
Politecnico di Torino

Master of Science Degree in MECHATRONIC ENGINEERING

Master Thesis

Autonomous recognition and pose
estimation in dusty environment for

space application

Supervisors:
prof. Marcello Chiaberge

Candidate:
Gabriele Gennaro

S253757

Academic year 2019-2020

Abstract

Robotics plays a central role in space exploration since the beginning of the famous
«space race». In particular, Artificial Intelligence development allowed several chal-
lenging missions and supported scientist and astronauts in the spacecraft control, au-
tonomous navigation or in object detection tasks.
In 2018, NASA provided 330k $ to a researchers team, aiming to develop an intelligent
system able to navigate amid the debris, detecting and avoiding them . During same
year a partnership between NASA and Intel helped astronauts during their training
phase for their mission. Researchers trained a neural network with thousands of Moon
images in order to create a virtual moon environment and compare it with the local
environment .
Nowadays one of the most significant space challenge for humanity is Mars exploration.
In 1965 Mariner 4 performed a movement called flyby, passing in the vicinity of Red
Planet and capturing a close-up picture of it. That was the very first picture of Mars
from so close. The Mariner was a robotic craft of small size and its purpose was to ex-
plore Mars,Venus and Mercury. During the years, martian mission have become more
and more sophisticated , driven by incredible technological advancement especially in
autonomous system. Successful examples of how intelligent machines play a pivotal
role in space exploration are the Spirit and Opportunity rovers. Involving object de-
tection algorithm and autonomous navigation, mars rovers have managed to perform
geological analyses trough their portable laboratories on the spot . It is considered one
of the most successful mission for NASA .
The evolution of the study of Mars characteristic has lead to “Mars Sample Return”
mission. The scope of this mission is to pick samples , pre-filled with martian soil and
gas, and bring them to Earth, in order to analyse samples with more complex instru-
ments than the previous mission. This project represents a fundamental step towards
an overall comprehension of the past history of Mars and the possibility to contemplate
a human colonization.
In this thesis project, an autonomous recognition system is proposed as possible solu-
tion for the picking task of the MSR rover. The system has to detect the sample and
perform a pose estimation in order to collect information for the picking phase. Tech-
nological limits related to spaceflight and Mars environment factors have been taken
into account aiming to create a system designed for a real application .

i

Contents

1 Introduction 1
1.1 Research objective . 1
1.2 Research project background . 1

1.2.1 Company introduction . 1
1.2.2 Mars Sample Return mission . 2
1.2.3 R.O.X.Y. facility . 3

2 Preliminary studies 4
2.1 Mars conditions . 4
2.2 Target . 6
2.3 Possible solutions . 6

2.3.1 Template matching approach 6
2.3.2 3D model approach . 7
2.3.3 Other approaches . 7
2.3.4 Deep learning approach . 7

3 Machine learning 9
3.1 History of machine learning . 9
3.2 Key concepts in machine learning . 12

3.2.1 Threshold logic unit (TLU) . 12
3.2.2 Perceptron . 13
3.2.3 Framework of Neural Networks 14
3.2.4 Gradient Descent . 15
3.2.5 Stochastic Gradient Descent . 17
3.2.6 Back-propagation algorithm . 18

3.3 Neural network . 19
3.4 Neural network problems . 20

3.4.1 Neuron saturation . 20
Learning Slowdown in the Final Layer 20
Weights and Biases Initialization 21

3.4.2 Data overfitting . 21
Dividing Data . 21
Artificially Expanding the Training Data 22

ii

Contents

Regularization Techniques . 22
Dropout . 23

3.5 Deep learning . 23
3.5.1 Convolutional neural networks 23
3.5.2 Key elements . 24
3.5.3 Stride and padding . 25
3.5.4 Feature map . 26
3.5.5 Pooling layer and max pooling 26
3.5.6 Convolutional neural network architecture 27

4 Object detection 28
4.1 Introduction of object detection . 28

4.1.1 Object Detection framework . 29
4.2 Evolution of object detection . 29

4.2.1 Haar Feature-based Cascade classifiers 29
4.2.2 Histogram of Oriented Gradients (HOG) 30
4.2.3 Regional CNN (R-CNN) . 32
4.2.4 Fast regional CNN (Fast R-CNN) 33
4.2.5 Faster regional CNN (Faster R-CNN) 34
4.2.6 Single Shot Multibox Detector (SSD) 34

5 YOLO 36
5.1 YOLO . 36

5.1.1 How it works . 36
5.1.2 Network Design . 37
5.1.3 Loss Function . 37
5.1.4 Inference . 39
5.1.5 Limits . 39

5.2 YOLO 2 . 39
5.2.1 Accuracy Improvements . 40
5.2.2 Batch Normalization . 40
5.2.3 High Resolution Classifier . 40
5.2.4 Convolutional with Anchor Boxes 41
5.2.5 Dimension Clusters . 41
5.2.6 Direct location prediction . 41
5.2.7 Fine-Grained Features . 43
5.2.8 Multi-Scale training . 43
5.2.9 Architecture Design . 43
5.2.10 Hierarchical classification . 44

5.3 YOLO 3 . 45
5.3.1 Prediction . 45
5.3.2 Feature Extractor . 46
5.3.3 Performance . 46

iii

Contents

6 Metrics 48
6.0.1 IoU . 48
6.0.2 Confusion Matrix . 49
6.0.3 Precision and Recall . 50
6.0.4 Average Precision(AP) and mean Average Precision(mAP) . . . 51

mean Average Precision . 52

7 Sensors and embedded system 53
7.1 Camera . 53
7.2 Hardware components . 57

7.2.1 Camera . 57
7.2.2 Board . 60

8 Software and tools 62
8.1 ROS and packages . 62
8.2 Google Colab . 64

9 Implementation 65
9.1 Dataset . 65
9.2 Network modification and Training . 67

9.2.1 Custom Models . 68
9.3 3D coordinates estimation . 68

10 Results and conclusions 70

iv

Chapter 1

Introduction

1.1 Research objective
The aim of this thesis project is to develop an autonomous recognition and pose esti-
mation system for Mars Sample Return mission. The latter is the last programmed
Mars mission and it will take during the 2026 launch window. It is the evolution of
the famous Mars Exploration Rover mission in which martian rovers had to perform
geological analyses on soil and rocks on Mars ground trough their portable laboratory.
In this new challenging mission researchers’s point of view is totally changed : the
analyses will not take place on the spot , but they will be carried on in laboratories
on Earth. In fact, during the mission, rover’s purpose will be to pick samples filled
with martian soil and rocks and bring them back on Earth. So far, no sample has been
studied on Earth and it is an hard challenge due to numerous risk factors.
With the purpose to develop a feasible solution, martian environment conditions and
technological spaceflight constraints represent an hard obstacle to overcome considering
peculiar limits, e.g. a space qualified on-board computer to work with that can bear a
spaceflight and related cosmic rays, martian lighting condition and a dust environment
with frequent extreme weather phenomena.

1.2 Research project background

1.2.1 Company introduction
Thales Alenia Space is a joint-venture specialized in the sector of space telecommuni-
cation equipment, satellite-based system and space exploration; for example, its con-
tributions has been fundamental for the International Space Station realization: many
modules construction began in its factory in Turin such as Columbus laboratory in
figure 1.1 .

1

Chapter 1. Introduction

Figure 1.1: Columbus Laboratory: it was the first permanent Euro-
pean research facility in space. [1]

The company has invested a large amount of its profits in R&D area in order to sup-
port innovations in space related sectors, involving academic and industrial partners.
Thales owns several offices settled all over in Italy within the main cities, but the most
important one for this research project has been the ones in Turin and its linkages with
Turin Polytechnic . Indeed, thanks to Thales , for the purpose of this research thesis , a
company’s facility located in Turin district has been used, aiming at the development
of an object detection system, useful for Sample Return Mission in which Thales is
involved as one of the main player.

1.2.2 Mars Sample Return mission
Mars Sample Return is the most ambitious mission towards Mars investigation that
Esa and Nasa programmed involving Red Planet: up to this mission, no Mars material
was ever brought back to the Earth. Previous missions focus was to study Mars on
Mars itself: the first important mission Viking(1975) was expected to investigate Mars
atmosphere composition and look for traces of life through a scientific lab equipped
on the lander. With Path Finder-Sojourner and Spirit and Opportunity missions, the
scientific laboratory was able to move around thanks to the rovers, where it was fixed
on. The lander was in charge to protect the rovers during the landing phase while the
rovers aimed at extracting soil pieces and interacting with martian environment .
Last and most important mission is the Mars Sample Return due to its high technical
difficulty and a purpose never achieved before. Focus of the mission is to bring back
martian soil and other interesting elements like martian gas to the Earth so they can
be analyzed through processes that cannot be reproduced on Mars. Thanks to the
orbiter MSR-ERO, a lander will be released aimed at protecting the Sample Fetching
Rover(SFR) inside. The rover should fetch the samples containing martian elements,
collected by a previous rover of Mars 2020. Once collected 36 of the 43 samples, they

2

Chapter 1. Introduction

will suppose to be carried to the landing site and then to the orbiter by the Ascent
veichle . Their final journey will be the one towards the Earth. According to mission
details, the samples should be spread in a predefined region. Communication between
Earth and Mars needs at least 20 minutes in one way, so it means that a teleoperation an
its confirm should need at least 40 minutes. Moreover, due to visibility constraints, only
few communication per sol are possible. So it’s crucial to involve a certain "autonomy"
for the system during the fetching phase and this research project aims to propose a
possible solution considering all the aformentioned limits including technological space
constraints.

1.2.3 R.O.X.Y. facility
ROvers eXploration facilitY is a technological area located inside Thales’s factory
in Turin aimed at simulating a real martian environment for robotic systems design,
development, validation and verification in a real-world weather conditions, where es-
pecially visual algorithms are stressed. It covers an area of 400 square-meters of red
soil and rocks, similar to those that a rover would find on the Red Planet. Even the
composition, sizes, shapes and distributions of the rocks are meant for emulate the
real conditions. The facility was set up in order to train three rovers and study the
navigation in a real scenario.
In this research project Roxy facility is used in order to perform the detection of the
target as it was on Mars, trying to reproduce all the possible scenarios .

Figure 1.2: Internal view of ROXY area .

3

Chapter 2

Preliminary studies

2.1 Mars conditions
For the purpose of studying which would be the possible limits of an autonomous
detection system application on Mars, it is worth highlighting relevant environmental
factors . Two of the most important aspects to focus on are related to atmospheric
phenomena and lighting conditions , so in this section some details about Mars will be
introduced.
Mars mass is 11% of the Earth mass and it is 50% more distant from the Sun than
our planet. According to this data and recalling the intensity power for a light point
source

I(x) = P

4πx2

it is easy to notice that sun intensity power on Mars is about 50% less than on Earth.
Anyway, this is only an initial step for the comprehension of light conditions on Mars,
because the atmosphere and its composition plays a central role with respect to what
an observer would see on the surface of the planet . Due to its smaller mass, Mars has
a thinner atmosphere than Earth , about 1% of it . Moreover , it is different in term
of composition :the major part is composed by CO2, with some trace of water vapor
and other chemical components like methane.
According to the details introduced above, some hypothesis can be made about solar
radiations on the surface of Mars. The Sun emits radiations principally in the visible
range (380 to 740 nm) , but there are also IR and UV components of its light . On
the Earth the IR is absorbed and diffused by the water vapor, while the UV range in
blocked by the atmosphere : only 1% of UV reaches the surface. On the Red Planet the
CO2 plays the same role of the water vapor so that on its surface arrives approximately
the same range of light in terms of visible and IR radiation . For what concerns the
UV range, the CO2 manages to block almost completely the UV-C (280 to 100 nm),
but it is not so effective for the rest of the range[2].
Another aspect of the lighting condition is the diffusion : despite the thin atmosphere
and with dishomogeneous condition, including the sun elevation angle , light is well

4

Chapter 2. Preliminary studies

diffused on Mars, so that shadow edges are not defined, creating the common soft
transition of the shadow from dark to light .
The sky colour seems to be in the range of blue when sun is on the horizon and tend
to become redder when the angle elevation is higher due to the dust presence. This
latter is preponderant element of the extreme environment on Mars. In fact, everything
is covered by a red dust made by iron oxide and similar chemical components. This
peculiar element is present in the atmosphere,visible from the Earth and, cyclically,
global dust clouds spread all over the atmosphere. On the surface, dust wind blows
with a high velocities from 16 to 32 km/h : the Viking lander measured velocities up
to 113 km/h during dust storms. In spring and summer, very often dust whirlwind
suddenly compare. They are similar to those that compares in desertic area of the
Earth but they are larger and can be traced as they left wide zone of darker soil
bringing in the air dusts from the ground during their wake . This extreme event is
usually known as dust devil and it is at the base of the formation of dunes and dark
craters .

Figure 2.1: Serpent dust devil acquired by the High Resolution Imag-
ing Science Experiment (HiRISE) camera on NASA’s Mars Reconnais-

sance Orbiter. [3]

All this weather phenomena and environmental factors tend to obscure and absorb sun
light so that on Mars planet surface receive less light than Earth and the environment
would seems darker to a human eye. As an example, during one of the frequent dust
storms, the lander of the Mars 3 mission reported a photo of 50 lux of illuminance.
For comparison during a sunset of a fully overcast day, the illuminance can reaches the
same level .
A last interesting phenomenon is the presence of solid CO2 in a falling snow event,
that due to the small size of its particles appears like dense fog.

5

Chapter 2. Preliminary studies

2.2 Target
The target of the object detection system is the sample in which the rover should insert
soil, rocks or gas. Since the intellectual property does not allow to use a real one copy,
in this research project a slightly different target was designed . The target was 3D
printed for running the same task of the sample and it has about the same size and
shape of the real model . It was designed with SolidWorks, a 3D modeling software and
3D printed with the help of Ultimaker CURA software where it is possible to import
CAD models and translate it into 3D printer models . The target has a cylindrical
shape and encumbrance of 14,5 cm x 4,5 cm .

2.3 Possible solutions
In order to obtain a good compromise between computational costs, time required and
space application constraint, different possible approaches can be taken into account.
In this research project it has been decided to perform a "deep-learning" approach with
the aim to demonstrate its applicability to the space sector as it is an hot point of
scientific research, nowadays. For the sake of completeness other approaches will be
shown in the next subsections.

2.3.1 Template matching approach
The template matching is a basic approach and in general "it involves defining a measure
or a cost to find the “similarity” between the (known) reference patterns and the
(unknown) test pattern by performing the matching operation" [4] . It has a variety of
application fields from speech to data analysis, but in computer vision area it consists
of matching a "template image" against the image that has to be analyzed looking for
the "template content"(figure 2.2). Usually the matching search is realized by shifting
the template image, taking notes of the correlation between the image area analyzed
and the template image for each position. The shifting path could be of 1 pixel or more,
depending on the peculiar template matching application. At the end of the process
a final thresholding filter is applied on the correlation values results and the best ones
are indicated as possible matches . This approach is not robust due to its extreme
simplicity and shape variation can significantly compromise the matching result. It is
used mainly in the industrial field where the standardization of the realized objects
can grantee similarity between template image and analyzed image. Possible results
improvement can be obtained involving not only a single templates but a set of different
templates of the same object with different position and light condition .
In summary , this approach it is easy to be implemented due to its low computational
cost also on space qualified computer, but it’s extremely unreliable for the purpose of
the thesis since a certain level of unknown environment information is considered.

6

Chapter 2. Preliminary studies

(a) Template image. [5] (b) Input image. [5]

Figure 2.2

2.3.2 3D model approach
A more complex approach is based on 3D model matching approach: trough a stereo
camera , a dense point cloud is obtained, where a 3D object has to be searched com-
paring the known 3D model with point cloud regions. This constitutes the evolution
of the previous simpler approach and it is more reliable of it, but it presents some crit-
ical issues: the heuristic function, that looks for similarities, works pretty well with a
non-occluded target, but shows drastic drop in performances when "non expected" con-
ditions are present. Moreover the long distance application represents another weak
point for this approach. As in the previous technique , it is used in the industrial
context and robotic field .

2.3.3 Other approaches
There are many other approaches implementable for an object detection application,
however, most of them, including the two previous methods, needs a sort of “spaghetti
approach” to be suitable. Spaghetti approach is the framework of many images pro-
cessing detection problems in which multiple local functions have to be found and an
heuristic composition of local algorithms has to be implemented in order to analyse
each possible scenarios captured by the camera.

2.3.4 Deep learning approach
This approach will be explained in details in the following chapters. It is worth noticing
that if previous solutions suffer of “spaghetti code” problem, the deep learning approach
incorporates flexibility in its solutions.Indeed, it does not need different algorithms for
every cases, but only one algorithm capable of abstracting the “concept” exactly like a
human brain manages to distinguish the same object in different scenarios or to define
the general category of two totally different objects (i.e. a horse and a dog look very
different, but they could be inserted in the same category of "animals").

7

Chapter 2. Preliminary studies

Because of this human-like capacity, its stunning abstracting skill and a growing inter-
est, the deep learning approach has been chosen as the best performing technique for
this research project.

8

Chapter 3

Machine learning

In this chapter, a brief overview of Machine learning history will be discussed and some
concept and technical details will be analyzed. As a starting point a clarification has
to be highlighted : "Machine Learning" it is not equal to "Artificial Intelligence" even
if the two terms are used as synonyms. In particular, Artificial Intelligence refers to "
"the science and engineering of making intelligent machines" while Machine Learning is
just one of the possible technique to reach that goal. Moreover in the field of machine
learning, Deep Learning is another specializations of particular technique related to
machine learning . Conceptually, Deep Learning is a field included in Machine Learning
and the latter is included in artificial intelligence domain . In the figure 3.1 this concept
can be visualised.

3.1 History of machine learning
The history of machine learning can be traced back to Aristotele’s associationism ,
300 B.C. . Investigating on our brain, Aristotele expressed ita theory called Associ-
ationism. Associationism is a theory states that mind is a set of conceptual elements
that are organized as associations between these elements [7] . Aristotle examined the
processes of remembrance and recall and brought up with four laws of association:
contiguity, frequency, similarity, contrast. The philosopher thought that those laws are
implemented in our brain through our sense, for example: the feel, the smell, or the
taste of an apple should naturally lead to the concept of an apple, as common sense.
Some of those method are actually very common in some machine learning techniques
such as grouping elements w.r.t. their distance (close distance => same elements) or
variables that occur frequently draw more attention from the model . In the figure 3.2
the timeline of main events that led to machine learning is reported reported.
The first approach to this field was to emulate how brain works: in this context Warren
McCulloch and Walter Pitts invented the thresholded logic unit (TLU) , trying to
reproduce the biological neuron structure. They thought that the right way to make
intelligent machine was to replicate human brain in a "machine brain" .

9

Chapter 3. Machine learning

Figure 3.1: Domain relationship between Artificial Intelligence, Ma-
chine Learning and Deep Learning[6].

In 1950 Alan Turing proposed a renowned method aiming at answering to the question
: “Can machines think?” [9].
In 1956 the term ‘artificial intelligence’ was born during the Dartmouth Workshop,
which is widely considered as the founding event of artificial intelligence as a field.
Next year, the psychologist Franck Rosenblatt presented the perceptron in his paper
"The perceptron: a probabilistic model for information storage and organization in
the brain" [10]. It was the ancestor of the current neural network. Perceptron can
learn trough learning algorithms and it had the capability to detect numbers and
letters. It was the first example of supervised learning thanks to its capability to learn
from mistakes. Many others intelligent programs such as chess game were invented
on the same path. Even if the interest was growing in this field, year-by-year, in 1969
something stop that progress: Marvin Minsky and Seymor Papert publicated an article
"Perceptron" [11] in which they demonstrated that was impossible for perceptron to
learn the XOR . The problem was that perceptron is a linear function modeler and
could reproduce only linear functions, while XOR function, despite its simplicity, is a
non-linear function. In the very next time the academic world lost interest in this field
of machine learning leading to the so called AI winter .
In 1986 the researchers Geoffrey Hilton, Ronald Williams and David Rumelhart pub-
licated a paper “Learning representations by back-propagation errors” in which neural
networks were used with multiple hidden layers trough an innovative algorithm called
backpropagation, which is still used today. Thanks to the hidden layers, the network
had the capability to reproduce every types of functions. This new solution led to so
many new applications as in 1988, when the researcher Yann Lecun gave birth to a new

10

Chapter 3. Machine learning

Figure 3.2: Time-line of progress in AI and ML[8].

type of neural network, the convolutional neural network , in the AT&T Bell Labora-
tories . This new technology was able to recognize handwritten words and digits. Due
to the poor calculation power at the time, those new techniques weren’t applicable to
large problems, so researchers put aside neural network , looking for less costly compu-
tational algorithm and a lot of different machine learning algorithms gained popularity.
In 2006, Professor Hinton gives another boost to the machine learning field, publicating
its revolutionary paper A Fast Learning Algorithm for Deep Belief Nets [12] in which
he presented new techniques for unsupervised learning algorithms. The "unsupervised"
algorithms are those in which the machine learns by itself its object, there are no labeled
data: those type of algorithms are used, for example, in the recognition of patterns in a
group of data or for grouping the data. Thanks to Hinton’s work, the Deep Learning era
was born. Deep learning had great spread due to its impressive capacity to overcome
old problems with accuracy and rapidity as tasks related to computer vision or speech
recognition.Next following years, more and more researchers around the globe studied
new implementation, when in 2009, Stanford professor Fei-Fei Lee launched ImageNet,
an open database including milions of labeled images.
In 2012 Alex Krizhevsky won several international machine and deep learning competi-
tions with his creation AlexNet, a new convolutional neural network , based on LeNet5

11

Chapter 3. Machine learning

Figure 3.3: Neuron representation[13].

(by Y. LeCun years earlier) . The improvement proposed were the dropout mechanism
to prevent the overfitting problem and the introduction of rectified linear activation
unit(ReLU) related to the last output layer. Probably the last unexpected boost came
from Ian Goodfellow, an authority in the field, with its Generative Adversarial Net-
works(GAN), composed of two branches of distinguished and competing networks that
tries to learn faster and became smarter w.r.t the other branch. Y. Lecunn asserted
: This and the variations that are now being proposed, is the most interesting idea in
the last 10 years in machine learning". Nowadays almost every tech company tries to
push on the accelerator and machine learning is a today standard , improving lives of
human kind: "I think people need to understand that deep learning is making a lot of
things, behind-the-scene, much better", Geoffry Hinton .

3.2 Key concepts in machine learning
In this section some of the basic knowledge and key concepts will be provided .

3.2.1 Threshold logic unit (TLU)
The TLU comes from the idea of McCulloch (neurophysiologist) and Walter Pitts
(logician) who developed a computational model of the "nerve net" in the brain. In
order to better understand how it works, it is worth highlighting how our brain neurons
work :
A neuron is composed of 3 elements :

• Soma : also called Central Body, it contains the nucleus of the neuron and its
main purpose is to process signals

• Axon : a projection that starts from a neuron and transmits signal to other neu-
rons. At the end of this channel another type of extension is present : synapses.
Through synapses the connection with other neurons takes places

• Dendrites : extension of soma, it receives signals from other neurons

12

Chapter 3. Machine learning

The working principle is relatively simple : an electric signal (actually voltage gener-
ated by electric charged chemical substances) passes trough the axon and arrives at
its ended area, in the synapses zone. Here the synapses release some chemical sub-
stances(neurotransmitters) able to attenuate or boost the electric signal depending on
the amount of neurotransmitters released. The other neuron synapses are equipped
with receptors able to catch the neurotransmitters. When this happens, local currents
are generated for each synapses and added up in the soma. If the total current reaches
a specific threshold a new current is generated in the new axon and the process can be
repeated. McCulloch and Pitts replicated the biological structure and the process in
an artificial structure, like an artificial neuron , the TLU :

Figure 3.4: Thereshold Logic Unit representation[14].

there is a precise parallelism between the artificial structure and the biological one: the
signal in the axon is replaced by a binary signal , 0 or 1 . The synapses conductivity
is replaced by the weights of each input. The signal addition presented in the soma
is replaced by an addition function in the TLU . The biological threshold is replaced
by an activation function with a θ thereshold . Moreover,there’s an inhibitory channel
presented in each neuron : if the inhibitory signal is disabled the addition happens
taking into account the weights and the result pass through the activation function; if
the result exceeds the threshold, a new signal "1 signal" is generated and can reaches
other neurons. If the inhibitory signal is active or the addition result doesn’t exceeds
the threshold, the signal will be "0". The model behaviour in a formal mathematical
form is :

y(n) =
1 : ∑n

j=1 wjxj ≥ θ ∧ no inhibition
0 : otherwise

3.2.2 Perceptron
The Rosenblatt’s percerptron starts from the previous TLU, but it presents some feature
:

• Weights and bias values are not identical

13

Chapter 3. Machine learning

• Weights values can be positive and negative

• The inhibitory signal is no more present

• Perceptron has its learning rule

The activation function is similar to the TLU’s one :

y =
0 : ∑wjxj ≤ θ

1 : ∑wjxj > θ

If we consider w (weights) and x (input) as an array and b (bias) as

b = −θ

the equation can be rewritten as :

y =
0 : w ·x+ b ≤ θ

1 : w ·x+ b > θ

It’s worth noticing that the new bias can have great influence on the output, indeed
for high bias values the output will likely be equal to one. Moreover the new learning
rule totally changes the way perceptron works: on the contrary of its predecessor, it’s
able to learn how to solve problem on its own, adjusting its parameters. If the desired
output is defined as y = y(xj) and a is the actual one, it’s easy to compute the delta
error, as the difference between those two values. Once δ is obtained, a weights values
correction can be performed in order to obtain actual output ≈ desired output:

δ = (y(xj)− a)
∆wj = η · δ · a

In the delta error formula , η is the learning rate. Its value must be between 0÷ 1 and
it defines the rapidity of the weights value change .

3.2.3 Framework of Neural Networks
The common single output of the previous structure doesn’t permit to learn non-linear
function such as the XOR. Due to this lack a lot of researchers moved to other field
and the so called AI winter came. In order to obtain a more complex functionality, the
old structures were transformed adding more layers mutually interconnected, leading
to the neural network as we know today. The new architecture had many weights
and biases because of the multiple layers and needs obviously a more complex learning
algorithm . In the figure it is possible to see how the common notation is used.
The leftmost layer is composed of units called input neurons. All the input neurons
form a layer know as input layer. At the end of the structure there is a layer known

14

Chapter 3. Machine learning

Figure 3.5: Neural Network architecture example

as output layer made by output neurons. Between the external layers there are the
intermediate hidden layers, the truly innovation. The neural network can be defined
by a set of 4 parameters:

• xj is the jth input in the input layer. Inputs are collected in a single input vector
;

• bl
j is the jth bias of the lth layer. Bias are collected in a bias vector bl for each
layer;

• al
j is the activation function of the jth unit for the lj layer. The activation function

are collected in the al, the related vector for each layer;

• wl
jk is the weight that links the kth neuron in the (l− 1)th layer to the jth neuron

in the lth layer. Weights are collected in matrix form , wl ,for each layer .

The differences between this new neural network and the perceptron can be highlight
thanks to the activation function generated at each neuron given by:

al
j = σ

(∑
k

wl
jka

l−1
k + bl

j

)
−→ al = σ

(
wlal−1 + bl

)
The computational capabilities grow exponentially the more hidden layers are present.
. As example, with one hidden layer only, the neural net it’s capable to pass from the
impossibility of learning XOR function to the computation of a much more complex
structure .

3.2.4 Gradient Descent
At this point, it’s clear how a simple neural net works. More complex structures need
different computational approach w.r.t. the basic ones, so they can learn and give valid
results. Therefore it’s useful to introduce a key concepts in neural networks:the cost
function . This factor quantifies how the network is far from its goals. One of the first,
elementary and today most used is Mean Squared Error, MSE :

15

Chapter 3. Machine learning

C(w, b) = 1
2n

2∑
x

‖(x)− a‖2

where y(x) is the desired output and a is the actual one. An hypothetical precise
training algorithm should adjust values such that C(w, b) ≈ 0 and the net should
cyclically change the variables in order to minimize cost function. With the purpose
to define this algorithm, it is convenient to consider a generic problem in which the
cost function input is a n-dimensional array v. It is nonfunctional and in some cases
not even feasible to use minimizing calculus the C(v) function. Another technique
has to be persecuted due to the huge number of variables given by v. Taking into
consideration small variations for each components vj of the vector, C function varies
as:

∆C ≈ ∂C

∂v1
∆v1 + ∂C

∂v2
∆v2 + ∂C

∂v3
∆v3 + · · ·+ ∂C

∂vn

∆vn

All distinct ∆v can be included in an array ∆v = (∆v1,∆v2)T and all derivatives in
∆C =

(
∂C
∂v1
, ∂C

∂v2

)T
establishing the gradient of C :

∆C ≈ ∇C ·∆v

Thanks to this equation it’s possible to choose ∆v so as to make ∆C negative. There-
fore, highlighting that ∇C contains C varietions for one component vj , is opportune
to design ∆v as:

∆v = v′ − v = −η∇C

where η is the learning rate . Substituting this last equation in the previous one, the
ovious result is obtained:

∆C ≈ −η∇C · ∇C = −η||∇C||2

The last equation can be considered as an update rule. It determines what is called
gradient descent algorithm. This remarkable approach cyclically updates v aiming to
minimize the cost function C, so that :

v → v′ = v − η∇C

This algorithm form is broadly used in machine learning and needs only few adapta-
tions. The main issue related to this computation is connected to the learning rate
parameter setting (figure 3.6): with an high value it’s possible to deal with a huge num-
ber of variables and speed up the computation calculus without converging to the final
solution; to the contrary, setting a small value can produce an unproductive algorithm
because of the unreasonable training process time cost.
The previous equations are for a generic case,but substituting bias and weights in to
the generic variables v, it leads to the algorithm actually used for a neural network
train process.The equation related to C has wj and bj as components, such that :

16

Chapter 3. Machine learning

Figure 3.6: Representation of different processes according to different
learning rate [15].

wj → w′j = wj − η
∂C

∂wj

bj → b′j = bj − η
∂C

∂bj

The cost function (C(w, b) = 1
2n

∑
x ‖y(x)− a‖2), can be re-written in a more compact

form as C = 1
n

∑
x Cx, that is barely an average over the elements Cx = ||y(x)−a||2

2 where
x is an input array of the input layer. Therefore, aiming to obtain ∇C , the gradients
∆Cx have to be singly computed for each input x and then averaged over all the inputs,
so that ∆C = 1

n

∑
x ∆Cx .

3.2.5 Stochastic Gradient Descent
It is a possible approach aiming to use the gradient descent to a large training input
number. The stochastic gradient descent substantially reduce the learning process time;
in order to compute ∇C, only a small number of ∇Cx are included. Rather than facing
all the n training inputs, a subset m of them are included.

∇C = 1
n

∑
x

∇Cx ≈
1
m

∑
j

∇Cj

The parameter n is the number of all training inputs and m is the selected mini-batch
of input vectors. The equation can be re-written with weight and bias updated :

wj → w′j = wj −
η

m

∂C

∂wj

bj → b′j = bj −
η

m

∂C

∂bj

17

Chapter 3. Machine learning

Now the sum is only on the inputs of the considered mini-batch. Once weights and
biases are updated another random mini-batch is selected. The gradient stochastic
algorithm cyclically takes a new random mini-batch from training data until all inputs
have been chosen at least once. At this point a training epoch is ended and the algorithm
launch the loop again with the next epoch. This algorithm manages to deal with
mini-batches of different dimensions, even a unitary mini batch. This techniqu is
called online or incremental learning and corresponds to the human brains biological
algorithm.

3.2.6 Back-propagation algorithm
At this point, the central problem in order to apply gradient descent and make the net-
work learn is the estimation of ∂C

∂wl
jk

and ∂C
∂bl

j
. This algorithm is know as backpropagation

since, starting from output layer of a network and moving back, it leads to compute
the two partial derivatives of the cost function and then compute easily weights and
biases values. Essentially, it is a method that grant to use gradient descent and all its
versions in every specific condition.Using this algorithm a new quantity is designed ,
known as output error δl

j . According to this notation, the output error involves the
jth neuron of the lth layer. The following equation shows the new quantity. It is partial
derivative of a cost function with respect to the potential activation function. Once
more, z involves the jthneuron of the lth layer.

δl
j = ∂C

∂zl
j

It is possible to include all the components in a single vector δl. So, back-propagation
uses this quantity δl

j to compute ∂C
∂wl

jk

along with ∂C
∂bl

j
. Thus, with some mathematical

passages, the four main equations of back-propagation can be extracted :

δL = ∇aC � σ′
(
zL
)

δl =
((
wl+1

)T
δl+1

)
� σ′

(
zl
)

∂C

∂bl
j

= δl
j

∂C

∂wl
jk

= al−1
k δl

j

The last equations express the aformentioned cost function. Paying attention to the
four equations of the backpropagation algorithm, it is possible to notice how it works.
First of all, error values are computed for the output layer and back propagated until
the input layer thanks to the second equation. The last two equations relate these
previously computed errors with the partial derivatives, fundamental for gradient de-
scent. Now, it is easy to use the results for the two learning process update equations

18

Chapter 3. Machine learning

. In conclusion, backpropagation is crucial for gradient descent or stochastic gradi-
ent descent algorithms because it makes computations feasible. For example, utilizing
stochastic gradient descent and backpropagation, selecting a mini-batch of m training
inputs, the following steps must be performed:

1. A group of m samples is taken from the n available of the dataset;

2. For each x of the m available:

• x is assigned to the input layer;
• Feedforward: following all layers l = 2, 3, ..., L, potentials zx,l = wlax,l−1 + bl

.Moreover rhe activation functions are evaluated ax,l = σ(z|x,l);
• Output errors: δx,L is calculated as δx,L = ∇aCx � δ′(zx,L);
• Backpropagation: for each layers l = L−1, L−2, ..., 2 , δx,l = ((wl+1)T δx,l+1)�
σ′(zx,l) are calculated

3. For each layer l = L,L − 1, ..., 2 the algorithm updates all variables ,biasesand
weights .

wl → wl − η

m

∑
x

δx,l
(
ax,l−1

)T

bl → bl − η

m

∑
x

δx,l

4. A random mini-batch of input vectors is chosen from the n−m available and the
loop is starts again until the epoch is over.

Thanks to this algorithm and involving adequate computational power, the training
of a general multi-layer network is possible. Regrettably, , this is the most essential
algorithm and different issues may occur, make heavier the network training phase.

3.3 Neural network
Before go into following concepts, it is opportune to make preliminary notes. The
neural networks form precedently are known as feed-forward neural networks, due to
the signal direction . They are certeinly the most known nets, other types of neural
network were created such as long short-term memory units, recurrent neural net-
works, deep belief nets, Hopfield networks and others. Another point is the training
method in general can be distinguished and divided into three main groups : supervised
learning, unsupervised learning,reinforcement learning. The peculiar characteristic of
a supervised learning method is that inputs and outputs are known and the net try to
understand the correlation between the proposed elements, while in an unsupervised
learning training only the inputs are provided and the neural networks tries to under-
stand the unknown correlations(e.g. a clustering techniques, pattern recognition).
In the next sections different problems regarding neural networks training and related
current solutions will discussed .

19

Chapter 3. Machine learning

3.4 Neural network problems

3.4.1 Neuron saturation
With the purpose to better tackle the problem we will discuss about a simplified single
neural network . As highlight in the previous sections, partial derivatives of a chosen
cost function ∂C

∂w
, ∂C

∂b
involves how neurons learn. Working with the basic quadratic

cost function, readjusted for a single neuron C = (y−a)2

2 , the subsequent results will
be:

∂C
∂w

= (a− y)σ̇(z)x = aσ̇(z)
∂C
∂b

= (a− y)σ̇(z)x = aσ̇(z)

In this basic situation it is worth to notice that both bias and weights are driven
by the activation function derivative. Thus , substantially, when σ(z) is ≈ 1 or ≈
0, its derivative σ̇(z) has small values. This produces a learning slowdown for the
neural network that may preclude any improvement. The problem can be tackled with
different techniques.

Learning Slowdown in the Final Layer

Aiming to fix the problem in the output layer, researchers studied different type of cost
functions .

• Cross-entropy cost function. it is widely the the most common cost function.
Considering multiple outputs, the expression is :

C = − 1
n

∑
x

∑
y

[
yjln

(
aL

j

)
+ (1− yj) ln

(
1− aL

j

)]

Once more, facing a multi-inputs single output neuron unit, the gradient is in
the the form:

∂C

∂w
= 1
n

∑
x

xj(σ(z)− y)

The previous equation indicates that weights updating is proportional to (σ(z)−
y) and the activation function derivative is not involved in it.

• Log-likelihood cost function. It is largely used with a specific activation function:
the softmax unit. Its linked cost function, called log-likelihood cost function is
expressed by the following equation:

C = −ln(aL
x)

where x is the selected training input and L points to the output a of the final
layer. If the network has a great prediction confidence , it will estimates an output
value close to one, and the related cost function will assume a small value. Once

20

Chapter 3. Machine learning

more, it is possible to notice that for the the cost function gradients the partial
derivatives don’t influence it and so the learning slowdown is prevented:

∂C

∂bL
j

= aL
j − yj

∂C

∂wL
jk

= aL−1
k

(
aL

j − yj

)

Weights and Biases Initialization

Due to the previous technique there is an considerable chance to saturate some neurons
in the hidden layers because the cost function modification only affects the output
layer. A possible solution is to initialize all variables with a Gaussian probability
distribution setting mean=0 and standard deviation equal to 1√

nin
where nin is the

input weights numbers of the neuron. Through this technique, learning slowdown
problem is consistently reduced and all neuron units has less chance to saturate. With
regards to biases initialization, two main methods are considered: a basic approach is
setting all biases equal to zero at the beginning,while the other one is to use the same
previous approach. That’s because biases has no large influence in the slowdown issues
and related adjustments are not required.

3.4.2 Data overfitting
Another relevant issue is caused by data overfitting. Due to the large variables number
to train it is possible to face an overfit data and the networks risk to learn peculiar
characteristics of the training set more than abstract general concepts. A network
trained in this is way is probably useless because it will respond positively only to
datasets with the same peculiar characteristic . Different methods can be involved to
overcome this crucial issue.

Dividing Data

This is a widely used approach : it requires to split all the available data in three
different subgroups: the already known training data for the learning phase of the
network, validation data aimed at testing the network after each epoch and a test
data for checking final performances of the net after the training session. During the
training process, if the accuracy of the validation dataset stops increasing while the
training dataset accuracy keep increasing , something is not properly working and it
is a signal of a possible overfitting issue. A common strategy known as early stopping
is to stop the training phase if the validation data accuracy reaches a characteristic
plateau trend. Typically, supervising these three class of data during training process
manages to overcome overfitting issues and set more suitable hyper-parameters .

21

Chapter 3. Machine learning

Artificially Expanding the Training Data

Nowadays neural networks presents an enormous numbers of parameters and so, it is
a common problem to overfit training data with no generalization. The most simple
way to avoid this is to increase the amount of training example ,but this approach is
not always possible because of the limited data. To overcome this problem, researchers
developed an technique known as artificial expanding of the training data that manages
an enhancement of the dataset with no extra training samples. The key concept is to
upgrade the available dataset , modifying for example ,images with reshape or hue
shifting,reflection or cutting, thus operations that in some way occur in real world
variations.

Regularization Techniques

Generally ,the previous approaches are not sufficient to prevent and overcome the over-
fitting problem. There is a set of methodologies, called regularization techniques, able
to reduce issues even with fixed dataset. In this section two of the most used are
presented, even if many researchers have developed valid alternatives. The first one is
know as L1 regularization.In practice it needs an adjustment of the desired cost func-
tion. Working with the cross entropy equation presented above, the L1 regularization
adds a parameter called regularization term:

C = − 1
n

∑
x

∑
y

[
yj ln

(
aL

j

)
+ (1− yj) ln

(
1− aL

j

)]
+ λ

n

∑
w

|w|

where in the second sum w represents the number of weights and λ is a hyper-parameter
that has to be chosen. It is desirable to simplify this last equation as:

C = Co + λ

n

∑
w

|w| →
{

if λ is small the regularization term can be omitted
if λ is large the analyzed model learns small weights

Obviously, the proposed approach lead the model to learn small weights value while
they are allowed to have high values only if they remarkbly reduce the value of chosen
cost function. Observing the results, the regularization L1 keeps the most weights
values near zero and concentrates non-zero variables into a bounded region of important
connections.
The second technique, very popular, is called L2 regularization. Similar to the previous
one, it imposes an upgrade of the chosen cost function with another extra term:

C = Co + λ

2n
∑
w

w2

Computing all the calculus it is worth to notice that gradients has the following form:

22

Chapter 3. Machine learning

∂C

∂w
∗ = ∂Co

∂w
+ λ

n
∂C

∂b
= ∂Co

∂bo

and so gradient descent algorithms is defined as

w → w − η∂Co

∂w
− ηλ

n
w =

(
1− ηλ

n

)
w − η∂Co

∂w

Dropout

It is a totally different regularization technique. Opposite to L1 and L2 regularization,
this method requires no changes to be made to the chosen cost function. During e
training step a percentage of neurons are de-activated (generally 50%). The rest of the
them is bypassed and weights and biases linked to them are not updated. At follow-
ing training step the procedure is repeated involving another set of neurons randomly
picked. The authors of this quite recent techniques say that "[...]this technique reduces
complex co-adaptation of neurons, since a neuron cannot rely on the presence of par-
ticular other neurons". Therefore, thanks to aformentioned approach each neuron is
forced to learn more suitable features in order to abstract data.

3.5 Deep learning
In this section the inner part of the artificial intelligence world , the deep learning ,
will be analysed . It is a machine learning method base on neural networks , started
to spread since 2006 . The basic idea behind this method is to split a huge problem in
simpler sub-problems,more or less as human brain has works , but with a different level
of complexity . At the end, the single solutions for each sub-problems are composed
togheter as part of the final solution . In this framework the neural networks are
no more composed of a series of fully connected layers that have to accomplished the
same task, but each layer or part of layer has some specific task , some specific problem
to tackle. This type of nets are called deep neural networks. The following sections
will focus on object detection elements in deep learning, but this elements are actually
common for a large range of deep learning applications like natural language processing
or self-driving system .

3.5.1 Convolutional neural networks
In all the neural networks shown so far , fully connected layers were presented. That
type of network allowed researchers to obtain great results in so many fields and today
it is one of the most popular network configuration. Despite its powerful potential,

23

Chapter 3. Machine learning

Figure 3.7: Image presented as a matrix of pixel values[16].

those neural networks suffer of lack a spatial structure information. If they get an
image as input, they just cannot recognise the existing relationship between pixel in
the space . Due to this reason, another type of net became popular , the convolutional
neural network. Thanks to its configuration, it has the ability to distinguish spatial
information and it is mainly used in the object detection field , but it has a variety
of application. Aiming to better understand a convolutional neural network, some of
related elements and principles will be analysed .
Previously specified, the common neural network lacked in the analyses of the spatial
relationship between pixels so a new operation was introduced , the convolution.

3.5.2 Key elements
The convolution is the key element of a convolutional neural network. It is a mathe-
matical operation that in general involves two function as input and produces a third
function as output. Intuitively it "blends" togheter the information of those two func-
tion, returning the overlapping area of the shifted function . In this particular case
convolution involves two matrices : it performs a matrices multiplication and a final
sum. In computer vision applications, an image is analysed as matrix of pixel.The most
simple matrix to analyse is a black and white matrix in which each pixel contains a
number that represents how "bright" is that point, while a coloured image is identified
with a NxNx3 matrix in which each of the three layer is related to a standard color
(red, green and blue, the rgb common triad is just a possible color triad) . In the
figure .a it is possible to notice how a computer see an image . The values into the
matrix are the aformentioned "bright values" . When an image in used as input of a
convolutional neural network, each neuron of the hidden layer is connected only to a
certain portion on the image. This specific window of the image involved in the process
is called receptive field. The other matrix involved in the convolution is the so called
kernel or filter, a window containing some weights that will be used in the convolu-
tion. Each neuron of the hidden layer is related to the kernel and has a bias value.
The required parameters are the weights plus one bias so, for a NxN kernel matrix, a

24

Chapter 3. Machine learning

(a) Monochrome picture processed by a 3x3
kernel . In blue the receptive field[17].

(b) Padding with stride length equals to one
and related feature map[18] .

Figure 3.8

total amount of NxN+1 parameters are required . In principle, for K neurons, a total
number of (NxN+1)*K parameters are required , but usually a shared weights and bias
approach is used . Infact the kernel is an element that tries to extract some important
information from the image like borders or peculiar pixel portion , so intuitively it is
more efficient not to change a kernel but use the same one for each portion in order to
extract information . The convolution equation is reported in the following form :

σ =
(

K∑
m=0

K∑
n=0

wm,noi+m,j+n + b

)

where the filter has KxK size and performs the operation previously explained .
On the 3.5.2.b there is the representaion on a 2D convolution process for a monochrome
picture , but colored pictures usually have a depth dimension so the kernel has to adapt
to the dimesions of the input . For a common rgb picture of NxNx3 size the kernel
should have KxKx3 size . The matrix multiplication is performed in 3D space , but
the result is again a single value . Moreover in convolutional neural network , different
filters are applied to an input in order to extract different information from the same
picture . The result of all this processes will be L layers related to L filters .

3.5.3 Stride and padding
Once the kernel values are chosen, it slides across the entire image with a certain step
between each position. The step values in pixel is called stride length. The more the
stride length is reduced, the more convolutional processes are performed, with a dense
extraction point . Commonly the stride and the kernel size are related to the matrix
size where they are applied to. In order to have a suitable amount of results to deal
with, a larger input picture requires a larger stride and kernel size . Aligning the center
of the kernel windows with the center of the receptive field during the sliding,it can
happen that kernel size is applied outside the picture borders . A common approach
to overcome the issue is to introduce the padding . namely a region of zero value pixel

25

Chapter 3. Machine learning

Figure 3.9: First block of eight feature maps of a cat classification[19].

or the nearest border value in order to match the kernel size and obtain as output a
matrix with the same size of the input one .

3.5.4 Feature map
The final result of the convolution operation is the feature map. It contains the final
values of each convolution process in matrix form . An other omitted operation that
usually is added at the end of each operation is the application of an activation function
. The most common activation function is the relu presented in the previous section
. The feature map represents the important information that the filter has been able
to extract . For each kernel there will be a related feature map and each feature map
contains a specific feature that was supposed to be important in order to train the
CNN with its specific dataset . As it is possible to notice in eight kernels was involved
in convolution process in order to extract some information from a cat picture . In
general, the first layer blocks is aimed to detect edges, indeed in the eight pictures the
"activated region" are those that represents edges of the cat . Those first layers are
supposed to detect low-level of abstract information while deep layers are related to an
high level of abstraction .

3.5.5 Pooling layer and max pooling
The last performed operation in a common CNN is the pooling operation . It is aimed
to reduce the "quantity" of the information we are dealing with and working only on
the most decisive part of it . Thanks to this method , the numbers of parameters tend
to decrease as the deeper layers are reached, so there is a sort of simplification of the
net . Moreover it helps to overcome an overfitting issue in the training phase : reducing
the parameters allows the network to maintain an "abstract approach" in the detection
of the information . There are different pooling operation that can be involved, but a
very common one is the max pooling . It is applied to the feature map, downsampling
the matrix and obtaining a pooling layer . It usually consists in a window of 2x2 size,
stride equals to two and no padding. It slides on the feature layer and for each step
it takes the largest number presented in that inspected portion and write it in the
following pooling matrix. At the end of the operation a pooling layer will be composed
with all the largest number presented in the previous feature matrix : a large number
is related with a crucial element presented in the matrix so, for example, clearly visible
edge will be detect as a region of large numbers related to its. Taking the largest one
allows to get that information without carrying on the entire interested region .

26

Chapter 3. Machine learning

Figure 3.10: Max pooling operation on a feature map[18].

3.5.6 Convolutional neural network architecture
Aiming to create a CNN, a multitude of different architectures can be developed. It
depends on the type of problem, the complexity and specific constraint . Nevertheless
the basic elements are always the same and so the basic architecture . It is always
based on convolution layer - pooling layer - fully connected layer . In general the
first part of the layer is aimed to "extract" so convolutional and pooling layers are
involved . The last part, the f.c. layer, is aimed to infer something , based on the
information extracted from the preceding layers . Usually the last part is composed of
two f.c. layers : the first one takes as input the results of the pooling layer, resizing it
in a monodimensional vector and at this stage is processed by the layer.This layer is
equiped with a standard relu activation function . The second layer is equiped with a
softmax activation function that guarantees a probabilistic info as result . As general
example. in the a VGG16 network is presented . It was a simple architecture that in
2014 won the ImageNet competition on object detection and classification . Although
it has approximately 140 milions of parameters , during that competition was one with
less parameters . Indeed , instead of focuses on parameters numbers , its advantage
was those peculiar architecture with a series of convolution and max pooling layers .
It is worth to notice that it is considered one of the excellent architecture for that time
although the key elements are the three elements previously analysed .

Figure 3.11: Architecture of VGG16 network[20].

27

Chapter 4

Object detection

4.1 Introduction of object detection
Object detection is a crucial research area involved in the computer vision field .This
technique was born in the late 1960s,beside the important discoveries in artificial intel-
ligence . In the 1970s the creation of new algorithms gave a great impulse in the sector.
Those algorithms were related to specific tasks like edge detection or line labelling and
they became the basic theory on which the rest of technique were built .
Nowadays , object detection is indissolubly related to deep neural network technologies
and permits computer to perform an hard task with simple solution . In order to deepen
the object detection sector it is worth to highlight some differences between common
tasks that could seems very similar . Starting from its definition in a.i. , classification
is a machine learning task in which an algorithm categorize a picture on the basis of
certain specific classes introduced by the "user" , so for a picture only one class can be
chosen. Instead , object detection is the ability to detect one or more different "targets"
in the picture, defining relative position and bounding box. The bounding box is a
common term that describes the box that the algorithm draws to localize the detected
object in the picture . A third common application is the instance segmentation : it
is a sort of upgrade of the object detection in which each pixel of the image is linked
with a class (or to "background" if it doesn’t belong to a specific class) .

Figure 4.1: Difference between Classification,Object Detection and
Instance segmentation[21].

28

Chapter 4. Object detection

4.1.1 Object Detection framework
In the object detection application, a common scheme is present. It can be divided
into three main steps , involving the region of interest. It is a concept shared with
many other applications, but in general it is the identification of a sub-set of data in a
larger set. In this case it is the identification of some region in the picture with some
rule .The three main steps of an object detection are :

1. Generation of RoIs , specific for the involved algorithm.The entire picture is
divided in particular regions;

2. Each RoI is analysed independently. Visual feature are extracted in order to
detect the presence of a pre-classified object inside each RoI. If the object is
detected, the algorithm draws a bounding box to confine it.

3. The algorithm tries to merges the overlapping boxes with the same object, aiming
to define a unique box containing the entire object

Figure 4.2: Multiple ROIs generation[22].

4.2 Evolution of object detection
In this section will be reported some of the most famous object detection methods.
Even if they seems to be quite different, the aformentioned general scheme continues
to hold true .

4.2.1 Haar Feature-based Cascade classifiers
It is a famous object detection algorithm use to detect object in image or video ,
developed by Paul Viola and Michael Jones. They explained this method in the paper
Rapid Object Detection using a Boosted Cascade of Simple Features in 2001. The
algorithm is based on a cascade function previously trained with false and positive

29

Chapter 4. Object detection

Figure 4.3: Example of Haar Feature[23].

images . In the end that function is used on new pictures. It is well know that
this approach works pretty well in case of face detection. This algorithm is based on
the Haar features , a set of features used to analyse the images. Some of them are
reported in . The set of Haar feature involved has more than 160000 . They are
used in a computation in order to select the best feature that permits to identify some
elements in the face . Even if they are a huge number , only a subset of them are
useful for the purpose . The great discoveries of this algorithm is that it uses a series
of "weak classifier" trained with the positive and negative images by the haar feature
computations . Each of them, called "stage", is a weak classifier because their accuracy
is slightly better than a random guessing, but using a cascade of them it is possible to
obtain powerful results . A specific cooperative algorithm is involved in the selection
of the correct Haar feature and it build a "strong" classifier as a linear combination of
weighted "weak" classifier. Following this framework, an images can be considered as
"positive" only if each stage of the classifier has considered "positive" the region it was
looking in .

4.2.2 Histogram of Oriented Gradients (HOG)
This is is a very powerful method founded in 2005 by two french researchers [24] while
they was working on pedestrian detection . In order to better deepen how it works,
the concept of image gradient vector has to be explained first.

Image Gradient Vector
It is a computer vision technique used in many applications. The main idea behind
this is to find the direction of colors changing among image pixels. This information is
identified as a decisive element that can describe the image . In this case the gradient

30

Chapter 4. Object detection

is discrete due to pixels finite numbers. The vector is computed as color difference
between adjacent pixels in vertical and horizontal direction. The formula for a pixel in
(x,y) position is :

The gradient is defined by two values :

• Magnitude namely the L2-norm of the vector g =
√
g2

x + g2
y

• Direction computed as θ = arctan
(

gy

gx

)
Usually , this operation is boosted implying a convolution operation with certain ker-
nels . It is performed trough two direction kernels, like those in . One of the most
known operator used today is the Sobel operator.

Figure 4.4: Kernels used to perform gradient on matrix.

Once explained the image gradient vector concept, a further path was done thanks to
the HOG algorithm that is based on the aformetioned technique. In this approach the
gradient is able to removed non-essential info from the images info the . It can be split
into 5 steps :

1. Pre-processing : the image is reduce to a predefined size

2. Magnitude and directions are computed for the entire images thanks to the gra-
dient.

3. The image is divided into 8x8 cells. For each each cell an histogram based on 9
direction value from 0 to 180 is created. Based on direction value , each related
magnitude value is inserted into one of the nine value classes. If a direction lays
between two direction classes , the related magnitude value will be splitted and
inserted in both of them

31

Chapter 4. Object detection

4. Aiming to compare those histogram a normalization will be performed. In this
process a 16x16 block will slide along the image . For each step, 4 histogram
will be concatenated to form a 36x1 vector and then normalized , performing an
L2-norm . The window then will slide of 8 pixels and repeat the process.

5. HOG features is generated for the entire image concatenating the normalized
vectors

An example of the HOG application is presented in the figure 4.5 .

Figure 4.5: HOG performing on Einstein images and focus on the
eye[25] .

4.2.3 Regional CNN (R-CNN)
It is an innovative approach explained first in the paper of 2014 [26], based on a
standard CNN and a new ROIs generative algorithm. Indeed the intrisic problem of
the ROIs method is that they could be a huge number and obvously an algorithm that
implies a tremendous waste of time is a useless algorithm . The solution in the paper
is to work with a standard number of ROIs equals to 2000 focusing on the selection
on the right regions, involving a selective search. It start from the analyses of the
similarity between pixels. Each pixel is merged with other adjacent similar pixels that
presents close texture and going on in order to form vast region of similar pixels. At
the end 2000 ROIs are selected based on the results of the previous merging. choosing
ROIs of different shape and size at different scales. A claryfing example is reported in
figure 4.6 .
The overall process includes four steps :

1. Selective search algorithm defines 2000 ROIs from the image

2. A CNN works with each ROI resazing it and extracting the visual features. Their
a collected with the category label and the ground truth bounding box

32

Chapter 4. Object detection

Figure 4.6: R_CNN performing object detection. The upper images
shows the merge of similar pixels region. The lower images show ROIs

generation and selection of the right ones[27].

3. the information are analysed in a set of Support Vector Machines, in order to
train them for classification. Each of them should define the right category of
the selected region

4. At the end those infos transfer trough a linear regression model in order to predict
the bounding box.

Although the R-CNN work with a predefined numbers of ROIs and pretrained CNN,
the request time is a weak point of this algorithm . The real-time usage is impossible
due to its 47 s of time involved in the analysis of a single image .

Figure 4.7: R-CNN architecture [28].

4.2.4 Fast regional CNN (Fast R-CNN)
It is the evolution of the previous approach , aiming to reduce the time cost. The
bottleneck of the R-CNN was the feature extractions for all the proposed region. In
the new approach this process is applied to the whole image . Once the visual feature
are known the algorithm uses only those related to the region analysed . Moreover
the SVMs are removed , in favor of a pooling process . This time the pooling layer
purpose is to redefine the shape of each region according to a predefined one. A last
sub-net of fully connected layers is the added. In those last layers a softmax and a

33

Chapter 4. Object detection

Figure 4.8: Fast R-CNN architecture[28] .

regression function are implied , aiming to define respectively class and bounding box
of the object in the region .

4.2.5 Faster regional CNN (Faster R-CNN)
The evolution of the previous methods led to an upgrade in terms of architecture and
time . This time the bottlneck identified was the search algorithm. It was so expensive
due to the large numbers of ROIs and occupied the large part of the processing time.
In the new approach that part was replaced with an internal deep neural network based
on the feature maps coming from the CNN . This network was named Region proposal
network (RPM). Thanks to new method the number of proposed region drastically
decreased as the time cost of the process. The main core of the RPM was the gener-
ation of the anchor boxes of different size that had probability to contain an object .
Those boxes were then sent to the pooling layer as proposed regions. The rest of the
architecture was the same of the previous algorithm .

Figure 4.9: Faster R-CNN architecture[28].

4.2.6 Single Shot Multibox Detector (SSD)
This algorithm was one of the most performative one when its developer shared the
paper [29] in 2016 . It was impressive in terms of performance and precision with a
74% mAP (mean Average Precision, on standard dataset used to compare algorithm
performances . It is called Single Shot due to the single forward pass of the net for

34

Chapter 4. Object detection

Figure 4.10: SSD architecture[30].

the purpose of localization (bounding box) and classification , while the Multibox is a
specific bounding box regression developed by the researchers .
As is reported in figure 4.10 , the SSD is based on the aformentioned VGG16 architec-
ture , reported in the previous section . It was choosen for its high performance in term
of classification. Its main purpose is to extract the feature maps . The fully connected
layers of the basis network is replaced with a new series of auxiliary convolutional lay-
ers, aimed to extract visual features at multiple scales and sizes . Progressively the
original image size is reduced to subsequent layers size . Another improvement is the
priors introduction. They are the equivalent of the anchors in Fast R-CNN, but they
are chosen prefixed, trying to follow the original distribution. The priors has to have an
IoU (intersection over union) > 0.5 , that is not so good but it is a strong starting point
to get the final results .Indeed the algorithm starts with priors as actual prediction and
then tries to regress closer to ground truth bounding box .

35

Chapter 5

YOLO

5.1 YOLO
You Only Look Once (YOLO) [31] is the first version of the popular object detection
algorithm for real-time application . Based on the SSD concept, it performs a more
accurate and faster detection thanks to the single network able to localize and classify
object. Moreover it can be trained end-to-end implying a further improvement in the
accuracy . Despite some week points in localization errors, it was able to reduce the
false positive in background, compared to the state-of-art of the object detection in
2016 .

Figure 5.1: YOLO object detection example[32].

5.1.1 How it works
The core of the overall process can be sinthetized in four steps :

36

Chapter 5. YOLO

1. The image is dived into SxS cells (the original algorithm had S=7)

2. Each cell predicts B bounding box and box confidence score . This latter defines
how sure the network think there is an object in a bounding box. The bounding
box with higher score are drawn fatter ,o in order to visual display the confidence
. Each bounding box presents 5 related values : x,y,w,h,c . The (x,y) is the
center position of the bounding box in the image, while (w,h) are the weight and
height of the bounding box . Last element c is the confidence score

3. Regardless of the bounding box, each cell predicts C class probabilities values .
This value is conditioned to the presence of an object in the box . Depending
on the training dataset C has variable values . In PASCAL VOC classes number
was equal to 20, so C=20 .

4. A Non-Maximal Suppression process is applied in the end, in order to remove
duplicates with lower scores and improve the accuracy of 2-3& mAP . The output
is a tensor of SxS(Bx5+C) tensor .

5.1.2 Network Design
It is inspired by the GoogLeNet, a famous object detection algorithm that partecipated
to the ILSVRC 2014 . It is composed of 24 convolutional layers plus 2 ending fully
connected layers.The convolutional part is devoted to extract features while the fully
connected part is responsible for the final predictions and coordinations. In the al-
gorithm the inception modules of GoogLeNet is replaced by a series of 1x1 reduction
layer followed by 3x3 convolutional layers.

Figure 5.2: YOLO 1 architecture[31].

5.1.3 Loss Function
YOLO predicts multiple bounding boxes per each cell. During the training phase
only one bounding box predictor is devotes to focus on each object. The respondible

37

Chapter 5. YOLO

Figure 5.3: YOLO 1 layers description[32].

predictor is chosen on the base of the highest IoU with the ground truth . This leads
to specialize each predictor to better predict certain classes or sizes of object. The loss
fucntion optimized for this process is composed of three sub-loss-function :

• Localization loss

• Confidence loss

• Classification loss

Localization Loss
The error is related to bounding box size and location. In order to penalize only the
bounding box with an object inside, the function has the " 1obj

ij " element that is devoted
to this task :

λcoord

S2∑
i=0

B∑
j=0

1
obj
ij

[
(xi−x̂i)2 +(yi− ŷi)2

]
+λcoord

S2∑
i=0

B∑
j=0

1
obj
ij

[
(√wi−

√
ŵi)2 +(

√
hi−

√
ĥi)2

]

Where:

• 1
obj
ij has only two valuse : 1 if an object is in the cell, otherwise is 0. The j denotes

that the predictor of the j-th bounding box is responsible for that prediction

• λcoord is a coefficient used to stabilize the model , penalizing localization error
more than confidence error. In the original paper tis coefficient was set to 5

• the square root of w and h are used in order to penalize more small deviation in
small bounding box rather than small deviation in larger bounding box

38

Chapter 5. YOLO

Confidence Loss
The error related to confidence is :

λnoobj

S2∑
i=0

B∑
j=0

1
obj
ij

(
Ci − Ĉi

)2

Where :

• λnoobj is a coefficient involved in the stabilization of the function. It is normally
set to 0.5

• Ĉi is the confidence of i-th box

Classification Loss
In classification error the formula used is :

λnoobj

S2∑
i=0

B∑
j=0

1
obj
i

(
pi(c)− p̂i(c)

)2

Where :

• 1
obj
i has the same function of the previous similar , but this this depends only on

the presence of an object in i-th cell

• p̂i(c) is the conditional class probability in that cell

5.1.4 Inference
In terms of prediction , YOLO is extremely fast due to the single network evalua-
tion. Furthemore grid design enforces spatial diversity in the bounding box predictions
. When large objects are involved, usually they can be predicted two times form dif-
ferent box, but thanks to the aformentioned non-maximal suppression the multiple
detection issues is fixed

5.1.5 Limits
The main limitation is in the number of predictible objects. Indeed , do to fixed bound-
ing box and cells numbers, only SxS object can be predicted . Moreover nearby object
are limited by the spatial constraints . It presents some problems in the generalization
of an object, like new aspect ratio or configurations .

5.2 YOLO 2
It is the evolution of the previous YOLO algorithm , released in 2016 [33]. It contains
some improvement and changes in architecture .

39

Chapter 5. YOLO

5.2.1 Accuracy Improvements
The improvements are reported in the figure below, from the original paper :

Figure 5.4: YOLO 2 improvements description[33].

5.2.2 Batch Normalization
Thanks to batch normalization , no other regularization form like dropout are applied.
Indeed it leads to a convergence improvement and 2% more on mAP. This method is
applied on all the convolutional layers .

Figure 5.5: Batch Normalization example[34].

5.2.3 High Resolution Classifier
Another improvement is related to the augmenting of the classifier resolution. The
previous version had the first part used as classifier as 224x224 while the ending part
as detector as 448x448 .In YOLOv2 the first 10 epochs use a 448x448 resolution both
for classifier and detection in order to let the network adjust filters for high resolution
. Thanks to this change, researcher was able to get a n increase of 4% in mAP .

40

Chapter 5. YOLO

5.2.4 Convolutional with Anchor Boxes
In order to make predictions , YOLO involves the so called anchor boxes. Despite
the competitors like Fast R-CNN who uses priors with a random selection of boxes,
the algorithm starts by a prefixed offset range . Working with the offset instead of
coordinate make it easier for the network to learn . According to this concept in YOLO
v2 the fully connected layer was removed in favor of anchor boxes . The resolution
changed from 448x448 to 416x416 with the purpose to have a central cell that can be
responsible for a central large object .

5.2.5 Dimension Clusters
Instead of choose anchors by hand researchers decide to let a clustering algorithm help
them in decision . Indeed starting by a good priors can help the network in learning .
Thank to a k-means clustering on the training dataset suitable anchor boxes are decide
. The k value is the numbers of clusters in which the dataset can be grouped . This
number has to be chosen in order not to increase too much model complexity , but
good enough to obtain an acceptable average Iou as it possible to see in the picture .

Figure 5.6: Anchors selection based on k-mean and average preci-
sion[33].

In this case k is equal to 5 as good tradeoff between model compelxity and high recall
. In the picture can be notice that there are more thin and tall boxes than short and
wide .

5.2.6 Direct location prediction
Most of the instability in training phase comes from the bounding box location predic-
tion (x,y). A possible approach as in Faster R-CNN is to use the offset, but it will take
tame to stabilize the model with a random inizialization. Instead of predicting offset,

41

Chapter 5. YOLO

in YOLO v2 the focus is on predict location relative to location of the grid cell. This
way there is a bounded range between 0 and 1 from the ground truth.
The network predicts 5 bounding boxes for each cell and 5 values are related to
each bounding box . They are the bounding box coordinates plus a confidence score
tx,ty,tw,th,to. If the cell has (cx, cy) offset from the top left corner of the image and
anchors has width and height pw, ph it is possible to obtain :

bx = θ(tx) + cx

by = θ(ty) + cy

bw = pwe
tw

bh = phe
th

Pe(object) ∗ IOU(b, object) = θ(to)

Where :

• bx,by are the predicted bounding box coordinates

• bw,bh are the weight and height of the predicted bounding box

• cw, ch are normalized cell coordinates by the image size

• θ(t0) confidence score related to the box

Figure 5.7: YOLO 2 bounding box description[33].

42

Chapter 5. YOLO

5.2.7 Fine-Grained Features
The algorithm works with a 13x13 feature map in order do perform detection. This
is a quite good resolution for larger objects, but it is not suitable for smaller object.
While other competitors, like SSD or Faster R-CNN, make prediction on different
feature maps scales, in YOLO 2 the approach is different . In fact, it simply adds
a passthrough layer in order to obtain a 26x26 feature map resolution. This method
guarantees the single forward in detection . The two feature maps can be concatenated
and the detector can perform on the expanded feature maps, getting access to the
fine-grained features , improving performances of 1%.

5.2.8 Multi-Scale training
Instead of prefix an input image resolution in YOLO 2 the resolution changes randomly
every 10 batches . This improvement leads the network to predict across a variety of
input dimension. The architecture permits downsample of factor of 32, so the suitable
resolutions start from 320x320 to 608x608 with a path of 32 per each resolution between
this values . Thanks to this approach YOLO v2 can run fro lower resolution input,
having performances comparable with Fast R-CNN with a 90 FPS or for high resolution
input performig extremely well, with 78.6 mAP .

Figure 5.8: YOLO 2 comparison w.r.t comptetitors[33].

5.2.9 Architecture Design
Because of the computational cost of the VGG16 (30.69 BFLOPs) , in YOLO v2 the
feature extractor has been replaced by GoogLeNet that requires only 8.52 BFLOps for
the analysis of an image . Despite a slight drop in accuracy from 90% to 88% it gets
a impressive increase in terms of speed .
The new adopted classifier is called Darknet-19. As in VGG models 3x3 filters are
used, but doubling the channels number after each pooling layer .Moreover a global
average pooling process is been involved in order to prediction .The feature map is is
compressed by 1x1 filters between 3x3 convolutional layers. The overall architecture

43

Chapter 5. YOLO

presents 19 convolutional layers and 5 maxpooling layers. It requires only 5.58 BFLOPs
to perform detection on images .

Figure 5.9: YOLO 2 architecture[33].

5.2.10 Hierarchical classification
Usually object detection dataset has less object classes than dataset specifically created
for classification . They both are used in YOLO v2. When the image is labeled for
detection the loss function used is the entire function previously seen, while in case
of classification image , only the classification part of the function is involved . The
problem in the use of both types of dataset is that as assumption the dataset is flat
so classes are mutually exclusive, but this is not the case. For example Yorkshire
terrier(ImageNet) and dog(COCO) are not mutually exclusive. The solution of merging
different dataset is the hierarchical classification . It is an approach that allows to link
to different classes from to different dataset in order to create a WordTree in which
Yorkshire terrier could be a child-node of dog, ans so on with all the possible classes .
YOLO v2 predict the confidence of all the node in a branch in order to have the final
result of the last node . Frequently the more node is deep in branch the less confidence
it will have. The starting node is physical object node .

44

Chapter 5. YOLO

Figure 5.10: World Tree visualization[33].

5.3 YOLO 3
YOLOv3 [35] is the last evolution of YOLO’s project. It contains some new upgrade
in terms of architecture and other design changes. The softmax function is replaced
by an indipendent logistic classifier so that can handle non-mutually exclusive classes
prediction . The mean square error is replaced by a binary cross-entropy loss for each
label . Moreover it changes the cost function approach. If the anchors overlaps the
ground truth more than other priors, it will recevie an objectness score equal to one.
The rest of the anchors with IoU>0.5 won’t be penalized .

5.3.1 Prediction
The new predictive algorithm works simultaneously with 80 classes prediction due
to the non mutually exclusive approach and make 3 prediction per location. Each
prediction is composed of 80 classes prediction, an objectness score and 4 values related
to bounding box location and size. In the end there are NxN*(80+1+4) results . In
order to make 3 predictions at 3 different scales, the algorithm :

• Realize the first prediction in the last feature map layer

• Goes back to 2 layers back and upsample that layer by 2 . Then merges the
upsampled feature map with the other feature map at high resolution trough an
element-wise addition. Then apply a convolutional filters to make the second
prediction

• Repeat the second step so as to have a fine-grained feature map in order to obtain
a good resolution spatial info on object location and male the third prediction

45

Chapter 5. YOLO

Figure 5.11: YOLO 3 layers description[35].

As in YOLO v2, in this last evolution the k-means is used to cluster the dataset, but
9 priors(or ancors) is used for the new algorithm .

5.3.2 Feature Extractor
The feature extractor increases its layers arriving to Darknet-53. YOLO v3 has 53
layers, mainly 3x3 and 1x1 convolutional layers . Moreover it presents skip connection
between layers . It has the highest BFLOPs of the different version so it requires a
GPU hardware . Nevertheless it performs 2x faster then ResNet-152 with less BFLOps
.

5.3.3 Performance
YOLO v3 has the highest performance in terms of inference time on COCO dataset.
Moreover it obtains a good performance even in small objects detection .

46

Chapter 5. YOLO

Figure 5.12: YOLO 3 comparison w.r.t. competitors[35].

47

Chapter 6

Metrics

Once a machine learning or deep learning algorithm has been trained the following
crucial step is to evaluate it. The evaluation step is important in order to understand
the correctness of all the previous step and better understand the results . Moreover
it is the based on which the different algorithms proposed are compared .
During the evolution of deep learning many methods have been proposed and each of
them tries to focus on some aspects . In the following sections some of them will be
analysed .

6.0.1 IoU
It is called Intersection over Union and it is the most common metric in object de-
tection field. Moreover it is a basic metric for building other metrics . This metric is
particularly used in presence of bounding box and represents the accuracy in detec-
tion of the algorithm performing on a validation dataset. It is based on the ground
truth,namely the bounding box labelled by programmer and the predicted bounding
box. The IoU measures the overlapping area between those two boxes :

IoU = AreaofOverlap

AreaofUnion

Where :

• Area over Overlap is the overlapping area of the two boxes

• Area of Union is the merge of the two area

IoU values are bounded between 0 ans 1. If IoU=1 the predicted bounding box perfectly
match the ground truth, while if IoU=0 there is no overlap between those two region.
The IoU is a crucial element in the construction of other metrics . Indeed on the
contrary of a classification problem, in object detection there is no boolean metrics;
classification prediction a possible metric is to check if the predicted class is correct
or not, a boolean metric. In object detection the problem is " how to define if the

48

Chapter 6. Metrics

(a) IoU example (b) Ground truth
and predicted
bounding box

Figure 6.1: [36]

prediction is good or not ? " . The most common solution is based on the IoU value
: if the IoU>threshold the prediction is considered positive . In general the standard
threshold is equal to 0.5. but other thresholds are considered too.

6.0.2 Confusion Matrix
It is a simple method to visualize the correctness of an object detection system. It is
based on four elements :

• TP : True positive

• TN : True negative

• FP : False Positive

• FN : False negative

Where True or False refers to the ground truth, while Positive or Negative refers to
the predicted bounding box. E.g., a True positive result means that the predicted
bounding box is considered positive , with a IoU over some threshold and the related
ground truth is there. A False positive indicates a prediction in which there is no ground
truth to compare hence there is no object, but the algorithm predicted a bounding box
. In a confusion matrix all the possible cases are considered and visualised in a matrix
structure. In this case :

49

Chapter 6. Metrics

(a) (b) [37]

Figure 6.2: Confusion matrix with four possible cases

6.0.3 Precision and Recall
Those two metrics are widely used in most of the object detection algorithm. They are
based on the four cases previously examinated . Ther mathematical definition is :

Precision = TP
TP+FP

Recall = TP
TP+FN

Precision indicates the accuracy of an object detection algorithm that performs on a
validation dataset. It is the rate of the true positive on the entire predicted boxes. If
Precision=1 it means that all the predicted objects are correct.
Recall indicates how well the algorithm perform on the total amount of possible de-
tectable cases. it is the rate between true positive detected and all the positive de-
tectable.
The definition of TP and TN depends on the IoU threshold. As previously said, a
common threshold is IoU=0.5 . Decreasing the IoU could lead to increase the precision
because of a possible decreasing of the FP and so of the denominator of precision
definition. It is worth to notice that the performances of an algorithm depends on
the IoU set and for a complete comprehension of them metrics have to be analysed
under different IoU thresholds . A good classifier tends to maintain an high precision
increasing the racall value, while for a weak classifier precision tends to decrase if recall
increase.In order to better visualise the behaviour of the twe metrics a further metric
element was introduced, it is thePrecision-Recall curve . In this curve for different
recall points, the precision behaviour is shown:
Usually the number of points depends on the dataset involved . In order to take into
account precision and recall, researchers has defined a third metric , the F1 score. It
is the harmonic mean of the two metrics :

50

Chapter 6. Metrics

Figure 6.3: [38] Precision-Recall curve.

F1 = 2 PxR

P +R

There are many others metric that combines p. and r. , but it is the most used
because gives the same weight on both of them and punisces extrems so if one on the
two metrics is too low , F1 decrease significantly .

6.0.4 Average Precision(AP) and mean Average Precision(mAP)
Average Precision
Average Precision is a popular metric used to compare object detector algorithms.
It is based on Precision values in Precision-Recall curve. It is worth to notice that
generally the curve presents a zig zag pattern, hence it is not easy to handle directily
with those values. During the tim,e a lot of different definition has been chosen in
order to compute this value in an easy way . One of the most popular defines the
AP as the interpolated precision. Another very similar approach is the trapezoidal
interpolation of precision called Area Under Curve(AUC). Many times the two terms
coincide, depending on the kind of interpolation .

Figure 6.4: [39] Average Precision computed on P-R curve.

51

Chapter 6. Metrics

mean Average Precision

The current popular dataset like MS COCO present many different classes. In order
to compare the general performance of a multi-class object detector , the mAP is used.
It is the mean of all the AP belonging to the different classes.

Figure 6.5: Average Precision on COCO dataset of YOLO 3[40].

52

Chapter 7

Sensors and embedded system

As a general framework in object detection two elements are fundamentals : embedded
system and sensors. The first one is the "brain" where information are computed. An
embedded system it is a computer system designed for a specific purpose. They can
have a User Interface or not, like an embedded system integrated in a more complex
system that has to perform some specific tasks. Sensors are the interface with the
external world . In many cases and in particular in object detection field the cameras
are a crucial sensor in order to get the information that the embedded system can
process.
A third element that has to be taken into account are the constraints in which the entire
system (embedded system+sensors) has to work. For this thesis project the major
constraint is the particular application involved,namely an object detection application
on Mars. The space environment (space travel and work on another planet) leads to
numerous risks for electronic devices [41]. One of the most dangerous element in space
are radiation. Due to their capacity to penetrate matter, space radiations are able
to interact with electronic devices and especially with memories parts and change
their settings or internal states of the memories. Moreover there are many problems
related to degradation. Change in temperatures , extreme temperatures , vacuum and
electronic discharged are others problem suffered by satellites even in low earth-orbit .
In the following sections it will be shown sensors and boards involved in this thesis
project .

7.1 Camera
Camera sensors are an essential part of an object detection system. Many types of
cameras was built for robotic application from commercial to industrial types. Many
of them are based on different visual system and numerous cameras present more than
one type of visual system . Before analysing the cameras involved in this thesis , a
brief overview of the general visual system will be reported.

53

Chapter 7. Sensors and embedded system

RGB Camera
This is the standard type of camera present in every cell phone. It is widely used
in robotics because it is very similar to our visual system, getting a similar infor-
mation from the external world. Moreover today they are a very cheap sensors and
mounted almost on every robotic system that perform visual analysis, from rovers to
drones,under-water robots or industrial machines for vision application.
The information extracted from RGB camera are analysed and processed in order
to give-back a 2D image of the external reality. Those 2D images can be processed
together so as to reproduce a 3D world, as we perceive it.

Depth Camera
They are cameras able to give-back the distance between the framed objects and the
camera. Actually this types of cameras don’t rely on a particular "depth sensor" as
the RGB camera, but there are different solutions based on different sensors and a
following information processing that perform the task to give-back the distance of
each pixels.
The most popular depth camera systems are :

• Time of Flight(ToF)

• Stereo-camera

• Laser scanner

• Structured-light scanner

Time of Flight is based on light impulse . Those impulse emitted by the camera
hit an object and come back to their source. Camera sensors capture the returning
impulse and analysed the time needed for the impulse to be emitted and come back,
called Time of Flight. It is related to the distance from the hit object. This is a very
accurate system that allows a long working range and small size , but it is expensive .

3D Laser Scanner is based on triangulation. The laser is first emitted by the camera.
When the laser hit an object ,this latter reflects it and laser initial trajectory changes.
Camera sensors pick up the trajectory modification and from trigonometric calculation
can be determined the change in angle, directly linked to the distance from the scanned
object.

Structured-light is based on projection of a known light pattern onto a scene. When
the pattern points strike the object they are deformed by object surface. A sensor
capture the distorted pattern and the information is analysed in order to reproduce
the struck reflective surface. It is very similar to 3D Laser scanner approach but it is

54

Chapter 7. Sensors and embedded system

faster due to the pattern projection onto the entire seen simultaneously . The more
the pattern is dense, the more accurate will be the results. Usually the light source
work in infrared range.

Stereo-camera is mainly based on human vision system. In fact they reproduce a
binocular vision with two lenses that capture they same scene from different perspec-
tive. As in human case the single image is flat, in a 2D world but processing together
the information from both of them lead to re-create a 3D world.
In a stereo vision process the images are first analysed with a stereo-matching algo-
rithm. This algorithm tries to find correspondence region between the two images so
as to link pixels . Those linked pixels identify the same external point ,for example
the same hand or foot as in figure 7.1 . The difference calculated in pixels between the
two points is called disparity and is related to the distance between the object and the
camera. It is a phenomenon that everybody has had experience : if we alternatively
close one eye , the more an object is near our eyes the more we tend to perceive it
shifted between the single eye images.

Figure 7.1: Feature Matching on stereo image[42].

If all the disparity values are computed the algorithm can visualize the disparity map,
namely an image in which for each pixel is associated the related disparity value .
Choosing the right color visualization it easy to understand the distance information
behind the disparity map :

Figure 7.2: Disparity Map with different colours representation[42].

Once the disparity map has been obtained the depth can be calculated trough triangu-
lation methods . In figure 7.3 it is shown a simplification of two lenses looking at a P
point. Coordinates (X,Y,Z) are the coordinates in [mm] of the point in a camera refer-
ence frame(generally the reference is aligned with the origin of the left lens), while (x,y)
and (x’,y’) are the coordinates in pixels of the point in a 2D camera reference frame.

55

Chapter 7. Sensors and embedded system

Supposed the camera lenses perfectly aligned, working on similar triangles POO′ and
PAA′ it is possible to compute the distance Z as :

Z = B ∗ f
x− x′

= B ∗ f
d

Figure 7.3: Modeling of two lenses capturing the same point[43].

Where :

• Z [mm] is the distance of the point from the lenses

• O , O’ are the origin of the lenses coordinates and represent their centers

• x , x’ [px] are the horizontal coordinates of the point in the image plan

• B [mm] is called baseline and it is the horizontal distance between the lenses

• f [px] is called focal length and it is the distance form the center of the lenses to
the image plane.

• d [px] is called disparity

In order to have the other two coordinates of the point a simple proportion has to be
computed. Finally the 3D coordinates are :

X = x ∗ Z
f

Y = y ∗ Z
f

Z = B ∗ f
d

56

Chapter 7. Sensors and embedded system

7.2 Hardware components

7.2.1 Camera
Due to availability constraints and according to company willingness two cameras have
been used in this thesis project :

• Bumblebee® XB3 FireWire

• Intel® RealSense™ Depth Camera D435i

Bumblebee® XB3 FireWire

Figure 7.4: Bumblebee XB3 FireWire[44] .

The Bumblebee® XB3 is a 3-sensor multi-baseline camera.It has 1.3 mega-pixel sensors
and presents two baselines. Due to this advantage it is able to change the baseline
involved in order to modify the reachable distance range . The extended baseline
and high resolution provide more precision at longer ranges, while the narrow baseline
improves close range matching and minimum-range limitations. It was designed to
improve the flexibility thanks to its 3 "eyes". The camera has a resolution of 1280x960
. For further information it is possible to visit the product website [45] .
It works on IEEE-1394b interface and it has been a problem to connect to common
notebook because to the lack of that specific peripheral. The solution was to introduce
an "ExpressCard- Fire-wire " adapter .It works with an external power supply of 12V.
The developers camera kit provides Triclops Stereo SDK and FlyCapture SDK with
the purpose to perform a fast stereo-matching and easy image acquisition. In order to
use the camera, ROS platform has been used.Two packages have been fundamentals
in the use of the camera : camera1394stereo package, that allows you to use a camera
that relies on the IEEE-1394 standard and bumblebeexb3 package. The main problem
is that all of the internal specific camera parameters cannot be picked automatically
by the software. Because of this lack of information ,initially the images taken from
the camera in ROS suffer from distortion problem. In the interest of getting a suitable
image results a first calibration process is needed. Thanks to cameracalibration package
and OpenCV, a popular computer vision software, it possible to calibrate the camera,
namely to find internal camera parameters that allows the rectification of the images.
Due to a know pattern framed by the camera in different position and with different

57

Chapter 7. Sensors and embedded system

Figure 7.5: Bumblebee XB3 details[44] .

angles it is possible to recognize those parameters , reconstructing the camera pinhole
model.

Figure 7.6: Camera calibration trough camera-calibration ROS pack-
age[46].

Most of the dataset produced has been obtained using this camera model. Only RGB
images has been used.

Intel® RealSense™ Depth Camera D435i

It is one of the most used camera in robot application due to its performance, low cost
and small size factor.It is designed for an simple integration, an easy to use setup and
appriaceted for its portability. The D435i belongs to the D400 Intel series and it is
based on the D4 Vision Processor. It can performs an HD RGB image acquisition and
depth image processing with no need of external computational power. It is equipped
with a Depth Module able to work in indoor and outdoor environment with an high
depth resolution and in long range.

58

Chapter 7. Sensors and embedded system

Figure 7.7: IntelR©RealSenseTMDepth Camera D435i[47].

The parent model is the D435, but in this model an Inertial Measurement Unit(IMU)
has been added . This upgrade allows to obtain better depth measurement and it is a
starting point for SLAM and tracking application . In the end it can give-back a 6DoF
information .

Figure 7.8: D435i internal modules details[48] .

It is composed of :

• RGB Module

• 2 Infrared Modules

• IR Projector

The RGB module designed for a resolution up to 1920x1080. The two infrared modules
are sensors able to capture the infrared range acquiring infrared images. Combining
those two infrared images the system virtualize a depth camera with a resolution of
1280x720 . The virtual camera is supposed to be locate in the actual left infared sen-
sor . The IR Projector allows to improve the performance of the depth camera thanks
to an active stereo method. In fact the passive stereo process drops in performance
under poor light condition or low textured object, but thanks to the projector an IR
pattern is emitted in order to increase the texture of the framed scene and simplifies
the stereo-matching .
The application range can vary from 0.105 [m] to 10 [m], depending on lighting con-
dition . The camera is equipped with its developers kit Intel RealSense SDK 2.0, but

59

Chapter 7. Sensors and embedded system

in this thesis the realsense2camera has been used aiming to simplifies the connection
with other software involved.

7.2.2 Board
The focus of this thesis is to reproduce a suitable object detection algorithm under some
real space constraint.In designing a space flight only some validated on-board comput-
ers can be used. In fact the computers involved has to pass a space-qualification process
to be admitted in the list of the possible computers. For this research two computers
have been used: a workstation and Nvidia Jetson Nano.
The working station have been used only to be able to connect the Bumblebee camera ,
relying on its ExpressCard slot connector. Moreover the dataset acquisition and other
initial setting test have been validated on this computer due to its flexibility .

Figure 7.9: NVIDIA Jetson Nano[49].

The NVIDIA Jetson Nano belongs to the family of NVIDIA Jetson, an high per-
formance and low power boards of able to run real-time artificial intelligence algorithm
. They are perfect in robot application due to their small factor and easy integration
into other system. In particular the Jetson Nano board is the smallest device in the
Jetson family and needs only 10 [W] of power in high performace setting. It is based
on ARM Cortex CPU and a 128 core Maxwell GPU. It is designed for deep learn-
ing application as object detection, image classification or segmentation. It can run
multiple neural network in parallel.The board is provided in NVIDIA® Jetson Nano™
Developer Kit along with the NVIDIA JetPack SDK . It is equipped with four 3.1 USB
ports permits the connectio with up to 4 cameras connected . Moreover it presents two
possible power supply method with a barrel-jack or trough type-c connector in order
to improve the integration. The board specifics are riported in the figure 7.10 :
For further details it can be useful the specifics website [50].

60

Chapter 7. Sensors and embedded system

Figure 7.10: NVIDIA Jetson Nano details[49].

Because of the camera energy consumption and other peripherals like keyboard and
monitor it has been necessary to use a barrel-jack that can guarantee 5V and 4A . In
fact due to peaks in the energy consumption during the run of different software, some
lack of connection occurred between camera and board.

61

Chapter 8

Software and tools

In this thesis project Ubuntu has been used as operating system. It is free open-source
operating system Based on Linux. In particular the version involved is the 18.04 LTS .
Other software used will be explaining in the following section

8.1 ROS and packages
Robot Operating System is a free platform containing tool and libraries that simplifies
the creation of robot application. Thanks to ROS libraries a large amount of work ,e.g
camera initial setting is already done so as it is to connect camera and use pre-built
basic task in order to create more complex application. It allows developers to focus
on their research problem, while communication between different software is already
solved in ROS .
The fundamental unit for managing software in ROS is the package. It may contains
libraries, dataset or any other configuration file and they are all coherently organized
together. Furthermore other important elements are present likemeta-package or repos-
itories, namely a collection of packages . For the purpose of communication in ROS
there are some important elements :

• Node: process that run in order to perform some task. It is able to subscribe or
publish to a topic .

• Message: it is a data structure used by nodes to communicate. In ROS prim-
itive type are integrated , but a message can be composed of an arbitrary data
structure .

• Topic: nodes exchange information through message. "The topic is a name that
is used to identify the content of the message" . A node can take information
subscribing to a topic or can send information publishing to a topic. The general
framework is to decouple the information from their source or the consumption
of them.

In the figure 8.1 is it possible to see the standard communication structure:

62

Chapter 8. Software and tools

Figure 8.1: ROS basic communication structure[51].

Packages used

• camera1394stereo : it is used to communicate with stereo devices that exploits
IEEE-1394 standard communication

• bumblebeexb3 : it is a specific package able to communicate with Bumblebee
XB3 camera and run camera functions

• image_pipeline: it contains fundamentals packages useful to manipulate raw
image data

• cameracalibration: it allows calibration of cameras connected to ROS

• vision_opencv: package for interfacing ROS with OpenCV

• librealsense2 : it is the libraries based on the official RealSense SDK 2.0

• darknet_ros: it is the package based on darknet release of YOLO

rqt_reconfigure

It is a GUI interface that is able to modify camera parameters by modifying parameters
related to camera node. Thanks to this tools it has been possible to modify the initial
calibration file and optic parameter of the Bumblebee camera.

Figure 8.2: RQT reconfigure software[52].

63

Chapter 8. Software and tools

8.2 Google Colab
It is a Google project called Google Colaboratory (Colab) designed for machine learning
researchers and developers. It simplifies the researchers works thank to its on-line
Jupyter Notebook environment that requires no setup. All the most popular packages
are already installed . It is also equipped with pre-compiled machine learning models
including a dedicated section to YOLO v3 . More over it can be connected to Drive
account in order to save data . The most important feature of Google Colab is that it
provides CPU,GPU or TPU computational power for free. This is crucial for machine
learning application due to the computational cost of the algorithms. It has also some
limitation concerning this free usage , in fact depending on the GPU personal usage
or the total GPU power request it is possible that the system forces the notebook to
switch on CPU mode.

Figure 8.3: Google Colab drive communication structure[53].

64

Chapter 9

Implementation

The implementation of the thesis project has required the 3D printing of the sample
target, the production of a proper dataset of images and the creation of the algorithm
in order to find the 3D pose of the target.

9.1 Dataset
In order to create the dataset, several factors has been taking into account aiming to
produce representative cases of a possible martian application. Moreover , also limits
related of the object detection algorithm have been analysed.
The dataset has been produces using the bumblbee XB3 with a resolution of 1280x960
, after the calibration of the camera . Following the instruction related to the YOLO
release involved in the thesis, the dataset should be composed of at least 2000 images
per classes or more. In this case the dataset is composed of 5900 images splitted in
training-set andtesting-set, respectively 5000 and 900 images with a ration of 80%-20%
between the two sub-set. The factors taking into account are:

• lighting condition

• occluded or covered by soil

• perspective angle

• partially or completely under shadow

• distance from the camera

• position into the image

For what concern the lighting condition a lux-meter has been used in order to define
the lux quantity capturable by the camera. The lux level chosen are 30k-15K-8K-1K .
The different distances have been chosen according to original mission goals from 5m
to 0.5m.

65

Chapter 9. Implementation

Figure 9.1: Labelling example on dataset image

All the other factors have been evaluated in qualitatively way during the capturing
sessions as posing the target in different angles with respect to the camera .
It is really useful to produce in the dataset as many different images as possible aiming
to improve the abstraction capcity of the algorithm to understand what is the object
target with respect to what is not the object. The dataset should also include non-
labelled images with negative examples, namely an object of the same shape or colour
but that is not included in the detectable classes , aiming to improve the filters capacity
to highlight peculiar features of the target object.

Labellimg

Once the images have been taken has to be labelled. It means drawing a bounding box
called ground truth around the object that has to be detected , saving information of
the bounding box position. In this project the LabelImg has been used . It saves the
annotation for YOLO application as :

<object_class> <x_center> <y_center> <width> <height>

Where:

• object_class is the class number, starting from 0. In this case there is only one
class called "sample"

• (x_center , y_center) are the bounding box center coordinates normalized with
width and height of the image. They are bounded between 0 and 1 .

• (width , height) are the bounding box sizes normalized with the width and height
of the image .

66

Chapter 9. Implementation

In figure 9.1 is shown a labeling of a real captured image with LabelImg GUI . The
related annotation was saved in a".txt" file :

0 0.537891 0.499479 0.061719 0.032292

9.2 Network modification and Training
In this thesis research the network has been trained through a transfer learning ap-
proach, namely using a pre-trained network weights. Usually it is a good approach to
re-train the network , starting from an already trained network. In fact, some specific
features that the trained network has learnt to detect could be useful in the new net-
work too.Moreover it is suggested to follow this approach especially when the training
dataset is small. In this case the dataset is large enough to learn from scratch, but
because of the domain-specific dataset there is a possibility of overfitting. Further-
more, there is no disadvantage to use a pre-trained model. The training phase has
been performed on Google Colab .
With the purpose to have a good compromise between the time cost and the compu-
tational cost , the YOLO models chosen are based on the YOLOv3-tiny version. It is
a smaller version of YOLO with 23 layers and only two "yolo layer". It is useful when
the hardware computational power is limited or when the speed factor is fundamental.
Moreover, it shows extremely good results performing detection on small objects.
In order to adapt the configuration files to the specific dataset some adjustment has
been made :

• batch : it is the set of images involved for each epoch.

• subdivision: it is the number of subset in which on bach is splitted in order to
reduce the memory consumption

• max_batches: is the number of batches that have to be analysed. After the last
batches the training is concluded. The suggested value is max_batches=2000*classes.
More over it has to be at least 6000 and more than the number of testing images

• step: it is related to the learning rate. The more the training goes on, the more
the learning rate should be reduce in order to optimize the training. Devel-
oper suggestion is to reduce the learning rate x0.1 at 80% and again at 90% of
max_batches analysed .

• filters: it is related to the number of convolutional layer posed before the yolo
layer. It has to be modified according to classes number . For example in YOLO-
tiny it follow this rule "filters=(classes + 5)x3"

• classes : it is the number of classes that have to be detected

67

Chapter 9. Implementation

9.2.1 Custom Models
The chosen models are :

• YOLOv3-tiny

• YOLOv3-tiny-3l : it is based on the tiny version,but it presents a third extra
yolo-layer. It is more accurate than the standard version, especially with small
objects and it is more computational consuming

The network modifications are :

• batch = 64

• subdivision = 8

• max_batches = 6000

• step = 4800,5200

• filters = 18

• classes= 1

Another network parameters that has been modified is the mask. It represents the
anchors size involved in the training. Even if they have been calculated for the COCO
dataset trough the k-mean approach they can be re-adapted to the specific dataset.

9.3 3D coordinates estimation
The final scope of this thesis is to estimate the 3D pose of the sample. For this purposes
the rs_rgbd.launch launcher has been used . It is contained is realsense-ros package.
Its main purpose is to publish to the RGB image and the coloured pointcloud topics
. The RGB image and the coloured pointcloud are aligned so that each (x,y) coordi-
nates correspond to the same pixel. The coloured pointcloud message has the structure
"XYZRGB" where the "XYZ" part correspond to the coordinates "of the pixel" with
respect to the left infrared lens origin. The "RGB" part correspond to the standard
RGB colours of the pixel.
Meanwhile the camera node publishes on its topics , the darknet node gets the RGB
image information and perform detection . The results of this detection is published
on the "bounding_bounding boxes" topics the information related to the bounding box
coordinates and size. Moreover it publishes the information on the class detected and
the related confidence.
A last node has been implemented in order to coordinates depth info from camera and
detection infos from YOLO. The node subscribes to the bounding box topic and gets
the coordinates in pixel. Then it analyses the pointcloud topic to find the "XYZ" part

68

Chapter 9. Implementation

of the center coordinates of the bounding box. At the end is scale the XYZ coordinates
in millimiters and publish the bounding box center coordinates in pixels and the 3D
pose if the center in millimiters.

Figure 9.2: Performing detection in ROXY area

69

Chapter 10

Results and conclusions

Results
In the following table the main results have been reported in terms of average precision
and average IoU with a threshold of IoU=0.5 . In order to avoid overfitting issues, the
weights has been chosen analysing the mAP-Loss chart. The weights chosen for tiny
and 3l tiny are those related respectively to epoch = 5000 and epoch = 5200 .

YOLOv3 tiny YOLOv3 tiny 3

AP 85.70 % 91.03 %
IoU@0.5 64.86 % 73.52 %
FPS 10 5

It is possible to notice that the larger network is more accurate in detection and accu-
racy in bounding box size. The third layer is very helpful , but due to its computational
cost , the Frame per Second value drops drastically from 10 to 5 .

(a) mAP-Loss chart of the "YOLOv3 tiny"
model training

(b) mAP-Loss chart of the "YOLOv3 tiny
3l" model training

Figure 10.1

70

Chapter 10. Results and conclusions

Figure 10.2: Detection performed at distance of 1.8 m, occluded by
soil

Figure 10.3: Detection performed at distance of 2.2 m ,under a rock
shadow

71

Chapter 10. Results and conclusions

Figure 10.4: Detection performed at distance of 3 m

Figure 10.5: Detection performed at distance of 4.9 m

72

Chapter 10. Results and conclusions

Figure 10.6: Detection performed at distance of 4 m, under shadow

Figure 10.7: False negative at a distance of 5 m, under shadow

73

Chapter 10. Results and conclusions

Conclusions
The images confirms the good results on average precision computed on the dataset.
The two networks perform well the more the system is close to the target. Moreover
the algorithm shows some weak points due to false negative under shadow for large
distances. The current FPS does not allow a real-time application, but this could be
overcome involving a stand-alone software development, without the support of ROS
platform.
Future development could involve the use of infrared images captured by the Intel
RealSense D435i beside the RGB images, in order to augment the type of the dataset
images and improve accuracy even in darker environment .

74

Bibliography

[1] NASA. Mapping Sea Surface From the Space Station. url: https://www.nasa.
gov/mission_pages/station/research/news/GEROS-ISS.

[2] NASA. ULTRAVIOLET RADIATION ON THE SURFACE OF MARS. url:
https://mars.nasa.gov/mgs/sci/fifthconf99/6128.pdf.

[3] NASA. The Serpent Dust Devil of Mars. url: https : / / mars . nasa . gov /
resources/3814/the-serpent-dust-devil-of-mars/?site=insight.

[4] Sergios Theodoridis and Konstantinos Koutroumbas. “Chapter 8 - Template
Matching”. In: Pattern Recognition (Fourth Edition). Ed. by Sergios Theodoridis
and Konstantinos Koutroumbas. Fourth Edition. Boston: Academic Press, 2009,
pp. 481–519. isbn: 978-1-59749-272-0. doi: https://doi.org/10.1016/B978-
1-59749-272-0.50010-4. url: http://www.sciencedirect.com/science/
article/pii/B9781597492720500104.

[5] Adaptive Vision. Template Matching. url: https://docs.adaptive-vision.
com/4.7/studio/machine_vision_guide/TemplateMatching.html.

[6] Richa Motwani. Artificial Intelligence, Machine Learning, and Deep Learning.
url: https://medium.com/@richamotwani/machine-learning-learning-
tracker-day-1-b22a098e5467.

[7] Haohan Wang, Bhiksha Raj, and Eric P. Xing. “On the Origin of Deep Learning”.
In: CoRR abs/1702.07800 (2017). arXiv: 1702.07800. url: http://arxiv.org/
abs/1702.07800.

[8] The University of Queensland. History of Artificial Intelligence. url: https:
//qbi.uq.edu.au/brain/intelligent- machines/history- artificial-
intelligence.

[9] A. M. TURING. “I.—COMPUTING MACHINERY AND INTELLIGENCE”.
In: Mind LIX.236 (Oct. 1950), pp. 433–460. issn: 0026-4423. doi: 10.1093/
mind/LIX.236.433. eprint: https://academic.oup.com/mind/article-
pdf/LIX/236/433/30123314/lix-236-433.pdf. url: https://doi.org/10.
1093/mind/LIX.236.433.

[10] Frank ROSENBLATT. “The Perceptron: A Perceiving and Recognizing Automa-
ton”. In: (1957).

75

https://www.nasa.gov/mission_pages/station/research/news/GEROS-ISS
https://www.nasa.gov/mission_pages/station/research/news/GEROS-ISS
https://mars.nasa.gov/mgs/sci/fifthconf99/6128.pdf
https://mars.nasa.gov/resources/3814/the-serpent-dust-devil-of-mars/?site=insight
https://mars.nasa.gov/resources/3814/the-serpent-dust-devil-of-mars/?site=insight
https://doi.org/https://doi.org/10.1016/B978-1-59749-272-0.50010-4
https://doi.org/https://doi.org/10.1016/B978-1-59749-272-0.50010-4
http://www.sciencedirect.com/science/article/pii/B9781597492720500104
http://www.sciencedirect.com/science/article/pii/B9781597492720500104
https://docs.adaptive-vision.com/4.7/studio/machine_vision_guide/TemplateMatching.html
https://docs.adaptive-vision.com/4.7/studio/machine_vision_guide/TemplateMatching.html
https://medium.com/@richamotwani/machine-learning-learning-tracker-day-1-b22a098e5467
https://medium.com/@richamotwani/machine-learning-learning-tracker-day-1-b22a098e5467
https://arxiv.org/abs/1702.07800
http://arxiv.org/abs/1702.07800
http://arxiv.org/abs/1702.07800
https://qbi.uq.edu.au/brain/intelligent-machines/history-artificial-intelligence
https://qbi.uq.edu.au/brain/intelligent-machines/history-artificial-intelligence
https://qbi.uq.edu.au/brain/intelligent-machines/history-artificial-intelligence
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433
https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf
https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433

Bibliography

[11] Marvin Minsky and Seymour Papert. Perceptrons. Vol. 84. Dec. 1969. isbn:
0262631113. doi: 10.2307/1420478.

[12] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. “A Fast Learning Al-
gorithm for Deep Belief Nets”. In: Neural Comput. 18.7 (July 2006), pp. 1527–
1554. issn: 0899-7667. doi: 10.1162/neco.2006.18.7.1527. url: https:
//doi.org/10.1162/neco.2006.18.7.1527.

[13] Mr. Kuldeep Singh Mr. Parveen Kumar. Simulated Characteristic Model of Ar-
tificial Neuron in VHDL. url: hhttp://www.ijeert.org/pdf/v2-i3/25.pdf.

[14] Mcculloch pitts neuron model. url: https://www.ques10.com/p/13297/what-
is-mcculloch-pitts-neuron-model-with-the-he-1/.

[15] Will Traves. An Introduction to Machine Learning. url: https://www.usna.
edu/Users/math/traves/presentations/BN2018.pdf.

[16] Ava Soleimany. Deep Learning for Computer Vision MIT 6.S191. url: http:
//introtodeeplearning.com/2018/materials/2018_6S191_Lecture3.pdf.

[17] Ulas Bagci. -Filtering and Edges. url: http://www.cs.ucf.edu/~bagci/
teaching/robotvision18/Lec4.pdf.

[18] Arden Dertat. Applied Deep Learning - Part 4: Convolutional Neural Networks.
url: https://towardsdatascience.com/applied-deep-learning-part-4-
convolutional-neural-networks-584bc134c1e2.

[19] Arden Dertat. Applied Deep Learning - Part 4: Convolutional Neural Networks.
url: https://towardsdatascience.com/applied-deep-learning-part-4-
convolutional-neural-networks-584bc134c1e2.

[20] Charlotte Cullip. A Comparison of CNN Architectures (Part 2). url: https:
//medium.com/@charlottecullip/a-comparison-of-cnn-architectures-
part-2-8d03c67d8ec6.

[21] Shaunak Halbe.Object Detection and Instance Segmentation: A detailed overview.
url: https://medium.com/swlh/object-detection-and-instance-segmentation-
a-detailed-overview-94ca109274f2.

[22] Object detection using Fast R-CNN. url: https://docs.microsoft.com/en-
us/cognitive-toolkit/object-detection-using-fast-r-cnn.

[23] OpenCV. Cascade Classifier. url: https://docs.opencv.org/3.4.9/db/d28/
tutorial_cascade_classifier.html.

[24] N. Dalal and B. Triggs. “Histograms of Oriented Gradients for Human Detec-
tion”. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on 1 (2005), pp. 886–893. url: http://ieeexplore.
ieee.org/xpls/abs_all.jsp?arnumber=1467360.

[25] Histogram of Oriented Gradients (HOG). url: https://www-users.cs.umn.
edu/~hspark/csci5561_S2019/hw1.pdf.

76

https://doi.org/10.2307/1420478
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
hhttp://www.ijeert.org/pdf/v2-i3/25.pdf
https://www.ques10.com/p/13297/what-is-mcculloch-pitts-neuron-model-with-the-he-1/
https://www.ques10.com/p/13297/what-is-mcculloch-pitts-neuron-model-with-the-he-1/
https://www.usna.edu/Users/math/traves/presentations/BN2018.pdf
https://www.usna.edu/Users/math/traves/presentations/BN2018.pdf
http://introtodeeplearning.com/2018/materials/2018_6S191_Lecture3.pdf
http://introtodeeplearning.com/2018/materials/2018_6S191_Lecture3.pdf
http://www.cs.ucf.edu/~bagci/teaching/robotvision18/Lec4.pdf
http://www.cs.ucf.edu/~bagci/teaching/robotvision18/Lec4.pdf
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://medium.com/@charlottecullip/a-comparison-of-cnn-architectures-part-2-8d03c67d8ec6
https://medium.com/@charlottecullip/a-comparison-of-cnn-architectures-part-2-8d03c67d8ec6
https://medium.com/@charlottecullip/a-comparison-of-cnn-architectures-part-2-8d03c67d8ec6
https://medium.com/swlh/object-detection-and-instance-segmentation-a-detailed-overview-94ca109274f2
https://medium.com/swlh/object-detection-and-instance-segmentation-a-detailed-overview-94ca109274f2
https://docs.microsoft.com/en-us/cognitive-toolkit/object-detection-using-fast-r-cnn
https://docs.microsoft.com/en-us/cognitive-toolkit/object-detection-using-fast-r-cnn
https://docs.opencv.org/3.4.9/db/d28/tutorial_cascade_classifier.html
https://docs.opencv.org/3.4.9/db/d28/tutorial_cascade_classifier.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1467360
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1467360
https://www-users.cs.umn.edu/~hspark/csci5561_S2019/hw1.pdf
https://www-users.cs.umn.edu/~hspark/csci5561_S2019/hw1.pdf

Bibliography

[26] Ross Girshick et al. Rich feature hierarchies for accurate object detection and
semantic segmentation. 2013. arXiv: 1311.2524 [cs.CV].

[27] Selective Search for Object Recognition. url: http : / / www . huppelen . nl /
publications/selectiveSearchDraft.pdf.

[28] Jonathan Hui. What do we learn from region based object detectors (Faster R-
CNN, R-FCN, FPN)? url: https://medium.com/@jonathan_hui/what-do-
we-learn-from-region-based-object-detectors-faster-r-cnn-r-fcn-
fpn-7e354377a7c9.

[29] Wei Liu et al. “SSD: Single Shot MultiBox Detector”. In: Lecture Notes in Com-
puter Science (2016), pp. 21–37. issn: 1611-3349. doi: 10.1007/978-3-319-
46448-0_2. url: http://dx.doi.org/10.1007/978-3-319-46448-0_2.

[30] Selective Search for Object Recognition. url: http : / / www . huppelen . nl /
publications/selectiveSearchDraft.pdf.

[31] Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object Detection.
2015. arXiv: 1506.02640 [cs.CV].

[32] Jonathan Hui. Real-time Object Detection with YOLO, YOLOv2 and now YOLOv3.
url: https://medium.com/@jonathan_hui/real-time-object-detection-
with-yolo-yolov2-28b1b93e2088.

[33] Joseph Redmon and Ali Farhadi. YOLO9000: Better, Faster, Stronger. 2016.
arXiv: 1612.08242 [cs.CV].

[34] Real-time object detection with YOLO. url: https://machinethink.net/blog/
object-detection-with-yolo/.

[35] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement. 2018.
arXiv: 1804.02767 [cs.CV].

[36] Adrian Rosebrock. Intersection over Union (IoU) for object detection. url: https:
//www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-
for-object-detection/.

[37] Accuracy, Recall & Precision. url: https://medium.com/@erika.dauria/
accuracy-recall-precision-80a5b6cbd28d.

[38] Jonathan Hui. mAP (mean Average Precision) for Object Detection. url: https:
//medium.com/@jonathan_hui/map-mean-average-precision-for-object-
detection-45c121a31173.

[39] Manal El Aidouni. Evaluating Object Detection Models: Guide to Performance
Metrics. url: https://manalelaidouni.github.io/manalelaidouni.github.
io/Evaluating-Object-Detection-Models-Guide-to-Performance-Metrics.
html.

[40] M. Veloso J. Cartucho R. Ventura. “Robust Object Recognition Through Sym-
biotic Deep Learning In Mobile Robots”. In: ().

77

https://arxiv.org/abs/1311.2524
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
https://medium.com/@jonathan_hui/what-do-we-learn-from-region-based-object-detectors-faster-r-cnn-r-fcn-fpn-7e354377a7c9
https://medium.com/@jonathan_hui/what-do-we-learn-from-region-based-object-detectors-faster-r-cnn-r-fcn-fpn-7e354377a7c9
https://medium.com/@jonathan_hui/what-do-we-learn-from-region-based-object-detectors-faster-r-cnn-r-fcn-fpn-7e354377a7c9
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
https://arxiv.org/abs/1506.02640
https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://arxiv.org/abs/1612.08242
https://machinethink.net/blog/object-detection-with-yolo/
https://machinethink.net/blog/object-detection-with-yolo/
https://arxiv.org/abs/1804.02767
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://medium.com/@erika.dauria/accuracy-recall-precision-80a5b6cbd28d
https://medium.com/@erika.dauria/accuracy-recall-precision-80a5b6cbd28d
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
https://manalelaidouni.github.io/manalelaidouni.github.io/Evaluating-Object-Detection-Models-Guide-to-Performance-Metrics.html
https://manalelaidouni.github.io/manalelaidouni.github.io/Evaluating-Object-Detection-Models-Guide-to-Performance-Metrics.html
https://manalelaidouni.github.io/manalelaidouni.github.io/Evaluating-Object-Detection-Models-Guide-to-Performance-Metrics.html

Bibliography

[41] NASA. Space Radiation Effects on Electronic Components in Low-Earth Orbit.
url: https://llis.nasa.gov/lesson/824.

[42] Andrea Fusiello. Stereo Matching: an Overview. url: http://www.diegm.uniud.
it/fusiello/teaching/mvg/stereo.pdf.

[43] OpenCV. Depth Map from Stereo Images. url: https://docs.opencv.org/
master/dd/d53/tutorial_py_depthmap.html.

[44] FLIR. Bumblbee datasheet. url: https://flir.app.boxcn.net/s/5v1q4t8ko0slv7u3pqez2eizhk1f5p06/
file/416892704437.

[45] FLIR. Bumblebee® XB3 FireWire Details. url: https : / / www . flir . com /
support/products/bumblebee-xb3-firewire#Overview.

[46] How to Calibrate a Stereo Camera. url: http : / / wiki . ros . org / camera _
calibration/Tutorials/StereoCalibration.

[47] Intel® RealSense™ Depth Camera D435i. url: https://www.intelrealsense.
com/depth-camera-d435i/.

[48] url: https://support.intelrealsense.com/hc/en-us/community/posts/
360034849354-About-the-structure-of-RealSense-Depth-Camera-D435i.

[49] Jetson Nano Developer Kit. url: https://developer.nvidia.com/embedded/
jetson-nano-developer-kit.

[50] NVIDIA. Jetson Nano Developer Kit. url: https://developer.nvidia.com/
embedded/jetson-nano-developer-kit.

[51] M.S. Achmad et al. “Tele-Operated Mobile Robot for 3D Visual Inspection Utiliz-
ing Distributed Operating System Platform”. In: International Journal of Vehicle
Structures and Systems 9 (Sept. 2017). doi: 10.4273/ijvss.9.3.12.

[52] url: http://wiki.ros.org/rqt_reconfigure.

[53] How to train YOLOv3 using Darknet on Colab notebook and optimize the VM
runtime load times. url: https : / / colab . research . google . com / drive /
1lTGZsfMaGUpBG4inDIQwIJVW476ibXk_#scrollTo=Cqo1gtPX6BXO.

78

https://llis.nasa.gov/lesson/824
http://www.diegm.uniud.it/fusiello/teaching/mvg/stereo.pdf
http://www.diegm.uniud.it/fusiello/teaching/mvg/stereo.pdf
https://docs.opencv.org/master/dd/d53/tutorial_py_depthmap.html
https://docs.opencv.org/master/dd/d53/tutorial_py_depthmap.html
https://flir.app.boxcn.net/s/5v1q4t8ko0slv7u3pqez2eizhk1f5p06/file/416892704437
https://flir.app.boxcn.net/s/5v1q4t8ko0slv7u3pqez2eizhk1f5p06/file/416892704437
https://www.flir.com/support/products/bumblebee-xb3-firewire#Overview
https://www.flir.com/support/products/bumblebee-xb3-firewire#Overview
http://wiki.ros.org/camera_calibration/Tutorials/StereoCalibration
http://wiki.ros.org/camera_calibration/Tutorials/StereoCalibration
https://www.intelrealsense.com/depth-camera-d435i/
https://www.intelrealsense.com/depth-camera-d435i/
https://support.intelrealsense.com/hc/en-us/community/posts/360034849354-About-the-structure-of-RealSense-Depth-Camera-D435i
https://support.intelrealsense.com/hc/en-us/community/posts/360034849354-About-the-structure-of-RealSense-Depth-Camera-D435i
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://doi.org/10.4273/ijvss.9.3.12
http://wiki.ros.org/rqt_reconfigure
https://colab.research.google.com/drive/1lTGZsfMaGUpBG4inDIQwIJVW476ibXk_#scrollTo=Cqo1gtPX6BXO
https://colab.research.google.com/drive/1lTGZsfMaGUpBG4inDIQwIJVW476ibXk_#scrollTo=Cqo1gtPX6BXO

Appendix

1 #!/usr/bin/env python
2

3 import rospy
4 import threading
5

6 from std_msgs.msg import *
7 from darknet_ros_msgs.msg import *
8 import sensor_msgs.point_cloud2 as pc2
9 from sensor_msgs.msg import PointCloud2, PointField

10

11

12 class INIT():
13 #Values Initialization
14 def __init__(self):
15 rospy.init_node('estimation_node',anonymous=True)
16 global center_x, center_y, scale_factor
17

18 scale_factor=1000
19 center_x,center_y,u,v = 0,0,0,0
20

21 print("Starting Pose Estimation")
22

23

24 class INPUT(threading.Thread):
25

26 # Initialization of subscribing elements
27 def __init__(self,bounding_boxes =

'/darknet_ros/bounding_boxes',
point_cloud="/camera/depth_registered/points"):

↪→

↪→

28 threading.Thread.__init__(self)
29 self.bounding_boxes = bounding_boxes
30 self.point_cloud = point_cloud
31

79

Bibliography

32

33 # Subscribing to bounding box and point cloud topics
34 def run(self):
35 self.bounding_boxes_sub =

rospy.Subscriber(self.bounding_boxes,
BoundingBoxes, self.bbox)

↪→

↪→

36 self.pc_prova_sub = rospy.Subscriber(self.point_cloud,
PointCloud2, self.pc_prova)↪→

37

38 # Reading bounding box coordinates and related center
39 def bbox(self, data):
40

41 global center_x,center_y
42

43 values = data.bounding_boxes
44 for data in values:
45

46 bb_xmin = data.xmin
47 bb_ymin = data.ymin
48 bb_xmax = data.xmax
49 bb_ymax = data.ymax
50

51 w = bb_xmax - bb_xmin
52 h = bb_ymax - bb_ymin
53 center_x = bb_xmin + w/2
54 center_y = bb_ymin + h/2
55

56

57 # PointCloud2 message is saved in "point_saved" . The
coordinates are scaled in mm and published↪→

58 def pose_estimation(self,data):
59

60 #u : width
61 #v : height
62

63 u=center_x
64 v=center_y
65

66 point_saved = pc2.read_points(data, field_names = ("x",
"y", "z"), skip_nans=True, uvs=[[u,v]])↪→

67 point=next(point_saved, None)
68

80

Bibliography

69 pt_x = int(point[0]*scale_factor)
70 pt_y = int(point[1]*scale_factor)
71 pt_z = int(point[2]*scale_factor)
72

73 print ("The bounding box center (x,y) in px is : {} -
{}".format(u , v))↪→

74 print("The x coordinate is %d mm " %pt_x)
75 print("The y coordinate is %d mm " %pt_y)
76 print("The z coordinate is %d mm " %pt_z)
77

78

79

80 if __name__ == '__main__':
81

82 init = INIT()
83

84 i = INPUT()
85 i.start()
86

87 rospy.spin()

81

	Introduction
	Research objective
	Research project background
	Company introduction
	Mars Sample Return mission
	R.O.X.Y. facility

	Preliminary studies
	Mars conditions
	Target
	Possible solutions
	Template matching approach
	3D model approach
	Other approaches
	Deep learning approach

	Machine learning
	History of machine learning
	Key concepts in machine learning
	Threshold logic unit (TLU)
	Perceptron
	Framework of Neural Networks
	Gradient Descent
	Stochastic Gradient Descent
	Back-propagation algorithm

	Neural network
	Neural network problems
	Neuron saturation
	Learning Slowdown in the Final Layer
	Weights and Biases Initialization

	Data overfitting
	Dividing Data
	Artificially Expanding the Training Data
	Regularization Techniques
	Dropout

	Deep learning
	Convolutional neural networks
	Key elements
	Stride and padding
	Feature map
	Pooling layer and max pooling
	Convolutional neural network architecture

	Object detection
	Introduction of object detection
	Object Detection framework

	Evolution of object detection
	Haar Feature-based Cascade classifiers
	Histogram of Oriented Gradients (HOG)
	Regional CNN (R-CNN)
	Fast regional CNN (Fast R-CNN)
	Faster regional CNN (Faster R-CNN)
	Single Shot Multibox Detector (SSD)

	YOLO
	YOLO
	How it works
	Network Design
	Loss Function
	Inference
	Limits

	YOLO 2
	Accuracy Improvements
	Batch Normalization
	High Resolution Classifier
	Convolutional with Anchor Boxes
	Dimension Clusters
	Direct location prediction
	Fine-Grained Features
	Multi-Scale training
	Architecture Design
	Hierarchical classification

	YOLO 3
	Prediction
	Feature Extractor
	Performance

	Metrics
	IoU
	Confusion Matrix
	Precision and Recall
	Average Precision(AP) and mean Average Precision(mAP)
	mean Average Precision

	Sensors and embedded system
	Camera
	Hardware components
	Camera
	Board

	Software and tools
	ROS and packages
	Google Colab

	Implementation
	Dataset
	Network modification and Training
	Custom Models

	3D coordinates estimation

	Results and conclusions

