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1 ABSTRACT 

 

2D and 3D multiple object tracking, is an open problem inside the computer vision community 

with multiple applications in the industry such as in the autonomous vehicles or in the sport field. 

Many works have been conducted in the past to solve and improve this task, especially for person 

tracking due to its greater interest.  

Recently, the deep learning techniques have been able to beat the state-of-the-art in tasks such 

as image classification, object detection or 3D pose estimation. Thus, this work has made use of 

deep learning methods to build a 2D and 3D tracking applications. These techniques are 

combined with a tracking by detection scheme to perform the tracking and achieve a good result. 

Contribution of work proposed in this thesis would be two-fold. First, it is implemented multi-

person object tracker in 2D which specialized for sport like soccer. Second, a 3D multi person 

tracker is designed, which inputs single RGB image and outputs the 3D poses with IDs. 
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2 INTRODUCTION 

 
Computer vision seeks to build automated systems capable do the tasks which the human visual 

system can do, in some cases perform better than it and generally the human visual system is the 

motivation for the designers of the computer vision system (Huang, 1997).In specific, computer 

vision aims to take out useful data from images. This has demonstrated a notably difficult task; 

For the last four decades many brilliants and knowledgeable people get involved in it, even 

though we still could not build an unlimited “seeing machine”(Prince, 2012). Recently computer 

vision faces rapid progresses. Deep learning has helped to the massive progress of the computer 

vision field, giving the possibility to introduce a huge number of applications using computer 

vision techniques. Modern day computer vision depends heavily on deep learning techniques. 

From crucial tasks like object recognition, detection and tracking to high level semantic dilemmas 

like traffic scene understanding, the community has witnessed substantial performance boost 

with these algorithms. Latest GPU hardware provide enormous computational capabilities, which 

enable rapid prototyping and deployment of new ideas. Deep Learning methods have proven 

themselves to generalize much better than many hand-engineered efforts, but only as good as 

generalizability of the training data itself.  

2.1 MULTIPLE OBJECT TRACKING 

One significant area of computer vision is the Multiple Object Tracking or MOT which is 

interesting because of its potential in both the academic and commercial spheres. Moreover, the 

trajectories prediction of multiple targets in video sequences is one of the principles aims of MOT, 

in order to improve applications such as smart video analysis and autonomous driving (Wang et 

al., 2019). The real-world applications of the multi-object tracking are numerous including 

human-computer interaction, autonomous vehicles, robotics, video indexing, surveillance or 

security, sports, among others. The computer vision community have been making big efforts in 

the past few decades to solve the MOT problem, but the task is still open for improvement. 
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Video based information about team sports can be used in different ways to increase the 

performance of teams and athletes. Determining positions during interesting game situations, 

ratio of strain and relax time or physically exhausting actions like sprints or jumps would require 

an annotation of nearly every frame of the video sequence (Figure 1). For that reason, computer 

vision and in particular tracking is of increasing importance for digital game analysis. Many 

different games e.g. soccer, hockey and other sports have used tracking in the past. In these kinds 

of tasks, the algorithms have to deal with complex occlusion situations and difficult object 

matching (Mauthner & Bischof, 2007). 

 

One of the most studied tracking areas is the pedestrian tracking, mainly because this particular 

kind of object can be seen in a large number of applications with commercial potential. As some 

studies indicate (Voigtlaender et al., 2019), about the 70% of the current research done in MOT 

is dedicated to pedestrians. The difficulty of MOT lies in various challenging situations that can 

occur such as variation of the illumination, variation of scale, target deformation or fast motion. 

Most of these challenges are common to Single Object Tracking (SOT) but MOT also needs to 

solve two main tasks: determining the number of objects and maintaining its identities over the 

time. 

 

 

 

Figure 1: Tracking in sport (Girdhar et al., 2018). 
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2.2 MULTI-PERSON 3D POSE ESTIMATION AND TRACKING 

Human pose estimation draws a considerable attention in computer vision community because 

of an array of applications in augmented reality, activity recognition, trajectory prediction, and 

marker-less tele-operation to name a few. Depending the application requirement for pose 

estimation, three categories can be modeled: 2D pose estimation (in pixel coordinates) from 

static monocular images, 3D pose estimation (in world/camera coordinates) from depth/range 

images, and 3D pose estimation from monocular/2D images directly (Figure 2) (Moon et al., 

2019). Depth sensors have the ability to provide rich information about human postures in indoor 

settings, and are used in multiple setups, like gaming in Microsoft’s Xbox with Kinect, etc. 

However, the human body flexibility along with multiple degrees of freedom leading to self-

occlusion has kept humans pose estimation far from be solved (Bridgeman et al., 2019).  

The estimation of 3D poses using videos is a well-explored problem. A quite large number of 

researches are focus on 3D poses calculation from multi view videos as well as monocular ones. 

However, few methods have been designed specifically for sport matters (Bridgeman et al., 

2019). 

Datasets with sport information are a challenge for the algorithms used in computer vision, due 

to fast motion tasks and contact between players, similarities in the appearance of the players, 

huge occlusion, low resolution and wide baseline cameras, moving and poor calibration. 

Nevertheless, the estimation of the players 3D poses performing different sports has potential 

applications such as analysis of the performance, motion capture, and others (Bridgeman et al., 

2019). 

The challenges of tracking human poses are many. Some of them are occlusion, pose changes 

and multiple overlapping instances. Imaging a tracker that works ideally, it would need to predict 

in an accurate way every instance of human poses at each time step, considering the appearance 

and the pose changes over time. Thus, the state of art in pose predictions should be followed 

closely, combining the usage of tools to be able to join time information in a specific instance 

level in a successful way (Girdhar et al., 2018). 
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Figure 2: 3D Pose estimation of multi-person (Moon et al., 2019). 

2.3 OBJECTIVES 

Objectives of this master thesis are to build a multi-object tracking application which makes use 

of two techniques: object detection and 2D-tracking and separately add multi human 3D pose 

estimation algorithm to the current pipeline and finally track poses. In this work will be studied 

how to use these techniques to build a robust multi-object tracker and as well as built a 3D multi-

person poses tracker. This task can be divided into different sub-objectives: 

 
1. Development of an object detector using deep learning. 

 
2. Development of a deep tracking module. 

 
3. Tracking of an object in a single pipeline and combination of object detection 

 
4. Development of a 3D multi-person pose tracker. 

 
5. Analyze and Discuss the results. 
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3 STATE OF THE ART  

The state of the art and the background related to the topic of the thesis will cover in this chapter. 

First, the object tracking (including algorithms), datasets and metrics used for a good 

development of a system for multi object tracking will be introduced. Second, the object 

detection will be discussed with goals of understanding what is happening under the hood. Third, 

3D multi-person pose estimation will be explained following the same scheme. Other necessary 

tools and interesting subjects from the literature will be also briefly commented. 

3.1 OBJECT TRACKING ALGORITHMS 

The main aim for the object tracking is to estimate the target over the time in a frame sequence 

(images). This state can be defined by different features such as shape, appearance, position or 

speed. It is a difficult field since one or more difficulties must be solved by the algorithm. Among 

them the management of variations in lighting and in the point of view of the object that can lead 

to changes in its appearance. Likewise, the occlusions that occur when objects are mixed with 

other elements of the scene or the quality of the image itself may be a problem. To confront 

these problems the following paradigms have been followed (Smeulders et al., 2014): 

• Tracking using matching: these algorithms match the model representation of the object 

created from the previous frame and the possible player in the next frame. These 

methods rely on the correct representation of the match and the similarity measurement 

used to perform the matching. The most outstanding methods are Normalized Cross-

Correlation (Briechle & Hanebeck, 2001), Lucas-Kanade Tracker (Baker & Matthews, 

2004), Kalman Appearance Tracker (Intelligence & Intelligence, 2004) and Mean Shift 

Tracking (Comaniciu & Ramesh, 2000). Most of them use the intensity values in the 

images to build the algorithm, for example, Lucas-Kanade performs spatiotemporal 

derivatives on these values. 

• Tracking by detection: in order to differentiate the background with the object,  a model 

was built (Harris & Stephens, 1988). Once you have one detection it is associated with the 

previous detections. Currently, the community is turning to neural networks to compute 

detections. 
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• Tracking, learning and detection: it is an extension of the previous group that includes a 

mechanism to update the model that is learned during execution. For example, you can 

use the results of an optical flow tracker for this update. This makes sure that the 

algorithm does not get altered with the object variations  (Kalal, 2010).  

 

 

Figure 3: P-N learning mechanism (Kalal, 2010). 

 

Prior to the modern techniques to be discussed here there are more “classic ways” of tracking 

objects that can be useful in problems that require real time, for example. One of the most well-

known is feature tracking. This technique uses characteristic points that can be found in images 

and that allow to estimate the movement. These points must meet some requirements to be 

able to be characteristic of the image such as repeatability (the characteristic can be found in the 

images even if they have undergone some transformation), compatibility (each characteristic 

must be descriptive and easy to find) or efficiency (the representation of the information 

characteristic of the image must be done with as few characteristics as possible). The 

characteristic points most commonly used are corners. They are characterized by gradients with 

higher values in them in two or more directions. These techniques can be seen in Harris (Harris 

& Stephens, 1988) and Shi-Tomasi corner detectors (Shi & Tomasi, 1993). 

There are tracking systems that take advantage of the feature tracking speed and the neural 

networks accuracy to create a “hybrid tracking”. In this type of tracking the detections are done 

each N frames using some type of neural network and the intermediate tracking is done through 

feature tracking (Held et al., 2016).  
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With the arrival of neural networks this way of grouping the tracking methods changes to adapt 

to them: 

• Tracking by detection: these are intended to follow a specific type of object (model-

based) and to obtain a specific classifier. In practice, the detections are obtained with 

neural networks and they are linked in tracking using temporal information. They are 

limited to a single class of objects (Held et al., 2016). 

• Tracking, learning and detection: they are characterized by being fully trained online. A 

typical tracker example of this group samples zones closes to the object and considers 

them foreground, the same happens with the distant zones that would be assigned to the 

background. With this a classifier can be built that differentiates them and estimates what 

is the new position of the object in the following frame (Babenko et al., 2009) .It has been 

tried to introduce neural networks in environments with online training but due to the 

slowness of the networks when training the results are slow in practice (Held et al., 2016). 

• Siamese-based tracking: multiple patch candidates from the new frame are received and 

the one that has the higher matching score comparing to the previous frame is chosen as 

the best candidate, that is, the most similar according to the matching function. In the 

figure below, one of the last Siamese network-based tracker called SiamRPN++ (Held et 

al., 2016).  

 

 

Figure 4: SiamRPN++ (B. Li & Zhang, 2018) 
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• Tracking as regression: in this group, on the other hand, network return location of the  

intended object by receiving only previous and current frames .It is able to model changes 

in scale and aspect of the tracked template, since this tracker predicts a bounding box 

instead of just the position. However, it only can process a single target and it needs from 

data augmentation techniques to learn all possible transformations of the targets (Held 

et al., 2016). 

• Tracking with RNN: this type of algorithms uses Recurrent Neural Networks to model the 

sequence of movement of objects from the detection obtained. Thus improves the 

response to prolonged occlusions in time, for example( Sadeghian et al., 2017 ). They have 

good accuracy, but they usually do not perform well in real-time. 

 
In addition, Multiple Object Tracking (MOT) algorithms are divided into two approach which are 

online and batch. In Batch tracking algorithms, for identifies object location, it can be used future 

frames information. For better result in tracking quality, they often exploit global information. 

The majority of MOT algorithms share the following steps (Ciaparrone et al., 2019): 

• Detection Step 

• Feature extraction and Motion Prediction Step 

• Affinity Step 

• Association Step 
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Figure 5: Multi Object Tracking algorithm workflow, it begins by input video frame (1), then bounding 

boxes are generated by detector algorithm (2). Following, calculated features are extracted (3). Next, by 

affinity stage, likelihood of objects belonging to same target is recognized (4) to in the next step assign 

IDs to objects (5) (Ciaparrone et al., 2019). 

3.2 DATASETS FOR OBJECT TRACKING 

The visual object tracking is a important task in computer vision which has many applications. 

This task, the same way as others in the field, needs datasets from which create and evaluate the 

algorithms. The datasets are also commonly associated with competitions that allow the 

benchmarking of the developed algorithms. These benchmarks often provide the most objective 

measure of performance and, for this reason, they are important guides for research in the area 

of study. The visual tracking datasets can be divided according to their tracking target, that is, if 

they are focused on the tracking of a single object (SOT) or on the tracking of multiple objects 

(MOT). 

 

3.2.1 Multiple Object Tracking Datasets 

 
• MOT:  

This dataset arises from the need to provide a general and standardized way to create 

multi-object tracking algorithms, evaluate the results and present them. Recently, the 

computer vision community has promoted several benchmarks for the evaluation of 

numerous tasks like object detection, optical flow or stereo estimation that have 
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advanced the state of the art in these areas. However, not so much effort has been made 

in the standardization of the evaluation of multiple target tracking (Milan et al., 2016). 

As many other datasets it is associated with a challenge, the MOTChallenge. With this 

challenge the organizers try to create a unified framework for the evaluation of multi-

target tracking. The dataset provides a collection of datasets, some of them coming from 

datasets already in use and some from new challenging data. The given data are video 

sequences (Milan et al., 2016). 

The first release of the dataset named MOT15 was focused on multiple people tracking, 

following the trend of other datasets. The pedestrian tracking is by far the most studied 

case in the tracking context. In the next releases, more significant classes generally seen 

in urban scenarios were added, like vehicles, bicycles or motorbikes. The challenge has 

had three editions: MOT15, MOT16, MOT17. In each of them the sequences were more 

challenging than the edition before. This can include different camera viewpoints and 

positions, more challenging weather conditions (cloudy, night, sunny). For example, the 

mean crowd density in MOT16 is three times higher when compared to the first 

benchmark release (Milan et al., 2016). 

 

 

Figure 6: An overview of the MOT16 dataset. Top: train sequences. Bottom: test (Milan et al., 2016). 

• ALOV: 

The Amsterdam Library of Ordinary Videos for tracking is another well-known visual 

object tracking dataset in the field. It covers different situations including illuminations, 

transparency, zoom or low contrast, for example. There are 315 videos in 64 different 

targets that gathered from YouTube (Dataset Resources, 2020). 
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• CAVIAR: 

The CAVIAR is a project from INRIA labs was gathered to the development of algorithms 

that can describe and understand video scenes. The scenes were associated with 

surveillance scenarios where people performed some different activities related with the 

surveillance area. Those activities included walking, browsing, resting, leaving bags 

behind or two people fighting. The annotations contain, apart from the bounding boxes 

locations, the head and feet positions, the body direction, among others. Referring to the 

tracking task, the challenging problems include occlusions, appearance/disappearance, 

appearance changing or similar object tracking, for example. In terms of data size, the 

first set contains 28 video sequences and the second set contains 44 video sequences 

(Figure 7). It is a well-known dataset and is commonly used for development and testing 

of tracking algorithms (Dubuisson & Gonzales, 2016). 

 

 

Figure 7: CAVIAR (Dubuisson & Gonzales, 2016) 

• TrackingNet: 

Most of the commented datasets are small regarding to the size. Nowadays, this tracker 

relies on datasets that have the object detection information because absence of 

dedicated comprehensive tracking datasets. For this reason, TrackingNet one of the first 

large-scale object tracking data set in wild created. TrackingNet provides a total of 30643 

video segments “with more than 14 million dense bounding box annotations” (Müller et 

al., 2018) (Figure 8). The contributions of this work include diverse methods that produce 

annotations that are dense from the ones with coarse and a baseline that is prolonged 

for the trackers’ benchmarked state of the art on TrackingNet. Referring to the latter, the 

authors affirm that doing a pretraining of the deep models on this dataset could  “improve 
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their performance on other datasets by increasing their metrics by up to 1.7%” (Müller et 

al., 2018). 

 

 

Figure 8: TrackingNet: difference of current datasets size for object tracking (Müller et al., 2018). 

 

3.2.2 Single Object Tracking Datasets 

 
• OTB: 

For surveillance tracking scenarios there are some data sets, however, objects that are 

human or cars are in small size with static background. Also, some of the scenes are 

sometimes not annotated with bounding boxes which makes them not very useful for the 

comparison of tracking algorithms. This data set is built with 50 fully annotated sequences 

in the first release OTB50 to ease the evaluation task. Later, the dataset was extended 

with another 50 sequences (OTB100) (Wu et al., 2013). 

Many factors can affect the tracking performance such as illumination variation or 

occlusion, for this reason the authors categorized the sequences with 11 attributes 

according to the occurrence of any of the selected factors (Figure 9). Apart from the data 

side, to simplify large scale performance evaluation, the authors integrated most of the 

publicly available trackers at the time to create a code library with uniform input and 

output formats (Wu et al., 2013). Including TLD (Kalal, 2010), MIL (Babenko et al., 2009) 

or CPF (Pérez et al., 2002) making a total of 29 tracking algorithms. 
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Figure 9: OTB: List of the annotated to test sequences (Wu et al., 2013). 

• VOT: 

The visual object tracking creativity started in 2013 to address performance evaluation of 

short-term visual object trackers. By short term tracking means that assumed after target 

is lost, trackers cannot re-detect successfully that target, and they reset after that 

situation. In all the previous editions the challenge considers single camera, single target, 

model free, causal trackers applied to short-term tracking. The main goal of VOT is 

establishing datasets, evaluation measures and toolkits for visual object tracking (as many 

other initiatives). The successive editions were made in conjunction with Computer Vision 

Conferences like ICCV or ECCV. In 2015, a sub challenge focused on tracking in thermal 

infrared (TIR) was made due to the growing interest in this kind of imaging. Referring to 

the data itself, the VOT datasets try to pay more attention to the diversity of the data and 

the quality of the content and annotation with respect to the quantity. For example, some 

datasets assign a global attribute to the entire sequence when it is happening in a 

fragment of it. VOT dataset tries to avoid the assumption that the quality of the data is 

correlated with its size (Kristan et al., 2017). “The VOT Challenge has focused on 

developing a methodology for automatic construction and annotation of moderately 

large datasets from a large pool of sequences” (Kristan et al., 2017) (Figure 10). 
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Figure 10: VOT: VOT2016 sequences (left) replaced by VOT2017 with new sequences (right).( Kristan et 

al., 2017 ) 

 

3.3 METRICS FOR MULTI-OBJECT TRACKING EVALUATION 

Apart from the datasets and algorithms used to solve a given task or problem it is necessary to 

use a measure or set of measurements that provide an evaluation of the performance of the 

obtained solution. In this section, the most important metrics used for evaluating multiple object 

tracking are commented. 

For the metrics used in this evaluation, the classification from MOT (Milan et al., 2016) is used as 

reference. As it will be seen, the performance evaluation for MOT algorithms is not so easy as 

the one presented for object detection. Tracing metrics can according attributes can be classified 

into four subsets: 

• Accuracy: this type of metrics tries to measure how accurately a tracking algorithm tracks 

targets. From this type of metric, the following two are briefly commented: IDs 

(Yamaguchi et al., 2011) and MOTA (Bernardin & Stiefelhagen, 2008). The IDs metric 

measures the ID switches, i.e. given an id for an object it measures how many times the 

MOT algorithm changes this id. The Multiple Object Tracking Accuracy (MOTA) is 

calculated as follows: 
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Equation 1: Where mt  , fpt  , mmet , and gt    are number of misdetections , number of false positives, 

number of mismatches and  sum of true positive and fpt, respectively  (Bernardin & Stiefelhagen, 2008). 

 

Computing single number by combination of FP rate, FN rate and mismatch rate is, as the 

authors indicate, “by far the most widely accepted evaluation measure for MOT” (Milan 

et al., 2016) and it gives an intuitive measure on the tracker’s performance at detection 

and trajectory. It does not consider the precision of that detections’ location. 

 

• Precision: in this metrics group the key factor is the description of the precision that the 

tracked objects have using criteria such as bounding box overlap or distance. The most 

important are MOTP (Bernardin & Stiefelhagen, 2008), TDE (Kratz & Nishino, 2010) and 

OSPA (Ristic et al., 2011). MOTP, for example, uses a ratio with the distance between the 

ground-truth detections locations d and the associated detected locations c. 

 

Equation 2: MOTP definition (Bernardin & Stiefelhagen, 2008). 

• Completeness: it refers to ground truth trajectories that how completely they tracked. 

This set includes the results from Mostly Tracked (MT), Partly Tracked (PT), Mostly Lost 

(ML) and Fragmentation (FM) (Yuan Li et al., 2009). 

• Robustness: this last type of metrics is linked to the recovering from occlusion. Examples 

of this group are Recover from Short-term occlusion (RS) and Recover from Long-term 

occlusion (Song et al., 2010). 

3.4 OBJECT CLASSIFICATION AND DETECTION USING NEURAL NETWORKS 

Many of the progress made in recent years on the classification field of computer vision can be 

directly associated with the use of neural network architectures. The first big step forward came 

in 2012 when AlexNet (Krizhevsky & Hinton, 2012) beat all the proposals of the state-of-the-art 

at that time in the ImageNet challenge, ILSVRC. This competition of classification in images is a 

reference in the computer vision community. Test error rate of AlexNet (15.3%) was lower than 
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the previous year’s winner error which was 26.2%. This network follows the basic design 

archetype of convolutional neural networks: a sequences of convolution layers, tailed by max-

pooling and activation layers before the final classification layers (fully connected). Typically, 

object detector can be classified into two categories, two stage like Faster R-CNN (Ren et al., 

2017), and one stage like YOLO (Redmon et al., 2016), SSD (Liu et al., 2016). The one stage 

detectors can achieve higher speed, while two stage detectors are better in localization and 

recognition accuracy. In two stage detectors, RoI (Region of Interest) pooling layer can divide the 

two stages. For example, in Faster R-CNN, the first stage, propose candidate object bounding 

boxes that called RPN (Region Proposal Network). The second stage, operate bounding box 

regression and classification after extracted features from RoI Pooling operation (He, Gkioxari, 

Dollar, et al., 2017). Figure 11 displays One and Two stage detectors. (Jiao et al., 2019).  

 

Figure 11: Two stage (a) and One stage (b) Detectors’ Architecture (Jiao et al., 2019). 

 
The next architectures are being used as blocks that serve as the basis for numerous subsequent 

works (commonly known as backbone networks) in computer vision and are briefly commented 

below: 
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• VGG: this architecture from the VGG Group (University of Oxford) makes the 

improvement over AlexNet by replacing larger kernel-sized filters of size 11 and 5 in the 

first layers with multiple 3x3 kernel filters one on top of each other. With multiple stacked 

smaller kernels, the depth of the network increases allowing it to learn more complex 

features at a lower cost (Simonyan & Zisserman, 2014). 

• MobileNet: is a simplified version of Xception (Chollet, 2017) for mobile applications that 

is currently behind the computer vision applications used on Google mobile devices. A 

year after MobileNet v1, MobileNet v2 was introduced with a great improvement respect 

to the previous version. For example, the new models used two times fewer operations 

(Sandler et al., 2018). In terms of architecture, the main changes are the residual 

connections and the expand/projection layers in the main building block, the bottleneck 

residual block see Figure 12 (Sandler et al., 2018). 

 

 

Figure 12: MobileNet v2 (Sandler et al., 2018). 

• Inception: this family of networks looks for wider networks, that is, with more 

intermediate operations between layers. The authors try to increase neural networks, in 

terms of operations, without an increase in computational cost. They try to reduce the 
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still huge computational requirements of VGG specially in terms of reducing the number 

of calculations done due to large width of convolutional layers. Introducing different 

parallel convolution operations, the density of extracted information increases but also 

the computational costs. To solve the problem, they use 1x1 convolutions to reduce 

dimensionality while performing different transformations in parallel. The resulting 

networks are simultaneously deep and wide. The first version of Inception, known as 

GoogLeNet, was the winner of the ILSVRC in 2014 (Szegedy et al., 2015). It was improved 

later with Inception v2 and v3. The last Inception v4 creates a hybrid with ResNet, known 

as Inception-ResNet (Szegedy et al., 2017). 

• Res-Net: this network tries to solve the problem that seems to appear when adding layers 

to a network which is that it generally behaves worse. For this reason, the authors 

propose that instead of trying to learn the hidden mapping of the input x to the function 

H(x), learn the difference between the two, that is, the residue (residual net). The original 

mapping is recanted into F(x) + x. This is a big change at the time as it solves the problem 

of the vanishing gradients that the neural networks have suffered until the date. In 

addition, it allows to create much deeper networks with more layers, that will allow better 

results Figure 13 (He et al., 2016). 

 

Figure 13: Residual learning block (He et al., 2016). 

 

By increasing demand of the faster and more accurate object detection systems based on the 

emerge of new object detection applications. This added new tasks to object detector like 

obtaining the location with its corresponding bounding box. This makes object detection 

significantly more complicated than before that was image classification. 

However, the most successful object detection algorithms today are extensions of image 

classification models. Usually, network architectures such as VGG or ResNet are used as 
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backbone networks as they perform the feature extraction. After the backbone, the head of the 

network is stacked. The following object detection models follow the commented scheme (Fu et 

al., 2017). 

• Faster R-CNN: is one of the current reference models and one of the last detectors known 

as region-based from Girshick et al. This model basically works in the following way: it 

uses some mechanism to draw out regions from an image that are probably an object and 

then classifies those proposed regions with a CNN. The father of this model is the R-CNN 

and it was the real driver of this type of techniques (Girshick et al., 2014). In the proposed 

regions obtained through an algorithm called Selective Search the characteristics are 

extracted through a CNN by region and then those regions are classified based on the 

characteristics. But its performance was slow. This performance improves with Fast R-

CNN (Girshick, 2015) for two main reasons. First, the CNN is applied over the whole image 

instead of over each region and then the regions are obtained from the last map of 

characteristics of the network. Second, the introduction of a Softmax activation layer 

simplifies classification. This mechanism was faster and easier to train than R-CNN but 

there was still a bottleneck in the generation of regions (Ren et al., 2017). 

To solve it the RPN (Region Proposal Network) is introduced and added to the Fast R-CNN 

to create Faster R-CNN. The RPN returns proposed regions based on a score that refers to 

the probability that the bounding box is an object, the abjectness (Figure 14). And these 

regions are passed directly to the Fast R-CNN to perform the classification. 

 

 

Figure 14: Region Proposal Network (Ren et al., 2017). 
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• Overfeat: winner of the ILSVRC 2013 in detection and location of objects, this work 

showed that training a convolutional network to instantaneously locate, classify and 

detect objects in images can enhance the success both in classification, detection and 

location. Subsequently, it has been replaced by SSD and YOLO for tasks that require better 

performance in real time (Sermanet et al., 2014). 

• SSD: it provides great speed gains over Faster R-CNN by performing the phases of 

generating regions of interest and subsequent classification jointly (Single Shot MultiBox 

Detector). As a result, you get a lot of bounding boxes which most of them are not useful. 

By applying the techniques known as non-maximum suppression and hard-negative 

mining the final detections are achieved. In the MobileNet v2 paper (Sandler et al., 2018) 

SSDLite is proposed which reduces parameter count and computational cost with respect 

to regular SSD. To do so, the authors replace all the regular convolutions with separable 

convolutions (Liu et al., 2016). 

• R-FCN: there are faster models than Faster R-CNN such as the Region-based fully 

convolutional network or R-FCN. The authors try to solve the problems of SSD for 

detecting small objects because the detection in SSD was done on the feature map when 

features have low spatial resolution. This network tries to improve system speed by 

maximizing shared computing and provides a good balance between accuracy and speed 

(Dai, 2016). 

• YOLO: this model, also from the “single-shot networks family”, uses a different approach 

with respect to the above. This network splits the image into regions and predicts the 

bounding box and likelihoods of each region. These are then weighted with the 

probabilities to obtain the definitive detections (Figure 15). This performs, as the authors 

indicate, a hundred times faster than Fast R-CNN maintaining a similar accuracy (Redmon 

et al., 2016). 
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Figure 15: The YOLO v1 model (Redmon et al., 2016). 

The YOLO v2 model introduced big improvements: removed all fully connected layers and 

used anchor boxes to predict bounding boxes, used batch normalization on all 

convolutional layers and allowed for multi-scale training, among others. In the next table, 

it can be seen how YOLO v2 is almost on a par with methods like SSD or Faster R-CNN. 

However, it has a better balance among accuracy  and speed since it manages to work in 

some cases at 91 FPS (frames per second) when Faster R-CNN barely reaches 10 FPS, see 

Table 1 (Redmon & Farhadi, 2017). 

 

Table 1: Accuracy comparison in test on PASCAL VOC 2012 (Redmon & Farhadi, 2017) 

 
 
The latest version of YOLO, called YOLOv3, achieves a 57,9 mAP on COCO testdev. The 

frame rate is lower than the obtained with YOLOv2 (with the same image input size) but 

it still performs as a state-of-the-art real time object detection system, according to the 

author (Redmon, 2018). 

3.5 INSTANCE SEGMENTATION USING NEURAL NETWORKS 

The machine vision community has improved the results obtained in object instance 

segmentation and detection in a short time thanks, in large part, to powerful base systems such 

as Faster R-CNN. This project will use the detections coming from instance segmentation 

networks, so this type of segmentation is going to be introduced, including some recent instance 
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segmentation models such as Mask R-CNN. The instance segmentation requires the correct 

detection of all objects in the image along with the precise segmentation of each instance. Thus, 

each pixel belongs to one of the different categories without differentiating whether it is in a 

particular object. Semantic segmentation differs from the instance segmentation in that in the 

first the labels are class-aware whereas in the second the labels are instance-aware. Driven by 

the effectiveness of the R-CNN family many of the methods proposed for instance segmentation 

is based on segment proposals where segmentation precedes object type recognition (Pinheiro 

et al., 2015). This has proved to be slower and more inaccurate than if the prediction of object 

masks and class labels were done in parallel and separately. Li et al. proposes a system known as 

FCIS (Fully Convolutional Instance Segmentation) (Yi Li et al., 2017) that tries to predict the output 

of a set of position-sensitive channels in a completely convolutional way. These channels perform 

the tasks of class, bounding box and masks calculations simultaneously which makes them faster. 

But it shows errors in instances that overlap creating spurious edges systematically (Figure 16). 

Recently, Mask R-CNN (He, Gkioxari, Dollár, et al., 2017) arose to solve many of these problems 

and it has situated itself as a State of the Art technique in segmentation of instances see Figure 

16. 

 

 

Figure 16: Results obtained by FCIS and Mask R-CNN in test images in COCO Dataset (He, Gkioxari, 

Dollár, et al., 2017). 

Conceptually, Mask R-CNN adds a third stage to Faster R-CNN in which it obtains the mask of the 

object. The first stage of RPN coincides with that of Faster R-CNN while in the second stage it 

calculates, in parallel with the prediction of the class and the bounding box, a binary mask for 

each region of interest (RoI). The generation of masks for each class is done without the classes 

competing with each other, which allows to separate the mask and class predictions from the 
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object prediction. According to the authors, this proves to be the key to obtain good results in 

the final segmentation. 

Another key factor in the proper functioning of this method is the correct alignment between the 

RoI and the extracted characteristics. This is usually done using RoIPool in Fast R-CNN but 

introduces misalignments if the purpose is to segment rather than classify. Therefore, Mask R-

CNN authors create RoIAlign. To demonstrate the generality of the proposed method the authors 

introduce the mask prediction branch on several existing neural network architectures like Faster 

R-CNN with ResNet, for example, and they manage to surpass the winners of the 2015 and 2016 

COCO Challenge segmentation, MNC (Dai et al., 2015) and FCIS (Yi Li et al., 2017). 

3.6 DATASETS FOR OBJECT DETECTION 

The datasets used when implementing or testing a certain system are a key factor, since they 

influence the performance that the system can achieve. They also permit for an assessment of 

the solution found regarding others that are part of the state-of-the-art in the task that is carried 

out, since they are usually associated with some type of competition. Therefore, it is necessary 

to correctly choose the dataset or datasets used in a computer vision problem. Here are some of 

the most well-known datasets used in many object detection applications: 

• COCO (Common Objects in Context): it is a comprehensive data set for segmentation and 

detection of objects mainly. It contains 80 categories of objects and 330000 images of 

which more than 200000 are labeled. It is a dataset widely used between the community 

and in congresses such as the ICCV7 (International Conference on Computer Vision). 

• PASCAL VOC: this dataset is linked with another challenge, the Pascal VOC Challenges. 

The organizers ran this competition from 2005 to 2012. This project provides standardized 

image datasets for object class recognition, segmentation or action classification tasks. 

• ImageNet: it consists of 14 million images approximately and an average of 500 images 

for each category. It organizes the well-known ILSVRC10 competition of location and 

detection of objects in images and videos. It is one of the reference datasets in this area. 

• KITTI: centered in the autonomous driving field, this vision benchmark suite introduces 

itself as a novel challenging real-world computer vision benchmark. The main areas of 

interest include 3D/2D object detection, 3D tracking or stereo vision. The type of objects 
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for object detection available are focused in the ADAS field such as car, van, truck, 

pedestrian or cyclist. 

• Cityscapes: this dataset focuses on semantic segmentation in urban scenes. It contains 30 

kinds of objects, 5000 images labeled with a fine label (more precise) and 20000 labeled 

with a coarse label in 50 different cities. 

• OpenImages: it is a data set of around 9 million images. This makes it the “largest existing 

dataset with object location annotations”. It also has a bigger number of classes than 

other challenges as the previously cited COCO and PASCAL VOC, exactly 600 object 

classes. It must be mentioned that the label distributions are usually skewed and with 

OpenImages it occurred too. This means that there are many more objects of some kinds 

than others. 

There are many other datasets such as those from research centers like INRIA, MIT or Caltech 

that contribute to the continuous improvement of the available data. 

3.7 METRICS FOR OBJECT DETECTION EVALUATION 

Before going deeper with the most common metrics in the evaluation of object detection, the 

basic concepts need to be mentioned. When talking about object detection, the following 

definitions usually appear: 

• Intersection over Union (IoU): recognized as Jaccard index, this measure evaluates the 

intersection between two bounding boxes, a ground truth bounding box and the 

predicted bounding box. With this definition a prediction can be classified into valid (TP) 

or invalid (FP) (see Equation 3). 

 

 

Equation 3: IoU definition. 
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• True Positive (TP): is a correct detection. The condition is that the IoU must be above or 

equal to a given threshold. This threshold is usually defined in percentage to 50%, 75% or 

95%. The results obtained by a system with these three thresholds can define its behavior. 

For example, a given object detector can easily have good results at a 0,5 IoU but not so 

easily at a 0,95 IoU. 

• False Positive (FP): is a false detection. The IoU of the detection must be below the 

threshold. 

• False Negative (FN): is a detection not detected. 

• True Negative (TN): it is defined as all the probable bounding boxes that were not 

detected correctly. It is not used in metrics. 

It is very common to see that the metrics are established by a given challenge or associated with 

it. It is the case of the Pascal VOC challenge that uses the precision/recall curve and the average 

precision. These terms are now defined: 

• Precision: this is the proportion of predictions that are correct positive (Equation 4). 

 

             

Equation 4: Proportion of predictions 

• Recall: this is the proportion of positive predictions with respect to all positives (        

 Equation 5). 

 

         Equation 5:Recall 

• Precision/Recall curve: this curve plots the performance of an object detector as the 

confidence is changed for each object class. A good precision/recall curve has a high 

precision while recall increases, i.e. if the confidence threshold varies, the precision and 

recall stay high. 

• Average precision (AP): the AP summarizes the shape of the previous curve allowing to 

obtain the Area Under the Curve (AUC). This is done because of the nature of the 

precision/recall curve in form of “zigzags” that does not permit an easy comparative 
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between different curves (detectors). This metric is the precision averaged all recall values 

that are between 0 and 1 (Figure 17). 

 

        Figure 17: AUC example: the areas from the trapezoids are 0,335, 0,15875 and 0,1375. 

This average can be done in two main ways: 11-point interpolation or interpolating all 

points. 

1. 11-point interpolation: it is defined as the mean precision at a group of eleven 

equally spaced recall values ranging from 0 to 1. At each recall value precision is 

obtained by taking the maximum precision measured value for a technique for 

which the corresponding recall is above r (Equation 6). This was the method used 

in Pascal VOC 2008. 

 

     

Equation 6: 11-point interpolation 

                      

2. All points interpolation: in this case the mean precision is done interpolating 

through all recall points (Equation 7). The precision at each level r is obtained 

taking the maximum precision which has a recall value equal or greater than the 

recall value at the level r + 1 (Equation 7). This method of interpolation is used in 

Pascal VOC metrics from the year 2010 onwards. 
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Equation 7: All points interpolation 

In the next image (Figure 18), these calculations are presented in a graphical way. 

With this interpolation the AUC obtained is exact. 

 

Figure 18: All points interpolation from (Hui, 2018). 

3.8 2D MULTI-HUMAN POSE ESTIMATION 

The Pose Human Estimation methods show person skeleton in graphical format, that is group of 

point in specific coordinate system and each of this point called joint or key point. Each two of 

these points with correct connection called pair (Raj, 2019). An example of human poses (Figure 

19). 

 

Figure 19: Human Pose Skeletons, in format of COCO data sets (left). Sample Human Pose Skeletons on 

image (Right)  (Hidalgo, 2018). 

Over the years, many methods to human pose estimation and generally it can be divided into 

two approaches: 
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• Top-Down: it is simple and work with person detector that for each detected person 

calculate the joints and key points (Raj, 2019). 

• Bottom-Up: in this method first detect all joint of all the people in given image, following 

by grouping parts belonging to distinct people (Raj, 2019). 

 

Figure 20: Top: Top Down method. Bottom: Bottom Up method (Raj, 2019). 

Following explain some algorithms related to the top down and bottom up approaches: 

• OpenPose: one of the famous bottom up approaches. OpenPose detect all joints related 

to the all person in the image, then organized detected joints by grouping joints to distinct 

person. In Figure 21 the OpenPose’s architecture can be seen (Cao et al., 2018). 

 

Figure 21: OpenPose architecture (Cao et al., 2016). 

First few layers in the OpenPose model’s architecture gather features from an input 

image.  Then, these extracted features go to two divided and parallel conv layers. One of 

the conv layer branch responsivity is to characterizes the degree of grouping between 

parts by predicts a group of 38 Part Affinity Fields (PAFs). The other one, predicts a group 

of 18 maps that present human skeleton. Then, pairs of joints formed by Bipartite graphs 

step. All the steps can be seen in Figure 22 (Cao et al., 2018). 
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Figure 22: human pose estimation steps in OpenPose (Cao et al., 2018). 

 

• RMPE: it is a top down approaches of human pose estimation. Pose estimation applied 

on the region and location where detector suggested that person can be there and the 

performance of this type of estimator totally rely on the accuracy of the human detectors 

(Fang et al., 2016). 

 

Figure 23: (left) Shows downside effets of more than one prediction for same object. (right) low score 

bounding boxes. (Fang et al., 2016) 

To fix this problem, the paper proposed the usage of a network called Symmetric Spatial 

Transformer Network (SSTN) to draw out a good single person region from a wrong 

bounding box (Figure 23) (Fang et al., 2016). 

3.9 3D HUMAN POSE ESTIMATION 

Research on 3D Human Pose is less mature in comparison with the 2D case. There are two main 

methods: first to estimate a 2D pose and then reconstruct a 3D pose or to regress a 3D pose 

directly. Research on multi person 3D pose estimation is presently slightly restricted, mainly due 

to lack of good data sets. Most works report results on the Human3.6 dataset, which is the main 

data set for single person 3D pose performance comparison. It consists of multi-view videos of a 

single person in a room, whose pose is captured with the OptiTrack motion capture system 

(Ionescu et al., 2014). 

Most researchers concentrate on reconstructing a 3D pose from a single image and few of them 

look at multi-view. Some consider depth in addition to an RGB image. Most works consider a 

http://vision.imar.ro/human3.6m/challenge_open.php
https://optitrack.com/
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single frame, and few take time continuity constraints into account. Despite that 3D pose 

estimation is, in general, more computationally intensive, many 3D pose models are real-time. 

Most models use supervision, but there are few models, which are semi-supervised or fully self- 

unsupervised. Several models with the best performance will be described below in more details. 

3.9.1 Single-person 3D Pose 

Most works for estimating human pose for a single person use a single image/video. Despite of 

the ambiguity in the depth dimension, models trained on 3D ground truth (GT) show pretty good 

performance for the case of a single person without occlusions. Similarly to humans, a neural 

network can learn to predict depth from a mono image in case it has already encountered similar 

scenes, which is demonstrated in the recent research on depth estimation. 

• A Simple Effective Baseline for 3D Human Body Pose Estimation:  baseline model, which 

is a fully-connected network with residual connections, takes as an input 2D pose from an 

off the shelf stat-of-the-art a 2D detector and predicts a 3D pose with a regression loss 

from a single image. Interestingly, this simple model has a pretty good performance on 

Human 3.6: Mean per Joint Position Error (MPJPE) (protocol 1) is 63 mm. Since the 

network is lightweight, if the 2D pose estimation is real-time, the full model is real-time as 

well (Figure 24) (Martinez et al., 2017). 

 

Figure 24: Baseline model for 3d human body pose estimation (Martinez et al., 2017). 

• To 3D Human Body Pose Estimation in the Wild: A Weakly Supervised Approach: on the 

other hand, regress both 3D and 2D poses simultaneously and reaches similar 

performance to Martinez (Martinez et al., 2017): MPJPE 65 mm on Human3.6. Zhou (Zhou 

et al., 2017) adopts a common approach for 2D pose estimation- an HourGlass 

network (Newell et al., 2016), which outputs heatmaps for every joint. The loss is an L2 

distance between the predicted heatmaps and the GT, rendered through a Gaussian 

kernel. Depth is regressed directly. In addition, there is a 3D geometric constraint loss, 

since relations between bone lengths remain relatively fixed in a human skeleton, 

https://medium.com/@omarbarakat1995/depth-estimation-with-deep-neural-networks-part-1-5fa6d2237d0d
https://arxiv.org/abs/1603.06937
https://arxiv.org/abs/1603.06937
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allowing to extend the 3D pose estimations to images in the wild. The model is real-

time (25 FPS on a laptop with Nvidia GTX 960) (Figure 25) (Zhou et al., 2017). 

 

 

Figure 25: Network overview (Zhou et al., 2017). 

• Integral Person Pose Regression: use integral regression, instead of an L2 regression, for 

joint 2D/3D pose estimation, which is the combination of all locations in the heat map 

weighted by their likelihoods. It is effective, and well-matched with any heat map-based 

approaches. Since integral regression is simple and non-parametric, it adds a negligible 

overhead in computation and memory, leaving a real-time base model to stay real-

time but improving performance. The authors experiment with several 

backbones: HourGlass (Newell et al., 2016) and Resnet18, 50 and 101. Integral regression 

with Resnet50 achieves the best performance on Human3.6: MPJPE 41 mm (Figure 26) 

(Sun et al., 2017). 

 

 

Figure 26: Integral regression model overview (Sun et al., 2017). 

• 3D human pose estimation in video with temporal convolutions and semi supervised 

training: start with predicted 2D poses from HourGlass (Newell et al., 2016), Mask R-

CNN (He, Gkioxari, Dollár, et al., 2017) or CPN (Chen et al., 2017) from N frames 

(and M views during training only) as an input to a small network with 1D 

dilated temporal convolutions and predicts 3D pose for either the middle (symmetric 

https://arxiv.org/abs/1603.06937
https://arxiv.org/abs/1603.06937
https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1711.07319
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convolutions) or the next frame (causal convolutions). A model with CPN backbone 

achieves a very good performance of 47 mm MPJPE on Human3.6. The 1D convolutional 

network is tiny and runs very fast, achieving real-time performance given the 2D pose 

backbone is real-time (Pavllo et al., 2018). 

• EpipolarPose: infers 3D posse from single images using a fully self-supervised approach, 

but it is trained with multi-view images. The network with a ResNet50 backbone, 

pretrained on the MPII dataset, outputs volumetric heatmaps, from which a 2D pose for 

two or more views is inferred. A 3D pose pseudo-GT is obtained with the help of 

polynomial triangulation, which is used as a supervision signal in a smooth L1 loss. The 

model uses body joints as calibration targets when a camera’s extrinsic parameters are 

unknown, which is often the case. EpipolarPose (with refinement) achieves 61 mm MPJPE 

on Human3.6, which is an excellent result for an unsupervised model (Figure 27) (Kocabas 

et al., 2019). 

 

Figure 27: EpipolarPose overview (Kocabas et al., 2019). 

• 3D Human Pose Estimation in RGBD Images for Robotic Task Learning: use as an input 

mono images with depth from Kinnect and directly regresses 3D pose with a 3D 

convolutional network. Since there is no depth dimension in the Human3.6 dataset, it is 

hard to compare the results of the network. For training, the authors use a Multi View 

Kinnect Dataset (Figure 28) (Zimmermann et al., 2018). 
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Figure 28: Network overview (Zimmermann et al., 2018) 

3.9.2 Multi-person 3D Pose 

The main challenge in multi-person 3D pose estimation is occlusions. In addition, unfortunately, 

there are almost no annotated multi-person 3D pose datasets like the Human3.6 dataset. Most 

multi-person datasets either do not have good GT or are not realistic: 

• MuPoTS-3D Dataset: test set with GT from marker less motion capture (Mehta et al., 

2017). 

• MuCo-3DHP Dataset: synthesized dataset (Mehta et al., 2017). 

• Panoptic Dataset: 480 calibrated cameras, no GT  (CMU Panoptic Dataset, 2020). 

• Single Shot Multi Person 3D Pose Estimation from Monocular RGB: introduce a single 

shot multi person 3D pose estimation model from a single image. Occlusion Robust Pose 

Maps (ORPM) is used by the authors that allows whole body pose estimation even when 

there are partial occlusions. “ORPM outputs a fixed number of maps, which encode the 

3D joint locations of all people and 3D pose for an arbitrary number of people is inferred 

using body part associations” (Mehta et al., 2017). The backbone is Resnet50. MuCo-

3DHP dataset is used for training and MuPoTs-3D for evaluation with 70% detection 

accuracy (3DPCK within a 15 cm ball) reported. Performance on Human3.6 is reported as 

well: 70 mm MPJPE (Figure 29) (Mehta et al., 2017). 

 

 

Figure 29: Network overview by (Mehta et al., 2017). 

http://gvv.mpi-inf.mpg.de/projects/SingleShotMultiPerson/MultiPersonTestSet.zip
http://gvv.mpi-inf.mpg.de/projects/SingleShotMultiPerson/content/muco-3dhp.zip
http://domedb.perception.cs.cmu.edu/


42 

 

• LCR-Net++: Form single images, 2D and 3D human pose joints estimated simultaneously 

by this model which has Localization Classification Regression architecture (LCR-Net). 

“The main component is the pose proposal generator that proposes candidate poses at 

different locations in the image out of 100 anchor poses and a classifier scores the 

different pose proposals” (Rogez et al., 2018). As results the model gives poses, mixing 

hypotheses neighboring poses. The model is evaluated on the MuPoTs-3D dataset and 

reports 74% accuracy. Performance on Human3.6 is reported as well: 54 mm MPJPE 

(Figure 30) (Rogez et al., 2018). 

 

 

Figure 30: LCR-Net++ (Rogez et al., 2018). 

• Fast and Robust Multi-Person 3D Pose Estimation from Multiple Views:  use as an 

input multi-view images and estimates first multi-person 2D poses from CPN (Chen et al., 

2017) in every view. Matching detected persons across multiple views is done by 

calculating affinity scores by using appearance similarity (Euclidean distance between 

descriptors from a pretrained re-ID network) and geometric compatibility (point-to-line 

distance between a joint and a corresponding epipolar line). 3D poses can be achieved by 

triangulation poses of the same person from different views, however, 2D poses are not 

errorless. In order to fix this issue, 3D Pictorial Structure (3DPS) model is used. The 

reported performance on the Campus dataset is 96 percent of correctly estimated parts 

(PCP) and on the Shelf dataset 97 PCP. Panoptic dataset is used for qualitative evaluation. 

It is real-time (without 3DPS) on GTX 1080Ti (Figure 31) (Dong et al., 2019). 

https://arxiv.org/abs/1711.07319
https://arxiv.org/abs/1711.10295
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Figure 31: Network overview by (Dong et al., 2019). 

• Real time marker less multi human 3D pose estimation in RGB Depth camera networks: 

estimate 3D poses from multi view images with depth from calibrated Kinnect v2 

cameras. An input to the network is a multi-person 2D poses from OpenPose (Cao et al., 

2018) for every view, which is lifted to 3D by incorporating the depth information. Views 

from multiple cameras are then fused together through multiple Neutral Kalman Filters. 

The authors recorded and annotated their own dataset. The model runs in real-time 

(Figure 32) (Carraro et al., 2017). 

 

 

Figure 32: Network overview by (Carraro et al., 2017). 

 

 

 

https://arxiv.org/abs/1812.08008
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4 PROPOSED METHODOLOGY 

This chapter is divided in two part. First, development of a visual tracking algorithm capable of 

tracking multi-person using deep learning techniques. Second, a solution developed for solving 

the 3D multi-person tracking is explained. 

4.1 MULTI-PERSON TRACKING MODULE 

To achieve this task the selected tracking algorithm is DeepSORT (Wojke et al., 2018) which the 

standard method used in it is tracking by detection. DeepSORT is an online tracking algorithm 

that means it can employ past and present data to make prediction related to the current frame. 

it is one of  popular and widely used, object tracking framework and it is derived from SORT 

(Bewley et al., 2016). In following going through different parts of the DeepSORT. 

4.1.1 Detections   

4.1.1.1 RefineDet 

In original implementation of DeepSORT, for detection part of input frames it used Faster R-CNN 

network. However, in this work RefineDet (Zhang et al., 2018) is used as object detector 

algorithm. It inherits One stage and Two stage approaches and overcome their limitations. The 

whole network of RefineDet contains two interconnected modules see Figure 33, the anchors 

refinement module (ARM) and the object detection module (ODM). Mentioned modules are 

connected by a transfer connection block (TCB) to transfer and enhance features from the former 

module in order to better predict objects in the latter module. RefineDet like SSD (Liu et al., 2016),  

is generate constant number of bounding boxes and for each bounding box is with score to shows 

likelihood of occurrence of that target class. The ODM goals to regress correct object positions 

and based on the refined anchors, predict multiple class labels. Whereas, The ARM aims are 

including decrease search space for the classifier and offer better initialization for the regressor 

by remove negative anchors and adjust the sizes and locations of anchors, respectively. 
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Figure 33: RefineDet architecture (Zhang et al., 2018). 

4.1.1.2 Fine-tuned RefineDet 

One way to increase performance of DeepSORT or in general object trackers is to improve 

Detector part by using Detector algorithms with higher accuracy or fine-tune it. For that reason 

this work RefineDet is fine-tuned with custom dataset. Custom dataset contains around 1000 

soccer images that for each image, players and soccer ball(s) are labeled by hand by using 

labelImage (LabelImg, 2017) see Figure 34 and Figure 35 , dataset collected from websites like  

Google and YouTube .In custom dataset is tried to collect images with different viewpoints. In 

other words, images that captured by different distances from pitch. Majority of soccer images 

inherently includes occlusion which fine tuning helps the Detector to detect better players and 

balls in this situation.  

For transfer learning in RefineDet VOC0712Plus_refinedet_vgg16_512x512 pre-trained model 

(RefineDet, 2018) is used with input size 512 * 512 that trained with PASCAL VOC 2007 

(Everingham et al., 2010) and PASCAL VOC 2012 (Everingham et al., 2015) datasets and with 

VGG_16 as backbone. Also, coco_refinedet_resnet101_512x512 pre-trained model that like 

previous model with input size 512 * 512 is used. In this model used RESNET_101 as backbone 

network and trained with MS COCO data set (Lin et al., 2014). In addition, The solver.prototxt file 

which is a configuration file used to tell caffe framework to how the network trained, configured 

https://www.youtube.com/).%20In
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as Figure 36 and parameters are same as original training parameters of RefineDet 

implementation. 

  

 

Figure 34: Proposed dataset. 

 

Figure 35: Proposed dataset. 
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Figure 36: solver.prototxt file configuration 

4.1.2 Kalman Filter 

The idea behind of Kalman filter is to arrive at a best guess of the current state by using the 

available detections and last predictions, while taking account the likelihood of errors in the 

process. 

Kalman filter is an important component in DeepSORT. On each bounding box, Kalman filter is 

applied. Predict and Update functions are called after the association step is done which is assign 

IDs to bounding boxes. These functions do the math which calculating state mean and covariance. 

Each of this state contains 8 variables related to center of bounding boxes, height of image, 

aspect ratio and velocities. The prior state used by Kalman filter to predict a good fit for bounding 

boxes.  

4.1.3 Assignment  

The Hungarian algorithm is a conventional method to solve the association between the 

predicted Kalman states and newly arrived objects. Into this problem formulation DeepSORT mix 

motion and information related to appearance over combination of two proper metrics. To 

integrate motion info, it used the Mahalanobis distance between newly arrived measurements 

and predicted Kalman states. 

 

4.1.4 Deep Appearance Descriptor 

A custom residual CNN extract combined visual information. As shown in (Figure 37) there are 

red, yellow, blue and green blocks. The first one is simple convolutional layers, the second one is 

the max pooling layer, the third ones are residual blocks with 3 convolutional layers each one and 
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the last one is a fully connected layer with batch and L2 normalization. Each block output size can 

be seen in parenthesis (Ciaparrone et al., 2019). “The green block offers vector of appearance 

feature for the given detected bounding box. After it trained, just needed to pass all detected 

bounding box from the image to this network and get the “128 X 1” dimensional feature vector”  

(Ciaparrone et al., 2019). 

 

 

Figure 37: Deep Appearance Descriptor network (Ciaparrone et al., 2019). 

4.2 3D MULTI-PERSON TRACKING 

To implement 3D tracker, as it can be seen its diagram in Figure 38. Explained 2D tracker without 

change that introduced in last section is combined with a 3D multi human pose estimator from a 

single RGB image. Bounding boxes which generated by Detector for each frame, plus camera 

intrinsic parameters, i.e. Optical center and Focal length are sent to 3D multi-person pose 

estimator. Then generated 3D poses first convert again to 2D bounding boxes in order to send to 

the 2D tracker to have IDs, After that each ID with bounding box with Intersection over union 

technique re-assign to its 3D pose that in the end for each frames there are tracked 3D poses. 
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Figure 38: Proposed 3D Multi-person Tracker. 

4.2.1 3D Multi-person Pose Estimator 

To accomplish this Camera Distance Approach for 3D Human Pose Estimation (Moon et al., 2019) 

is used. Moon’s approaches compute joints of multiple person {Pabs
j}J

j =1 that are absolute 

distance camera coordinates. It is a top down approach and contains two main components, 

DetectNet, RootNet and PoseNet.  

The DetectNet is a human detector which in his work RefineDet is used. Human detector’s results 

fed to the RootNet, then it job is to find location of the human roots R = (xR, yR, ZR), which xR and 

yR are pixel coordinates, and ZR is an absolute camera distance to object. PoseNet also, received 

same detector results as RootNet received, that estimate relative 3D poses of each detected 

bounding box Prel
j = (xj, yj, Zrel

j), it should be consider that depth value here is relative. 

The same cropped human image is fed to the PoseNet, which estimates the root-relative 3D pose 

Finally, it converts Zrel
j into Zabs

j by adding ZR and transform xj and yj to the original input image 

space see Figure 39. 

 

Figure 39: Moon’s methods workflow (Moon et al., 2019). 
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4.2.1.1 RootNet 

RootNet’s architecture includes three parts as it can be seen in Figure 40. ResNet (He et al., 2016) 

as backbone network received cropped image from detector and extract useful features. Then 

for the second part, “the 2D estimation part receives a feature map from the backbone and up 

samples it uses three consecutive deconvolutional layers with batch normalization layers and 

ReLU activation function” (Moon et al., 2019). Next, to produce roots’ 2D heatmap, 1-by-1 

convolution is applied. Using the 2D heatmap, 2D images coordinates (xR, yR) can be extracted by 

soft-argmax. The last part is the depth estimation, “it takes a feature map from the backbone 

part and applies global average pooling. Then, the pooled feature map goes through a 1-by-1 

convolution, which outputs a single scalar value ϒ” (Moon et al., 2019). 

 

Figure 40: Network architecture of the RootNet (Moon et al., 2019). 

4.2.1.2 PoseNet 

The PoseNet job is to estimate the root-relative 3D pose Prel
j = (xj, yj, Zrel

j) from a detector’s results. 

To doing so Sun  (Sun et al., 2017) model is used. Sun’s model has two part. Backbone, ResNet 

(He et al., 2016) extract useful features. Second part, the pose estimation part received a feature 

map and up samples it with three consecutive deconvolutional layers by batch normalization 

layers and ReLU activation function. To produce the 3D heatmaps, for each joint A 1-by-1 

convolution is applied to the up sampled feature map. The soft-argmax operation is used to 

extract the 2D image coordinates (xj, yj), and the root-relative depth values Zrel
j (Moon et al., 

2019). 
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5 RESULTS AND DISCUSSION 

In this chapter, the quality of the 2D and 3D multi-person tracker modules is characterized. 

Because lack of proper benchmark dataset for sport for both Detector and 2D Tracker modules 

evaluated by custom dataset. Fine-tuned Detector and 2D tracker will be evaluated with 

manually labeled dataset and visual evaluation. Then, 3D tracker will evaluate with observation 

results. 

5.1 DETECTOR  

To evaluate fine-tuned detector, common metrics in the evaluation of object detection is used. 

Due to lack of proper available sport datasets with annotation for evaluation, evaluation 

performed on dataset as mentioned before that manually labeled. Test set ground truth consists 

of 80 soccer images similar to train set which distance of the camera from the field is not too 

close, as it can be perceived in Figure 41 with total 1233 bounding boxes as players(person) and 

100 sport balls. Fine-tuned detector achieved overall 64.94% in mean Average Precision (mAP), 

however, just for person this metric is 91% see Figure 42. 

 

 

Figure 41: Test set information. 



52 

 

 

Figure 42: Evaluation results. 

For analyzing results of fine-tuned detector, also its results with pre-trained 

VOC0712Plus_refinedet_vgg16_512x512 is compared which is as follows for different scenario. 

 
As it shown in Figure 43 some cases of fine-tuned network has slightly higher detection score 

than pre-trained.  

 

Figure 43:  pre-trained model (Left), Fine-tuned model (Middle). 
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In some other cases fine-tuned detected a greater number of players than pre-trained model 

see (Figure 44) and vice versa see Figure 45. 

 

 

Figure 44: pre-trained model (Left), Fine-tuned model (Middle). 

 

 

Figure 45: pre-trained model (Left), Fine-tuned model (Middle). 

 

In addition, in some cases shown in Figure 46 fine-tuned model predict some incorrect detected 

bounding boxes in compare with pre-trained model. However, by increasing threshold to select 

detections with high score solve it in majority of cases. 

One of the main problems of fine-tuned model is that performance of the prediction decreases 

dramatically when background of the image is not green. In other words, for image with non-

green background it does not work properly see Figure 47. 
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Figure 46:  per-trained model (Left), fine-tuned model with incorrect detection (Middle). 

 

 

Figure 47: fine-tuned model result image from (Milan et al., 2016). 

5.2 2D TRACKER  

This section 2D Tracker will be evaluated based on different situation, however as mentioned 

before this will be evaluated by custom dataset due to lack of standard soccer benchmark for 2D 

multi-person tracking. 

For evaluate 2D Tracker, 5 seconds of a soccer dataset (Fujii Lab’s Datasets, 2020) which include 

150 frames and labeled with CVAT annotation tool (Nikita Manovich, 2020) in MOT benchmark 

format and performed by using py-motmetrics library (Valmadre, 2020) . As mentioned in section 

2, the performance evaluation for Multi-Object Tracking algorithms is not so simple as the one 

presented for object detection. In order to have a better vision regards to the performance of 
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the Tracker, as it can be seen in Figure 48 DeepSORT and SORT evaluation results on soccer 

dataset (Fujii Lab’s Datasets, 2020) with same detections results are presented. To compare SORT 

and DeepSORT evaluation results different class of metrics can be considered like accuracy, 

precision and completeness, accuracy as it mentioned before this type of metrics tries to measure 

how accurately a tracking algorithm tracks targets. The IDs metric measures the ID switches, i.e. 

given an ID for an object it measures how many times the MOT algorithm changes this ID. Here 

number of ID switches in SORT (17) is more than two times than DeepSORT (7) see Figure 48, it 

can say one of the main disadvantage of the SORT is large number in amount of the IDs metric. 

The other metric for measure accuracy is the Multiple Object Tracking Accuracy or MOTA 

(Equation 1) that SORT (0.88) reached slightly higher than DeepSORT (0.83), however, with lager 

amount of dataset this results likely would change to more accurate one. In precision metrics 

group the key factor is the description of the precision that the tracked objects have using criteria 

such as bounding box overlap or distance. The most important is MOTP (Equation 2) uses a ratio 

with the distance among the ground-truth detections locations and the associated detected 

locations, as it can be understood in Figure 48 MOTP for DeepSORT and SORT are 0.31 and 0.23, 

respectively. For completeness that refers to how completely the ground truth trajectories are 

tracked. This set includes the results from Mostly Tracked (MT), Partly Tracked (PT), Mostly Lost 

(ML) and Fragmentation (FM), that for both methods numbers almost same (Figure 48) except 

Fragmentation, which following in this section it will be discussed. In addition, in order to receive 

more accurate evaluation, it is need larger chunk of data. 

 

Figure 48: 2D Tracker Evaluation Result in different Methods. 

One of the main problems of object trackers is identity switches, that mainly happened because 

of occlusion and DeepSORT by using deep appearance descriptor approach extract person 

information, however in sport because appearance of players is same, descriptor cannot work 

perfectly. Introduced DeepSORT implementation generally works well in occlusion condition, as 

it can be seen in (Figure 49) players with IDs 18 and 21 in right image after occlusion with player 
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with ID 5, still have same IDs in left image, or in other case seen in the  plyers with IDs 11 and 16 

even with same appearance after occlusion have same IDs (Figure 50). But in some cases, like in 

Figure 51 players even with different appearance, in this case white and blue t-shirt identity 

switches happened. 

 

Figure 49: After Occlusion (Left), Before Occlusion (Right) images from (Fujii Lab’s Datasets, 2020). 

 

Figure 50: After Occlusion no identity switches (Left), Before Occlusion (Right) images from(Fujii Lab’s 

Datasets, 2020). 

 

Figure 51: Identity Switches After (Left), Before (Right) images (Fujii Lab’s Datasets, 2020). 

One usual problem between online algorithm like DeepSORT is the higher number of 

fragmentations. This occurs because, when occlusions happen or detections are missing, online 
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methods cannot look forward in the video, re-identify the lost targets and interpolate the missing 

part of the trajectories. For an example, in Figure 52 as it shows, while DeepSORT is capable to 

re-identify lost target after occlusion, it is incapable to track it while the target is not visible, and 

this results in a fragmentation. 

 

Figure 52: (left) after occlusion, (middle) during occlusion, (right) before occlusion images from (Fujii 

Lab’s Datasets, 2020). 

Number of Tracks in whole video frame is still high. For an example, DeepSORT and SORT (Bewley 

et al., 2016) algorithms are run in whole frames of one camera view from  (Fujii Lab’s Datasets, 

2020) dataset that has 300 frames to compare number of final tracks. And as it can be seen in 

(Figure 53) for SORT right image number of labels reach to 68 which is quietly high, however in 

DeepSORT left image, highest label is 29 in last frame, almost less than half of the SORT algorithm. 

Eventually, the final performance of the algorithm is affected by the accuracy of bounding boxes 

and by using more accurate Detector can boost the performance 2D Tracker. 

 

Figure 53: (left) DeepSORT output, (right) SORT output images from (Fujii Lab’s Datasets, 2020). 
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5.3 3D TRACKER  

Proposed 3D multiple-person tracker, as mentioned in last chapter, its pipeline contains 

Detector, RootNet, PoseNet and Tracker. RootNet play important role in this chain to estimate 

absolute depth of each person form single image and its accuracy affects the pipeline’s 

performance. After implementation and visualization 3D and 2D results of 3D Tracker it was 

realized, suggested RootNet module is not accurate enough and there is depth estimating error 

between frames which position player (person) in 3D are erratic for different frames. As it can be 

seen in Figure 54 the visualized 3D tracks results by Unity that one player in continues frames as 

it marked by red circle is appeared as  frozen and the result are not continuous and not fluid. This 

happen because it is quite hard for RootNet to predict robust absolute depth from a single RGB 

image. And by extent current RootNet module using multi-view or implement different 

algorithms in order to estimate absolute depth would be options to fix this error.  

 

Figure 54: RootNet's error for contioues frames. 
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However, the 2D projection of the 3D poses are looks promising see Figure 55, but in some 

occlusion condition 3D pose estimator cannot properly estimates poses of players which results 

are incorrect see Figure 56. Again, as most of the problem, this one also can be partially fixed by 

using more accurate Detector. In addition, estimated root-relative 3D human poses, extremely 

depends on the accuracy of the PoseNet. Which means, by implementing more accurate 3D pose 

estimator it can be gained more accurate results. 

 

Figure 55: 2D projection of 3D poses images from (Fujii Lab’s Datasets, 2020). 

 

Figure 56: 3D Pose Estimator Module Error images from (Fujii Lab’s Datasets, 2020). 
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6 CONCLUSIONS 

 
This chapter summarizes the main contributions of this work. Possible lines of future work are 

also outlined. 

This master thesis studied the use of deep learning techniques to build a multi-object tracking 

system using the tracking-by-detection scheme. To solve this task, it was implemented a modular 

application composed of a neural network module as Detector and a Tracker module. The first 

module provides object detections using neural network models. These detections are handled 

by the Tracker module to track objects and increase the accuracy by using neural network Deep 

Appearance Descriptor. It may also help to adapt the tracking processing speed to the hardware 

on which it is being run. Next, in another work it is targeted, 3D multi-person poses tracking 

problem from single view by designing a pipeline includes different modules as follows, Detector 

modules, RootNet module, PoseNet module and Tracker module.  

In future, this work can be extended in multiple directions. One, this 2D Tracker can be employed 

in multi-view object tracking in order to track multi-object from different cameras.  Second, 

employing 3D Tracker and add multi-view factors to it, in order to achieve more accurate result 

which then can be used in many different fields like sport analysis. Third, by extending current 

introduced soccer dataset, to train or fine-tuning other object detector algorithms. 
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