
Implementation of Pure and
Hybrid Visual Odometries on
electric self-driving all-terrain
vehicles

Alessandro Scarciglia

School of Electrical Engineering

Thesis submitted for examination for the degree of
Master of Science in Technology.
Lecce 29.05.2020

Supervisor

Professor Arto Visala,
Professor Marcello Chiaberge

Advisor

M.Sc. Tabish Badar

Copyright c⃝ 2020 Alessandro Scarciglia

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Alessandro Scarciglia
Title Implementation of Pure and Hybrid Visual Odometries on electric

self-driving all-terrain vehicles
Degree programme Electronics and electrical engineering
Major Autonomous Systems Code of major ELEC0007
Supervisor Professor Arto Visala,

Professor Marcello Chiaberge
Advisor M.Sc. Tabish Badar
Date 29.05.2020 Number of pages 80 Language English
Abstract

The design of a fully autonomous mobile platform is tightly related to the
development of a reliable navigation system. In such context, the problem of
the self-localisation covers one of the most important challenges. Nowadays
both autonomous and non-autonomous vehicles mainly rely on GPS when
dealing with pose estimation. As a drawback, the GPS system is likely to
return a non-informative estimate for short-range displacements (i.e. indoor
mobile robots operations), as well as in some places the signal can be either
unreliable or totally absent.

For the reasons mentioned above, a good self-contained localisation system
needs to be integrated, in order to fulfill the localisation issue in a wider range
of environments. The purpose of this research work is to develop a real-time
application in order to get a vision-based pose estimate of a Polaris electric
all-terrain vehicle equipped with an omnidirectional catadioptric camera. After
a general overview of the state-of-the-art about visual odometry (VO), two
approaches are compared: the former is a pure VO technique based on the
hypothesis of ground planarity, whereas the latter is a hybrid approach which
makes use of the speed information to offset the camera non-idealities.

In the end, performances are evaluated and the best solution undergoes to code
generation. The goal to pursue is to obtain an execution time at least lower
than the camera frame rate, in order to obtain a feasible solution for a real-time
application.

Keywords visual odometry, omnidirectional camera, autonomous mobile
robots, self-contained localisation, GPS-denied navigation

IV

Contents
Abstract III

Contents IV

Preface VI

1 Introduction
1

1.1 Background . 1
1.2 Objectives . 5
1.3 Procedure . 6

2 State-of-the-Art
8

2.1 Camera model . 8
2.2 Camera calibration . 13
2.3 Pure VO approaches . 16
2.4 Hybrid VO approaches . 26

3 Camera calibration & Image pre-processing
31

3.1 Camera calibration . 31
3.2 Image pre-processing . 34

4 Pure Visual Odometry
38

4.1 Features extraction and matching 38
4.2 Visual compass . 42
4.3 Random Sample Consensus . 48
4.4 Homography decomposition . 52
4.5 Motion integration . 55
4.6 Results . 58

5 Hybrid Visual Odometry
62

5.1 HVO framework . 62
5.2 Linear speed estimation (EKF) 63
5.3 Motion integration . 63
5.4 Results . 64

V

6 Software-In-the-Loop
68

6.1 Software framework . 68
6.2 HVO.m Matlab file . 69
6.3 Matlab EXecutable (MEX) . 71
6.4 Code generation and Performances 72

7 Conclusion
75

7.1 Summary . 75
7.2 Future challenges . 76

References 78

VI

Preface
Resilience. It is the ability to spring back into shape and move on besides
difficulties. I strongly feel to use this word to describe my experience abroad in
a year which probably was not the best moment to stay far from home. In spite
of all the unpredictabilities I coped with, I managed to conclude my master
thesis with the exceptional support of a group of people that I would like to
thank.

At first, I would like to thank my supervisor Prof. Arto Visala for the trust
he showed in assigning me this interesting topic, as well as my advisor Tabish
Badar who constantly followed my progresses even from far away. Likewise, I
thank Mika Vainio and Andrei Sandru for the precious suggestions they gave
me in the final review of my work.

A special thanks is addressed to my home supervisor Prof. Marcello Chi-
aberge from Politecnico di Torino, who always replied promptly to all my
doubts and requests all over the academic year.

A remarkable thanks goes to my family who supported by any means my
education in these long twenty-four years and who shortened the distance from
Italy to Finland with their long calls and unconditional love.

Last but not the least, I want to say thank you to all my friends, mainly
to those who always have been by my side despite the time and distances.

Italy, 29th May 2020

Alessandro Scarciglia

1

1 Introduction

1.1 Background
In the recent years, a steep increase of autonomous functionalities in systems
has been observed, especially as far as the automotive industry is regarded.
In order to direct such progress to the development of fully autonomous plat-
forms, an outstanding improvement in the perception capability is needed. As
an example, a reliable knowledge of the mobile robot position is a necessary
information for computing a control action, in order to correctly interact with
the external environment. In this regard, the problem of localisation repre-
sents a cornerstone for an adequate operation of the autonomous functionalities.

With the word Odometry ("odos metron", namely "route measure"), the use of
data from the motion sensors is meant, in order to obtain an estimate of the
robot pose (position and configuration) with respect to a known initial position.
According to the type of sensors involved, it is possible to classify several
odometry techniques which have been designed and validated through the years.
In this regard, a clear overview is provided in Figure 1.

Figure 1: Overview of the possible solutions to the self-localisation problem.
The picture is a courtesy of [1].

In 1973 US developed the Global Positioning System (GPS) for military pur-
poses, but only in the early 1980s it has become one of the main source to
accomplish civilian localisation tasks on the Earth. Though GPS demonstrates
to provide a position estimate with a maximum precision in the order of centime-
tres, it is not able to return the configuration of the detected object. Moreover,
the satellites signal can be easily compromised when passing through or being
reflected from structures (such as walls, water surfaces, ground etc.), so it is

2

not reliable to adopt GPS as the only mean to recover the absolute pose of an
autonomous platform.
According to [1], it is possible to group five different approaches of odometry,
in order to side or replace the GPS in the self-localisation problem. Among
those categories, the following research will focus mainly on visual odometry
(VO) techniques.

Figure 2: Example of features matching between two images [3].

Visual odometry estimates the pose of a mobile platform from a sequence of
images. More generally, it can be seen as a derivation of a wider computer
vision technique named after Structure from Motion (SfM), which is used to
recover a 3D scene and the camera pose from a series of images.
The needed information is extracted from each image at the pixel level as a
set of key points (e.g. corner points) by using a proper feature detector. Once
the coordinates of such key points have been collected, it is then required to
store the characteristics of each point (i.e. the gradients information about
its neighbourhood levels of intensity) in a vector called descriptor. At the
end of the process, the set of descriptors represents somehow the identity of
the picture itself and it can be used for making comparisons between different
images [2, 3], as it is shown in Figure 2. Once the features of a first image have
been correctly matched with the features found in the next image, it is possible
to estimate the homography matrix H which best transforms the first set of
coordinates into the second one.
The shape of such transformation matrix depends on the dimension of the
geometrical space from where the features have been extracted.

3D-3D correspondences If a stereo camera is employed and if the relative
calibration parameters are known, the 3D absolute position of a feature can be
obtained. Starting out from two stereo images, once the features have been
detected, two sets of 3D points can be stored.

3

The absolute scale can be then computed solving a minimisation problem on
the L2 distance between the two sets.

3D-2D correspondences The minimisation of the re-projection error on
the image plane demonstrates to be an improvement of the 3D-3D matching.
Again, the calibration parameters are strictly necessary to back-project a 3D
point onto the 2D image plane.
The general problem can be formally stated as it follows:

Hk
t = argmin

Hk
t

∑
i

∥ pi
k − P i

t−1 ∥2 (1)

where pi
k is the image measurement and P i

t−1 is the back-projection of the
feature X i

t−1 onto the image I t [1]. The problem is widely known as PnP, which
stands for Perspective-n-Points. In this regard, to compute the camera pose a
minimum of three 3D-2D correspondences are required (thus, P3P).

2D-2D correspondences Most of the times, no information about the third
dimension is known and it is required to reconstruct the camera pose only
working on the 2D image plane. Given two subsequent images, the homography
matrix can be computed passing through the essential matrix E, thus exploiting
the epipolar constraint [4] as described in Figure 3.

Figure 3: Epipolar geometry representation. The picture is a courtesy of [2].

Given p, x and x1 laying on the same plane and thus imposing a null mixed
product, the essential matrix can be derived with the Nister five-point algorithm
[21]. Once E = [t]xR is computed, the motion parameters are obtained by
singular value decomposition (SVD). As a drawback, a pure 2-dimensional

4

approach does not return the absolute scale of the pose estimates. This problem
can be solved by adopting hybrid odometry techniques in order to recover the
real world scale from other sensors.

Apart from a feature-based method, a direct approach can be adopted for
estimating a sequence of camera poses. In direct approaches, raw measurements
regarding pixels (i.e. the spatial and temporal changes in intensity) are employed
for computing the update in position and configuration of the camera. The
apparent motion field obtained with such procedure is called optical flow (OF).

Figure 4: An example of optical flow. Some key points are tracked on four
subsequent images of a building.

Among all the algorithms which are based on the computation of an OF, the
Lukas-Kanade-Tomasi (LKT) method has a certain notoriety [5]. LKT takes
for granted some hypotheses on a scanned n×m pixel neighbourhood, namely
the brightness constancy and the local smoothness. On one hand, the smaller
the neighbourhood (i.e. the size of the window employed to scan the image) the
stronger the hypotheses. On the other hand, the smaller the window, the higher
the risk of not detecting any motion (e.g. the barber pole illusion). Such a
problem is named after aperture problem and it can be solved by custom-made
optimisation of the neighbourhood size, according to the entity of the motion
which is expected to be detected. Supposing to hold the hypotheses in a n× n
window, the problem is formally posed as:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ix(x1) Iy(x1)
Ix(x2) Iy(x2)
. .
. .
. .

Ix(xn2) Iy(xn2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
u
v

]
= −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

It(x1)
It(x2)
.
.
.

It(xn2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2)

5

where each row is the equation obtained from the intensity gradient of a single
pixel of the considered neighbourhood and the unknown vector

[
u v

]T
contains

the components of the apparent motion along the image axes (in pixel units).
As a drawback, the solution is sub-optimal since it makes use of n2 equations to
return a LS estimate of two components. Moreover, the computation involved
in OFs are generally rather demanding for real-time odometry applications,
thus a motion integration on an optical flow will not be taken into account in
the present research work.

1.2 Objectives
The purpose of this thesis work is to design, validate and generate the code of
a VO application to be deployed and tested real-time on an electric all-terrain
vehicle (e-ATV). The subject platform is a Polaris Ranger [6] and it is exploited
by the Autonomous System Research Group at Aalto University, in order to
test and validate autonomous functionalities. Such category of vehicles have
recently presented a significant use in both surveillance and forestry. They are
particularly suitable for driving over irregular and unfamiliar terrains, also in
non-optimal weather conditions. Moreover, an indisputable advantage of such
platforms comes from the zero-emissions as well as their economical operation.

Figure 5: Polaris Ranger vehicle equipped with sensors for some autonomous
functionalities.

As it is specified in previous works [7], the Polaris vehicle is already equipped
with a wide range of sensors, actuators and electric modules which are necessary
for implementing the autonomous functionalities. These include Programmable
Logic Controller (PLC), Light Detection and Ranging (LiDAR), Automatic

6

Braking System (ABS), Synchronous Position, Attitude and Navigation (SPAN),
embedded computers, wheel encoders and also a catadioptric omnidirectional
camera for vision tasks.

The usage of an omnidirectional camera is one of the most incisive topic
of the following research work. With respect to a conventional perspective
planar camera model, a full FoV camera allows to detect a greater number of
features, which are tracked on the image plane for longer periods. These details
bring about an increase in the frame-level dataset size, which is then employed
for estimating the frame-to-frame camera pose. Conversely, omnidirectional
cameras introduce a consistent distortion of the image and are particularly hard
to be assembled. Indeed, a small error on the geometric tolerances could bring
to a failure in the calibration process. As far as the calibration is regarded,
a well known disadvantage of large FoV cameras consists in a non-linear cali-
bration function. A first attempt to calibrate the mounted camera has been
lead by a group of students [8], but the computed calibration parameters came
out to be lacking. In this research work, an attempt of non-linear calibration
is made and results are presented by testing the calibration function directly
in the developed VO application. Finally, a hybrid VO approach is adopted
in order to cross over the calibration issue, since intrinsic camera parameters
show a high sensitivity to geometric tolerances, mechanical vibrations as well
as to changes in the working temperature [9].

1.3 Procedure
Following the general trend adopted for the validation of applications in the
automotive industry, the current research work is structured as a V-shaped
development flow.

Figure 6: V-Shaped development flow truncated at the Software Integration.

7

After a deep analysis of the State-of-the-Art on VO algorithms in Chapter
2, a software design proposal will follow. As it is illustrated in Figure 6, the
first step consists in the definition of the system requirements, namely all the
constraints which are necessary to bound the acceptable solutions. As the
Polaris Ranger is concerned, it is remarkable to fix the available hardware (i.e.
the type of camera and eventual auxiliary sensors for hybrid configurations) as
well as the fixed camera position (forward-facing). Finally, in order to direct
the application to a possible real-time usage, it is necessary to guarantee that
the execution time is at least lower than the camera frame rate of about 10 Hz.

In Chapter 3, an attempt of camera calibration is carried out as well as the
acquisition and some pre-processing steps of the video frames. In Chapter 4
and Chapter 5 two possible system designs will be presented. At this stage,
the application model is described with a platform-independent domain spe-
cific language and the main purpose consists in testing the validity of the results.

Once performances are evaluated, the best solution is pushed towards the
software design process. Chapter 6 starts out with a Matlab script which
contains the whole VO process (including some camera specific functions and
the motion integration). The pure VO application to be deployed is collected in
a Matlab function file to be then tested and turned into a C++ source. In the
final steps, performances are evaluated in a Software-In-the-Loop validation
process and the trend of the execution time is reported and discussed.

In the end, conclusions are presented in Chapter 7 along with possible sources
of error that are highlighted in order to sustain and improve future works on
the topic.

8

2 State-of-the-Art

In this chapter, a brief introduction to a camera mathematical model is pro-
vided, with a particular focus on catadioptric omnidirectional cameras. A good
knowledge of a camera optical configuration is of primary importance when
dealing with the projection and re-projection of image features and also it helps
to understand eventual non-idealities.
In the second paragraph, the issue of the camera calibration is under the limelight.
For perspective cameras, the calibration process can be posed as a linear problem
which is easy to handle, whereas omnidirectional cameras need a solution to a
non-linear estimate of the calibration parameters.
Finally, the last two paragraphs introduce the State-of-the-Art of some VO
algorithms, which are taken into account for the subsequent application design.

2.1 Camera model
Pure VO techniques make use of images as the only source to compute the
camera pose estimate. With this in mind, an accurate knowledge of the camera
mathematical model is strongly required, in order to understand the logic
behind the widespread VO algorithms. An outstanding overview of the most
recent mathematical models employed to describe the camera projection topic
is provided in [10].

Single viewpoint property From an optical point of view, cameras can be
classified as central or non-central. Central cameras are characterised by a single
effective viewpoint. The single viewpoint property is of primary importance in
vision systems, because it allows to define one and only function to project and
back-project points from the real world to the camera image plane.
In case of perspective cameras, such function is a linear application P ∈ R3×4,
whereas for omnidirectional cameras it is a non-linear function f ∈ R3×1 which
varies according to the geometry of the lens and/or mirror employed.
Looking at Figure 8, it is straightforward to understand why central camera
models are preferred over non-central ones as far as visual odometry applications
are regarded. In non-central models, the optical rays intercepting the image
plane do not intersect in a point. Indeed, a caustic region is defined, namely a
geometrical locus of the points within which optical rays pass through. Such
configuration does not allow to properly define a calibration function, thus
non-central models are not easy to handle. In the following research work, only
central vision systems are taken into account.

9

Figure 7: Single viewpoint property for perspective cameras (on the left) and
omnidirectional cameras (on the right). The picture is a courtesy of [10].

Figure 8: Caustic effect for perspective cameras (a) and catadioptric omnidi-
rectional cameras (b). The picture is a courtesy of [10].

Omnidirectional camera model The study of central catadioptric cameras
dates back to 1637 with René Descartes, but the most recent formulation is to
be addressed to Baker and Nayar in 1998 [22], who translated the theory in a
modern language and introduced it to the computer vision community. One
of the main key point of their research is the identification of six catadioptric
configurations which consist in a conventional lens (pin-hole camera model)
associated to a mirror, whose shape is the class of swept conic sections.

• If an orthographic camera is associated to a paraboloidal mirror or if a
perspective camera is coupled with planar, ellipsoidal or hyperboloidal
mirror, a non-degenerate configuration is obtained.

10

• If a perspective camera is coupled with either a spherical or a conical
mirror, a degenerate configuration is obtained.

In order to adopt a camera model with the single effective view point assumption,
the assembly of a non-degenerate configuration is needed. From a mathematical
perspective, a first unifying theory on catadioptric non-degenerated cameras
was provided by Geyer and Dandiilidis in 2000 [12].
According to their research, every catadioptric system transformation is isomor-
phic to a perspective mapping from a sphere centred in the effective view point
onto a plane, with the projection center laying on the perpendicular to the
plane itself. Later, a more compact derivation to such approach was provided
by Micusik [11], who derived two functions, h and g, which describe the whole
mapping process starting out from a 3D sphere vector and ending up to the
2D image plane.

The great advantage of employing the unit sphere image coordinates consists
in the generalisation of some computer vision concepts to whatever central
perspective or omnidirectional camera. A standard perspective camera model
is a linear application P ∈ R3×4 which maps a world point X = (X, Y, Z) into
a 2D point on the image plane x = (x, y, 1) in homogeneous coordinates and
up to a scale factor λ.

λx = P · X (3)

As shown in Figure 9, a standard perspective model does not allow to represent
a large FoV, because each line passing through the view point intersect one
and only one point. So it is not possible to make a distinction between two
diametral positions.
With this in mind, the model proposed by [12] and detailed by [11] overcomes
the stated problem by representing a world point as a unit vector with origin
in the sphere centre (coincident with the effective view point). This way, the
camera model turns into:

λq = P · X (4)

where q : ∥q∥ = 1 is a unit vector contained in the unit sphere and it is
representative of the associated image point. Before diving deep into the
explanation of the camera model, two hypotheses must be fixed a priori:

1. The mirror has been crafted with very high-precision geometrical toler-
ances about symmetry.

11

Figure 9: The limits of a perspective model (on the left) is overcome by
employing the unit sphere coordinates (on the right). The picture is a courtesy
of [11].

2. The perpendicularity of the mirror symmetry axis with respect to the
image plane is guaranteed.

Taking for granted by manufacturing the stated conditions, it is possible to
define the non-linear camera projection function starting from whatever world
point X ∈ R3. According to [11], there always exists a vector p′′ =

[
x′′ z′′

]T
directed to the world point X such that:

p′′ =
[
h(∥u′′∥)u′′

g(∥u′′∥)

]
(5)

where u′′ ∈ R2 is the two-dimensional vector and it is representative of the
associated point on the sensor plane according to a reference system centred in
the image itself. In order to improve the clarity of the geometric relationships,
Figure 10 is provided.
The functions h, g are R → R relationships whose dependency on u′′ is ensured
by the hypotheses on symmetry stated above. The entire definition of such
functions consists also of two parameters l and m which depend on the mirror
geometry and whose possible values are specified in [12].

h(∥u′′∥) =
l(l +m) +

√
∥u′′∥2(1 − l2) + (l +m)2

∥u′′∥2 + (l +m)2 (6)

12

Figure 10: Micusik [11] catadioptric omnidirectional camera model.

g(∥u′′∥) =
l∥u′′∥2 + (l +m)

√
∥u′′∥2(1 − l2) + (l +m)2

∥u′′∥2 + (l +m)2 (7)

From the sensor plane to the image plane After the reasoning made so
far, it is time to clarify a distinction between the sensor plane and the image
plane. The former is an auxiliary 2D surface, ideally perpendicular to the
optical axis of the mirror and whose reference system is centred exactly on
the intersection between the axis and the plane itself. The latter is the actual
image plane which is compromised by the digitalisation error (e.g. pixel are
not perfectly square) and is affected by manufacturing and/or assembly defects
(e.g. perpendicularity with the optical axis is defined within a tolerance range).
Moreover, the reference system is place on the up-left corner of the image.
If the distortion induced from the digitalisation is negligible and the tolerance
intervals are tight enough, the step which brings a point from the sensor plane to
the image plane can be represented by a 6DOF affine transformation T = [A|t],

T =

⎡⎢⎣a11 a12 tx
a21 a22 ty
0 0 1

⎤⎥⎦
u′′ = Au′ + t (8)

13

where the vector u′ ∈ R2 represents the image plane coordinates and the vector
u′′ ∈ R2 contains the sensor plane coordinates in pixels. The importance
of defining the projection in terms of u′ is considerable, since it is the only
information available to the user.

Figure 11: The complete projection process from a world point to an image
point is illustrated. a) From world coordinates in unit sphere metric coordinates.
b) Sensor plane metric coordinates. c) Image plane pixels coordinates. The
picture is a courtesy of [10].

To sum up, the non-linear function which project an image point u′ to the
corresponding p′′ vector can be defined as follows:

λp′′ = λ

[
h(∥Au′ + t∥)(Au′ + t)

g(∥Au′ + t∥)

]
= P · X (9)

2.2 Camera calibration
The Micusik model for catadioptric omnidirectional central cameras is not easy
to handle when dealing with camera calibration issues. A complete definition
of the non-linear f(u′) function would require the computation of the functions
h and g in order to guarantee the projection relationship.
As a first step, since the transformation is defined up to a scale factor, it is
possible to divide the entries of f by the function h in order to isolate the
dependence on u′′, that is to say Au′ + t. For instance, setting h = 1, the
calibration problem consists in finding the function g which best suits the
projection transformation. Formally,

λp′′ = λ

[
u′′

g(∥u′′∥)

]
= P · X (10)

14

The Taylor model The procedure introduced by [10] proposes a N-degree
polynomial for defining the function g, such that

g(∥u′′∥) = a0 + a1∥u′′∥ + a2∥u′′∥2 + ...+ aN∥u′′∥N (11)

this way, the calibration problem aims at finding those N+1 coefficients
(a0, a1, ..., aN) which best approximate the original shape of g in the neigh-
bourhood of ∥u′′∥ = 0. However, it is remarkable to highlight that the function
g admits a zero first derivative computed on ∥u′′∥

dg

d∥u′′∥

⏐⏐⏐⏐⏐
∥u′′∥=0

= 0 (12)

thus, it is possible to reduce the calibration coefficients from N+1 to N. This
way, the expression (5) can be turned into the simplified polynomial shape

p′′ =
[

u′′

a0 + a2∥u′′∥2 + ...+ aN∥u′′∥N

]
(13)

and then the projection relationship (10) can be written as

λp′′ = λ

[
u′′

a0 + a2ρ
2 + ...+ aNρ

N

]
= P · X (14)

From this moment on, for simplicity with the term ρ the norm ∥u′′∥ is intended.

Calibration process With the projection function given by equation (14),
the calibration process consists in finding a suitable polynomial degree and
the respective coefficients which best satisfy the transformation, as well as the
affine transformation [A|t] to map the image plane onto the sensor plane.
At the beginning, it is taken for granted that no distortion occurs at the
pixels level, such that u′′ = u′, which implies A = I and t = 0. The correct
transformation will be detected later by non-linear refinement. With this in

15

mind, it is possible to make use of equation (14) directly with the image points
such that:

λp′′ = λ

⎡⎢⎣ u′

v′

a0 + a2ρ
′2 + ...+ aNρ

′N

⎤⎥⎦ = P · X (15)

For the camera calibration, an external pattern of known dimensions is needed
(usually a checkboard is employed). If the external references are chosen on
the same plane it is possible to set the third dimension of the j-th observation
of the i-th pattern Zi

j = 0.

Figure 12: Checkerboard pattern for calibration with detail of an observation.

The following procedure refers to a single pattern, so the index i will be omitted
for simplicity. Taking into account the expression (15), the first step is to
estimate the extrinsic parameters, namely the rotation matrix and the transla-
tion vector which relate the camera pose to the checkerboard reference frame.
Substituting in (15) a generic observation, one obtains:

λjp′′
j = λj

⎡⎢⎣ uj

vj

a0 + a2ρ
2
j + ...+ aNρ

N
j

⎤⎥⎦ =
[
r1 r2 t

] ⎡⎢⎣Xj

Yj

1

⎤⎥⎦ (16)

In order to get rid of the multiplier λj , p′′
j is multiplied vectorially on both sides

of the equation. This way, with equation (17) three conditions are obtained

16

but only one is linear in the parameters to be estimated. The linear equation
(18) is obtained by extending the terms r1 and r2.

λj · p′′
j × p′′

j = p′′
j ×

[
r1 r2 t

] ⎡⎢⎣Xj

Yj

1

⎤⎥⎦ = 0 (17)

uj(r21Xj + r22Yj + t2) − vj(r11Xj + r12Yj + t1) = 0 (18)

Once the condition from a single observation of a single pattern is obtained, it
is possible to design a block matrix M which contains all the observations of the
current pattern employed for the calibration. Likewise, the parameters to be es-
timated can be stacked in an unknown vector Π =

[
r11 r12 r21 r22 t1 t2

]T
,

and the problem

M · Π = 0 (19)

can be solved with a least-squares criterion. The orthonormality of the solution
is guaranteed by SVD. So far, all the extrinsic parameters but t3 have been
defined. In the next step of the calibration process, both t3 and the intrinsic
parameters are computed.

After the first bunch of parameters has been estimated, the first two conditions
provided by (17) can be solved linearly by following a procedure analogue to
the one already presented. This time, instead of using only L observations of
the i-th pattern, all the K patterns are employed. Finally, in order to choose
an appropriate N-degree polynomial, such procedure is iterated starting from
N = 2 and terminates when the re-projection error is lower than a threshold ϵ.
Once again, the re-projection is employed in order to refine recursively the
initial estimate of [A|t] [10].
Such procedure is the one implemented in the Ocam Calib Toolbox [13], which
will be used in Chapter 3 to attempt to a calibration of the Polaris omnidirec-
tional camera.

2.3 Pure VO approaches
Once the camera has been correctly calibrated, it can be employed on vehi-
cles in order to accomplish the self-localisation of the platform. In pure VO

17

Figure 13: Re-projection after a) and before b) the non-linear refinement of
the affine transformation parameters. The picture is a courtesy of [10].

approaches, the camera is the only sensor which is used to collect the necessary
data for solving the pose estimation problem, thus an accurate calibration is
of primary importance. A recent increase in the research on omnidirectional
visual odometry can be observed in the space industry, especially for planetary
rover localisation. An outstanding overview of the algorithms employed for
such purpose is presented in [14].

Carnegie Mellon’s Hyperion, is a solar-powered rover which is employed for
research on autonomous navigation in the Chile’s Atacama Desert. Such
platform is supposed to simulate the operations of a rover on Mars, thus the
capability of self-localisation cannot be addressed to any GPS. Because of error
integration, it has been demonstrated that classic wheel-odometry accumulates
an error which is around the 5% of the covered path. Such error can be thought
even greater if the terrain is slippy and rough like the martian soil. For such
reasons, a VO module is implemented in order to guarantee a higher precision
on the position estimate. The great advantage of using VO is that the error
brought about the digitalisation is uncorrelated with respect to the one carried
by other types of odometry. Moreover, the pose estimate recovered from a
camera view is not affected by eventual slippage of the wheels on the ground.
On this subject, the authors of [14] proposed two VO approaches: the former
makes use of a Robust Optical Flow from salient features tracked in each pair
of subsequent frames, while the latter implements an Iterated Extended Kalman
Filter to estimate at each step both the camera pose and the 3D position of
the features in the environment. The first method is based on the hypothesis
of planarity of the ground, whereas the IEKF implementation does not require

18

any a priori assumption about the external environment.

Robust optical flow method Starting out from a tracked feature of image
coordinates (u, v), it is possible to obtain the real world coordinates (x, y, z)
up to an unknown scale factor λ.

Figure 14: Left: the motion field of some tracked features between two frames.
Right: the camera notation [14].

If one makes use of the similarity property between triangles, it is straightforward
to get the angle θ = tan−1

(
u
f

)
where f is the focal length. The same reasoning

holds for computing the angle associated to the v coordinate. According to
such notation, it is possible to define the corresponding points on the mirror
reference frame:

a = tan

[
αtan−1

(
u

f

)]
sinβ (20)

b = tan

[
αtan−1

(
v

f

)]
cosβ (21)

It is further assumed that the greatest part of the tracked features belong to
the ground as well as the ground itself can be approximated with an arbitrary
geometrical plane of the kind Ax+By + Cz = 1, thus:

λ
[
A B C

] ⎡⎢⎣ab
1

⎤⎥⎦ = 1 (22)

19

In a first moment, the mobile platform tracks a given feature of coordinates (u, v)
which is projected onto the hypothetical ground plane with coordinates (x, y).
When the vehicle moves, it computes an external displacement of (∆x,∆y,∆θ)
so that the feature shifts from (x, y) to (x′, y′).
Finally, the back-projection of the feature returns the image point (u′, v′) and
the optical flow can be computed like:

(dû, dv̂) = P(u, v, {u0, v0, f, α}, {∆x,∆y,∆θ}) (23)

as a function of the initial conditions (u, v), the principal point (u0, v0), the
focal length f , the elevation angle α, the displacement (∆x,∆y) and the yaw
∆θ. The only parameter which is assumed to be known is the height h of the
camera reference frame with respect to the inertial reference frame (i.e. the
ground plane).

Once the displacement function is known, a cost function to be optimised is
chosen. Such cost function e1 is based on the median of the norm between the
observed and the estimated displacement:

e1 = median
[√

(dui − dûi)2 + (dvi − dv̂i)2
]

(24)

The presented problem is a multivariate constrained nonlinear optimisation
problem, which can be solved with some algorithms based on interior-point
techniques. The use of constraints improves the robustness of the returned
solution, as the magnitude of the displacement can be contained in a region of
acceptable values in order to weaken the outliers effect. One of the main reasons
which might bring failure to this method is that the brightness constancy is not
guaranteed in every environment condition. Ideally, the transformation and
the subsequent integration of the optical flow finally returns the actual motion
in the world reference frame.

In one hand, the estimate of the intrinsic camera parameters is ideal, with a
minimum precision of about 0.4 pixels. In the other hand, the odometry is
rather failing with articulated paths and it looses precision very early.

Structure from Motion method The SfM proposed in [14] implies the use
of an Iterated Extended Kalman Filter (IEKF) to estimate both the camera
pose and the 3D position of the tracked features. The computational demand of
such approach depends on how many features are identified on each frame. In-
deed, the state vector is made up of 6 + 3p entries, which are the six-parameters

20

Figure 15: Results obtained from the robust optical flow method. The plots
show the ground truth based on a very precise GPS measure (dashed line) and
the estimated position (continuous line). The pictures are a courtesy of [14].

to define a 6DOF model of the camera, plus a set of world coordinates for a
number p of features which are tracked on the current frame.

The propagation step uses a model to estimate the change in the camera
pose and features position according to the information obtained with the
previous step. With respect to a common EKF, this time no direct estimate is
provided, but a large uncertainty α is added to the measures. Such an operation
is carried out under the assumption of a small frame-to-frame movement and it
gets weaker as α increases.

In the measurement step, the new observations are employed to return a
new state estimate which best fits the old observations as well. In this model,
the still visible tracked features are assumed to be equal to the re-projection
of the 3D points with an additive Gaussian noise. Such re-projection function
can be written like:

xj = Π(R(ρ)T Xj + t) (25)

where ρ and t represent respectively the set of Euler angles and the translation
vector which transform the 3D point Xj into the re-projection xj on the image
plane. The refinement of the parameters estimate improves the precision with
successive iterations, but an increasing number of features might bring about a
consistent delay.
In the end, it is clearly observable that the second approach offers a consistent
improvement with respect to the robust optical flow method, but at the expense
of a larger computational demand.

21

Figure 16: Results obtained with the IEKF implementation. The ground truth
is obtained by a precise GPS measure (dashed line), whereas the position is
estimated with SfM (continuous line). The picture is a courtesy of [14].

A faster pure VO algorithm is proposed by [15]. It consists in a feature-
based approach which addresses the computation of the camera pose to the
estimate of a transformation matrix. Moreover, the assumption of ground
planarity holds, thus it is expected to collect a consistent number of features
which belong to the ground.

Homography-based ground plane navigation A rigid body transforma-
tion can be thought as a combination of a rigid rotation described by a matrix
R and a translation T in the three-dimensional world. When the vehicle moves,
an arbitrary point of the scene X1 is transformed into a point X2 according to
the relationship:

X2 = RX1 + T (26)

Assuming that the ground can be modelled as a geometric plane, the point X1
must satisfy the geometrical constraint, formally posed like

nT X1 = h (27)

22

where the vector n ∈ R3 is the plane normal and the scale h is the distance
from the camera reference frame to the ground. Given this relationship, it
is possible to rewrite the transformation (26) in order to collect X1 on the
left-side.

X2 =
(
R + TnT

h

)
X1 (28)

H = R + TnT

h
(29)

The matrix H ∈ R3×3 is called homography matrix and it represents the rigid
rotation of a point X1 into a point X2 with the constraint that both X1 and X2
belong to the plane nT X = h. The next step of the model definition consists in
transforming the 3D world coordinates in the respective unit sphere normalised
coordinates x1 and x2. Such a step requires knowledge of the camera calibration
function, in order to back-project the points from the image plane to the unit
sphere.

x2 = λ1

λ2
Hx1 = λHx1 = HLx1 (30)

Actually, when the estimate of the homography matrix HL is obtained, it is
defined up to the depth factor λ. In order to obtain the actual transformation,
the matrix HL = λH should be divided by the second largest singular value
σ2(HL). Once the homography is univocally defined, it needs to be decomposed
in order to obtain the extrinsic motion parameters.
The decomposition can follow two paths: the former follows a 8DOF function
of the points on the image and it is particularly suitable when features cover
uniformly the frame, while the latter simplifies the motion with a 3DOF model
(Euclidean transformation).
The decomposition of the 8DOF model can be carried out with the Triggs
algorithm [20]. Such procedure returns two possible solutions and the respective
plane normal vectors n1 and n2. The best solution is the one whose plane
normal is closer to the ground model nT =

[
0 0 −1

]
. The selected translation

vector is then projected onto the ground plane.

23

Figure 17: a) Uniform distribution of features. b) Non-uniform distribution.

If the features are tracked similarly to Figure 17.b, then the matrix H is
assumed to be an Euclidean transformation of the shape

H = R + TnT

h
=

⎡⎢⎣cos θ − sin θ −t1/h
sin θ cos θ −t2/h

0 0 1

⎤⎥⎦ (31)

This way, the motion parameters can be estimated in a least-square sense
computing the pseudoinverse of the matrix of the matched features coordinates.
The translation vector t can be solved simply by multiplying the third column
by the absolute scale factor h, whereas the rotation is obtained by SVD, since
the solution provided by the sub-matrix Q ∈ R2×2 may not be orthonormal.
The robust estimate of the homography matrix starting out from the features
coordinates is made with a Random Sample Consensus (RANSAC) approach.
Such procedure can be thought of as an improvement of the least-squares
method. Indeed, the LS estimate suffers from outliers which are isolated with
respect to a uniform noise distribution (i.e. non-white noise). Vice versa,
RANSAC offers a statistical method to reject outliers at the expense of a given
number of iterations on the dataset. Such estimation technique is employed
in computer vision because in a random subset of features a full accuracy in
the matching process is not guaranteed. According to [15], the procedure to be
followed in order to come up with a correct estimate of the transformation is
the following:

1 - From the set A of all the features matches, a random subset of at least

24

four pairs is selected to initialise the homography model in a least-squared
sense. Since the matrix H presents 8DOF, at least four pairs are needed
to univocally estimate a model.

2 - Applying the instantiated transformation H to all the set of pairs, it is
possible to collect in the set S1 all those features whose transformation is
close to the corresponding matching within an error tolerance d. The set
S1 is the first consensus set.

3 - If the new consensus set is larger than a threshold value t, which is
function of the expected outliers in A, it is used to update the current
model of the homography.

4 - If the consensus set S1 is smaller than the fixed threshold, another random
set S2 is chosen from A and the process restarts from 1.

Apart from the homography, another important model to be chosen is the error
function to be adopted in order to asset if a features pair is allowed to enter
the consensus set. In [15], this function is the sum of the squared norm of the
re-projection differences, namely:

erri = ∥xi
2 − Hxi

1∥2 + ∥xi
1 − H−1xi

2∥2 (32)

and the corresponding threshold d is computed statistically on the error itself
by mean of Median Absolute Deviation (MAD). Such function is a robust
estimate of the statistical dispersion. In the cited paper, the definition of the
error threshold is chosen to be

d = 5.2MAD (33)

MAD(err) = mediani{|erri −medianj(errj)|} (34)

Because of the image distortion and the sensitivity of the camera intrinsic
parameters to external factors, the heading estimate obtained by orthonormal-
isation of the sub-matrix Q ∈ R2×2 is not so accurate [15]. For such reason,
another method to estimate the frame-to-frame heading is proposed by the
author.

The visual compass is a direct VO approach which makes use of the pixel
intensity value in order to detect an optical flow, thus a possible lateral shift. In
a first moment, this movement is measured in pixels, then it can be translated
in degrees according to a constant which relates the number of pixels to the

25

camera FoV. The visual compass practically consists in scanning an image
portion with a fixed size window. A pure rotation would cause a shift of the
pixels columns in the window area, thus a minimisation problem on the pixels
intensity can be set in order to obtain the rotation information under the shape
of number of columns.

Figure 18: In white, the window employed in [15] to scan an area on the red
horizon.

The use of the visual compass is not much robust in case of brightness changes
or in environment with a flat background. Conversely, it results rather accurate
in urban environments which present an articulated background because of
buildings, trees etc. The choice of the window size and position is of crucial
importance if a reliable heading is needed. The authors of [15] found out that
the narrower the FoV, the better the heading estimate. In this regard, practical
results are shown in Figure 19.

Though some general guidelines in order to choose the scanning window have
been provided, in the later implementation it is found that the correct dimen-
sioning strongly depends on many settings parameters (camera position, image
resolution, image pre-processing etc.), thus the right size and position must
be defined case by case. Another limit of the visual compass consists in the
vehicle steering speed. If the platform moves slowly, it is more probable to
detect correctly the frame-to-frame columns shift. Vice versa, when the yawing
of the vehicle is too fast, the heading estimate lacks in reliability.

26

Figure 19: Path and heading estimates with different values of FoV. The plots
are a courtesy of [15].

2.4 Hybrid VO approaches
If no information regarding the relationship between the mobile platform and
the external world is known in advance (e.g. the distance h from the camera
to the ground), it is impossible to recover the absolute scale of the path by
only using two images of the same camera. For such reason and more, it is
often convenient to employ a VO approach which also makes use of some data
estimated by sensors other than cameras.
In the next paragraph, the scientific paper [16] by D. Scaramuzza is presented.
In his research, he parametrised a minimal vehicle model in order to speed-up
the execution time of the application. As a drawback, this simplification does
not let a proper recovery of the absolute scale, which can be then corrected
with the vehicle ground speed detected from other on-board sensors.

1-Point-RANSAC SfM method The computational cost of VO algorithms
is mainly addressed to the extraction of the features and their matching. How-
ever in the matching process it is not guaranteed a full success in features
association, thus a robust estimation technique like RANSAC is employed. The
number of iterations introduced by the RANSAC algorithm is a function of the
minimal seed set, namely the smaller number of point pairs which are needed
to univocally establish the model. In this regard, a very detailed model of the
platform takes longer with respect to a minimal model parametrisation.
In the last few years, a very established method for removing outliers from
the main dataset is the 5-Points-RANSAC algorithm, which needs at least 5
point-to-point matchings to verify the hypothesis.
In order to reduce the minimal seed set, it is possible to exploit the non-
holonomic constraint of the platform according to the general Ackermann

27

Figure 20: On the left, the Ackermann steering principle. On the right, the
illustration of the platform motion model. The pictures are a courtesy of [16].

steering principle shown in Figure 20. According to such principle, when the
platform can be modelled as a bicycle, all the wheels rotation axes converge in
a point named after instantaneous centre of rotation, in short ICR. Given this
assumption, it is possible to get rid of some extra-parameters and a general
speed-up in the outliers removal is observed.

Let p = (x, y, z) and p′ = (x′, y′, z′) be the matched features coordinates
between two successive frames. In order not to loose generality on the type
of camera employed, the point coordinates are projected onto the unit sphere
reference frame, such that ∥p∥ = ∥p′∥ = 1. If one makes use of a 2D-2D points
correspondence, the epipolar constraint can be written as:

p′T Ep = 0 (35)

with E the essential matrix defined as E = [t]xR and [t]x the skew symmetric
matrix of the translation components

[t]x =

⎡⎢⎣ 0 −tx ty
tx 0 −tz

−ty tz 0

⎤⎥⎦ (36)

With reference to Figure 20, the camera and the vehicle reference frames are
linked by a rigid relationship (forward-facing and distance L), thus the rotation
matrix which describes the platform change in pose is also valid for the camera

28

model. With this in mind, it is possible to explicitly write the essential matrix:

E =

⎡⎢⎣ 0 0 ρ sin(θ
2) − L sin(θ)

0 0 L+ ρ cos(θ
2) − L cos(θ)

L sin(θ) + ρ sin(θ
2) L− ρ cos(θ

2) − L cos(θ) 0

⎤⎥⎦
(37)

An interesting simplification occurs when the camera is mounted on the same
vertical axis of the platform reference frame (i.e. the centre of the rear axis).
This way it is possible to set L = 0 and the essential matrix can be written in
the shape:

E = ρ ·

⎡⎢⎣ 0 0 sin(θ
2)

0 0 cos(θ
2)

sin(θ
2) − cos(θ

2) 0

⎤⎥⎦ (38)

It suddenly comes up that the term ρ is a multiplicative factor which is lost
when substituting the essential matrix in the epipolar constraint (35). For
such a reason, the presented method does not allow to recover the absolute
scale of the path. The implementation of the RANSAC algorithm consists in
initialising the model with just one features match:

θ = −2 tan−1
(
y′z − z′y

x′z + z′x

)
(39)

and then using the first obtained hypothesis of E to build the consensus set.
Once the iterations are completed, it is possible to refine the essential matrix
model with a LS estimate on the pairs contained in the largest consensus set
found: ⎡⎢⎢⎢⎢⎢⎢⎣

x′
1z1 + z′

1x1 y′
1z1 − z′

1y1
. .
. .
. .

x′
nzn + z′

nxn y′
nzn − z′

nyn

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣sin(θ

2)

cos(θ
2)

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0
.
.
.
0

⎤⎥⎥⎥⎥⎥⎥⎦ (40)

Finally, the matrix of the coordinates D is decomposed by SVD and the solution
is the eigenvector associated to the smallest eigenvalue. Such vector e∗ is subject
to ∥e∗∥ = 1, so the solution is already orthonormal. This way, the rotation
angle θ can be computed directly from e∗. The presented procedure is strongly

29

based on the hypothesis of L = 0, however it has been demonstrated that it
can be employed also for small camera-vehicle distances. Moreover, as stated
in [16], such parametrisation is rather reliable especially when the yaw angle is
relatively small (θ < 10 deg).

An even simpler method for removing the outliers consists in adopting a voting
system based on histograms. Such a method allows the number of iterations to
be reduced to zero, thus removing the delays introduced by the outlier removal
process.

Figure 21: Voting system on the frame-to-frame yaw angle. The picture is a
courtesy of [16].

With reference to Figure 21, each angle has been computed with only one
feature matching, according to the the equation (39). Once a discretisation
has been fixed, it is possible to count the number of pairs which return the
same angle estimate. A robust estimate consists in selecting the median of
the distribution. When the distribution variance is too high, a RANSAC
implementation provides a more accurate result.

Figure 22: On the left, the odometry obtained with different outliers removal
approaches. On the right, the comparison bewteen the histogram voting
estimate and the ground truth. The pictures are a courtesy of [16].

30

It is clearly shown in Figure 22 that 1-Point-RANSAC and histogram voting
techniques both improve the precision of the localisation and allows a real-time
execution. The recovery of the absolute scale can be obtained by measuring
the speed information from other sensors (e.g. by means of wheel odometry).
Such speed is then mapped into a displacement according to the camera frame
rate and is projected along the heading direction. For the following reason, the
presented procedure is not properly a pure VO method.

31

3 Camera calibration & Image pre-processing

In this chapter, an attempt of camera calibration is carried out by mean of the
OCam Calib Toolbox by D. Scaramuzza. Once the polynomial degree is fixed
and the coefficients have been computed, two custom-made Matlab functions are
designed to both adjust the centre on the image plane and back-project the image
points onto the unit sphere. In a second moment, some necessary pre-processing
steps about the video frames are highlighted.

3.1 Camera calibration
In order to correctly estimate the camera pose, it is required to know the
function which allows to project a world point X ∈ R3 into a point on the
image plane x ∈ R2 and vice versa. The theory behind the omnidirectional
camera calibration has already been discussed in Chapter 3 and here it is
applied thanks to the OCam Calib Toolbox by D. Scaramuzza [13]. In order
to get a good estimate, a set of 15 pictures taken in a previous research work
[8] is employed. The checkerboard is a 6 × 4 grid and it is shown at different
positions on the camera field of view. The camera configuration consists of
a Basler ace aca 1600-20gm coupled with a parabolic omnidirectional mirror
VS-C450MR-TK.

Figure 23: Two samples of the pictures employed for the calibration purpose.

The toolbox also implements an automatic corner detector in order to au-
tonomously track the observations on each pattern. However, such functionality
may be not so reliable if the checkerboard is not so close to the camera, thus
some pictures have been tracked manually.
It is important to keep in mind that the order of the observations must be kept

32

unvaried among the patterns, this way the toolbox is able also to return the
extrinsic camera parameters. For clarity, the origin and the axes direction is
imposed like it is shown in Figure 24.

Figure 24: Corners detection and axes orientation among patterns.

Once enough patterns have been analysed and a consistent number of observa-
tions have been found, it is possible to recover the polynomial according to the
Taylor model. Generally, if one selects a 4-th order polynomial a good model
of the camera is returned. Fixing the degree at N = 4, it is asked to compute
the four coefficients to univocally determine the polynomial shape.

a0 a1 a2 a3 a4
−3.627 · 102 0.0000 0.0013 −8.938 · 10−7 4.139 · 10−10

At the end of the calibration, all the parameters needed for univocally deter-
mine the projection function are collected by default in the structure titled
calib_data.ocam_model. Here it is possible to find the polynomial coeffi-
cients ocam_model.ss, the affine transformation parameters ocam_model.c,
ocam_model.d and ocam_model.e and also the image centre coordinates in
pixels ocam_model.xc and ocam_model.yc. Such arguments are necessary in
order to feed the functions which operate the affine transformation as well as
the normalisation of the coordinates onto a unit sphere vector.

Affine transformation An affine transformation is an automorphism of an
affine space. Such geometrical function maps affine spaces onto themselves
(point to point, line to line, plane to plane) and does not preserve angles between
entities. The only thing that is kept unmodified is the ratio of distances of the
points lying on a straight line. Such transformation brings about a shift and a
shear effect in order to transform the sensor plane into the image plane. The

33

Figure 25: Calibration results returned by the OCam Calib Toolbox.

parameters returned by the toolbox are to be employed like it is shown:[
u′′

v′′

]
=
[
c d
e 1

] [
u′

v′

]
+
[
−xc

−yc

]
(41)

This way it is possible to map a feature from the image plane (u′, v′) onto the
sensor plane (u′′, v′′). Such procedure has been implemented in the Matlab
function AffineTrans.m, to be used as it shown here:

psp = AffineTrans(pip, ac) (42)

where psp and pip are the feature coordinates respectively on the sensor plane
and the image plane and ac is an array which contains the transformation
parameters in the order:

ac =
[
c, d, e, xc, yc

]
(43)

Projection onto the unit sphere Once the image coordinates have been
changed in sensor plane coordinates, it is possible to make use of the computed
Taylor model to formally write the projection function and to transform the 2D
points in 3D unitary vectors on the sphere. At first, the vector p′′ is recovered

34

from the transformation

p′′ =

⎡⎢⎣ u′′

v′′

−3.627 · 102 + 0.0013ρ2 − 8.938 · 10−7ρ3 + 4.139 · 10−10ρ4

⎤⎥⎦ (44)

keeping in mind that ρ =
√
u′′2 + v′′2. As specified in Chapter 2, such vector

is parallel to the unitary vector q′′ which is employed in the omnidirectional
camera model. In this regard, to obtain the feature coordinates in the unit
sphere reference frame it is needed to normalise the already computed vector,
such that q′′ = p′′/∥p′′∥. Such procedure has been implemented in the Matlab
function ToUnitSphere.m, to used like it is shown:

q′′ = ToUnitSphere(p′′, pc) (45)

where pc is an array which contains the polynomial coefficients

pc =
[
a0, a1, a2, a3, a4

]
(46)

3.2 Image pre-processing
RGB to Grey Each image coming from the omnidirectional camera can
be thought as a function from R3 (R, G and B matrices) to R (actual pixel
intensity). However, the information about the color repartition is unnecessary
for odometry purposes, so it is preferred to work on grey-scaled images. This
problem can be easily solved by the Matlab function rgb2grey.m which adopts
the following formula to convert the domain of the image from separated RGB
indexes to a single grey scale intensity:

Igrey = 0.2989 · Ired + 0.5870 · Igreen + 0.1140 · Iblu (47)

The effects on the image histogram are shown in Figure 26.
Once the conversion has been made, the image can be simply represented by a
unique matrix whose entries range from 0 to 2n−1, where n is the number of
bits employed to discretise the grey scale. In the present case, the image level
are represented in uint8 format (unsigned integer 8-bit), thus 256 grey levels
are available.

Image resolution The employed omnidirectional camera returns images
with a resolution of 1236 × 1626. On one hand, a great amount of pixels
improves the accuracy of the features tracking, since a more refined grid of

35

Figure 26: RGB to Grey scale conversion effect on the image histogram.

coordinates is available. On the other hand, high resolution images occupy
a considerable amount of memory and causes a slow down of the application
execution. For such reason, it is generally convenient to downsize the image
resolution in order to reach a compromise between precision of the estimate
and speed of the algorithm.
In this regard, a known computer vision technique which is used to obtain
several image resolutions is the Laplacian Pyramid. Such method consists in
saving in a structure both the low and high frequency of an image at different
scales. The presence of such parallel structure lets the user recover any scale of
the image limiting the loss of information.

Figure 27: Representation of three levels of transition on a Laplacian Pyramid.

36

With reference to Figure 27, the original image is filtered with a Gaussian
filter (i.e. a low-pass image filter). The difference between the original image
and its low-frequency version returns the high-frequency image. Once such
procedure has been followed, it is possible to downsample the low-frequency
picture such that its linear dimension is halved. In essence, the downsampling
consists in deleting alternatively rows and columns, then a gaussian filter is
applied again (blurring) and it is possible to proceed towards lower levels of the
pyramidal decomposition. At the end of the levels definition, it is possible to go
back and forth through different image resolutions, since the backward image
reconstruction is guaranteed by the presence of the high-frequency version.
Such technique is useful for making research at different scales without loosing
information of the original image. For instance, detecting a features at several
resolution makes it scale-invariant, thus more reliable.
As far as visual odometry is regarded, the creation of a pyramid would be
a useless exploitation of volatile memory, since once the best scale has been
chosen there is no need to keep the image spectra. In this regard, only the
Gaussian Pyramid is taken into account, namely the top side of Figure 27.
The resolution definition is directly solved by the Matlab function imresize.m
which requires as arguments both the target image and a numerical factor
which is then used to downsample the linear dimension.
The best resolution compromise can be defined only with several trials once
the body of the VO application is defined.

Image mask Since the camera in mounted on top of the vehicle, not the full
nominal field of view can be exploited to track features in a feature-based VO
approach. For instance, the centre of the camera shows the vehicle external
frame which is fixed with respect to the camera itself. This situation would cause
several problem of robustness when dealing with RANSAC for the estimate
of the homography. At first, the larger the number of outliers, the lower the
quality of the estimate. Moreover, a consistent number of invalid features brings
about an increase in the number of iterations, thus a longer execution time.
If one gets used to think at images as matrices, it is straightforward to under-
stand that a mask filter can be designed simply as a binary matrix with the
same dimension of the target picture and which contains 0 in the region to be
masked and 1 in the other entries. This way, the application of the filter can
be resumed in a fast element-by-element matrix multiplication. For clarity, a
numerical example is provided:

imfilt
(⎡⎢⎢⎢⎣

1 1 1 1 1
1 0 0 0 1
1 0 0 0 1
1 1 1 1 1

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣
a b c d e
f g h i l
m n o p q
r s t u v

⎤⎥⎥⎥⎦
)

=

⎡⎢⎢⎢⎣
a b c d e
f 0 0 0 l
m 0 0 0 q
r s t u v

⎤⎥⎥⎥⎦

37

Figure 28: Mask filter applied to the original image. This way no features are
detected around the region limited by a minimum radius Rmin.

The presented functionality has been implemented in a Matlab function named
after PicMask.m. The function is addressed to the creation of a circular mask
in order to prevent the detector from tracking features in the forbidden region.
The arguments required are:

masked_img = PicMask(img, [xc, yc], Rmin, Rmax) (48)

where [xc, yc] are the centre coordinates of the mask disk, Rmin and Rmax are
respectively the minimum and maximum radius such that the originale image
is kept unvaried in a region I(r) such that Rmin < r < Rmax, with r computed
from the indicated centre.

38

4 Pure Visual Odometry

In this chapter a first proposal of a pure VO algorithm is presented. The code is
mainly subdivided in five parts: features extraction and matching, visual compass
implementation, model estimate by RANSAC, homography decomposition and
finally motion integration. Each of these steps is treated in a subsection and it
is accompanied by the corresponding Matlab code.

4.1 Features extraction and matching

1 % Detect ion o f keypo ints
2

3 po int s1 = detectSURFFeatures (img1) ;
4 po int s2 = detectSURFFeatures (img2) ;
5

6 % Desc r i p to r s e x t r a c t i o n − Val idPoints are the one
7 % computed r e g u l a r l y which are not on the border
8 % of the image .
9

10 [f e a tu r e s1 , va l id_po int s1] = ext rac tFea tu r e s (img1 , . . .
11 . . . po ints1 , ’ f e a t u r e S i z e ’ ,128) ;
12 [f e a tu r e s2 , va l id_po int s2] = ext rac tFea tu r e s (img2 , . . .
13 . . . po ints2 , ’ f e a t u r e S i z e ’ ,128) ;
14

15 % Matching d e s c r i p t o r s
16

17 i ndexPa i r s = matchFeatures (f ea tu r e s1 , f e a tu r e s2 , . . .
18 . . . ’ MaxRatio ’ , 0 . 5) ;
19

20 matchedPoints1 = va l id_po int s1 (indexPa i r s (: , 1) , :) ;
21 matchedPoints2 = va l id_po int s2 (indexPa i r s (: , 2) , :) ;
22

23 % V i s u a l i s a t i o n
24

25 showMatchedFeatures (img1 , img2 , matchedPoints1 , . . .
26 . . . matchedPoints2)

The following application proposal makes use of a feature-based approach for
the estimate of the frame-to-frame displacement. The search of the key points
to be tracked is carried out by a Speed Up Robust Features (SURF) detector

39

[17]. A SURF detector is a fast and robust algorithm which makes use of box
filters to allow the solution of both recognition and tracking real-time problems.
The main steps behind a SURF detector are the feature extraction and the
feature description.

Features extraction The extraction process is based on the computation of
the Hessian matrix of the pixel intensities. Rather than using different measures
at several scales (Hessian-Laplace detector), SURF only relies on the Hessian
determinant. Such choice conveys to SURF the know execution speed.
In order to find points of interest on the image, the second derivative is applied
to a sub-region of the whole image represented by a filter box of dimension
w × w. The appearance of the first two derivative orders along one direction
are shown in Figure 29.

Figure 29: First and second order derivative of pixels intensity along the
horizontal direction. The picture is a courtesy of [18].

However, the intensity distribution on an image is not properly as represented
in Figure 29 by f(x), but it is affected by high-frequency noise. With this in
mind, the derivation would return a non informative result on the zero-crossing
point of the Laplacian, thus a Gaussian filter g(u, v) (low-pass image filter)
is applied to the picture before the derivative operator. According to the
derivative theorem of convolution, it is possible to save one operation and apply
only a filter of the shape:

d2

dx2 (f ∗ g) = f ∗ d
2g

dx2 (49)

40

such that the second derivative of the gaussian filter can be represented with
only a kernel to be applied each time at every window w × w which scans
the image domain. At the end of computation, each scanned area can be
represented by the Hessian

H(x, σ) =
[
Lxx(x, σ) Lxy(x, σ)
Lyx(x, σ) Lyy(x, σ)

]
(50)

where Lij represents the second order derivative of the Gaussian along the
ordered directions i and j, whereas the scalar σ defines the standard deviation
of the gaussian distribution. In proximity of a point of interest, the entries of
H(x, σ) assume a defined set of values which can be resumed in the Hessian
determinant. When such determinant crosses a user-defined threshold value,
the current pixel position is marked as a feature and its coordinates are saved
in a variable (on the code, points1 and points2).

Figure 30: Features extraction process and some of the found key points in
detail.

Features description Once the coordinates of the feature have been tracked,
if one wants to recognise the same feature in a subsequent frame, it is necessary
to build a sort of identity card of the feature itself. Such feature identity is called
descriptor and it is based on the intensity information of its neighbourhood.
The design of a descriptor takes place in two steps: the orientation assignment
and the neighbourhood definition.
In order to be rotational invariant, the descriptor is built in the reference frame
of a fixed orientation. Such orientation is computed by scanning a circular
window around the feature with a radius of 6s, with s the scale at which the

41

feature has been detected. Calculating the x and y-direction responses to the
Haar-wavelet, an optimum is found. The denser the orientation discretisation,
the more accurate the returned result. Conversely, the more accurate the
discretisation, the bigger the descriptor dimension, thus the process slows down
and requires much more memory. An example of computation of the orientation
is provided in Figure 31.

Figure 31: Orientation of the feature according to a defined neighbourhood.
The picture is a courtesy of [17].

The choice of the neighbourhood consists in a rectangular region oriented
according the previous criteria. The size of the window is generally of 20s. Such
region is then subdivided in a 4 × 4 squares grid and each single square returns
the information of 5 equally spaced pixels. At this level, the Haar-wavelet
response is computed again and the results are stored in a 4 × 4 × n vector,
where n is the number of responses which varies according to the orientation
discretisation. If only 4 directions are taken into account, a descriptor of size
64 is obtained. For higher precision, if 8 directions are considered, a descriptor
of length 128 is returned. In our application, the last choice has been made.

Figure 32: Features matching on two subsequent frames. The two images are
overlapped with red and blue shades for distinction.

42

Features matching As it is clearly shown in the code at the beginning of the
section, two frames are acquired from the camera and then both the processes of
features extraction (lines 3-4) and description (lines 10-13) have been carried
out. Then, according to a SSD (Sum of Squared Differences) criterion, the best
feature-to-feature matching is returned (lines 17-18). For clarity, the example
provided in Figure 32 shows the matching process between two successive frames.

4.2 Visual compass

1 % I s e l e c t a l im i t ed FOV to es t imate the angular s h i f t
2 % from a frame to the next one . The f r o n t a l por t i on o f
3 % the image i s i d e a l because i t i s the l e a s t a f f e c t e d
4 % by the l e n s d i s t o r t i o n . The r e s u l t i n g ang le theta
5 % w i l l be used to i n i t i a l i s e RANSAC.
6

7 a l f a = −10:10; % Pos s i b l e s h i f t in p i x e l .
8 d i f f = ze ro s (l ength (a l f a) , 1) ; % Eucl idean d i s t ance .
9 % Def ine here x_low , x_up , y_low , y_up

10

11 f o r a = 1 : l ength (a l f a)
12

13 d i f f (a) = sum(sum(img1 (x_low : x_up , y_low : y_up) − . . .
14 . . . img2 (x_low : x_up , y_low+a l f a (a) : y_up+a l f a (a)))) ;
15

16 end
17

18 s q r d i f f = sq r t (double (d i f f)) ;
19 [val , ind] = min (s q r d i f f) ;
20

21 % The heading expres sed in degree s i s the number o f
22 % columns s h i f t e d mu l t i p l i e d by the ang le dens i ty in
23 % p i x e l (s i n c e the camera i s a 360deg , then the ang le
24 % s e n s i t i v i t y i s 360 deg/ Circumference in p i x e l s)
25 % r_mean , C = 2∗ pi ∗r_mean , dens_l inear = 360/C
26 % C must be determined here by the user accord ing to
27 % the image r e s o l u t i o n .
28

29 % Def ine C here
30 heading (i i) = heading (i i −1) + a l f a (ind) ∗(360/C) ;

Visual compass is a direct visual odometry method to estimate the heading of

43

a mobile platform. The general steps of such algorithm are provided in [15],
however a more personal implementation is provided above.
At first, it is asked to choose a region of the image to scan with a box. Such
choice is of primary importance to obtain a reliable estimate, thus a section with
a low distortion is preferred. The size of the box is another important aspect
to take into account. A big window is more affected by the image distortion
and also a consistent amount of pixels brings about a large generalisation of
the intensity measurements, thus small variations are not detected properly.
Conversely, a very small window is affected by the image noise and so some
unreliable estimates are returned.
Though the best window size and ratio will be defined experimentally, in [15]
it is suggested to limit the FoV as much as possible.

Figure 33: Simplified example of the main idea behind the visual compass. The
background on the second grid is the one of the first image shifted to the left
of about 4 columns.

Problem set-up At first, it is necessary to make a hypothesis on the amount
of pixels which can move horizontally in the frame-to-frame period. Such choice
will be made later according to the trend of the yaw rate, while at the moment
a default range of [−10, 10] pixels (line 7) is fixed.
Given a first frame (Figure 33 on the left), the window is used as an integral
image such that the sum of all the scanned pixels intensities is computed. When
the successive frame is analysed (Figure 33 on the right), the platform has
already moved laterally and the scanned area returns a different integral of the
intensities (red box). In order to estimate of how many pixels the image plane
shifted and so which portion of the image has been scanned in the previous
frame (orange box), the integral image is computed several times by shifting
the red box centre from -10 to 10 pixels from the original position. When
the window covers exactly the portion of the image of the previous frame, the
intensity integral is supposed to be almost the same, thus it is possible to know
of how many pixels the image moved. Such procedure is implemented as a
problem of minimum on the integral images differences (lines 11-19).

44

Pixel-degree conversion When the pixels shift has been correctly estimated,
it is necessary to find a conversion factor which links together the change in
pixels to a rotation in degrees. This procedure can be done in two ways
according to the kind of image available. If a panorama is employed, taking
into account that the camera horizontal FoV is a complete 2π, the conversion
factor is simply the total 360 deg divided by the horizontal length of the image
in pixels.
However the choice of unwrapping the image plane in a panorama is not the
best solution for eventual feature-based estimates of the motion, because the
tracked features coordinates undergo to another transformation before being
back-projected onto the unit sphere. With this in mind, the composition of many
coordinates transformations may lead to a decrease in the accuracy, especially
when the camera works at high frequencies. For the reasons mentioned so far,
the proposed VO application makes use of the circular image plane directly
recovered from the camera.

Figure 34: Visual compass box geometry and position on the image plane.

Given a box a×b with a the shorter side and centred in C(u, v), it is possible to
choose a wide range of radii which start from the image centre and end up inside
the rectangular region. In order to compute the mean circumference passing
through the box, a mean radius is chosen whose length is Rmean. Since the box
dimension is little in comparison to the full image domain, it is reasonable to
represent each pixel inside the rectangular region as if it is distant Rmean from
the image centre. Holding such hypothesis, the circumference passing through
the box centre is C = 2πRmean, thus the conversion factor can me computed
as σ = 360/C deg · pixel−1 (lines 29-30). Experimental results show that the
pixels at greater radii compensate the error of the ones at lower radii, thus the
hypothesis is well satisfied.

Non-idealities attenuation A consistent problem of such pixel-to-degree
conversion comes from the fact that the camera centre is not properly the image

45

centre. At first, because of manufacturing tolerances, the perpendicularity of the
mirror with respect to the camera sensor plane is not guaranteed. Secondly, the
discretisation of the image in pixels does not keep a perfect circular image, thus
the rotation of the pixels takes place around a point which is not actually the
one which is used to measure Rmean. For that reason, it is reasonable to amortise
such error by taking measurements on two different sides of the image diameter.
Keeping unvaried the box size, ratio and the length of Rmean with respect to a
hypothetical centre, the heading estimate is then evaluated as a mean value
of the two measurements. This way, if one of the two boxes overestimates the
platform steering, the opposite side is more likely to underestimate the measure.
In the end, the mean value smoothes the error weight and returns a better
estimate. Results are shown in Figure 35.

Effect of the image resolution When high image resolutions are used in
VO computations, there are two main disadvantages: the former basically
consists in the slow down of the execution speed, while the latter is that every
high frequency noise at the pixel scale weights more on the estimate of the
platform displacement. With this in mind, three different resolutions have been
tested for the definition of the heading. Results are shown in Figure 35.

Figure 35: On the left, the effect of averaging two boxes estimates. On the
right, a heading estimation at different image resolutions.

Box ratio Through several tests made on real datasets, it has been discovered
that the ratio of the box dimensions a/b has somehow an influence on the
accuracy of the estimate. The comparison is made with the data coming out
from a filtered odometry which is supposed to the the ground truth.

Box scale Another issue to be tested regards the dimension of the box itself.
At the moment, it has been realised that the 1/2 resolution and a box ratio of
0.7 are the best choices for an accurate estimate.

46

Figure 36: Effect of the box ratio on the heading estimate. The tested ratios
a/b are 0.3 (top, left), 0.5 (top, left), 0.7 (bottom, left) and 1 (bottom, right).

Figure 37: Effect of the box scale on the heading estimate. The tested scales
are 0.5× (on the left) and 1.5× (on the right) the original size.

47

Keeping fixed those two parameters, some tests are made by changing the box
scale, in order to clarify which is the best empirical relationship between the
image and the window size.
As it is clarified in Figure 37, the original size of the box, that is 200 × 140
pixels, is the best choice for the heading estimate. Neither a shrinking nor a
magnification of the box dimension returns any improvement in accuracy.
Moreover, the usage of a box 150% larger than the initial size highlights the
smoothing effect of direct methods based on a considerable number of pixels.
When the integral image is computed on a big window, the differences between
successive scannings is coarse and not so effective.

Columns shift domain In accordance with line 11 of the piece of code, it
is supposed that the maximum columns shift in a frame-to-frame period is
10 pixels in modulus. On one hand, checking on a large shift domain increases
the possibility to track a turning at high yawing rates. On the other hand, if
the platform is either not able to reach such rates or if these speeds do not suit
its mission profile, the computation in the full [−10, 10] range brings about a
useless slow down in the execution and also increases the possibility of tracking
a window whose integral is similar to the current one, but which does not
represent the actual steering.

Figure 38: Yaw rate trend on a real dataset based on the Polaris platform.

In order to choose the right range which respects the yawing trend of the vehicle,
it is necessary to make use of a dataset of the platform steering angle and
speed. Once the maximum yawing rate (in modulus) has been identified, the
corresponding dimensioning is made by converting the speed information in a
pixels datum, according to the relationship:

θ̇ · Tframe = 360
C

·N (51)

48

where θ̇ is the yaw rate, Tframe is the reciprocal of the camera working frequency
and N is the corresponding number of pixels shifted laterally in the scanning
box. After analysing the chunk of data which contains the highest yaw rate, it
is possible to fix the maximum turning speed modulus at 32.85deg

s
, thus it is

possible to compute the maximum detectable shift in pixels. Given a working
frequency of 10 Hz and a resolution of 0.5×, N can be computed like:

N = Cmean

360 · θ̇max · 1
fcamera

≃ 13 pixels (52)

which means that it is necessary to increase the shift range from [−10, 10] to
[−13, 13] pixels in order to guarantee that each ∆θ between two successive
frames can be properly detected by the visual compass.

Figure 39: An improvement in the accuracy of the estimate is obtained when
the range of check is increased from [−10, 10] (on the left) to [−13, 13] (on the
right).

4.3 Random Sample Consensus

1 % RANSAC Algorithm f o r e s t imat ing H
2

3 A=double ([matchedPoints1 . Location , . . .
4 matchedPoints2 . Locat ion]) ; %[(x1 y1) (x2 y2)]
5

6 N=100; Ncount=0; % Number o f i n t e r a t i o n s
i n i t i a l i s a t i o n .

7 e =0.2 ; % Probab i l i t y o f random−(x , y) to be an o u t l i e r .
8 pb=0.99; % Probab i l i t y o f a l l attemps not to conta in

o u t l i e r s .

49

9 s =8; % Minimal seeds s e t to i n i t i a l i s e the model
10 th =0.7∗ l ength (A) ; % consensus th r e sho ld
11 max_cons=0; % I n i t i a l i s a t i o n o f the h i ghe s t consensus

s e t
12

13 % I n i t i a l i s a t i o n o f the homography model by mean o f
14 % the yaw angle from the v i s u a l compass
15

16 p s i=a l f a (ind) ∗(360/C) ∗(p i /180) ;
17 H_in=[cos (p s i) −s i n (p s i) 0 ;
18 s i n (p s i) cos (p s i) 0
19 0 0 1] ;
20

21 % We use such H to determine a consensus s e t S1
22 % which i s a s e t o f po in t s whose r e p r o j e c t i o n e r r o r
23 % i s lower than a thr e sho ld d .
24

25 whi le N>N_count
26

27 e r r=ze ro s (1 , l ength (A)) ; % I n i t i a l i s a t i o n
28

29 f o r h=1: l ength (A)
30

31 e r r (h)=norm ([A(h , 3 : 4) 1] ’ −H_in ∗ [A(h , 1 : 2) 1] ’) ^2
. . .

32 +norm ([A(h , 1 : 2) 1] ’ −H_in \ [A(h , 3 : 4) 1] ’) ^2;
33

34 end
35

36 d=mad(e r r) ; % Threshold computed as MAD
37 S1 = [] ; % I n i t i a l i s a t i o n o f the consensus s e t (void

)
38

39 f o r h=1: l ength (e r r)
40

41 i f e r r (h)<=d
42

43 S1=[S1 ; A(h , :)] ;
44

45 end
46

47 end

50

48

49 % At t h i s po int we have obtained the f i r s t
50 % consensus s e t S1 . I t i s needed to check i f
51 % the number o f po in t s in S1 i s l a r g e r than a
52 % thre sho ld t . I f so , a new H∗ i s computed from
53 % S1 , o the rw i se we s t a r t back from l i n e 94 .
54 % The proce s s i s over a f t e r a g iven number o f
55 % i t e r a t i o n i s completed .
56

57

58 i f l ength (S1)>=th && length (S1)>max_cons
59

60 P=[z e ro s (l ength (S1) ,3) −S1 (: , 1) −S1 (: , 2) . . .
61 −1∗(1+ ze ro s (l ength (S1) ,1)) S1 (: , 4) .∗ S1 (: , 1)

. . .
62 S1 (: , 4) .∗ S1 (: , 2) S1 (: , 1) S1 (: , 2) . . .
63 1+ze ro s (l ength (S1) ,1) z e r o s (l ength (S1) ,3)

. . .
64 −S1 (: , 3) .∗ S1 (: , 1) −S1 (: , 3) .∗ S1 (: , 2)] ;
65

66 T=[−S1 (: , 2) ; S1 (: , 3)] ;
67

68 Hcoe f f=(P’∗P) \(P’∗T) ;
69 H=[Hcoe f f (1) Hcoe f f (2) Hcoe f f (3) ; . . .
70 Hcoe f f (4) Hcoe f f (5) Hcoe f f (6) ; . . .
71 Hcoe f f (7) Hcoe f f (8) 1] ;
72

73 max_cons=length (S1) ;
74 e=1−(max_cons/ l ength (A)) ;
75 N=log (1−pb) / log (1−(1−e)^s) ;
76

77 end
78

79 Ncount=Ncount+1;
80

81 end

The Random Sample Consensus (RANSAC) is employed to find a robust
homography model. Generally, the model hypothesis is initialised with the
minimal seeds number by a random draw from a wider dataset A. In [15] it
has been demonstrated that if the initialisation is made with the yaw angle
already computed with the visual compass, the overall performance speeds up.

51

With this in mind, the initial homography matrix is assumed to be a simple
Euclidean transformation with no translation:

Hin =

⎡⎢⎣cos(ψi) − sin(ψi) 0
sin(ψi) cos(ψi) 0

0 0 1

⎤⎥⎦ (53)

where ψi is the yaw angle detected after a comparison between the frame i
and the frame i− 1. Once a first model has been initialised, it is required to
determine the first consensus set S1, namely the set of all features matches
whose frame-to-frame transformation can be approximated by mean of Hin

within an error threshold d. The error function is the same as [15] and it
is based on the sum of the differences between a feature and its projection
on the other frame by mean of the instantiated homography Hin. When a
new best consensus set if found (lines 62-81), the homography is estimated
in the LS sense using only the points correspondences in S1. Finally, the
maximum number of iterations and the statistical hypothesis on the full dataset
are updated (lines 77-79).

Figure 40: Trend of the maximum number of iterations as a function of the
outlier probability and the minimal seeds to parametrise the model hypothesis.

A problem of RANSAC is the number of iterations required to reach an accurate
model estimate. Such number grows with the minimal seeds and in case of an
homography such trend has a considerable weight on the execution time of the
application. The RANSAC algorithm terminates when the computed number
of maximum iterations N reaches the number of actual concluded iteration
N_count (lines 25).

52

4.4 Homography decomposition

1 %% Eucl idean hypot e s i s to ex t r a c t the t r a n s l a t i o n
2 % Since the t rans fo rmat ion i s up to a s c a l e f a c to r ,
3 % what we a c t u a l l y have found i s Hl=k∗H. In order
4 % to f i nd H, we f i nd sigma2 (Hl) , and k i s the
5 % second−l a r g e s t s i n g u l a r va lue .
6

7 S = svd (H) ;
8 H = H./ S (2) ; % Recovery o f the depth f a c t o r r a t i o
9

10 % Since the s h i f t from one frame to the next i s
11 % so small , the homography can be approximated to
12 % an almost euc l i d ean 3DOF trans fo rmat ion . From
13 % t h i s assumption on , i t i s p o s s i b l e to decomposed
14 % H to f i nd [t] and [theta] . Theta w i l l be used as
15 % conf i rmat ion f o r the v i s u a l compass .
16

17 Q = H(1 : 2 , 1 : 2) ; % Rotation sub−matrix from H.
18 [U, S ,V] = svd (Q) ; % S ingu la r Value Decomposition o f Q.
19 Rd = U∗V’ ; % Orthonormal matrix c l o s e s t to Q.
20

21 he ight = 2 ; %[m] − Camera/Ground d i s t anc e
22 t = H(1 : 2 , 3) .∗ he ight ; % Trans la t i on [tx , ty] ’

At the end of the RANSAC while-cycle, a robust estimate of the homography
has been obtained. Following the model proposed by [15], the hypothesis of
ground planarity is adopted, so that it is possible to compute the real world
kinematic variables only by mean of the camera height from the ground (the full
mathematical derivation of the model is provided in Chapter 2.3 , Homography-
based ground plane navigation). According to the unified camera model in
unitary sphere coordinates, each point is defined by a vector up to a scale
factor which is a depth-parameter λ. For such reason, when the homography
matrix HL computed on the image points is employed to describe the world
kinematics, it is necessary to recover the normalisation factor such that

H = HL

λ
= HL

σ2(HL) (54)

where σ2(HL) ∈ R is the second largest singular value of the matrix HL. Such
scale recovery procedure is proved and shown in [19].

53

Euclidean hypothesis When the majority of the tracked features are en-
closed in a portion of the whole camera FoV, it is possible to think at the H
matrix as an Euclidean transformation of a plane (i.e. simple rotation and
translation of the ground). With this in mind, the estimated matrix must
assume the shape:

H =

⎡⎢⎣cos(ψ) − sin(ψ) −tx/h
sin(ψ) cos(ψ) −ty/h

0 0 1

⎤⎥⎦ (55)

where h is the vertical distance between the camera and the world reference
frame. In this regard, given h the recovery of the translation vector is straight-
forward.

T =
[
Tx

Ty

]
= h ·

[
H13
H23

]
(56)

As far as the rotation is concerned, a sub-matrix Q11→22 must be taken into
account. Actually, because of the noise induced by the outliers, the matrix Q
is unlikely to be orthonormal. In order to deal with such problem, the linear
algebra technique of SVD is employed to find the closest rotation matrix R
constrained to the orthonormality condition RRT = I.

Q = UΣVT =
[
u1 u2

] [σ1 0
0 σ2

] [
v1

T

v2
T

]
(57)

The Singular Value Decomposition returns three matrices. The matrix Σ is a
diagonal matrix which contains the eigenvalues of QT Q, whereas U and V are
the eigenvectors respectively of the matrices QQT and QT Q. The orthonormal
rotation matrix R closest to Q can be determined as

R = UVT =
[
u1 u2

] [v1
T

v2
T

]
≃
[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
(58)

Homography hypothesis When the features employed in RANSAC for
estimating H are sparse on the full camera FoV, the Euclidean hypothesis is
not accurate enough for computing back the world kinematic variables. In such
cases, it is necessary to keep a full 8DOF model of the shape:

H =

⎡⎢⎣h11 h12 h13
h21 h22 h23
h31 h32 h33

⎤⎥⎦ = h33 ·

⎡⎢⎣h11/h33 h12/h33 h13/h33
h21/h33 h22/h33 h23/h33
h31/h33 h32/h33 1

⎤⎥⎦ (59)

54

The homography is the most general transformation which can be obtained
and it is characterised by 9 entries (h11 → h33). However, in such linear
application only the relationship between each hij element is important, thus
after the matrix has been scaled by the last entry h33, only 8 unknowns are
left to be determined. The decomposition of the full homography can be
done with the Triggs algorithm [20]. The decomposition proposed by Bill
Triggs is fundamentally based on the SVD, but it returns a more robust and
stable solution in case of a homography. The possible configurations which are
obtained from H with such algorithm are four. Two of the four solutions can
be easily discarded by some geometrical considerations, however the ambiguity
cannot be completely solved for the remaining two configurations. In the present
case, the modelling of the ground plane can be used as a final discriminant to
choose the correct solution.

Figure 41: Two plausible solutions of the Triggs decomposition algorithm.

1 %% Triggs decomposit ion − Homography Hypotes i s
2 % With r e f e r e n c e to the t r i g g s () funct ion , the
3 % given H i s decomposed .
4

5 [R1 , t1 , n1 , R2 , t2 , n2 , ze ta] = t r i g g s (H) ;
6 d i s tance1 = norm(n1 − [0 ; 0 ; 1]) ;
7 d i s tance2 = norm(n2 − [0 ; 0 ; 1]) ;
8

9 i f d i s t ance1 > d i s tance2
10

11 t = t2 (1 : 2) ;
12

13 e l s e
14

55

15 t = t1 (1 : 2) ;
16

17 end

Given the homography matrix H, the Triggs algorithm returns the couple of
solutions (R1, t1, n1) and (R2, t2, n2) (line 5). In order to choose the most
appropriate configuration, we take into account the axes of rotation, namely
n1 and n2. According to the reference frame shown in Figure 41, the ground
plane is described by the vector ng =

[
0 0 1

]T
. The solution to be chosen is

the one whose plane normal ni is closer to the ground normal (lines 6-17).
Because of the considerable image distortion caused by the omnidirectional
camera, in both the euclidean and the homography hypotheses the heading
estimate is put aside, since best results have been provided by the visual
compass.

4.5 Motion integration

1 %% I n t e g r a t i o n o f the motion
2

3 T = norm(t) ∗ he ight ; % 2D vecto r o f the di sp lacement .
4

5 x (i i) = x (i i −1) + T∗ cos (heading (i i) ∗(p i /180)) ; %[m]
6 y (i i) = y (i i −1) + T∗ s i n (heading (i i) ∗(p i /180)) ; %[m]

The kinematic model adopted for the camera is the simplest possible. Each
coordinate is updated singularly by projecting the displacement vector mag-
nitude along the actual heading, previously computed by mean of the visual
compass. A first problem with such kinematic model from [15] can be found in
the way the displacement is defined (line 3). In essence, the sign of T is always
positive and such positive value increases the vehicle position (x, y) always
in the direction of the heading. As a consequence, it is not possible to track
eventual reverse gear manoeuvres.
A possible solution consists in multiplying the motion increments of both x
and y by a flag which assumes negative values when the speed changes in sign.
However, no external information about speed is available in case of pure VO
approaches, thus such limit is kept in the algorithm.

Motion enhancement Another important issue concerning the motion esti-
mate regards the background noise of the image when the vehicle is not moving.
Even in absence of motion, pixels do not stay fixed on subsequent frames
because of little vibrations, external brightness changes etc. This way, in a

56

frame-to-frame evaluation of T, it is possible that the noise integration causes
an apparent motion. Such problem arises if the subject noise is not a zero-mean
noise. The non-zero-mean hypothesis has been confirmed experimentally.
In order to avoid the apparent motion triggered by the image noise, it is possible
to make a statistical study on the frame-to-frame displacements of the features
for some random frames taken from the dataset.

Figure 42: The first row shows a statistics of the features displacement in
absence of motion. The other pictures represent the features movements in a
motion condition.

57

Once a trend has been identified, it is possible to instantiate the motion only if
a given percentage of features in the image shifted more than a threshold value.
From the analysis of the histograms it is not easy to understand how to set
a threshold for enabling the motion integration. The main issue regards the
presence of outliers (fake matchings) which rescale the histogram distribution
such that every value around zero is not detected because of a decrease in the
columns resolution.
In order to deal with such an issue, it is necessary to choose a more robust
statistics. On one hand, the usage of the mean value would not return a reliable
estimate because of the presence of outliers with a huge value of displacement.
Conversely, the median can be employed to obtain a sort of trend of the features
displacement in several motion conditions. This time, instead of sampling the
dataset frames it is required to use the whole sequence in order to get a
continuous line which represent the median of the shift as a function of the
number of frame.
The beginning of the real motion must be detected directly by the user watching
the camera frames or even by the analysis of the vehicle speed trend (other
sensors must be involved). With this in mind, it has been established that
the Polaris platform starts the driving nearby the frame #60. The next step
consists in checking the median value corresponding to the 60th frame and
formulate a condition to enable the motion integration.

Figure 43: On the left, the median trend over 1000 frames. On the right, a
detail of the threshold for motion beginning.

From the median trend analysis it is now clear that the motion can be enabled
when the median of the features displacements assumes a value of about 0.2.
Supposing that even in presence of a real motion not every feature undergoes
to a displacement above the threshold limit, it is reasonable to establish that
at least the 70% of the whole features set must be over the threshold.

58

1 %% Motion cond i t i on
2

3 p i x e l _ d i f f = sq r t ((pts1 (1 , :)−pts2 (1 , :)) . ^ 2 + . . .
4 (pts1 (2 , :)−pts2 (2 , :)) .^2) ;
5

6 motion_flag = sum(p i x e l_ d i f f >0.2) / l ength (p i x e l _ d i f f) ;
7

8 i f motion_flag >= 0.7
9

10 % [Visua l Compass]
11

12 % [RANSAC]
13

14 % [Homography decomposit ion]
15

16 % [Motion i n t e g r a t i o n]
17

18 e l s e
19

20 % The d i r e c t i o n i s kept unvar ied with r e sp e c t to
21 % the one computed on the prev ious frames .
22 heading (i i) = heading (i i −1) ;
23

24 % No t r a n s l a t i o n occurs .
25 T = 0 ;
26

27 end

In order to save the time needed for the computation of all the kinematic
variables (Visual Compass, RANSAC, Homography Decomposition and Motion
Integration), it is a good choice to check the motion flag (line 8) suddenly after
the features coordinates extraction.

4.6 Results
After all the previous steps have been accomplished, it is possible to visualise
the path reconstruction coming out from the pure VO approach. From Figure
44 it is suddenly clear that the absolute scale of the path has not been recovered
properly. Moreover, some issues about the relative scale are also detectable,
since neither the shape of the the path has been properly predicted. After a
careful evaluation of the results, it is possible to address such failure to the
camera model.

59

Failure factors There are two main sources of error which influence the final
result: the former is the adopted VO technique which affects the relative scale,
while the latter is the chosen omnidirectional camera set-up which brings about
a wrong recovery of the absolute scale.

Figure 44: Comparison between the VO estimate and the GPS estimate, which
is assumed to be the ground truth.

After a careful analysis of the features extraction process, it is remarkable to
highlight that the most of the key points are tracked on the background (i.e.
trees, buildings, other vehicles) and only a very small subset regards only the
ground plane.

60

Figure 45: The great part of the tracked features are outliers, thus the RANSAC
algorithm fails in estimating a good homography matrix based on the ground
planarity.

Such issue affects the hypothesis of planarity of the ground and so it causes
a wrong perception of the plane movements during the homography estimate
in the RANSAC process. Indeed, though a RANSAC approach is robust to
eventual outliers, it is anyway required that a good part of the key points are
valid enough to define a model. A possible solution to the presented problem
could be the change of the camera FoV, such that a greater portion of the
image plane faces in the ground direction. To do that, a part of the Polaris
equipment should be moved and the overall centre of mass should be re-defined.

Another important issue regards the lack of the absolute scale recovery. Such
problem is addressed to the omnidirectional camera set-up and it can be easily
verified by mean of the Ocam Calib Toolbox by D. Scaramuzza [13]. Instead of
making use of the custom-made AffineTrans.m Matlab function, it is possible
to obtain such estimate directly from the toolbox itself. The refinement of the
calibration parameters can be obtained after the functionality "Find centre"
has completed its iterations. However, it seems that the number of iterations
needed to find the camera centre tends to a very high value and the estimate
practically never converges.

Recalling the theory on omnidirectional catadioptric camera in Chapter 2,
there are two main categories according to the camera-mirror coupling:

1 - Non-degenerate configurations are obtained when an orthographic cam-
era is coupled with a parabolic mirror or when a perspective camera is
couple with hyperboloidal, ellipsoidal, planar mirrors. Such assembly can
be modelled with the single effective viewpoint assumption.

61

2 - Degenerate configurations are obtained when a perspective camera is
coupled with either a spherical or a conical mirror. Such set-up does not
presents a single viewpoint.

The actual set-up of the Polaris platform offers a perspective camera coupled
with a parabolic mirror, thus the mathematical model employed for describing
the projection and re-projection of the features cannot be considered valid.
This way, the Taylor polynomial defined in the calibration phase is not correct,
thus the key points coordinates u′ are incorrectly normalised onto the unit
vector q′′. Such error propagation is the same for every image point, thus it
affects the final result in the same way. All in all, it results to an improper
absolute scale estimate.

For all the reasons mentioned so far, the actual Polaris equipment does not
allow a pure VO method in order to deal with the self-localisation problem. In
order to cope with such problem, it is possible to slightly modify the application
in order to avoid the trust on a feature matching procedure.

62

5 Hybrid Visual Odometry

In this chapter some modifications to the application developed so far are made.
In the previous chapter, it has been realised that the current Polaris equipment
is not fully prepared for a pure VO application. In the following pages a
Hybrid Visual Odometry is presented in order to accomplish to the platform
self-localisation problem.

5.1 HVO framework
A wrong camera mathematical model denies the feature-based procedure which
has been employed to estimate the translation vector T (features extraction,
RANSAC estimate, homography decomposition). Conversely, the estimate of
the vehicle heading has been assigned to the visual compass, which is a direct
visual approach without any dependence on the camera model. With this in
mind, it is possible to decouple the direction and the translation of the Polaris
platform. A sketch of the solution is proposed in Figure 46.

Figure 46: Framework of the proposed Hybrid Visual Odometry application.

The visual compass works at a frequency of 10 Hz since it is subjected to the
camera frame rate, whereas the speed estimate which comes from the filtered
odometry has a smaller integration step. As a consequence, the first issue to be
solved is the synchronisation of the two sources of data in order to obtain one
speed information and one yaw angle at each machine cycle. Since no HW/SW
Integration will be treated in the following research work, the synchronisation
problem is momentarily crossed with a linear interpolation of the speed data,
in order to establish a one-to-one relationship with the information coming
from the visual compass.

63

5.2 Linear speed estimation (EKF)
The real model of an autonomous mobile robot is actually a non-linear model.
When the non-linearities are not predominant on the platform dynamics, it is
always preferable to linearise the model and to employ a conventional Kalman
Filter (KF) for estimation purposes.
Vice versa, some non-linearities cannot be ignored and so two approaches can be
adopted in order to accomplish to estimation tasks: an Extended Kalman Filter
(EKF) or a Particle Filter (PF). The former is the most employed approach in
Robotics because of its computational efficiency. Conversely, the PF is preferred
when dealing with non-Gaussian highly non-linear systems.

In the following application the linear speed information is obtained by EKF,
exploiting the other proprioceptive sensors on the Polaris platform (e.g. IMU,
Encoders). The EKF framework can be described with three main steps: state
representation, design of a measurement model and update step. The ROS
implementation of such procedure has been already presented in [7]. Graphical
results are provided in Figure 47.

Figure 47: On the left, the trend of Vx and Vy in the world reference frame. On
the right, the speed modulus ∥V∥ throughout the whole dataset.

5.3 Motion integration
The motion integration model already shown in Subsection 4.5 needs to be
changed a little when passing from a pure VO to a HVO approach. At first,
the translation vector T, thus its norm, is no longer available since it was
computed by mean of a feature-based method. However, the knowledge of the
linear velocity allows to estimate the frame-to-frame displacement assuming
constant speed in the inter-frame period. This way, the time spent from one

64

frame to the next one (reciprocal of the camera frame rate) defines the length
of the model integration interval.

x(k + 1) = x(k) + ∥V∥
fcamera

· cosθ (60)

y(k + 1) = y(k) + ∥V∥
fcamera

· sinθ (61)

5.4 Results
The hypothesis of constant speed in the 1/fcamera interval is stronger with
higher camera working frequencies. In the present case, the weight of the
Polaris vehicle does not allow a dynamics faster than 10Hz, so the employed
frame period of 0.1s is more than sufficient to properly describe the platform
kinematics. The Model-In-the-Loop results of the designed application are
provided in Figure 48.

Figure 48: Path estimate with 0.5× image resolution and a visual compass
window scanning ±13 pixels laterally.

From the results, it is suddenly evident that the algorithm returns a good
estimate only in the first hundred of meters, then it completely degenerates in
proximity of the U-shaped bend.
Recalling Chapter 4.2, it is evident that the pixels range implemented in the
visual compass is still not sufficient for detecting such a steering action. With
this in mind, it is suggested to proceed empirically for the correction of the
visual compass parameters, i.e. the compass range and the image resolution, in
order to find the combination which best fits the ground truth. With reference

65

Figure 49: Path estimate with 0.5× image resolution increasing the compass
range from [−13, 13] to [−20, 20] pixels.

to the results provided in Figure 49, it clearly comes up that the increase of the
compass range brings about an impoverishment of the performance. Indeed,
the analysis of a large lateral portion of pixels could cause a flatness of the
integral images values, thus the search of the right shift gets even harder.
Another attempt can be done by reducing the image resolution from 0.5× to
0.25×, and check two other compass range suitable for that scale.
The ranges of [−13, 13] and [−7, 7] have been tested and the results are provided
in Figure 50.

Figure 50: Path estimate with 0.25× image resolution and visual compass
ranges of [−13, 13] and [−7, 7] pixels.

66

Among all the parameters variations tested, the best result is obtained when
an image resolution of 0.25× is coupled with a visual compass whose range
is [−7, 7] pixels (yellow path). Though the obtained results represent a good
estimate of the proposed ground truth, it is remarkable to analyse the heading
trend in order to highlight the points at which the precision is weakened.

Resolution Compass (pixels) RMSx (m) RMSy (m) RMSθ (deg)
0.5× −20 < p < 20 80.19 20.46 11.49
0.5× −13 < p < 13 61.40 14.29 6.900
0.25× −13 < p < 13 92.66 21.62 13.70
0.25× −7 < p < 7 43.59 15.16 5.721

Table 1: Results obtained with several combinations of the parameters.

Analysis of the error Once the best setting has been chosen (0.25× Res,
[-7,7] Compass range), it is recommendable to analyse the error distribution in
order to detect eventual systematic defects of the designed application. The
worst estimates of the platform direction occur when the vehicle is on a straight
path. However from Figure 51 it is clear that the estimate is not completely
wrong, but it presents an offset. With this in mind, it is clear that the initial
and the final steps of a bend are not properly detected because of the low
precision of the visual compass method (precision of 1 pixel in a range of [−7, 7]
pixels). This problem can be considered as a drawback of the resizing of the
image and it is the cost to be paid in order to speed-up the application for a
real-time usage.

67

Figure 51: It is visible that the most notable shift from the ideal heading occurs
after a bend. The worst heading estimates are highligthed in red.

In order to evaluate the path estimate directly on the real track, in Figure
52 the numerical results obtained from a Matlab script are overlapped on a
satellite image. With respect to the dataset employed for VO problems, the
one presented is rather challenging, thus results can be said rather satisfying.

Figure 52: Comparison between numerical results and the real track shape.

68

6 Software-In-the-Loop

Once the best setting for the application has been found, it is possible to fix the
parameters and move towards the architecture definition. In order to generate
a C++ source for ROS, it is necessary to distinguish which lines of the code are
part of the HVO function and which ones accomplish to external functionalities
(e.g. sending the images from the camera).

6.1 Software framework
Starting from the Matlab script, it is possible to collect some pieces of the
code in subsections according to several levels of organisation. In order to
distinguish the code addressed to a pure odometry purpose from external
auxiliary functionalities it is necessary to understand at which level a given line
must be addressed. The general script framework is presented in Figure 53.

Figure 53: Organisation levels of the Matlab model.

The first block titled Dataset from camera contains the raw images directly
extracted from the camera.bag file from ROS. In such section the image is
encoded in order to be sent to the application box. Such piece of code has
been written in order to simulate the camera behaviour and a memory element
which allows to save the previous frame and send to the next stage a couple of
subsequent frames.
The light blue box HVO Application contains all the lines which are addressed
only to odometry purposes. At this stage, the images are decoded and trans-
formed in unsigned integer 8-bit matrices. Once the information have been

69

extracted, the application returns two motion parameters: the absolute dis-
placement ρ computed in the inter-frame period and the yaw estimated by
the visual compass ψ. In order to avoid the occupancy of memory inside the
application itself, the Motion Integration is thought to be made on a separate
box which also provides a user interface.

6.2 HVO.m Matlab file
According to the subdivision made in the last section, the portion of the code
to be separated and generated in a C++ source is the HVO Application, whose
content is specified here below.

1 f unc t i on [rho , yaw] = HVO(cam_time1 , cam_time2 , . . .
2 frame1 , frame2 , vx , vy)
3

4

5

6 %% Preproce s s ing o f the images r e c e i v ed
7

8 % In order to speed−up the computation , we
9 % s c a l e by 4 the image r e s o l u t i o n . The ac tua l

10 % image dimension i s expected to be 1236 x1628
p i x e l s .

11 % The low−r e s o l u t i o n ve r s i on i s expected
12 % to be 309 x407 p i x e l s .
13

14 img1 = i m re s i z e (frame1 , 0 . 25) ;
15 img2 = i m re s i z e (frame2 , 0 . 25) ;
16

17 %% Visua l Compass f o r g e t t i n g the yaw
18 %% angle (frame−to−frame)
19

20 % Since the camera cent e r i s not we l l de f i ned
21 % because o f problems o f c on s t ru c t i on (i . e .
22 % p e r p e n d i c u l a r i t y o f the axes , o r thogona l i t y o f

the
23 % image plane e tc) , we measure the s t e e r i n g by

mean
24 % of two windows (above below the supposed camera
25 % cente r) . The f i n a l output i s a mean value .
26

27 a l f a = −7:7; % Pos s i b l e s h i f t in p i x e l s

70

28 diff_down = ze ro s (l ength (a l f a) , 1) ;
29 di f f_up = ze ro s (l ength (a l f a) , 1) ;
30

31 f o r a = 1 : l ength (a l f a)
32

33 diff_down (a) = sum(sum(img1
(238 : 273 , 179 : 229) . . .

34 − img2 (238:273 ,179+ a l f a (a) :229+ a l f a (a))
)) ;

35 di f f_up (a) = sum(sum(img1 (50 : 120 , 179 : 229)
. . .

36 − img2 (50:120 ,179+ a l f a (a) :229+ a l f a (a)))
) ;

37

38 end
39

40 sqrdi f f_down = sq r t (double (diff_down)) ;
41 sqrd i f f_up = sq r t (double (di f f_up)) ;
42

43 [~ , ind_down] = min (sqrdi f f_down) ;
44 [~ , ind_up] = min (sqrd i f f_up) ;
45

46 % Once we get the number o f s h i f t in p ixe l , one
47 % wants to pass in degree s and so i t i s nece s sa ry
48 % to mult ip ly each r e s u l t s by a gain (p r a c t i c a l l y ,
49 % a dens i ty o f deg/ p i x e l) . Such va lue s are

computed
50 % accord ing to the mean−rad iu s c i r cumfe r ence

pas s ing
51 % through the cent r e o f the windows .
52 % C = 2∗ pi ∗r_mean ===> dens i ty = 360/C
53

54 d_up = −0.5406;
55 d_down = 0 . 5354 ;
56

57 yaw_up = a l f a (ind_up) ∗ d_up ;
58 yaw_down = a l f a (ind_down) ∗ d_down ;
59

60 % Estimate o f the frame−to−frame s t e e r i n g
61 yaw = (yaw_up + yaw_down) / 2 ;
62

63

71

64 %% Absolute s c a l e r ecovery
65

66 v = sq r t (vx^2 + vy^2) ; %[m/ s] Speed module
67 dt = cam_time2 − cam_time1 ; %[s] I n t eg r . time
68

69 rho = v ∗ dt ; %[m] Absolute r e a l d i s t anc e dr iven
70 % in the frame−to−frame i n t e r v a l
71

72

73 end

The first arguments which the HVO.m function receives are the camera times
at which each frame is taken. Instead of fixing the camera rate, a more robust
solution is to estimate the inter-frame period directly by difference (line 67),
since some external factors could affect the camera working condition. In such
case, the frequency may change a little. Secondly, a couple of subsequent
frames are obtained, as well as the speed components Vx and Vy filtered from
the already implemented EKF.

6.3 Matlab EXecutable (MEX)
Once the model is defined and optimised, it is possible to iterate between the
SW Design and the Code Generation steps of the V-shaped process. In such
phase, it is required to generate according to the language supported by the
target platform. This process is named after Software-In-the-Loop (SIL). In
this regard, the application is written in C++, whereas the rest of the actors
are still in the shape of Matlab files.

Figure 54: Matlab EXecutable concept for SIL tests.

72

The Matlab Coder functionality allows to test the application directly written
in the target platform language. It can be done by generating the target code
and then creating an internal environment in which such code can be executed.
The reason why it is necessary to test the code written in the target language
is to be addressed to eventual modifications automatically made by the coder
which could affect the performances of the application (e.g. the change in the
variables type).

6.4 Code generation and Performances
In order to test and compare the performances from MIL to SIL, it is required
to create a test bench on the simulation environment in which the generated
function is called. At this step it is not necessary to test the whole dataset but
a significant bunch of frames are enough in order to verify if the the path is
estimated likewise.

1 %% ================== HVO TEST =======================
2

3 f o r i = 2 : 1000 % No . o f frames
4

5 % Image decoding
6

7 img1 = copyImage (msgCam{ i −1}) ;
8 img2 = copyImage (msgCam{ i }) ;
9

10 img1 = readImage (img1) ;
11 img2 = readImage (img2) ;
12

13 % =========== Function c a l l ================
14

15 [rho , yaw] = HVO(time (i −1) , time (i) , . . .
16 img1 , img2 , vx (i) , vy (i) , df , range) ;
17

18 [rho , yaw] = HVO_mex(time (i −1) , time (i) , . . .
19 img1 , img2 , vx (i) , vy (i) , df , range) ;
20

21 % ==
22 end

The automatic code generation produced a C++ application whose perfor-
mances in terms of estimate perfectly follow in the steps of the HVO.m script.
The last check to be done regards the execution time. It is remarkable to

73

remind that the final aim of the produced algorithm is to be run real-time
directly on the Polaris platform in order to accomplish to the self-localisation
problem. The final test which is needed to assure a real-time execution will be
made in an HW/SW Integration phase, however at this stage it is important
to guarantee that the execution time is at least lower than the camera working
frequency.

Figure 55: On the left, a comparison between the generated application results
and the estimate made in the Model-In-the-Loop phase. On the right, the
trend of the execution times both in Matlab and C++ shape.

74

To estimate the execution time it is possible to make use of the Matlab tic()
and toc() functions right before and after the function call. Both the Matlab
file and the generated C++ code are tested and the respective execution time
is reported in Figure 55.
It is clear that the generated code HVO.mex requires a longer execution time
with respect to the original model designed in the Matlab environment HVO.m.
Indeed, the mean execution time is doubled from 0.0134s to 0.0258s. In terms
of frequency it means that the Matlab function is able to process each couple
of frames at a frequency of about 74Hz, while the MEX application guarantees
a correct functioning not over the frequency of 38Hz. In any case, the obtained
results are rather satisfying since the working frequency of the camera has
been previously fixed at about 10Hz. Practically, it means that the odometry
parameters are computed in about 1/4 of the frame-to-frame period.

75

7 Conclusion

7.1 Summary
The main purpose of this research work is the design of an application to
accomplish to the self-localisation problem of the Polaris platform. In the
Introduction, we presented the basics of Computer Vision which are necessary
to follow the subsequent treatment. Particular attention is addressed to the
feature tracking problem as well as to some direct approaches such as the
Lukas-Kanade-Tomasi algorithm. In the same chapter, a presentation of the
experimental platform is provided with a particular remark on the description
of the mounting sensors. Finally, the adopted V-shaped process is presented
and the research work framework is fixed.

The second chapter puts under the limelight the adopted camera model and
gives a detailed presentation of the State-of-the-Art of Visual Odometry algo-
rithms. A clear distinction is made between a pure VO approach and some
Hybrid VO methods which make use of sensors other than camera. The pure
VO approach has been presented in [14] and [15]. The former compares the
performances returned by both an Optical Flow and the implementation of an
Iterated Extended Kalman Filter and promotes the second method, though it
requires a higher computational demand. The latter simplifies the estimation
problem assuming the hypothesis of ground-planarity and ensures a real-time
application. As a drawback, the implementation of the last procedure might
bring to a failure if the majority of the features are not tracked on the ground.
At the moment, more robust approaches fuse the camera information with other
on-board sensors. Such methods are named after Hybrid Visual Odometry. In
[16], only the heading is computed from the camera by a 1-Point-RANSAC al-
gorithm, which makes use of the non-holonomic constraints in order to simplify
the model and speed-up the execution.

In the third chapter, a first attempt of Camera calibration is proposed by
mean of the Ocam Calib Toolbox [13]. The toolbox returns the Taylor poly-
nomial calibration coefficients, while the affine transformation as well as the
normalisation onto the unit sphere are implemented in custom-made Matlab
functions. In the same chapter, the needed Image pre-processing procedure
is described. The main steps are: RGB-to-Grey conversion, image resolution
definition and a mask filter to reject useless image portions.

In the fourth chapter, a proposal of Pure VO application is provided. The
design is mainly based on the ground-planarity method explained in [15]. The

76

full VO process can be listed as: features tracking, yaw detection by visual
compass, model estimation by RANSAC, homography decomposition and mo-
tion integration. However it came up that the actual Polaris equipment is not
suitable for pure VO methods, since the coupling camera-mirror is a degenerate
configuration with no single effective viewpoint. As a result, the absolute
path scale has not been recovered. Moreover, the majority of the features are
tracked on the background because of the camera FoV, thus not enough data
are returned to properly estimate the homography matrix.

In the fifth chapter, we stepped from a pure VO to a Hybrid Visual Odometry
which makes use of the visual compass to estimate the platform heading and
recovers the speed information from an EKF which fuses the other on-board
sensors estimates. Several settings regarding a different combination of image
resolution and compass ranges are tested. Finally, the best result is obtained
after scaling of 1/4 the image size and looking for a lateral shift in a range of
[−7, 7] pixels. In the end, an overall analysis is carried out and possible sources
of errors are highlighted.

Once the MIL simulations returned the wished results, in the sixth chap-
ter we stepped into a Software-In-the-Loop phase. At this stage, it is required
to define the software architecture and to separate the piece of code which
must be turned into a C++ source suitable for a ROS implementation. The
generation is made by mean of the Matlab Coder application and the simula-
tions are carried out by calling the C++ source under the shape of a MEX file.
Finally, performances are tested with an appropriate bench test script. Results
are outstanding as far as the precision in the estimate is concerned. As the
execution time is regarded, the generated application is able to compute the
odometry parameters from a couple of frames at the rate of 38Hz. Given a
camera working frequency of 10Hz, results can be said satisfying.

7.2 Future challenges
At the end of the presented research work, it is possible to say that the Polaris
Ranger platform is now able to deal with the self-localisation problem with
a good accuracy. With respect to the State-of-the-Art scientific papers, the
ground truth employed for testing the VO and HVO applications is rather chal-
lenging, thus even better performances are expected on less sophisticated tracks.

One of the main issues regarding the developed algorithm is the high specificity
of the chosen parameters. It means that such configuration returns good path
estimates if the camera configuration and the relative FoV are kept unvaried.
The change of such settings implies the necessity to re-calibrate the visual

77

compass box position. As it regards, it is recommendable to develop an optimi-
sation algorithm which is able to compute the optimum box position according
to a pre-established path every time the odometry functionality is called for
the first time.

If one wants to implement a pure VO functionality, it is of primary importance
the correction of the camera-mirror coupling. In order to tone down the cost of
the modification, it is not recommendable to change the perspective camera
with an orthographic one. A first solution can be the reduction of the camera-
mirror distance. Though a perspective projection is subjected to a vanish point,
if the zoom is high enough, it can be easily confused with an orthographic
projection. A simplified example is shown in Figure 57.

Figure 56: On the left, an example of orthographic projection where no depth
factor is detectable. On the right, a perspective projection example with a
vanish point and a depth definition. A zoom on a perspective projection assumes
similar characteristics of an orthographic projection.

If such correction is not enough, the best solution is the change of the mirror.
According to the study conducted by Baker and Nayar in 1998, a non-degenerate
configuration can be obtained by putting together a perspective camera with
a hyperboloidal, planar or ellipsoidal mirror. Following in the steps of [16], it
is possible to replace the current parabolic mirror with a KAIDAN 360 One
VR hyperbolic model. The verification of the SVP property can be lead by the
Ocam Calib Toolbox "Find Centre" functionality. If a single viewpoint exists,
the implemented optimisation process will return the image plane centre after
a finite and relative small number of iterations.

78

References
[1] Sherif A. S. Mohamed et al., “A Survey on Odometry for Autonomous

Navigation Systems”, IEEE Access, 6 Aug. 2019.

[2] R. Szeliski, “Computer Vision: Algorithms and Applications”, Springer, 3
Sept. 2010, pp. 207-237.

[3] S. Lazebnik, “Corner detection”, Computer Vision course slides, University
of Illinois, 7 Feb. 2019, refer to slazebni.cs.illinois.edu.

[4] R. Hartley, A. Zisserman, “Multiple View in Computer Vision”, Second
edition, Cambridge University Press, 2003, pp. 239-247.

[5] B. D. Lukas, T. Kanade, “An iterative image registration technique with
an application to stereo vision”, in Proc. 7th Int. Joint Conf. Artif. Intell.
(IJCAI), vol. 2, San Francisco, 1981, pp. 674-679.

[6] Polaris Inc., “Device Description of Polaris Ranger EV”, refer to https:
//ranger.polaris.com/en-us/ranger-ev/.

[7] T. Badar, “Implementation of the autonomous functionalities on an electric
vehicle platform for research and education”, M.Sc. Thesis, Pakistan, 20
May 2019, pp. 1-4 and 36-44.

[8] V. Kukkonen et al., “Perception Platform for Autonomous Vehicles”,
Project Work course, Aalto University, 22 May 2017.

[9] P. Bing, S. Wentao, L. Gilles, “Effect of camera temperature variations
on stereo-digital image correlation measurements”, The Optical Society,
Applied Optics, 2015.

[10] D. Scaramuzza, “Omnidirectional vision: from calibration to robot motion
estimation”, PhD Thesis, ETH Zurick, 2008, pp. 9-46.

[11] B. Micusik, “Two View Geometry of Omnidirectional Cameras”, PhD
Thesis, Center for Machine Perception, Czech Technical University in
Prague, 2004.

[12] C. Geyer, K. Dandiilidis, “A unifying theory for central panoramic
systems and practical applications”, European Conference on Computer
Vision (ECCV), Jun. 2000, pp.445-461.

[13] D. Scaramuzza, A. Martinelli, R. Siegwart, “A Toolbox for Easy Cal-
ibrating Omnidirectional Cameras”, Proceedings to IEEE International
Conference on Intelligent Robots and Systems (IROS 2006), Beijing China,
7-15 Oct. 2006.

slazebni.cs.illinois.edu
https://ranger.polaris.com/en-us/ranger-ev/
https://ranger.polaris.com/en-us/ranger-ev/

79

[14] P. Corke, D. Strelow, S. Singh, “Omnidirectional Visual Odometry for a
Planetary Rover”, Robotics Institute, Pittsburgh, USA, July-Oct. 2003.

[15] D. Scaramuzza, R. Siegwart, “Appearance-Guided Monocular Omnidirec-
tional Visual Odometry for Outdoor Ground Vehicles”, IEEE Trans. on
Rob. vol. 24 no. 5, 18 May 2014.

[16] D. Scaramuzza, “1-Point-RANSAC Structure from Motion for Vehicle-
Mounted Cameras by Exploiting Non-holonomic Constraints”, Springer
Science, Int. J. Comput. Vis., 7 Apr. 2011.

[17] D. Tyagi, “Introduction to SURF (Speed-Up Robust Features)”, Data
Breach, 20 Mar. 2019, refer to https://medium.com/data-breach/
introduction-to-surf-speeded-up-robust-features-c7396d6e7c4e

[18] P. Thipkham, “Image Processing Class #5 - Edge and Contour”, Towards
Data Science, 26 Dec. 2018, refer to https://towardsdatascience.com/
image-processing-class-egbe443-5-edge-and-contour-d5d410f4483c

[19] Y. Ma, S. Soatto, J. Kosecka and S. Sastry, “An Invitation to 3D Vision:
From Images to Models”, Springer-Verlag, New York, Dec. 2003.

[20] B. Triggs, “Autocalibration from Planar Scenes”, European Conference on
Computer Vision (ECCV ’98), Freiburg, Germany, Jun. 1998, pp.89-105.

[21] D. Nister, “An efficient solution to the five-point relative pose problem”,
IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 6, pp. 756-770.

[22] S. Baker, S. Nayar, “A theory of single-viewpoint catadioptric image
formation”, International Journal of Computer Vision, 1998.

https://medium.com/data-breach/introduction-to-surf-speeded-up-robust-features-c7396d6e7c4e
https://medium.com/data-breach/introduction-to-surf-speeded-up-robust-features-c7396d6e7c4e
https://towardsdatascience.com/image-processing-class-egbe443-5-edge-and-contour-d5d410f4483c
https://towardsdatascience.com/image-processing-class-egbe443-5-edge-and-contour-d5d410f4483c

	Abstract
	Contents
	Preface
	1 Introduction
	1.1 Background
	1.2 Objectives
	1.3 Procedure

	2 State-of-the-Art
	2.1 Camera model
	2.2 Camera calibration
	2.3 Pure VO approaches
	2.4 Hybrid VO approaches

	3 Camera calibration & Image pre-processing
	3.1 Camera calibration
	3.2 Image pre-processing

	4 Pure Visual Odometry
	4.1 Features extraction and matching
	4.2 Visual compass
	4.3 Random Sample Consensus
	4.4 Homography decomposition
	4.5 Motion integration
	4.6 Results

	5 Hybrid Visual Odometry
	5.1 HVO framework
	5.2 Linear speed estimation (EKF)
	5.3 Motion integration
	5.4 Results

	6 Software-In-the-Loop
	6.1 Software framework
	6.2 HVO.m Matlab file
	6.3 Matlab EXecutable (MEX)
	6.4 Code generation and Performances

	7 Conclusion
	7.1 Summary
	7.2 Future challenges

	References

