution a relevant role is played by
medium flows. Thus, increasing the number of inter-server demotions without any intra-
server demotion hasn’t any effect on FCT minimization. Medium flows stay anyway with
elephant flows, only across more parallel servers. This clearly indicates that the priority
dependent load balance alone is not enough with PS. On the other hand, for higher rank
we start observing on elephant flows the same trend that was observed in Fig.4.6b for the
data mining workload but not for the web search. In that section, (Sec. 4.1.2) we had only
2 parallel servers and we argued that this gain for the elephant flows happened because
only few simultaneous flows shared the processor of the lower priority server. Here the
same happens also for the web search distribution, since there are enough demotions to
truncate the distribution at high percentiles and leave few flows for low priority servers.

The study of the system with increased number of priority queues led to even more
surprising results. This step really integrates the spatial diversity in the legacy MLFQ
system with many priority levels. Here it is reported only the Processor Sharing discipline
for the reasons explained few lines above: it is clear that for FIFO increasing N would
further reduce the average flow completion time. A numerical proof confirming this fact
(Fig. 4.15b) will be shown in the last section Sec. 4.2.3 of the chapter during the final
comparisons of SD-MLFQ with ES-N.
Fig. 4.10 is a key result that will uncover potential bottlenecks of SD-MLFQ. In this ex-
periments are compared the average flow completion times of the system with fixed K=4
and variable N . Load balance thresholds are not optimized in this case, but are set to
grant the proportionate split of the traffic on the four parallel servers. The sub-thresholds
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have been assigned with the simple ES-N variation for spatial diversity (Sec. 3.2.1). Very
interestingly, this numerical results provide a different perspective on the best granularity
of priority queues per server when introducing spatial diversity. While on the systems that
approximate LAS or SRPT schedulers [10,11], increasing the number of priority queues is
always beneficial, it is not so when spatial diversity is adopted. At low load there is not a
visible difference among the simulated scenarios. However, at high load the best average
nFCT is attained with N=2 priorities per server (dashed orange curve). The peculiar
phenomenon is the behavior of the case N=8 (red curve), whose corresponding nFCT
starts to increase consistently above λ = 0.8. From the detailed breakdown of Fig.4.10b,

(a) nFCT comparison (b) Per-flow length nFCT (λ=0.9)

Figure 4.10: Effects of intra-server demotion with spatial diversity. Results shown for
web search workload, PS and fixed K = 4. Results plotted with 99% confidence interval.

it is evinced that the most severe degradation happens to long flows. As a general trend,
an higher number of priorities per server is reflected in a more pronounced raise of the
job response time of long flows. At the same time, coherently with the scheduling theory
of LAS (Sec. 2.1.2) and the results of PIAS, flows between 100KB and 1MB (medium size
flows) are improved. However, long flows suffer an unacceptable penalty, which globally
makes also the average worse.
We repeated the same experiment with the smallest possible rank that guarantees the
applicability of spatial diversity, that is K=2. The results are shown in Fig. 4.11. In-
triguingly, the problem on longer flows starts to reveal, but with less intensity. This
suggests some correlation between the spatial diversity rank and the critical behavior of
long flows, especially when there are 8 priority queues per server. Short and medium
flows experience exactly the same trend as in the case K=4, but in this case it is visually
more clear (Fig.4.11b) because it is not squeezed by the scale of y-axis.

4.2.2 Impairments of spatial diversity

Summarizing, the previous experiments leave the following remarks as concerns the Pro-
cessor Sharing (PS) discipline:
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(a) nFCT comparison (b) Per-flow length nFCT (λ=0.9)

Figure 4.11: Effects of intra-server demotion with spatial diversity. Results shown for
web search workload, PS and fixed K = 2. Results plotted with 99% confidence interval.

• Remark 1. Impact of PQ granularity. Whatever the spatial diversity rank
(number of parallel servers across the which is applied spatial diversity), there is a
nFCT penalty for long flows in using more than N=2 priority queues per server.

• Remark 2. Impact of SD-rank. When N > 1, that is when intra-server demo-
tion is applied, increasing the spatial diversity rank rapidly exacerbates the nFCT
impairments on long flows. The performance drop may become unacceptable and
dominate the behavior of the average FCT curve.

Such an extreme behavior on long flows was worth of extra-attention. In particular, it
brings up two important questions: why does it happen? Is the best choice to continue
demotion also in low priority servers? We concern why spatial diversity exacerbates
the unfairness of the scheduler with respect to longer flows. The fact that long flows are
penalized is not new. Both LAS, the theoretical scheduling policy, and MLFQ, its approx-
imation with priority queues, suffered the problem of long flows starvation. Nonetheless,
the spatial diversity presents a peculiar impairment that worsen the performances if the
size of the topology — precisely the SD-rank — grows. We identified two causes of the
problem: demotion in low priority servers and flow synchronization. Unfortunately, both
of them are either originated or amplified by the spatial diversity.

Demotion in low priority servers

We ask whether it is meaningful to exploit all available priority queues in low priority
servers for flow demotion, or not. We addressed this problem by looking at the simple
scenario of K = N = 2 with the web search workload. This setting allows to have a single
load balance threshold and a single sub-threshold in each server s1, s2. Then, we tried
to optimize the sub-threshold on the low priority server, for any possible load balance
threshold. This step was easily treatable numerically with a brute-force minimization, as
there is only one sub-threshold. Fig. 4.12a shows the results. On the abscissa there are

46



4.2 – Dimensioning spatial diversity

(a) Optimal sub threshold for s2 (λ = 0.99) (b) Hazard function.

Figure 4.12: WS workload

the cut percentile at which the load balance threshold truncate the job size distribution.
The lower bound (blue curve) is the load balance threshold value, varying in order to
cut the workload cdf at a given percentile. The upper bound (black dashed line) is the
length of the longest job in the workload. Finally, it is shown the optimal sub-threshold
of the low priority server s2 (orange line), computed for each imposed cut. The notable
result is that starting from nearly the 90-th percentile, it is not convenient to use PQs on
the low priority server for demotion. The optimal sub-threshold saturates to the extreme
of the support. This is coherent with the increasing hazard function at high percentiles.
Indeed, it was discussed (Sec. 2.1.2) that LAS scheduling is convenient when the hazard
rate h(x) is a decreasing function.
This experiment also explained why the performances are so bad when the dimensions
of the system increase. Remember that subsequent servers observe cut workloads, whose
heavy-tailed property is gradually destroyed. Thus, the heavy-tail of the DC-wide work-
load is progressively reduced as considering lower and lower priority servers. Under this
condition, it is not recommended to schedule with LAS discipline, therefore intra-server
demotion is a downside. Intuitively, since lower priority servers receive only jobs corre-
sponding to high percentiles, long flows cause protracted starvation to each other, with
the longest flows being the more penalized. For light-tailed distributions, the FIFO policy
is close to optimal in minimizing the tail completion times [38].
Indeed, if the variability becomes so low, it would be even recommended to serve jobs with
FIFO and not PS. As a trivial example of low variability, suppose to schedule two flows
f1, f2 both of size 10 (they can be equivalently bits/bytes/packets). Denote as T (fi) the
average flow completion time of flow i, expressed in transmission slots. FIFO scheduling
would give:

TF IF O(f1) = TF IF O(f2) = 10 + 20
2 = 15

Instead, PS scheduling would be worse:

TP S(f1) = TP S(f2) = 19 + 20
2 = 19.5
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Flow synchronization

The second issue we have identified is flow synchronization. Consider the topology with
K=5 and N=2. We plot the CDF of the flow inter-arrival time, that is the distribution of
the time elapsed between two consecutive job arrivals. As usual the notation si indicates

(a) CDF at s1 (b) CDF at s5

Figure 4.13: Flow synchronization with PS discipline emerges looking
at inter-arrival distributions at highest and lowest priority servers.

the servers, from higher to lower priority. By looking at the distribution on the lowest
priority server s5, there is an anomalous spike at 0ms inter-arrival, that spans the y-axis up
to the 90-th percentile (Fig.4.13b). This is strange because all flows enter the system from
s1, hence we expected a flatter cumulative function, at least at the beginning. Instead,
its shape discloses bursts of flow arrivals, with many of them arriving synchronized at the
same time instants.
We explain this synchronization as a joint result of processor sharing, strict priority and
flow demotion. Consider a generic set of flows F , whose sizes are such that the all flows
end their service in s5. Denote with Qj

i the i-th priority queue of the j-th server, with the
usual order and notation followed in the theoretical model of spatial diversity (Sec. 3.2).
Flow f̃ enters the system through s1 and starts its service. Denote with F ′ all flows
f ∈ F \ {f̃} entered the system before f̃ . Instead, use F ′′ for all flows f ∈ F \ {f̃}
arriving after f̃ but still while f̃ is served by the first server. Flows in F ′′ either share
the processor with f̃ in the high priority queue Q1

1 or are served with higher priority of
f̃ because this is already in the lowest priority queue Q1

2. In both cases, f̃ is the first to
be shifted to the lowest PQ and at this point happens the synchronization. As a matter
of fact f̃ doesn’t leave the lowest PQ until all flows f ∈ F ′′ do. First it waits them in
Q1

2 because of strict priority scheduling among PQs, then it shares the processor with
them. When finally f̃ is rerouted to the subsequent server s2, those flows in F ′ that are
yet served in s2, again synchronize themselves with — at least — f̃ . In other words,
the combination of spatial diversity, processor sharing and strict priority create on-off
bottlenecks that lead to synchronization. This explanation is validated by the fact that
in case of FIFO we do not observe any of this effect. Fig. 4.14 reports the inter-arrivals at
the lowest priority servers s5. Not surprisingly, for s1 it is identical to the one obtained
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with PS.

(a) CDF at s1 (b) CDF at s5

Figure 4.14: FIFO does not suffer flow sync.

We think that this flow synchronization arises also in the system without spatial
diversity and it is something not highlighted by authors of PIAS. Instead of showing at
server level, we think that bursts arrivals could occur at priority queue level, especially
when N is large. However, since lower priority queues are served in strict priority only
when high PQs are empty, we guess that these bursts are also less penalizing.

4.2.3 Summary evaluation

In previous sections were undisclosed the effects of spatial diversity under different set-
tings, in order to understand which is the best dimensioning of the system in terms of
number of servers and priority queues. At the same time were highlighted two implica-
tions of spatial diversity on the performance of strict priority scheme with demotion. In
this section we want to exploit the insights just gained and compare SD-MLFQ with the
system without spatial diversity and ES-N threshold assignment. Ultimately, showing
that the system with spatial diversity outperforms the other would be our final goal.
As usual, we evaluated both FIFO and PS discipline and we show results for the Web
search workload only. Whenever load balance thresholds are optimized, we labeled the
algorithm as SD-MLFQ-OPT. Results with FIFO are coherent with previous analysis.
First, the benefits of spatial diversity on a FIFO system with MLFQ demotion are
more remarked for increased dimensionality. Either an increase in the number of servers
(Fig. 4.15a) or an increase in the number of priorities (Fig. 4.15b), offer to short flows
a chance to get rid earlier of their wait behind long flows. Additionally, FIFO does not
suffer flow synchronization problem. For similar reasons SD-MLFQ achieves better per-
formances in respect to ES-N for all considered combination of K and N , making spatial
diversity a very attractive solution for systems where FIFO at job level is a hard con-
straint. On the contrary, the Processor Sharing discipline is less compatible with spatial
diversity. Fig. 4.16 depicts the comparison between SD-MLFQ and ES-N for fixed values
of N and variable K. In particular, only N=1 and N=2 have been considered because
we have seen that with many priority queues per server and spatial diversity we incur
in some impairments (Sec. 4.2.2). Nonetheless, results for fixed K and varying N at
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(a) Fixed N=2 priorities per server (b) Fixed K=2 parallel servers

Figure 4.15: Comparison among SD-MLFQ and ES-N for web search
workload and FIFO. Results plotted with 99% confidence interval.

(a) N=2 (b) N=1

Figure 4.16: Comparison among SD-MLFQ and ES-N for web search workload and PS
at 99% confidence interval. For both figures the number of priorities N is fixed.

λ = 0.9 can be found in the summarizing Table 4.1 and are coherent with our intuitions.
The principal insights can be grasped from Figures 4.16a-Fig. 4.16b. Unfortunately it is
clear SD-MLFQ becomes rapidly worse than ES-N when N × K grows. Even for small
dimensioning, such as K ×N = 4, ES-N is slightly better than SD-MLFQ. In the summa-
rizing table is also present the detailed comparison for all considered scenarios both with
optimized and proportionate split thresholds. The optimized load balance thresholds are
very effective for the system without intra-server demotion, that is with a single queue.
This comes at no surprise since in such a condition our intelligent load balancing is the
only way to separate short and long flows. Indeed, for N=1 the SD-MLFQ-OPT wins
also over ES-N (Fig.4.16b), which randomly load balance flows on available servers, thus
mixing flows of any size. The effect of optimal load balancing start to be less prevalent
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than the effect of priority queues for N /= 1. When N=4 SD-MLFQ-OPT achieves worse
performances than SD-MLFQ.

Scenario ES-N SD-MLFQ-OPT SD-MLFQ
K=3 9.12 6.61 9.59
K=5 9.37 6.36 9.71N=1
K=9 8.77 8.26 10.12
K=3 4.20 4.62 5.52
K=5 4.32 7.67 7.95N=2
K=9 4.08 13.41 14.59
K=3 2.64 4.87 5.34
K=5 2.70 14.76 13.09N=4
K=9 2.57 13.29 11.56

Table 4.1: Summary of the comparison for PS discipline and λ=0.9
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Chapter 5

Data center network simulator

The last chapter of this work is the evaluation of our proposal in a packet network.
We configured a DCN network in a simulated environment, where now the protocol
stack is fully implemented. We worked with the open-source discrete event simulator
OMNeT++ [3] and the INET library [2], which provides readily deployable components
for the TCP/IP stack, link layer and physical layer protocol implementations, as well as
models for QoS provisioning. In order to test spatial diversity we extended and customized
some of the library components. The most relevant among of these modifications will be
reported in this chapter to allow easy reproducibility. Indeed, we dedicate the first section
(Sec. 5.1) to an in-depth description of the simulation methodology and the configuration
of the network components and their interactions. Then, we will analyze the results and
draw the final conclusions.

5.1 Overview of the setup

OMNeT++ is a discrete-event simulator, based on message passing. Essentially, the
events are represented by messages which are stored in a priority queue. The user can
schedule events by creating a message with associated a timestamp, which indicates the
moment in time when events need to be simulated and corresponds to the message pri-
ority in the queue. The events are sorted in ascending order of timestamps. Obviously,
there isn’t correspondence with the real time, instead all timestamps refer to a simulated
time. Therefore, all events are executed at CPU speed and the virtual simulation time is
set artificially to the timestamp of the last event popped from the queue.
OMNeT++ separates the definition of the model components from their actual imple-
mentation. It provides a descriptive language to define which components to include in
the simulation model and possibly to define interconnection among them. The intercon-
nections allow different modules to communicate with message passing. Separately, the
user can implement the actual behavior of such components. For each of them it is pos-
sible to customize the routines to handle events, schedule new events and pass messages
to other modules.

We worked in Ubuntu 16.04 environment, using OMNeT++ v.5.2.1 and INET v3.6.4.
The goal of this section is to explain the setup we used on our simulator and provide

53



5 – Data center network simulator

implementation details, eventually useful for hands-on experiments with this system.

5.1.1 Traffic generation

We consider a standard leaf-and-spine Ethernet-based topology, with only two layers. All
hosts in the topology are directly connected through a single 1Gbps links to ToR switches,
that comprises the first layer. Then, all ToRs are connected to all spines (second layer),
forming a bi-partite graph structure. Also these links are configured at 1Gbps speed.
We do not apply any over-subscription, therefore the aggregate bandwidth of all access
links equals the bisection bandwidth. The topology and the nomenclature are shown in
Fig. 5.1. We indicated with nS the number of spines, nT the number of ToRs and nH the

Figure 5.1: Data center topology used in simulations

number of hosts per rack. In the following of this chapter, it will be occasionally used
as axis labels the module names as configured in the simulator. Some of them already
labels the switches in Fig. 5.1. In general we will indicate as T[i].eth[j].pq[k] the
k-th highest priority queue in the interface connecting ToR i to spine j. According to the
same convention, S[i].eth[j].pq[k] is the k-th highest priority queue in the interface
connecting spine i to ToR j. The order of spines and ToRs indexes is the same reported
in the figure.

The first point is to generate a given amount of traffic. We want the hosts to fed the
DCN with a given offered load ρ defined as the average traffic offered to the switching
fabric normalized to the bisection bandwidth. All hosts in the network have a single traf-
fic source application and a single traffic sink application. Flows arrive at traffic sources
according to a Poisson process with intensity λ and are sent to a traffic sink belonging
to another server chosen uniformly at random. Every new flow size is drawn from a
given distribution. The flow size distributions that we considered are generally the ones
already presented in section 4.1.1. We did few experiments also with the uniform dis-
tribution at the very beginning to verify what happens when the flow size distribution
has low variability. We never accounted for cases of heterogeneous workloads across the
data center, thus all servers are always assumed to run the same workload. The bounded
Pareto distribution wasn’t available by default in the OMNeT++ library. However, it
is easy to generate new samples of a random variable X from any distribution through
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the CDF inversion technique. It is first extracted a uniform point y ∈ [0,1]. The uni-
form distribution is readily provided in the library of the simulator. Then, the following
transformation involving the inverse of the cumulative function F (x) is performed:

x = F −1(y)

Essentially, the value y is projected through F (x) on the support of the distribution,
giving the corresponding y-th quantile x, which is the new realization of the distribution
of X we needed. For the bounded Pareto with support in the interval [u, t], whose F (x)
has been expressed in Eq. 4.1, it holds:

F −1(y) =
√

− (ut)α

ytα − yuα − tα

In order to implement the Poisson arrival process it has to be derived its intensity λ.
Denote with C the link capacity connecting a rack with a spine. It has to be expressed
the total traffic on the bisection bandwidth as a function of λ. First write the probability
that a flow originated by a server in rack Ti is destined to another server in a rack Tj

with i /= j (exit rack probability):

Pout = (nT − 1) × nH

nT × nH − 1

Indeed there are (nT − 1) × nH possible destinations among the total number of servers,
excluded the source. If only cross-rack flows are simulated, obviously Pout=1. Next, from
the average flow size at application layer E[X(7)] = E[X] we need to obtain the average
flow size at physical layer E[X(1)]. Define H(i) the procotol control information (PCI)
added by the i-th OSI layer. The average flow size at physical layer is the average flow
size at application layer with the addition of all headers in between. For a fixed packet
size pktsize, that we always set to the Maximum Transmission Unit for the Ethernet
(pktsize=1500B):

E[X(1)] = E[X(7)] +
∑4

i=0 H(i)
pktsize

Since the all racks have the same workload, the total load ρ on the fabric corresponds to
the average traffic outgoing a single ToR.

ρ =
λ nH E[X(1)]

nS C
Pout (5.1)

Here it has been implicitly used the merging property of independent Poisson processes
(PP), that states that merging multiple independent PP gives another PP with rate equal
to the sum of individual rates. Inverting Eq. (5.1) gives the final intensity λ to be adopted
by all hosts in the network:

λ = ρ nS C

nH E[X(1)] Pout
(5.2)

We performed experiments both with TCP and UDP. The reasons will be explained in
details when describing their setup. However, in writing the total traffic with Eq. (5.1)
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it has to be accounted also for control packets of the TCP connections. We decided to
disregard SYN and FIN packets, since they really have a negligible impact on the total
traffic. Instead, we considered ACK responses. All hosts of a rack send back an ACK in
exchange of every received TCP packet, thus:

ρT CP = ρ + γ ρ, γ = acksize

pktsize
(5.3)

The same reasoning applies also if the delayed-ACK option of TCP is applied, but γ must
be rescaled accordingly.

Simulation length

Once λ is known, it is possible to derive the simulation time tM required to observe an
average total number of flows M :

ts = 1
λ

M

nH nT

The rough criterion we used for choosing M is to tune its value depending on the tail
of the flow size distribution and the "importance" of tail flows for the total load. In
particular, we considered the mass-weighted function (Sec. 4.1.1 Fig. 4.1b) to understand
how much traffic is carried by flow sizes corresponding to high percentiles. For instance,
for both Pareto distributions we have seen that flow sizes corresponding to percentiles
as high as 99-th still carry a lot of traffic (for data mining actually they carry almost
all the traffic). Therefore, for these distributions unfortunately we should observe some
amount of these tail flows to actually load the fabric at the average traffic ρ that we
impose a priori. In this respect, tail flows are important to be simulated. For example,
let’s suppose we decided — by looking at the mass-weighted function — that we want
simulate at least 100 realizations of the largest 1% flows. We need on average a total
number of flow samples M ≥ 100 / 0.01 = 10000. Usually for the web search Pareto
workload we used M ∼ O(104). Note that another aspect to keep in mind is also the
number of simulated flows per server, that is the ratio M / (nH nT ). If the topology
is very large, the total number of flows M must be increased to avoid non-homogeneity
across servers in the offered traffic. For this reasons, the data mining workload it is really
not practical and often it has been ignored.

5.1.2 Host configuration

All hosts in the network have one source client application, that generates flows according
to the Poisson process, and one sink server application, that only receives flows in order to
measure FCT, then discards their bytes. The host configuration changes a bit depending
on whether we used TCP or UDP as transport. We run experiments with TCP and
UDP, motivated by the noticeable difference among PS and FIFO discipline we observed
in Chapter 4 for SD-MLFQ. Indeed, the setting adopted for UDP at end hosts turned
out to resemble the FIFO service discipline.
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Figure 5.2: Host architecture with TCP. Flows are interleaved thus
emulating PS discipline.

TCP

The architecture of the whole protocol stack at end hosts when adopting TCP is shown in
Fig. 5.2. First start from the application layer. There is a unique application, following
the generation process it setup a new TCP connection for each flow. Hence, already
opened TCP sessions are not reused, but they are teared down when the flow completes.
For every new connection, the application creates a socket, it batch sends the entire flow
through the socket, offloading to TCP the segmentation in packets, then it immediately
closes the socket. The application can close immediately the socket because it does
not wait any data in response to its flow from the other peer of the TCP connection.
There is not interaction, instead it only performs a one-way data transfer. For long
flows this approach is not realistic. In a real TCP implementation the operating system
would limit the maximum simultaneous bytes it can receive from the user application for
preserving the memory allocation in kernel space. However, we can neglect these practical
impairments to ease the implementation of the simulator. Opening and closing the socket
in this way allows to avoid more complex management of simultaneous connection, like
thread creation. Practically, our TCP application has been derived with some changes
to the TcpSessionApp class of the standard INET library.
From the point of view of TCP, a separated transmission queue is allocated for each new
socket. The simulator gave us the possibility to set the queue size limit to infinity. The
scheduling among the queues is self-clocked by the TCP ACKs and transmission control
mechanisms. A packet is popped from a queue only when the TCP window allow to do
so. Simultaneous popping never occurs because ACKs belonging to distinct connections
arrive back to back in the worst case. Therefore, packets of different flows are delivered to
the IP layer with interleaving. When the socket transmission queue is completely drained,
the TCP client immediately send a FIN packet for closing the connection, as the client
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application has already closed the socket. New connections always run the three-way-
handshake during their setup and start with minimum window size. We do not set the
initial window increase option of TCP. This is because the bandwidth-delay product of
the network amounts to few packets. As a matter of fact, the distances between network
elements in data centers are very short and propagation times on the network links are
negligible for light speed. For example, on a link of 30m the bit propagation time is
roughly 100ns. The transmission time of a TCP ACK packet on a 1Gbps link is 32ns.
Thus, differently from large network on geographic scale, the Round Trip Time (RTT) is
proportional to the packet transmission times. Since the topology is comprised by very
few links, when multiplying the bandwidth and the RTT the result is near 5 packets.
We modified the defualt value of the TCP port range, in order to allow TCP to support
the maximum number of simultaneous connection. With the default configuration, new
connection could only use ports in the range 32768-61000. We extended the range to
1024-65535. Also, we removed the randomization of the initial sequence number, which
is always started from zero. In this way, it is easy to discern the amount of service
obtained by a flow and to tag its packets with the right priority.
Finally, we tackle at transport layer a possible shortcoming that has been also addressed
in PIAS. Since we enforced strict priority queues also in the servers’ NICs, that represent
the first contention interface for the sender, large backlogs of packets may build up at
end hosts. Indeed, the flows demoted to low priority stay active for long and many
simultaneous flows share the server access link. They take time to converge to their
fair share, meanwhile they increase their window to harvest additional bandwidth. The
inet implementation of IP and MAC layer doesn’t include back-pressure mechanisms to
counteract the aggressiveness of TCP. Thus, either big delays or packet losses may be
introduced yet before entering the network. A possible solution is to rate-limit to line rate
the data flow between the application and the TCP. However, for the sake of simplicity
we acted on the TCP Advertised Window (AWND) to upper bound the sender window to
the bandwidth-delay product. Although the effect is practically the same, we are aware
that in a real implementation the first solution is cleaner, because the bandwidth-delay
product of the topology is in general unknown or not specified to the servers.

UDP

The scenario changes when adopting UDP as a transport protocol. Systems that aim
to minimize the Flow Completion Time usually target transport protocols that ensure
the delivery of the entire flow, thus neglecting UDP protocol. We tested the system
also with UDP essentially for two reasons. First, it is easier to control its behavior,
because it do not implement congestion control schemes, retransmissions, timeouts,..It
is straightforward to check if the measured load on the topology corresponds to the
offered load and verify the correctness of the traffic generation algorithm. Second, it
may provide a rude approximation of the FIFO service at flow level, that gave the best
results with spatial diversity (Sec. 4.2.1). This is best understood considering Fig. 5.3.
It is well known that differently from TCP, UDP is connectionless. As a consequence,
flows are packetized directly at application level and transfered to UDP already broken
in datagrams. UDP does not have internal queues nor transmission control schemes, so it
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Figure 5.3: Host architecture with UDP. Flows are not interleaved
thus emulating FIFO discipline.

forwards all packets to IP, which in turn does the same with the MAC layer, that finally
enqueues all packets in the line card buffers. In our simulator this happens in time zero,
meaning that all these operations are code routines of the different layers that do not
increase the simulation time. In other words, the new flow arrival event at application
layer triggers all these network stack operations, which end only once all the packets
of the flow are stored in the NIC’s buffer. Since the simulator handles one event at a
time, nothing else happens in the meantime. The relevant effect is that flows are served
fully in FIFO order without interleaving at end hosts. In the network there is statistical
multiplexing among different flows, even if the number of concurrent flows in the same
interfaces is significantly reduced, due to the discipline enforced at the servers.
We use a trivial format for the application message, in order to make few information
available on each UDP packet. In particular, we attach to application messages a sequence
number and the flow length. Both the information are used for tagging packets with their
priorities and to detect at the receiver when the flow is ended.

5.1.3 Network configuration

As discussed in Chapter 3, a radical effect of SD-MLFQ is that the priority of a flow
determines its routing over the topology. In a leaf-and-spine network, the ToR switches
has to decide in which spine forward every packet, depending on some load balancing
criterion. For SD-MLFQ, it is the flow priority, that has been assigned accounting for
load balancing. Therefore spatial diversity has to be considered in routing algorithms.

We decided to handle the priority-dependent routing with a centralized controller
module. End-hosts ask packet-by-packet to the central controller both the priority for
their flows and the corresponding route. The controller knows the DC-wide flow size
distribution and has computed all the demotion thresholds. Also, it keeps a centralized
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network view and it knows the priorities configured on every interface in the network.
Thus, it can easily respond with a priority code and the route. The route depends on the
load balance thresholds and it is provided as a vector of interface identifiers, whereas the
priority code depends on the sub-thresholds. End hosts attach the interface IDs to their
packets as a control information and tags the packets with the priority code. Finally,
they send them through the network. The network devices use the interface identifiers
for forwarding packets on the proper links and the priority to enqueue the packets on the
proper priority queues. To sum up, it is applied a sort of source routing with the help of
a central controller.

Both the route requests to the controller and the route information are handled offline,
hence they don’t contribute as overhead to network traffic. It means they are just data
structures and function calls in the simulator. Instead, the priority code is carried in the
PCP field of the IEEE 802.1p [20] standard for VLANs. This was the more immediate and
flexible way to have a working prototype, without messing with solutions that make use
of standard routing protocols to announce the priorities handled by the network nodes.
The actual implementation of spatial diversity routing is out of the scope of this work.
We think, however, that a centralized solution would be easy practicable also in modern
SDN-based data center networks.

At this point, we built the entire topology using only standard inet modules for
Ethernet switches with our modification for the forwarding-plane. We configured a single
LAN for any topology size and we do not place any IP functionality inside the network.
We do not need IP because the routing is handled by the controller. Also, we disabled the
computation of the spanning tree and we instructed all servers with predefined entries
in the ARP table before the beginning of the simulation. In this way we avoided all
the possible problems that might arise from having a unique layer 2 network, such as
spanning tree convergence or broadcast storms. Since we do not consider neither network
nor server failures, the initial ARP mappings are valid for the entire simulation. We set
priorities both at server and switch interfaces to implement the MLFQ scheduler. All
priority queues are FIFO queues disciplined by a simple strict priority scheduler. Flow
demotion is managed at the sources as explained above. Network switches are left with
the only responsibility of choosing the priority queue by reading the DSCP code.

All links are Ethernet cables with a length of 30 meters, which seems reasonable in
relation to the size of data center buildings. Buffer sizes are set to 1000 packets shared
between priority queues of the same interface. Different ports have their own independent
memories. We ignored switch architectures with port-shared memory pool, although they
are common in data center networks [8, 12]. In the experiments with UDP all queues
have unlimited buffer space, in order not to loose packets and allow straightforward FCT
measurements at the receiver. This is because packet losses would unnecessarily make
controversial the meaning of FCT itself. Despite we are absolutely aware that the system
with UDP has no practical value, nevertheless we recognize it has a theoretical utility.

Priority assignment in down-send

An aspect that we never addressed in the numerical simulator is how to assign priorities
at the egress interfaces, that connect ToR switches to the servers. These ports are last
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traversed in the down-send transmissions before leaving the switching fabric. During the
up-send phase of the path from source to destination server we may exploit the spatial
diversity to augment the priority classes proportionally to the number of spines. However,
when traversing the egress interfaces all the priorities must be in some way mixed and
multiplexed to the small number of queues available on a single port. This is illustrated
in Fig. 5.4 for the case of rank=4 and two PQs per port, where 8 priorities have to be
mapped on two queues. Our observation is that all egress interfaces receive the same
DC-wide workload used for generating new flow sizes, because flows are uniformly sent
to destination servers. Hence, we treat egress interfaces as in the system without spatial
diversity, applying demotion at link level. In our experiments we mostly focused on 2
PQ, thus it was possible to compute rapidly the optimal PIAS threshold.

Figure 5.4: Priority mixture in egress interfaces

5.1.4 Datacenter TCP (DCTCP)

For the final versions of our experiments we employed state-of-the-art DCTCP [8], among
all possible versions of TCP. Datacenter TCP (DCTCP) is a milestone for transport
protocol design in data centers. It actually consists in minimal modifications to TCP
New Reno. Its main insight is to leverage Explicit Congestion Notifications (ECN) from
the network to properly modulate the window size of the TCP senders. The basic idea
behind DCTCP is that queues in the network should be kept as empty as possible to
avoid large backlogs that increase latency and do not leave enough headroom to absorb
burst arrivals, occurring for example due to incast. Instead of pushing the window to grow
until a packet drop is detected, the DCTCP transmitter slows down proactively depending
on the level of congestion on the bottleneck link. Network queues mark packets with a
congestion signal as soon they exceeds a given occupancy K. Then, TCP receivers convey
back the congestion signals to TCP transmitters, setting the ECN-Echo bit to 1 in their
ACKs. Finally, the TCP sender mantains an estimate α of the fraction of marked packet
on an interval of roughly one RTT and modulates the window as:

cwnd = cwnd × (1 − α/2)

This way, upon mild congestion the window size is gently reduced — note that only in
case α=1 it is cut in half as in standard TCP — still ensuring high throughput, but
mitigating its aggressiveness.
It has been proven that DCTCP effectively succeed in lowering the amplitude of queue
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oscillations to O(
√

BDP), instead of O(BDP) of TCP, being BDP the bandwidth-delay
product, while not losing throughput for a proper setting of the marking threshold K.
More importantly, the queue length with DCTCP is proven to be predictable with an
analytical expression. In the worst case of N synchronized flows, the queue length is
stable around K + N .

Note that the only requirement from the network is to configure switches with an
AQM scheme to mark packets. In practice this can be achieved configuring the RED
algorithm, already available in most devices, so that it marks based on the instantaneous
queue length and with a unique high and low threshold equal to K.

DCTCP testbed

We implemented the above changes to TCP in INET and the ECN markers to plug
into the switch interfaces. We deployed the same testbed used in the original article
of DCTCP [8], in order to verify the correctness of the implementation. The testbed
topology is shown in Fig. 5.5a. A group of N server (on the left) start simultaneously
long-lived TCP connections towards the same destination server (on the right). We used
N = 2 and N = 20 and flow sizes fixed to 100MB. All links are configured at 1Gbps
speed and the DCTCP parameters set according to the guidelines of the reference paper.
In particular, the threshold K is set to 20 packets. AWND is set to its maximum value, so
that the transmission control is not restricted. Buffer sizes are set to 500 packets.
We compare the CDF of the queue length when using TCP New Reno and DropTail

(a) Testbed topology

(b) CDF of queue length, sampled every 10 packets

Figure 5.5: DCTCP implementation testbed

queues in the bottleneck interface, with the case of DCTCP and ECN-enabled buffers
(Fig. 5.5b). It is clearly appreciable the effectiveness of DCTCP, which enforces the queue
length to be stable around the predicted value. Conversely, with TCP DropTails the
queue variance enlarges significantly, indicating the presence of large oscillations typical
of sawtooth pattern induced by TCP AIMD congestion control scheme.
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Integrating ECN with SD-MLFQ

We set ECN markers only in the network switches with recommended [8] threshold value.
Conversely. servers have been equipped with simple DropTail queues and do not adopt
AQM schemes. We dealt with few caveats in order to seamlessly integrate ECN rate
control with the SD-MLFQ simulator.
Per-port ECN marking. First we had to choose how to apply ECN marking to the
multi queue scenario. There are fundamentally two choices that trade latency, through-
put and fairness. One possibility is to configure the recommended marking threshold
independently on each of the N priority queues available. This solution is known as
per-queue ECN. It guarantees full link utilization in each priority queue, but the total
queue length could potentially grow N times larger and introduce high delays especially
to low priority packets. Another option, referred to as per-port ECN, adopts a single
marking threshold shared among different priority queues. While ensuring low latency,
per-port ECN doesn’t provide isolation among queues. Prior work [12] proposed dynamic
threshold adjustment to provide best trade-off. We chose to simply use per-port ECN
following the same approach as in PIAS. Per-port ECN could help in mitigating the long
flow starvation problem. Starvation on low priority queues is undesirable with TCP,
since it triggers retransmission timeouts of the connections even if the packets are not
lost. Ultimately, it may lead to abrupt connection termination. With per-port ECN and
its shared threshold, large buffer pressure on low priority queues helps in slowing down
high priority traffic.
Marking SYN/ACK with CE codepoint. According to standardization [5], ECN capable
devices can mark with the congestion signal (IP_CE - Congestion Experienced codepoint
in the IP ToS field) only those packets with the ECN Capable Transport codepoint set
(IP_ECT codepoint). However, the standard ECN extension to TCP specifies that control
packets (SYN, ACK, FIN,.) must been transmitted as Non ECN-Capable (IP_NOT_ECT
codepoint). Thus, if they enter a switch interface when its occupancy exceeds the marking
threshold, they are dropped rather than being marked. We noticed in our first simula-
tions with DCTCP an anomalous number of retransmission timeouts (RTOs). We better
investigated the number of bytes transmitted at the time when TCP connections experi-
enced RTOs: practically all timeout events occurred at connection setup. These timeouts
are particularly long because the TCP hasn’t yet estimated the network RTT and applies
a conservative value, whose default is absolutely oversized for the RTT of a DCN. Con-
sequently many connections never started but remained in timeout state along the entire
simulation. To rapidly overcome the issue we implemented the modification to TCP that
allows ECN-Capable control packets [1].

5.2 Result analysis

This last section will be a walkthrough of the results obtained with the data center
network simulator, including a few initial experiments that do not concern directly spatial
diversity, but rather emphasize the importance of the assumptions we made about the
flow size distribution.

We will mainly focus on small topologies, since the numerical model highlighted the
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restraints in applying spatial diversity with high number of spines. In particular, for the
final evaluation of spatial diversity we will consider 2x2, 3x3, and 5x5 topologies, with
the notation nT × nS . The same phenomena observed in the numerical queuing model
started to appear also in the data center when considering the 5x5 topology, thus we do
not considered larger topologies. Notice that due to the modularity of the data center
network, spatial diversity could be also applied to large scale topologies by repeating the
nT × nS configuration in parallel many times. This concept has already been introduced
in the definition of SD-rank (Sec. 4.2.1).

Adversarial traffic distribution for MLFQ

In the first stages of this work during the deployment of the simulator, we enforced the
hosts to generate traffic according to a simple uniform distribution. Our scope was just
to verify the correct implementation of the load generation algorithm and of the strict
priority scheme with demotion. However, we faced several issues especially in controlling
the load in the network. We measured mismatched between the load offered by application
layer and the actual link utilization. We realized that TCP is particularly sensitive to
the adoption of MLFQ and network performances may be severely deteriorated without
a careful parameter settings if the flow size distribution does not exhibit high variability.
Some traffic distributions are particularly adversarial to the MLFQ scheduler, mainly
because they conflict with the strict priority scheme. It is known that strict priority
could introduce starvation and packet drops to low priority flows. In the MLFQ such
a starvation does not appear since the beginning of the flows but suddenly after their
demotion, because initially all flows are handled at high priority. The TCP congestion
control suffers this situation: the RTT changes abruptly, many timeouts expire (Fig.5.6b)
and unnecessary retransmissions are injected in the network. Retransmissions are counted
as transmitted bytes by the priority tagger, thus they further increase low priority traffic
and ultimately exacerbate the problem. Also, the transmission window of starved flows is
throttled due to persistent congestion, so these flows have low throughput even when the
scheduler grant them the link bandwidth and higher priority queues are empty. However,

(a) Queuing time (ρ = 0.9) (b) TCP timeouts

Figure 5.6: Impact of traffic apportioning among PQs on TCP

the main issue with a uniform flow size distribution is that many of low priority flows are

64



5.2 – Result analysis

continuously generated with the same probability of other flows. Thus a relevant portion
of flows ends up in the low priority queues, whose sizes grow, boosting the starvation
loop. On the contrary, for heavy-tailed distributions long flows are a small percentage,
therefore the queue size remains under control.
For all these reasons, under adversarial traffic distribution the MLFQ system is very
susceptible to the threshold setting and the behavior of TCP becomes difficult to control.
To better investigate the starvation problem of strict priority queuing with TCP and
uniform traffic distribution, when working close to saturation (ρ ∼ 0.9), we tested a
simple system with N=2 priority queues and we vary the values of a single threshold α.
In particular, we fixed the ratio ρ0/ρ, where ρ0 is the load on high priority queue and ρ
is the total load on the interface ρ0 + ρ1. We chose the value of α by solving the load
balance equation (2.8) for MLFQ. For uniform distribution with support in [a, b]:

α = b −
√

(b2 − a2)(1 − ρ0
ρ

)

The testbed topology in this case had nT = 2 and nS = 1, nH = 10. As usual, no over-
subscription is applied. We measured the average queuing time at the egress interfaces.
When ρ0/ρ gets sufficiently high, the lower priority queue (LP) is served less frequently.
Starvation starts to appear for ρ0/ρ > 0.5 (Fig. 5.6a), where the average queuing time
rises exponentially. The opposite doesn’t happen: when the majority of the load ρ feeds
the lower priority queue, HP does not starve because strict priority scheduling always
prioritize traffic on HP, even if LP is more utilized.

Effects of priority queue granularity without spatial diversity

Upon the above understanding, we neglected any traffic distribution different from the
workloads commonly used in literature. We carried out experiments with the web search
workload, in order to verify the gains achieved when increasing the priority queue granu-
larity in the system without spatial diversity. Moreover, it was of our interest to directly
analyze the shape of the nFCT curve in respect to all the flow sizes (Fig. 5.7), instead of
the global average only. This breakdown is not always provided (at least not for PIAS and
pFabric). However, we think that showing only the global average or just three separated
averages for mice, medium and elephant flows is not exhaustive and in general depends
on the way these categories are derived, which is arbitrary. We define mice flows the ones
with size (0B, 100kB], medium flows with size (100kB, 10MB] and elephant (10MB, ∞].
This classification is common in literature [11,27,36].
We obtained Fig. 5.7 by averaging FCT with a custom binning of flow sizes, in order to get
a similar number of samples on each bin. The technique we used for choosing bin edges
was to split the cumulative function of the flow sizes, F (x), into uniform intervals and
evaluate the inverse of F (x) at the interval bounds. The clear trend evinced is coherent
with the outcomes of reference works. The priority granularity affects most of all medium
sized flows, which do not get mixed immediately with long flows in the lowest priority
queues, as it happens for N=2. Mice flows, instead, have a huge gain when passing from
1 to 2 priority queues, then their response time is essentially untouched. Vertical axes
show the ES-N thresholds corresponding to given percentiles and remark the effect of
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Figure 5.7: MLFQ with ES-N thresholds for different N and ρ=0.9

strict priority as they are in correspondence of a sharp transition of the response time.
Last, we observe some slowdown for mice flows when there isn’t prioritization. This is
most likely due to the higher impact of TCP control packets on these flows, which are
comprised by no more than 10 packets.

Optimized load balancing

Next, we started to really evaluate spatial diversity in the data center network. In
Sec. 4.2.3 the best results for spatial diversity were obtained with the setting of a single
priority queue per interface. In that case, by optimizing the load balancing and phys-
ically splitting shorter from longer flows, spatial diversity achieved better FCT than a
system with random load balancing among spines. Moreover, the absence of strict prior-
ity scheduling relieved of flow synchronization and elephant demotion impairments. We
expected to observe similar benefits also in the real data center network, however we
discovered some shortcomings that make our approach ineffective in most cases.
We compared two systems, without priorities and with different load balance strategies.

(a) Load 0.1 (b) Load 0.3 (c) Load 0.7 (d) Load 0.9

Figure 5.8: Optimal vs ECMP load balancing with TCP

The first system employs flow-level load balancing with standard ECMP, whereas the
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(a) Average FCT
(b) FCT detailed

(ρ=0.9) (c) Queue peaks (ρ=0.9)

Figure 5.9: Optimal vs ECMP load balancing with TCP

second system moves flows across spine after they have transmitted an amount of bytes
corresponding to the optimal demotion thresholds computed in Sec. 3.2.1. We verify that
the traffic is actually splitted among available spines according to the theoretical optimal
split that we impose. Fig. 5.8 illustrates the traffic measured on the bisection links exit-
ing from the ToRs, for different offered loads. For the sake of simplicity the figure refers
only to the 2x2 topology, despite the following results will also include the 3x3 topology,
where some trends are more evident. Nicely, the traffic follows exactly the same pattern
we derived analytically, showed in Fig. 4.2b of previous chapter. At low load the high
priority spine s0 is the one which receives most of the traffic, then starting from 30%
load the opposite happens, finally at very high load the traffic is load balanced almost
uniformly. However, differently from the results obtained in the numerical model, the
optimized load balance does not provide significant gains in terms of completion time,
not only, it looses poorly at high load. The exhaustive comparison is shown in Fig. 5.9a.
For all loads except ρ=0.9 the performances are almost equivalent, with little advantages
in using the optimal thresholds. On the contrary, at 90% load the optimized load balanc-
ing is strongly penalized, especially with 3 spines (Fig. 5.9b). This was quite surprising
since it differs a lot from what occurred with numerical simulations. We explained such
a behavior by delving into the average queue lengths in the network interfaces. At 90%
load, there are visible peaks in all the interfaces towards high priority spine s0 in the
optimized load balance scenario. These queues on average are occupied almost ten times
more than in the ECMP case. An equivalent plot — not shown — has been obtained for
the down-send interface from spine switches to ToR switches for the 3x3 topology. For
the 2x2, instead, such queues are empty because there at most only one rack transmitting
to any other rack and its transmissions are shaped at the up-send interface connecting
the rack to the spine. This is also the reason why in Fig. 5.9b SD-OPT with K=2 is a
factor 2 better in respect of K=3. Unfortunately, we realized that this increased queue
occupancy on the low priority spine is a side-effect inherent to spatial diversity, where all
flows start their service in s0. We gave the following explanation. Even if at load 0.9 all
spines receive almost the same traffic, in terms of connections s0 handle a notably higher
flow arrival rate in respect to all other spines and several simultaneous TCP connections.
Indeed, the majority of flows are short for our heavy-tailed workload, thus only a smaller
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(a) Average FCT
(b) FCT detailed

(ρ=0.9) (c) Queue peaks (ρ=0.9)

Figure 5.10: Optimal vs ECMP load balancing with UDP

and smaller number of flows end in subsequent spines. Although we didn’t enabled the
increased initial window option of TCP and all connections start at the minimum window,
they all together combine on these queues, which grow large. Notice that the application
of rate control policies such as DCTCP is almost useless, as it acts on the window of
a single connection but do not reduce the connection arrival intensity. Also remember
that DCTCP guarantees a queue occupancy around the sum of the marking threshold
and the number of synchronized connections. Moreover, many flows of our workloads
last only few packets, not enough to react to ECN marking. On the contrary, ECMP
distributing new flows evenly among spines, does not suffer the same issue. Coherently
with this analysis, on the links towards other spines s1 and s2, few parallel connections
share the capacity and the average queue size is even smaller for SD-OPT than ECMP
load balancing.
We did not observe the same issue in the numerical simulator because it was designed as a
fluid approximation. The capacity of the spine processor was subdivided among all flows,
which immediately started receiving service upon arrival, as opposed to the DCN where
the packet granularity enforces some waiting time. Moreover, in the fluid simulator the
jobs were entirely available to the queue since their arrival, not regulated by transmission
control schemes like TCP which sends packets clocked by the receiver’s signaling.
We repeated the same experiment with UDP, configured as in Sec. 5.1.2. In this case, flows
are served in FIFO order without preemption at the servers line-cards. Consequently,
short flows undergo a large slowdown because are queued back long flows (Fig.5.10b).
Here the inter-spine demotion gives less pronounced benefits than in the FIFO flow sim-
ulator. Indeed, our UDP configuration mimic FIFO flow scheduling only at access line-
cards, whereas inside the network packets of different flows are statistically multiplexed,
thus flows are served in PS. However, the more interesting comparison is provided in
Fig. 5.10c. The disproportionate peaks appearing with SD-OPT in TCP are not present
with UDP. This is because the FIFO policy at the transmitter reduces consistently the
flow arrival rate and the number of simultaneous connections on the low priority spine.
New flows waits in the servers’ line-cards before entering the network, until flows ahead
complete.
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Figure 5.11: SD-MLFQ average nFCT for different K

Performances of SD-MLFQ with priorities

Finally, we proceed in the evaluation of the MLFQ extension with the addition of spatial
diversity, in presence of multiple priority queues per interface. We adopt always 2 PQ and
we compare topologies with K=2,3,5. Load balance thresholds are optimized according
to Sec. 3.2.1, whereas sub-thresholds are chosen with the greedy Load-Split-N algorithm
that splits half of the traffic on high priority queue and half of the traffic on low priority
queue. First, we validate what discovered in the numerical model, that is augmenting the
spatial diversity rank leads to worse completion times. This is shown in Fig. 5.11 and in
details in Fig. 5.12b. Indeed, with high SD-rank the shortcomings of spatial diversity —
such as flow synchronization and variability reduction for low priority spines (Sec. 4.2.2)—
are more penalizing.

Secondly, we compare, for such small topologies, the system employing spatial di-
versity (SD-MLFQ) with two MLFQ schedulers that use two different threshold sets,
optimized and non-optimized. They are PIAS and ES-N, respectively. Unfortunately,

(a) Average nFCT (K=3 only) (b) nFCT detailed (ρ=0.9)

Figure 5.12: Final comparison among spatial diversity and other

from Fig. 5.12a we mainly infer undesired effects with spatial diversity. For all systems,
there is a clear FCT variation around the first demotion threshold. We call it α∗. The
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(a) SD-MLFQ, KN=6 (b) MLFQ, N=6

Figure 5.13: Average packet waiting time in PQs with and without spatial diversity for
K=3 at 90% load. On x-axis ToR up-send interfaces and Spine down-send interfaces.

ES-N threshold setting provides best performances on mice flows getting a small α∗, in-
stead PIAS trades mice response time with medium, by optimizing α∗ on the workload
distribution, and achieves best average nFCT. Instead, SD-MLFQ gives an unacceptable
penalty for flows above α∗, even beyond the expectations based on the numerical flow
simulator (note that y-axis is in log-scale). This essentially tells two things: the addi-
tional priority levels offered by spatial diversity do not bring any gain, rather they have
a negative effect, while the only influence on the FCT is yielded by the strict priority
scheduler around the first threshold. We wondered why more priorities in SD-MLFQ do
not result in any little benefit for medium flows and why there is a sudden FCT dete-
rioration. Indeed, out first intuition was that SD-MLFQ would in principle offer higher
granularity to advantage medium flows. Thus, we expected to emulate with only N=2
priority queues the performance of a MLFQ system with N>2 and to get a trend close
to the one of Fig.5.7.

We derived from the simulation in the DCN some additional insights that lead to
the following reasoning as a possible explanation. First, we have already seen how the
priority-dependent load balancing distributes non uniformly the number of simultaneous
flow on the spines, creating some peaks in the queues of high priority spine. Eventually,
we noted another aspect. Consider again Fig.5.4 and the down-send transmission from
spines to top-of-rack switches. A key fact is the absence of a scheduler disciplining the
transmission among priority queues of different spines. In other words, packets with a
priority greater than 1 does not have any dependence from the higher priority packets.
Call HP (High-Priority) all queues Qj

0(0 ≤ j ≤ K) that are given high priority by the
SP schedulers, and LP (Low-Priority) all the other queues Qj

1(0 ≤ j ≤ K). The notation
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is the same already proposed in Sec. 3.2. In the example of Fig. 5.4, HP= {0,2,4,6} and
LP = {1,3,5,7}. Since there is no coordination among different switches, packets stored
in HP have always shorter waiting times than packets in LP, even when they in theory
belong to a lower (/higher) priority class (/index). This is illustrated in the histograms of
Fig.5.13a for 3x3 scenario. Each cluster of bars puts together all priorities available at a
given switch. There are K × N priority queues per switch in total, in this case 3 × 2 = 6.
Notice how the average queuing time at priority 2 and 4 is shorter than at priority 1.
This is not the behavior that would have been obtained with the corresponding MLFQ
systems where all N priorities are condensed in the same interface, shown in Fig.5.13b.
In other words, the actual delays are often in contradiction with the priority class.
In general, we think it is very hard to regulate the transmission from SD-MLFQ priority
queues physically distributed in different interfaces. First of all, it is very challenging
to implement a centralized/distributed signaling mechanism, since queues are not in the
same hardware board we cannot convey the scheduling choice with a speedup in respect to
the link bandwidth. Furthermore, even assuming to manage this limitation, the schedul-
ing problem is complicated. Actually, at a given time instant the down-send spine ports
may contain Head-of-Line (HoL) packets destined to different ToRs, or to the same ToR
but to different servers. Thus, enforcing as a scheduling criterion the priority alone, would
be non work-conserving and worse the performance.
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Conclusion

Modern Data Center Networks provide connectivity among several thousands of servers,
hosting applications crucial for the business of customers all around the world. Likewise,
next generation mobile and fixed networks are planned to replace specialized hardware
with virtualized functions, running in general purpose devices in data center facilities.
Heterogeneous traffic flows with different QoS demands share the same DCN infrastruc-
ture, requiring the adoption of sophisticated traffic control algorithms to accommodate
their different needs. Usually the objective is to minimize the Flow Completion Time
for short latency-constrained flows, while not loosing throughput for large bandwidth-
demanding flows. Existing solutions leverage priority queues, transport protocols and
schedulers in the network to approximate the performances of SRPT policy, which is
proven to minimize the mean FCT. Some of them achieve near-optimal performances,
however they either require the knowledge of flow sizes in advance — implying undesired
modifications to the application/transport layer — or they assume the availability of
many priority queues (PQ).

We investigated a network wide solution, that considers top-of-rack switches of a leaf-
and-spine topology as a whole switch, sharing the queues. We argued that this method
could augment the priority granularity, still enforcing only 2 PQ per switch interface.
Indeed, the actual availability of priority queues in data centers’ commodity switches is
typically limited. We assumed to know only the overall probability distribution of flow
sizes at data center level, but not their exact size at transport layer upon flow initiation.
Thus, our solution appears promising and easy to implement with current technology.

We first introduced the necessary background. In particular, we revised size-aware and
size-agnostic scheduling disciplines and systems that approximate size-agnostic policies
such as LAS thanks to priority demotion. Then, in Chapter 3 we presented our reference
architecture, that exploits path redundancy among switches to transmit traffic of different
priorities. As a consequence, the partition in priority levels directly affects the load
balancing on the switching fabric. We referred to this main feature as spatial diversity.
We proposed an analytical framework based on queuing theory, useful for deciding the
optimal split of the flow size distribution in different priorities. Then, we proceeded in
the assessment of system performances, when compared to state of the art solutions.

We discovered that our approach outperforms the others when FIFO servicing among
flows is employed. In this case, scheduling both across priority queues and links mitigates
the blockage of mice flows behind elephant flows. Conversely, we realized some unexpected
impairments in case of PS queues. Long flows synchronize among each other during
priority demotion and are slow to reach subsequent spines. Moreover, the way we handle
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flows attenuates the high variability property of the workload distributions observed by
lowest priorities, which is fundamental for approaching optimal scheduling performances.
Also, during time intervals with peak traffic arrival rate our system serves all flows initially
on the same link, instead the random load balancing would distribute them on all available
links, better absorbing the peak. We confirmed our results both in a numerical queuing
simulator and in a TCP/IP network.

Despite current congestion control protocols approximate Processor Sharing among
flows, we think our research could be appealing in fully optical data center networks, where
FIFO is common. To the best of our knowledge, there are no consolidated technologies
to implement switch buffers in optics, without resorting to the conversion in electronic
domain. Currently, a widespread approach is to build hybrid networks, where an optical
circuit-switch interconnection fabric is deployed in parallel to the electrical and devoted to
elephant bandwidth-hungry flows. The ever increasing bandwidth demand and especially
the huge power consumption of data centers are pushing lot of interest towards optical
solutions, hence we foresee that our proposal could find fertile ground in such a field.

To conclude, we illustrate further developments that we reserve for future work. One
main limitation of our system is the handcrafted assumption of homogeneous and static
flow size distribution. Actual data center networks may contain a variety of mixed work-
loads, changing along time. Solving optimization problems whenever it is needed to match
new load and/or distribution conditions, may be cumbersome and inefficient. Indeed, if
the traffic control optimization do not conform the actual environmental conditions and
especially when few priorities are used, the performances get worse. Thus, future lines
of work may examine automated techniques for model estimation, decision making and
action control, such as machine-learning tools, in order to provide reactiveness and flexi-
bility without human intervention.

74



Bibliography

[1] Adding Explicit Congestion Notification (ECN) capability to TCP’s SYN/ACK
packets. https://www.rfc-editor.org/rfc/rfc5562.

[2] INET framework. https://inet.omnetpp.org/.
[3] OMNeT++. Discrete Event simulator. https://omnetpp.org/.
[4] SciPy. https://www.scipy.org/.
[5] The addition of Explicit Congestion Notification (ECN) to IP. https://tools.

ietf.org/html/rfc3168.
[6] Troubleshooting QoS on N9K. Intelligent buffering. https://www.ciscolive.com/

c/dam/r/ciscolive/us/docs/2019/pdf/CTHDCN-2301.pdf.
[7] Samuli Aalto, Urtzi Ayesta, and Rhonda Righter. On the Gittins index in the M/G/1

queue. Queueing Systems, 63(1-4):437–458, 2009.
[8] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen

Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data Center
TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010 Conference, SIG-
COMM ’10, page 63–74, New York, NY, USA, 2010. Association for Computing
Machinery.

[9] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat,
and Masato Yasuda. Less is more: trading a little bandwidth for ultra-low latency in
the data center. In Presented as part of the 9th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 12), pages 253–266, 2012.

[10] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick Mckeown,
Balaji Prabhakar, and Scott Shenker. pFabric. Proceedings of the ACM SIGCOMM
2013 conference on SIGCOMM - SIGCOMM 13, 2013.

[11] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang. PIAS: Practi-
cal Information-Agnostic Flow Scheduling for commodity data centers. IEEE/ACM
Transactions on Networking, 25(4):1954–1967, 2017.

[12] Wei Bai, Li Chen, Kai Chen, and Haitao Wu. Enabling ECN in multi-service multi-
queue data centers. In Proceedings of the 13th Usenix Conference on Networked
Systems Design and Implementation, NSDI’16, page 537–549, USA, 2016. USENIX
Association.

[13] Neda Beheshti, Yashar Ganjali, Monia Ghobadi, Nick McKeown, and Geoff Salmon.
Experimental study of router buffer sizing. In Proceedings of the 8th ACM SIG-
COMM conference on Internet measurement, pages 197–210, 2008.

[14] Theophilus Benson, Aditya Akella, and David A. Maltz. Network traffic charac-
teristics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM

75

https://www.rfc-editor.org/rfc/rfc5562
https://inet.omnetpp.org/
https://omnetpp.org/
https://www.scipy.org/
https://tools.ietf.org/html/rfc3168
https://tools.ietf.org/html/rfc3168
https://www.ciscolive.com/c/dam/r/ciscolive/us/docs/2019/pdf/CTHDCN-2301.pdf
https://www.ciscolive.com/c/dam/r/ciscolive/us/docs/2019/pdf/CTHDCN-2301.pdf


Bibliography

Conference on Internet Measurement, IMC ’10, page 267–280, New York, NY, USA,
2010. Association for Computing Machinery.

[15] Paul J. Burke. The output of a queuing system. Operations Research, 4(6):699–704,
1956.

[16] Yanpei Chen, Rean Griffith, Junda Liu, Randy H Katz, and Anthony D Joseph. Un-
derstanding TCP incast throughput collapse in datacenter networks. In Proceedings
of the 1st ACM workshop on Research on enterprise networking, pages 73–82, 2009.

[17] Mark E. Crovella. Performance evaluation with heavy tailed distributions. In
Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling Strategies for Par-
allel Processing, pages 1–10, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[18] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, January 2008.

[19] D.G. Dutt. BGP in the data center. O’Reilly Media, 2017.
[20] Niclas Ek. IEEE 802.1 P, Q-QoS on the MAC level. Apr, 24:0003–0006, 1999.
[21] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula, Changhoon

Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta Sengupta. VL2:
a scalable and flexible data center network. In Proceedings of the ACM SIGCOMM
2009 Conference on Data Communication, SIGCOMM ’09, page 51–62, New York,
NY, USA, 2009. Association for Computing Machinery.

[22] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N. M. Watson, An-
drew W. Moore, Steven Hand, and Jon Crowcroft. Queues don’t matter when you
can JUMP them! In 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), pages 1–14, Oakland, CA, May 2015. USENIX Associ-
ation.

[23] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye,
and Marina Lipshteyn. RDMA over commodity Ethernet at scale. In Proceedings of
the 2016 ACM SIGCOMM Conference, SIGCOMM ’16, page 202–215, New York,
NY, USA, 2016. Association for Computing Machinery.

[24] Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. Finishing flows quickly
with preemptive scheduling. In Proceedings of the ACM SIGCOMM 2012 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Commu-
nication, SIGCOMM ’12, page 127–138, New York, NY, USA, 2012. Association for
Computing Machinery.

[25] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of
ICNN’95 - International Conference on Neural Networks, volume 4, pages 1942–
1948 vol.4, 1995.

[26] Leonard Kleinrock. Theory, Volume 1, Queueing Systems. Wiley-Interscience, USA,
1975.

[27] Y. Lu, G. Chen, L. Luo, K. Tan, Y. Xiong, X. Wang, and E. Chen. One more
queue is enough: minimizing flow completion time with explicit priority notification.
In IEEE INFOCOM 2017 - IEEE Conference on Computer Communications, pages
1–9, 2017.

[28] Zebin Lu, Junru Lei, Yihao He, Zhengfa Li, Shuhua Deng, and Xieping Gao. Energy
optimization for Software-Defined data center networks based on flow allocation

76



Bibliography

strategies. Electronics, 8(9):1014, 2019.
[29] Mohammad Noormohammadpour and Cauligi S Raghavendra. Datacenter traffic

control: understanding techniques and tradeoffs. IEEE Communications Surveys &
Tutorials, 20(2):1492–1525, 2017.

[30] Idris A. Rai, Guillaume Urvoy-Keller, and Ernst W. Biersack. Analysis of LAS
scheduling for job size distributions with high variance. Proceedings of the 2003 ACM
SIGMETRICS international conference on Measurement and modeling of computer
systems - SIGMETRICS 03, 2003.

[31] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren. Inside
the social networks (Datacenter) Network. Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication - SIGCOMM 15, 2015.

[32] Linus Schrage. A proof of the optimality of the Shortest Remaining Processing Time
discipline. Operations Research, 16(3):687–690, 1968.

[33] Y. Shi and R. Eberhart. A modified particle swarm optimizer. In 1998 IEEE
International Conference on Evolutionary Computation Proceedings. IEEE World
Congress on Computational Intelligence (Cat. No.98TH8360), pages 69–73, 1998.

[34] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop distributed file
system. In 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pages 1–10, 2010.

[35] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy Ban-
non, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand Kanagala,
Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle, Stephen Stu-
art, and Amin Vahdat. Jupiter rising: a decade of Clos topologies and centralized
control in Google’s datacenter network. In Sigcomm ’15, 2015.

[36] G. Sviridov, A. Bianco, and P. Giaccone. Low-complexity flow scheduling for com-
modity switches in data center networks. In 2019 IEEE Global Communications
Conference (GLOBECOM), pages 1–6, 2019.

[37] David J Wales and Jonathan PK Doye. Global optimization by Basin-Hopping and
the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms.
The Journal of Physical Chemistry A, 101(28):5111–5116, 1997.

[38] Adam Wierman and Bert Zwart. Is tail-optimal scheduling possible? Oper. Res.,
60(5):1249–1257, September 2012.

77




	Introduction
	Data center networks
	Interconnection network design
	Traffic engineering
	Traffic properties
	Traffic control objectives and challenges


	Reducing Flow Completion Time
	Theoretical scheduling background
	Flow-aware disciplines
	Flow-agnostic disciplines

	State-of-the-art implementations
	pFabric: targeting ideal schedulers
	PIAS: reference size-agnostic architecture

	Setting demotion thresholds
	An analytical model
	Greedy thresholds


	The spatial diversity framework
	Extending schedulers with spatial diversity
	Queuing model

	Mathematical formulation
	Traffic load balancing


	Numerical analysis
	Model implementation
	Workloads
	Optimal traffic load balancing

	Dimensioning spatial diversity
	Effects of priority queue granularity
	Impairments of spatial diversity
	Summary evaluation


	Data center network simulator
	Overview of the setup
	Traffic generation
	Host configuration
	Network configuration
	Datacenter TCP (DCTCP)

	Result analysis

	Conclusion
	Bibliography

