
POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

Academic year 2019/2020

Collegio di Ingegneria Informatica, del Cinema e Meccatronica (ICM)
Departement of Control and Computer Engineering (DAUIN)

Master’s Degree Thesis

Asynchronous Embedded Model

Control for Robotic Applications

Academic Supervisors

Prof. Carlo NOVARA
PhD Carlos Norberto PEREZ MONTENEGRO

Candidate

Luca NANU - S255351

July 2020

Abstract

A controlled physical system can be basically divided in two parts: the controller and the physical plant to be

controlled. Controller output is called control input, which enters as input of plant to make it follow a desired

behaviour of its output measurements.

In many controlled physical systems, the time needed to send control inputs/measurements is not fixed, but vari-

able. In Networked Controlled systems (NCS) the control is made in the presence of a communication networks,

where some data are subject to delays or losses. In a vehicle engine, fuel injection can be controlled with variable

timing to increase performances/energy efficiency. In both cases (and others too), variable sampling time can be

considered as plant disturbance, making more difficult controlling the system with desired behaviour.

To deal with this problem, the Embedded Model Control (EMC) well-established technique can be exploited. It

is a model-based control technique, meaning that a simplified version of the plant to be controlled is built (the

Embedded Model EM). With EMC the plant system can be controlled to reach a desired behaviour using a suitable

controller (control law), with the possibility of reducing the plant disturbances.

Main objective of the thesis is to study asynchronous sampling time plants controlled by EMC technique (prosecut-

ing the literature work), focusing in experimental tests with physical systems. In particular a ground differential-

drive vehicle with two DC motors controlling the wheels is selected, equipped with a Raspberry Board.

2 main tests are performed: Model-in-the-Loop (MIL) and experimental tests (Robot Hardware Implementation

Tests RHIT) where EMC is translated into software code (C++) and executed in robot Raspberry board.

With EMC technique are controlled, with asynchronous sampling time: robot DC motors to move the two wheels.

When DC motors EMC are available can be controlled robot orientation only (make it turn in place or follow a

circular trajectory) and robot longitudinal position only (control the robot to make it follow a straight line). Finally

all previous EMC can be combined together to control both robot orientation and longitudinal position (the robot

can move in 2D space till a certain longitudinal position and orientation angle).

A non-conventional hierarchic structure is used to connect control robot orientation/position with EMC. Indeed

usually to control robot position in 2D space, motors and robot dynamics are combined together in a unique

controller with a very complex structure, instead with hierarchic structure motors and orientation/position control

blocks are separated: this lead to lower complexity of models, which are easier to be controlled.

The outputs of EMC are estimation of some plant variables (wheel speeds, robot yaw angle and position). Test

results can be mainly judged first with tracking error, which is the difference between estimated state and a target

reference to be tracked (i.e. reach a desired robot position and orientation in space or certain wheel speeds),

second with model error, which is the difference between EM estimations and real plant measurements. The lower

these errors are, better is the control.

For all tests made, model and tracking errors are sufficiently low, especially for DC motors where the difference

between EMC and real plant is huge for its complex dynamics: it means that estimated disturbances are near to

real ones.

It is also verified that EMC technique is able to reduce noises and disturbances of real robot plant (included

the ones introduced by variable sampling time) not only in simulation MIL tests but also practically with RHIT,

especially for DC motors. This means that with a simplified model (EM) even complex plants affected by many

disturbances can be controlled with quite high precision.

Hierarchical structure is successfully verified, since with this method robot is able to reach almost precisely a desired

position with a certain trajectory in space. This is a huge result because a robot can be controlled using simple

linear models, avoiding complex non-linear terms and conversions.

Acknowledgements for thesis work

I would like to thank: my academic supervisors Prof. Carlo Novara
and PhD Carlos Perez for giving me the opportunity of working
with this thesis project and for their support, LaDiSpe and DAUIN
Polytechnic of Turin laboratories for experimental material and
assist

Contents

List of Figures IX

List of Tables XIV

1 Introduction 1

1.1 Overview and main thesis objectives . 1

1.2 Structure of the thesis . 4

I Overview 6

2 EMC theory 7

2.1 EMC basic concepts . 7

2.2 EMC example - Mass-spring-damper system . 12

3 Robot GoPiGo3 15

3.1 Construction properties . 15

3.2 Kinematic and dynamic properties . 17

3.2.1 Geometric and mass parameters . 17

3.2.2 Total robot inertia verification . 19

3.2.3 From robot wheel speeds to robot torque/force relation . 20

3.2.4 Kinematic model . 23

4 Control models software testing - General settings 24

4.1 MIL configuration . 25

4.1.1 Variable timestamp . 25

4.2 RHIT configuration . 26

4.2.1 SW Tools and applications . 26

4.2.2 Main SW libraries and functions . 28

4.3 General Structure settings for EMC and robot plant . 33

4.3.1 EMC . 33

4.3.2 Plant . 34

II DC motors EMC 36

5 EMC DC motors theory 37

V CONTENTS

5.1 DC Motor Parameters identification and validation . 37

5.1.1 Main workflow . 38

5.1.2 Version 0.0 . 40

5.1.3 Version 1.0 . 42

5.1.4 Version 1.1 . 43

5.1.5 Version 1.2 (only for EMC) . 45

5.1.6 Version 1.2 (only for Fine models) . 49

5.2 DC Motors EMC . 50

5.2.1 Fine model . 50

5.2.2 EMC model - 1st order disturbance . 51

5.2.3 EMC model - 2nd order disturbance . 54

6 DC motors EMC Model-in-the-Loop (MIL) tests 57

6.1 General MIL settings on Simulink . 57

6.2 General settings on Simulink MIL plot results . 59

6.3 Simulink MIL results - Left motor . 59

6.3.1 No disturbance rejection, target output speed ω̃
L
= [6,4] rads 60

6.3.2 Disturbance rejection, target output speed ω̃
L
= [8,3,5.5,7] rads 61

6.4 Simulink MIL results - Right motor . 62

6.4.1 Disturbance rejection, target output speed ω̃
R
= [6,4] rads . 63

6.4.2 Disturbance rejection, target output speed ω̃
R
= [8,3,5.5,7] rads 64

6.4.3 No disturbance rejection, target output speed ω̃
R
= [6,4] rads 65

6.4.4 No disturbance rejection, target output speed ω̃
R
= [8,3,5.5,7] rads 66

7 Separated Left and Right DC motors EMC - RHIT results 67

7.1 Left motor version 1.0 - RHIT results . 67

7.1.1 Main test settings . 67

7.1.2 Summary on the results . 69

7.1.3 First order disturbance, No load conditions - Result 1 . 70

7.1.4 First order disturbance, No load conditions - Result 2 . 71

7.1.5 First order disturbance, No load conditions - Result 3 . 72

7.1.6 First order disturbance, No load conditions - Result 4 . 73

7.1.7 First order disturbance, No load conditions - Result 5 . 74

7.1.8 First order disturbance, No load conditions - Result 6 . 75

7.1.9 First order disturbance, No load conditions - Result 7 . 76

7.1.10 First order disturbance, No load conditions - Result 8 . 77

7.1.11 First order disturbance, Load Conditions - Result 1 . 78

7.1.12 First order disturbance, Load Conditions - Result 2 . 79

7.1.13 Second order disturbance, No load conditions - Result 1 . 80

7.1.14 Second order disturbance, No load conditions - Result 2 . 81

7.1.15 Second order disturbance, No load conditions - Result 3 . 82

7.1.16 Second order disturbance, No load conditions - Result 4 . 83

7.1.17 Second order disturbance, No load conditions - Result 5 . 84

7.1.18 Second order disturbance, No load conditions - Result 6 . 85

CONTENTS VI

7.1.19 Second order disturbance, No load conditions - Result 7 . 86

7.1.20 Second order disturbance, No load conditions - Result 8 . 87

7.1.21 Second order disturbance, No load conditions - Result 9 . 88

7.1.22 Second order disturbance, No load conditions - Result 10 . 89

7.1.23 Second order disturbance, Load conditions - Result 1 . 90

7.1.24 Second order disturbance, Load conditions - Result 2 . 91

7.1.25 Second order disturbance, Load conditions - Result 3 . 92

7.2 Left motor version 1.1 - RHIT results . 92

7.2.1 Main settings . 93

7.2.2 Summary on the results . 93

7.2.3 No load conditions - Result 1 . 94

7.2.4 No load conditions - Result 2 . 95

7.2.5 No load conditions - Result 3 . 96

7.2.6 No load conditions - Result 4 . 97

7.2.7 Load conditions - Result 1 . 98

7.3 Right motor v1.2 - RHIT results . 99

7.3.1 Main settings . 99

7.3.2 Summary on the results . 99

7.3.3 No load conditions - Result 1 . 100

7.3.4 No load conditions - Result 2 . 101

7.3.5 No load conditions - Result 3 . 102

7.3.6 No load conditions - Result 4 . 103

7.3.7 No load conditions - Result 5 . 104

7.3.8 Load conditions - Result 1 . 105

7.3.9 Load conditions - Result 2 . 106

8 Combined Left and Right DC motors EMC - RHIT results 107

8.1 Main RHIT tests settings . 107

8.2 Summary on the results . 108

8.3 Linear trajectory . 109

8.3.1 Disturbance rejection - Result 1 . 109

8.3.2 Disturbance rejection - Result 2 . 110

8.3.3 Disturbance rejection - Result 3 . 111

8.3.4 Disturbance rejection - Result 4 . 112

8.3.5 No disturbance rejection - Result 1 . 113

8.3.6 No disturbance rejection - Result 2 . 114

8.4 Circular trajectory . 115

8.4.1 Disturbance rejection - Result 1 . 115

8.4.2 Disturbance rejection - Result 2 . 116

9 Inertial Measurement Unit (IMU) measurements with Two motors EMC 117

9.1 Main measurements settings . 117

9.1.1 IMU . 117

9.1.2 DC Motor EMC . 118

9.1.3 Kinematic model . 119

VII CONTENTS

9.2 Measurement plots . 119

9.2.1 Summary on the results . 120

9.2.2 No magnetometer data in sensor fusion, Linear trajectory - Result 1 121

9.2.3 No magnetometer data in sensor fusion, Circular trajectory - Result 1 123

9.2.4 Magnetometer data in sensor fusion, Linear trajectory - Result 1 125

9.2.5 Magnetometer data in sensor fusion, Circular trajectory - Result 1 127

III Robot orientation EMC 129

10 EMC Differential drive robot theory - Orientation only 130

10.1 Fine model . 130

10.2 EMC model . 131

10.2.1 Embedded Model EM . 131

10.2.2 Control law . 132

10.2.3 Reference Dynamics . 133

10.2.4 Noise Estimator . 134

11 Orientation EMC - Model-in-the-Loop (MIL) simulation tests 139

11.1 General MIL settings on Simulink . 139

11.1.1 Simulated orientation EMC and fine models . 139

11.1.2 Orientation and DC motors Hierarchical structure . 139

11.2 General settings on Simulink MIL plot results . 141

11.3 Summary on the obtained results . 141

11.3.1 Target angle θ̃z = 2π rad (360○), target long. speed ṽξ = 0
m
s , dist. rej. 142

11.3.2 Target angle θ̃z = 2π rad (360○), target long. speed ṽξ = 0
m
s , No dist. rej. 144

11.3.3 Target angle θ̃z = −2π rad (−360○), target long. speed ṽξ = 0
m
s , dist. rej. 146

11.3.4 Target angle θ̃z = 2π rad (360○), target long. speed ṽξ ≠ 0
m
s (rm = 0.2 m), dist. rej. . 148

11.3.5 Target angle θ̃z = −2π rad (−360○), target long. speed ṽξ ≠ 0
m
s (rm = 0.2 m), dist. rej. 150

12 Motors and orientation EMC - RHIT results 152

12.1 General RHIT test settings . 153

12.2 Short summary on RHIT results . 155

12.3 RHIT tests - Dynamic FB noise estimator . 155

12.3.1 Plot results . 156

12.4 RHIT tests - Static feedback measure driven decomposition noise estimator 157

12.4.1 IMU θz measurement, NO magnetometer in sensor fusion . 157

12.4.2 IMU θz measurement, magnetometer in sensor fusion . 161

12.4.3 Encoder θz measurement . 166

12.5 RHIT tests - Dynamic feedback measure driven decomposition noise estimator 170

IV Robot longitudinal position EMC 172

13 EMC Differential drive robot theory - Longitudinal position only 173

13.1 Fine model . 173

13.2 EMC model . 174

CONTENTS VIII

13.2.1 DT EM equations . 174

13.2.2 Control law . 174

13.2.3 Reference dynamics . 175

13.2.4 Noise estimator . 175

14 Longitudinal position EMC - Model-in-the-Loop (MIL) simulation tests 177

14.1 General MIL settings on Simulink . 177

14.1.1 Simulated long. position EMC and fine models . 177

14.1.2 Long. position and DC motors Hierarchical structure . 177

14.2 General settings on Simulink MIL plot results . 178

14.3 Summary on the obtained results . 178

14.3.1 Target position ξ̃ = 1 m, target ang. speed ω̃z = 0
rad
s , dist. rej. 179

14.3.2 Target position ξ̃ = 2 m, target ang. speed ω̃z = 0
rad
s , dist. rej. 181

14.3.3 Target position ξ̃ = 1 m (round trip), target ang. speed ω̃z = 0
rad
s , dist. rej. 183

14.3.4 Target position ξ̃ = 1 m (round trip), target ang. speed ω̃z = 0
rad
s , No dist. rej. 185

15 Motors and longitudinal position EMC - RHIT results 187

15.1 General RHIT test settings . 188

15.2 Plot results . 189

15.2.1 Trajectory distance of 1 m . 190

15.2.2 Trajectory distance of 2 m . 191

15.2.3 Trajectory distance of 1 m and return to initial position - Disturbance rejection 192

15.2.4 Trajectory distance of 1 m and return to initial position - No disturbance rejection 193

V Robot 2D space position EMC 194

16 Motors, orientation and long. position robot EMC - Theory and RHIT results 195

16.1 Orientation and long. position EMC hierarchical structure scheme . 195

16.2 General RHIT settings . 196

16.3 Plot results . 198

16.3.1 Trajectory targets ξ̃ = 2 m, θ̃z = 0
○ - Fusion algorithm WITHOUT accelerometer 199

16.3.2 Trajectory distance of 2 m, θ̃z = 0
○ - Orientation fusion algorithm WITH accelerometer . 200

16.3.3 Trajectory distance of 2 m, θ̃z = 50
○ - Fusion algorithm WITHOUT accelerometer 201

VI Conclusions 202

17 Summary on the results and future work 203

Bibliography 206

Nomenclature 208

List of Figures

1.1 General control scheme, blue for CT and black for DT . 1

1.2 General NCS architecture . 2

1.3 Example of fixed and variable sampling times (periodic/aperiodic tasks) 2

1.4 GoPiGo3 Differential-drive robot used for the thesis . 3

1.5 Orientation/position hierarchic structure simplified . 5

2.1 EMC complete scheme . 7

2.2 Orientation EM Reference Dynamics . 9

2.3 EM dynamic feedback noise estimator block scheme . 11

2.4 Mass spring damper fine model . 14

2.5 MSD variable Timestamp . 14

2.6 MSD y, yref , ŷm - Disturbance rejection . 14

2.7 MSD tracking etrk and model em errors - Disturbance rejection . 14

2.8 MSD y, yref , ŷm - No disturbance rejection . 14

2.9 MSD tracking etrk and model em errors - No disturbance rejection . 14

3.1 Front angle view GoPiGo3 DD robot . 15

3.2 Back angle view GoPiGo3 DD robot . 15

3.3 GoPiGo3 DC motor measured PWM square wave with 50% duty cycle 16

3.4 GoPiGo DC motor PWM duty cycle change - From 4V to 8V average voltage 16

3.5 GoPiGo3 robot CAD model built with Autodesk Inventor . 18

3.6 GoPiGo3 robot Body (blue) and Inertial (red) reference Frames . 18

3.7 Forces and Moments acting on a generic wheel with pure torque motion 20

4.1 Cross compilation flow . 27

4.2 DC motor EMC splitted scheme for RHIT implementation . 33

5.1 DC gear motor Jeq and βeq = Beq explanation . 39

5.2 Left and Right DC motors v0.0 identification datasets . 41

5.3 Left and Right DC motors v0.0 validation datasets . 41

5.4 DC motor left v1.0 LS speed estimation, using closed loop dataset . 43

5.5 DC motor left v1.0 LS voltage, using closed loop dataset . 43

5.6 DC motor left v1.0 speed validation, filtered, using closed loop dataset 43

5.7 DC motor left v1.0 speed validation, NOT filtered, using closed loop dataset 43

5.8 DC motor left v1.1 initial guess output speed dataset . 44

5.9 DC motor left v1.1 initial guess input voltage dataset . 44

LIST OF FIGURES X

5.10 DC motor left v1.1 final estimated VS measured speed - Dataset 1 . 45

5.11 DC motor left v1.1 final estimated VS measured speed - Dataset 2 . 45

5.12 DC motor left v1.1 final estimated VS measured speed - Dataset 3 . 45

5.13 DC motor left v1.1 final estimated VS measured speed - Dataset 4 . 45

5.14 DC motor v1.2 Dataset n° 1, input voltage . 46

5.15 DC motor v1.2 Dataset n° 1, output speed . 46

5.16 DC motor v1.2 Dataset n° 2, input voltage . 47

5.17 DC motor v1.2 Dataset n° 2, output speed . 47

5.18 Estimated and measured output speed - Left motor v1.2, Dataset n° 1 48

5.19 Estimated and measured output speed - Right motor v1.2, Dataset n° 1 48

5.20 Estimated and measured output speed - Left motor v1.2, Dataset n° 2 48

5.21 Estimated and measured output speed - Right motor v1.2, Dataset n° 2 48

5.22 Validation dataset input voltage - Left motor v1.2 . 48

5.23 Validation dataset input voltage - Right motor v1.2 . 48

5.24 Estimated and measured output speeds - Validation dataset, Left motor v1.2 (only for EMC) 48

5.25 Estimated and measured output speeds - Validation dataset, Right motor v1.2 (only for EMC) . . . 48

5.26 Coulomb friction torque model . 49

5.27 Validation left and right motors v1.2 (only for Fine models) . 50

5.28 DC motor SS fine model . 51

5.29 First order disturbance w . 51

5.30 Closed Loop System with PI controller . 53

5.31 Second order disturbance w . 54

6.1 DC motor fine model Simulink scheme . 58

6.2 Left motor input voltage dead-zone . 58

6.3 Right motor input voltage dead-zone . 58

6.4 Left motor EMC MIL and RHIT comparison, no dist. rej, ω̃
L
= [6,4] rad/s 60

6.11 Left motor EMC MIL and RHIT comparison, dist. rej, ω̃
L
= [8,3,5.5,7] rad/s 61

6.18 Right motor EMC MIL and RHIT comparison, dist. rej, ω̃
R
= [6,4] rad/s 63

6.25 Right motor EMC MIL and RHIT comparison, dist. rej, ω̃
R
= [8,3,5.5,7] rad/s 64

6.32 Right motor EMC MIL and RHIT comparison, no dist. rej, ω̃
R
= [6,4] rad/s 65

6.39 Right motor EMC MIL and RHIT comparison, no dist. rej, ω̃
R
= [8,3,5.5,7] rad/s 66

7.1 Measured output speeds ŷm and y not filtered - EMC → plant implementation 68

7.2 Measured output speeds ŷm and y not filtered - Plant → EMC implementation 69

7.3 Left motor EMC v1.0, 1st order disturbance, No Load - Result plots 1 70

7.8 Left motor EMC v1.0, 1st order disturbance, No Load - Result plots 2 71

7.13 Left motor EMC v1.0, 1st order disturbance, No Load - Result plots 3 72

7.18 Left motor EMC v1.0, 1st order disturbance, No Load - Result plots 4 73

7.23 Left motor EMC v1.0, 1st order disturbance, No Load - Result plots 5 74

7.28 Left motor EMC v1.0, 1st order disturbance, No Load - Result plots 6 75

7.33 Left motor EMC v1.0, 1st order disturbance, No Load - Result plots 7 76

7.38 Left motor EMC v1.0, 1st order disturbance, No Load - Result plots 8 77

7.43 Left motor EMC v1.0, 1st order disturbance, Load - Result plots 1 . 78

7.48 Left motor EMC v1.0, 1st order disturbance, Load - Result plots 2 . 79

XI LIST OF FIGURES

7.53 Left motor EMC v1.0, 2nd order disturbance, No load - Result plots 1 80

7.58 Left motor EMC v1.0, 2nd order disturbance, No load - Result plots 2 81

7.63 Left motor EMC v1.0, 2nd order disturbance, No load - Result plots 3 82

7.68 Left motor EMC v1.0, 2nd order disturbance, No load - Result plots 4 83

7.73 Left motor EMC v1.0, 2nd order disturbance, No load - Result plots 5 84

7.78 Left motor EMC v1.0, 2nd order disturbance, No load - Result plots 6 85

7.83 Left motor EMC v1.0, 2nd order disturbance, No load - Result plots 7 86

7.88 Left motor EMC v1.0, 2nd order disturbance, No load - Result plots 8 87

7.93 Left motor EMC v1.0, 2nd order disturbance, No load - Result plots 9 88

7.98 Left motor EMC v1.0, 2nd order disturbance, No load - Result plots 10 89

7.103 Left motor EMC v1.0, 2nd order disturbance, Load - Result plots 1 . 90

7.108 Left motor EMC v1.0, 2nd order disturbance, Load - Result plots 2 . 91

7.113 Left motor EMC v1.0, 2nd order disturbance, Load - Result plots 3 . 92

7.118 Left motor EMC v1.1, No Load - Result plots 1 . 94

7.123 Left motor EMC v1.1, No Load - Result plots 2 . 95

7.128 Left motor EMC v1.1, No Load - Result plots 3 . 96

7.133 Left motor EMC v1.1, No Load - Result plots 4 . 97

7.138 Left motor EMC v1.1, Load - Result plots 1 . 98

7.143 Right motor EMC v1.2, No load - Result plots 1 . 100

7.148 Right motor EMC v1.2, No load - Result plots 2 . 101

7.153 Right motor EMC v1.2, No load - Result plots 3 . 102

7.158 Right motor EMC v1.2, No load - Result plots 4 . 103

7.163 Right motor EMC v1.2, No load - Result plots 5 . 104

7.168 Right motor EMC v1.2, Load - Result plots 1 . 105

7.173 Right motor EMC v1.2, Load - Result plots 2 . 106

8.1 Combined left and right EMC DC motors, linear trajectory, dist. rej. - Result plots 1 109

8.9 Combined left and right EMC DC motors, linear trajectory, dist. rej. - Result plots 2 110

8.17 Combined left and right EMC DC motors, linear trajectory, dist. rej. - Result plots 3 111

8.25 Combined left and right EMC DC motors, linear trajectory, dist. rej. - Result plots 4 112

8.33 Combined left and right EMC DC motors, linear trajectory, no dist. rej. - Result plots 1 113

8.41 Combined left and right EMC DC motors, linear trajectory, no dist. rej. - Result plots 2 114

8.49 Combined left and right EMC DC motors, circular trajectory, dist. rej. - Result plots 1 115

8.57 Combined left and right EMC DC motors, circular trajectory, dist. rej. - Result plots 2 116

9.1 Combined EMC DC motors, IMU meas. no mag sensor fusion, linear trajectory 121

9.11 Combined EMC DC motors, IMU meas. no mag sensor fusion, circular trajectory 123

9.21 Combined EMC DC motors, IMU meas. mag sensor fusion, linear trajectory 125

9.31 Combined EMC DC motors, IMU meas. mag sensor fusion, circular trajectory 127

10.1 First order disturbance w entering orientation EM - Solution 1 . 132

10.2 First order disturbance w entering orientation EM - Solution 2 . 132

10.3 Orientation EMC - Proportional controller (P) Closed Loop scheme 133

10.4 Noise estimator Orientation EMC Solution 3 - Static + dynamic FB parts 136

10.5 Orientation EMC Solution 1 outputs - Dynamic FB noise estimator . 137

LIST OF FIGURES XII

10.6 Orientation EMC Solution 2 outputs - Static FB noise estimators with measure-driven decomposition 137

10.7 Orientation EMC Solution 3 outputs - Static and dynamic FB noise estimators with measure-driven

decomposition . 137

11.1 Hierarchic structure for MIL tests - Orientation and DC motors EMC 140

11.2 Orientation EMC MIL and comparison with RHIT, dist. rej, targets ω̃z = 2π rad and ṽξ = 0m/s . . 142

11.14 Orientation EMC MIL and comparison with RHIT, no dist. rej, targets ω̃z = 2π rad and ṽξ = 0m/s 144

11.26 Orientation EMC MIL and comparison with RHIT, dist. rej, targets ω̃z = −2π rad and ṽξ = 0m/s . 146

11.37 Orientation EMC MIL and comparison with RHIT, dist. rej, targets ω̃z = 2π rad and rm = 0.2m . . 148

11.48 Orientation EMC MIL and comparison with RHIT, dist. rej, targets ω̃z = −2π rad and rm = 0.2m . 150

12.1 Hierarchic structure for RHIT - Orientation and DC motors EMC . 152

12.2 Orientation EMC Timestamp . 154

12.3 Left motor EMC Timestamp . 154

12.4 Right motor EMC Timestamp . 154

12.5 Orientation EMC RHIT, dyn FB noise est., IMU mag pose est., θ̃z = 2π rad, ṽξ = 0m/s 156

12.10 Orientation EMC RHIT, 2 static FB noise est, IMU no mag pose est., θ̃z = 2π rad, ṽξ = 0m/s 158

12.16 Orientation EMC RHIT, 2 static FB noise est., IMU no mag pose est., θ̃z = −2π rad, ṽξ = 0m/s . . . 159

12.22 Orientation EMC RHIT, 2 static FB noise est., IMU no mag pose est., θ̃z = 2π rad, rm = 0.2m . . . 160

12.29 Orientation EMC RHIT, 2 static FB noise est., IMU mag pose est., θ̃z = 2π rad, ṽξ = 0m/s 161

12.35 Orientation EMC RHIT, 2 static FB noise est., IMU mag pose est., θ̃z = 2π rad, ṽξ = 0m/s, no dist rej 162

12.42 Orientation EMC RHIT, 2 static FB noise est., IMU mag pose est., θ̃z = −2π rad, ṽξ = 0m/s 163

12.48 Orientation EMC RHIT, 2 static FB noise est., IMU mag pose est., θ̃z = 2π rad, rm = 0.2m 164

12.55 Orientation EMC RHIT, 2 static FB noise est., IMU mag pose est., θ̃z = −2π rad, rm = 0.2m 165

12.62 Orientation EMC RHIT, 2 static FB noise est., encoders pose meas., θ̃z = 2π rad, ṽξ = 0m/s 166

12.68Orientation EMC RHIT, 2 static FB noise est., encoders pose meas., θ̃z = −2π rad, ṽξ = 0m/s 167

12.74 Orientation EMC RHIT, 2 static FB noise est., encoders pose meas., θ̃z = 2π rad, rm = 0.2m 168

12.81 Orientation EMC RHIT, 2 static FB noise est., encoders pose meas., θ̃z = −2π rad, rm = 0.2m . . . 169

12.88Orientation EMC RHIT, static and dyn FB noise est., IMU mag pose est., θ̃z = 2π rad, ṽξ = 0m/s . 170

13.1 First order disturbance w entering position EM . 175

14.1 Hierarchic structure for MIL tests - Longitudinal position and DC motors EMC 178

14.2 Long. position EMC MIL and RHIT comparison, ξ̃ = 1m, ω̃z = 0 rad/s, dist. rej 179

14.13 Long. position EMC MIL and RHIT comparison, ξ̃ = 2m, ω̃z = 0 rad/s, dist. rej 181

14.24 Long. position EMC MIL and RHIT comparison, ξ̃ = [1,−1] m, ω̃z = 0 rad/s, dist. rej 183

14.36 Long. position EMC MIL and RHIT comparison, ξ̃ = [1,−1] m, ω̃z = 0 rad/s, no dist. rej 185

15.1 Hierarchic structure for RHIT - Longitudinal position and DC motors EMC 188

15.2 Position EMC Timestamp . 188

15.3 Left motor EMC Timestamp . 189

15.4 Right motor EMC Timestamp . 189

15.5 Long. position EMC RHIT, ξ̃ = 1m . 190

15.12 Long. position EMC RHIT, ξ̃ = 2m . 191

15.19 Long. position EMC RHIT, ξ̃ = [1,−1] m . 192

15.27 Long. position EMC RHIT, ξ̃ = [1,−1] m, no dist. rejection . 193

XIII LIST OF FIGURES

16.1 Hierarchic structure for RHIT - Longitudinal position, orientation and DC motors EMC 196

16.2 Orientation and Long. position EMC Timestamp . 196

16.3 Left motor EMC Timestamp . 197

16.4 Right motor EMC Timestamp . 197

16.5 Orientation and long. position EMC RHIT, ξ̃ = 2m, θ̃z = 0 , IMU sensor fusion no accel. 199

16.14 Orientation and long. position EMC RHIT, ξ̃ = 2m, θ̃z = 0 , IMU sensor fusion yes accel. 200

16.24 Orientation and long. position EMC RHIT, ξ̃ = 2m, θ̃z = 50 , IMU sensor fusion no accel. 201

17.1 Combined DC motors EMC RHIT, linear trajectory, no dist. rej. - Result plots 1, Right motor outputs204

17.2 Combined DC motors EMC RHIT, linear trajectory, dist. rej. - Result plots 3, Right motor outputs 204

17.3 Orientation and long. position EMC RHIT, ξ̃ = 2m, θ̃z = 50 , IMU sensor fusion no accel. 204

List of Tables

2.1 MSD fine model vs EMC parameters . 13

2.2 Continuous eigenvalues MSD EMC . 13

3.1 GoPiGo Differential Drive Robot parameters . 18

3.2 GoPiGo properties using iProperties Inventor tool . 19

5.1 DC motor regressive form parameters and initial guess parameters - Left and Right motors v0.0 . . 41

5.2 Final Estimated parameters Left motor v1.0, with comparison with v0.0 42

5.3 Parameters DC motor model in regressive form using LS method - Left motor v1.1 44

5.4 Initial guess parameters Left motor v1.1 . 44

5.5 Final estimated parameters Left motor v1.1 . 44

5.6 Parameters DC motor model in regressive form using LS method - Left and Right DC motors v1.2

(for EMC only) . 46

5.7 Initial guess parameters - Left and Right motor v1.2 (for EMC only) 46

5.8 Final estimated parameters Left and Right motor v1.2 - For EMC models only 47

5.9 Final estimated parameters Left and Right motor v1.2 - For fine models only 49

6.1 Continous eigenvalues DC motor EMC - MIL tests . 57

7.1 CT eigenvalues DC motor EMC Left motor v1.0 - 1st order disturbance, No load conditions, Result 1 70

7.2 CT eigenvalues DC motor EMC Left motor v1.0 - 1st order disturbance, No load conditions, Result 2 71

7.3 CT eigenvalues DC motor EMC Left motor v1.0 - 1st order disturbance, No load conditions, Result 3 72

7.4 CT eigenvalues DC motor EMC Left motor v1.0 - 1st order disturbance, No load conditions, Result 4 73

7.5 CT eigenvalues DC motor EMC Left motor v1.0 - 1st order disturbance, No load conditions, Result 5 74

7.6 CT eigenvalues DC motor EMC Left motor v1.0 - 1st order disturbance, No load conditions, Result 6 75

7.7 CT eigenvalues DC motor EMC Left motor v1.0 - 1st order disturbance, No load conditions, Result 7 76

7.8 CT eigenvalues DC motor EMC Left motor v1.0 - 1st order disturbance, No load conditions, Result 8 77

7.9 CT eigenvalues DC motor EMC Left motor v1.0 - 1st order disturbance, Load conditions, Result 1 . 78

7.10 CT eigenvalues DC motor EMC Left motor v1.0 - 1st order disturbance, Load conditions, Result 2 . 79

7.11 CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, No load conditions, Result 1 80

7.12 CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, No load conditions, Result 2 81

7.13 CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, No load conditions, Result 3 82

7.14 CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, No load conditions, Result 4 83

7.15 CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, No load conditions, Result 5 84

7.16 CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, No load conditions, Result 6 85

7.17 CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, No load conditions, Result 7 86

XV LIST OF TABLES

7.18 CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, No load conditions, Result 8 87

7.19 CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, No load conditions, Result 9 88

7.20 CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, No load conditions, Result

10 . 89

7.21 CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, Load conditions, Result 1 90

7.22 CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, Load conditions, Result 2 91

7.23 CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, Load conditions, Result 3 92

7.24 CT DC motor EMC left motor v1.1 . 93

7.25 CT eigenvalues DC motor EMC . 99

8.1 CT eigenvalues DC motor EMC . 107

9.1 IMU sensors settings . 118

9.2 CT eigenvalues DC motor EMC - 2 motors load conditions . 119

10.1 Provisional Eigenvalue settings Orientation EMC - Solution comparisons between Noise estimators 137

12.1 CT eigenvalues Orientation EMC . 155

15.1 CT eigenvalues Longitudinal position EMC . 189

16.1 CT eigenvalues Orientation and position EMC . 198

Chapter 1

Introduction

1.1 Overview and main thesis objectives

In control theory, the actual behaviour of a physical dynamic system in continuous-time (CT) domain (plant) can

be modified and corrected to follow a desired behaviour using a control model in discrete-time (DT) domain

(controller). Looking at Figure 1.1, the plant outputs to be controlled are the measurements y(k) and they enters the

controller. A control input u(k) is obtained as output and it enters the plant to modify properly its behaviour. To

convert from DT to CT a digital-to-analogue converter (D/A) is needed, and for viceversa an analogue-to-digital

converter (A/D). A system like that is also referred as Closed loop control system. The desired behaviour wanted for

the plant is referred as reference signal r(t): for example a robot following a trajectory to reach a certain position

in space, eventually with obstacles on the way.

Figure 1.1: General control scheme, blue for CT and black for DT

Often control inputs/measurements are not exchanged between plant/controller with a fixed timing, but variable:

looking at top figure in Figure 1.3 fixed timing is when the time needed to receive the next data is always the same,

i.e. there is a fixed inter-arrival time (in this case 25ms). Instead in bottom figure the inter-arrival time is not fixed

at 25ms, but can be variable in a certain range: we can only define, if possible, a minimum inter-arrival time.

There are many physical systems working with variable sampling time:

• In Networked Control system (NCS) one or more controllers and plants are connected together through a

shared communication network. This is what is shown in Figure 1.2, where the network closes the loop be-

tween all the parts. Network is often wireless, i.e. it doesn’t require physical connections between senders and

receivers (remote control): an example can be robot drones moved by using another device like a computer.

1.1. OVERVIEW AND MAIN THESIS OBJECTIVES 2

Figure 1.2: General NCS architecture

Source: [15]

Figure 1.3: Example of fixed and variable sampling
times (periodic/aperiodic tasks)

Source: [13]

Control inputs/measurements and other data are divided in units called packets, sampled and encoded/de-

coded in DT/CT to be transmitted. However in practice there are delays increasing the time needed for

packets exchange. In this case the asynchronous timing is not intentional but comes from external factors.

Main delays in NCS are due to, [15]: network access delays (time needed to accept data), transmission delays

(time occurred in network between sending and receiving packets), package dropouts (data can be lost in

transit through network).

• In other controlled systems the asynchronous timing is a desired condition (intentional): a common example

can be a vehicle engine, where a variable to be controlled is the fuel injection inside the motor pistons.

To increase performances and/or make the engine more energy efficient, injection can be performed with

variable timing.

In these kind of systems, variable sampling time can be considered as disturbances affecting the plant, which make

more difficult the system to be controlled with desired behaviour. In this regard, Embedded Model Control (EMC)

is a well established control method. It belongs to model-based design methods class, i.e. requiring a simplified

model (neglecting plant complex dynamics) of the plant to be controlled, usually in the form of DT State-space

equations (SS), the state variables are estimations of plant physical variables. In EMC case, the simplified model

is called Embedded Model (EM). This model is then connected with the Control Law unit part which finally is able

to control physical quantities of a plant. In EMC field the plant is also called fine model. EMC fundamentals are

summarized in [1], and example applications are treated in [3, 5, 6].

One handful property of EMC is to guarantee stability and desired behaviour of system even with presence of

asynchronous sampling times of both command inputs and measurements. Indeed the model carries informations

about disturbances of the system, and the control can be built to satisfy active disturbance rejection, i.e. trying to

reduce and possibly remove disturbances at every time step. This feature is discussed in [4, 5], mainly tested in

simulation.

This differentiate EMC from other model-based control methods, like internal model control (IMC) and model

predictive control (MPC) where control models don’t treat disturbance dynamics and consequently disturbance

rejection [1].

Main objective of the thesis is prosecute the study of asynchronous sampling time plants controlled by EMC

technique, [4, 5], focusing in experimental tests with physical systems. In particular a ground robot is selected,

consisting in a differential drive vehicle, composed by 2 direct-current (DC) independent motors controlling the

3 CHAPTER 1. INTRODUCTION

Figure 1.4: GoPiGo3 Differential-drive robot used for the thesis

wheels equipped with position encoders, and based on Raspbian operating system running inside a Raspberry Pi

board. The robot is called GoPiGo3 and is produced by Dexter Industries company, [17]. Asynchronous EMC can

be tested in 2 conditions:

• With Model-in-the-Loop (MIL) tests, making first EMC models to control the motors, and then to con-

trol robot orientation and position. This test requires both control models and robot plant to be run in

simulation, in this case using MathWorks Simulink software (SW) application.

• Much more important, translate simulated EMC into SW code model (using C++ language) to be executed

in Raspberry embedded system of the robot. Making physical tests allows better understand effectiveness

of EMC control technique, because often the real plants present different behaviours with respect the ones

tested in simulations. Since no specific name is given to experimental implementations of a control model,

we will refer from now on as Robot Hardware Implementation Test (RHIT). Hardware (HW) Timers present

in robot Raspberry board will be used to schedule sent and received data from control model and robot

plant.

This thesis work tests is focused in studying and verifying EMC technique with asynchronous timing conditions,

without considering for example network remote connections: indeed it was more important verify the control

EMC technique.

Since no network connection is considered, to mimic asynchronous timing conditions will be used hardware timers

already present in Raspberry board, which expiration time is defined by random numbers in a predefined range.

This method can be considered more critical because with network control systems the timestamp variation is not

so heavy (if network connection is reliable).

Trajectory reference followed by controlled robot is very simple: it needs to reach a certain target without obstacles

on the way (wheel angular speed or robot position/orientation) only respecting the dynamic constraints of the

system (geometrical constraints etc.). This allows the overall EMC to be run directly in Raspberry board, for

RHIT tests. However, in many practical applications, reference trajectories are very complex, requiring obstacle

avoidance and optimal path (for example to reduce supply/fuel consumption etc.). In these cases other techniques

are required, exploiting machine learning and optimal problems to be solved, which are impossible to be loaded

in a board like Raspberry. Hence network control come in help, allowing EMC part to be run in a powerful

computer. This can be implemented in the future, which is not difficult if EMC control is already built.

1.2. STRUCTURE OF THE THESIS 4

1.2 Structure of the thesis

The thesis is structured in 6 main parts.

• Part I: Basic concepts of EMC are explained briefly following the existing literature.

A differential drive robot ground vehicle called GoPiGo3 is used to make EMC practical RHIT tests. Basic

robot construction properties are given, focusing on the main geometric and mass parameters needed to

build EMC models.

Finally are presented settings used to make simulation MIL using Simulink, and RHIT using Raspberry Pi

board available in the robot.

Next parts are structured observing the time workflow of the thesis: at the beginning DC motors control is

considered, then robot orientation and longitudinal position separately, finally the last 2 models are combined

together to control 2D space robot position.

For every step, first the EMC model is theorized, then tested in MIL simulations using Simulink, at the end

generated code is recovered from simulated model to be implemented in robot Raspberry board and make RHIT

tests in real world.

Results of relevant tests are then saved, organized and discussed.

• Part II: Since very few datasheet informations are available for DC motors, first phase is system identification

of the main parameters. After obtaining reliable parameters, EMC can be built and tested in MIL simulation.

Every model must be connected with a simulated system (fine model) miming as close as possible physical

motors, to establish similar real conditions.

When results obtained in simulations become acceptable, physical RHIT tests can be done: the models are

connected with the real plants (the 2 motors). No load conditions are considered first (i.e. the wheels not

attached to the ground), for the left and right motors separately. Afterwards robot is placed to the ground,

with load conditions, and the left/right motor models are tested separately and together.

Similar procedure used for motors is used for next control models too, treated in the following parts: theoretical

analysis, MIL Simulink tests using a fine model of robot orientation/position, practical RHIT tests using robot,

analysis of the results.

Specifically, a hierarchic structure is used to connect motors and robot orientation/position control models: esti-

mated longitudinal and angular speeds are the outputs of orientation/position EMC, and they’re converted into

motor angular speeds with robot kinematic equations and used as reference for motors EMC. Then control inputs

of DC motors EMC are used as input of robot plant, to control it physically. A simplified scheme (used in RHIT)

of this hierarchic structure is shown in Figure 1.5: the non-conventional part is highlighted in red. The difference

relies in the simplicity of the structure, because in commonly used structures motors and orientation/position

controls are combined together in a unique model, requiring the presence of non-linear terms inside which usually

lead to high complexity. In the way analysed in the thesis very simple and linear control models are exploited,

and every non-linear term is let outside (the ones related to conversions for example).

• Part III: Robot orientation is then considered, allowing only control of robot yaw angle θz (i.e. angle around

vertical axis) and z-axis angular speed ωz . No position control is considered in this field. Angle and angular

speed measurements are taken with an Inertial Measurements Unit (IMU) attached to robot. IMU is first

calibrated and tested with already-built motors EMC.

• Part IV: Robot position EMC is studied in this part, allowing to control only robot longitudinal position

5 CHAPTER 1. INTRODUCTION

Figure 1.5: Orientation/position hierarchic structure simplified

ξ and longitudinal speed vξ . In reverse, now no orientation control is present, in other words the robot is

allowed to go back and forth only. The position and longitudinal speed can be measured starting from DC

motor encoders.

• Part V: Finally the previous 2 models are combined together to control both longitudinal and lateral position

of robot. This allows the robot to move in planar space, but using polar-like coordinates θz, ξ instead of

Cartesian coordinates ξ, ν, exploiting hierarchical structure.

• Part VI:Main objectives reached and final conclusions are the subject of this part, with references to possible

improvements to be done in the future.

Notes: For many MIL and RHIT tests several plots are present: in these cases only the test settings are referenced

in the List of Figures to avoid adding a long list (the number indicates the first figure of the test).

Unless specified, all figures are made by the author.

In the final pages after bibliography, a Nomenclature to help the reader is added summarizing the acronyms and

main symbols used inside the thesis.

Part I

Overview

Chapter 2

EMC theory

2.1 EMC basic concepts

The basic concepts of the Embedded Model Control approach are first analysed, a short summary is presented

taken from [1]. The main parts composing an EMC are shown in Figure 2.1.

Figure 2.1: EMC complete scheme

The blocks in CT domain are coloured in blue, the ones in DT are in black. With respect [1], some parts of the

scheme are modified according to what is needed as thesis objectives (e.g. reference dynamics part). Going in

detail of each block, referencing to the figure:

• Embedded Model (EM) + Noise estimator: Since the physical plant often have unknown parameters and

dynamics, one can build a model omitting them. This results in a simplified model called Embedded model.

It can be decomposed in 3 main parts:

– Controllable dynamics: Part containing the DT equations in which states are controllable x̂c(k), i.e. an
external control input can change internal states initial conditions to different final conditions. Hence

2.1. EMC BASIC CONCEPTS 8

with a well suited control algorithm the behaviour of these states can be arbitrary decided.

– Disturbance dynamics: The physical plant can be affected by non-causal noises (i.e. they do not depend

on their own past history) or causal disturbances (i.e. they are DT states).

The last ones can be inserted in EM model disturbance dynamics part as non-controllable states x̂d(k),
i.e. they cannot be controlled by an arbitrary external control input. Then they also affect controllable

dynamics, d(k).

– Noise estimator: It’s an output-to-state feedback estimator, which takes as input the difference of plant

measurement y(k) and estimated output ŷm(k) (called Model error), to estimate as outputs plant noises

w(k).

• Reference dynamics: Inside there is only EM controllable dynamics part without disturbances. If a target

output is imposed, the outputs are the reference states (without disturbances) to be tracked by EM control-

lable states (with disturbances). For thesis work, to obtain a desired reference trajectory a static-state feedback

control can be added (matrices K
R
and N

R
) [14], and a saturation block limits the reference input u(k). The

reference state is x(k). u(k) and x(k) are the used in Control law.

More complex techniques can be considered, for example exploiting machine learning and optimization

methods, but they are not needed for the objectives of the thesis.

• Control Law: Main aim of control part is to give as output a control input u(k) to make physical plant

behave as desired. Specifically we want estimated states in EM to follow a desired tracking reference input,

hence reduce what is called Tracking error : it’s the difference between reference x(k) and estimated states

x̂c(k). For thesis work, to control tracking error is sufficient using either a proportional (P) or proportional-

integral (PI) controller.

Following suitable assumptions, the control is also able to reduce causal disturbances present in the physical

plant (active rejection). This is one of the main differences with respect to other control methods.

The states of EMC model in DT domain are xT (k) = [x̂c, x̂d] (k), with x̂c(k) as controllable states and x̂d(k)
as non controllable states (disturbances). The equations in discrete time and matrix form are (state and output

equations) (index is k ≥ 0):

x(k + 1) = Ax(k) +Bu(k) +Gw(k), x(0) = x0
ŷm(k) = Cx(k), zm(k) = Fx(k)

(2.1)

In our case the performance channel and the EM output coincide, zm(k) = ŷm(k), C = F . The corresponding

matrices are:

A =
⎡⎢⎢⎢⎢⎣

Ac Hc

0 Ad

⎤⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎣

Bc

0

⎤⎥⎥⎥⎥⎦
, G =

⎡⎢⎢⎢⎢⎣

Gc

Gd

⎤⎥⎥⎥⎥⎦
, C = [Cc Cd] , F = [Fc 0] = C (2.2)

Assumptions 2.1 Pairs (Ac,Bc) are assumed to be controllable (indeed a controller like proportional (P) or proportional-
integral (PI) can be exploited to track a reference), while (Cc,Ac) and (C,A) are assumed to be observable at least for
one controllable state (hence at least one output from plant can be measured with a sensor), [1].

9 CHAPTER 2. EMC THEORY

The discrete time model can be decomposed into controllable and disturbance equations:

x̂c(k + 1) = Acx̂c(k) +Bcu(k) + d(k), x̂c(0) = xc0
x̂d(k + 1) = Adx̂d(k) +Gdw(k), x̂d(0) = xd0
d(k) =Hcx̂d(k) +Gcw(k)

(2.3)

The term d(k) contains disturbance states x̂d(k) and noises w(k) entering the controllable dynamics.

Reference dynamics: It is composed by controllable dynamics without disturbances, i.e. it has the same equation

form of x̂c(k + 1) in Equation (2.3) but without d(k) (the reference states and outputs are from now on referred

with a "bar" above the symbol):

x(k + 1) = Acx(k) +Bcu(k), x(0) = x0
y(k) = Ccx(k)

(2.4)

Static-state FB can be implemented to Equation (2.4) if the input is considered as u(k) = −K
R
x(k) +N

R
r(k),

where r(k) is the desired target reference:

x(k + 1) = (Ac −BcKR
)

·„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„¶
A

R

x(k) +BcNR

†
B

R

r(k)

y(k) = Cc
fl
C

R

x(k)
(2.5)

Figure 2.2 shows the closed loop system formed by reference dynamics and static-state FB control with K
R
,N

R

matrices.

Figure 2.2: Orientation EM Reference Dynamics

Reference control input u(k) is saturated avoiding too high/low values which are impossible to be obtained

physically.

K
R

can be found with pole placement technique to control the CL matrix A
R
. Instead N

R
can be found by

considering the input/output transfer function (in frequency domain) between r(z) and y(z), which is:

W (z) = y(z)
r(z)

=
C

R

zI −A
R

B
R
N

R

N
R
is needed to control the DC-gain K

DC
of the overall reference dynamics system, and make it equal to 1 to

2.1. EMC BASIC CONCEPTS 10

avoid an increase/decrease of output amplitude wrt input:

K
DC
= lim

z→1
W (z) =

C
R

zI −A
R

B
R
N

R
= 1

Solving the limit, N
R
is equal to:

N
R
= [C

R
(I −A

R
)−1B

R
]−1 (2.6)

Noise estimator: Used to estimate disturbance terms, starting from difference between real and simulated outputs,

em(k) = y(k) − ŷm(k). 2 main estimators can be build [1, 2]:

• Static feedback noise estimator: Can be exploited if dimension of total states nx is exactly equal to the

one of disturbance inputs nw. In this case the estimation of noises w(k) can be obtained using a simple

static gain L:

w(k) = Lem(k)

L components can be found making equal the coefficients ai,cl of the characteristic polynomial of the closed

loop matrix A
CL
= A −GLC , computed with det[A

CL
− λI], and the ones ai,des of a characteristic polyno-

mial with discrete time eigenvalues pi decided by us with Re(λ) < 1, to guarantee asymptotic internal/BIBO

stability. For example, if A
CL

is a 3 × 3 matrix, the 2 characteristic polynomials are:

⎧⎪⎪⎨⎪⎪⎩

λ3 + a2,clλ2 + a4,clλ + a3,cl Closed loop char. polynomial

λ3 + a2,desλ2 + a3,desλ + a4,des = (λ − p1)(λ − p2)(λ − p3) Desidered char. polynomial
(2.7)

• Dynamic feedback noise estimator: This is the condition where nx > nw. This means that closed loop

matrix A
CL
= A−GLC is not stabilizable using a simple static gain, every choice of matrix L is considered.

Internal stability can only be recovered by adding a dynamic feedback of order n − nw (usually the order is

1). A new state x̂e(k) is added in the CL system, and x̂Tp (k) = [x̂c, x̂d] (k). The new SS equations become:

x̂p(k + 1) = Ax̂p(k) +Bu(k) +Gw(k)

x̂e(k + 1) = Aex̂e(k) +Leem(k)

w(k) = Nx̂e(k) +Lem(k) , em(k) = y(k) − ŷm(k)

(2.8)

In particular, the unknown matrices and variables are:

N =
⎡⎢⎢⎢⎢⎣

Nw

Nd

⎤⎥⎥⎥⎥⎦
, L =

⎡⎢⎢⎢⎢⎣

Lw

Ld

⎤⎥⎥⎥⎥⎦
, Ae = 1 − β (2.9)

Ae usually has the form of a filter. Le can be considered equal to 1.

Making some arrangements:

x̂(k + 1) =
⎡⎢⎢⎢⎢⎣

x̂p

x̂e

⎤⎥⎥⎥⎥⎦
(k + 1) =

⎡⎢⎢⎢⎢⎣

A −GLC GN

−LeC Ae

⎤⎥⎥⎥⎥⎦
·„„„‚„„¶

A
CL

⎡⎢⎢⎢⎢⎣

x̂p

x̂e

⎤⎥⎥⎥⎥⎦
(k) =

⎡⎢⎢⎢⎢⎣

B GL

0 Le

⎤⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„¶

B
CL

⎡⎢⎢⎢⎢⎣

u

y

⎤⎥⎥⎥⎥⎦
(k)

(2.10)

From CL matrix A
CL

we can use again eigenvalue placement technique to find the unknown parameters

Nw,Nd, Lw, Ld, β.

11 CHAPTER 2. EMC THEORY

Using this method the estimated disturbance w in frequency domain will be:

w(z) = L(z)em(z)

L(z) = L +M 1

z −Ae

In which it can be noticed the filter z −Ae at denominator. Furthermore M = NLe (if Le = 1⇒M = N).

In Figure 2.3 a general scheme of the dynamic feedback estimator is shown.

Figure 2.3: EM dynamic feedback noise estimator block scheme

Control law: It needs to respect the following requirements:

• Make the discrete control EM model follow a reference input.

• Cancel the disturbances of the real plant.

By assumption x̂d(k) are not controllable by control input u(k), in other words the matrices pair (A,B) is not
controllable. Hence overall closed loop system results to be not stabilizable (internally). The only way to make the

system internally stable is to cancel xd(k) terms and reduce (bound) effects of noises w(k), [1].
To this aim, the control law is made by considering the following LTI equation:

u(k) = u(k) +Ke(k)
·„„„„„„‚„„„„„„¶
utrk(k)

−Mx̂d(k)
·„„„„„„„„„„„„‚„„„„„„„„„„„„„¶

ud(k)

e(k) = x − (x̂c +Qx̂d)

(2.11)

e(k) = etrk(k) is the tracking error taking into account the difference between reference and EM dynamics (but

in many practical cases Q = 0ij), the term utrk(k) = Ke(k) is needed to make our model follow the reference,

ud(k) =Mx̂d(k) is the term needed to cancel the disturbance and to make the system stable, u(k) is the reference
input.

2.2. EMC EXAMPLE - MASS-SPRING-DAMPER SYSTEM 12

Matrices K,Q and M need to be designed the following necessary and sufficient conditions:

1. Ac −BcK asymptotically stable

2.
⎡⎢⎢⎢⎢⎣

Hc +QAd

Cd

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

Ac Bc

Fc 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

Q

M

⎤⎥⎥⎥⎥⎦

(2.12)

The 2nd condition is also known as Davison-Francis relationship: if holds, the tracking error is bounded and the

mean value tends to zero with control law equation, [1, 6].

Note: Reference, control law and noise estimator require eigenvalue tuning using pole placement technique. Since

almost all of the tests will be performed with variable DT sampling time, the eigenvalues must be chosen properly.

It is known that even if DT eigenvalues λi changes with sampling time T , CT ones µi does not: hence first CT

eigenvalues are chosen, then a conversion to DT one is done using the relation λi = eµiT , at every time step.

2.2 EMC example - Mass-spring-damper system

A simple plant can be considered to learn about EMC technique, for example a Mass-spring-damper (MSD) system,

where a mass m is connected with a spring of stiffness coefficient k and an ideal viscous damper with coefficient

c, a force F (t) is responsible of motion. Since it is required as one of the main objectives, EMC block is directly

affected by variable step time: in this example the range is T = Ts = 0.02–0.04 s (cfr. Figure 2.5).

The governing CT differential equations for MSD are:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t)

ẋ2(t) = −
k

m
x1(t) −

c

m
x2(t) +

1

m
u(t) + x̂d(t) +w1(t)

ẋd(t) = w2(t)

, y1(t) = x1(t), y2(t) = x2(t) (2.13)

u(t) = F (t) is the controlled input (force) coming from EMC (analogue converted), wT (t) = [w1,w2] (t) are the

noise error terms entering the system. State vector xT (t) = [x1, x2, xd] (t) is composed by position x1(t) = ξ(t),
velocity x2(t) = vξ(t) of the mass, and disturbance state x̂d(t). The last equation is added to simulate a non-

controllable disturbance term, i.e a term that cannot be changed by modifying the input u(t). x̂d(t) enters the
system as acceleration disturbance.

In matrix form (continuous time CT):

A
CT
=

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0

− k
m − c

m 1

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

, B
CT
=

⎡⎢⎢⎢⎢⎢⎢⎣

0
1
m

0

⎤⎥⎥⎥⎥⎥⎥⎦

, G
CT
=

⎡⎢⎢⎢⎢⎢⎢⎣

0 0

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎦

,

C
CT
=
⎡⎢⎢⎢⎢⎣

1 0 0

0 1 0

⎤⎥⎥⎥⎥⎦
, F

CT
= C

CT

The Mass-spring-damper fine model is in Figure 2.4. Starting from Forward Euler discretization method, DT

matrices can be recovered from CT ones (I is the identity matrix and T the sample time):

A
DT
= A

CT
T + I

B
DT
= B

CT
T

C
DT
= C

CT

G
DT
= G

CT
T

(2.14)

13 CHAPTER 2. EMC THEORY

For our system:

A
DT
=
⎡⎢⎢⎢⎢⎣

Ac Hc

0 Ad

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

1 T 0

−kT
m − cT

m + 1 T

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

, B
DT
=
⎡⎢⎢⎢⎢⎣

Bc

0

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

0
T
m

0

⎤⎥⎥⎥⎥⎥⎥⎦

, G
DT
=
⎡⎢⎢⎢⎢⎣

Gc

Gd

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

0 0

T 0

0 T

⎤⎥⎥⎥⎥⎥⎥⎦

C
DT
= [Cc Cd] =

⎡⎢⎢⎢⎢⎣

1 0 0

0 1 0

⎤⎥⎥⎥⎥⎦
, F

DT
= [Fc 0] = CDT

(2.15)

Since measured outputs are both position ξ(k) and speed vξ(k) there are 2 model errors, em1(k) = ξ(k) − ξ̂(k)
and em2(k) = vξ(k) − v̂ξ(k). Considering matrix related to disturbances G

DT
in Equation (2.15), noise estimator

is composed by a static gain matrix L ∈ R2×2. It can be used pole placement technique procedure starting from

arbitrary decided poles pn1, pn2, pn3, like in Equation (2.7):

λ3 + an2λ2 + an3λ + an4 = (λ − pn1)(λ − pn2)(λ − pn3)

Noise estimation gain matrix will be, in function of characteristic polynomial terms an2, an3, an4 and main param-

eters m,k, c:

L =
⎡⎢⎢⎢⎢⎣

l11 l12

l21 l22

⎤⎥⎥⎥⎥⎦

l11 =
m (3 + 2an2 + an3) − kT 2

mT 2
, l12 =

m (3 + an2) − cT
mT

l21 =
an2 + an3 + an4 + 1

T 3
, l22 = 0

For control law it can be considered a Proportional controller (P), and Equation (2.11), where matrices M,Q,K

must be designed. From 2nd condition of Equation (2.12) M =m and Q = [0,0]T .
Instead for design of matrix K ∈ R2×1 it can be applied again pole placement technique (Equation (2.7)) where

pk1, pk2 are arbitrary decided poles:

λ2 + λak2 + ak3 = (λ − pk1)(λ − pk2)

and matrix K components are:

K = [k1 k2]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k1 =
−kT 2 +m (1 + ak2 + ak3)

T 2

k2 =
m (2 + ak2) − cT

T

For initial conditions position ξ0 = 0m and velocity vξ,0 = 0m/s for fine model plant are used. Target position to

be reached is ξ̃ = 2m. The parameters in fine model are slightly different from EMC ones, to simulate parametric

uncertainty (Table 2.1).

Parameter (meas. unit) Fine model EMC

m (kg) 1 1.5
k (N/m) 1 0.7
c (Ns/m) 1 1.4

Table 2.1: MSD fine model vs EMC parameters

CT Eigenvalue type Values

Reference µ
R

−1.5230 × 2
Noise estimator µ

N
−2.5648,−2.5646 × 2

Control µ
K

−2.5647 × 2

Table 2.2: Continuous eigenvalues MSD EMC

In addition noise disturbances are added to acceleration in fine model, with 2 uniform random numbers w1(t)

2.2. EMC EXAMPLE - MASS-SPRING-DAMPER SYSTEM 14

and w2(t), the last integrated once (check Equation (2.13)). In particular their ranges are ϵw1 = ϵw2 = 0–1m/s.
After some tests, CT eigenvalues considered for reference, control law and noise estimator blocks are shown in

Table 2.2. Reference dynamics is quite slow, hence µ
R
are near to zero, instead µ

N
and µ

K
are sufficiently fast to

guarantee low tracking and model errors. At every time step CT eigenvalue must be converted in DT equivalent

(λi), depending on variable sampling time T , using the relation λ = eTµ.

In the next set of figures, measured output y(k) is compared with estimated ŷ(k) and reference yref ones, and

tracking and model errors etrk(k), em(k) are shown. First 2 plots are with disturbance rejection and the others

without (ud(k) = 0N). The presence of parametric and disturbance uncertainties does not lead to high tracking

and model errors, but in absence of disturbance rejection position ξ̂(k) estimation cannot reach the steady state

tracking conditions (2 or −2m), and there is constantly an error of some centimetres. Instead with disturbance

rejection etrk ≈ 0m for position at steady-state conditions.

Figure 2.4: Mass spring damper fine model
Figure 2.5: MSD variable Timestamp

Figure 2.6: MSD y, yref , ŷm - Disturbance rejection
Figure 2.7: MSD tracking etrk and model em errors -
Disturbance rejection

Figure 2.8: MSD y, yref , ŷm - No disturbance rejection
Figure 2.9: MSD tracking etrk and model em errors -
No disturbance rejection

Chapter 3

Robot GoPiGo3

For the thesis a differential drive (DD) robot car was considered. Among the possible choices it was selected one

with quite precise encoders to measure wheel angular positions and, by differentiation, the wheel motor speeds.

Dexter Industries company produces many kind of robots, mainly for educational purposes, and it offers an already

build DD robot with 2 Magnetic Hall encoders called GoPiGo3, which is suitable for the purpose. Informations

about it can be found in company website, [17].

Figure 3.1: Front angle view GoPiGo3 DD
robot

Figure 3.2: Back angle view GoPiGo3 DD
robot

3.1 Construction properties

GoPiGo3 has two driving wheels and a caster wheel for equilibrium. It’s a differential drive robot, it means that

the wheels are driven independently from each other. It’s mainly composed by:

• 2 direct current (DC) motors: They move the wheels. The rotational output speed is reduced by a gearbox

(protected by a plastic box) with has a ratio of N = 120, hence the motor speed is reduced by 120 times at

load side.

By construction they can range until a maximum voltage of 12V. In practice this voltage is lower because

it depends on the supply (battery pack available voltage or a direct current power supply).

3.1. CONSTRUCTION PROPERTIES 16

Motors are connected with main board using JST-XH 6 pin connectors.

Since no datasheet is given for the motors and gearbox inside, parameters were estimated using parameter

identification (cfr. Section 5.1).

• Magnetic encoders: The motors are both equipped with 2 Hall Magnetic encoders with 6 pulse counts per

rotation, to measure angular position (and speed by differentiation) of the wheels connected: with 120:1 motor

gear reduction we obtain a total of 720 pulses per wheel rotation, which means an angular resolution of 0.5○.

• Main HW board: It contains all HW elements to control the motors and other connection ports (I2C, SPI,

GPIO) for additional I/O devices. This board can be connected with a Raspberry Pi board directly using

their I/O pins.

Specifically for the motors the following components are available:

– H-bridge drivers: They allow run the motors in both directions (clockwise and anticlockwise) and

making them accelerating or decelerating.

– PWM square wave generator: To generate the desired DC voltage for the motors a PWM modulation

is used. It basically consists in generating a square wave with variable period (duty-cycle), so that we

can control the average output voltage.

PWM square wave in this case has 0 − Vmax voltage amplitude, where Vmax depends on the maximum

voltage supply.

The generated square wave was measured with an oscilloscope, with the probes across the 2 motor

terminals (in parallel connection) imposing a known average voltage. PWM with 50% duty cycle (around

6V) is shown in Figure 3.3.

Figure 3.3: GoPiGo3 DC motor measured
PWM square wave with 50% duty cycle

Figure 3.4: GoPiGo DC motor PWM duty cy-
cle change - From 4V to 8V average voltage

Instead in Figure 3.4 a duty cycle change is imposed in one of the motors. The above signal shows a

command in one of GPIO pins in the board, passing from LOW (0V) to HIGH (3.3V) logical condition

when a change in duty cycle is caught: this pin is controlled by SW code, changing its logical condition

when change in duty cycle of PWM is performed (again in SW code).

The signal below instead shows the PWM measured across motor terminals: after some time (half the

horizontal scale) PWM duty cycle changes (HW change). It can be seen that a SW command to change

17 CHAPTER 3. ROBOT GOPIGO3

PWM (signal above) is converted almost immediately in HW command (change of PWM duty cycle),

so it can be assumed that no delay exists in this operation.

In both figures it can be clearly seen that PWM signal is always generated at fixed time period,

T
PWM

= 0.02 s.

• Raspberry Pi Model 3B: This board and its Raspbian OS are used to control all robot functionalities, at

SW level.

It is based on ARM Cortex-A53 Microprocessor 64-bit quad-core chipset with 1.2GHz clock speed, 1GB

RAM, and allows Wi-fi and Ethernet connections. Raspbian OS is installed inside a microSD which acts as

non-volatile memory (like Hard-disk). It has 40 I/O GPIO pins with different functionalities (for example

there’re I2C reserved pins, with SDA and SCL connections), Ethernet and 4×USB ports, [18].

Main robot board described before is directly connected with the Raspberry using some of I/O pins present.

• Battery pack/power network supply: The boards can be supplied using either a battery pack composed

by 8×1.2/1.5 V AA batteries, or power supply converter to transform house network alternate 230V voltage

into direct voltage until a maximum of 12V. The second possibility is useful during writing of SW code

phases when motors are still, in order to avoid consuming unnecessary battery power.

• IMU: An inertial measurement unit (IMU) is used to obtain robot orientation and position informations.

It is produced by Adafruit company, model name "Adafruit 10-DOF IMU Breakout" [19], and consists in

an embedded device composed by 3-axis accelerometer, 3-axis magnetometer (LSM303DLHC, measuring

acceleration, linear acceleration and Earth magnetic field) and a 3-axis gyroscope (L3GD20, measuring

angular speed). Also barometric and temperature sensors (BMP180) are present, but they’re not important

for thesis purposes.

3.2 Kinematic and dynamic properties

3.2.1 Geometric and mass parameters

For some control models built in the thesis, some geometric and mass informations are recovered.

To find some parameters (like total robot inertia Itzz), GoPiGo3 robot was reproduced using Autodesk Inventor

CAD SW application (Figure 3.5). To define robot position in 3D space, Cartesian coordinates are considered

using the symbol names ξ, ν, z (not x for longitudinal position because it is already reserved to EMC states): in

Figure 3.6 are shown the Body RF (with origin in robot wheel axles, with the same distance from both wheels),

subscript BF , and Inertial RF (origin fixed in one point in space), subscript IF .

3.2. KINEMATIC AND DYNAMIC PROPERTIES 18

Figure 3.5: GoPiGo3 robot CAD model built with Au-
todesk Inventor

Figure 3.6: GoPiGo3 robot Body
(blue) and Inertial (red) reference
Frames

Main robot parameters (all approximated parameters are designated with "hat"):

Symbol (meas. unit) Value Description

Geometric properties W (m) 0.0585 Half robot width
l (m) 0.2200 Robot length
ρ (m) 0.0325 Wheel radius
t (m) 0.0280 Wheel width
d̂ (m) 0.0200 CoM distance from wheels axle

Mass properties mw (kg) 0.0320 Wheel mass
mbatt (kg) 0.2480 Battery pack mass
mb (kg) 0.6160 Main body + battery pack masses

Table 3.1: GoPiGo Differential Drive Robot parameters

Starting from these properties, total mass and inertia can be recovered. Total mass MT is simply mass of the body

plus battery pack and wheels:

M
T
=mb + 2mw = 0.68kg (3.1)

The main body without wheels can be approximated as a parallelepiped with length l and width 2W , for which

the moment of inertia around z axis can be computed as [11]:

Î
b

zz =mB
(2W)2 + l2

12
= 0.0032kgm2

where mB is the main body mass. The other axes inertias are not needed.

Inertia tensor for the wheels is the diagunal matrix below:

Î
W
=

⎡⎢⎢⎢⎢⎢⎢⎣

Î
w

ξξ 0 0

0 Î
w

νν 0

0 0 Î
w

zz

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

mb(3ρ
2
+t2)

12 0 0

0
mw(R2

in+R
2
out)

2 0

0 0
mb(3ρ

2
+t2)

12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since the wheel can be considered roughly as hollow cylinder it has external radius Rout = ρ = 0.0325m and

19 CHAPTER 3. ROBOT GOPIGO3

internal radius (approximately) Rin = ρ − 0.01 = 0.0225m. Numeric values for each wheel inertia are:

Î
w

ξξ = Î
w

zz = 1.0541e−5kgm2

Î
w

νν = 2.5000e−5kgm2

Knowing body and wheels inertia around z axis, the following formula for total inertia can be used:

Î
t

zz = Î
b

zz +mbd
2 + 2Îwzz + 2mwW

2 = 0.0037kgm2 (3.2)

It can be seen immediately that ÎT and MT mainly depends from main body platform and battery pack, and the

wheels have very little impact because of the their low mass.

the terms 2mwW
2 and mbd

2 in Equation (3.2) derives from Huygens-Steiner theorem (taken from [11]), which is

resumed below:

Theorem 3.1 (Huygens-Steiner) Inertia moment of a mass body m with respect to an axis placed at a distance from

the same body center of mass (CoM) is:

I = Ic +ma2 (3.3)

where Ic is inertia moment of body with respect to an axis parallel to body and passing through CoM.

In this case, the total inertia is computed using the rotational axis passing through the total robot CoM, which

is slightly moved towards the caster wheel (it’s not exactly on the wheel axles, condition verified by position of

battery pack). Indeed it has a distance of W in lateral direction and d in longitudinal direction wrt origin of

Reference BF in Figure 3.6. For this reason there are the terms mwW
2 and mbd

2. Caster wheel is considered as

part of the main body.

3.2.2 Total robot inertia verification

Since GoPiGo3 robot has not exactly a parallelepiped shape, the inertia value in Equation (3.2) must be verified.

This is done by building a model using Autodesk Inventor. Every part was created alone, then assembled. The

interesting feature of this program is to compute total mass and geometric properties of the assembly (included

the inertia and CoM), using a tool in the program (iProperties). There is some error inside these computations,

but can be considered very small. Computed values are:

Symbol (meas. unit) Value Description

Inertia properties Itzz (kgm2) 0.002235 Total robot inertia, z axis
Iwνν (kgm2) 22.9e−5 Wheel robot inertia, ν-axis

CoM properties d (m) 0.0472 CoM distance from wheel axles

Table 3.2: GoPiGo properties using iProperties Inventor tool

The CoM distance d really depends on battery pack position, since they have important weight: it was estimated

d̂ ≈ 0.02m but in reality is near 0.05m. This is not a significant problem since the estimated total inertia Î
t

zz

doesn’t differ so much from the real one Itzz computed with Inventor.

The real total inertia can be used to build fine model when robot orientation will be controlled by EMC, and to

compute robot torque starting from wheel speeds (see Chapter 10 and next subsection).

3.2. KINEMATIC AND DYNAMIC PROPERTIES 20

3.2.3 From robot wheel speeds to robot torque/force relation

As we will see in Chapter 11 and Chapter 14, at least for MIL simulations is important to recover a relation between

wheel angular speeds and robot total torque/force.

Starting from DC motor (and wheels) angular speeds ω
L
= ϕ̇

L
and ω

R
= ϕ̇

R
, the angular accelerations ω̇

L
= ϕ̈

L

and ω̇
R
= ϕ̈R can be obtained with a simple derivative. Instead to obtain robot torques/forces from wheel angular

accelerations some considerations need to be done.

First, we can assume that wheels have pure rolling motion, which means that contact point with ground is time by

time equal to zero. In other words, in this conditions the wheels never slip.

Second, there are 3 contact points with the ground: 2 wheels and caster wheel. This last one does not exert

horizontal forces to the ground (since it has negligible rolling inertia), so all the mass is driven by the 2 moving

wheels.

• Each wheel moves half of total mass M
T
.

• Pure rolling condition, in presence of torque moving the wheel, means that friction force developed at ground

it’s approximately equal to force moving the entire wheel, applied to wheel CoM.

By making forces and moments balance equations, for only 1 wheel (reference is [11]):

⎧⎪⎪⎨⎪⎪⎩

R +mg =ma
CM

τ + r × f = Iwνν

Vectorial Forces

Vectorial Moments

Figure 3.7: Forces and Moments acting on a generic wheel
with pure torque motion

Source: [11] modified

Iwνν in this case is the wheel inertia around ν-axis in Table 3.2.

Balance equations can be decomposed in vertical and horizontal directions:

N =mg , f =ma
CM

, τ − rf = Iwνν
a
CM

r
(3.4)

From the last equations, friction force (and total force moving the wheel) is:

f = τ

r
⎛
⎜
⎝
1 +

Iwνν

mr2

⎞
⎟
⎠

Ground contact point C velocity can be expressed as vc = v
CM
+ ωz × r, but since the motion is pure rolling

vc = 0m/s, the first equation reduces to v
CM
= −ωz × r. In modulus, v

CM
= ωzr. Derivating we obtain a

CM
= αr,

where α is the wheel angular acceleration.

21 CHAPTER 3. ROBOT GOPIGO3

Combining with f in Equation (3.4), we obtain:

f =mrα (3.5)

To pass form wheel torque speeds τi to angular accelerations αi the following relation can be used, recovered from

the last 2 expressions:

τi =mρ2 (1 + Iwνν
mρ2
)αi (3.6)

Each wheel generates a robot torque which changes its vertical angle θz and angular velocity θ̇z = ωz . In general

the vectorial sum of torque gives the total torque exerted on robot τ
T
:

τ
T
=

2

∑
i=1

τi = Iwzzθ̈z = τR
+ τ

L
= F

R
×W

R
+F

L
×W

L
= (F

R
− F

L
)W (3.7)

where W T
R
= [0,0,W], W T

L
= [0,0,−W] are the vector distances of wheels from body CoM axis, which coincides

with half robot width.

Combining Equation (3.5) and Equation (3.7) we obtain:

θ̈z =
mrW

Itzz
·„„„„‚„„„„„¶
bτα1

(α
R
− α

L
) (3.8)

For robot specific case m =M
T
/2 and r = ρ.

The last equation can be split in 2 linear ODE, with states θz, θ̇z :

⎧⎪⎪⎨⎪⎪⎩

θ̇z = θ̇z
θ̈z = bτα1 (αR

− α
L
)

(3.9)

Instead to obtain total robot force F
T
from wheel angular speeds ω

R
, ω

L
relation is very simple. The general

Newton equation for total robot force F
T
is:

F
T
=

2

∑
i=1

Fi =MT
ξ̈ = F

R
+F

L
(3.10)

Using Equation (3.5) friction force can be related with left F
L
and right F

R
longitudinal robot forces acting on

wheels, considering m =M
T
/2 and r = ρ. Hence the relation between total robot force and wheels angular speeds

is:

ξ̈ = ρ

2
fi
bfα1

(α
R
− α

L
) (3.11)

And split in 2 linear ODE the equations are:

⎧⎪⎪⎨⎪⎪⎩

ξ̇ = ξ̇

ξ̈ = bfα1 (αR
− α

L
)

(3.12)

To understand if the last Equation (3.8) and Equation (3.11) are coherent or not, a comparison with expression

obtained using Differential Drive Lagrangian equations is considered (to pass form wheel torque/forces to longitu-

3.2. KINEMATIC AND DYNAMIC PROPERTIES 22

dinal/angular accelerations, Equation (3.6) is used):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̈z =
ρ

2W

1

Iwνν + 2Itzz (
ρ

2W
)2

·„„‚„„„¶
bτ

(τ
R
− τ

L
) = bτ (τR − τL) ⇒ θ̈z = bτ

MT

2
ρ2
⎛
⎝
1 + Iwνν

MT

2 ρ2

⎞
⎠

·„„„‚„„„¶
bτα2

αi

ξ̈ = ρ

2

M−1
T
(Iwνν)−1

M−1
T
+ 2(Iwνν)−1 (

ρ
2
)2

·„„‚„„¶
bf

(τ
R
+ τ

L
) = bf (τR + τL) ⇒ ξ̈ = bf

MT

2
ρ2
⎛
⎝
1 + Iwνν

MT

2 ρ2

⎞
⎠

·„„„‚„„¶
bfα2

αi

(3.13)

The expressions are taken from [8], eqs (45) and (48). To make the direction of 2 wheel torque speeds equal, the

equations are slightly modified (since in paper torques are in opposite direction). The procedure to find them is

well explained in paper and it was verified its correctness. Main passages can be resumed as:

• Pure rolling motion condition (no velocity between ground and wheel contact point) results in non-holonomic

constraints, basically they are the kinematic equations rewritten in a different way. Considering as general-

ized coordinates q = [ξ, ν, θz, ϕR
, ϕ

L
]:

⎡⎢⎢⎢⎢⎢⎢⎣

cos θz sin θz 0

− sin θz cos θz 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

ξ̇

ν̇

θ̇z

⎤⎥⎥⎥⎥⎥⎥⎦

= ρ

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ̇R + ϕL̇

ϕ̇R + ϕL̇

ϕ̇R − ϕL̇

W

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

They can be rewritten using the generalized coordinates derivative q̇:

CT (q)λ =

⎡⎢⎢⎢⎢⎢⎢⎣

cos θz sin θz 0 ρ
2

ρ
2

− sin θz cos θz 0 ρ
2

ρ
2

0 0 1 ρ
2W − ρ

2W

⎤⎥⎥⎥⎥⎥⎥⎦

q̇ = 0

The last term can be added to Lagrangian equations:

d

dt
[∂L (q, q̇)

∂q̇
] − ∂L (q, q̇)

∂q
−C(q)Tλ = τ

M(q)q̈ +B(q, q̇) −CT (q)λ = τ
(3.14)

λ terms are called Lagrangian multipliers.

• Lagrangian multipliers must be found. Since computation can be difficult using the complete Lagrangian

equations, some assumptions are made: d = 0m (CoM is considered passing through the wheel axles) and

θz = 0○ (which means observing coordinate system to be parallel to the body-fixed coordinate system).

Using these simplifications, starting from CT (q)λ = 0 and Equation (3.14), the expression for λ (simplified)

will be:

λ = − [C(q)M(q)−1CT (q)]−1 [C(q)M(q)−1τ + Ċ(q)]

• λ can be substituted in Lagrangian equations to find θ̈z and ξ̈ expressions in Equation (3.13).

bτα1 and bτα2 in Equation (3.8) and Equation (3.13) can be found knowing the inertia and mass parameters computed

23 CHAPTER 3. ROBOT GOPIGO3

before, leading to the following results:

bτα1 = 0.2892 , bτα2 = 0.2885

The 2 values are very near, hence they can be considered quite reliable.

From a deeper insight, Equation (3.8) is exactly equal to Equation (3.13) if we consider Iwνν = 0.

The same can be done for longitudinal acceleration equation, comparing bfα1 and bfα2 in Equation (3.11) and

Equation (3.13). After substitutions their values are the same:

bfα1 = 0.0163m , bfα2 = 0.0163m

Again Equation (3.11) and Equation (3.13) are exactly the same if we consider Iwνν = 0.

3.2.4 Kinematic model

In some control model MIL and RHIT tests is important to understand the position and orientation of the robot

in space. To this aim Kinematic equations model for DD robots can be exploited: they are equations which relates

robot 2D position and vertical yaw angle [ξ, ν, θz] with the left and right wheel angular positions ϕ
L
and ϕ

R
, using

geometric properties only (ρ and W):

⎡⎢⎢⎢⎢⎢⎢⎣

ξ̇

ν̇

θ̇z

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

ρ
2 cos θz

ρ
2 cos θz

ρ
2 sin θz

ρ
2 sin θz

ρ
2W − ρ

2W

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

ϕ̇
R

ϕ̇
L

⎤⎥⎥⎥⎥⎦
(3.15)

This is a standard model for DD robots, which can be easily found in literature (like in [7]). Making an integration

of the equations robot position in 2D planar plane and orientation can be easily found, with good approximation.

If robot follows a circular trajectory of known mean radius rm and total linear speed v, left and right motor

angular speeds ω
L
= ϕ̇

L
and ω

R
= ϕ̇

R
can be easily found:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

v
L
= (rm −W)θż

v
R
= (rm +W)θż

v = rmθż

From the desired total velocity v, θż can be recovered, and from that the motor angular speeds (ϕ̇
L
= v

L
/ρ for left

wheel and ϕ̇
R
= v

R
/ρ for right wheel):

θż =
v

rm
⇒

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ϕ̇
L
= (rm −W)θż

ρ

ϕ̇
R
= (rm +W)θż

ρ

(3.16)

Chapter 4

Control models software testing - General

settings

To verify control models using EMC technique, 2 main kind of tests are performed:

• Model-in-the-Loop (MIL) tests: These kind of tests are used for EMC before making practical implemen-

tation in GoPiGo3 robot. Both robot plant and control scheme run in simulation using MathWorks Simulink

application.

It’s obtained a preliminary analysis of the control model behaviour, which is then modified continuously

comparing with SW implementation in the real robot (RHIT).

• Robot Hardware Implementation Tests (RHIT): The control model is generated in C++ language SW

code and directly implemented in Raspberry robot board, connecting with real plant devices.

Usually SW tests requires intermediate passages, which are not considered in this field:

• Software-in-the-Loop (SIL): Is commonly performed after MIL, which consists in running again both plant

and control model using simulation language (like Simulink), but control model is in form of generated code.

• Processor-in-the-Loop (PIL): Executed after SIL, this test consists in running the plant in simulation

(Simulink) and the control model in the target system (Raspberry).

• Hardware-in-the-Loop (HIL): Precedes real implementation of both the 2 parts: controller SW code run

in target system and plant is co-simulated usually in a rapid prototyping HW, which simulates it in real-time.

SIL and PIL are used to verify generated SW code for control models, first in simulation and then in target system:

since EMC block is mainly composed by linear DT SS equations and requires simple computations, the overall

generated SW code is very simple and short, thus these verification tests can be skipped.

HIL is not needed because the plant, the GoPiGo3 robot, is directly usable in almost every place for its little size.

It’s not a vehicle suspension which requires the entire vehicle to be drive for controller tests.

In the next sections the main passages to perform the 2 tests are explained, making reference to tools and SW/HW

applications needed.

25 CHAPTER 4. CONTROL MODELS SOFTWARE TESTING - GENERAL SETTINGS

4.1 MIL configuration

Main SW applications used to perform MIL tests are MathWorks MATLAB and Simulink. They’re composed

of many toolboxes for different purposes, some needed for thesis work. For example MATLAB Symbolic Math

toolbox is used to find control loop eigenvalues computing symbolically pole-placement expressions, to be used

next in EMC.

In Simulink to build DT systems, state-space equations are preferred instead of Transfer functions, thus Matlab-

functions blocks are better than LTI systems blocks and others. They also are useful when variable DT control

systems are considered, where timestamp value always changes in DT system matrices at every time step: Matlab-

functions allows to do that, which is impossible using elementary blocks.

4.1.1 Variable timestamp

The most important thesis objective is to verify EMC in presence of asynchronous sampling time, hence a way to

implement variable Timestamps in simulation is needed. Since no already built Simulink block is available to this

aim, a solution is find by the author.

In Simulink are available Stair generator blocks, which allow to generate staircase functions (i.e.piecewise constant

functions): they are used to produce a simulated PWM signal like the ones of robot DC motors.

First a signal (data + time) vector of random values in a predefined range is built, in MATLAB is sufficient to use

a while conditional loop implementing the following recursive equations:

Ts(k) = rϵmin + ϵ Timestamp data

T (k) = T (k − 1) + Ts(k) T (0) = 0 s Timestamp time

r is a uniform random number ranging 0–1, ϵmin = minimum range value, ϵ = Timestamp range, k ≥ 0.
In an alternative way, when a RHIT is already performed, the variable Timestamp implemented by SW code can

be directly loaded in MATLAB to be used in simulations: this is useful to make comparison between RHIT and

MIL.

Next for every sampled Timestamp data, another signal vector is built. Data values are 0 or 1: first Timestamp

Ts(k) value corresponds to 0, the second to 1, the third to 0, and so on. The time values are the same of T (k).
Resulting signal is like a Timestamp PWM, which can be directly loaded in staircase generator in Simulink.

In order to control the EMC in DT, in Simulink exist Triggered sub-systems: in these sub-systems every block

inside run only when an external trigger function edge is rising, falling or either, hence determining a DT timing.

Trigger function in this case is exactly the timestamp PWM signal built before, where rising edges are passages

from 0 to 1, and falling edges vice-versa. Putting triggered sub-system running for either edges, we obtain almost

the same variable Timestamp desired.

Obviously stair generator edges in Simulink are really dependent on simulation time solver, because it’s not

possible to obtain an immediate sharp rising or falling of a signal function: for this reason it’s better to use a

Fixed/Variable Solver with low simulation time (for example 2e−4 s is sufficient and simulations are not so long)

4.2. RHIT CONFIGURATION 26

4.2 RHIT configuration

4.2.1 SW Tools and applications

Raspberry remote control applications

To make RHIT tests it’s needed to work with Raspbian OS of Raspberry Pi board. Access and control it remotely

using another OS is a more comfortable solution, for example using Windows in another Laptop.

There exists different SW applications to manage remotely other computer systems:

1. PuTTY client: This application client emulates the prompt terminal used by Raspbian OS remotely, using

different connection protocols like SSH (Secure SHell, which uses an encrypted connection) or Telnet (no

encrypted connection). Website is [20].

This is not the best solution to develop the SW code for RHIT tests, because using a terminal many OS

functionalities come out to be very uncomfortable, like administrate folders and files or write the code (an

IDE application to write code is not available working in a terminal shell).

2. VNC (Virtual Network Computing) Viewer and Server: These 2 applications allow to control remotely

a computer system OS with another one, but wrt PuTTY we can have access not only to commands prompt

terminal but also to GUI Desktop. This is a huge convenience, especially when developing the code. Again

security is guaranteed by using end-to-end connections encrypted using 128-bit AES, 2048-bit RSA keys

(website is [21]). Basically VNC Viewer is the application to be installed in the device we want to control from

(Windows for example), and VNC Server the one to be used in the device we want to control (Raspberry).

The only drawback controlling Raspberry remotely with a Desktop GUI may be running an RHIT test SW code:

the presence of graphical interface may require other applications active at the same time of code program, and

since the control models need to be stepped with a precise Timestamp this condition can lead to lags and timing

errors.

If this is true PuTTY application may be better for running the code, since it does not require a Desktop GUI to

be controlled. In reality it was experimented that GUI has very little influence on code timing requirements, and

VNC remains the best solution.

Cross-platform IDE

Code development phases can be speeded up by using an Integrated development environment (IDE), which is an

application program to write SW code and make cross-compilation flow of source/header files automatically.

Cross compilation represents all operations needed by SW compiler and linker to create executable files from

source/header files. A schematic is in Figure 4.1: from source .c/.cpp and header .h/.hpp files a compiler converts

them into object .o files: inside them there’re all SW code present in .c/.cpp. Then the linker must connect all

object files and other required static .a and dynamic .so libraries, to obtain a unique executable file. Executables

can have different extensions (.out in older UNIX versions, now subtituted by .elf).

CodeBlocks SW application is finally selected as IDE for the purpose.

Simulink Embedded Coder

To pass from MIL to RHIT using Raspberry board, a tool for generating a SW code is needed. Simulink Embedded

Coder is used to convert the Simulink EMC model into SW code. Basic settings are:

• Simulink Embedded Coder allows only 2 programming languages for generated code: C and C++. Since

27 CHAPTER 4. CONTROL MODELS SOFTWARE TESTING - GENERAL SETTINGS

Figure 4.1: Cross compilation flow

Source: [13]

GoPiGo3 main library is already written in C++, the same choice is preferred for control model code. Another

reason is that Object-oriented programming classes makes the code shorter and more understandable.

• Generated code is optimized, in the sense that part of the code is reduced in length combining variables,

avoiding if possible conditional statements like for loops etc. This helps improve the speed performances

when running the code, important in control field.

In Simulink many options can be selected for optimization, for example one of them is the "Loop unrolling

threshold" setting, which allows to decide the minimum width for a "for" loop: if the number of loops is lower

than this width value, generated code tries to combine definitions of variables and avoid the presence of for

loop.

• In Simulink settings among possible specific system target files it is chosen the one called "ert.tlc" : it means

Embedded real-time target (with .tlc referring to the compiler extension used by coder tool), which optimizes

for smaller memory model and execution speed. It’s a good choice for Raspberry board.

• Raspberry board HW is based on ARM Cortex Microprocessor, hence also the generated code must be

specific for this HW. In Simulink there’s a setting to change device microprocessor vendor as desired.

Generated SW code results files are subdivided as:

• ert_main.cpp This is the main source file, it contains a main function with other sub-functions to run the

code.

• <model_name>.cpp (model_name refers to the name given arbitrary to the model) This is the source file

containing all informations about the generated Simulink model. It is subdivided in 3 class member functions

(we can name the class as "Model"):

– Model::initialize() Here the model parameters can be declared and initialized. Because the generated

models are for control purposes, usually eigenvalue placement is used to control the system dynamic

behaviour and stability. This member function is useful to initialize these ones, but also model states

4.2. RHIT CONFIGURATION 28

and sampling time to zero.

Is not mandatory to use it, but is preferable since allows the code to be more clean and understandable.

– Model::step() This is the member function containing the Simulink control model translated in SW

code: control inputs and sampling times enter as input variables and estimated states from EMC exit

as output variables.

It’s called at every discrete sampling time step by calling it from ert_main.cpp source file.

– Model::terminate() After the last execution of model, variables memory can be clean-up using this

member function. Again its use is not mandatory, but preferable.

C++ classes usually have constructor and destructors to initialize the parameters (especially when one wants

private parameters), but in this case they are substituted by member functions initialize() and terminate().

• <model_name>.h This header file (.h or .hpp file extension is indifferent, C++ works with both) contains

the main libraries used by the model class and the declaration of the class member functions, constructors,

destructors, states and variables and model-specific data types, to be used in .cpp source file. Usually the

public states and variables used by the model are saved into structures, to avoid being declared as global

variables (global variables need to be avoided if possible, since they can be accessed by every functions and

sometimes modified without noticing).

• rtwtypes.h It translates Simulink specific data-types into HW-specific data-types, with different names in

order to be distinguished: for example "double" in Simulink is translated into "real_T" data-type. This header

is called by model_name.h file.

• <model_name_data>.cpp Sometimes the main model parameter names passed in Simulink from MATLAB

workspace are saved in a different source file (designed by the _data suffix) as a structure.

4.2.2 Main SW libraries and functions

HW Timers

In order to step the model with a certain sampling time it is needed a quite precise HW timer: among the

possibilities, considering that is not possible to use external HW timers, signals are used: a signal in UNIX OS

platforms like Raspbian can be described as an asynchronous notification that an event occurred, and in this case

it can call a signal handler to run a specific routine of functions, [22]. In particular the library header file used for

the signal timers is called s✐❣♥❛❧✳❤.

In this case the event is the expiration of a timer after an arbitrary elapsed time (our Timestamp), and the signal

handler the functions needed to compute outputs of the control model and plant. After the expiration and function

handler call, the timer is reset for a new step. Basic structure to run this kind of timers requires:

• Functions containing signal library functions to initialize and set the timer, for example taking as parameters

its expire time decided by user and the number of signal (indeed there’re a different number of signals to be

used with different purposes, a part of them can be used freely by the user).

• Signal handler function, containing the functions we want to call. Every time a signal timer expires an

29 CHAPTER 4. CONTROL MODELS SOFTWARE TESTING - GENERAL SETTINGS

interrupt is generated and the functions inside signal handler are executed.

• A line of code function starting the signal timer, with parameters the signal number, expiration time and

signal handler function.

In theory the signal handler function can be outside the main function, with the following simplified code flow:

★✐♥❝❧✉❞❡ ❁s✐❣♥❛❧✳❤❃

★✐♥❝❧✉❞❡ ❁s②s✴t✐♠❡✳❤❃

✈♦✐❞ s✐❣❴❤❛♥❞❧❡r ✭ ✐♥t s✐❣♥♦ ✮ ④

✴✴ st❡♣ ❢✉♥❝t✐♦♥s t♦ ❜❡ ❝❛❧❧❡❞

⑥

✈♦✐❞ t✐♠❡r ✭ ❧♦♥❣ ✐♥t ✉s❡❝♦♥❞s ✮ ④

✴✴ ✐♥✐t✐❛❧✐③❡ ❡①♣✐r❛t✐♦♥ t✐♠❡ ❛♥❞ st❛rt t✐♠❡rs

⑥

✐♥t ♠❛✐♥✭✮ ④

s✐❣♥❛❧ ✭❁❙■●◆❆▲ ◆❆▼❊ ❃✱ s✐❣❴❤❛♥❞❧❡r ✮❀

t✐♠❡r✭✉s❡❝♦♥❞s✮❀ ✴✴ s❡t t❤❡ t✐♠❡r ❡①♣✐r❛t✐♦♥ ✐♥ ♠✐❝r♦s❡❝♦♥❞s

✇❤✐❧❡✭tr✉❡✮④⑥

r❡t✉r♥ ✵❀

⑥

Listing 4.1: Signal timers SW code flow, interrupt mode

Signal library are old UNIX functions and one problem can be race-conditions if the signals are more than one:

for example if the signal handlers share the same variables, one them can change the variable when the others

don’t want to, causing unexpected results.

For this reasons a better solution is to put in the signal handler only a flag (✈♦❧❛t✐❧❡ s✐❣❴❛t♦♠✐❝❴t ❣❧♦❜❛❧❴❢❧❛❣),

which can be only 1 or 0. Inside the main while function we put an if statement to verify value of the flag: if it is 1

enters the statement and run the code inside (containing the needed step functions), otherwise skip. At the end of

if statement is needed to set ❣❧♦❜❛❧❴❢❧❛❣ = 0 to enter inside only once per timer expiration.

In practice the code is changed as:

★✐♥❝❧✉❞❡ ❁s✐❣♥❛❧✳❤❃

★✐♥❝❧✉❞❡ ❁s②s✴t✐♠❡✳❤❃

✈♦❧❛t✐❧❡ s✐❣❴❛t♦♠✐❝❴t ❣❧♦❜❛❧❴❢❧❛❣❀

✈♦✐❞ s✐❣❴❤❛♥❞❧❡r ✭ ✐♥t s✐❣♥♦ ✮

④

❣❧♦❜❛❧❴❢❧❛❣ ❂ ✶❀

⑥

✈♦✐❞ t✐♠❡r ✭ ❧♦♥❣ ✐♥t ❡①♣❴t✐♠❡ ✮

④

✴✴ ✐♥✐t✐❛❧✐③❡ ❛♥❞ st❛rt t✐♠❡rs

⑥

4.2. RHIT CONFIGURATION 30

✐♥t ♠❛✐♥✭✮ ④

s✐❣♥❛❧ ✭❁❙■●◆❆▲ ◆❆▼❊ ❃✱ s✐❣❴❤❛♥❞❧❡r ✮❀

t✐♠❡r✭❡①♣❴t✐♠❡✮❀ ✴✴ s❡t t❤❡ t✐♠❡r ❡①♣✐r❛t✐♦♥ ✐♥ ♠✐❝r♦s❡❝♦♥❞s

✇❤✐❧❡✭tr✉❡✮④

✐❢ ✭❣❧♦❜❛❧❴❢❧❛❣ ❂❂ ✶✮ ④

✴✴ st❡♣ ❢✉♥❝t✐♦♥s t♦ ❜❡ ❝❛❧❧❡❞

❣❧♦❜❛❧❴❢❧❛❣ ❂ ✵❀

⑥

⑥

r❡t✉r♥ ✵❀

⑥

Listing 4.2: Signal timers SW code flow, polling mode

This code can be considered running in polling condition, since it is needed to verify periodically the if statement,

but the signals handlers are called in interrupt mode.

The only drawback of the last solution is that CPU is always used by the program, because every time the if

statement needs to be verified. But apart from the main function to control the robot, no other processes are

needed and this drawback sorts no effect.

This solution works with only 1 timer and it’s based on the function s❡t✐t✐♠❡r✭✮ inside t✐♠❡r✭✮ above. To

run more than 1 simultaneously, another function from standard C and signal libraries is needed to be called,

t✐♠❡r❴s❡tt✐♠❡✭✮.

Timestamp value

HW timers discussed before are based on expiration time which is the timestamp of DT models, hence is also

needed a function to measure and verify it. In the next piece of code there is its implementation:

★✐♥❝❧✉❞❡ ❁s②s✴t✐♠❡✳❤❃

str✉❝t t✐♠❡✈❛❧ ts❀

❞♦✉❜❧❡ t✐♠❡st❛♠♣ ✭✮ ④

❣❡tt✐♠❡♦❢❞❛② ✭✫ts✱ ◆❯▲▲✮❀

r❡t✉r♥ ✭❞♦✉❜❧❡✮ts✳t✈❴s❡❝ ✰ ✭❞♦✉❜❧❡✮ts✳t✈❴✉s❡❝ ✴✶✵✵✵✵✵✵❀

⑥

❣❡tt✐♠❡♦❢❞❛②✭✫ts✱ ◆❯▲▲✮ is a subfunction that gets the seconds and µ-seconds since Epoch (which is the starting

default date 1970-01-01 00:00:00 (UTC)) and save them into a structure called ts. Then they are returned in

t✐♠❡st❛♠♣✭✮ function.

Note: ts can be casted to ❞♦✉❜❧❡ only if there’s a quite recent C++ compiler (for example in UNIX platforms if

compiler is GCC, its version must be more recent than 7.1).

Variable Timestamp

One of the main thesis objective is to verify EMC using variable sampling time, because when control inputs are

sent remotely the timestamp can be received with a certain delay.

Before making tests remotely (with a Networked Control system NCS), a simplification can be done to make

variable sampling time tests: define in the code uniform random numbers in a predefined range, and add them

to HW timers expiration time. If EMC is working with this simplification, it’s almost sure that it can work with

31 CHAPTER 4. CONTROL MODELS SOFTWARE TESTING - GENERAL SETTINGS

a NCS too, because SW generated random timestamps present higher variations than remotely sended command

input timestamps.

To generate random numbers the following piece of code can be implemented:

★✐♥❝❧✉❞❡ ❁st❞❧✐❜✳❤❃ ✴✴ ▲✐❜r❛r② ❢♦r sr❛♥❞ ✱ r❛♥❞ ❢✉♥❝t✐♦♥s

sr❛♥❞ ✭t✐♠❡✭◆❯▲▲✮✮❀ ✴✴ ❘❛♥❞♦♠ s❡❡❞ ✇✐t❤ ❝✉rr❡♥t t✐♠❡ ♥✉♠❜❡r

❞♦✉❜❧❡ r❀

❞♦✉❜❧❡ ❍■ ❂ ✷✵❀ ✴✴ ❍✐❣❤❡st ✈❛❧✉❡ r❛♥❞♦♠ ♥✉♠❜❡r r ✭✐♥ ♠✐❧❧✐s❡❝♦♥❞s✮

❞♦✉❜❧❡ ▲❖ ❂ ✵❀ ✴✴ ▲♦✇❡st ✈❛❧✉❡ r❛♥❞♦♠ ♥✉♠❜❡r r ✭✐♥ ♠✐❧❧✐s❡❝♦♥❞s✮

r ❂ ▲❖ ✰ st❛t✐❝❴❝❛st ❁❞♦✉❜❧❡ ❃ ✭r❛♥❞✭✮✮ ✴ st❛t✐❝❴❝❛st ❁❞♦✉❜❧❡ ❃ ✭❘❆◆❉❴▼❆❳ ✴✭❍■ ✲▲❖✮✮❀

Indeed since uniform random number ur using r❛♥❞✭✮ function is limited from 0 to RAND
MAX

(the last is the

maximum value returned by r❛♥❞✭✮ function), to change the range from LO to HI one must do:

r = LO + ur (HI −LO)
RAND

MAX

GoPiGo3 libraries

Dexter industries GoPiGo3 robot vendor provided a GitHub repository containing component datasheets, SW

libraries and example codes in different languages, [23]. Among them ●♦P✐●♦✸✳❝♣♣ and ●♦P✐●♦✸✳❤ C++ source

and header files are available, containing main classes to control GoPiGo3 robot functionalities. Source and header

files are linked in a dynamic library called ❧✐❜❣♦♣✐❣♦✸✳s♦, which is then selected when running the code (by using

CodeBlocks IDE settings).

The class member functions to be used for the thesis test are only the ones related to the DC motors, in particular to

reset the encoder positions at the beginning of every test, to set PWM of the motors starting from batteries/supply

voltage, to get motor status informations (encoder positions, PWM duty cycle, supply voltage) and to reset them

all at the end of the test.

IMU libraries

Adafruit vendor for 10-DOF IMU provides SW code implementation for Arduino platforms only, using its own

programming language. Since it is decided to write the overall code in C++, another solution must be found.

There exists a C++ library to get raw IMU data and to make sensor fusion of IMU sensors to recover angle pose

using Euler angles or quaterniorns. The library is called RTIMUlib2 and it’s compatible with many commercial

IMUs, included Adafruit 10-DOF one, [24].

The library has quite complex structure with many source/header files, but all functionalities can be provided by

calling ❘❚■▼❯▲✐❜✳❤ library and a dynamic library named ❧✐❜❘❚■▼❯▲✐❜✳s♦ (which can be easily implemented by

using whatever IDE, like CodeBlocks).

Again there’s a main class containing the member functions needed to get raw sensors data and pose from sensor

fusion. More informations in Section 4.3.2 and Section 9.1, where IMU settings are explained in detail to obtain

measurements during practical implementations.

Save variables functions

To check RHIT results, at every DT step all variables needed are plugged into arrays and matrices and then saved

into a text (.txt) file, organized in columns (the variables), and rows (value associated to each variable at every

4.2. RHIT CONFIGURATION 32

sampling time step). Then, using MATLAB, the variables are converted into tables and plotted in figures.

For every test it cannot be known a priori the number of values associated to the variables, since they depend

on sampling time (which may be variable) and test stop time. A solution can be define a very large array at the

beginning and fill it with zeros. This is not a good solution because depending on the test we can waste a large

amount of memory.

Nevertheless some C++ SW functions come in handy, they’re based on ❛rr❛②✳❤ and ✈❡❝t♦r✳❤ C++ libraries:

★✐♥❝❧✉❞❡ ❁❛rr❛② ❃

★✐♥❝❧✉❞❡ ❁✈❡❝t♦r ❃

✉s✐♥❣ ♥❛♠❡s♣❛❝❡ st❞❀ ✴✴ r❡❢❡rs t♦ t❤❡ ♥❛♠❡s♣❛❝❡ ✇❤❡r❡ ❛❧❧ ❈✰✰ st❛♥❞❛r❞ ❝❧❛ss❡s

❛♥❞ ❢✉♥❝t✐♦♥s ❛r❡ ❝♦❧❧❡❝t❡❞ ✭❢r♦♠ ♥♦✇ ♦♥ st❞ ✐s ✐♠♣❧✐❝✐t✮

✴✴ ❚♦ ❝r❡❛t❡ ✈❡❝t♦rs ♦❢ ✈❛r✐❛❜❧❡s

❛rr❛② ❁❞❛t❛❴t②♣❡ ✱❛rr❛②❴❞✐♠ ❃ ❛rr❛②❴♥❛♠❡⑥

✈❡❝t♦r ❁❞❛t❛❴t②♣❡ ❃ ✈❡❝t♦r❴♥❛♠❡⑥

Difference between C++ arrays and vectors is that in arrays there’s a single row of variables with predefined

dimension, instead using vectors we don’t need to define the dimension at the beginning, only the data-type

(dynamic arrays). In addition can be created dynamic Vectors of vectors or Vectors of arrays, hence matrices without

the need of specify row dimensions.

This is very helpful, and it’s used finally to save the variables:

1. At every DT step, the variables are saved into an array with predefined dimensions, since their number is

known a priori.

2. Then the array is plugged into a vector of arrays. like:

★✐♥❝❧✉❞❡ ❁❛rr❛② ❃

★✐♥❝❧✉❞❡ ❁✈❡❝t♦r ❃

✉s✐♥❣ ♥❛♠❡s♣❛❝❡ st❞❀

✴✴ ❚♦ ❝r❡❛t❡ ♠❛tr✐❝❡s ♦❢ ✈❛r✐❛❜❧❡s

✈❡❝t♦r ❁❛rr❛② ❁❞❛t❛❴t②♣❡ ✱❛rr❛②❴❞✐♠ ❃❃ ♠❛tr✐①❴♥❛♠❡❀

3. At the next time step array can be filled with different values, and it can be pushed back into the vector of

arrays: it means that the new array is placed exactly below the last saved, creating a new row (dynamically).

4. At the end of the test the vector of arrays has exactly the same row dimensions of the number of DT steps.

Other SW improvements

During work SW code is gradually improved for readability and optimization and to reduce dimensions (number

of lines of code). For example almost all the functions are grouped using C++ class called ▼❛✐♥❴❢✉♥❝t✐♦♥s in a

unique source/header file. In ❡rt❴♠❛✐♥✳❝♣♣ an instance of this class is added to call easily the member functions

needed.

33 CHAPTER 4. CONTROL MODELS SOFTWARE TESTING - GENERAL SETTINGS

4.3 General Structure settings for EMC and robot plant

4.3.1 EMC

Code generation is used to convert the EMC Simulink files into SW code as explained in Section 4.2.1: 4 EMC

models are build respectively for Left motor, Right motor, Orientation and Longitudinal Position, each of them

have their own source and header pack files obtained by code generation.

In main source function (❡rt❴♠❛✐♥✳❝♣♣) different HW timers are associated to each EMC model. Then all opera-

tions needed to step the model and connecting it to the plant measurements are done, as already discussed in the

if statement related to corresponding HW timer.

DC motors EMC

Two possible structures are selected for each DC motor EMC:

1. A unique class function is generated for both EM and Control model parts of DC motor EMC. In this case

a unique HW timer is sufficient to step the model.

2. EM and Control parts of overall EMC are splitted in 2 generated codes, leading to 2 separated classes. This

is done because, as already seen in Section 3.1 for GoPiGo3 main board specifications, PWM is sent to the

motors with a fixed sampling time, T
PWM

= 0.02 s: using this separation we can run the Control part at the

same PWM sampling time (T
ctrl
= T

PWM
= 0.02 s), and EM part with fixed/variable one. This solution leads

unavoidably to at least 2 HW timers, one for control part (Tctrl) and the other for EM part (T
EM

).

With this implementation for simplicity EM part contains not only to Embedded Model and Noise estimator,

but also to Reference dynamics controlled with static-state control.

If the second structure is used, we need to be careful with the connections between the parts, which need to be

done manually in the code: regarding EM part, controllable/disturbance states x̂c and x̂d, reference state y = yref
and reference input u at every step must be passed to Control part; instead the overall control input u must be

passed from Control to EM part at every DT step. A scheme is shown in Figure 4.2.

Figure 4.2: DC motor EMC splitted scheme for RHIT implementation

4.3. GENERAL STRUCTURE SETTINGS FOR EMC AND ROBOT PLANT 34

Orientation and position EMC

Both orientation and position EMC need the information about the IMU measurements, which are obtained in a

fixed sampling time (around T
IMU
= 0.021 s). For this reason, one may think to use a separated timer with fixed

sampling time for EMC Control part. However we’ll see that performing the tests without splitting the 2 parts and

using a unique HW timer is sufficient to get good results in terms of tracking and model errors.

4.3.2 Plant

In RHIT the control models mimic in a simplified way a certain plant, which is composed in this case by DC motors

(to control wheel angular speeds) and IMU (to control robot orientation and position). SW code implementation

of wheels angular speeds and IMU data are needed.

Motors

Motor encoder positions are the main measurements to be taken. Then with a simple discrete derivation (Forward-

Euler is used) the wheel angular speeds are recovered.

Control input u coming from EMC is converted to PWM duty cycle, which is then applied physically to the

motors, which changes corresponding position encoders status. ●♦P✐●♦✸✳❝♣♣ and ●♦P✐●♦✸✳❤ contains all member

functions to do all these operations, the corresponding SW code is:

★✐♥❝❧✉❞❡ ❁●♦P✐●♦✸✳❤❃

●♦P✐●♦✸ ●P●❀ ✴✴ ▼❛✐♥ ●♦P✐●♦✸ ❝❧❛ss ✐♥st❛♥❝❡

✈♦✐❞ ●P●❴♠❡❛s✉r❡♠❡♥ts ✭✮ ④

✴✴ ▼♦t♦r st❛t✉s ♣❛r❛♠❡t❡rs

✉✐♥t✽❴t st❛t❡❀ ✴✴ ▼♦t♦r st❛t✉s ❢❧❛❣ ✱ ♥♦t ✉s❡❞

✐♥t✽❴t ♣♦✇❡r❀ ✴✴ P❲▼ ❞✉t② ❝②❝❧❡ ✭✪✮

✐♥t✸✷❴t ♣✉❧s❡s❀ ✴✴ ❊♥❝♦❞❡r ♣♦s✐t✐♦♥ ✭❞❡❣r❡❡s✮

✐♥t✶✻❴t ❞♣s❀ ✴✴ ❲❤❡❡❧ s♣❡❡❞ ♣♦s✐t✐♦♥ ✭❞❡❣r❡❡s ♣❡r s❡❝♦♥❞✮✱ ♥♦t

✉s❡❞

♠♦t♦r❴✈♦❧t❛❣❡ ❂ ●P●✳❣❡t❴✈♦❧t❛❣❡❴❜❛tt❡r② ✭✮❀ ✴✴ ❘❡❝♦✈❡r ❜❛tt❡r②✴s✉♣♣❧② ✈♦❧t❛❣❡

♣✇♠ ❂ ✉✴ ♠♦t♦r❴✈♦❧t❛❣❡ ✯ ✶✵✵❀ ✴✴ Pr♦♣♦rt✐♦♥ ❜❡t✇❡❡♥ ✈♦❧t❛❣❡ ❛♥❞

P❲▼

●P●✳s❡t❴♠♦t♦r❴♣♦✇❡r✭▼❖❚❖❘❴▲❊❋❚ ✱ ♣✇♠✮❀ ✴✴ ❆♣♣❧② P❲▼ ♣❤②s✐❝❛❧❧② t♦ ♠♦t♦r

✭❡✳❣✳ ▲❊❋❚✮

●P●✳❣❡t❴♠♦t♦r❴st❛t✉s✭▼❖❚❖❘❴▲❊❋❚ ✱st❛t❡ ✱♣♦✇❡r ✱♣✉❧s❡s ✱❞♣s✮❀ ✴✴ ●❡t ❡♥❝♦❞❡r

♣✉❧s❡s

♣♦s❴♠❴❞ ❂ ✭❞♦✉❜❧❡✮ ♣✉❧s❡s ✴ ▼❖❚❖❘❴❚■❈❑❙❴P❊❘❴❉❊●❘❊❊❀ ✴✯ ❉✐✈✐❞❡ ❡♥❝♦❞❡r

♣✉❧s❡s ❜② ▼❖❚❖❘❴❚■❈❑❙❴P❊❘❴❉❊●❘❊❊ ❂ ✷ t♦ ♦❜t❛✐♥ ❡♥❝♦❞❡r ♣♦s✐t✐♦♥ ✯✴

⑥

The motor power ranges from 0 to 100, and it’s directly proportional to supply voltage, which ranges from 0 to

V
MAX

: knowing control input u and V
MAX

= ♠♦t♦r❴✈♦❧t❛❣❡ we can recover easily PWM value.

Because the encoder has a resolution of 720 pulses/revolution = 0.5○ (means that with 720 pulses 2 revolutions of

360○ are performed), n° pulses need to be divided by ▼❖❚❖❘❴❚■❈❑❙❴P❊❘❴❉❊●❘❊❊ ❂ ✷. Finally since the position is

in degrees, it’s needed to multiply by π/180 to obtain radians measure unit.

35 CHAPTER 4. CONTROL MODELS SOFTWARE TESTING - GENERAL SETTINGS

IMU

IMU is able to provide angular speeds in Cartesian ξ, ν, z directions and also sensor fusion pose (in Euler angles

or quaternions). To measure them IMU library ❘❚■▼❯▲✐❜✳❤ comes in handy.

First IMU classes are instantiated, then settings file ❘❚■▼❯▲✐❜✳t①t) is loaded (containing IMU model type, sensor

settings like full scale range, calibration offsets, sample rate etc.), finally devices (among gyroscope, accelerometer

and magnetometer) to be used for pose sensor fusion are decided. After this initialization, IMU measurements can

be taken every DT step. For example to take IMU yaw angle θz and angular speed wz basic SW code is:

★✐♥❝❧✉❞❡ ❁❘❚■▼❯▲✐❜ ❃ ✴✴ ■▼❯ ❧✐❜r❛r②

★✐♥❝❧✉❞❡ ❁st❞❧✐❜✳❤❃ ✴✴ ❙t❛♥❞❛r❞ ❧✐❜r❛r②

★✐♥❝❧✉❞❡ ❁st❞❞❡❢✳❤❃ ✴✴ ◆❯▲▲ ♠❛❝r♦

❘❚■▼❯ ✯✐♠✉❀

❘❚■▼❯❙❡tt✐♥❣s ✯s❡tt✐♥❣s❀

❘❚■▼❯❴❉❆❚❆ ✐♠✉❉❛t❛❀ ✴✴ ■▼❯ ✐♥st❛♥❝❡s ♦❢ ❝❧❛ss❡s

❞♦✉❜❧❡ t❤❡t❛❴③ ❂ ✵❀

❞♦✉❜❧❡ ✇❴③ ❂ ✵❀

✈♦✐❞ ■▼❯❴✐♥✐t✐❛❧✐③❡ ✭✮ ④

s❡tt✐♥❣s ❂ ♥❡✇ ❘❚■▼❯❙❡tt✐♥❣s✭✧■▼❯❴✐♥❢♦✴✧✱✧❘❚■▼❯▲✐❜✧✮❀ ✴✴ ▲♦❛❞ s❡tt✐♥❣s ❢✐❧❡

❘❚■▼❯▲✐❜✳t①t

✐♠✉ ❂ ❘❚■▼❯✿✿ ❝r❡❛t❡■▼❯✭s❡tt✐♥❣s✮❀ ✴✴ ▲♦❛❞ s❡tt✐♥❣s ✐♥ ✐♠✉ ❝❧❛ss

✴✴ ❈❤❡❝❦ ✐❢ ■▼❯ ✐s ❝♦♥♥❡❝t❡❞ ♦r ♥♦t

✐❢ ✭✭✐♠✉ ❂❂ ◆❯▲▲✮ ⑤⑤ ✭✐♠✉ ✲❃■▼❯❚②♣❡ ✭✮ ❂❂ ❘❚■▼❯❴❚❨P❊❴◆❯▲▲✮✮ ④

♣r✐♥t❢✭✧◆♦ ■▼❯ ❢♦✉♥❞❭♥✧✮❀

❡①✐t ✭✶✮❀

⑥

✐♠✉ ✲❃■▼❯■♥✐t ✭✮❀ ✴✴ s❡t ✉♣ ■▼❯

✴✴ ❊st❛❜❧✐s❤ ✐❢ ♣♦s❡ s❡♥s♦r ❢✉s✐♦♥ ✉s❡s ♦r ♥♦t ❣②r♦ ✱ ❛❝❝❡❧❡r♦♠❡t❡r ❛♥❞

♠❛❣♥❡t♦♠❡t❡r

✐♠✉ ✲❃s❡t●②r♦❊♥❛❜❧❡✭tr✉❡✮❀

✐♠✉ ✲❃s❡t❆❝❝❡❧❊♥❛❜❧❡✭tr✉❡✮❀

✐♠✉ ✲❃s❡t❈♦♠♣❛ss❊♥❛❜❧❡✭tr✉❡✮❀

⑥

✈♦✐❞ ■▼❯❴♠❡❛s✉r❡♠❡♥ts ✭✮ ④

✐♠✉❉❛t❛ ❂ ✐♠✉ ✲❃❣❡t■▼❯❉❛t❛ ✭✮❀

✴✴ ●❡t ♦r✐❡♥t❛t✐♦♥ ②❛✇ ❛♥❣❧❡

t❤❡t❛❴③ ❂ ✐♠✉❉❛t❛✳❢✉s✐♦♥P♦s❡✳③✭✮❀

✴✴ ●❡t ❛♥❣✉❧❛r s♣❡❡❞ ❛r♦✉♥❞ ③✲❛①✐s

✇❴③ ❂ ✐♠✉❉❛t❛✳❣②r♦✳③✭✮❀

⑥

Part II

DC motors EMC

Chapter 5

EMC DC motors theory

In this part the Embedded Models of the 2 DC motors of the robot GoPiGo3 are build. The following steps are

considered:

1 Since the main parameters (Armature resistance Ra, armature inductance La, inertia and friction) of the

robot motors are unavailable, a parameter identification based on input (armature voltage) and output

(angular speed) measurements was performed.

2 The estimated parameters are used to build the Fine Model of the DC motor for simulation purposes (MIL)

and its Embedded Model Control (considering a simplified version of fine model, in order to be implemented

in the robot board).

5.1 DC Motor Parameters identification and validation

Datasheets of the robot motors are not available, the only reliable informations are the Armature Voltage Va, the

angular speeds of the wheels ω
R
, ω

L
computed using 2 Hall encoders directly implemented, and the armature

resistances Ra which can be easily measured across the motor terminals using a multimeter. Their values are

Ra ≈ 19Ω for the left motor and Ra ≈ 17.3Ω for the right motor. However also Ra will be added as unknown

parameters to be identified, to verify their values. For these reasons, parameter identification is performed in order

to find the unknown parameters. 2 main steps are considered:

• Identification phase: A dataset of input and output measurements which has inside sufficient dynamic

informations is used. In the case of DC motors step inputs are good, imposed for a certain amount of time,

and the values of Va and ωr are collected. In some cases other input-output datasets are considered to

improve the identification.

• Validation phase: The response of DC motor models with estimated parameters are compared with real

response, using a dataset different from the one used for identification.

During work, different strategies are adopted to estimate the parameters, we can refer to them with a version

number (v1.0, v1.1 etc.).

5.1. DC MOTOR PARAMETERS IDENTIFICATION AND VALIDATION 38

5.1.1 Main workflow

Identification phase

Starting from the usual DC motor tranfer fucntion in continous time, using the mechanical time constant τm, the

electrical time constant τa and back Electromotive force constant kv :

ω(s)
Va(s)

=
1
kv

1 + sτm + s2τmτa
(5.1)

we can recover the transfer function in discrete time by considering the Z transform of s.

In general, every transfer function (TF) in Laplace domain G(s) can be converted in Z domain transfer function

G(z) by considering the relation G(z) = (1 − z−1)Z {G(s)s }. For our TF (T is a generic sampling time):

G(s) = 1

s
⇒ G(z) = (1 − z−1)Z { 1

s2
} = z − 1

z

Tz

(z − 1)2
= T

z − 1

G(s) = 1

s2
⇒ G(z) = (1 − z−1)Z { 1

s3
} = z − 1

z

T 2z(z + 1)
2(z − 1)2

= T 2(z + 1)
2(z − 1)

The discrete time TF of Equation (5.1) becomes:

ω(z)
Va(z)

=
1
kv

1 + (z−1)T τm + 2(z−1)2

T 2(z+1)
τmτa

(5.2)

After some computations we can write it in the following regressive form:

ω(z)
Va(z)

= β2 + β1z−1 + β0z−2

1 + α1z−1 + α0z−2

β2 = 0

β1 = β0 =
T 2

kv(τmT + 2τmτa)

α1 =
T 2 − 4τmτa
τmT + 2τmτa

α0 =
T 2 − τmT + 2τmτa

τmT + 2τmτa

(5.3)

Using the discrete TF model in Equation (5.3) initial guess of β1, α1 and α0 can be obtained using different

optimization methods. Due to simplicity Least Squares Method is the best, because we only need to find the

approximate range of parameters (some error is accepted).

Using the backward shift operator q−1 we can write the output in time domain ω(t) as linear combination of

input/output past values:

ω(t) = −α1ω(t − 1) − α0ω(t − 2) + β1 [Va(t − 1) + Va(t − 2)] , t = 3, ...,N
⎡⎢⎢⎢⎢⎢⎢⎣

ω(3)
⋮

ω(N)

⎤⎥⎥⎥⎥⎥⎥⎦
·„„„„„„„„„„„„‚„„„„„„„„„„„„¶

b

=

⎡⎢⎢⎢⎢⎢⎢⎣

−ω(2) −ω(1) Va(2) + Va(1)
⋮ ⋮ ⋮

−ω(N − 1) −ω(N − 2) Va(N − 1) + Va(N − 2)

⎤⎥⎥⎥⎥⎥⎥⎦
·„„„‚„„¶

A

⎡⎢⎢⎢⎢⎢⎢⎣

α1

α0

β1

⎤⎥⎥⎥⎥⎥⎥⎦
–

x

(5.4)

The Least square estimation problem can be solved as:

x = (A⊺A)−1A⊺b (5.5)

39 CHAPTER 5. EMC DC MOTORS THEORY

Since the TF DC motor model in Equation (5.1) is not considering the gearbox reduction N , the output value w(s)
obtained is not the one downstream at the wheels: we can correct the value with ω = Nω′.

Obviously this is an assumption, supposing that the gearbox does not modify significantly the output value. This

can be explained by studying the inertia and friction effects of the gearbox in the entire DC motor model: basically

the gearbox inertia and friction are combined with the ones of the DC motor to obtain a total inertia and friction

Jeq and βeq respectively.

What are exactly Jeq and βeq? Inside them are present both the motor and gears inertia/friction. Since a reduction

of the speed by a factor of N = 120 is done by the gears, these values changes consequently.

A laboratory activity of University of Padova about DC gear motor modelling is taken as reference [9]: in Figure 5.1

taken from this reference a dynamic block model of the motor with the addition of the gear reduction part is

considered.
kdrv

Tdrvs+1
is a voltage driver modelled as Low-pass filter (not important in this field). ke = kv in this case.

Jm Motor inertia
Bm Motor friction
Jl Gear inertia
Bl Gear friction
ωm Motor speed not

reduced by gears
ωl = ω Motor speed reduced by gears

Figure 5.1: DC gear motor Jeq and βeq = Beq explanation

We can divide the mechanical dynamics in 2 parts, the rotor and gear load mech. dynamics. Their equations are

(Tm motor torque, T ′l gear load torque motor side, Tl gear load torque gear side, Td external loads torque, for

simplicity = 0):
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Jm
dωm(t)

dt +Bmωm(t) = Tm(t) − T ′l (t)

Jl
dωl(t)
dt +Blωl(t) = Tl(t) − Td(t)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ωl = ωm

N

Tl = NT ′l

Making equal the 2 equations considering Tl = T ′l we obtain the equation of motor torque by considering all the

inertia and friction at motor side:

(Jm +
Jl
N2
)

·„„„„„„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„„„„„¶
Jeq

dωm(t)
dt

+ (Bm +
Bl

N2
)

·„„„„„„„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„„„„„„„¶
Beq

ωm(t) = Tm(t) (5.6)

From now on βeq = Beq .

5.1. DC MOTOR PARAMETERS IDENTIFICATION AND VALIDATION 40

Assumptions 5.1 Back-electromotive force kv and torque constant kt in a DC motor are supposed to be equal k = kv = kt.
Parameters without index are the DC motors only parameters without gearbox effect. To insert the gearbox effect the last

parameters are assumed to be multiplied by gear ratio N , the new parameters are defined by an index: hence k′ = kN .

This is because steady-state amplitude value of wheel speeds (related to k′) is approximately the DC motor speeds

value (related to k), but increased by a gearbox factor of N .

Then for a DC motor model mechanical and electrical time constants can be approximated as (the gearbox effect

is inside parameter k now):

τa =
La

Ra
, τm =

JeqRa

k2
(5.7)

and supposing that the friction coefficient βeq = 0Nm(rad/s)−1 (it is a mild assumption, since we will verify

after the estimation that is very small) and that the motor constants are equal k = kv = kt, we have to solve the

3 equations on right of Equation (5.3) to find the initial guess of parameters Jeq , La. In addition we add the

parameters βeq and k to verify our initial assumptions. In some cases also Ra was estimated even if it can be

directly measured, because its measurement using a multimeter can lead to some parameter errors (for example

the range for the left motor is 18–21Ω).

Initial guess parameters are then used to make the real estimation using Simulink Design Optimization Toolbox

from Matworks. Indeed starting from values near the real ones increases the convergence to reliable parameters.

The method used by toolbox is Non linear Least Squares.

Validation Phase

In this phase we need to verify the model with final estimated parameters obtained during identification phase,

using an input-output dataset different from the one used for identification.

The Root Mean Squared Error RMSE =
√

1
Nmeas

∣∣y(t) − ŷm(t)∣∣
2
2 (where y(t) are the real measurements, ŷm(t)

the estimated ones, Nmeas are the total number of measurements) is used as validation goodness parameter. Lower

RMSE values indicate better estimation.

5.1.2 Version 0.0

Identification

The maximum supplying voltage of the motors is 12V, so a step of 6V is chosen for the identification experiment,

to avoid non linearities.

The measurements are taken with a sampling time of T = 0.01 s using Raspberry HW timers explained in Sec-

tion 4.2.2. To overcome possible timer delays, in addition an interpolation of the measured data is performed, to

obtain exactly T = 0.01 s.
Armature resistance values are not inserted as unknown parameters to be identified, and the measured values are

taken: Ra = 19Ω for the left motor and Ra = 17.3Ω for the right motor.

For both the 2 motors transient behaviour is presented in Figure 5.2. Following the procedure in Section 5.1.1, the

parameters of DC motor second order regressive model are found using LS estimation method, then using Equa-

tion (5.7) the initial guess parameters are recovered. Finally, using Simulink Optimization toolbox final parameters

are estimated. All of them are resumed in Table 5.1.

Validation

For example there are considered steps with 5V and 9V, repeated alternatively for 2 s, for 2 cycles. The results

are shown in Figure 5.3: RMSE was computed in both cases, giving the following results:

41 CHAPTER 5. EMC DC MOTORS THEORY

(a) Left motor step response (6V) (b) Right motor step response (6V)

Figure 5.2: Left and Right DC motors v0.0 identification datasets

Parameter Unit measure Left motor Right motor

DC motor regressive form parameters β1 − 0.0176 0.02
α1 − −1.3403 −1.2291
α0 − 0.3826 0.2809

Initial guess parameters βeq Nm(rad/s)−1 0 0
Jeq kgm2 7.9677e−7 9.6818e−7
La H 0.2025 0.1457
kv Vs 0.0100 0.0108
τm s 0.1510 0.1510
τa s 0.0107 0.0084

Final estimated parameters βeq Nm(rad/s)−1 4.70e−11 4.51e−14
Jeq kgm2 5.099e−7 5.625e−7
La H 0.428 0.375
kv Vs 0.0103 0.0112

Table 5.1: DC motor regressive form parameters and initial guess parameters - Left and Right motors v0.0

(a) Left motor (b) Right motor

Figure 5.3: Left and Right DC motors v0.0 validation datasets

5.1. DC MOTOR PARAMETERS IDENTIFICATION AND VALIDATION 42

RMSEL = 0.3988 RMSER = 0.3624

Seems that the time needed to reach the steady state conditions for the speed is more or less similar, problem

is the value reached at steady state: this problem can be explained by assuming that some parameters have a

dependence on the output speed w.

A problem arises with founded estimated parameters: the estimation was done using as dataset the output speed

computed by robot producer, which is filtered to reject the high frequency dynamics. The filter always introduces

a time delay, so at least the value of τm and τa are wrong, since they’re higher than reality.

To avoid this problem in Section 5.1.3 another procedure is followed.

5.1.3 Version 1.0

The problem in version 0.0 (Section 5.1.2) can be overcome by measuring the position given by motor encoders,

and then making a Forward-Euler discretization to obtain an approximation, as the following:

ϕ̇(t) ≈ ϕ(k + 1) − ϕ(k)
T

where ϕ is the encoder position, T is the sampling time used as increment value. Since the rotation is around only

1 axis, ϕ̇(t) = ωi(t). With this procedure output speed is not filtered and all high frequency dynamics are present.

In the next, parameters identification and validation are considered, only for left motor.

Identification

Table 5.2 presents the differences between the DC motor estimated parameters avoiding output filtering and

changing identification dataset: open-loop (OL) I/O dataset Figure 5.2 for left motor v0.0, and closed loop (CL)

I/O dataset, with input voltages and output speeds taken from a physical RHIT of DC motor EMC for left motor

v1.0.

The difference wrt previous version can be seen looking at τm and τa parameters. τm is reduced, meaning that

the delay due to output filtering is no longer present, also τa is reduced 1, but this value is used only for fine DC

motor model in Simulink, for Model-in-the-Loop (MIL) tests. Indeed for the EMC of DC motor are sufficient only

τm and kv .

For the CL estimation parameters the values after using Simulink Design Optimization Toolbox are practically the

same of LS initial guesses parameters (only Jeq = 3.9197e−7kgm2 and β = 0 Nm (rad/s)−1 are different, but in a

minimal way).

Parameter Unit measure Closed Loop Open Loop

βeq Nm(rad/s)−1 2.2204e−14 4.7002e−11
Jeq kgm2 3.6873e−7 5.0983e−7
La H 0.030687 0.42785
Ra Ω 20.133 19
kv Vs 0.0102 0.0103
τm s 0.0714 0.0913
τa s 0.0015 0.0225

Table 5.2: Final Estimated parameters Left motor v1.0, with comparison with v0.0

1In identification tests for all DC motor versions, the values of τa present an high variation range, because estimating precisely this
parameter is very difficult, due to its very small physical effect on motor dynamics

43 CHAPTER 5. EMC DC MOTORS THEORY

The Figure 5.4 represent output speed ω
LS

behaviour obtained with the estimated parameters using LS method

(in red), compared with the measured speed ωmeas (in blue).

Figure 5.4: DC motor left v1.0 LS speed estimation,
using closed loop dataset

Figure 5.5: DC motor left v1.0 LS voltage, using closed
loop dataset

Validation

Figure 5.6 and Figure 5.7 represent the validation of the estimated parameters using a different output dataset

(multiple steps from 4 to 8 V), filtered (moving average filter) and not filtered.

Figure 5.6: DC motor left v1.0 speed validation, filtered,
using closed loop dataset

Figure 5.7: DC motor left v1.0 speed validation, NOT
filtered, using closed loop dataset

RMSE value for validation is: RMSEL = 0.2813, which is better of Version 0.0.

From this validation, in Figure 5.6 we can notice that the second order model (Equation (5.1)) with fixed parameters

has some limits.

Indeed seems that the estimated steady state output speed is near to the measured speed only for few input

voltages, and in the other cases is lower or higher: a possible explanation is that the gearbox part slightly modifies

the parameter values depending of motor speed. In the future the estimation can be improved by adding more

informations to the motor model.

5.1.4 Version 1.1

For this version, parameters identification and validation are performed using 4 different types of input-output

datasets, to obtain the highest possible dynamic information of the system. Again the identification is done only

for left DC motor.

Identification

The parameters found using the LS solving equation and initial guess parameters are:

5.1. DC MOTOR PARAMETERS IDENTIFICATION AND VALIDATION 44

Parameter Value

β1 0.0701
α1 −0.6204
α0 −0.2060

Table 5.3: Parameters DC motor model in regressive
form using LS method - Left motor v1.1

Parameter Unit measure Value

βeq Nm(rad/s)−1 0
Jeq kgm2 8.3480e−7
La H 0.1039
Ra Ω 19
kv Vs 0.0103
τm s 0.1490
τa s 0.0055

Table 5.4: Initial guess parameters Left motor v1.1

For the initial guess only 1 among 4 I/O datasets can be used, it is shown in Figure 5.8 and Figure 5.9:

Figure 5.8: DC motor left v1.1 initial guess output speed
dataset

Figure 5.9: DC motor left v1.1 initial guess input voltage
dataset

Then, in Simulink Design Optimization Toolbox the whole 4 I/O datasets are used.

In addition, the measured voltage inputs used for the estimation were filtered (rejecting the time delay the filter

unavoidably brings), to have a smooth function and simplify the estimation.

The final estimated parameters are:

Parameter Unit measure Value

βeq Nm(rad/s)−1 4.3116e−14
Jeq kgm2 4.6743e−7
La H 0.2152
Ra Ω 18.5730
kv Vs 0.0102
τm s 0.0839
τa s 0.0116

Table 5.5: Final estimated parameters Left motor v1.1

The comparison with respect to all 4 datasets used is in the next 4 figures. It is added a third signal of filtered

measured output (in red), useful to see the mean speed value during steady state conditions and compare with

estimated output (in green), because the presence of high frequency peaks creates visual problems.

45 CHAPTER 5. EMC DC MOTORS THEORY

Figure 5.10: DC motor left v1.1 final estimated VS mea-
sured speed - Dataset 1

Figure 5.11: DC motor left v1.1 final estimated VS mea-
sured speed - Dataset 2

Figure 5.12: DC motor left v1.1 final estimated VS mea-
sured speed - Dataset 3

Figure 5.13: DC motor left v1.1 final estimated VS mea-
sured speed - Dataset 4

We can see immediately that also by using 4 I/O datasets, the estimated speed seems not to fit perfectly the

measured one, as it can be clearly seen in Figure 5.10: as already explained in Section 5.1.3 for left motor v1.0,

some parameters may change their values depending on the output speed, this can be caused by the effects of the

gearbox.

However this doesn’t affect the DC motor EMC, since we’ll see in the next sections that for simplicity the model

will be build based on fixed parameters τm and kv , and their estimated values will be sufficient to guarantee good

disturbance rejection and tracking during physical implementation.

Validation

To be done with another dataset, but almost all are used for the identification. However by considering the last

figures with comparison of estimated and measured output speeds, the estimated parameters can be considered

sufficiently reliable.

5.1.5 Version 1.2 (only for EMC)

Another parameter identification test is done using a dataset containing negative output speed measured values

too. The identification and validation is done for both the 2 motors, left and right.

The set of parameters related to mechanical part are used only for EMC models, for fine models a different strategy

is followed, explained in detail separately in Section 5.1.6, adding in model used for identification the informations

about motor Coulomb frictions.

Identification

The parameters of motor regressive second order model (Equation (5.3)) using LS estimation method and the

initial guess parameters are in the following tables:

5.1. DC MOTOR PARAMETERS IDENTIFICATION AND VALIDATION 46

Parameter Left Right

β1 0.1609 0.1313
α1 −0.3121 −0.4835
α0 −0.2929 −0.1471

Table 5.6: Parameters DC motor model in regressive
form using LS method - Left and Right DC motors v1.2
(for EMC only)

Parameter Unit measure Left Right

βeq Nm(rad/s)−1 0 0
Jeq kgm2 4.0925e−7 5.5084e−7
La H 0.0660 0.0903
Ra Ω 19 18
kv Vs 0.0102 0.0117
τm s 0.0755 0.0721
τa s 0.0034 0.0050

Table 5.7: Initial guess parameters - Left and Right
motor v1.2 (for EMC only)

For the identification 2 datasets are used, one using in-out measured values in open loop conditions (Dataset n°

1), the second using measured values from one of a closed loop test performed with one EMC DC motor version

(Dataset n° 2).

The Dataset n° 2 is characterized by step input voltages both positive and negative, and this one was used to find

the first guess parameters (Figure 5.14 and Figure 5.15).

The 2 datasets of input voltages and output speeds are visible in the next figures: in the output measured speed

ones, blue is the measured signal and red is the filtered signal (it’s useful to make a comparison with the estimated

speed, which is obtained by using a continuous time model).

(a) Left motor (b) Right motor

Figure 5.14: DC motor v1.2 Dataset n° 1, input voltage

(a) Left motor (b) Right motor

Figure 5.15: DC motor v1.2 Dataset n° 1, output speed

47 CHAPTER 5. EMC DC MOTORS THEORY

(a) Left motor (b) Right motor

Figure 5.16: DC motor v1.2 Dataset n° 2, input voltage

(a) Left motor (b) Right motor

Figure 5.17: DC motor v1.2 Dataset n° 2, output speed

Using Simulink Design Optimization Toolbox both the last 2 datasets are used for the identification of parameters.

The final estimated parameters are:

Parameter Unit measure Left motor Right motor

βeq Nm(rad/s)−1 2.1032e−20 4.8623e−14
Jeq kgm2 3.6898e−7 4.2876e−7
La H 0.24336 0.24735
Ra Ω 19.154 17.781
kv Vs 0.010179 0.011553
τm s 0.0682 0.0571
τa s 0.0127 0.0139

Table 5.8: Final estimated parameters Left and Right motor v1.2 - For EMC models only

Resulting estimated output speeds are:

Validation

Validation is performed using a new dataset of input voltage steps from [−8,8] V (Figure 5.24 and Figure 5.25).

RMSE values for both motors validations are:

RMSEL = 0.1662 RMSER = 0.2416 (5.8)

5.1. DC MOTOR PARAMETERS IDENTIFICATION AND VALIDATION 48

Figure 5.18: Estimated and measured output speed -
Left motor v1.2, Dataset n° 1 Figure 5.19: Estimated and measured output speed -

Right motor v1.2, Dataset n° 1

Figure 5.20: Estimated and measured output speed -
Left motor v1.2, Dataset n° 2 Figure 5.21: Estimated and measured output speed -

Right motor v1.2, Dataset n° 2

Figure 5.22: Validation dataset input voltage - Left mo-
tor v1.2

Figure 5.23: Validation dataset input voltage - Right
motor v1.2

Figure 5.24: Estimated and measured output speeds -
Validation dataset, Left motor v1.2 (only for EMC)

Figure 5.25: Estimated and measured output speeds -
Validation dataset, Right motor v1.2 (only for EMC)

49 CHAPTER 5. EMC DC MOTORS THEORY

5.1.6 Version 1.2 (only for Fine models)

One of the main problems, at least to built a fine model for MIL simulations, is that the estimated parameters

model not always lead to right angular speeds measured in open loop. For example looking at the validation plots

of Figure 5.24 and Figure 5.25 it is clear that the estimated model output speed (in green) has a certain vertical

offset wrt some measured output values.

This problem can be slightly overcome adding to estimation parameters model other informations about frictions:

they can be simplified in a Coulomb friction always present and independent on the motor angular speed unless

for its sign, [12]. This lead to a load torque acting on the motor of the following type:

T
C
= βc sgn(ωi), sgn(ωi) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1, if ωi < 0

0, if ωi = 0

1, if ωi > 0

(5.9)

Graphically the Coulomb friction torque appears as:

Figure 5.26: Coulomb friction torque model

During parameters identification in the model is added a gain and a sign blocks, taking as input the output motor

speed and giving as result a load Coulomb Torque T
C
to be added in mechanical motor part.

The I/O datasets used for identification are the same of Figure 5.15 and Figure 5.17, the final estimated parameters

for both right and left motor are (the new parameter βc for Coulomb friction is added):

Parameter Unit measure Left motor Right motor

βeq Nm(rad/s)−1 1.7525e−7 3.8736e−14
βc Nm(rad/s)−1 0.00023586 0.0004496
Jeq kgm2 3.1487e−7 3.5903e−7
La H 0.05422 0.23953
Ra Ω 19.088 17.453
kv Vs 0.0089386 0.010034
τm s 0.0752 0.0622
τa s 0.0028 0.0137

Table 5.9: Final estimated parameters Left and Right motor v1.2 - For fine models only

Comparing with estimated parameters in Table 5.8 the presence of a Coulomb friction reduces kv value, which

is related to output speed steady-state value: this means that now from Coulomb gain βc depends part of motor

steady-state dynamic behaviour.

5.2. DC MOTORS EMC 50

Making a validation using the same dataset of v1.2 parameters for only EMC (Figure 5.24 and Figure 5.25), the

difference is visible:

(a) Left motor (b) Right motor

Figure 5.27: Validation left and right motors v1.2 (only for Fine models)

Now in Figure 5.27 the green output speed related to estimated model is near to measured one for almost all the

steps. Indeed also the RMSE values are lower than the ones found before (Equation (5.8)):

RMSEL = 0.1196 RMSER = 0.1624

These parameters will helps to make DC motors MIL simulations with fine models nearest to reality.

5.2 DC Motors EMC

In this section the EMC of the 2 DC motors are build, and compared the results with a model which mimic the

real motors present in GoPiGo3 robot (the fine model). All is done by using Simulink from Matworks.

First fine models are considered, trying to insert inside also the possible disturbances that can happen in reality.

Then a simplified model of the DC motor is created from the fine model (the embedded model EM), simple in

such a way it can be easily implemented in Raspberry board of the robot.

Notations: In fine models, the output speed in SS equations is the one not reduced by gearbox ωm(t). In

EMC models the output speed is considered always reduced by gearbox ω(k), and the back-electromotive force

parameter is the one related to wheel speeds k′v = kvN (affected by gearbox reduction N as already explained in

Assumptions 5.1).

5.2.1 Fine model

This model will be used only for simulation purposes (MIL tests), since when the control is applied in real there

will be directly the real inputs/outputs of the plant.

In Simulink instead of using the Transfer Function (TF) representation, it was used the State Space (SS) one, with

Matlab function blocks: indeed for EMC using SS equations is better for code generation and to deal with a

variable timestamp (is simple modify the sampling time in the equations), the same solution is adopted for fine

model. In this case DC motor is composed by 2 ODE, for the 2 states ia(t) and ωm(t), which refer respectively to

51 CHAPTER 5. EMC DC MOTORS THEORY

electrical and mechanical parts. The equations are the following:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = A1x1(t) +B1u1(t)⇒
dia(t)
dt

= −Ra

La
ia(t) +

1

La
(Va(t) − e(t))

ẋ2(t) = A2x2(t) +B2u2(t)⇒
dωm(t)

dt
= −

βeq

Jeq
ωm(t) +

1

Jeq
(Tm(t) − Tr(t))

e(t) = kvωm(t)

Tm(t) = ktia(t)

(5.10)

Tr is the resistive torque due to friction/load/other disturbances. A sketch in terms of simple elementary blocks is

shown in Figure 5.28.

Figure 5.28: DC motor SS fine model

5.2.2 EMC model - 1st order disturbance

Controllable and disturbance dynamics

Since the current ia (and consequently Tm) cannot be measured, it is convenient to treat the electrical part block

of DC motor as neglected dynamics in EM model. In this way, only 1 state remains, the output speed of the motor

ω(t).
A first order disturbance xd is considered, like in Figure 5.29 taken from [6], including parametric uncertainties,

neglected dynamics and other disturbances. In the figure wu is the non-causal noise component and wd is the

disturbance state. The Σ block is a Discrete time integrator, composed by a delay with a positive unitary feedback,

with transfer function T
z−1 (following Forward Euler integration method).

Figure 5.29: First order disturbance w

Source: [6]

The SS mechanical equation in Equation (5.10) needs to be modified in discrete-time domain for EMC.

5.2. DC MOTORS EMC 52

First step, since the real values βeq and Jeq are the most difficult to be found, the usage of τm and k′v is preferred.

Hence the controllable and disturbance equations become, in continuous time domain:

ω̇(t) = − 1

τm
ω(t) + 1

τmk′v
V (t) +w1(t) + xd(t)

ẋd(t) = xd(t) +w2(t)
(5.11)

In matrix form, after conversion in DT domain, SS equations of controllable and disturbance dynamics can be writ-

ten following the form in Equation (2.2) and Equation (2.3), considering state vector as xT (k) = [xc = ω,xd] (k):

A =
⎡⎢⎢⎢⎢⎣

Ac Hc

0 Ad

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

− 1
τm

T + 1 T

0 T + 1

⎤⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎣

Bc

0

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

T
τmk′v

0

⎤⎥⎥⎥⎥⎦
, G =

⎡⎢⎢⎢⎢⎣

Gc

Gd

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

T 0

0 T

⎤⎥⎥⎥⎥⎦
,

C = [Cc Cd] = [1 0] , F = [Fc 0] = C

(5.12)

Reference dynamics

CL loop equations Equation (2.5) can be used to find control reference dynamics for EMC DC motor, using pole-

placement tecnique. K
R
and N

R
are the matrices to be designed.

K
R
= k can be found with pole placement technique by recovering the discrete time eigenvalues p

R
(in this case

only 1) that satisfies the following desired characteristic polynomial:

det[λI −A
R
] = (λ − p

R
)

Hence we obtain:

k =
Ac − pR

Bc

The reference dynamics must be quite slow to allow the overall EM system to track the reference r without

difficulties. So the p eigenvalue must be quite near to zero to obtain this behaviour: for example p
R
≈ −2.57 (in

CT domain) is a proper value.

N
R
can be found when K

R
is recovered by exploiting Equation (2.6).

In addition, since the real DC motors can work in a limited voltage range (of V ≈ ±11.5V in the case of voltage

taken from home network converted, and V < 9.6V using 8 × 1.2V batteries), a saturation on u is needed. For

example, if the max voltage available for the motors is V = ±11.5V:

ū =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

11.5V if ū > 11.5V

−11.5V if ū < −11.5V

Noise estimator

First we need to understand if a static or dynamic feedback Noise estimator L is needed: this depends on the

dimensions of all the states dimx = nx = 2 and of disturbances dimw = nw = 2. By referring to [1] and Appendix

of [2], if nx = nw we fall in the case of static feedback L. So we can find the disturbances as w = Lem = L(y− ŷm),
with ŷm as the output of EM and y as the fine model output.

LT = [l1, l2] ∈ R2×1 matrix, the components can be found by considering the coefficients acl,i of the characteristic

polynomial of the closed loop matrix A −GLC , computed with det[(A −GLC) − λI], and equalizing them with

the coefficients an,i of a characteristic polynomial with discrete time eigenvalues [pn1, pn2] decided by us with

53 CHAPTER 5. EMC DC MOTORS THEORY

Re(λ) < 1, to guarantee asymptotic internal stability. The 2 characteristic polynomials are:

⎧⎪⎪⎨⎪⎪⎩

λ2 + acl,2λ + acl,3 Closed loop char. polynomial

λ2 + an,2λ + an,3 = (λ − pn1)(λ − pn2) Desidered char. polynomial

The coefficients of L depends on sampling time T which is variable at every step. The components in function of

model parameters k′v, τm are:
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

l1 =
(2 + T + an,2) τm − T

Tτm

l2 =
2T + T 2 + (1 + T)an,2 + an,3 + 1

T 2

(5.13)

Control Law

For the control law we can follow the rules seen in Section 2.1, using Equation (2.11) and Equation (2.12). After some

computations Q = 0 and M = k′vτm. Instead for K matrix used for tracking the controllable states to a reference

one, it was experimented that only a proportional gain is not sufficient, since we never reach a zero tracking error.

For this reason a discrete Proportional-Integral (PI) control was selected.

To find the right coefficients of K = [kp, ki] we need to study the closed loop system including the controllable

dynamics and the PI controller, like in Figure 5.30. x1(k) = x̂c(k) and x2(k) is the new state introduced by the

integral action of PI controller.

Figure 5.30: Closed Loop System with PI controller

In matrix form: ⎡⎢⎢⎢⎢⎣

x1

x2

⎤⎥⎥⎥⎥⎦
(k + 1) =

⎡⎢⎢⎢⎢⎣

−Ac − kpBc kiBc

−1 1

⎤⎥⎥⎥⎥⎦
·„„„‚„„„¶

Aint

⎡⎢⎢⎢⎢⎣

x1

x2

⎤⎥⎥⎥⎥⎦
(k) +

⎡⎢⎢⎢⎢⎣

kpBc

1

⎤⎥⎥⎥⎥⎦
·„„„„„„„„‚„„„„„„„„„¶

Bint

Vr(k) (5.14)

In order to get kp and ki coefficients we can use the pole placement technique and set the eigenvalues of Aint to

some desired values inside the unit circle for stability.

If ac1,des and ac2,des are the coefficients of characteristic polynomial defined by desired eigenvalues pc,i = [pc1, pc2],
finally:

kp =
ac1,des +Ac + 1

Bc

ki =
Bckp −Ac + ac2,des

Bc

(5.15)

Like L coefficients, also kp and ki changes depending on the sampling time considered T .

5.2. DC MOTORS EMC 54

To make the first condition of Equation (2.12) satisfied, eigenvalues pi obtained with pole placement must be inside

the unit circle.

5.2.3 EMC model - 2nd order disturbance

It’s possible that in practice the plant has other disturbances in addition to the electrical and mechanical dynamics

which may be not detected using 1st order disturbance: for this reason a 2nd order disturbance is build for the

EMC DC motor model in this section.

Controllable and disturbance dynamics

As in Section 5.2.2 the electrical part of DC motor is considered as neglected dynamics in EM model. In this way,

only 1 state remains, the output speed of the motor ω(k).
Even 2nd order disturbance model part includes parametric uncertainties, neglected dynamics and other distur-

bances, but now there are 2 delays and 3 sources of disturbance w(k), as it can be seen in Figure 5.31. w0(k)
enters directly in the controllable part of model and we cannot estimate it since it’s not causal. Instead w1(k) and
w2(k) are entering inside the 2 disturbance state equations, with states xd1(k) and xd2(k): we can estimate them

with a noise estimator because they depend on past inputs for the presence of delays.

The Σ block is a Discrete Integrator, i.e. a delay with a positive unitary feedback, with transfer function T
z−1 .

Figure 5.31: Second order disturbance w

The SS mechanical equation is similar to Equation (5.11), but with the addition of a new disturbance state:

ω̇(t) = − 1

τm
ω(t) + 1

τmk′v
V (t) +w0(t) + xd1(t)

ẋd1(t) = xd1(t) + xd2(t) +w2(t)

ẋd2(t) = xd2(t) +w1(t)

(5.16)

The new states are x = [xc = ω,xd1, xd2]T . Now it is needed to convert the state space equations from continous

to discrete time domain, obtaining the following set of equations:

ω(k + 1) = (− 1

τm
T + 1)ω(k) + T

τmk′v
V (k) + d(k) , d(k) = T (w0(k) + xd1(k))

xd1(k + 1) = (T + 1)xd1(k) + T (xd2(k) +w2(t))

xd2(k + 1) = T (xd2(k) +w1(k))

(5.17)

55 CHAPTER 5. EMC DC MOTORS THEORY

The matrices using the form in Equation (2.1) are:

A =
⎡⎢⎢⎢⎢⎣

Ac Hc

0 Ad

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

− T
τm
+ 1 T 0

0 T + 1 T

0 0 T + 1

⎤⎥⎥⎥⎥⎥⎥⎦

, B =
⎡⎢⎢⎢⎢⎣

Bc

0

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

T
τmk′v

0

0

⎤⎥⎥⎥⎥⎥⎥⎦

, G =
⎡⎢⎢⎢⎢⎣

Gc

Gd

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

T 0 0

0 T 0

0 0 T

⎤⎥⎥⎥⎥⎥⎥⎦
C = [Cc Cd] = [1 0 0] , F = [Fc Fd] = C

(5.18)

Reference dynamics

The number of controllable states xc(k) is not changed passing from 1st to 2nd order disturbance model (it’s only

one, xc(k) = w(k)): since the reference dynamics depends only on xc(k), it’s the same of Section 5.2.2.

Noise estimator

In this case a static feedback noise estimator is sufficient to estimate the noise disturbances w1 and w2 (w0 is

impossible to estimate due to causality). Indeed the dimensions of all the states is dimx = nx = 3 and the one of

disturbances is dimw = nw = 3, so by referring to [1], since nx = nw, we fall in the case of static feedback L.

Another check can be made by following the Appendix on output feedback pole placement [2]. To have a static

feedback a necessary (but not sufficient) condition is nw × ny ≥ n, where ny = dim y = 1 is the dimension of the

known output, which in our case is the DC motor output speed.

So we can find the disturbances as w = Lem = L(y − ŷm), with ŷm as the output of EM and y as the fine model

output. In this case LT = [l1, l2, l3] ∈ R3×1 matrix.

L components can be found making equal the coefficients acl,i of the characteristic polynomial of the closed loop

matrix A
CL
= A − GLC , computed with det[A

CL
− λI], and the ones an,i of a characteristic polynomial with

discrete time eigenvalues [pn1, pn2, pn3] decided by us with Re(λ) < 1, to guarantee asymptotic internal stability.

The 2 characteristic polynomials are:

⎧⎪⎪⎨⎪⎪⎩

λ3 + acl,2λ2 + acl,3λ + acl,4 Closed loop char. polynomial

λ3 + an,2λ2 + an,3λ + an,4 = (λ − pn1)(λ − pn2)(λ − pn3) Desidered char. polynomial

The coefficients of L depends on sampling time T which can be variable at every step. If they are highlighted

τm, kv DC motor model parameters they are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l1 =
(2T + an,2 + 3) τm − T

Tτm

l2 =
2(T + 1)an,2 + an,3 + 6T + 3T 2 + 3

T 2

l3 =
(1 + 2T + T 2)an,2 + (1 + T) + an,3 + an,4 + 3T + 3T 2 + T 3 + 1

T 3

(5.19)

Control law

The control law form is again the same of Equation (2.11). In this particular case the matrix K = [kp, ki] is exactly
the same of Section 5.2.2 since it only depends on the controllable dynamics, which remains unchanged.

Instead the matrices Q and M need to be recomputed, since the number of disturbance states xd(k) passes from

5.2. DC MOTORS EMC 56

1 to 2. The 2nd condition of Equation (2.12) needs to be satisfied to find these 2 matrices, it follows that:

⎡⎢⎢⎢⎢⎣

Q

M

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

q1 q2

m1 m2

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

0 0

τmk′v 0

⎤⎥⎥⎥⎥⎦
(5.20)

Matrices Q,M change dimensions, with Q ∈ R1×2 but with components again equal to zero, M ∈ R1×2 but only

the first component m1 is important, since m2 = 0.
It seems that nothing change from 1st order disturbance model, but it is not. Indeed m1 depends only on xd1(k)
state, but in the state equation xd1(k + 1) in Equation (5.17) there is a dependence not only on xd1(k) but also on

xd2(k): the effect of the second disturbance component is inside the first one.

Chapter 6

DC motors EMC Model-in-the-Loop (MIL)

tests

Theoretical models explained in Chapter 5 are now translated in Simulink block models to be tested. Using MIL

tests, both DC motor plant and EMC are run in simulation using Simulink. Before showing testing results, some

general settings need to be discussed.

Notation: From now on, in all MIL and RHIT tests (also in the following chapters) the targets are referred with a

"tilde" on the symbol.

6.1 General MIL settings on Simulink

DC motor EMC is quite easy to be implemented in Simulink: as already explained, whole EMC is a triggered

sub-system, where discrete-time is decided by an external stair generator signal suitably built. Internal blocks are

Matlab functions where Timestamp can be easily added as input.

CT eigenvalues obtained with pole-placement technique are the same for all tests:

Eigenvalue type Continuous eigenvalues

Reference µ
R

−2.5647
Noise estimator µ

N
−14.3844 × 2,−14.3835

Control µ
K

−2.5647 × 2

Table 6.1: Continous eigenvalues DC motor EMC - MIL tests

Instead regarding DC motor fine model, the implementation is more complicated.

A requirement for fine model is to mimic as much as possible the real motor behaviour. Real motor has quite

complex dynamics due to inertia, frictions etc., especially due to gearbox part. In addition motors are driven by

H-bridges to control their direction and speed, a PWM generator is responsible to convert battery/supply voltage

in input voltage at the motor terminals, and encoders are based on Hall effect magnetic field sensors. Therefore,

knowing only inputs/outputs (at wheel side) of the motors, it’s very difficult to define in a precise way the motor

behaviour in simulation. Parameters identification results to be not sufficient to exploit all dynamics, because it is

only based on mechanical and electrical model of a DC motor.

As first attempt Simscape2 built-in models for Hall effect encoders, PWM generation and H-bridge are added to

2Simscape is a MathWorks toolbox to add already built multidomain physical components, [25]

6.1. GENERAL MIL SETTINGS ON SIMULINK 58

mechanical/electrical part of DC motors in simulation: they lead to very complex fine model, too heavy to be

simulated in a short time and sometimes giving unexpected results. A simplified complete fine model is then

exploited, using only quantizers and Matlab function blocks. Its structure is presented in Figure 6.1:

Figure 6.1: DC motor fine model Simulink scheme

Already built model is electrical and mechanical part of DC motor, with gearbox output speed reduction 1/N =
1/120, in CT domain (highlighted in blue). The other blocks are simplified versions of actuator and motor encoder

sensors, in DT (in black):

• The control input from DC motor EMC u(k) passes through simulated actuator, composed by a quantizer

and an input dead-zone block.

Quantizer takes into account that input PWM in GoPiGo3 DC motors SW code is saved into an unsigned

8-bit char, or ✉✐♥t✽❴t, ranging 0–255. If P is the PWM duty cycle percentage, the values are divided in the

following manner:

n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0–100 ⇒ P = [0,100] %

101–127 ⇒ P = 100 %

128–227 ⇒ P = [0,−100] % (In decreasing order)

228–255 ⇒ P = −100 %

Hence the actuator quantizer in Simulink divides in 100 parts the motor controlled voltage u(k): for example

if maximum voltage is given by network supply with a converter and equal to 11.5V, the minimum input

resolution will be 0.115V.

Dead-zone block is added because no output speed of DC motors at the wheel side is present when input

voltage is too low, due to construction frictions and inertia.

A comparison between input voltage and output speed is done in open-loop robot system configuration, for

both left and right motors. Voltage V is linearly increased from 0 to Vmax ≈ 11.5V, resulted output speed

starts to increase only when u > 2V approximately for both motors. This can be seen in the next 2 plots:

Figure 6.2: Left motor input voltage dead-zone Figure 6.3: Right motor input voltage dead-zone

This is valid only when motors are still at the beginning. Instead if motors are already running, the voltage

59 CHAPTER 6. DC MOTORS EMC MODEL-IN-THE-LOOP (MIL) TESTS

when motors stop is lower than 2V, standing on a value of 1–1.5V. This is not experienced using an

open-loop test but making practical RHIT.

These values might slightly change depending on output speed conditions, but they remains more or less in

the above ranges. Implementation in Simulink is done using simple conditional "if" statements.

• The CT position, obtained by reducing ω(k) with the gearbox block and integrator, also needs to be

quantized because encoder resolution is 0.5○ = 0.0087 rad. A quantizer Simulink block is sufficient to this

aim.

6.2 General settings on Simulink MIL plot results

In MIL tests, the DC motor EMC must work at least in no-load conditions (i.e. robot wheels not touching the

ground), because in real load conditions there’s a load torque acting which leads to a more demanding voltage

input to obtain the same output speed, which is difficult to be simulated.

The variable Timestamp used in MIL is exactly the same of corresponding RHIT test (done in Chapter 7), in

order to make comparisons. In addition both left and right motors EMC are simulated splitting EM and Control

parts, because in many RHIT it will be the best solution to reduce model and tracking errors. Further details are

explained previously in Section 4.3.1.

Every results set is divided in 2 parts. The first plots set corresponds to MIL only tests using Simulink, with output

speeds y, yref , ŷm and relative model and tracking errors em, etrk, control input voltage u and Timestamp for EM

and Control blocks of EMC.

The second plots set is a comparison between MIL and RHIT: the output speeds y, yref , ŷm for both tests shown in

the same plot, the errors between measured outputs ey = yMIL
−y

RHIT
and estimated outputs eŷm = ŷMIL

m − ŷRHIT
m ,

and the comparison of simulated EM/Control Timestamps. It’ll be show that in the 2 tests output speeds follow

almost the same behaviour, in the same condition of DT timestamp (the last means that the procedure explained

in Section 4.1.1 to obtain a variable timestamp in simulation is reliable).

6.3 Simulink MIL results - Left motor

In Chapter 5 are discussed different versions of Left DC motor EMC, in which main parameters change on the

basis of system identification outcomes. Version 1.2 is built only after RHIT on both 2 motors with robot moving

on the ground, so all tests are done in load conditions. For this reason in simulation was considered only Version

1.1, which is basically the same but with slight parameter modifications.

All tests are made considering different target speeds ω̃
L
= [6,4] rad

s and ω̃
L
= [8,3,5.5,7] rad

s , with presence or

not of disturbance rejection.

From comparison between MIL and RHIT in every results set is immediate the similarities between y and ŷm

signals. The best comparison is when no disturbance rejection is present in Control Law, as it can be seen in

Figure 6.8 and Figure 6.10: the peak reached by y and ŷm is almost the same, meaning that the assumptions and

simplifications done in Section 6.1 for Fine DC motor models are consistent.

6.3. SIMULINK MIL RESULTS - LEFT MOTOR 60

6.3.1 No disturbance rejection, target output speed ω̃
L
= [6,4] rads

MIL simulation test results:

Figure 6.4: Left DC motor outputs y, yref and ŷm
Figure 6.5: Left DC motor tracking error etrk and
model error em

Figure 6.6: Left DC motor input voltage u
Figure 6.7: Left DC motor timestamp for EM and Con-
trol part of EMC

Comparison between MIL and RHIT:

Figure 6.8: Left DC motor outputs y, yref and ŷm -
Comparison between MIL and RHIT

Figure 6.9: Left DC motor timestamp for EM and
Control part of EMC - Comparison between MIL and
RHIT

Figure 6.10: Left DC motor MIL and RHIT ey (above) and eŷm (below) error difference

61 CHAPTER 6. DC MOTORS EMC MODEL-IN-THE-LOOP (MIL) TESTS

6.3.2 Disturbance rejection, target output speed ω̃
L
= [8,3,5.5,7] rads

MIL simulation test results:

Figure 6.11: Left DC motor outputs y, yref and ŷm
Figure 6.12: Left DC motor tracking error etrk and
model error em

Figure 6.13: Left DC motor input voltage u
Figure 6.14: Left DC motor timestamp for EM and
Control part of EMC

Comparison between MIL and RHIT:

Figure 6.15: Left DC motor outputs y, yref and ŷm -
Comparison between MIL and RHIT

Figure 6.16: Left DC motor timestamp for EM and
Control part of EMC - Comparison between MIL and
RHIT

Figure 6.17: Left DC motor MIL and RHIT ey (above) and eŷm (below) error difference

6.4. SIMULINK MIL RESULTS - RIGHT MOTOR 62

6.4 Simulink MIL results - Right motor

For right motor it was used Version 1.2, which is the only one built from Chapter 5. Again different target speeds

are considered, ω̃
R
= [6,4] rad

s and ω̃
R
= [8,3,5.5,7] rad

s , and comparison with presence or not of disturbance

rejection.

Also with right DC motor EMC is well evident the similarities with MIL and RHIT, then the assumptions Section 6.1

to make fine model in simulation are coherent.

Again as proof are taken the comparisons when no disturbance rejection in control law is present. First test is

when target speed is ω̃
R
= [6,4] rad/s with outputs in Figure 6.36 and errors ey, eŷm in Figure 6.38: in this case

all the peaks obtained with RHIT are simulated in a precise way.

Another test with different target output speeds (ω̃
R
= [8,3,5.5,7] rad

s in Figure 6.43 and Figure 6.45) show also

the presence of saturation of input voltage when it reaches ≈ 11.5V, which is successfully simulated with MIL

tests.

63 CHAPTER 6. DC MOTORS EMC MODEL-IN-THE-LOOP (MIL) TESTS

6.4.1 Disturbance rejection, target output speed ω̃
R
= [6,4] rads

MIL simulation test results:

Figure 6.18: Right DC motor outputs y, yref and ŷm
Figure 6.19: Right DC motor tracking error etrk and
model error em

Figure 6.20: Right DC motor input voltage u
Figure 6.21: Right DC motor timestamp for EM and
Control part of EMC

Comparison between MIL and RHIT:

Figure 6.22: Right DC motor outputs y, yref and ŷm -
Comparison between MIL and RHIT

Figure 6.23: Right DC motor timestamp for EM and
Control part of EMC - Comparison between MIL and
RHIT

Figure 6.24: Right DC motor MIL and RHIT ey (above) and eŷm (below) error difference

6.4. SIMULINK MIL RESULTS - RIGHT MOTOR 64

6.4.2 Disturbance rejection, target output speed ω̃
R
= [8,3,5.5,7] rads

MIL simulation test results:

Figure 6.25: Right DC motor outputs y, yref and ŷm
Figure 6.26: Right DC motor tracking error etrk and
model error em

Figure 6.27: Right DC motor input voltage u
Figure 6.28: Right DC motor timestamp for EM and
Control part of EMC

Comparison between MIL and RHIT:

Figure 6.29: Right DC motor outputs y, yref and ŷm -
Comparison between MIL and RHIT

Figure 6.30: Right DC motor timestamp for EM and
Control part of EMC - Comparison between MIL and
RHIT

Figure 6.31: Right DC motor MIL and RHIT ey (above) and eŷm (below) error difference

65 CHAPTER 6. DC MOTORS EMC MODEL-IN-THE-LOOP (MIL) TESTS

6.4.3 No disturbance rejection, target output speed ω̃
R
= [6,4] rads

MIL simulation test results:

Figure 6.32: Right DC motor outputs y, yref and ŷm
Figure 6.33: Right DC motor tracking error etrk and
model error em

Figure 6.34: Right DC motor input voltage u
Figure 6.35: Right DC motor timestamp for EM and
Control part of EMC

Comparison between MIL and RHIT:

Figure 6.36: Right DC motor outputs y, yref and ŷm -
Comparison between MIL and RHIT

Figure 6.37: Right DC motor timestamp for EM and
Control part of EMC - Comparison between MIL and
RHIT

Figure 6.38: Right DC motor MIL and RHIT ey (above) and eŷm (below) error difference

6.4. SIMULINK MIL RESULTS - RIGHT MOTOR 66

6.4.4 No disturbance rejection, target output speed ω̃
R
= [8,3,5.5,7] rads

MIL simulation test results:

Figure 6.39: Right DC motor outputs y, yref and ŷm
Figure 6.40: Right DC motor tracking error etrk and
model error em

Figure 6.41: Right DC motor input voltage u
Figure 6.42: Right DC motor timestamp for EM and
Control part of EMC

Comparison between MIL and RHIT:

Figure 6.43: Right DC motor outputs y, yref and ŷm -
Comparison between MIL and RHIT

Figure 6.44: Right DC motor timestamp for EM and
Control part of EMC - Comparison between MIL and
RHIT

Figure 6.45: Right DC motor MIL and RHIT ey (above) and eŷm (below) error difference

Chapter 7

Separated Left and Right DC motors EMC -

RHIT results

In this chapter SW/HW implementation (RHIT) of EMC for robot GoPiGo3 DC motors are described, showing

the main results: the ability of estimated states to track the reference states (tracking error) and the difference of

simplified EM model estimated outputs wrt the real robot plant outputs (model error). For theory about motors

EMC check Chapter 5, the versions tested are v1.0 and v1.1 for left motor, and v1.2 for right motor.

7.1 Left motor version 1.0 - RHIT results

In the next sections the Hardware-in-the-loop (RHIT) results of EMC Left DC motor are presented, considering

both 1st and 2nd order disturbances for x̂d and w. Instead for Right DC motor EMC version 1.2 is considered.

7.1.1 Main test settings

Since this is the first EMC built, many settings are experienced to obtain the best result in terms of tracking and

model errors. First some tests using a fixed sampling time of Ts = 0.02 s or Ts = 0.04 s are performed, in order to

see if EMC is working well in these conditions. These values are chosen properly, because it is known that motors

PWM work only at a fixed sampling time of T
PWM

= 0.02 s: therefore the fixed control sampling time must be the

same of a multiple. After that EMC can be directly proven using variable sampling time (the ranges are explained

afterwards).

EMC is then tested in load and no load conditions (robot placed or not on the ground), using or not disturbance

rejection in control input voltage u, using a 1st or a 2nd order disturbance w model.

For each result the plots show:

- Outputs of control model, motor measured speed y, estimated motor speed ŷm, reference speed y = yref to

be tracked by ŷm.

- Control input voltage u.

- Tracking error etrk and model error em.

- The 2 components of u control input, disturbance rejection part ud and tracking part utrk.

The reference part ū is not of practical interest, because it depends on reference dynamics which is not

affected by disturbances.

- Timestamp T .

7.1. LEFT MOTOR VERSION 1.0 - RHIT RESULTS 68

Modifications applied during work on control model and its implementation

- Some modifications are applied on the control CT eigenvalues µ
K
, since they’re too fast for RHIT practical

implementations, passing from ≈ −80 to ≈ −15.

- A filter was added for the command input u, using a moving average (MA) filter, which means that final

command input u
MA

will be the average sum of previous m − n inputs (m is the number of total inputs, n

is called the delay window length), [26]:

u
MA
(k) = 1

n

n−1

∑
k=1

u(m − k) (7.1)

A filter of this type always introduces a time delay which cannot be overcome directly in RHIT implemen-

tations, therefore a small window length must be selected. In this case n = 3 is sufficient, so they are used 3

previous control inputs to build the moving average final input. Further informations can be found in every

signal processing book, like [16].

In DC motor EMC case, the presence of moving average filter causes a small time delay of overall system,

hence increases stability in estimated motor speeds (i.e. CT eigenvalues can be faster without making system

estimated outputs oscillating).

- In C++ code implementation there are 2 main parts to be executed at every time step, one is the EMC model

and the other is the plant: during code execution the parts are run alternatively (plant → EMC → plant etc.).

At the beginning, at every step, first the EMC was executed, then the plant: in this way the plant output

speed enters the EMC model only in the next step, leading to bad results, especially using variable sample

time: in particular y output resolution becomes very high.

Solution is to run the plant first and use immediately the result output in the EMC model: in this case y

output resolution reduces to reliable physical values. Comparing Figure 7.1, where the EMC is run first at

every time step and Figure 7.2 where instead the plant is run first, the difference in output y resolution is

visibly clear.

- The control law part is separated from EM and ran at fixed sample time. Instead the EM part (with noise

estimator and reference dynamics blocks) run with variable sample time, further informations in Section 4.3.1.

For RHIT experiments a timer running at Tctrl = 0.02 s is used to step the control part model, and another

timer to step the EM part, at T
EM
= [0.01,0.03] or [0.02,0.04]s. This separation is used trying to have

better control results, since motor PWM always run at T
PWM

= 0.02 s.

Figure 7.1: Measured output speeds ŷm and y not filtered - EMC → plant implementation

69 CHAPTER 7. SEPARATED LEFT AND RIGHT DC MOTORS EMC - RHIT RESULTS

Figure 7.2: Measured output speeds ŷm and y not filtered - Plant → EMC implementation

7.1.2 Summary on the results

In general the model error is low in every test (in many cases with a bound < 0.5 rad/s), meaning that the noise

estimator is working very well. This bound cannot be improved because it is almost near the encoder quantization

resolution error for angular speed: indeed for Ts = 0.01 s the error is ϵmax = 0.0087/0.01 = 0.8727 rad/s, and
for Ts = 0.04 s the error is ϵmin = 0.0087/0.04 = 0.2182 rad/s. Hence the bound is ϵ = [0.2182,0.8727] rad/s.
0.5○ = 0.8727 rad is the encoder resolution position.

Instead for tracking error the results are really dependent on tests performed.

In the case of fixed sampling time, even with a simple 1st order disturbance model only, the tracking and distur-

bance rejection are very good. Comparing the 2 disturbance models (1st and 2nd), it can be seen that better results

are obtained with the 1st order, because making the control loop faster the output tracks better the reference. This

happens with continuous time control eigenvalues like µ
K
= [−11.1572,11.1572] using Ts = 0.04 s, with EMC

unified using only 1 HW timer (compare tests in Section 7.1.5 and Section 7.1.15).

This can be explained by noticing that ŷm is not entirely able to follow y using 1st order disturbance, indicating that

some dynamics are not estimated wrt 2nd order disturbance, look for example the output speeds in Section 7.1.5.

However, the advantage of 2nd order disturbance can be seen using variable sample time: the ability of tracking

the reference is slightly better, check tests in Section 7.1.7 and Section 7.1.17, using unified EMC.

When the EMC is split in 2 parts, EM and control, the tracking error is a little bit lower than using a unified EMC,

compare errors in Section 7.1.17 and Section 7.1.18. The difference is minimal, however conceptually is better to

have a control part running with a fixed sampling time of Tc = 0.02 s, because by construction PWM generator is

giving motor voltage at that rate.

Both using 1st and 2nd order disturbance and concerning the cases where EMC is split in two parts (EM and Con-

trol parts), reducing the random time used for timer to step the Embedded model part from T
EM
= [0.02,0.04] s

to T
EM
= [0.01,0.03] s and letting the control timer fixed to Tc = 0.02 s, the estimated output speed ŷm (and

consequently measurement y) tracks in a better way the reference yref . The highest evidence is between tests

using 2nd order disturbances in Section 7.1.18 (T
EM
= [0.02,0.04] s) and Section 7.1.19 (T

EM
= [0.01,0.03]s).

Furthermore, especially in load conditions, advantage of disturbance term ud in the command input is well evident

comparing the results with and without this term: without ud the tracking is very bad. Compare for example tests

in Section 7.1.23 and Section 7.1.24.

Using both fixed or variable sampling time, best error conditions are obtained with very slow control CT eigen-

values, with µ
K
= [−2.5647 × 2].

7.1. LEFT MOTOR VERSION 1.0 - RHIT RESULTS 70

7.1.3 First order disturbance, No load conditions - Result 1

Test settings: Disturbance rejection, Fixed sampling time T = 0.02 s, timer Control and EM unified, target speed

[6,4] rad/s.

Eigenvalue type CT eigenvalues Related DT at T = 0.02 s

Control µ
K

[−11.1572,−11.1572] [0.8,0.8]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.1: CT eigenvalues DC motor EMC Left motor v1.0 - 1st order disturbance, No load conditions, Result 1

Figure 7.3: Output speeds yref , ŷm and y not filtered Figure 7.4: Control input voltage u

Figure 7.5: Tracking error e
trk

and model error em

Figure 7.6: Control input parts ud and u
trk

Figure 7.7: Measured Timestamp T

71 CHAPTER 7. SEPARATED LEFT AND RIGHT DC MOTORS EMC - RHIT RESULTS

7.1.4 First order disturbance, No load conditions - Result 2

Test settings: Disturbance rejection, Fixed sampling time T = 0.02 s, timer Control and EM unified, target speed

[6,4] rad/s.

Eigenvalue type CT eigenvalues Related DT at T = 0.02 s

Control µ
K

[−5.2680,−5.2680] [0.9,0.9]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.2: CT eigenvalues DC motor EMC Left motor v1.0 - 1st order disturbance, No load conditions, Result 2

Figure 7.8: Output speeds yref , ŷm and y not filtered Figure 7.9: Control input voltage u

Figure 7.10: Tracking error e
trk

and model error em

Figure 7.11: Control input parts ud and u
trk

Figure 7.12: Measured Timestamp T

7.1. LEFT MOTOR VERSION 1.0 - RHIT RESULTS 72

7.1.5 First order disturbance, No load conditions - Result 3

Test settings: Disturbance rejection, Fixed sampling time T = 0.04 s, timer Control and EM unified, target speed

[6,4] rad/s.

Eigenvalue type CT eigenvalues Related DT at T = 0.02 s

Control µ
K

[−11.1572,−11.1572] [0.8,0.8]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.3: CT eigenvalues DC motor EMC Left motor v1.0 - 1st order disturbance, No load conditions, Result 3

Figure 7.13: Output speeds yref , ŷm and y not filtered Figure 7.14: Control input voltage u

Figure 7.15: Tracking error e
trk

and model error em

Figure 7.16: Control input parts ud and u
trk

Figure 7.17: Measured Timestamp T

73 CHAPTER 7. SEPARATED LEFT AND RIGHT DC MOTORS EMC - RHIT RESULTS

7.1.6 First order disturbance, No load conditions - Result 4

Test settings: Disturbance rejection, Fixed sampling time T = 0.04 s, timer Control and EM unified, target speed

[6,4] rad/s.

Eigenvalue type CT eigenvalues Related DT at T = 0.02 s

Control µ
K

[−5.2680,−5.2680] [0.9,0.9]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.4: CT eigenvalues DC motor EMC Left motor v1.0 - 1st order disturbance, No load conditions, Result 4

Figure 7.18: Measured output speeds ŷm and y not
filtered

Figure 7.19: Control input voltage u

Figure 7.20: Measured tracking error e
trk

and model error em

Figure 7.21: Control input parts ud and u
trk

Figure 7.22: Measured Timestamp T

7.1. LEFT MOTOR VERSION 1.0 - RHIT RESULTS 74

7.1.7 First order disturbance, No load conditions - Result 5

Test settings: Disturbance rejection, Variable sampling time T = [0.02,0.04] s, timer Control and EM unified,

target speed [6,4] rad/s.

Eigenvalue type CT eigenvalues Related DT at T = 0.02 s

Control µ
K

[−2.5647,−2.5647] [0.95,0.95]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.5: CT eigenvalues DC motor EMC Left motor v1.0 - 1st order disturbance, No load conditions, Result 5

Figure 7.23: Output speeds yref , ŷm and y not filtered Figure 7.24: Control input voltage u

Figure 7.25: Measured tracking error e
trk

and model error em

Figure 7.26: Control input parts ud and u
trk

Figure 7.27: Measured Timestamp T

75 CHAPTER 7. SEPARATED LEFT AND RIGHT DC MOTORS EMC - RHIT RESULTS

7.1.8 First order disturbance, No load conditions - Result 6

Test settings: Disturbance rejection, Variable sampling time T = [0.02,0.04] s, timer Control and EM separated,

target speed [6,4] rad/s.

Eigenvalue type CT eigenvalues Related DT at T = 0.02 s

Control µ
K

[−2.5647,−2.5647] [0.95,0.95]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.6: CT eigenvalues DC motor EMC Left motor v1.0 - 1st order disturbance, No load conditions, Result 6

Figure 7.28: Output speeds yref , ŷm and y not filtered Figure 7.29: Control input voltage u

Figure 7.30: Tracking error e
trk

and model error em

Figure 7.31: Control input parts ud and u
trk

Figure 7.32: Measured Timestamp T

7.1. LEFT MOTOR VERSION 1.0 - RHIT RESULTS 76

7.1.9 First order disturbance, No load conditions - Result 7

Test settings: Disturbance rejection, Variable sampling time T = [0.01,0.03] s, timer Control and EM separated,

target speed [6,4] rad/s.

Eigenvalue type CT eigenvalues Related DT at T = 0.02 s

Control µ
K

[−2.5647,−2.5647] [0.95,0.95]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.7: CT eigenvalues DC motor EMC Left motor v1.0 - 1st order disturbance, No load conditions, Result 7

Figure 7.33: Output speeds yref , ŷm and y not filtered Figure 7.34: Control input voltage u

Figure 7.35: Tracking error e
trk

and model error em

Figure 7.36: Control input parts ud and u
trk

Figure 7.37: Measured Timestamp T

77 CHAPTER 7. SEPARATED LEFT AND RIGHT DC MOTORS EMC - RHIT RESULTS

7.1.10 First order disturbance, No load conditions - Result 8

Test settings: No disturbance rejection, Variable sampling time T = [0.02,0.04] s, timer Control and EM separated,

target speed [6,4] rad/s.

Eigenvalue type CT eigenvalues Related DT at T = 0.02 s

Control µ
K

[−2.5647,−2.5647] [0.95,0.95]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.8: CT eigenvalues DC motor EMC Left motor v1.0 - 1st order disturbance, No load conditions, Result 8

Figure 7.38: Output speeds yref , ŷm and y not filtered Figure 7.39: Control input voltage u

Figure 7.40: Tracking error e
trk

and model error em

Figure 7.41: Control input parts ud and u
trk

Figure 7.42: Measured Timestamp T

7.1. LEFT MOTOR VERSION 1.0 - RHIT RESULTS 78

7.1.11 First order disturbance, Load Conditions - Result 1

Test settings: Disturbance rejection, Variable sampling time T = [0.01,0.03] s, timer Control and EM separated,

target speed [6,4] rad/s.

Eigenvalue type CT eigenvalues Related DT at T = 0.02 s

Control µ
K

[−2.5647,−2.5647] [0.95,0.95]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.9: CT eigenvalues DC motor EMC Left motor v1.0 - 1st order disturbance, Load conditions, Result 1

Figure 7.43: Output speeds yref , ŷm and y not filtered Figure 7.44: Control input voltage u

Figure 7.45: Tracking error e
trk

and model error em

Figure 7.46: Control input parts ud and u
trk Figure 7.47: Measured Timestamp T

79 CHAPTER 7. SEPARATED LEFT AND RIGHT DC MOTORS EMC - RHIT RESULTS

7.1.12 First order disturbance, Load Conditions - Result 2

Test settings: No disturbance rejection, Variable sampling time T = [0.01,0.03] s, timer Control and EM separated,

target speed [6,4] rad/s.

Eigenvalue type CT eigenvalues Related DT at T = 0.02 s

Control µ
K

[−2.5647,−2.5647] [0.95,0.95]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.10: CT eigenvalues DC motor EMC Left motor v1.0 - 1st order disturbance, Load conditions, Result 2

Figure 7.48: Output speeds yref , ŷm and y not filtered Figure 7.49: Control input voltage u

Figure 7.50: Tracking error e
trk

and model error em

Figure 7.51: Control input parts ud and u
trk

Figure 7.52: Measured Timestamp T

7.1. LEFT MOTOR VERSION 1.0 - RHIT RESULTS 80

7.1.13 Second order disturbance, No load conditions - Result 1

Test settings: Disturbance rejection, Fixed sampling time T = 0.02 s, timer Control and EM unified, target speed

[6,4] rad/s.

Eigenvalue type CT eigenvalues Related DT at T = 0.02 s

Control µ
K

[−11.1572,−11.1572] [0.8,0.8]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.11: CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, No load conditions, Result 1

Figure 7.53: Output speeds yref , ŷm and y not fil-
tered

Figure 7.54: Control input voltage u

Figure 7.55: Measured tracking error e
trk

and model error em

Figure 7.56: Control input parts ud and u
trk

Figure 7.57: Measured Timestamp T

81 CHAPTER 7. SEPARATED LEFT AND RIGHT DC MOTORS EMC - RHIT RESULTS

7.1.14 Second order disturbance, No load conditions - Result 2

Test settings: Disturbance rejection, Fixed sampling time T = 0.02 s, timer Control and EM unified, target speed

[6,4] rad/s.

Eigenvalue type CT eigenvalues Related DT at T = 0.02 s

Control µ
K

[−5.2680,−5.2680] [0.9,0.9]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.12: CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, No load conditions, Result 2

Figure 7.58: Output speeds yref , ŷm and y not filtered Figure 7.59: Control input voltage u

Figure 7.60: Tracking error e
trk

and model error em

Figure 7.61: Control input parts ud and u
trk

Figure 7.62: Measured Timestamp T

7.1. LEFT MOTOR VERSION 1.0 - RHIT RESULTS 82

7.1.15 Second order disturbance, No load conditions - Result 3

Test settings: Disturbance rejection, Fixed sampling time T = 0.04 s, timer Control and EM unified, target speed

[6,4] rad/s.

Eigenvalue type CT eigenvalues Related DT at T = 0.02 s

Control µ
K

[−11.1572,−11.1572] [0.8,0.8]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.13: CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, No load conditions, Result 3

Figure 7.63: Output speeds yref , ŷm and y not filtered Figure 7.64: Control input voltage u

Figure 7.65: Tracking error e
trk

and model error em

Figure 7.66: Control input parts ud and u
trk

Figure 7.67: Measured Timestamp T

83 CHAPTER 7. SEPARATED LEFT AND RIGHT DC MOTORS EMC - RHIT RESULTS

7.1.16 Second order disturbance, No load conditions - Result 4

Test settings: Disturbance rejection, Fixed sampling time T = 0.04 s, timer Control and EM unified, target speed

[6,4] rad/s.

Eigenvalue type CT eigenvalues Related DT at T = 0.02 s

Control µ
K

[−5.2680,−5.2680] [0.9,0.9]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.14: CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, No load conditions, Result 4

Figure 7.68: Output speeds yref , ŷm and y not filtered Figure 7.69: Control input voltage u

Figure 7.70: Tracking error e
trk

and model error em

Figure 7.71: Control input parts ud and u
trk

Figure 7.72: Measured Timestamp T

7.1. LEFT MOTOR VERSION 1.0 - RHIT RESULTS 84

7.1.17 Second order disturbance, No load conditions - Result 5

Test settings: Disturbance rejection, Variable sampling time T = [0.02,0.04] s, timer Control and EM unified,

target speed [6,4] rad/s.

Eigenvalue type CT eigenvalues Related DT at T = 0.02 s

Control µ
K

[−2.5647,−2.5647] [0.95,0.95]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.15: CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, No load conditions, Result 5

Figure 7.73: Output speeds yref , ŷm and y not filtered Figure 7.74: Control input voltage u

Figure 7.75: Tracking error e
trk

and model error em

Figure 7.76: Control input parts ud and u
trk

Figure 7.77: Measured Timestamp T

85 CHAPTER 7. SEPARATED LEFT AND RIGHT DC MOTORS EMC - RHIT RESULTS

7.1.18 Second order disturbance, No load conditions - Result 6

Test settings: Disturbance rejection, Variable sampling time T = [0.02,0.04] s, timer Control and EM separated,

target speed [6,4] rad/s.

Eigenvalue type CT eigenvalues Related DT at T = 0.02 s

Control µ
K

[−2.5647,−2.5647] [0.95,0.95]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.16: CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, No load conditions, Result 6

Figure 7.78: Output speeds yref , ŷm and y not filtered Figure 7.79: Control input voltage u

Figure 7.80: Tracking error e
trk

and model error em

Figure 7.81: Control input parts ud and u
trk

Figure 7.82: Measured Timestamp T

7.1. LEFT MOTOR VERSION 1.0 - RHIT RESULTS 86

7.1.19 Second order disturbance, No load conditions - Result 7

Test settings: Disturbance rejection, Variable sampling time T = [0.01,0.03] s, timer Control and EM separated,

target speed [6,4] rad/s.

Eigenvalue type CT eigenvalues Related DT at T = 0.02 s

Control µ
K

[−2.5647,−2.5647] [0.95,0.95]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.17: CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, No load conditions, Result 7

Figure 7.83: Output speeds yref , ŷm and y not filtered Figure 7.84: Control input voltage u

Figure 7.85: Tracking error e
trk

and model error em

Figure 7.86: Control input parts ud and u
trk

Figure 7.87: Measured Timestamp EM T
EM

87 CHAPTER 7. SEPARATED LEFT AND RIGHT DC MOTORS EMC - RHIT RESULTS

7.1.20 Second order disturbance, No load conditions - Result 8

Test settings: Disturbance rejection, Variable sampling time T = [0.01,0.03] s, timer Control and EM separated,

target speed [8,3,5.5,7] rad/s.

Eigenvalue type CT eigenvalues Related DT at T = 0.02 s

Control µ
K

[−2.5647,−2.5647] [0.95,0.95]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.18: CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, No load conditions, Result 8

Figure 7.88: Output speeds yref , ŷm and y not filtered Figure 7.89: Control input voltage u

Figure 7.90: Tracking error e
trk

and model error em

Figure 7.91: Control input parts ud and u
trk

Figure 7.92: Measured Timestamp T

7.1. LEFT MOTOR VERSION 1.0 - RHIT RESULTS 88

7.1.21 Second order disturbance, No load conditions - Result 9

Test settings: No disturbance rejection, Variable sampling time T = [0.02,0.04] s, timer Control and EM unified,

target speed [6,4] rad/s.

Eigenvalue type CT eigenvalues Related DT at T = 0.02 s

Control µ
K

[−2.5647,−2.5647] [0.95,0.95]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.19: CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, No load conditions, Result 9

Figure 7.93: Output speeds yref , ŷm and y not filtered Figure 7.94: Control input voltage u

Figure 7.95: Tracking error e
trk

and model error em

Figure 7.96: Control input parts ud and u
trk

Figure 7.97: Measured Timestamp T

89 CHAPTER 7. SEPARATED LEFT AND RIGHT DC MOTORS EMC - RHIT RESULTS

7.1.22 Second order disturbance, No load conditions - Result 10

Test settings: No disturbance rejection, Variable sampling time T = [0.02,0.04] s, timer Control and EM separated,

target speed [6,4] rad/s.

Eigenvalue type CT eigenvalues Related DT at T = 0.02 s

Control µ
K

[−2.5647,−2.5647] [0.95,0.95]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.20: CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, No load conditions, Result 10

Figure 7.98: Output speeds yref , ŷm and y not filtered Figure 7.99: Control input voltage u

Figure 7.100: Tracking error e
trk

and model error em

Figure 7.101: Control input parts ud and u
trk

Figure 7.102: Measured Timestamp EM T
EM

7.1. LEFT MOTOR VERSION 1.0 - RHIT RESULTS 90

7.1.23 Second order disturbance, Load conditions - Result 1

Test settings: Disturbance rejection, Variable sampling time T = [0.01,0.03] s, timer Control and EM separated,

target speed [6,4] rad/s.

Eigenvalue type CT eigenvalues Related DT at T = 0.02 s

Control µ
K

[−2.5647,−2.5647] [0.95,0.95]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.21: CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, Load conditions, Result 1

Figure 7.103: Output speeds yref , ŷm and y not filtered Figure 7.104: Control input voltage u

Figure 7.105: Tracking error e
trk

and model error em

Figure 7.106: Control input parts ud and u
trk

Figure 7.107: Measured Timestamp T

91 CHAPTER 7. SEPARATED LEFT AND RIGHT DC MOTORS EMC - RHIT RESULTS

7.1.24 Second order disturbance, Load conditions - Result 2

Test settings: No disturbance rejection, Variable sampling time T = [0.01,0.03] s, timer Control and EM separated,

target speed [6,4] rad/s.

Eigenvalue type CT eigenvalues Related DT at T = 0.02 s

Control µ
K

[−2.5647,−2.5647] [0.95,0.95]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.22: CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, Load conditions, Result 2

Figure 7.108: Output speeds yref , ŷm and y not filtered Figure 7.109: Control input voltage u

Figure 7.110: Tracking error e
trk

and model error em

Figure 7.111: Control input parts ud and u
trk

Figure 7.112: Measured Timestamp T

7.1. LEFT MOTOR VERSION 1.0 - RHIT RESULTS 92

7.1.25 Second order disturbance, Load conditions - Result 3

Test settings: Disturbance rejection, Variable sampling time T = [0.01,0.03] s, timer Control and EM separated,

target speed [6.5,3,5] rad/s.

Eigenvalue type CT eigenvalues Related DT at T = 0.02 s

Control µ
K

[−2.5647,−2.5647] [0.95,0.95]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.23: CT eigenvalues DC motor EMC Left motor v1.0 - 2nd order disturbance, Load conditions, Result 3

Figure 7.113: Output speeds yref , ŷm and y not filtered Figure 7.114: Control input voltage u

Figure 7.115: Tracking error e
trk

and model error em

Figure 7.116: Control input parts ud and u
trk

Figure 7.117: Measured Timestamp T

93 CHAPTER 7. SEPARATED LEFT AND RIGHT DC MOTORS EMC - RHIT RESULTS

7.2 Left motor version 1.1 - RHIT results

In this part, some RHIT physical implementation tests for left motor EMc version 1.1 are performed.

7.2.1 Main settings

The same settings considered for Left motor v1.0 are considered for this version, Section 7.1.

Every set of plots is composed again by motor outputs, control input u with its components, tracking and model

errors and Timestamp. EMC is compared in load and no load conditions, using or not disturbance rejection,

splitting or not in EM and control parts. Different target speeds are also considered.

Now is not needed anymore verify the control model with fixed sampling time, hence all tests are performed using

variable sampling time. The disturbance model for w is of 2nd order. For other specific informations refers to

Section 7.1.1.

For all tests the CT eigenvalues are:

Eigenvalue type CT eigenvalues Related DT eigenvalues at T = 0.02 s

Control µ
K

[−2.5647,−2.5647] [0.95,0.95]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.24: CT DC motor EMC left motor v1.1

7.2.2 Summary on the results

The main difference wrt left motor EMC v1.0 is the change of motor mechanical part parameters (τm and k′v): this

lead to lower difference of control model wrt robot plant, and better disturbance rejection. This is for example

proven by looking at some load tests with difference reference speeds to be tracked, Section 7.2.7 and Section 7.1.25.

Apart from that, no other differences are found, the main result objectives are the same of Section 7.1.2 for EMC

left motor v1.0.

7.2. LEFT MOTOR VERSION 1.1 - RHIT RESULTS 94

7.2.3 No load conditions - Result 1

Test settings: Disturbance rejection, Variable sampling time T = [0.02,0.04] s, timer Control and EM unified,

target speed [6,4] rad/s.

Figure 7.118: Output speeds yref , ŷm and y not filtered Figure 7.119: Control input voltage u

Figure 7.120: Tracking error e
trk

and model error em

Figure 7.121: Control input parts ud and u
trk

Figure 7.122: Measured Timestamp T

95 CHAPTER 7. SEPARATED LEFT AND RIGHT DC MOTORS EMC - RHIT RESULTS

7.2.4 No load conditions - Result 2

Test settings: Disturbance rejection, Variable sampling time T = [0.01,0.03] s, timer Control and EM unified,

target speed [8,3,5.5,7] rad/s.

Figure 7.123: Output speeds yref , ŷm and y not filtered Figure 7.124: Control input voltage u

Figure 7.125: Tracking error e
trk

and model error em

Figure 7.126: Control input parts ud and u
trk

Figure 7.127: Measured Timestamp T

7.2. LEFT MOTOR VERSION 1.1 - RHIT RESULTS 96

7.2.5 No load conditions - Result 3

Test settings: Disturbance rejection, Variable sampling time T
EM
= [0.01,0.03] s, timer Control and EM separated,

target speed [8,3,5.5,7] rad/s.

Figure 7.128: Output speeds yref , ŷm and y not filtered Figure 7.129: Control input voltage u

Figure 7.130: Tracking error e
trk

and model error em

Figure 7.131: Control input parts ud and u
trk

Figure 7.132: Measured Timestamp T

97 CHAPTER 7. SEPARATED LEFT AND RIGHT DC MOTORS EMC - RHIT RESULTS

7.2.6 No load conditions - Result 4

Test settings: No disturbance rejection, Variable sampling time T
EM
= [0.02,0.04] s, timer Control and EM

separated, target speed [6,4] rad/s.

Figure 7.133: Output speeds yref , ŷm and y not filtered Figure 7.134: Control input voltage u

Figure 7.135: Tracking error e
trk

and model error em

Figure 7.136: Control input parts ud and u
trk

Figure 7.137: Measured Timestamp T

7.2. LEFT MOTOR VERSION 1.1 - RHIT RESULTS 98

7.2.7 Load conditions - Result 1

Test settings: Disturbance rejection, Variable sampling time T
EM
= [0.01,0.03] s, timer Control and EM separated,

target speed [6.5,3,5] rad/s.

Figure 7.138: Output speeds yref , ŷm and y not filtered Figure 7.139: Control input voltage NOT filtered u

Figure 7.140: Tracking error e
trk

and model error em

Figure 7.141: Control input parts ud and u
trk

Figure 7.142: Measured Timestamp T

99 CHAPTER 7. SEPARATED LEFT AND RIGHT DC MOTORS EMC - RHIT RESULTS

7.3 Right motor v1.2 - RHIT results

For the right motor tests, version 1.2 considering the parameters identification with best results.

7.3.1 Main settings

The very same implementation settings used for left motor EMC v1.0 are considered, Section 7.1.1. However the

following settings are common for all tests:

• Continuous eigenvalues used:

Eigenvalue type CT eigenvalues Related DT eigenvalues at T = 0.02 s

Control µ
K

[−2.5647,−2.5647] [0.95,0.95]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842] [0.75,0.75]

Table 7.25: CT eigenvalues DC motor EMC

• Control and EM parts of EMC DC motor are separated and their codes ran with different sampling times.

Control part sampling time was maintained always fixed at T = 0.02 s. Instead EM part is repeated every

T = [0.01 − 0.03] s.

• 2nd order model disturbance for w is used.

7.3.2 Summary on the results

The main results are almost the same as the ones already described in Section 7.1.2 for EMC left motor v1.0.

Even using a simplified model (EM) for the right motor the tracking and model errors e
trk

and em are small and

almost within the output speed resolution, as already explained in left motor EMC v1.0. In Load conditions robot

is placed in floor, hence a load torque is added to the system as further disturbance. In this conditions robot

DC motors are supplied by batteries, so the maximum voltage depend on their state of charge. A saturation is

imposed in this case, and the output speed in some tests is limited.

Significant is the difference with and without the presence of disturbance rejection: even if em is almost the same,

e
trk

is very high in time transient phases of each output speed steps. This is mainly due to motors dynamic

behaviour (voltage input dead-zones, check MIL fine model in Section 6.1). Important is to consider that this high

difference is reduced when fastest control eigenvalues µ
K
are considered (approximately µ

K
< −5).

7.3. RIGHT MOTOR V1.2 - RHIT RESULTS 100

7.3.3 No load conditions - Result 1

Test settings: Disturbance rejection, Target speed [6,4] rad/s.

Figure 7.143: Output speeds yref , ŷm and y not filtered Figure 7.144: Control input voltage u

Figure 7.145: Tracking error e
trk

and model error em

Figure 7.146: Control input parts ud and u
trk

Figure 7.147: Measured Timestamp T

101 CHAPTER 7. SEPARATED LEFT AND RIGHT DC MOTORS EMC - RHIT RESULTS

7.3.4 No load conditions - Result 2

Test settings: Disturbance rejection, Target speed [8,3,5.5,7] rad/s.

Figure 7.148: Output speeds yref , ŷm and y not filtered Figure 7.149: Control input voltage u

Figure 7.150: Tracking error e
trk

and model error em

Figure 7.151: Control input parts ud and u
trk

Figure 7.152: Measured Timestamp T

7.3. RIGHT MOTOR V1.2 - RHIT RESULTS 102

7.3.5 No load conditions - Result 3

Test settings: Disturbance rejection, Target speed [7,−3,4,−6.5] rad/s.

Figure 7.153: Output speeds yref , ŷm and y not filtered Figure 7.154: Control input voltage u

Figure 7.155: Tracking error e
trk

and model error em

Figure 7.156: Control input parts ud and u
trk

Figure 7.157: Measured Timestamp T

103 CHAPTER 7. SEPARATED LEFT AND RIGHT DC MOTORS EMC - RHIT RESULTS

7.3.6 No load conditions - Result 4

Test settings: No disturbance rejection, Target speed [6,4] rad/s.

Figure 7.158: Output speeds yref , ŷm and y not filtered Figure 7.159: Control input voltage u

Figure 7.160: Tracking error e
trk

and model error em

Figure 7.161: Control input parts ud and u
trk

Figure 7.162: Measured Timestamp T

7.3. RIGHT MOTOR V1.2 - RHIT RESULTS 104

7.3.7 No load conditions - Result 5

Test settings: No disturbance rejection, Target speed [8,3,5.5,7] rad/s.

Figure 7.163: Output speeds yref , ŷm and y not filtered Figure 7.164: Control input voltage u

Figure 7.165: Tracking error e
trk

and model error em

Figure 7.166: Control input parts ud and u
trk

Figure 7.167: Measured Timestamp T

105 CHAPTER 7. SEPARATED LEFT AND RIGHT DC MOTORS EMC - RHIT RESULTS

7.3.8 Load conditions - Result 1

Test settings: Disturbance rejection, Target speed [8,3,5.5,7] rad/s. Case of input saturation (because of low

battery voltage supply).

Figure 7.168: Output speeds yref , ŷm and y not filtered Figure 7.169: Control input voltage u

Figure 7.170: Tracking error e
trk

and model error em

Figure 7.171: Control input parts ud and u
trk

Figure 7.172: Measured Timestamp T

7.3. RIGHT MOTOR V1.2 - RHIT RESULTS 106

7.3.9 Load conditions - Result 2

Test settings: No disturbance rejection, Target speed [8,3,5.5,7] rad/s. Case of input saturation (because of low

battery voltage supply).

Figure 7.173: Output speeds yref , ŷm and y not filtered Figure 7.174: Control input voltage u

Figure 7.175: Tracking error e
trk

and model error em

Figure 7.176: Control input parts ud and u
trk Figure 7.177: Measured Timestamp T

Chapter 8

Combined Left and Right DC motors EMC -

RHIT results

RHIT tests are performed using both left and right motors EMC in combination, to see if the results obtained with

motors EMC separated can be confirmed.

8.1 Main RHIT tests settings

The EMC versions used for both the motors are the ones giving the best results: v1.1 and v1.2 for the left motor

(Section 5.1.4 and Section 5.1.5) and the only one found (v1.2) for the right motor (Section 5.1.5). Version 1.1 is

considered with separated left motor EMC RHIT, however with tests using motors in combination is added the

version 1.2, since v1.1 seems to be not entirely sufficient to obtain good tracking and model errors.

Common settings are (unless specified in each test):

• Left motor EMC version 1.2 (in some tests v1.1 to understand the differences), Right motor Version 1.2.

• CT eigenvalues used:

Eigenvalue type CT eigenvalues Related DT eigenvalues at T = 0.02 s

Control µ
K

[−2.5647,−2.5647] [0.95,0.95]
Reference µ

R
−2.5647 0.95

Noise estimator µ
N
[−14.3842,−14.3842,−14.3842] [0.75,0.75,0.75]

Table 8.1: CT eigenvalues DC motor EMC

Control eigenvalues are changed in some test to see the effects of the designed model with and without

disturbance rejection. When needed the new eigenvalues will be specified.

• Control and EM parts of EMC DC motor are separated and their codes run with different sampling times.

Control part sampling time was maintained always fixed at Tctrl = 0.02 s. Instead EM part is repeated every

T
EM
= [0.01,0.03] s, detailed informations in Section 4.3.1.

• At every step the plant measurements are taken first, and then the EM part begin. It is verified with the

8.2. SUMMARY ON THE RESULTS 108

previous RHIT that using this implementation order gives good result for output speed resolution.

• 2nd order disturbance w is used.

• In all tests robot is placed in the floor, in load conditions, since it is important to understand its trajectory

during motion.

For each set of plots are shown: the DC motor output speeds (y, ŷm, yref), input voltages u, Timestamp EM/Control

T
EM

and Tctrl, tracking and model errors etrk, em.

Since now the 2 motors work together in load conditions (robot is moving on the floor) it is important the whole

robot position, speed and orientation. For this reason the trajectory followed by robot in Cartesian coordinates ξ, ν

is computed. Accepting some approximations it can be used the simplified differential robot kinematic equations

model explained in Equation (3.15).

Two main trajectories are considered, linear and circular, specific settings are written in correspondent test section.

Concerning circular trajectory, since at the time of these tests no robot position and orientation control has been

done yet, again kinematic properties of DD robot are exploited to find wheel speeds starting from a desired circular

trajectory of known wheel mean radius rm and total robot speed v, following Equation (3.16).

For each test is therefore added a figure with robot ξ, ν trajectory, in which the start and end points are highlighted,

and the arrows are coloured depending on path completion (passing from blue near the start to red near the end).

Different tests are made with and without disturbance rejection, with different reference output values, both

negative and positive, and also with different control eigenvalues and model parameters (left motor v1.1 and v1.2).

8.2 Summary on the results

During tests different parameters of EMC DC motor and CT control eigenvalues are used.

Right motor control model gives good model and tracking errors em and etrk respectively, therefore the unique

version found (Section 5.1.5) is sufficient.

Instead left motor control model have some problems to follow the reference speed (some oscillations around the

reference are present), for this reason some tests using different versions are considered: comparing left motor

EMC version 1.1 (Section 5.1.4) and 1.2 (Section 5.1.5), slightly better results are obtained with second version3.

In one test control eigenvalues µ
K
are changed from [−2.5647,−2.5647] of Section 8.3.3 test to [−5.2647,−5.2647]

of Section 8.3.4 test (faster ones): the tracking error results are not improved (not perfect linear trajectory): this

means that the selected control eigenvalues are fast enough for tracking the reference.

In linear trajectory tests, the robot sometimes didn’t follow a perfect straight line: we need to remember that no

position and orientation EMC have not been made yet: without this control, even if the EMC DC motor models

work well, floor imperfections (bumps, slope etc.) can lead to trajectory errors.

3However we need to remember that the difference in model parameters are almost completely compensated by noise estimator, so if
the tracking error is not good in theory is a matter of control eigenvalues (need to choose slower ones)

109 CHAPTER 8. COMBINED LEFT AND RIGHT DC MOTORS EMC - RHIT RESULTS

8.3 Linear trajectory

8.3.1 Disturbance rejection - Result 1

Specific test settings: EMC DC motor version 1.1. Targets ω̃
L
= ω̃

R
= [6,4] rad/s.

Figure 8.1: Robot position
Figure 8.2: Measured Timestamp T - Left and Right
motor

Figure 8.3: Output speeds reference yref , estimated ŷm
and measured y - Left motor

Figure 8.4: Output speeds reference yref , estimated ŷm
and measured y - Right motor

Figure 8.5: Control input voltage u - Left motor Figure 8.6: Control input voltage u - Right motor

Figure 8.7: Tracking error etrk and model error em -
Left motor

Figure 8.8: Tracking error etrk and model error em -
Right motor

8.3. LINEAR TRAJECTORY 110

8.3.2 Disturbance rejection - Result 2

Specific test settings: EMC DC motor version 1.1. Targets ω̃
L
= ω̃

R
= [6,−4,5] rad/s

Figure 8.9: Robot position
Figure 8.10: Measured Timestamp T - Left and Right
motor

Figure 8.11: Output speeds reference yref , estimated
ŷm and measured y - Left motor

Figure 8.12: Output speeds reference yref , estimated
ŷm and measured y - Right motor

Figure 8.13: Control input voltage u - Left motor Figure 8.14: Control input voltage u - Right motor

Figure 8.15: Tracking error etrk and model error em -
Left motor

Figure 8.16: Tracking error etrk and model error em -
Right motor

111 CHAPTER 8. COMBINED LEFT AND RIGHT DC MOTORS EMC - RHIT RESULTS

8.3.3 Disturbance rejection - Result 3

Specific test settings: Targets ω̃
L
= ω̃

R
= [6,−4,5] rad/s

Figure 8.17: Robot position
Figure 8.18: Measured Timestamp T - Left and Right
motor

Figure 8.19: Output speeds reference yref , estimated
ŷm and measured y - Left motor

Figure 8.20: Output speeds reference yref , estimated
ŷm and measured y - Right motor

Figure 8.21: Control input voltage u - Left motor Figure 8.22: Control input voltage u - Right motor

Figure 8.23: Tracking error etrk and model error em -
Left motor

Figure 8.24: Tracking error etrk and model error em -
Right motor

8.3. LINEAR TRAJECTORY 112

8.3.4 Disturbance rejection - Result 4

Specific test settings: CT control eigenvalues µ
K
= [−5.2647,−5.2647]. Using faster control eigenvalues the drift

of robot during its motion is present anyway (i.e. the trajectory is not perfectly linear). Targets ω̃
L
= ω̃

R
= 6 rad/s

Figure 8.25: Robot position
Figure 8.26: Measured Timestamp T - Left and Right
motor

Figure 8.27: Output speeds reference yref , estimated
ŷm and measured y - Left motor

Figure 8.28: Output speeds reference yref , estimated
ŷm and measured y - Right motor

Figure 8.29: Control input voltage u - Left motor Figure 8.30: Control input voltage u - Right motor

Figure 8.31: Tracking error etrk and model error em -
Left motor

Figure 8.32: Tracking error etrk and model error em -
Right motor

113 CHAPTER 8. COMBINED LEFT AND RIGHT DC MOTORS EMC - RHIT RESULTS

8.3.5 No disturbance rejection - Result 1

Specific test settings: Targets ω̃
L
= ω̃

R
= [6,−4,5] rad/s

Figure 8.33: Robot position
Figure 8.34: Measured Timestamp T - Left and Right
motor

Figure 8.35: Output speeds reference yref , estimated
ŷm and measured y - Left motor

Figure 8.36: Output speeds reference yref , estimated
ŷm and measured y - Right motor

Figure 8.37: Control input voltage u - Left motor Figure 8.38: Control input voltage u - Right motor

Figure 8.39: Tracking error etrk and model error em -
Left motor

Figure 8.40: Tracking error etrk and model error em -
Right motor

8.3. LINEAR TRAJECTORY 114

8.3.6 No disturbance rejection - Result 2

Specific test settings: Targets ω̃
L
= ω̃

R
= 6 rad/s.

Figure 8.41: Robot position
Figure 8.42: Measured Timestamp T - Left and Right
motor

Figure 8.43: Output speeds reference yref , estimated
ŷm and measured y - Left motor

Figure 8.44: Output speeds reference yref , estimated
ŷm and measured y - Right motor

Figure 8.45: Control input voltage u - Left motor Figure 8.46: Control input voltage u - Right motor

Figure 8.47: Tracking error etrk and model error em -
Left motor

Figure 8.48: Tracking error etrk and model error em -
Right motor

115 CHAPTER 8. COMBINED LEFT AND RIGHT DC MOTORS EMC - RHIT RESULTS

8.4 Circular trajectory

8.4.1 Disturbance rejection - Result 1

Specific test settings: The desired radius and mean linear velocity of robot used are rm = 0.3m and vξ = 4 m
s .

Figure 8.49: Robot position

Figure 8.50: Measured Timestamp T - Left and Right
motor

Figure 8.51: Output speeds reference yref , estimated
ŷm and measured y - Left motor

Figure 8.52: Output speeds reference yref , estimated
ŷm and measured y - Right motor

Figure 8.53: Control input voltage u - Left motor Figure 8.54: Control input voltage u - Right motor

Figure 8.55: Tracking error etrk and model error em
- Left motor

Figure 8.56: Tracking error etrk and model error em
- Right motor

8.4. CIRCULAR TRAJECTORY 116

8.4.2 Disturbance rejection - Result 2

Specific test settings: The desired radius and mean linear velocity of robot used are rm = 0.3m and vξ = 4 m
s .

Figure 8.57: Robot position

Figure 8.58: Measured Timestamp T - Left and Right
motor

Figure 8.59: Output speeds reference yref , estimated
ŷm and measured y - Left motor

Figure 8.60: Output speeds reference yref , estimated
ŷm and measured y - Right motor

Figure 8.61: Control input voltage u - Left motor Figure 8.62: Control input voltage u - Right motor

Figure 8.63: Tracking error etrk and model error em -
Left motor

Figure 8.64: Tracking error etrk and model error em -
Right motor

Chapter 9

Inertial Measurement Unit (IMU)

measurements with Two motors EMC

EMC until now is verified using both 2 motors in load conditions (robot placed on the ground). Objective in the

next chapters will be to built an EMC to control robot orientation/longitudinal position. Orientation of the robot

is defined mainly by angular speed ωz and yaw angle θz around z-axis, and longitudinal position by ξ coordinate.

To obtain these measurements a IMU device is selected. Hence in this chapter, using already controlled DC motors

with EMC, IMU data are taken and post-processed to understand if measurements are reliable to be considered

for orientation/position control.

9.1 Main measurements settings

9.1.1 IMU

To obtain data from IMU, a library called RTIMULib2 in C++ code is used (freely downloadable from GitHub

repository, [24]). The library contains already prepared functions to get raw accelerometer, magnetometer and

gyroscope data.

Before starting using IMU, calibration of all sensors is necessary: common procedure consists in computing

bias/offsets of all data and subtract them from actual values of acceleration, angular speed and magnetic field

at runtime. For example acceleration bias Ba can be computed by taking minimum and maximum values for

all coordinate components ξ, ν, z, make the mean values and subtract them from actual accelerations, at every

measurement step:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ba,ξ =
aξ,min + aξ,max

2

Ba,ν =
aν,min + aν,max

2

Ba,z =
az,min + az,max

2

⇒

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

acorrξ = aξ −Ba,ξ

acorrν = aν −Ba,ν

acorrz = az −Baz

A more precise procedure to remove bias is to take many measurements putting IMU in different positions and

compute the bias and sensitivity errors as explained in [10]. Similar procedure can be done for angular speed and

magnetic field.

A tool for calibration is already present in the RTIMULib2 C++ library to make the calibration: it saves all

offsets/biases in a setting file (RTIMULib.ini) that can be used in every C++ code, uploading it with a function. The

calibration for accelerometer/gyroscope is done moving IMU around space with almost all possible orientations,

and the tool saves the minimum and maximum values for each Cartesian direction. Instead for magnetometer first

9.1. MAIN MEASUREMENTS SETTINGS 118

an ellipsoid of values is saved, moving IMU in all possible directions: from this ellipsoid magnetic field offsets are

computed and then removed.

In this file also other settings are present: sensors full scale range, sample rates (for fusion algorithms). Specifically:

Sensor Setting name Value Notes

Gyroscope Sample rate 95Hz

Full scale range ±250 ○/s ≈ ±4.36 rad
s

Accelerometer Sample rate 50Hz
Full scale range ±2g Minimum value possible (others are ±4,±8,±16g)

Magnetometer Sample rate 30Hz
Full scale range ±130µT

Table 9.1: IMU sensors settings

There is also a sensor fusion algorithm already implemented to compute orientation (roll, pitch and yaw Euler

angles) based on Kalman filter or RTQF estimation methods. Obviously orientation results are sensitive to sensor

measurement errors, for this reason good calibration is fundamental.

Magnetometer is the most difficult to be calibrated, since the magnetic field changes a lot depending on its location

in robot platform: this depends on other magnetic fields generated not only by DC motors but also by embedded

HW board.

Considering this problem, 2 possibilities for fusion algorithm can be used:

• Using all 3 sensors data inside fusion algorithm.

To calibrate the magnetometer, it was fixed with adhesive in a precise position of robot platform and then

calibrated with RTIMULib2 tool. In this way, the motors/HW magnetic fields don’t interfere since both robot

and magnetometer are in the same reference frame.

This method leads to absolute orientation, i.e. depending directly on earth magnetic field.

• Use only accelerometer and gyroscope for sensor fusion. In this case roll, pitch and yaw angles start from 0

at every IMU reset.

IMU results considering both the 2 conditions are shown, to understand which is the best solution.

For accelerometer, library contains also a C++ function to compute linear accelerations (also called acceleration

residuals), which are acceleration values without the effect of gravity. The algorithm multiply total gravity (Eu-

clidean 2-norm of all acceleration components) with orientation matrix and quaternion pose, and subtract it from

actual acceleration.

9.1.2 DC Motor EMC

EMC versions 1.2 for the left motor and the only one found for the right motor are used for motor parameters.

Common EMC motor settings are:

• Continuous eigenvalues used:

119 CHAPTER 9. INERTIAL MEASUREMENT UNIT (IMU) MEASUREMENTS WITH TWO MOTORS EMC

Eigenvalue type CT eigenvalues Related DT eigenvalues at T = 0.02 s

Reference µ
R

−2.5647 0.95
Noise estimator µ

N
[−14.3842,−14.3842,−14.3842] [0.75,0.75,0.75]

Control µ
K

[−2.5647,−2.5647] [0.95,0.95]

Table 9.2: CT eigenvalues DC motor EMC - 2 motors load conditions

• Control and EM parts of EMC DC motor are separated and their codes run with different sampling times.

Control part one is maintained always fixed at Tctrl = 0.02 s. Instead EM part is repeated every T
EM
=

[0.01,0.03] s.

• At every step the plant measurements are taken first, and then the EM part begin.

• 2nd order disturbance w is used.

• Robot placed in floor, load conditions.

9.1.3 Kinematic model

In order to verify position and orientation of the robot recovered by IMU in each test, they are computed using the

simplified differential robot kinematic model in Equation (3.15). If robot in RHIT tests follows a circular trajectory

with mean radius rm and total robot speed v, the wheel speeds are computed at runtime with Equation (3.16).

9.2 Measurement plots

• 2 EMC DC motors figures:

– Measured, estimated and reference output speed y, ŷm and y
ref

, in rad/s.

• Kinematic equation figures:

– Robot trajectory, in which the start and end points are highlighted, and trajectories and arrows are

coloured depending on path completion (passing from blue near the start to red near the end).

2 main trajectories are considered, linear and circular.

For linear trajectories reference wheel speeds ω̃
L
= ω̃

R
are: 0 rad/s for [0,5] s, 6 rad/s for [5,15] s and

finally 4 rad/s for [15,20] s. Robot reaches approximately a longitudinal position of ξ ≈ 2.5m.

For circular trajectory the desired radius and mean linear velocity of robot used are rm = 0.3m and

v = 4m/s. From these values angular speed can be computed following Equation (3.16), ωz = θ̇z ≈
0.43 rad/s. This is the value expected by gyroscope measurements. Instead reference wheel speeds are

ω̃
L
≈ 3.2 rad/s and ω̃

R
= 4.7 rad/s.

– θz (○) and ωz (rad/s) around z axis which is the most important in planar motion.

• IMU measurements and estimation figures:

– Orientation: roll, pitch, yaw angles (○), obtained using Kalman filter sensor fusion.

9.2. MEASUREMENT PLOTS 120

– Angular speed around all 3 axis ωξ, ων , ωz (rad/s).

– Magnetic field in all 3 axis (µT).

– Acceleration (with gravity g component), split in 3 axis components aξ, aν , az (g).

– Linear acceleration (without gravity g component), split in 3 axis components al,ξ, al,ν , al,z (g).

For accelerations, linear accelerations and angular speeds plots also filtered signals are shown, to better

understand their variations (since the sensor noise is reduced). Moving average filter of 15 sample delay

window is used like in left DC motor RHIT, Equation (7.1).

9.2.1 Summary on the results

The best orientation fusion algorithm seems to be the one without magnetometer, as it gives better pose results

(high output resolution, lower noise). However we will see in Chapter 12 making orientation EMC RHIT that the

absence of magnetometer leads to pose measurement drifts, especially when robot angular speed is very low.

Since we have planar motion, only yaw angle θz orientation component is important, either with linear and circular

trajectory the values are coherent with real conditions, with errors around some degrees.

Also gyroscope seems to give coherent values: for circular trajectories ωz ≈ 0.43 rad/s, as expected by kinematic

equations computations.

However, since accelerometer is a very sensible to noise sensor, it is impossible to understand if the acceleration

and linear acceleration values are good or not, some manipulations on data are needed to clean the noise (which

are not treated in this thesis work). At least, when robot is still, there is very few bias error (< 0.1g), meaning that

sensor calibration is done correctly.

121 CHAPTER 9. INERTIAL MEASUREMENT UNIT (IMU) MEASUREMENTS WITH TWO MOTORS EMC

9.2.2 No magnetometer data in sensor fusion, Linear trajectory - Result 1

Trajectory estimated with kinematic equations:

Figure 9.1: Robot position

Figure 9.2: Robot orientation θz Figure 9.3: Angular speed ωz

IMU measurements and estimations:

Figure 9.4: Robot orientation - IMU estimation using
Kalman filter sensor fusion

Figure 9.5: Robot angular acceleration - IMU measure-
ments raw and filtered (moving average - 15 samples
window)

9.2. MEASUREMENT PLOTS 122

Figure 9.6: Magnetic field - IMU raw measurements
Figure 9.7: Robot Acceleration - IMU measurements
raw and filtered (moving average - 15 samples window)

Figure 9.8: Robot linear acceleration - IMU estimation using orientation matrix, raw and filtered (moving average
- 15 samples window)

Left and Right DC motors EMC output speeds:

Figure 9.9: Output speeds reference yref , estimated ŷm
and measured y - Left motor

Figure 9.10: Output speeds reference yref , estimated
ŷm and measured y - Right motor

123 CHAPTER 9. INERTIAL MEASUREMENT UNIT (IMU) MEASUREMENTS WITH TWO MOTORS EMC

9.2.3 No magnetometer data in sensor fusion, Circular trajectory - Result 1

Trajectory estimated with kinematic equations:

Figure 9.11: Robot position

Figure 9.12: Robot orientation θz Figure 9.13: Angular speed ωz

IMU measurements and estimations:

Figure 9.14: Robot orientation - IMU estimation using
Kalman filter sensor fusion

Figure 9.15: Robot angular acceleration - IMU mea-
surements raw and filtered (moving average - 15 sam-
ples window)

9.2. MEASUREMENT PLOTS 124

Figure 9.16: Magnetic field - IMU raw measurements
Figure 9.17: Robot Acceleration - IMU measurements
raw and filtered (moving average - 15 samples window)

Figure 9.18: Robot linear acceleration - IMU estimation using orientation matrix, raw and filtered (moving average
- 15 samples window)

Left and Right DC motors EMC output speeds:

Figure 9.19: Output speeds reference yref , estimated
ŷm and measured y - Left motor

Figure 9.20: Output speeds reference yref , estimated
ŷm and measured y - Right motor

125 CHAPTER 9. INERTIAL MEASUREMENT UNIT (IMU) MEASUREMENTS WITH TWO MOTORS EMC

9.2.4 Magnetometer data in sensor fusion, Linear trajectory - Result 1

Trajectory estimated with kinematic equations:

Figure 9.21: Robot position

Figure 9.22: Robot orientation θz Figure 9.23: Angular speed ωz

IMU measurements and estimations:

Figure 9.24: Robot orientation - IMU estimation using
Kalman filter sensor fusion

Figure 9.25: Robot angular acceleration - IMU mea-
surements raw and filtered (moving average - 15 sam-
ples window)

9.2. MEASUREMENT PLOTS 126

Figure 9.26: Magnetic field - IMU raw measurements
Figure 9.27: Robot Acceleration - IMU measurements
raw and filtered (moving average - 15 samples window)

Figure 9.28: Robot linear acceleration - IMU estimation using orientation matrix, raw and filtered (moving average
- 15 samples window)

Left and Right DC motors EMC output speeds:

Figure 9.29: Output speeds reference yref , estimated
ŷm and measured y - Left motor

Figure 9.30: Output speeds reference yref , estimated
ŷm and measured y - Right motor

127 CHAPTER 9. INERTIAL MEASUREMENT UNIT (IMU) MEASUREMENTS WITH TWO MOTORS EMC

9.2.5 Magnetometer data in sensor fusion, Circular trajectory - Result 1

Trajectory estimated with kinematic equations:

Figure 9.31: Robot position

Figure 9.32: Robot orientation θz Figure 9.33: Angular speed ωz

IMU measurements and estimations:

Figure 9.34: Robot orientation - IMU estimation using
Kalman filter sensor fusion

Figure 9.35: Robot angular acceleration - IMU mea-
surements raw and filtered (moving average - 15 sam-
ples window)

9.2. MEASUREMENT PLOTS 128

Figure 9.36: Magnetic field - IMU raw measurements
Figure 9.37: Robot Acceleration - IMU measurements
raw and filtered (moving average - 15 samples window)

Figure 9.38: Robot linear acceleration - IMU estimation using orientation matrix, raw and filtered (moving average
- 15 samples window)

Left and Right DC motors EMC output speeds:

Figure 9.39: Output speeds reference yref , estimated
ŷm and measured y - Left motor

Figure 9.40: Output speeds reference yref , estimated
ŷm and measured y - Right motor

Part III

Robot orientation EMC

Chapter 10

EMC Differential drive robot theory -

Orientation only

The DC motors EMC are already found and tested in Part II, hence they can be combined together with another

EMC to control GoPiGo3 orientation angle θz and angular speed ωz = θ̇z : with this control robot will be able

to rotate in place (with the wheels moving with equal speed but in opposite directions), or to perform a circular

trajectory of predefined mean radius wrt robot center of wheel axles.

In this chapter will be explained the theoretical analysis beyond the EMC and fine models regarding robot orien-

tation.

Notation: From now on total robot inertia symbol will be I
T
instead of Itzz (initially considered in Section 3.2),

for visual simplicity. If this parameter is estimated is referred as Î
T
.

10.1 Fine model

Dynamic equation of robot orientation in CT domain is the following (taken from Equation (3.7)):

τ
T
=

2

∑
i=1

τi(t) = τL(t) + τR(t) = IT θ̈z(t) (10.1)

where I
T
is the robot total inertia parameter, τ

T
(t) is the total torque applied on robot, τ

L
(t) and τ

R
(t) are

respectively the torques depending on the forces acting on the left and right wheels with respect to the robot wheel

axles, θ̈z(t) is the total angular acceleration of the robot.

Hence general CT ODE equations, without disturbances are:

θ̇z(t) = θ̇z(t)

θ̈z(t) =
τ
T
(t)
I
T

For fine models the real total inertia parameter is I
T
= 0.002235 kgm2, computed with an Inventor robot CAD

model and shown in Table 3.2.

131 CHAPTER 10. EMC DIFFERENTIAL DRIVE ROBOT THEORY - ORIENTATION ONLY

10.2 EMC model

10.2.1 Embedded Model EM

Orientation robot EM can be build considering 2 integrators to recover θz and θ̇z from Equation (10.1): these will

be the controllable states of the system. However, total robot inertia parameter changes to Î
T
= 0.0037kgm2,

found in Equation (3.2), because the robot is simplified as a parallelepiped. The difference between fine and EMC

parameters lead to a small parametric uncertainty. CT state equations for EM with presence of disturbance states

and noises are: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̇z(t) = θ̇z(t) +w1(t)

θ̈z(t) = xd(t) +
τ
T
(t)
I
T

+w2(t)

ẋd(t) = w3(t)

In a first EM model solution θ̇z(t) is not measured (and estimated), thus there is not any affecting disturbance

w1(t) (last equation red term vanishes). In a second solution also θ̇z(t) is measured and w1(t) is added to related

CT equation (in red).

Disturbance states xd(t), in a first attempt model, can be considered of 1st order, entering the system as acceleration

perturbation. In CT, there is only 1 integrator and a non-causal disturbance. In DT integrator changes in a delay

with a unitary feedback, with the input multiplied by sampling time Ts, if Forward Euler discretization method

considered. Hence the CT integral can be approximated with a Forward Euler DT integrator:

1

s
≈ Ts

z − 1
(10.2)

Solution 1 - θz estimation only

In this case only θz is the measured state, hence no noise component w is present in its related SS equation.

If ωz(k) = θz(k + 1), the state vector is xT (k) = [θz, ωz, xd] (k) and input vector is u(k) = τ
T
(k), following the

EM form in Equation (2.1) and Equation (2.2), in matrix form the equations are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(k + 1) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 T 0

0 1 T

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„„„„¶

ADT

x(k) +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
T
I
T

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
†
BDT

u(k) +

⎡⎢⎢⎢⎢⎢⎢⎣

0 0

T 0

0 T

⎤⎥⎥⎥⎥⎥⎥⎦
·„„„„„„„„„„„‚„„„„„„„„„„„¶

GDT

w(k) , x0(k) = 03×1

y(k) = [1 0 0]
·„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„¶

CDT

(k)

(10.3)

All matrices are decomposed in the following submatrices:

A
DT
=
⎡⎢⎢⎢⎢⎣

Ac Hc

0 Ad

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

1 T 0

0 1 T

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

, B
DT
=
⎡⎢⎢⎢⎢⎣

Bc

0

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
T
I
T

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

G
DT
=
⎡⎢⎢⎢⎢⎣

Gc

Gd

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

0 0

T 0

0 T

⎤⎥⎥⎥⎥⎥⎥⎦

, C
DT
= [Cc Cd] = [1 0 0]

10.2. EMC MODEL 132

Figure 10.1: First order disturbance w entering orienta-
tion EM - Solution 1

Figure 10.2: First order disturbance w entering orien-
tation EM - Solution 2

Solution 2 - Both θz and ωz estimation

In this case both θz and ωz can be measured with sensors, hence in all SS equations w is present. Wrt Equa-

tion (10.3) it is needed to change DT SS equations, modifying C
DT

and G
DT

matrices (highlighted in red):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(k + 1) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 T 0

0 1 T

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„„„„¶

ADT

x(k) +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
T
I
T

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
†
BDT

u(k) +

⎡⎢⎢⎢⎢⎢⎢⎣

T 0 0

0 T 0

0 0 T

⎤⎥⎥⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„„„„„„¶

GDT

w(k) , x0(k) = 03×1

y(k) =
⎡⎢⎢⎢⎢⎣

1 0 0

0 1 0

⎤⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„¶

CDT

(k)

(10.4)

All matrices are decomposed in the following submatrices:

A
DT
=
⎡⎢⎢⎢⎢⎣

Ac Hc

0 Ad

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

1 T 0

0 1 T

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

, B
DT
=
⎡⎢⎢⎢⎢⎣

Bc

0

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
T
I
T

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

G
DT
=
⎡⎢⎢⎢⎢⎣

Gc

Gd

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

T 0 0

0 T 0

0 0 T

⎤⎥⎥⎥⎥⎥⎥⎦

, C
DT
= [Cc Cd] =

⎡⎢⎢⎢⎢⎣

1 0 0

0 1 0

⎤⎥⎥⎥⎥⎦

(10.5)

A noise component w1(k) is added to θz SS equation because both the controllable states are measured with an

output sensor. Now 2 noise estimators are needed to estimate 2 state disturbances (combined in a proper way),

and inevitably the matrices in Equation (10.4) need to be decomposed in 2 parts, using matrix driven decomposition

explained in [1] and used for example in [3].

In Figure 10.1 and Figure 10.2, violet area shows the discrete time blocks used for first order disturbance, for both

solution 1 and 2.

10.2.2 Control law

Equation (2.11) in Chapter 2 will be used for control law. K,M,Q matrices need to be found.

QT = [q1, q2],M =m matrices can be univocally determined using 2nd condition in Equation (2.12):

Solution 1 and 2
⎧⎪⎪⎨⎪⎪⎩

q1 = q2 = 0

m = I
T

(10.6)

133 CHAPTER 10. EMC DIFFERENTIAL DRIVE ROBOT THEORY - ORIENTATION ONLY

Regarding matrix K , a proportional control only (P) is considered, to track the references states θz and ωz . In this

case K =Kp = [kp1, kp2], which components are static gains.

Figure 10.3: Orientation EMC - Proportional controller (P) Closed Loop scheme

Starting from the scheme in Figure 10.3, the CL equation becomes:

x̂c(k + 1) = Acx̂c(k) +BcKpe(k)

= Acx̂c(k) +BcKp (x(k) − x̂c) =

= [Ac −BcKp]
·„„„„„„„„„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„„„„„„„„„¶

A
K

x̂c(k) + Bc
fl
B

K

x(k)

where x is the reference state to be tracked. e(k) = x(k)− x̂c(k) without the matrix Q (cfr. Equation (2.11)) because

it has null components q1 = q2 = 0, as it is already found in Equation (10.6).

Pole placement technique can be used to find the 2 unknown values of kp1, kp2, to arbitrary decide the eigenvalues

of A
K
= Ac −BcKp, and make them stay in the unitary circle, to obtain closed loop asymptotic internal stability:

⎧⎪⎪⎨⎪⎪⎩

det (A
K
− λI) = λ2 + acl,2λ + acl,3 Closed loop characteristic polynomial

λ2 + ak2λ + ak3 = (λ − pk1)(λ − pk2) Desired characteristic polynomial

p
K
= [pk1, pk2] are arbitrary eigenvalues decided by us with Re(λ) < 1. Finally kp1 and kp2 can be computed as

(in function of main orientation robot parameter I
T
):

kp1 =
I
T
(1 + ak2 + ak3)

T 2

kp2 =
I
T
(ak2 + 2)

T

(10.7)

10.2.3 Reference Dynamics

Static state FB control is selected to have θz and ωz reference states, starting from desired targets θ̃z, ω̃z , to be

tracked by Embedded Model estimated states (following CL equations in Equation (2.5) and controlling the CL

matrix A
R
through pole placement technique): the matrices to be designed are K

R
to make the closed loop system

asymptotically stable and a matrix N
R
to make overall system DC-gain equal to 1.

In this case r(k) = θ̃z , since the most important state to be controlled is θz . ωz is indirectly controlled since it

depends on the other (θz is the integral of ωz). CR
= [1 0] since only θz is considered at output.

K
R
= [kr1, kr2] can be found by making equal the closed loop characteristic polynomials (defined by det (A

K
− λI))

10.2. EMC MODEL 134

and a desired characteristic polynomial, with eigenvalues p
R
= [pr1, pr2] staying inside the unitary circle to obtain

asymptotic internal stability:

⎧⎪⎪⎨⎪⎪⎩

det (A
K
− λI) = λ2 + acl,2λ + acl,3 Closed loop characteristic polynomial

λ2 + ar2λ + ar3 = (λ − pr1)(λ − pr2) Desired characteristic polynomial

kr1 and kr2 are finally (in function of main orientation robot parameter I
T
):

kr1 =
I
T
(1 + ar2 + ar3)

T 2

kr2 =
I
T
(ar2 + 2)
T

(10.8)

After K
R
is known, N

R
matrix can be computed with Equation (2.6).

10.2.4 Noise Estimator

Solution 1 - Dynamic FB filter for θz estimation only

Depending on disturbances and states dimensions, a static or dynamic noise estimator can be used: since Equa-

tion (10.3) have dimw = nw = 2 lower than dimension of total states dimx = nx = 3, a dynamic filter is needed,

cfr. [1, 2]. We can follow the procedure explained in Section 2.1, designing eigenvalues of CL matrix A
CL

in

Equation (2.10). The unknowns of Equation (2.9) become in this case:

N =
⎡⎢⎢⎢⎢⎣

n0

n1

⎤⎥⎥⎥⎥⎦
, L =

⎡⎢⎢⎢⎢⎣

l0

0

⎤⎥⎥⎥⎥⎦
, Ae = 1 − β (10.9)

Using the usual pole placement technique, and considering the desired characteristic polynomial as (starting from

desired eigenvalues p
N
= [pn1, pn2, pn3, pn4]):

λ4 + an2λ3 + an3λ2 + an4λ + an5 = (λ − pn1)(λ − pn2)(λ − pn3)(λ − pn4)

The final unknowns are:

l0 =
3an2 + an3 + 6

T 2

n0 = −
15an2 + 2an3 − an4 + an2an3 + 3a2n2 + 20

T 2

n1 =
an2 + an3 + an4 + an5 + 1

T 3

β = an2 + 4

(10.10)

We can notice that β is the unique unknown without sampling time T . It’s not a problem, indeed is possible that

the dependence on T vanishes after computations.

Solution 2 - Two static FB noise estimators for both θz and θ̇z estimation

At least 2 noise estimators are needed to estimate the noises of θz and ωz and combine them to obtain w. A

measure-driven decomposition is performed following an example of web winding EMC control in [1, 3].

Since A
DT

and G
DT

matrices are upper triangular, they can be divided into diagonal sub-matrices, again upper

triangular. How many row divisions depend on number of measured outputs: for our equations, dim y = ny = 2,

135 CHAPTER 10. EMC DIFFERENTIAL DRIVE ROBOT THEORY - ORIENTATION ONLY

so 2 rows:

A
DT
=

⎡⎢⎢⎢⎢⎢⎢⎣

1 T 0

0 1 T

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

, G
DT
=

⎡⎢⎢⎢⎢⎢⎢⎣

T 0 0

0 T 0

0 0 T

⎤⎥⎥⎥⎥⎥⎥⎦

, C
DT
=
⎡⎢⎢⎢⎢⎣

1 0 0

0 1 0

⎤⎥⎥⎥⎥⎦
(10.11)

To build the 2 noise estimators only the diagonal sub-matrices are relevant. For the 1st noise estimator (θz) they

are:

A0
DT
= 1 , G0

DT
= T , C0

DT
= 1 (10.12)

hence a static FB estimator can be exploited, using pole placement technique as in Equation (2.7). The noise w0

can be estimated as:
w0(k) = L0em0(k)

L0 = l0 =
a0n + 1
T

(10.13)

where a0n = −pn0, and pn0 is the desired eigenvalue arbitrary decided by us. In this case model error is em0 = θz−θ̂z .
Instead for the 2nd noise estimator (ωz) the sub-matrices are:

A1
DT
=
⎡⎢⎢⎢⎢⎣

1 T

0 1

⎤⎥⎥⎥⎥⎦
, G1

DT
=
⎡⎢⎢⎢⎢⎣

T 0

0 T

⎤⎥⎥⎥⎥⎦
, C1

DT
= [1 0] (10.14)

hence another static FB estimator can be exploited. The noise w1 can be estimated as:

w1(k) = L1em1(k)

L1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

l10 =
a1n2 + 2

T

l11 =
a1n2 + a1n3 + 1

T 2

(10.15)

With a1n2 and a1n3 recovered with the following desired characteristic polynomial, considering pn1 and pn2 decided

arbitrary (pole placement technique):

λ2 + a1n2λ + a1n3 = (λ − pn1)(λ − pn2)

In this case model error is em1 = ωz − ω̂z . Total estimated noise is:

w =
⎡⎢⎢⎢⎢⎣

w0

w1

⎤⎥⎥⎥⎥⎦

Solution 3 - Static FB noise estimator for θz and Dynamic for ωz estimation

Using this method again 2 noise estimators are combined together to estimate the noises w, following measure-

driven decomposition procedure as Solution 2: the matrices are divided again as Equation (10.11).

For 1st noise estimator (related to θz) the sub-matrices are exactly as Equation (10.12). Hence the estimation can be

obtained with static FB and the noise w0 can be estimated exactly as Solution 2, Equation (10.13).

Instead for the 2nd noise estimator (ωz) the sub-matrices are the same as Equation (10.14): however instead of using

another static estimator as Solution 2, a static plus dynamic FB noise estimators combined will be used, like shown

in Figure 10.4. The static FB part is composed by LT
1 = [l10, l11] ∈ R2×1 matrix. Using pole placement technique

the component expressions are the same of Equation (10.15). Instead the dynamic FB part has matrix unknowns as

10.2. EMC MODEL 136

Figure 10.4: Noise estimator Orientation EMC Solution 3 - Static + dynamic FB parts

Equation (10.9):

N =
⎡⎢⎢⎢⎢⎣

n0

n1

⎤⎥⎥⎥⎥⎦
, L2 =

⎡⎢⎢⎢⎢⎣

l10

0

⎤⎥⎥⎥⎥⎦
, Ae = 1 − β

Only L2 matrix has the non-null component l10 equal to the one of static part noise estimator for ωz(k), already
known. The other unknowns are:

n0 =
(2 − 20T)an2 − 60T + an3 + 400T 2 + 3

T

n1 =
an2 + an3 + an4 + 1

T 2

β = an2 − 20T + 3

(10.16)

With an2, an3, an4 are obtained using desired characteristic polynomial as below (at the beginning for pole place-

ment we decide pn1, pn2, pn3 values inside unitary circle for asymptotic internal stability):

λ3 + an2λ2 + an3λ + an4 = (λ − pn1)(λ − pn2)(λ − pn3)

The noise w1 can be estimated as:

w1(k) = L1em1(k) +L2ef(k) +Nxe(k) (10.17)

The presence of a dynamic FB part in noise estimator adds a new state in the system, ef , which filters the noise

estimation. Total estimated noise is again:

w =
⎡⎢⎢⎢⎢⎣

w0

w1

⎤⎥⎥⎥⎥⎦

137 CHAPTER 10. EMC DIFFERENTIAL DRIVE ROBOT THEORY - ORIENTATION ONLY

Comparison between the 3 noise estimator solutions

To have an insight of which one between Solution 1 (dynamic FB noise estimator), Solution 2 (2 static FB noise

estimators combined with measure-driven decomposition method) and Solution 3 (2 static and dynamic FB noise

estimators using measure-driven decomposition method) can be the best, simulations with complete EMC and fine

models are done in open-loop, without considering the DC motors EMC.

Parameter settings for Fine and EMC models are explained in previous sections. Noise errors are added to θz and

ωz fine model measurements: ϵθz = 0–0.1 for Solution 1, and ϵθz = ϵωz = 0–0.1 for Solutions 2 and 3, these values

are provisional before making closed-loop MIL and RHIT tests. CT eigenvalues used for each solution test are:

CT eigenvalue type Sol. 1 (Dyn FB) Sol. 2 (Two Static FB) Sol. 3 (Static + Dyn. FB)
Control µ

K
−1.0101,−17.8337 −2.5647,−11.1572 −2.5647,−11.1572

Reference µ
R

−1.0101 × 2 −1.0101 × 2 −1.0101 × 2
Observer µ

N
−2.5702,−2.5647 × 2,−2.5591 −17.8337 (θz est) −17.8337 (θz est)

−17.8337 × 2(ωz est) −11.1572 × 2 (ωz est 1)
−34.6582 × 3 (ωz est 2)

Table 10.1: Provisional Eigenvalue settings Orientation EMC - Solution comparisons between Noise estimators

In the next figures (Figures 10.5 to 10.7) are shown reference, estimated and measured outputs related to θz and

ωz , using the 3 noise estimator solutions.

Figure 10.5: Orientation EMC Solution 1 outputs - Dy-
namic FB noise estimator

Figure 10.6: Orientation EMC Solution 2 outputs -
Static FB noise estimators with measure-driven decom-
position

Figure 10.7: Orientation EMC Solution 3 outputs - Static and dynamic FB noise estimators with measure-driven
decomposition

We can immediately see that for all solutions model and tracking errors concerning θz are very low, instead for

ωz :

10.2. EMC MODEL 138

• Using the dynamic feedback noise estimator (Solution 1, Figure 10.5), tracking error is acceptable, but model

error is quite high: however if we take into account that observer was build only for θz , it’s a good result.

• Using 2 static feedback noise estimators with measure-driven decomposition method (Solution 2, Figure 10.6),

both tracking and model errors are low, since observers are build for both states.

• No significant improvements are obtained using measure-driven decomposition with both static and dy-

namic estimators (Solution 3, Figure 10.7) wrt to only static FB measure-driven decompsition (Solution 2,

Figure 10.6), because both tracking and model errors are not improved so much.

After RHIT we’ll see that Solution 2 is the best, and some comparisons with the other solutions will be shown.

Chapter 11

Orientation EMC - Model-in-the-Loop (MIL)

simulation tests

Theoretical models explained in Chapter 10 for controlling robot orientation are now translated in Simulink block

models to be tested with MIL procedure, where both plants and EMC are executed in simulation.

11.1 General MIL settings on Simulink

11.1.1 Simulated orientation EMC and fine models

Orientation fine model is only constituted by 2 integrators and a gain (total robot inertia I
T
) to obtain robot

angular position θz and speed ωz simulation measurements from Equation (10.1).

2 uniform random noise disturbances are added to θz and ωz , replicating the measurement sensor errors. By

looking at IMU measurements it can be only recovered noise and disturbance informations when robot is still,

because they change in an unpredictable way when robot is moving, for presence of other dynamics disturbing the

sensors.

In simulation these errors are approximated as uniform random numbers added to angle and angular speed fine

model outputs (not directly inside the model between integrators), their bounds are:

eθz = [−1,1]
○ ≈ [−0.0175,0.0175] rad

eωz = [−0.005,0.005]
rad

s

The bounds are low because it was experimented that using too high errors lead to very different MIL simulations

wrt RHIT, when making comparisons.

Instead Orientation EMC is exactly the same explained in Section 10.2, using static FB measure-driven decom-

position noise estimator (it represents the best solution among noise estimators). Virtual torque is saturated at

1Nm.

11.1.2 Orientation and DC motors Hierarchical structure

First it is necessary to understand how to connect the motors EMC with new orientation control model. Among

the possible solutions, it is decided to use a hierarchical structure. Prerequisite is to have DC motors EMC build

and tested with MIL and RHIT procedures (done in Part II). In Figure 11.1 there is a sketch structure of hierarchical

structure to be implemented in Simulink for MIL tests, main features can be resumed as follows:

11.1. GENERAL MIL SETTINGS ON SIMULINK 140

Figure 11.1: Hierarchic structure for MIL tests - Orientation and DC motors EMC

• At the beginning a robot target angle θ̃z(k) and a reference trajectory inside Orientation EMC are decided.

Orientation EMC will be able to make the estimates θ̂z(k), ω̂z(k) as near as possible to desired trajectory

reference θz(k), ωz(k) states and measurement θz(k), ωz(k) states, at the same time.

• Orientation EMC output will be the estimate ω̂z(k). Now it’s needed to convert angular and linear robot

speeds into DC motor wheel speeds: kinematic equations are used (Equation (3.15)), but since no position

control is built yet, a target longitudinal speed ṽξ(k) = 0m/s is imposed, hence the robot is only allowed

to round still in place. Another possibility is to impose a circular trajectory of the robot, defining its mean

radius: from it wheel angular speeds can be recovered exploiting kinematic equations in a different way

(Equation (3.16)).

• Wheel speeds coming from kinematic equations are used as targets for DC motors EMC (ω̃
R
(k), ω̃

L
(k)).

This is the most interesting point of this structure: estimates coming from another control model (Orientation

EMC) will be used as targets for the DC motors EMC.

• In Figure 11.1, there is a block containing CL EMC and fine models for both left and right motors. The

outputs of DC motor fine models will be the measured wheel speeds ω
R
(k), ω

L
(k), they are derivated

with Forward-Euler discretization to obtain angular accelerations α
R
(k), α

L
(k) and robot torque τ

T
(k) is

obtained exploiting Equation (3.8), τ
T
(k) = I

T
αz(k). Then torque is converted in CT domain and enters as

input of Orientation fine model, to simulate robot real dynamic behaviour in terms of orientation.

• The loop is closed by taking the measurements θz(t), ωz(t) from Orientation fine model, which are then

converted in DT to enter Orientation EMC.

The structure is hierarchical because the outputs of Orientation EMC will be used in DC motors EMC.

This is also a non-conventional scheme: first for the presence of estimated state ω̂z coming out from Orientation

control model, and second for kinematic conversion outside the EMC.

Indeed usually the conversions are done inside the control models, with motor and orientation dynamics combined

together. This unavoidably leads to the presence of non linearities inside DT SS (trigonometric functions) which

are difficult to be handled.

Instead, using the structure above, all control models are linear, and equations are drastically simplified. We will

141 CHAPTER 11. ORIENTATION EMC - MODEL-IN-THE-LOOP (MIL) SIMULATION TESTS

see in MIL tests that this kind of structure gives satisfactory results.

11.2 General settings on Simulink MIL plot results

DC motors EMC CT eigenvalues for DC motors are the same as Table 6.1, for both right and left motors. Instead

for Orientation EMC the same final CT eigenvalues giving the best results in RHIT are considered, as described

in Table 12.2 and Table 12.3.

Main trajectories followed are:

• Robot CoM still (robot linear speed ṽξ = 0 m
s) and θ̃z = [0,±2π]rad angle trajectory.

• Robot in movement following a circle trajectory (robot linear speed ṽξ ≠ 0 m
s and mean radius rm = 0.2m),

θ̃z = [0,±2π]rad angle trajectory.

MIL simulations are not done once and all before RHIT, indeed the final structure is the result of continuous

comparison between MIL and RHIT.

For this reasons every set of results is divided in 2 parts: the first plots are related to MIL simulations only, showing

y, ŷm and yref for angle θz and angular speed ωz , with relative tracking and model errors em, etrk, for Orientation

control model. In addition are shown measurements and estimations of DC motor output speeds y, ŷm and yref .

The second set of plots instead shows a comparison between MIL and RHIT testing procedures, where some RHIT

results are taken from Chapter 12.

Disturbance rejection term is present in control input for all tests, unless for one of them (Section 11.3.2).

11.3 Summary on the obtained results

Regarding only MIL simulations, the selected EMC for orientation seems to work efficiently, reducing model and

tracking errors as low as possible, at least for robot orientation angle θz . The angle trajectory is followed in a quite

precise way. Angular speed ωz trajectory is followed partially, and also model error is not very low, but remember

that the 2 states are not independent and orientation angle is the most important to be controlled.

Only in the final section of trajectory the measurement and estimation states start oscillating around the reference

signal: this is coherent with reality, because robot stops after reaching the first time the final position, but then

restarts and re-stop many times because of DC motor dead-zones (explained in Section 6.1).

Looking at the comparison between MIL and RHIT, the Timestamp obtained with RHIT is reproduced quite

exactly in MIL simulation, for all control models, meaning that also in this case the variable timestamp Simulink

block model built in Section 4.1.1 is reliable. Also a comparison between the 2 virtual control inputs is evidenced,

to have an indication of model reliability and control behaviour. For example if control torque is too high or if

is not near to zero when robot is stopping, it probably means that EMC is forcing to reduce model and tracking

errors without success (for example in Figure 11.23 and Figure 11.34).

The behaviour of MIL vs RHIT estimations and measurements are quite the same, but with some slight differences.

For example the simulated and IMU measurements are not exactly the same, and the behaviour when trajectory is

near to be reached changes rapidly. In particular the last difference is due to the DC motor fine model, which is

not precisely the same as real, especially for voltage input dead-zones. Finally control inputs in the 2 tests present

some differences: this is again dependent on disturbances and noises acting on real robot not present in simulated

fine models.

In Section 11.3.2 MIL test the absence of disturbance rejection does not lead to worse tracking and model errors,

since the orientation is not affected by too many disturbances like the DC motor (indeed there is only robot total

inertia I
T
parameter). This will be proven in orientation RHIT tests too (Section 12.4.2).

11.3. SUMMARY ON THE OBTAINED RESULTS 142

11.3.1 Target angle θ̃z = 2π rad (360○), target long. speed ṽξ = 0
m
s , dist. rej.

MIL simulation test results:

Figure 11.2: MIL Orientation EMC outputs yref (red), y (magenta) and ŷm (cyan)

Figure 11.3: MIL Orientation EMC tracking etrk and model em errors

Figure 11.4: MIL Orient. EMC control input terms u,ud and utrk (from top to bottom) - Disturbance rejection

Figure 11.5: MIL Left motor EMC outputs y (magenta),
ŷm (cyan) and yref (red)

Figure 11.6: MIL Right motor EMC outputs y (ma-
genta), ŷm (cyan) and yref (red)

143 CHAPTER 11. ORIENTATION EMC - MODEL-IN-THE-LOOP (MIL) SIMULATION TESTS

Comparison between MIL and RHIT:

Figure 11.7: Orientation EMC measured outputs y (ma-
genta MIL, cyan RHIT) - Comparison MIL and RHIT

Figure 11.8: Orientation EMC estimated outputs ŷm
(magenta MIL, cyan RHIT) - Comparison MIL and
RHIT

Figure 11.9: Left DC motor EMC measured outputs
y, ŷm (magenta MIL, cyan RHIT) - Comparison MIL
and RHIT

Figure 11.10: Right DC motor EMC measured outputs
y, ŷm (magenta MIL, cyan RHIT) - Comparison MIL
and RHIT

Figure 11.11: Orientation EMC virtual control input u - Comparison MIL and RHIT

Figure 11.12: Orientation EMC Timestamp - Compari-
son MIL and RHIT

Figure 11.13: (Left and right) DC motors EMC Times-
tamp EM and Control part - Comparison MIL and
RHIT

11.3. SUMMARY ON THE OBTAINED RESULTS 144

11.3.2 Target angle θ̃z = 2π rad (360○), target long. speed ṽξ = 0
m
s , No dist. rej.

MIL simulation test results:

Figure 11.14: MIL Orientation EMC outputs yref (red), y (magenta) and ŷm (cyan)

Figure 11.15: MIL Orientation EMC tracking etrk and model em errors

Figure 11.16: MIL Orient. EMC control input terms u,ud and utrk (from top to bottom) - No disturbance rejection

Figure 11.17: MIL Left motor EMC outputs y (magenta),
ŷm (cyan) and yref (red)

Figure 11.18: MIL Right motor EMC outputs y (ma-
genta), ŷm (cyan) and yref (red)

145 CHAPTER 11. ORIENTATION EMC - MODEL-IN-THE-LOOP (MIL) SIMULATION TESTS

Comparison between MIL and RHIT:

Figure 11.19: Orientation EMC measured outputs y
(magenta MIL, cyan RHIT) - Comparison MIL and
RHIT

Figure 11.20: Orientation EMC estimated outputs ŷm
(magenta MIL, cyan RHIT) - Comparison MIL and
RHIT

Figure 11.21: Left DC motor EMC measured outputs
y, ŷm (magenta MIL, cyan RHIT) - Comparison MIL
and RHIT

Figure 11.22: Right DC motor EMC measured outputs
y, ŷm (magenta MIL, cyan RHIT) - Comparison MIL
and RHIT

Figure 11.23: Orientation EMC virtual control input u - Comparison MIL and RHIT

Figure 11.24: Orientation EMC Timestamp - Compari-
son MIL and RHIT

Figure 11.25: (Left and right) DC motors EMC Times-
tamp EM and Control part - Comparison MIL and
RHIT

11.3. SUMMARY ON THE OBTAINED RESULTS 146

11.3.3 Target angle θ̃z = −2π rad (−360○), target long. speed ṽξ = 0
m
s , dist. rej.

MIL simulation test results:

Figure 11.26: MIL Orientation EMC outputs yref (red), y (magenta) and ŷm (cyan)

Figure 11.27: MIL Orientation EMC tracking etrk and model em errors

Figure 11.28: MIL Left motor EMC outputs y (ma-
genta), ŷm (cyan) and yref (red)

Figure 11.29: MIL Right motor EMC outputs y (ma-
genta), ŷm (cyan) and yref (red)

147 CHAPTER 11. ORIENTATION EMC - MODEL-IN-THE-LOOP (MIL) SIMULATION TESTS

Comparison between MIL and RHIT:

Figure 11.30: Orientation EMC measured outputs y
(magenta MIL, cyan RHIT) - Comparison MIL and
RHIT

Figure 11.31: Orientation EMC estimated outputs ŷm
(magenta MIL, cyan RHIT) - Comparison MIL and
RHIT

Figure 11.32: Left DC motor EMC measured outputs
y, ŷm (magenta MIL, cyan RHIT) - Comparison MIL
and RHIT

Figure 11.33: Right DC motor EMC measured outputs
y, ŷm (magenta MIL, cyan RHIT) - Comparison MIL
and RHIT

Figure 11.34: Orientation EMC virtual control input u - Comparison MIL and RHIT

Figure 11.35: Orientation EMC Timestamp - Compari-
son MIL and RHIT

Figure 11.36: (Left and right) DC motors EMC Times-
tamp EM and Control part - Comparison MIL and
RHIT

11.3. SUMMARY ON THE OBTAINED RESULTS 148

11.3.4 Target angle θ̃z = 2π rad (360○), target long. speed ṽξ ≠ 0
m
s (rm = 0.2 m), dist. rej.

MIL simulation test results:

Figure 11.37: MIL Orientation EMC outputs yref (red), y (magenta) and ŷm (cyan)

Figure 11.38: MIL Orientation EMC tracking etrk and model em errors

Figure 11.39: MIL Left motor EMC outputs y (magenta),
ŷm (cyan) and yref (red)

Figure 11.40: MIL Right motor EMC outputs y (ma-
genta), ŷm (cyan) and yref (red)

149 CHAPTER 11. ORIENTATION EMC - MODEL-IN-THE-LOOP (MIL) SIMULATION TESTS

Comparison between MIL and RHIT:

Figure 11.41: Orientation EMC measured outputs y (ma-
genta MIL, cyan RHIT) - Comparison MIL and RHIT

Figure 11.42: Orientation EMC estimated outputs ŷm
(magenta MIL, cyan RHIT) - Comparison MIL and
RHIT

Figure 11.43: Left DC motor EMC measured outputs
y, ŷm (magenta MIL, cyan RHIT) - Comparison MIL
and RHIT

Figure 11.44: Right DC motor EMC measured outputs
y, ŷm (magenta MIL, cyan RHIT) - Comparison MIL
and RHIT

Figure 11.45: Orientation EMC virtual control input u - Comparison MIL and RHIT

Figure 11.46: Orientation EMC Timestamp - Compari-
son MIL and RHIT

Figure 11.47: (Left and right) DC motors EMC Times-
tamp EM and Control part - Comparison MIL and
RHIT

11.3. SUMMARY ON THE OBTAINED RESULTS 150

11.3.5 Target angle θ̃z = −2π rad (−360○), target long. speed ṽξ ≠ 0
m
s (rm = 0.2 m), dist. rej.

MIL simulation test results:

Figure 11.48: MIL Orientation EMC outputs yref (red), y (magenta) and ŷm (cyan)

Figure 11.49: MIL Orientation EMC tracking etrk and model em errors

Figure 11.50: MIL Left motor EMC outputs y (magenta),
ŷm (cyan) and yref (red)

Figure 11.51: MIL Right motor EMC outputs y (ma-
genta), ŷm (cyan) and yref (red)

151 CHAPTER 11. ORIENTATION EMC - MODEL-IN-THE-LOOP (MIL) SIMULATION TESTS

Comparison between MIL and RHIT:

Figure 11.52: Orientation EMC measured outputs y
(magenta MIL, cyan RHIT) - Comparison MIL and
RHIT

Figure 11.53: Orientation EMC estimated outputs ŷm
(magenta MIL, cyan RHIT) - Comparison MIL and
RHIT

Figure 11.54: Left DC motor EMC measured outputs
y, ŷm (magenta MIL, cyan RHIT) - Comparison MIL
and RHIT

Figure 11.55: Right DC motor EMC measured outputs
y, ŷm (magenta MIL, cyan RHIT) - Comparison MIL
and RHIT

Figure 11.56: Orientation EMC virtual control input u - Comparison MIL and RHIT

Figure 11.57: Orientation EMC Timestamp - Compari-
son MIL and RHIT

Figure 11.58: (Left and right) DC motors EMC Times-
tamp EM and Control part - Comparison MIL and
RHIT

Chapter 12

Motors and orientation EMC - RHIT results

In this section, practical implementation of robot orientation EMC is considered.

3 possible orientation control models are selected depending on noise estimator structure used to estimate the

controllable states θz angle and ωz angular speed; theoretical details about them are explained in Section 10.2.4:

1. Dynamic feedback noise estimator.

2. Measure driven decomposition using static FB noise estimators only for both states

3. Measure driven decomposition using static FB noise estimator for θz and a dynamic one for ωz .

A hierarchic structure is used to combine the orientation EMC and already built DC motors EMC. The scheme

is slightly modified wrt the one used for MIL tests (Section 11.1.2) because fine models are not needed anymore.

Indeed, as it can be seen in Figure 12.1, they are substituted by real robot plant, which accept the motor control

input voltages as inputs (u
R
, u

L
) and gives all needed orientation and motor measurements to close the loop with

EMCs.

Figure 12.1: Hierarchic structure for RHIT - Orientation and DC motors EMC

The loop structure is briefly recalled below, making reference to the figure (for more detailed informations make

also reference to Section 11.1.2):

• Starting from an input reference target θ̃z , from orientation control model, θ̂z and ω̂z are estimated.

153 CHAPTER 12. MOTORS AND ORIENTATION EMC - RHIT RESULTS

• Conversion block allows to pass from estimated ω̂z to angular motor speeds. Conversion consists in kine-

matic equations. In this case the inputs are ω̂z and ṽξ imposed equal to zero since we are controlling only

the orientation. Outputs are the target motor wheel speeds ω̃
R
, ω̃

L
entering DC motors EMC.

• From DC motors EMC control input voltages u
R
, u

L
are the physical voltages to be applied to real motors,

moving the robot. Measurement θz is then computed using IMU sensor fusion, angular speed measurement

ωz using IMU gyroscope. Instead the wheel angular positions ω
R
, ω

L
are recovered by motor encoders.

• DC motors EMC give as output estimated wheels angular speeds. If these are not sufficient to obtain the

desired orientation, there is an error between IMU measurements and estimated states in orientation EMC,

the model tries to reduce it closing the loop.

12.1 General RHIT test settings

Practical RHIT tests must show if orientation EMC gives low model and tracking errors em and etrk respectively,

at least for θ̂z estimated state. Instead concerning ω̂z estimate is not crucial having very low errors, since we are

interested mainly in final orientation angle and not in robot speed trajectory. Obviously too high errors are not

allowed.

Main trajectories followed are:

• Robot CoM still (robot linear speed ṽξ = 0m/s) and θ̃z = [0,±2π]rad angle trajectory.

• Robot in movement following a circle trajectory (robot linear speed ṽξ ≠ 0 m
s and mean radius rm = 0.2m),

θ̃z = [0,±2π]rad angle trajectory.

For every test the following plots are shown: for Orientation EMC estimated, measured and reference outputs

related to θz and ωz , measured and tracking errors em, etrk, virtual torque control inputs u; for DC motors EMC

only y, yref , ŷm outputs. In some tests are also shown the robot trajectory (when robot is following a circular

trajectory) and the virtual control input components ud, utrk (when comparing tests with and without disturbance

rejection).

The robot angular speed ωz can be measured by IMU gyroscope with enough accuracy, instead for angle θz

measurement different solutions are possible:

• Use the motor encoders and convert the angular position of the wheels to robot angular speed ωz (using the

kinematic model), then make a discrete integration (directly using SW code) to obtain the angle.

• Use IMU and RTIMULib2 sensor fusion algorithm (RTQF or Kalman) combining only the gyroscope and

accelerometer data.

• Use IMU and RTIMULib2 sensor fusion algorithm (RTQF or Kalman) combining all data from gyroscope,

accelerometer and magnetometer

RTQF fusion algorithm shows better measurements results and it’s selected instead of Kalman filter.

For orientation model the CT eigenvalues used in control, noise estimator and reference EMC blocks are explained

in each test section. Instead concerning the EMC motors version 1.2 is used for both.

12.1. GENERAL RHIT TEST SETTINGS 154

2 HW timers work for both the 2 motors (EM and control part) and only 1 for orientation control model.

In every test variable sample time is considered for both control models: in particular the already tested random

sampling times T
EM
= [0.01,0.03] s and Tctrl = 0.02 s for EM and control EMC block parts are used.

Instead for orientation control model, variable sampling time is selected on the basis of IMU sampling rate: this

is equal to [47,47.5] Hz, which means approximately T
IMU
= 0.021 s. A good choice for variable sampling time

turned out to be To = [0.025,0.045] s, with minimum value 0.025 > 0.02 s. In the next figures are presented

the Timestamp ranges used in all tests (some differences occur among tests, but the range remains still the same):

Figure 12.2: Orientation EMC Timestamp

Figure 12.3: Left motor EMC Timestamp Figure 12.4: Right motor EMC Timestamp

In Figure 12.3 and Figure 12.4, Timestamp of control block parts for both the motors needs to be maintained

fixed at 0.02 s but some spikes are present: this can be derived from the presence of 3 different timers running

simultaneously in SW code (2 for the both the motors and 1 for orientation part) and also by implementation

issues. This is not a problem since the DC motors EMC work well anyway.

Some SW implementation problems occurred when making these tests. First IMU fusion algorithm computes the

robot angle within the limited range [−π,π], instead the control model is built allowing θz ∈ R: so estimated angle

state does not follow the measurement when ∣θz ∣ > π. So the IMU measured angle after fusion must be unwrapped :

the domain for θz must be R. Matworks Simulink program gives a build-in block to do this operation (unwrap

block), using code generation it can be easily implemented in the SW code.

Second, when using magnetometer in sensor fusion algorithm, the computed angle value is dependent on the

earth magnetic orientation: for construction properties in this case the magnetometer north is the earth magnetic

south. Hence if for example robot is pointing north the computed angle is θz = 2π rad. This starting offset creates

unexpected results since the control model always start with θz = 0 rad. For this reasons a SW code is implemented

to compute the offset and remove it at run-time from the computed angle.

155 CHAPTER 12. MOTORS AND ORIENTATION EMC - RHIT RESULTS

12.2 Short summary on RHIT results

The best noise estimator model for orientation EMC is the one with 2 static FB estimators combined together

following measure-driven decomposition. In general this solution lead always to very low tracking and model

errors for orientation angle θz and angular speed ωz .

As it will be seen in the corresponding sections the other methods, dynamic FB and measure-driven decomposition

using static plus dynamic FB noise estimators are not suitable.

Using static FB measure-driven decomposition noise estimators, different angle θz measurement techniques are

compared: IMU sensor fusion with and without magnetometer, motors encoder. The best solution results to be

IMU with magnetometer sensor fusion.

Furthermore, DC motors dead zones creates some oscillations when robot approaches the target orientation, the

problem may be easily solved by stopping SW code when a certain error bound is reached for the first time.

However the code is let running intentionally even the target is almost reached: indeed in some tests with a circle

trajectory when IMU without magnetometer in sensor fusion is not used (Section 12.4.1), orientation target angle is

never reached, because IMU angle is wrong.

A test with orientation EMC without disturbance rejection is performed, making a circular trajectory when robot is

still, with IMU angle measurement using magnetometer sensor fusion: the errors difference wrt using disturbance

rejection is minimal, this is because the only physical parameter for orientation is the robot total inertia I
T
, and the

one of EMC is very near to reality, leading to small noises and disturbances (the most depending on asynchronous

sampling time). This is not like DC motors EMC where many neglected dynamics and disturbances are present.

Other specific results are discussed in corresponding next sections.

12.3 RHIT tests - Dynamic FB noise estimator

For first tests only dynamic FB noise estimator is considered to estimate θz controllable state, since it is supposed

to be the only one measured. ωz estimate can be recovered consequently, since its dependence by integration on

the angle.

The IMU is used to measure θz , with presence of magnetometer data in fusion algorithm.

Only a turn in place trajectory of [0,2π] rad test is sufficient to understand that this is not a suitable model for

controlling orientation. Indeed even if for angular speed appears quite good tracking and model errors, the ones

of angle are not acceptable: for example, seeing the test in top plot of Figure 12.5 the estimate ŷm is in the middle

of reference yref and measurement y, with high difference. It means that the orientation EMC tries without success

to reduce both model error em and tracking error etrk.

Max torque allowed is τmax = 1Nm.

For orientation control model the following CT eigenvalues are selected:

Eigenvalues type CT eigenvalues

Reference µ
R

−0.2 × 2
Noise estimator µ

N
−2.5 × 4

Control µ
K

−1,−17

Table 12.1: CT eigenvalues Orientation EMC

12.3. RHIT TESTS - DYNAMIC FB NOISE ESTIMATOR 156

12.3.1 Plot results

Figure 12.5: Orientation EMC y, ŷm and yref

Figure 12.6: Tracking etrk and model em errors for θz (1st column)
and ωz (2nd column)

Figure 12.7: Robot torque control input (vir-
tual)

Figure 12.8: Right motor EMC y, ŷm and yref Figure 12.9: Left motor EMC y, ŷm and yref

157 CHAPTER 12. MOTORS AND ORIENTATION EMC - RHIT RESULTS

12.4 RHIT tests - Static feedback measure driven decomposition noise estima-

tor

From practical tests results the best method is the one with noise estimator with 2 static FB. The tracking and

model errors are the lowest for both controllable states and outputs.

The CT eigenvalues when robot is turning around in place from 0 to 2π rad are:

Eigenvalues type CT eigenvalues

Reference µ
R

−0.5 × 2
1st noise estimator (static) µ

N,1
−6

2nd noise estimator (static) µ
N,2

−6 × 2
Control µ

K
−30,−10

Table 12.2: CT eigenvalues Orientation EMC - Robot turning on the spot

Instead with a circle trajectory from 0 to 2π rad and mean radius rm = 0.2m, the CT eigenvalues are:

Eigenvalues type CT eigenvalues

Reference µ
R

−0.2 × 2
1st noise estimator (static) µ

N,1
−6

2nd noise estimator (static) µ
N,2

−6 × 2
Control µ

K
−30,−10

Table 12.3: CT eigenvalues Orientation EMC - Robot following a circle trajectory

In the last case reference eigenvalues are slower, since with more fast values the DC motors can easily reach voltage

saturation ruining the result tests.

Virtual control input torque is in any case saturated when it reaches 1Nm.

12.4.1 IMU θz measurement, NO magnetometer in sensor fusion

Using only accelerometer and gyroscope in θz measurement sensor fusion and when robot is turning around

without linear velocity, the orientation is controlled in a quite precise way (first 2 tests). Instead with a circle

trajectory with linear velocity ≠ 0, IMU angle measurement from fusion algorithm becomes inconsistent, as it

can be seen in Figure 12.22: the angle computed using the encoder overcome 8 rad which represent the effective

orientation, instead IMU angle is ≈ 6.2 rad (more or less 360○) which is wrong. So also the green curve representing

θz measurement on top of Figure 12.24 is wrong and misleading.

In practice the robot overcome 2π angle and continue moving for more than a quarter of a circle. This can be due

to wrong IMU sensor fusion outcomes when the angular speed gyroscope information is very low (i.e. when robot

is approaching the target angle).

For this reasons, best choice is to add magnetometer information to sensor fusion, as it can be seen in next section

results.

12.4. RHIT TESTS - STATIC FEEDBACK MEASURE DRIVEN DECOMPOSITION NOISE ESTIMATOR 158

Robot still, [0,2π] angle trajectory

Figure 12.10: Encoder VS IMU θz measurement Figure 12.11: Robot torque control input (virtual)

Figure 12.12: Orientation EMC y, ŷm and yref

Figure 12.13: Tracking etrk and model em errors for θz (1st column) and ωz (2nd column)

Figure 12.14: Right motor EMC y, ŷm and yref Figure 12.15: Left motor EMC y, ŷm and yref

159 CHAPTER 12. MOTORS AND ORIENTATION EMC - RHIT RESULTS

Robot still, [0,−2π] angle trajectory

Figure 12.16: Encoder VS IMU θz measurement Figure 12.17: Robot torque control input (virtual)

Figure 12.18: Orientation EMC y, ŷm and yref

Figure 12.19: Tracking etrk and model em errors for θz (1st column) and ωz (2nd column)

Figure 12.20: Right motor EMC y, ŷm and yref Figure 12.21: Left motor EMC y, ŷm and yref

12.4. RHIT TESTS - STATIC FEEDBACK MEASURE DRIVEN DECOMPOSITION NOISE ESTIMATOR 160

Robot in movement, circle rm= 0.2 m, [0,2π] angle trajectory

Figure 12.22: Encoder VS IMU θz measurement Figure 12.23: Robot position (us-
ing motor encoders and kin. eqs)

Figure 12.24: Orientation EMC y, ŷm and yref

Figure 12.25: Tracking etrk and model em errors for θz (1st

column) and ωz (2nd column)

Figure 12.26: Robot torque control input (vir-
tual)

Figure 12.27: Right motor EMC y, ŷm and yref Figure 12.28: Left motor EMC y, ŷm and yref

161 CHAPTER 12. MOTORS AND ORIENTATION EMC - RHIT RESULTS

12.4.2 IMU θz measurement, magnetometer in sensor fusion

In addition to gyroscope and accelerometer data, also magnetometer information is added to IMU sensor fusion

algorithm, in order to avoid inconsistent angle measurements when gyroscope angular acceleration is low.

However now the angle does not start anymore from 0 rad at every robot run-up, but it depends on robot

orientation with respect to earth magnetic field: for example when robot is pointing earth magnetic north, IMU

starting angle will be π rad. As already explained this problem can be eluded by adding a piece of SW code

removing this angle offset at every test start.

In all test cases tracking and model errors are very low, confirming that this is the best solution. No more

measurement problems arises when robot approaches the target angle (like IMU without magnetometer case).

The first 2 results sets compare orientation EMC with and without disturbance rejection: orientation tracking and

model errors are almost the same, and the fact that ud = 0Nm is compensated by an increase of utrk values,

which highest peak passes from 0.05 to 0.1Nm (which difference is almost the max peak of ud when disturbance

rejection is present), check Figure 12.30 and Figure 12.37.

Robot still, [0,2π] angle trajectory - Disturbance rejection

Figure 12.29: Robot torque control input (virtual) Figure 12.30: Control input components ud and utrk

Figure 12.31: Orientation EMC y, ŷm and yref
Figure 12.32: Tracking etrk and model em errors for θz
(1st column) and ωz (2nd column)

Figure 12.33: Right motor EMC y, ŷm and yref Figure 12.34: Left motor EMC y, ŷm and yref

12.4. RHIT TESTS - STATIC FEEDBACK MEASURE DRIVEN DECOMPOSITION NOISE ESTIMATOR 162

Robot still, [0,2π] angle trajectory - No disturbance rejection

Figure 12.35: Encoder VS IMU θz measurement

Figure 12.36: Robot torque control input (virtual) Figure 12.37: Control input components ud and utrk

Figure 12.38: Orientation EMC y, ŷm and yref
Figure 12.39: Tracking etrk and model em errors for θz
(1st column) and ωz (2nd column)

Figure 12.40: Right motor EMC y, ŷm and yref Figure 12.41: Left motor EMC y, ŷm and yref

163 CHAPTER 12. MOTORS AND ORIENTATION EMC - RHIT RESULTS

Robot still, [0,−2π] angle trajectory

Figure 12.42: Encoder VS IMU θz measurement Figure 12.43: Robot torque control input (virtual)

Figure 12.44: Orientation EMC y, ŷm and yref

Figure 12.45: Tracking etrk and model em errors for θz (1st column) and ωz (2nd column)

Figure 12.46: Right motor EMC y, ŷm and yref Figure 12.47: Left motor EMC y, ŷm and yref

12.4. RHIT TESTS - STATIC FEEDBACK MEASURE DRIVEN DECOMPOSITION NOISE ESTIMATOR 164

Robot in movement in circle rm = 0.2 m, [0,2π] angle trajectory

Figure 12.48: Encoder VS IMU θz measurement Figure 12.49: Robot position (us-
ing motor encoders and kin. eqs)

Figure 12.50: Orientation EMC y, ŷm and yref

Figure 12.51: Tracking etrk and model em errors for θz (1st

column) and ωz (2nd column)

Figure 12.52: Robot torque control input (vir-
tual)

Figure 12.53: Right motor EMC y, ŷm and yref Figure 12.54: Left motor EMC y, ŷm and yref

165 CHAPTER 12. MOTORS AND ORIENTATION EMC - RHIT RESULTS

Robot in movement, circle rm= 0.2 m, [0,−2π] angle trajectory

Figure 12.55: Encoder VS IMU θz measurement Figure 12.56: Robot position (us-
ing motor encoders and kin. eqs)

Figure 12.57: Orientation EMC y, ŷm and yref

Figure 12.58: Tracking etrk and model em errors for θz (1st

column) and ωz (2nd column)

Figure 12.59: Robot torque control input (vir-
tual)

Figure 12.60: Right motor EMC y, ŷm and yref Figure 12.61: Left motor EMC y, ŷm and yref

12.4. RHIT TESTS - STATIC FEEDBACK MEASURE DRIVEN DECOMPOSITION NOISE ESTIMATOR 166

12.4.3 Encoder θz measurement

Using encoder motor position to obtain the robot yaw angle measurement gives reliable values when robot starts

from 0 rad and reaches 2π rad target angle (either when robot has or not linear velocity), but drifts when robot is

rotating in opposite directions (from 2π rad to 0 rad), as it can be seen in Figure 12.68 and especially Figure 12.81.

This leads to avoid motor encoders for θz measurements.

Robot still, [0,2π] angle trajectory

Figure 12.62: Encoder VS IMU θz measurement Figure 12.63: Robot torque control input (virtual)

Figure 12.64: Orientation EMC y, ŷm and yref
Figure 12.65: Tracking etrk and model em errors for θz
(1st column) and ωz (2nd column)

Figure 12.66: Right motor EMC y, ŷm and yref Figure 12.67: Left motor EMC y, ŷm and yref

167 CHAPTER 12. MOTORS AND ORIENTATION EMC - RHIT RESULTS

Robot still, [0,−2π] angle trajectory

Figure 12.68: Encoder VS IMU θz measurement Figure 12.69: Robot torque control input (virtual)

Figure 12.70: Orientation EMC y, ŷm and yref

Figure 12.71: Tracking etrk and model em errors for θz (1st column) and ωz (2nd column)

Figure 12.72: Right motor EMC y, ŷm and yref Figure 12.73: Left motor EMC y, ŷm and yref

12.4. RHIT TESTS - STATIC FEEDBACK MEASURE DRIVEN DECOMPOSITION NOISE ESTIMATOR 168

Robot in movement in circle rm = 0.2 m, [0,2π] angle trajectory

Figure 12.74: Encoder VS IMU θz measurement Figure 12.75: Robot position (us-
ing motor encoders and kin. eqs)

Figure 12.76: Orientation EMC y, ŷm and yref

Figure 12.77: Tracking etrk and model em errors for θz (1st

column) and ωz (2nd column)

Figure 12.78: Robot torque control input (vir-
tual)

Figure 12.79: Right motor EMC y, ŷm and yref Figure 12.80: Left motor EMC y, ŷm and yref

169 CHAPTER 12. MOTORS AND ORIENTATION EMC - RHIT RESULTS

Robot in movement, circle rm= 0.2 m, [0,−2π] angle trajectory

Figure 12.81: Encoder VS IMU θz measurement Figure 12.82: Robot position (us-
ing motor encoders and kin. eqs)

Figure 12.83: Orientation EMC y, ŷm and yref

Figure 12.84: Tracking etrk and model em errors for θz (1st

column) and ωz (2nd column)

Figure 12.85: Robot torque control input (vir-
tual)

Figure 12.86: Right motor EMC y, ŷm and yref Figure 12.87: Left motor EMC y, ŷm and yref

12.5. RHIT TESTS - DYNAMIC FEEDBACK MEASURE DRIVEN DECOMPOSITION NOISE ESTIMATOR 170

12.5 RHIT tests - Dynamic feedback measure driven decomposition noise esti-

mator

Another possibility is to use 2 noise estimators for both controllable states, static FB for θz and dynamic FB for

ωz , exploiting measure-driven decomposition .

The IMU is used to measure θz , with presence of magnetometer data in fusion algorithm.

An angle trajectory of [0,2π] rad is done, and no further improvements on tracking and model errors are reached

with respect to the control model with only 2 static noise estimators. This is because the demanding input torque

is very high and the control too aggressive, as we can see in Figure 12.90: it reaches values higher than 1.5Nm

when the target is almost reached, which is impossible in practice (because the torque must be near to zero). For

this reason, this solution is rejected even if the estimated orientation angle follows quite well the reference and

measurement.

To avoid saturations max torque allowed is heavily increased τ
T
= 100Nm, which is obviously physically too high

for a robot trajectory like this one. For orientation control model the following CT eigenvalues are selected:

Eigenvalues type CT eigenvalues

Reference µ
R

−0.5 × 2
1st noise estimator (static) µ

N,1
−5

2nd noise estimator (static part) µ
N,21

−10 × 2
2nd noise estimator (dynamic part) µ

N,22
−10 × 3

Control µ
K

−50,−30

Table 12.4: CT eigenvalues Orientation EMC

Figure 12.88: Orientation EMC y, ŷm and yref

171 CHAPTER 12. MOTORS AND ORIENTATION EMC - RHIT RESULTS

Figure 12.89: Tracking etrk and model em errors for θz (1st column) and ωz (2nd column)

Figure 12.90: Robot torque control input (virtual)

Figure 12.91: Right motor EMC y, ŷm and yref Figure 12.92: Left motor EMC y, ŷm and yref

Part IV

Robot longitudinal position EMC

Chapter 13

EMC Differential drive robot theory -

Longitudinal position only

The chapter is focused in theoretically building EMC to control only longitudinal position and speed of robot.

Hence the robot will be allowed to move only in one direction, longitudinal along one axis.

To define axes reference, for simplicity the inertial RF is considered equal to robot RF in rest position, with the

origin placed in robot wheels axle: in this way the robot position is always zero in both 2D axes, for every test. In

Figure 3.6 this is obtained overlapping the 2 inertial and body reference frames (IF and BF).

Both fine (for MIL simulations) and EMC models are very similar to orientation ones discussed in Chapter 10.

Indeed for orientation the robot total torque is the command input, for position control is the robot total force:

hence if the only parameter for orientation was the total robot inertia I
T
, for position will be the total robot mass

M
T
. This is a huge benefit, because many settings are already defined.

Notation: From now on, since x symbol is already used to define EM states, robot longitudinal positions will be

referred as ξ and longitudinal velocity as vξ = ξ̇.

13.1 Fine model

Dynamic equation of robot position is:

F
T
=

2

∑
i=1

Fi(t) = FL
(t) + F

R
(t) =M

T
ξ̈(t) (13.1)

Where M
T
is the robot total mass parameter, F

L
(t) and F

R
(t) are the longitudinal forces acting on the 2 wheels

and their sum results in total force F
T
(t). Total robot acceleration is defined as ξ̈(t). The last equation can be

split in 2 ODE:
ξ̇(t) = ξ̇(t)

ξ̈(t) =
F

T
(t)

M
T

(13.2)

The total mass is well defined (it is sufficient to weight the robot) and its value is M
T
= 0.68kg, Equation (3.1).

The error is already implemented in the motor fine model with quantization needed for position encoders, so

disturbances in position fine model are not needed.

13.2. EMC MODEL 174

13.2 EMC model

13.2.1 DT EM equations

Similarly to Orientation EMC, also EM for position control can be build considering 2 integrators. Starting from

CT state equations in Equation (13.2) disturbances can be added:

ξ̇(t) = ξ̇(t) +w1(t)

ξ̈(t) = xd(t) +
F

T
(t)

M
T

+w2(t)

ẋd(t) = w3(t)

Where wi(t) are noises affecting the states.

From orientation control model it’s experienced that is possible to measure both controllable states, thus even in

the previous CT equations noises wi(t) affect both position and speed states.

For disturbance state equation a first order is sufficient, and the state is added to the system as acceleration

perturbation. In CT is sufficient only 1 integrator and a not-causal disturbance.

In discrete time, CT integrator transforms into a Forward-Euler DT intergrator as in Equation (10.2). Vector of

states will be xT (k) = [ξ, vξ, xd] (k) and the EM model DT SS equations in matrix form become:

x(k + 1) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 T 0

0 1 T

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„„„„¶

ADT

x(k) +

⎡⎢⎢⎢⎢⎢⎢⎣

0
T
IT

0

⎤⎥⎥⎥⎥⎥⎥⎦
–
BDT

u(k) +

⎡⎢⎢⎢⎢⎢⎢⎣

T 0 0

0 T 0

0 0 T

⎤⎥⎥⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„„„„„„¶

GDT

w(k) , x0(k) = 03×1

y(k) =
⎡⎢⎢⎢⎢⎣

1 0 0

0 1 0

⎤⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„¶

CDT

(k)

(13.3)

All matrices are decomposed in the following submatrices:

A
DT
=
⎡⎢⎢⎢⎢⎣

Ac Hc

0 Ad

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

1 T 0

0 1 T

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

, B
DT
=
⎡⎢⎢⎢⎢⎣

Bc

0

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

0
T
IT

0

⎤⎥⎥⎥⎥⎥⎥⎦

G
DT
=
⎡⎢⎢⎢⎢⎣

Gc

Gd

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

T 0 0

0 T 0

0 0 T

⎤⎥⎥⎥⎥⎥⎥⎦

, C
DT
= [Cc Cd] =

⎡⎢⎢⎢⎢⎣

1 0 0

0 1 0

⎤⎥⎥⎥⎥⎦

(13.4)

The matrices in Equation (13.3) are decomposed in 2 parts using matrix driven decomposition, exactly in the form

used for orientation EMC matrices in Equation (10.11).

In Figure 13.1, violet area shows the discrete time first order noise disturbances wi(k).

13.2.2 Control law

Reference theory for control law is Equation (2.11) in Chapter 2: K,M,Q matrices need to be found.

Concerning K = Kp = [kp1, kp2] matrix, the very same proportional control only (P) used for orientation EM

is considered even for this EM, to track the reference for both states ξ and vξ = ξ̇. Theory to find kp1 and kp2

components is already explained in Section 10.2.2 with pole placement technique, hence only final expressions are

175 CHAPTER 13. EMC DIFFERENTIAL DRIVE ROBOT THEORY - LONGITUDINAL POSITION ONLY

Figure 13.1: First order disturbance w entering position EM

reported.

CT eigenvalues are decided arbitrary by us and then converted into DT ones p = [p
k1
, p

k2
], every time step.

Desired characteristic polynomial can be defined as:

λ2 + ak2λ + ak3 = (λ − pk1)(λ − pk2)

Kp matrix components are:

kp1 =
M

T
(1 + ak2 + ak3)

T 2

kp2 =
M

T
(ak2 + 2)
T

(13.5)

QT = [q1, q2],M =m matrices can be univocally determined using 2nd condition in Equation (2.12):

⎧⎪⎪⎨⎪⎪⎩

q1 = q2 = 0

m =M
T

13.2.3 Reference dynamics

Theory about reference dynamics is already discussed in Section 10.2.3, following a static-state FB reference

controller. Again starting from desired CT eigenvalues p
R
= [pr1, pr2], desired characteristic polynomial will be

of second order:

λ2 + ar2λ + ar3 = (λ − pr1)(λ − pr2)

Components for matrix K
R
= [kr1, kr2] are finally:

kr1 =
M

T
(1 + ar2 + ar3)

T 2

kr2 =
M

T
(ar2 + 2)
T

(13.6)

Static-state FB requires also a matrix N
R
to control overall closed loop system DC-gain, which can be computed

with Equation (2.6) if K
R
is known.

13.2.4 Noise estimator

2 noise estimators are needed to estimate the disturbances w of ξ and vξ . Since the only difference between

orientation and position EM is the parameter of Bc matrix in Equation (13.4) (mass M
T
instead of inertia I

T
), and

13.2. EMC MODEL 176

the estimator expression do not depend on this parameter ⇒ noise estimator for EMC long. position model is

exactly the same of Orientation EMC (cfr. Section 10.2.4, solution 2).

First static FB estimator (ξ) expression can be found using pole placement technique, considering the desired

polynomial as a0n = −pn0, with pn0 the desired eigenvalue arbitrary decided by us inside unitary circle for internal

stability. Hence, noise w0 can be estimated as:

w0(k) = L0e0(k)

L0 = l0 =
a0n + 1
T

This estimator is related to model error e0 = ξ − ξ̂.
The 2nd noise estimator (vξ) is again with static FB with LT

1 = [l10, l11], the noise vector w1 ∈ R2×1 and can be

estimated as:
w1(k) = L1e1(k)

L1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

l10 =
a1n2 + 2

T

l11 =
a1n2 + a1n3 + 1

T 2

With a1n2 and a1n3 recovered with the following desired characteristic polynomial, considering pn1 and pn2 decided

arbitrary:

λ2 + a1n2λ + a1n3 = (λ − pn1)(λ − pn2)

In this case model error is e1 = vξ − v̂ξ .
Total estimated disturbance is:

w =
⎡⎢⎢⎢⎢⎣

w0

w1

⎤⎥⎥⎥⎥⎦

Chapter 14

Longitudinal position EMC -

Model-in-the-Loop (MIL) simulation tests

In Chapter 13 control and fine models for controlling robot longitudinal position are explained in theory, now MIL

simulation tests can be performed with both models translated and run in Simulink.

14.1 General MIL settings on Simulink

14.1.1 Simulated long. position EMC and fine models

Longitudinal position fine model is composed by gain (total robot mass M
T
) plus 2 integrators, as already ex-

plained in Equation (13.1).

As opposed to Orientation fine model for MIL tests, no additional noises or disturbances are added to the position

and longitudinal speed measurements of longitudinal position fine model: this is because they’re recovered using

kinematic equations starting from wheel encoders position measurements, hence all the errors are present in DC

motors fine model outputs ω
R
and ω

L
(check loop structure path explained in Section 14.1.2).

Regarding longitudinal position EMC nothing changes from model blocks explained in Section 13.2.

14.1.2 Long. position and DC motors Hierarchical structure

Hierarchical structure is exploited for Longitudinal position control model too, to be combined with DC motors

EMC. Because it’s practically the same as the one of Orientation EMC (for structure features refer to Section 11.1.2)

here will be presented only the differences. Taking a look at Figure 14.1, they are:

• Orientation EMC is substituted by Longitudinal position EMC, which now tries to control a target position

ξ̃(k) (reference dynamics inside the model gives as output the desired trajectory).

• Kinematic conversion block is the same, but since now it is the orientation control supposed to be absent, a

target ω̃z(k) = 0 rad/s is imposed (plus the longitudinal position EMC estimated output v̂ξ(k)).

• The estimated wheel speeds from DC motors EMC are converted not in a total torque but a total force

F
T
(t) entering longitudinal position fine model. The conversion can be performed using the transformation

in Equation (3.11), to pass from wheel speeds to robot longitudinal acceleration/force:

F
T
(t) =M

T
ξ̈(t) =

M
T
ρ

2
(ϕ̈

R
(t) + ϕ̈

L
(t)) (14.1)

14.2. GENERAL SETTINGS ON SIMULINK MIL PLOT RESULTS 178

Figure 14.1: Hierarchic structure for MIL tests - Longitudinal position and DC motors EMC

• Longitudinal position fine model measurements are now ξ(t) and vξ(t).

DC motors EMC CT eigenvalues for DC motors are the same as Table 6.1, for both right and left motors.

Instead for Longitudinal position EMC the same final CT eigenvalues giving the best results in RHIT are con-

sidered, the ones in Table 15.1 (when robot is covering 2m distance the reference CT eigenvalues changes from

−0.5 × 2 to −0.2 × 2).
Virtual force is saturated at 10N.

14.2 General settings on Simulink MIL plot results

Longitudinal trajectories are of 1m (one way and round trip) and 2m, with 0 ○ angle trajectory. MIL plot simula-

tions are the result of continuous comparison with RHIT. Only best MIL tests are shown in the plots.

Every set of results is divided in 2 parts: the first plots are related to MIL simulations only, showing y, ŷm and

yref for long. position ξ and speed vξ , with relative tracking and model errors em and etrk, related to longitudinal

position control model. Other two plots are for measurements and estimations of DC motor output speeds.

The second set of plots instead shows a comparison between MIL and RHIT testing procedures, where RHIT

are taken from Chapter 15: the Timestamp obtained with RHIT is reproduced quite exactly in simulation, for all

control models (the timestamp is the same for the first set of plots too). Also a comparison between the 2 virtual

control inputs is evidenced, to have an indication of its reliability and control model behaviour.

Disturbance rejection term is present in control input for all tests, except from one of them (Section 14.3.4), to

make a comparison with and without.

14.3 Summary on the obtained results

Regarding only MIL simulations tracking and model errors are very low (at max some cm for both em, and etrk

related to ξ, and lower than 0.1m/s for errors related to vξ).

For all tests comparison between MIL and RHIT reveals that the simulations are very similar to reality. Making a

comparison between tests with and without disturbance rejection, in Section 14.3.3 and Section 14.3.4, we can see

that the difference is very low. Indeed making a comparison between long. position EMC errors em and etrk with

disturbance rejection (Figure 14.25) and without (Figure 14.37), they’re almost the same apart from etrk for state

related to ξ: maximum peak is reached at ∣0.02∣ m with disturbance rejection, however an higher peak at ∣0.03∣m
is obtained without disturbance rejection. This is due to the fact that the total robot mass parameter used in EMC

model is very near to reality (because is simple to weight the robot). Comparing virtual force control inputs in

Figure 14.26 and Figure 14.38, when no disturbance rejection is present, the input component related to tracking

error utrk is increased from 1 to 2 N, to compensate the absence of ud = 0N.

179 CHAPTER 14. LONGITUDINAL POSITION EMC - MODEL-IN-THE-LOOP (MIL) SIMULATION TESTS

14.3.1 Target position ξ̃ = 1 m, target ang. speed ω̃z = 0
rad
s , dist. rej.

MIL simulation test results:

Figure 14.2: MIL Long. position EMC outputs yref (red), y (magenta) and ŷm (cyan)

Figure 14.3: MIL Long. position EMC tracking etrk and model em errors

Figure 14.4: MIL Left motor EMC outputs y (magenta),
ŷm (cyan) and yref (red)

Figure 14.5: MIL Right motor EMC outputs y (ma-
genta), ŷm (cyan) and yref (red)

14.3. SUMMARY ON THE OBTAINED RESULTS 180

Comparison between MIL and RHIT:

Figure 14.6: Long. position EMC measured outputs
y (magenta MIL, cyan RHIT) - Comparison MIL and
RHIT

Figure 14.7: Long. position EMC estimated outputs
ŷm (magenta MIL, cyan RHIT) - Comparison MIL and
RHIT

Figure 14.8: Left DC motor EMC measured outputs
y, ŷm (magenta MIL, cyan RHIT) - Comparison MIL
and RHIT

Figure 14.9: Right DC motor EMC measured outputs
y, ŷm (magenta MIL, cyan RHIT) - Comparison MIL
and RHIT

Figure 14.10: Long. position EMC virtual control input u - Comparison MIL and RHIT

Figure 14.11: Long. position EMC Timestamp - Com-
parison MIL and RHIT

Figure 14.12: (Left and right) DC motors EMC Times-
tamp EM and Control part - Comparison MIL and
RHIT

181 CHAPTER 14. LONGITUDINAL POSITION EMC - MODEL-IN-THE-LOOP (MIL) SIMULATION TESTS

14.3.2 Target position ξ̃ = 2 m, target ang. speed ω̃z = 0
rad
s , dist. rej.

MIL simulation test results:

Figure 14.13: MIL Long. position EMC outputs yref (red), y (magenta) and ŷm (cyan)

Figure 14.14: MIL Long. position EMC tracking etrk and model em errors

Figure 14.15: MIL Left motor EMC outputs y (magenta),
ŷm (cyan) and yref (red)

Figure 14.16: MIL Right motor EMC outputs y (ma-
genta), ŷm (cyan) and yref (red)

14.3. SUMMARY ON THE OBTAINED RESULTS 182

Comparison between MIL and RHIT:

Figure 14.17: Long. position EMC measured outputs
y (magenta MIL, cyan RHIT) - Comparison MIL and
RHIT

Figure 14.18: Long. position EMC estimated outputs
ŷm (magenta MIL, cyan RHIT) - Comparison MIL and
RHIT

Figure 14.19: Left DC motor EMC measured outputs
y, ŷm (magenta MIL, cyan RHIT) - Comparison MIL
and RHIT

Figure 14.20: Right DC motor EMC measured outputs
y, ŷm (magenta MIL, cyan RHIT) - Comparison MIL
and RHIT

Figure 14.21: Long. position EMC virtual control input u - Comparison MIL and RHIT

Figure 14.22: Long. position EMC Timestamp - Com-
parison MIL and RHIT

Figure 14.23: (Left and right) DC motors EMC Times-
tamp EM and Control part - Comparison MIL and
RHIT

183 CHAPTER 14. LONGITUDINAL POSITION EMC - MODEL-IN-THE-LOOP (MIL) SIMULATION TESTS

14.3.3 Target position ξ̃ = 1 m (round trip), target ang. speed ω̃z = 0
rad
s , dist. rej.

MIL simulation test results:

Figure 14.24: MIL Long. position EMC outputs yref (red), y (magenta) and ŷm (cyan)

Figure 14.25: MIL Long. position EMC tracking etrk and model em errors

Figure 14.26: MIL Long. position EMC control input terms u,ud and utrk (from top to bottom) - Disturbance
rejection

Figure 14.27: MIL Left motor EMC outputs y (ma-
genta), ŷm (cyan) and yref (red)

Figure 14.28: MIL Right motor EMC outputs y (ma-
genta), ŷm (cyan) and yref (red)

14.3. SUMMARY ON THE OBTAINED RESULTS 184

Comparison between MIL and RHIT:

Figure 14.29: Long. position EMC measured outputs
y (magenta MIL, cyan RHIT) - Comparison MIL and
RHIT

Figure 14.30: Long. position EMC estimated outputs
ŷm (magenta MIL, cyan RHIT) - Comparison MIL and
RHIT

Figure 14.31: Left DC motor EMC measured outputs
y, ŷm (magenta MIL, cyan RHIT) - Comparison MIL
and RHIT

Figure 14.32: Right DC motor EMC measured outputs
y, ŷm (magenta MIL, cyan RHIT) - Comparison MIL
and RHIT

Figure 14.33: Long. position EMC virtual control input u - Comparison MIL and RHIT

Figure 14.34: Long. position EMC Timestamp - Com-
parison MIL and RHIT

Figure 14.35: (Left and right) DC motors EMC Times-
tamp EM and Control part - Comparison MIL and
RHIT

185 CHAPTER 14. LONGITUDINAL POSITION EMC - MODEL-IN-THE-LOOP (MIL) SIMULATION TESTS

14.3.4 Target position ξ̃ = 1 m (round trip), target ang. speed ω̃z = 0
rad
s , No dist. rej.

MIL simulation test results:

Figure 14.36: MIL Long. position EMC outputs yref (red), y (magenta) and ŷm (cyan)

Figure 14.37: MIL Long. position EMC tracking etrk and model em errors

Figure 14.38: MIL Long. position EMC control input terms u,ud and utrk (from top to bottom) - No disturbance
rejection

Figure 14.39: MIL Left motor EMC outputs y (ma-
genta), ŷm (cyan) and yref (red)

Figure 14.40: MIL Right motor EMC outputs y (ma-
genta), ŷm (cyan) and yref (red)

14.3. SUMMARY ON THE OBTAINED RESULTS 186

Comparison between MIL and RHIT:

Figure 14.41: Long. position EMC measured outputs
y (magenta MIL, cyan RHIT) - Comparison MIL and
RHIT

Figure 14.42: Long. position EMC estimated outputs
ŷm (magenta MIL, cyan RHIT) - Comparison MIL and
RHIT

Figure 14.43: Left DC motor EMC measured outputs
y, ŷm (magenta MIL, cyan RHIT) - Comparison MIL
and RHIT

Figure 14.44: Right DC motor EMC measured outputs
y, ŷm (magenta MIL, cyan RHIT) - Comparison MIL
and RHIT

Figure 14.45: Long. position EMC virtual control input u - Comparison MIL and RHIT

Figure 14.46: Long. position EMC Timestamp - Com-
parison MIL and RHIT

Figure 14.47: (Left and right) DC motors EMC Times-
tamp EM and Control part - Comparison MIL and
RHIT

Chapter 15

Motors and longitudinal position EMC -

RHIT results

The EMC system to control the longitudinal position is very similar to the one for orientation EMC only, basically

with a gain difference (total robot mass instead of total inertia). Hence the generated SW code to be implemented

in the Raspberry is quite the same.

2 possibilities are available to measure the robot position ξ and speed vξ in longitudinal direction:

1. The IMU accelerometer may be used to recover speed and position by double integration. However raw

accelerometer data is affected by large frequency spectrum noise, and 2 integrations unavoidably leads to

wrong values. To avoid this problem a sensor fusion with another sensor can be used, for example using the

motor encoders, but this is not treated in this thesis work.

2. (This is the procedure used) Using only the motor encoders to find the angular motor speeds, then kinematic

equations to recover the long. speed and position by integration (this procedure is also called odometry).

Since it is made an integration to pass from speed to position, also in this case the derivation and integration

errors accumulate over time: however the distance longitudinally covered for tests is not very high (only some

meters), and we can assume that the estimation is sufficiently precise.

Again a hierarchic structure very similar to the one used for orientation EMC is exploited (cfr. Figure 12.1),

however robot plant now requires only DC motor encoders to obtain the measurements: to obtain the longitudinal

position and speed ξ, vξ kinematic equations are used a second time (cfr. Equation (3.15)), and a DT derivative to

obtain wheel angular speeds ω
R
, ω

L
. Making reference to Figure 15.1, we can recall the main passages of the entire

hierarchic system loop:

• From long. position control model, long. position ξ̂ and speed v̂ξ are estimated. Since only longitudinal

distance is controlled, total velocity coincides with the one along ξ axis, v̂ = v̂ξ .

• Conversion block allows to pass from estimated v̂ to angular motor speeds, which are used as target speeds

entering the DC motor control models. Conversion again is based on kinematic equations, one input is v̂,

the other is ω̂z = 0 rad/s, since only position control is considered.

• DC motors EMC give as output the wheel angular speeds and voltage control inputs u
R
, u

L
for real motors.

15.1. GENERAL RHIT TEST SETTINGS 188

Figure 15.1: Hierarchic structure for RHIT - Longitudinal position and DC motors EMC

• Position and speed measurements from long. position fine model are computed at every sampling time step

by using the wheel encoder angular positions and kinematic equations, to enter long. position EMC. At the

same time from motor encoders also the real wheel speed measurements ω
R
, ω

L
are computed to enter DC

motors EMC.

15.1 General RHIT test settings

As for orientation EMC RHIT tests, model and tracking errors em and etrk are very important for estimated

position ξ̂, but for v̂ξ estimate they are not crucial since we are interested mainly in final longitudinal position.

Only warning is to maintain the linear estimated speed in a bounded error range.

Main trajectories followed are straight lines till 1m or 2m (sometimes coming back to initial position), and 0 rad

angle trajectory. Predictable orientation errors may arise during tests because only position is controlled.

2 HW timers work for both the 2 motors (EM and control part) and only 1 for position control model.

In every test variable sample time is considered for both control models: in particular the already tested random

sampling times T
EM
= [0.01,0.03] s and Tctrl = 0.02 s for EM and control EMC block parts are used. Instead

for position control model Tp = [0.025,0.045] s variable sampling time is considered. Now encoder is used

to estimated the position but in the future IMU can be integrated, so with this timestamp range we guarantee

minimum IMU sampling rate T
IMU
= 0.021 s.

In the next figures are presented the Timestamp ranges used in all tests (some differences occurs among tests, but

the range remains still the same):

Figure 15.2: Position EMC Timestamp

189 CHAPTER 15. MOTORS AND LONGITUDINAL POSITION EMC - RHIT RESULTS

Figure 15.3: Left motor EMC Timestamp Figure 15.4: Right motor EMC Timestamp

In Figure 15.3 and Figure 15.4, Timestamp of Control part is 0.02 s with some spikes in the measurements due to

the 3 HW timers running simultaneously for the tests. As for orientation only control model, they don’t affect the

DC motors EMC results.

There are considered again 2 static FB measure-driven decomposition noise estimators. CT eigenvalues when the

robot is covering a 1m distance are:

Eigenvalue type Continuous eigenvalues

Reference µ
R

−0.5 × 2
1st noise estimator (static) µ

N,1
−6

2nd noise estimator (static) µ
N,2

−6 × 2
Control µK −30,−10

Table 15.1: CT eigenvalues Longitudinal position EMC

When the distance covered is 2m, only the reference eigenvalues changes from −0.5 × 2 to −0.2 × 2, in order to

reduce the speed required for the DC motors and avoid saturations.

Virtual force input is saturated when reaching 10N, it’s a reasonable value as maximum values of 1.5–3N are seen

in every test. Version 1.2 EMC is used for both left and right DC motors.

15.2 Plot results

In all tests the tracking and model errors are very low for position, with a maximum of some cm. The ones for

longitudinal speeds are not low (maximum of ≈ 0.15m/s), but at the same time not too high guaranteeing a quite

smooth robot speed trajectory behaviour.

The last 2 plot tests are made considering a one meter robot round-trip, the first when disturbance rejection of

position control model is active, and the second when it is not active. There are no significant differences in

both position and velocity tracking and model errors, only a slightly improvement in favour of the disturbance

rejection. Only more variable virtual input force (but in the same range) is found when the disturbance rejection

is not present, because since disturbance rejection input component ud is not present anymore the other input

tracking component u
trk

becomes higher to compensate.

This can be seen in Figure 15.22 and Figure 15.30 where the maximum peak for u
trk

passes from 1N to 3N, which

difference is more or less the maximum peak of ud when the disturbance rejection is present.

15.2. PLOT RESULTS 190

15.2.1 Trajectory distance of 1 m

Figure 15.5: IMU θz measurement
Figure 15.6: Robot position (using motor encoders and
kin. eqs)

Figure 15.7: Longitudinal position and speed EMC y, ŷm and
yref

Figure 15.8: Robot force control input (virtual)

Figure 15.9: Tracking etrk and model em errors for x (1st column) and vx (2nd column)

Figure 15.10: Right motor EMC y, ŷm and yref Figure 15.11: Left motor EMC y, ŷm and yref

191 CHAPTER 15. MOTORS AND LONGITUDINAL POSITION EMC - RHIT RESULTS

15.2.2 Trajectory distance of 2 m

Figure 15.12: IMU θz measurement
Figure 15.13: Robot position (using motor encoders and
kin. eqs)

Figure 15.14: Longitudinal position and speed EMC y, ŷm and
yref

Figure 15.15: Robot force control input (vir-
tual)

Figure 15.16: Tracking etrk and model em errors for x (1st column) and vx (2nd column)

Figure 15.17: Right motor EMC y, ŷm and yref Figure 15.18: Left motor EMC y, ŷm and yref

15.2. PLOT RESULTS 192

15.2.3 Trajectory distance of 1 m and return to initial position - Disturbance rejection

Figure 15.19: IMU θz measurement
Figure 15.20: Robot position (using motor encoders
and kin. eqs)

Figure 15.21: Robot force control input (virtual)
Figure 15.22: Robot force control input components
(virtual): u, ud and u

trk
(respectively from top to bot-

tom)

Figure 15.23: Longitudinal position and speed EMC y,
ŷm and yref

Figure 15.24: Tracking etrk and model em errors for x
(1st column) and vx (2nd column)

Figure 15.25: Right motor EMC y, ŷm and yref Figure 15.26: Left motor EMC y, ŷm and yref

193 CHAPTER 15. MOTORS AND LONGITUDINAL POSITION EMC - RHIT RESULTS

15.2.4 Trajectory distance of 1 m and return to initial position - No disturbance rejection

Figure 15.27: IMU θz measurement
Figure 15.28: Robot position (using motor encoders
and kin. eqs)

Figure 15.29: Robot force control input (virtual)
Figure 15.30: Robot force control input components
(virtual): u, ud and u

trk
(respectively from top to bot-

tom)

Figure 15.31: Longitudinal position and speed EMC y,
ŷm and yref

Figure 15.32: Tracking etrk and model em errors for x
(1st column) and vx (2nd column)

Figure 15.33: Right motor EMC y, ŷm and yref Figure 15.34: Left motor EMC y, ŷm and yref

Part V

Robot 2D space position EMC

Chapter 16

Motors, orientation and long. position robot

EMC - Theory and RHIT results

The 2 EMC for orientation and longitudinal position for GoPiGo3 discussed in Chapter 10 and Chapter 13 are

combined together to control robot in longitudinal and lateral position at the same time.

Regarding how previous EMC models are built, most simple way to control robot in 2D space is to use longitudinal

position ξ (and speed vξ) and orientation angle θz (and angular speed ωz) as robot coordinate targets: it’s quite

similar to use polar coordinates (with position in one axis instead the radius). In this way already discussed control

models work independently, we need only to make a conversion outside the control models to pass from inertial

RF to body RF and viceversa. This is the structure used to make EMC tests in this thesis.

Conversely, selecting Cartesian coordinates as targets (ξ, ν) more complex structure must be selected, which is not

covered in this thesis work.

Notation: Symbols ξ, ν are used as Cartesian coordinates to avoid misunderstandings with x symbol, used as state

vector for EMC.

16.1 Orientation and long. position EMC hierarchical structure scheme

The last 2 robot orientation and long. position EMC can be easily combined together to make a unique structure,

and move robot in every point of 2-D plane.

Only the scheme for RHIT is presented (Figure 16.1), since no MIL tests are done for this control structure: indeed

to make a simulation quite complex fine model combining both orientation and position robot dynamics must be

built, and this is not covered in this thesis field.

The simplest procedure is to run directly the 2 control models in independent way, one controlling the angle θz for

ν-axis lateral position and the other ξ-axis longitudinal position. The other way is to control ν position instead

of angle θz in a more intuitive way, but this condition requires more complex control models (therefore also for

RHIT and not only for MIL tests this structure is not considered).

Since the 2 orientation and long. position EMC work independently, explanation for the most parts of this 2D

position EMC hierarchic structure can be found at beginning of Chapter 12 and Chapter 15.

The specific settings for the control models derives from best results obtained when they are tested alone:

• Orientation EMC: Magnetometer information in sensor fusion to measure the orientation yaw angle θz ,

noise estimator splitted in 2 static FB estimators, using measure-driven decomposition procedure.

16.2. GENERAL RHIT SETTINGS 196

Figure 16.1: Hierarchic structure for RHIT - Longitudinal position, orientation and DC motors EMC

• Position EMC: Linear position and speed obtained using DC motors encoders, 2 static FB noise estimators

(measure-driven decomposition).

• DC motors: Version 1.2 for both left and right.

16.2 General RHIT settings

Main trajectories followed:

• Longitudinal position ξ̃ = 2m, maintaining θ̃z = 0 rad angle orientation.

• Longitudinal position ξ̃ = 2m and θ̃z = 50° ≈ 0.87 rad angle orientation.

2 HW timers work for both the 2 motors (EM and control part) and only 1 for both orientation and position

control models (in order to avoid a 4th HW timer running simultaneously with the others, which more likely can

add interferences to timestamps).

Timestamp for both is again variable to understand working conditions of EMC, for DC motors they are T
EM
=

[0.01,0.03] s and Tctrl = 0.02 s, instead for orientation and position To = Tp = [0.025,0.045] s (to make sure that

at least one IMU measurement is taken at every step, since its sample rate is [47,47.5] Hz). An example taken

from one of the tests (straight line till 2m robot trajectory):

Figure 16.2: Orientation and Long. position EMC Timestamp

197 CHAPTER 16. MOTORS, ORIENTATION AND LONG. POSITION ROBOT EMC - THEORY AND RHIT
RESULTS

Figure 16.3: Left motor EMC Timestamp Figure 16.4: Right motor EMC Timestamp

The spikes in DC motor timestamps (Figure 16.3 and Figure 16.4) do not interfere so much with the results. They

are due to the presence of many timers running simultaneously.

Regarding EMC control input disturbance rejection, it is already verified testing orientation and position EMC

separately that the absence of disturbance rejection term does not influence badly the tracking and model errors

(because the disturbances for robot orientation/position are small and related only to total mass and inertia

parameters). Since the control models work independently even with 2D position control, there is no interest in

repeating the tests without disturbance rejection.

In this tests the robot has also a lateral movement (i.e. when the desired angle θz ≠ 0), hence is necessary to pay

attention to the reference frames (RF) used. As long as the robot goes only in longitudinal direction the longitudinal

velocity vξ and position in ξ are exactly the total ones, but if lateral motion is present a transformation is needed

to pass from body RF to inertial RF, and viceversa.

Making references to already explained reference frames for GoPiGo3 robot in Figure 3.6 (with BF coincident with

IF at the beginning of every test, for simplicity) and to hierarchical structure in Figure 16.1, transformation is done

as follows:

• In longitudinal position EMC the computed virtual force input and the states are in Robot Inertial RF.

• When the passage from estimated longitudinal speed to wheels angular speeds is needed, a conversion is

performed to obtain the Body RF longitudinal speed v̂BF

ξ from Inertial RF one v̂IF

ξ , estimated by long.

position EMC. It can be computed as:

v̂BF

ξ =
v̂IF

ξ

cos θ̂z
(16.1)

where θ̂z is the estimated angle robot position obtained from orientation EMC. The DC motors EMC target

angular speeds are now in Body RF.

• The robot position measurements can be found integrating the following equation:

vIF

ξ
= ρ

2
(ω

R
+ ω

L
) cos θz (16.2)

Since it is needed the position in inertial RF and wheel speeds measurements ω
L
, ω

R
are in Body RF, in the

last equation there is the multiplication by cos θz to convert speed in Inertial RF.

Until now IMU sensor fusion for angle θz works using all 3 devices present, gyroscope, magnetometer and ac-

celerometer. It is experimented that using the accelerometer is not a good choice because it leads to increased

tracking and model errors.

16.3. PLOT RESULTS 198

Control model Eigenvalue type Value

Orientation Reference µ
R

−0.3 × 2
1st noise estimator (static) µ

N,1
−5

2nd noise estimator (static) µ
N,2

−5 × 2
Control µ

K
−30,−20

Long. Position Reference µ
R

−0.25 × 2
1st noise estimator (static) µ

N,1
−5

2nd noise estimator (static) µ
N,2

−5 × 2
Control µ

K
−20 × 2

Table 16.1: CT eigenvalues Orientation and position EMC

The CT eigenvalues considered are: for the 2 DC motors exactly the same used in Table 9.2, instead for position

and orientation control models: Max virtual control input force is Fv,max = 10N, the max virtual control input

torque is τv,max = 1Nm.

16.3 Plot results

2 tests are made with robot going in longitudinal direction till 2m trying to maintain 0 rad orientation angle, one

with and the other without accelerometer presence in angle sensor fusion.

For each test are shown the robot trajectory in ξ, ν Cartesian coordinates, y, yref , ŷm outputs for orientation and

longitudinal position EMC, the correspondent errors em, etrk, torque and force virtual control inputs (orientation

and long. position EMC) and y, yref , ŷm outputs for left and right DC motors EMC.

Comparing the estimated angles and angular speeds of robot in Figure 16.6 and Figure 16.16 and the relative

tracking and model errors (Figure 16.7 and Figure 16.17), it can be seen that IMU measurements are smoother and

consequently the estimates more precise with lower em and e
trk

when the accelerometer is NOT used in sensor

fusion.

This can be explained either by uncalibrated accelerometer device, for example due to mean value offsets at rest

(as it can be seen in Figure 16.15 where the offset respectively for aξ , aν and az are ϵa,ξ = 0.0567g, ϵa,ν = 0.0691g
and ϵa,z = 0.0160g), or by high noise with high frequency bandwidth (almost like white noise with important

amplitude) affecting the accelerometer data when robot moves.

Instead looking the 3rd test when targets are 2m for longitudinal position and 50 ○ for angle trajectory, the problem

of making correct conversions between Inertial RF and Body RF arises. We can verify if the conversion is good

by looking at the robot force control input of longitudinal position EMC: it must be present a peak of some N at

beginning which then reduce to zero when robot approaches position target.

This is almost what happens, by looking Figure 16.30: only problem happens when approaching the target position

Fv =≈ 1/2 N (different from zero), but it not crucial because the control input is virtual and not directly used, and

trajectory can be followed anyway.

Apart from problems discussed above the targets positions are reached with low tracking and model errors. Instead

the errors regarding the estimated angles might be improved, for example making the IMU angle measurements

more precise.

199 CHAPTER 16. MOTORS, ORIENTATION AND LONG. POSITION ROBOT EMC - THEORY AND RHIT
RESULTS

16.3.1 Trajectory targets ξ̃ = 2 m, θ̃z = 0○ - Fusion algorithm WITHOUT accelerometer

Figure 16.5: Robot position (using motor encoders and kin. eqs)

Figure 16.6: Orientation EMC y (green), ŷm (blue)
and yref (red)

Figure 16.7: Orientation tracking etrk and model
em errors for θz and ωz

Figure 16.8: Longitudinal position and speed EMC
y (green), ŷm (blue) and yref (red)

Figure 16.9: Longitudinal position and speed track-
ing etrk and model em errors for ξ and vξ

Figure 16.10: Torque control input (virtual) Figure 16.11: Force control input (virtual)

Figure 16.12: Right motor EMC y, ŷm and
yref

Figure 16.13: Left motor EMC y, ŷm and yref

16.3. PLOT RESULTS 200

16.3.2 Trajectory distance of 2 m, θ̃z = 0○ - Orientation fusion algorithm WITH accelerometer

Figure 16.14: Robot position (using motor en-
coders and kin. eqs)

Figure 16.15: Acceleration IMU measurements
for sensor fusion, with offsets highlighted

Figure 16.16: Orientation EMC y (green), ŷm
(blue) and yref (red)

Figure 16.17: Orientation tracking etrk and
model em errors for θz and ωz

Figure 16.18: Longitudinal position and speed
EMC y (green), ŷm (blue) and yref (red)

Figure 16.19: Longitudinal position and speed
tracking etrk and model em errors for ξ and
vξ

Figure 16.20: Torque control input (virtual) Figure 16.21: Force control input (virtual)

Figure 16.22: Right motor EMC y, ŷm, yref Figure 16.23: Left motor EMC y, ŷm, yref

201 CHAPTER 16. MOTORS, ORIENTATION AND LONG. POSITION ROBOT EMC - THEORY AND RHIT
RESULTS

16.3.3 Trajectory distance of 2 m, θ̃z = 50○ - Fusion algorithm WITHOUT accelerometer

Figure 16.24: Robot position (using motor encoders and kin. eqs)

Figure 16.25: Orientation EMC y (green), ŷm
(blue) and yref (red)

Figure 16.26: Orientation tracking etrk and
model em errors for θz and ωz

Figure 16.27: Long. position and speed EMC
y (green), ŷm (blue) and yref (red)

Figure 16.28: Long. position and speed track-
ing etrk and model em errors for ξ and vξ

Figure 16.29: Torque control input (virtual) Figure 16.30: Force control input (virtual)

Figure 16.31: Right motor EMC y, ŷm and
yref

Figure 16.32: Left motor EMC y, ŷm and yref

Part VI

Conclusions

Chapter 17

Summary on the results and future work

Real world physical controlled systems are often not synchronous, meaning that their measurements and control

inputs are not given in a fixed time, but variable. For example Networked Controlled systems (NCS) are usually

characterized by the presence of wireless network between controllers and real plants to be controlled. The

presence of delays and package dropouts in data network access or transmission lead to disturbances added to

controlled system.

In this field comes in handy the model-based technique called Embedded Model Control (EMC), based on exploiting

a simplified version of the physical system to be controlled, the Embedded Model (EM). The peculiarity of this

method with respect others is the presence of a disturbance dynamics related to physical plant. This control is

also able to reduce the disturbances using plant measurement output informations.

Objective of the thesis is to verify EMC technique effectiveness with asynchronous time physical systems, using

a real robot plant system: a differential-drive robot called GoPiGo3 is used to this aim, produced by Dexter

industries company, [17].

Two main kind of tests are performed:

• The first is a simulation of both the robot plant and control models, Model-in-the-Loop (MIL) test done

using MathWorks Simulink.

• The second is direct experimental implementation of the control model using GoPiGo3 robot, called by

the author Robot Hardware Implementation Test (RHIT). It is made basically generating C++ code from

Simulink models and loading it in robot GoPiGo3 (which is equipped with a Raspberry board).

To mimic asynchronous timing conditions, a SW code to generate random timestamps in a desired range is

build, then Raspberry HW timers are used to step controllers/robot plant basing on the obtained variable

sampling time.

With EMC technique are controlled the robot DC motors to move the 2 wheels, then robot longitudinal position

and orientation first separately to make robot follow a straight line or a circular trajectory, finally both orientation

and position to move the robot in 2D space. A non-conventional hierarchic structure is used to connect EMC of

DC motors and orientation/position, exploiting the EMC estimated states as robot movement targets.

The outputs of EMC are estimation of some plant states (wheel speeds, robot vertical angle and position in space).

Results can be mainly judged comparing the EMC estimation states with the reference trajectory one wants to

track (tracking error), and the EMC estimated outputs with real plant output measurements (model error, since it’s

necessary that EM model is near to real plant). The lower the errors are, better is the control.

204

For all tests they are sufficiently low, especially for DC motors because the difference between EMC and real

plant is quite huge, for the presence of many neglected dynamics related to inertia and frictions not present (but

estimated) in the control model. For orientation and longitudinal position EMC the disturbances are minimal and

differences are only in total robot mass and inertia parameters (which are near enough to reality).

The ability of EMC to reduce plant disturbances is effectively verified for all control models, especially for DC

motors: the presence of disturbance rejection allows to reduce significantly the tracking errors, making the wheel

robot speeds follow a desired trajectory quite precisely. This can be seen for example from Figure 17.1 and

Figure 17.2, which are the results for right DC motors (for left motor they are similar) taken from RHIT tests

in Section 8.3.3 and Section 8.3.5, where EMC is used to control both left and right GoPiGo3 DC motors, with

asynchronous control sampling time. Objective for estimated wheel output speed ŷm (blue) is to follow the reference

yref (red) and reduce the error with respect to measurement y (green): if no disturbance rejection is present is

well evident that the red trajectory is not followed precisely anymore (Figure 17.2), instead this is successfully done

adding disturbance rejection (Figure 17.1).

Figure 17.1: Combined DC motors EMC RHIT output
speeds reference yref , estimated ŷm and measured y -
Right motor with disturbance rejection

Figure 17.2: Combined DC motors EMC output speeds
reference yref , estimated ŷm and measured y - Right
motor without disturbance rejection

Hierarchical structure requiring the combination of DC motors and orientation/position control models in a non-

conventional way is successfully verified, since robot is able to finally reach a desired position in space following

almost precisely the desired trajectory. This is a huge result because a robot can be controlled using very simple

linear models, avoiding complex conversions and non-linear terms.

The next figures show the best result obtained moving GoPiGo3 robot with longitudinal trajectory till ξ̃ = 2m

position, and assuming a final orientation angle θ̃z = 50○ (≈ 0.87 rad), using EMC technique to control DC

motors, robot position and orientation with hierarchical structure: the estimated outputs ŷm (blue) successfully

track the references yref (red), low tracking errors, and they are near to measurements y (green), low model

errors, using asynchronous sampling time (plots taken from Section 16.3.3) (the oscillations at the end are due to

unavoidable motor dynamics, they have been left in plot results to be sure that the target is effectively reached):

Figure 17.3: Robot position

205 CHAPTER 17. SUMMARY ON THE RESULTS AND FUTURE WORK

Figure 17.4: Orientation EMC y (green), ŷm (blue)
and yref (red)

Figure 17.5: Longitudinal position and speed EMC
y, ŷm and yref

Figure 17.6: Right motor EMC y, ŷm and yref Figure 17.7: Left motor EMC y, ŷm and yref

Future work may be concentrated in:

• Make control behaviour even better. For example the motors don’t work if the voltage is below 2V ap-

proximately, and this affects the first part of every test: the reference trajectory is rising but measured and

estimated speeds remain zero for some time, and when they start a disturbance peak can be present. EMC

is able to mitigate the most of this peak, but sometimes not at all. A solution can be starting the reference

trajectory only when also the measurement speed starts.

• Build and test a more complex hierarchical structure to make robot able to move in a Cartesian ξ, ν 2D

space, instead of following robot longitudinal position ξ and orientation yaw angle θz as already done.

• Send the input targets for EMC remotely (Networked controlled system NCS) connecting robot Raspberry

board with another device (e.g. laptop with Windows/Linux OS). The last device run all EMC and send

the commands inputs and targets to robot Raspberry. Conversely Raspberry is used only to run the motors

on the basis of command inputs, recover encoder and IMU measurements and send them back to the

other device. A NCS is mandatory when reference dynamics becomes more complex (e.g requiring obstacle

avoidance and optimal path), because in this case Raspberry board will not be powerful enough to run the

entire EMC.

For NCS communication protocol to be used, an example is the MQTT, which allows to easily send the

lightweight data needed for GoPiGo3 control.

• Other physical plants in different environments can be used to test asynchronous EMC, for example drones.

Bibliography

[1] Enrico Canuto - Embedded Model Control: Outline of the theory. ISA Transactions 46, pagg. 363–377, 2007 pag

2, pag 7, pag 8, pag 10, pag 11, pag 12, pag 52, pag 55, pag 132, pag 134

[2] Enrico Canuto - On dynamic uncertainty estimators. American Control Conference, Chicago (IL, USA), 2015

pag 10, pag 52, pag 55, pag 134

[3] Enrico Canuto, Fabio Musso - Embedded model control: Application to web winding. ISA Transactions 46,

379–390, 2007 pag 2, pag 132, pag 134

[4] Carlos Norberto Perez Montenegro, Luigi Colangelo, José María Pardo Álvarez , Alessandro Rizzo, Carlo

Novara - Asynchronous Multi-rate Sampled-data Control: an Embedded Model Control Perspective. IEEE 58th

Conference on Decision and Control (CDC), 2019 pag 2

[5] José María Pardo Álvarez, Carlo Novara, Carlos Norberto Perez Montenegro - Embedded Model Control for

Networked Control Systems. Thesis, Politecnico di Torino, 2019 pag 2

[6] Wilber Acuña-Bravo, Andrés Molano-Jiménez, Enrico Canuto - Embedded model control, performance limits -

A case study. DYNA 84(201), pagg. 267-277, 2017 pag 2, pag 12, pag 51

[7] Rached Dhaouadi, Ahmad Abu Hatab - Dynamic Modelling of Differential-Drive Mobile Robots using Lagrange

and Newton-Euler Methodologies: A Unified Framework. Advances in Robotics & Automation, 2013. pag 23

[8] California Institute of Technology (Caltech) - Handouts of ME72 Engineering Design Laboratory, 2010-2011.

Site: https://robotics.caltech.edu/~me72/class/ pag 22

[9] Riccardo Antonello, Angelo Cenedese - Laboratory activity 1: DC gearmotor modelling. University of Padova,

2016. Site: https://elearning.dei.unipd.it/mod/resource/view.php?id=26813 pag 39

[10] Kionix website (https://www.kionix.com) - Application notes AN 012 - Accelerometer Errors, 2015 pag 117

[11] Mazzoldi P., Nigro M., Voci C. - Elementi di Fisica - Meccanica, Termodinamica (Seconda Edizione). EdiSES,

2014 (8th reprint) pag 18, pag 19, pag 20

[12] Ivan Virgala, Michal Kelemen - Experimental Friction Identification of a DC Motor. International Journal of

Mechanics and Applications, 2013 pag 49

[13] M. Violante - Operating Systems for Embedded Systems. Polytechnic of Turin MSc course, 2018/2019 pag 2, pag

27

[14] M. Canale - Digital control technologies and architectures. Polytechnic of Turin MSc course, 2017/2018 pag 8

https://robotics.caltech.edu/~me72/class/
https://elearning.dei.unipd.it/mod/resource/view.php?id=26813
https://www.kionix.com

207 BIBLIOGRAPHY

[15] Joao P. Hespanha, Payam Naghshtabrizi, Yonggang XuA - Survey of Recent Results in Networked Control Systems.

Proceedings of the IEEE, 2007 pag 2

[16] Bernard Mulgrew, Peter Grant, John Thompson - Digital Signal Processing, Concepts and Applications. First

publication MACMILLAN PRESS LTD, 1999 pag 68

[17] Dexter industries GoPiGo3 DD robot website - https://www.dexterindustries.com/store/gopigo3-base-kit/ pag

3, pag 15, pag 203

[18] Raspberry Pi 3 Model B website - https://www.raspberrypi.org/products/raspberry-pi-3-model-b/ pag 17

[19] Adafruit 10-DOF IMU Breakout IMU website - https://learn.adafruit.com/adafruit-10-dof-imu-breakout-lsm3

03-l3gd20-bmp180 pag 17

[20] PuTTY client website - https://www.chiark.greenend.org.uk/~sgtatham/putty/ pag 26

[21] VNC Viewer and Server website - https://www.realvnc.com/en/connect/ pag 26

[22] Signals in UNIX platforms - https://en.wikipedia.org/wiki/Signal_(IPC) pag 28

[23] GitHub repository for GoPiGo3 robot material - https://github.com/DexterInd/GoPiGo3 pag 31

[24] GitHub repository for RTIMULib2 library, used for IMU measurements - https://github.com/RPi-Distro/RT

IMULib or https://github.com/RTIMULib/RTIMULib2 pag 31, pag 117

[25] MathWorks Simscape toolbox - https://uk.mathworks.com/products/simscape.html pag 57

[26] Moving average filter - https://en.wikipedia.org/wiki/Moving_average pag 68

https://www.dexterindustries.com/store/gopigo3-base-kit/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://learn.adafruit.com/adafruit-10-dof-imu-breakout-lsm303-l3gd20-bmp180
https://learn.adafruit.com/adafruit-10-dof-imu-breakout-lsm303-l3gd20-bmp180
https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://www.realvnc.com/en/connect/
https://en.wikipedia.org/wiki/Signal_(IPC)
https://github.com/DexterInd/GoPiGo3
https://github.com/RPi-Distro/RTIMULib
https://github.com/RPi-Distro/RTIMULib
https://github.com/RTIMULib/RTIMULib2
https://uk.mathworks.com/products/simscape.html
https://en.wikipedia.org/wiki/Moving_average

Nomenclature

Acronyms

CT Continuous Time

DT Discrete Time

CoM Center of Mass

EMC Embedded Model Control

EM Embedded Model

HW Hardware

SW Software

SS State space (equations)

LTI Linear time invariant (system)

IMU Inertial measurement unit

HIL Hardware-in-the-Loop (test)

SIL Software-in-the-Loop (test)

MIL Model-in-the-Loop (test)

RHIT Robot Hardware Implementation test: imple-

mentation of control models in a real robot

DC Direct current (motor)

OS Operating system

PWM Pulse-width modulation

GPIO General purpose input-output (pin)

I/O Input/output

RF Reference frame

BF Body (reference) frame

IF Inertial (reference) frame

IDE Integrated development environment

wrt With respect to

GUI Graphical User Interface

ODE Ordinary differential equation

DD Differential-drive (robot)

MSD Mass-spring-damper (physical system)

NCS Networked Control System

MQTT Message Queue Telemetry Transport (commu-

nication protocol)

MA Moving Average (FIR filter)

FB Feedback

GoPiGo3 DD robot main parameters

M
T

Total mass

I
T
or Itzz Total inertia z-axis

F
T
, F

R
, F

L
Total, left, right forces acting on axle and

wheels

τ
T
, τ

R
, τ

L
Total, left, right torques acting on axle and

wheels

ρ Robot wheel mean radius

W Half robot width

l Robot longitudinal length

EMC general notations

x All states

xc Controllable states

209 NOMENCLATURE

xd Disturbance states

x̂ Estimated states

x Reference states

u Control/command input (Control law)

u Reference input (component of u)

ud Disturbance rejection input (component of u)

utrk Tracking error input (component of u)

y Output measurement/s

y, yref Reference output (Reference dynamics)

ŷm Estimated output (EM part)

w,w Noises and disturbances (EM part)

T,Ts Discrete sampling time

em Model error

e, etrk Tracking error

λ
K
, λ

N
, λ

R
DT eigenvalues (control, noise est., ref.)

µ
K
, µ

N
, µ

R
CT eigenvalues (control, noise est., ref.)

DC motor parameters and EMC

ω
R
, ω

L
Measured wheel angular speeds, left and right

ϕ
R
, ϕ

L
Measured wheel angles, left and right

ω̂
R
, ω̂

L
Estimated wheel angular speeds, left and right

ω̃
R
, ω̃

L
Reference targets wheel angular speeds, left and

right

Ra DC Motor armature resistance

La DC Motor armature inductance

Va, V DC Motor armature voltage

kv DC Motor back electromotive force constant

kt DC Motor torque constant

Jeq DC Motor total equivalent inertia (motor side)

βeq DC Motor total equivalent friction (motor side)

τm DC Motor mechanical time constant

τa DC Motor electrical time constant

N DC Motor gearbox reduction

Orientation EMC

θz Robot yaw angle measurement, z-axis

θ̂z Robot yaw angle estimated with EMC

θ̃z Robot yaw angle reference target

ωz Robot angular speed measurement, z-axis

ω̂z Robot angular speed estimated with EMC

ω̃z Robot angular speed reference target

Longitudinal position EMC

ξ Robot long. position measurement, ξ-axis

ν Robot lateral position measurement, ν-axis

vξ Robot long. speed measurement

v̂ξ Robot long. speed estimation

ξ̂ Robot long. position, EMC estimation

v̂ξ Robot long. speed, EMC estimation

ξ̃ Robot long. position target

ṽξ Robot long. speed target

Creative Commons CC BY-NC-ND Licence

This MSc thesis is written using LaTeX

markup language, book document class,

baskervald font, 11 pt size

	List of Figures
	List of Tables
	Introduction
	Overview and main thesis objectives
	Structure of the thesis

	I Overview
	EMC theory
	EMC basic concepts
	EMC example - Mass-spring-damper system

	Robot GoPiGo3
	Construction properties
	Kinematic and dynamic properties
	Geometric and mass parameters
	Total robot inertia verification
	From robot wheel speeds to robot torque/force relation
	Kinematic model

	Control models software testing - General settings
	MIL configuration
	Variable timestamp

	RHIT configuration
	SW Tools and applications
	Main SW libraries and functions

	General Structure settings for EMC and robot plant
	EMC
	Plant

	II DC motors EMC
	EMC DC motors theory
	DC Motor Parameters identification and validation
	Main workflow
	Version 0.0
	Version 1.0
	Version 1.1
	Version 1.2 (only for EMC)
	Version 1.2 (only for Fine models)

	DC Motors EMC
	Fine model
	EMC model - 1st order disturbance
	EMC model - 2nd order disturbance

	DC motors EMC Model-in-the-Loop (MIL) tests
	General MIL settings on Simulink
	General settings on Simulink MIL plot results
	Simulink MIL results - Left motor
	No disturbance rejection, target output speed bold0mu mumu ω=ωωωωL = [6,4] radsω=ωωωωL = [6,4] radssubsectionω=ωωωωL = [6,4] radsω=ωωωωL = [6,4] radsω=ωωωωL = [6,4] radsω=ωωωωL = [6,4] rads
	Disturbance rejection, target output speed bold0mu mumu ω=ωωωωL = [8,3,5.5,7] radsω=ωωωωL = [8,3,5.5,7] radssubsectionω=ωωωωL = [8,3,5.5,7] radsω=ωωωωL = [8,3,5.5,7] radsω=ωωωωL = [8,3,5.5,7] radsω=ωωωωL = [8,3,5.5,7] rads

	Simulink MIL results - Right motor
	Disturbance rejection, target output speed bold0mu mumu ω=ωωωωR = [6,4] radsω=ωωωωR = [6,4] radssubsectionω=ωωωωR = [6,4] radsω=ωωωωR = [6,4] radsω=ωωωωR = [6,4] radsω=ωωωωR = [6,4] rads
	Disturbance rejection, target output speed bold0mu mumu ω=ωωωωR = [8,3,5.5,7] radsω=ωωωωR = [8,3,5.5,7] radssubsectionω=ωωωωR = [8,3,5.5,7] radsω=ωωωωR = [8,3,5.5,7] radsω=ωωωωR = [8,3,5.5,7] radsω=ωωωωR = [8,3,5.5,7] rads
	No disturbance rejection, target output speed bold0mu mumu ω=ωωωωR = [6,4] radsω=ωωωωR = [6,4] radssubsectionω=ωωωωR = [6,4] radsω=ωωωωR = [6,4] radsω=ωωωωR = [6,4] radsω=ωωωωR = [6,4] rads
	No disturbance rejection, target output speed bold0mu mumu ω=ωωωωR = [8,3,5.5,7] radsω=ωωωωR = [8,3,5.5,7] radssubsectionω=ωωωωR = [8,3,5.5,7] radsω=ωωωωR = [8,3,5.5,7] radsω=ωωωωR = [8,3,5.5,7] radsω=ωωωωR = [8,3,5.5,7] rads

	Separated Left and Right DC motors EMC - RHIT results
	Left motor version 1.0 - RHIT results
	Main test settings
	Summary on the results
	First order disturbance, No load conditions - Result 1
	First order disturbance, No load conditions - Result 2
	First order disturbance, No load conditions - Result 3
	First order disturbance, No load conditions - Result 4
	First order disturbance, No load conditions - Result 5
	First order disturbance, No load conditions - Result 6
	First order disturbance, No load conditions - Result 7
	First order disturbance, No load conditions - Result 8
	First order disturbance, Load Conditions - Result 1
	First order disturbance, Load Conditions - Result 2
	Second order disturbance, No load conditions - Result 1
	Second order disturbance, No load conditions - Result 2
	Second order disturbance, No load conditions - Result 3
	Second order disturbance, No load conditions - Result 4
	Second order disturbance, No load conditions - Result 5
	Second order disturbance, No load conditions - Result 6
	Second order disturbance, No load conditions - Result 7
	Second order disturbance, No load conditions - Result 8
	Second order disturbance, No load conditions - Result 9
	Second order disturbance, No load conditions - Result 10
	Second order disturbance, Load conditions - Result 1
	Second order disturbance, Load conditions - Result 2
	Second order disturbance, Load conditions - Result 3

	Left motor version 1.1 - RHIT results
	Main settings
	Summary on the results
	No load conditions - Result 1
	No load conditions - Result 2
	No load conditions - Result 3
	No load conditions - Result 4
	Load conditions - Result 1

	Right motor v1.2 - RHIT results
	Main settings
	Summary on the results
	No load conditions - Result 1
	No load conditions - Result 2
	No load conditions - Result 3
	No load conditions - Result 4
	No load conditions - Result 5
	Load conditions - Result 1
	Load conditions - Result 2

	Combined Left and Right DC motors EMC - RHIT results
	Main RHIT tests settings
	Summary on the results
	Linear trajectory
	Disturbance rejection - Result 1
	Disturbance rejection - Result 2
	Disturbance rejection - Result 3
	Disturbance rejection - Result 4
	No disturbance rejection - Result 1
	No disturbance rejection - Result 2

	Circular trajectory
	Disturbance rejection - Result 1
	Disturbance rejection - Result 2

	Inertial Measurement Unit (IMU) measurements with Two motors EMC
	Main measurements settings
	IMU
	DC Motor EMC
	Kinematic model

	Measurement plots
	Summary on the results
	No magnetometer data in sensor fusion, Linear trajectory - Result 1
	No magnetometer data in sensor fusion, Circular trajectory - Result 1
	Magnetometer data in sensor fusion, Linear trajectory - Result 1
	Magnetometer data in sensor fusion, Circular trajectory - Result 1

	III Robot orientation EMC
	EMC Differential drive robot theory - Orientation only
	Fine model
	EMC model
	Embedded Model EM
	Control law
	Reference Dynamics
	Noise Estimator

	Orientation EMC - Model-in-the-Loop (MIL) simulation tests
	General MIL settings on Simulink
	Simulated orientation EMC and fine models
	Orientation and DC motors Hierarchical structure

	General settings on Simulink MIL plot results
	Summary on the obtained results
	Target angle bold0mu mumu θ=θθθθz = 2π rad (360∘)θ=θθθθz = 2π rad (360∘)subsectionθ=θθθθz = 2π rad (360∘)θ=θθθθz = 2π rad (360∘)θ=θθθθz = 2π rad (360∘)θ=θθθθz = 2π rad (360∘) , target long. speed bold0mu mumu v=vvvvξ = 0 msv=vvvvξ = 0 mssubsectionv=vvvvξ = 0 msv=vvvvξ = 0 msv=vvvvξ = 0 msv=vvvvξ = 0 ms , dist. rej.
	Target angle bold0mu mumu θ=θθθθz = 2π rad (360∘)θ=θθθθz = 2π rad (360∘)subsectionθ=θθθθz = 2π rad (360∘)θ=θθθθz = 2π rad (360∘)θ=θθθθz = 2π rad (360∘)θ=θθθθz = 2π rad (360∘) , target long. speed bold0mu mumu v=vvvvξ = 0 msv=vvvvξ = 0 mssubsectionv=vvvvξ = 0 msv=vvvvξ = 0 msv=vvvvξ = 0 msv=vvvvξ = 0 ms , No dist. rej.
	Target angle bold0mu mumu θ=θθθθz = -2π rad (-360∘)θ=θθθθz = -2π rad (-360∘)subsectionθ=θθθθz = -2π rad (-360∘)θ=θθθθz = -2π rad (-360∘)θ=θθθθz = -2π rad (-360∘)θ=θθθθz = -2π rad (-360∘) , target long. speed bold0mu mumu v=vvvvξ = 0 msv=vvvvξ = 0 mssubsectionv=vvvvξ = 0 msv=vvvvξ = 0 msv=vvvvξ = 0 msv=vvvvξ = 0 ms , dist. rej.
	Target angle bold0mu mumu θ=θθθθz = 2π rad (360∘)θ=θθθθz = 2π rad (360∘)subsectionθ=θθθθz = 2π rad (360∘)θ=θθθθz = 2π rad (360∘)θ=θθθθz = 2π rad (360∘)θ=θθθθz = 2π rad (360∘) , target long. speed bold0mu mumu v=vvvvξ ≠0 ms (rm = 0.2 m)v=vvvvξ ≠0 ms (rm = 0.2 m)subsectionv=vvvvξ ≠0 ms (rm = 0.2 m)v=vvvvξ ≠0 ms (rm = 0.2 m)v=vvvvξ ≠0 ms (rm = 0.2 m)v=vvvvξ ≠0 ms (rm = 0.2 m) , dist. rej.
	Target angle bold0mu mumu θ=θθθθz = -2π rad (-360∘)θ=θθθθz = -2π rad (-360∘)subsectionθ=θθθθz = -2π rad (-360∘)θ=θθθθz = -2π rad (-360∘)θ=θθθθz = -2π rad (-360∘)θ=θθθθz = -2π rad (-360∘) , target long. speed bold0mu mumu v=vvvvξ ≠0 ms (rm = 0.2 m)v=vvvvξ ≠0 ms (rm = 0.2 m)subsectionv=vvvvξ ≠0 ms (rm = 0.2 m)v=vvvvξ ≠0 ms (rm = 0.2 m)v=vvvvξ ≠0 ms (rm = 0.2 m)v=vvvvξ ≠0 ms (rm = 0.2 m) , dist. rej.

	Motors and orientation EMC - RHIT results
	General RHIT test settings
	Short summary on RHIT results
	RHIT tests - Dynamic FB noise estimator
	Plot results

	RHIT tests - Static feedback measure driven decomposition noise estimator
	IMU bold0mu mumu θzθzsubsectionθzθzθzθz measurement, NO magnetometer in sensor fusion
	IMU bold0mu mumu θzθzsubsectionθzθzθzθz measurement, magnetometer in sensor fusion
	Encoder bold0mu mumu θzθzsubsectionθzθzθzθz measurement

	RHIT tests - Dynamic feedback measure driven decomposition noise estimator

	IV Robot longitudinal position EMC
	EMC Differential drive robot theory - Longitudinal position only
	Fine model
	EMC model
	DT EM equations
	Control law
	Reference dynamics
	Noise estimator

	Longitudinal position EMC - Model-in-the-Loop (MIL) simulation tests
	General MIL settings on Simulink
	Simulated long. position EMC and fine models
	Long. position and DC motors Hierarchical structure

	General settings on Simulink MIL plot results
	Summary on the obtained results
	Target position bold0mu mumu ξ=ξξξξ = 1 mξ=ξξξξ = 1 msubsectionξ=ξξξξ = 1 mξ=ξξξξ = 1 mξ=ξξξξ = 1 mξ=ξξξξ = 1 m , target ang. speed bold0mu mumu ω=ωωωωz = 0 radsω=ωωωωz = 0 radssubsectionω=ωωωωz = 0 radsω=ωωωωz = 0 radsω=ωωωωz = 0 radsω=ωωωωz = 0 rads , dist. rej.
	Target position bold0mu mumu ξ=ξξξξ = 2 mξ=ξξξξ = 2 msubsectionξ=ξξξξ = 2 mξ=ξξξξ = 2 mξ=ξξξξ = 2 mξ=ξξξξ = 2 m , target ang. speed bold0mu mumu ω=ωωωωz = 0 radsω=ωωωωz = 0 radssubsectionω=ωωωωz = 0 radsω=ωωωωz = 0 radsω=ωωωωz = 0 radsω=ωωωωz = 0 rads , dist. rej.
	Target position bold0mu mumu ξ=ξξξξ = 1 mξ=ξξξξ = 1 msubsectionξ=ξξξξ = 1 mξ=ξξξξ = 1 mξ=ξξξξ = 1 mξ=ξξξξ = 1 m (round trip), target ang. speed bold0mu mumu ω=ωωωωz = 0 radsω=ωωωωz = 0 radssubsectionω=ωωωωz = 0 radsω=ωωωωz = 0 radsω=ωωωωz = 0 radsω=ωωωωz = 0 rads , dist. rej.
	Target position bold0mu mumu ξ=ξξξξ = 1 mξ=ξξξξ = 1 msubsectionξ=ξξξξ = 1 mξ=ξξξξ = 1 mξ=ξξξξ = 1 mξ=ξξξξ = 1 m (round trip), target ang. speed bold0mu mumu ω=ωωωωz = 0 radsω=ωωωωz = 0 radssubsectionω=ωωωωz = 0 radsω=ωωωωz = 0 radsω=ωωωωz = 0 radsω=ωωωωz = 0 rads , No dist. rej.

	Motors and longitudinal position EMC - RHIT results
	General RHIT test settings
	Plot results
	Trajectory distance of 1 m
	Trajectory distance of 2 m
	Trajectory distance of 1 m and return to initial position - Disturbance rejection
	Trajectory distance of 1 m and return to initial position - No disturbance rejection

	V Robot 2D space position EMC
	Motors, orientation and long. position robot EMC - Theory and RHIT results
	Orientation and long. position EMC hierarchical structure scheme
	General RHIT settings
	Plot results
	Trajectory targets ξ=ξξξξ = 2 m , bold0mu mumu θ=θθθθz = 0∘θ=θθθθz = 0∘subsectionθ=θθθθz = 0∘θ=θθθθz = 0∘θ=θθθθz = 0∘θ=θθθθz = 0∘ - Fusion algorithm WITHOUT accelerometer
	Trajectory distance of 2 m , bold0mu mumu θ=θθθθz = 0∘θ=θθθθz = 0∘subsectionθ=θθθθz = 0∘θ=θθθθz = 0∘θ=θθθθz = 0∘θ=θθθθz = 0∘ - Orientation fusion algorithm WITH accelerometer
	Trajectory distance of 2 m , bold0mu mumu θ=θθθθz = 50∘θ=θθθθz = 50∘subsectionθ=θθθθz = 50∘θ=θθθθz = 50∘θ=θθθθz = 50∘θ=θθθθz = 50∘ - Fusion algorithm WITHOUT accelerometer

	VI Conclusions
	Summary on the results and future work
	Bibliography
	Nomenclature

