
POLITECNICO DI TORINO
DEPARTMENT OF CONTROL AND COMPUTER ENGINEERING

Master of Science in Computer Engineering

Master Degree Thesis

Deep Neural Networks for
Speaker Verfication

On the extraction of speaker representations with Deep Learning

Supervisors
Dr. Sandro Cumani

Candidato
Salvatore Sarni

Academic Year 2019-2020

Abstract

Speaker identification and speaker verification are the main tasks in the
field of speaker recognition. The former involves inferring the speaker of
an utterance from a set of possible identities, whereas the latter aims at
assessing whether a claimed identity corresponds to the speaker of a given
speech segment.

Thanks to the advances in the field of Deep Learning, Deep Neu-
ral Networks (DNN) have recently become the state-of-the-art technique
for utterance representation in the speaker recognition field. The DNN
approach consists in training a neural network to extract speaker em-
beddings, i.e. fixed dimensional utterance representations that contain
speaker-discriminant information. DNN embeddings significantly outper-
form previous state-of-the-art methods such as i-vectors in terms of veri-
fication accuracy.

One of the most effective architectures for speaker embedding extrac-
tion is the Time Delay Neural Network (TDNN), which is able to model
long range temporal dependencies. In this work we start with an anal-
ysis of the effectiveness of TDNNs for the speaker verification task. We
also investigate the combination of TDNNs with other well-known archi-
tectures, such as Residual (ResNet) and recurrent neural networks, with
the aim of improving the verification accuracy and possibly lowering the
computational cost of embedding extraction.

Traditionally, speaker embedding networks are trained on a set of back-
ground speakers using a multi-class classification paradigm: acoustic fea-
tures are propagated through the network and aggregated by a pooling
layer, which is often employed as, or followed by, the embedding layer.
The network output consists of a softmax layer that computes speaker
posterior probabilities. The cross-entropy function is used as objective
function during training.

3

Network training requires the extraction of acoustic features for a large
number of speech segments. In this work we analize how the growing
size, the dataset diversity dataset and the use of augmentation techniques
impact the recognition accuracy, and propose effective methods to train
the models in scenarios with limited computational resources.

While the cross-entropy approach works well in classification tasks, it
might not be the most effective choice to produce information-rich utter-
ance representations for speakers that have not been seen during training.
We therefore also analyze different objective functions that are inspired
by solutions adopted in the face recogniton field to increase the robustness
of the DNN embeddings.

Finally, the standard TDNN pooling layer consists of a simple tempo-
ral average of the DNN-transformed acoustic features. In this work, we
consider also alternative pooling approaches.

4

Contents

List of Tables 7

List of Figures 8

1 Introduction 9
1.1 Speaker Recognition . 9
1.2 Outline . 10

2 Background 11
2.1 Extraction . 11

2.1.1 Sampling, quantization and filtering 11
2.1.2 Mel-Frequency Cepstral Coefficients 13

2.2 Probabilistic Model . 15
2.2.1 Gaussian Mixture Model 15
2.2.2 Hidden Markov Models 16

2.3 Speaker verification with Latent Variable Models 18
2.3.1 Universal Background Model 18
2.3.2 Factor Analysis Model 19
2.3.3 i-vector . 21

2.4 i-Vector Backends . 22
2.4.1 PLDA . 23
2.4.2 Support Vector Machine 25

3 Neural Network 27
3.1 Neural Network . 27

3.1.1 Perceptron . 27
3.1.2 Feed Forward Neural Network 28
3.1.3 Training . 30

5

3.2 Deep Learning and i-vector 32
3.2.1 Embeddings . 33

3.3 Architectures . 34
3.3.1 Time Delay Neural Network 34
3.3.2 Recurrant Neural Network and LSTM 35
3.3.3 Residual Neural Network 37

4 Experiments 39
4.1 Data . 39

4.1.1 Augmentation . 40
4.1.2 Extraction . 41

4.2 TDNN . 42
4.2.1 Training . 43
4.2.2 Frame-Level . 43
4.2.3 Pooling . 45
4.2.4 Embedding layer 46

4.3 Loss Function . 46
4.3.1 Angular Softmax 47
4.3.2 Additive Margin Softmax 48
4.3.3 Additive Angular Margin Softmax 48

4.4 Setup . 49

5 Evaluation 51
5.1 Errors Evaluation . 51

5.1.1 ROC curve . 52
5.1.2 Detection Cost Function 53

5.2 Experiental Results . 54
5.2.1 Clean Training . 54
5.2.2 Augmentation . 56
5.2.3 Optimization . 58

6 Conclusions and Future Work 61

Bibliography 63

6

List of Tables
4.1 Statistics of the datasets used. 40
4.2 Training time of one epoch. 42
4.3 Frame-Level layers of the full TDNN architecture 44
4.4 Hardware and software specifications of the workstation

used to run the Model Trainer and the Link Evaluator. . . 49
5.1 Baseline i-vector result. 54
5.2 Results for different architectures trained with VoxCeleb 1

clean data only. 55
5.3 Results for different architectures trained with VoxCeleb 1

and Mixer 6 clean. 55
5.4 Results for different architectures trained with ALL clean

dataset. 56
5.5 Results for different architectures trained with VoxCeleb1

augmented 4 times. 57
5.6 Results for different architectures trained with VoxCeleb1

and Mixer6 augmented. 57
5.7 Results for ResNet34 and optimization with VoxCeleb1 and

Mixer6. 58
5.8 Results for TDNN and optimization with VoxCeleb1 and

Mixer6. 59
5.9 Results for TDNN and optimization with VoxCeleb1 and

Mixer6 augmentd Once. 59
5.10 Results for TDNN with VoxCeleb1 and Mixer6 clean using

PSVM. 60

7

List of Figures
2.1 The A and µ law . 12
3.1 A simple perceptron with n inputs and one output. 28
3.2 A feed forward neural network example 29
3.3 A DNN architecture used for acoustic modeling and bottle-

neck feature extraction . 32
3.4 A DNN architecture used for embedding extraction 34
3.5 The TDNN unit cell. 35
3.6 The inside architecture of an LSTM cell 36
3.7 Single residual block . 37
4.1 The general architecture of the classifiers. 42
4.2 A 1-D convolution with dilation representation. Image taken

from [1] . 44
4.3 Decision boundary in a binary case with different loss func-

tions. Image taken from [2] 49
5.1 An example of DET curves 53
5.2 DET plot of different architectures. 56
5.3 DET plot of TDNN trained with VC1 and M6 58

8

Chapter 1

Introduction

The idea of linking our voice to a specific function in an automated system
is becoming more and more popular. Both speech and speaker recognition
have become quickly an important part of our lives not only in personal
assistant systems, from Siri to Alexa, but also to authenticate the owner
of a bank account. Our voice is used not only to answer a question or
perform some task but most importantly, in the optic of this work, to
identify or authenticate a person.

1.1 Speaker Recognition
The work presented in the next chapters falls in the field of Speaker Recog-
nition. The main concept and objective are to recognize a speaker by his
pronounced utterance. The system in charge of performing this opera-
tion has to “understand” both physical and behavioral characteristics of
the audio sample, to distinguish each speaker. This task can be further
divided into speaker identification and speaker verification. Speaker iden-
tification systems try to identify a speaker among a given set of known
enrolled ones. If the test speaker may not be part of the enrollment speaker
collection, this is called an open-set problem. Otherwise, it’s a closed-set
task. Speaker identification is a 1 vs N match while speaker verification
is a 1 vs 1 match. In speaker verification, a speaker tries to authenticate
himself asserting his identity, and the system has to verify the similarity
of the produced utterance against the enrolled one, accepting or declining
the declaration.

9

1 – Introduction

1.2 Outline
In this work, we focused on the use of Deep Learning as embeddings ex-
tractor technique, in order to solve the text-independent speaker verifica-
tion problem. Different neural network architectures have been tested
as fronted to extract embeddings while Probabilistic Linear Discrimi-
nant Analysis (PLDA) [cit PLDA] and Pairwise Support Vector Machine
(PSVM) [cit PSVM] are used as backend. In Chapter 2 we provide an in-
troduction to the techniques related to the feature extraction process and
the previous state-of-art approach to the speaker recognition problem.
The neural network principle and architectures are presented in Chapter
3. Chapter 4 is about the various test, introducing the data and different
approaches followed. In Chapter 5 we expose the main technique used to
evaluate our classifiers. Finally, conclusions and future work can be found
in Chapter 6.

10

Chapter 2

Background

2.1 Extraction
Dealing with audio signal means dealing with a continuous dimension,
which is infeasible and not directly workable with the digital system. The
first transformation of the data is needed to obtain discrete features from
the raw signal. This step is based on Frequency Analysis.

2.1.1 Sampling, quantization and filtering
The process of transforming an analog signal into a discrete version is
called sampling and quantization. First discretization is done in time, this
corresponds to multiplying the signal with a sequence of impulse ∑

k
δ(t−

kts) where ts is the sampling time. Given the input signal y(t), the sampled
version ys(k) is:

ys(k) =
∑
k

[y(kts)δ(t− kts)] (2.1)

In the frequency domain, where Y (w) is the Fourier transorm of y(t) and
Ys(w) of ys(w)

Ys(ω) = 1
ts

∑
k

Y

(
ω + 2πk

ts

)
(2.2)

Humans are mainly sensitive to frequencies lower than 4 kHz and the
Nyquist theorem states that a signal is reconstructable if the sampling
frequency is at least twice the highest frequency of the original signal.
Then a sufficient sampling frequency is 8kHz. Given a finite set of contin-
uous values, quantization is needed to map them to discrete ones. One way

11

2 – Background

to do this is to uniformly divide the input range and assign to each value
the index of the corresponding interval. This is what linear quantization
does. However, the acoustic signal is highly non-linear and therefore a
logarithmic quantization is usually preferred. This means that the log-
arithm of the acoustic signal is linearly quantized. In practice different
functions are used, to deal with the non-definiteness of the logarithm in
zero, as the µ–law (used in American communication nets) or the A–law
(used in the European communication nets) [3]. Working with telephone
speech, usually, values are represented on 8 bits. In practice, a greater
number of bits is used to initially perform a linear quantization. One of
the laws in figure 2.1 is then used to map them to 8 bits. A first-order

Figure 2.1: The A and µ law

pre-emphasis filter (2.3) is used on the discretized samples to flatten the
signal spectrum in the given frequency band

H(z) = 1− az−1 (2.3)

Equivalent, in time-domain:

Ŷ (k) = Y (k)− aY (k − 1) (2.4)

where a is a constat, typically a = 0.95 in real applications.

12

2.1 – Extraction

2.1.2 Mel-Frequency Cepstral Coefficients
Mel-Frequency Cepstral Coefficients (MFCC) is the standard representa-
tion for the acoustic signal [3] [4]. MFCC provides a short term represen-
tation of the signal. The acoustic signal can be considered stationary over
periods of the order of milliseconds, therefore it can be split into frames
(usually covering about 10ms) which group together a set of samples:

Xt(n) = Ŷ (Mat+ n) 0 ≤ n ≤ Na − 1, 0 ≤ t ≤ T − 1 (2.5)

with Na as the grouping window size, Ma as the size of the shift, and T is
the duration in frames of the signal. Since the grouping in frames distorts
the spectrum of the samples of each frame (known as Gibbs phenomenon),
we use a Hamming window to reduce the influence of samples near the
borders of each frame

X̂t(n) = Xt(n)W (n) 0 ≤ n ≤ Na − 1, 0 ≤ t ≤ T − 1 (2.6)

where

W (n) =
c+ (1 + c) cos(πn

N−1 −
π
2) if 0 ≤ n ≤ N − 1

0 otherwise
(2.7)

and c = 0.54 in real applications. While a better approximation of the
spectrum is available with this approach, the information contained in
border samples is penalized, for this reason, the window is shifted only by
half its size. This way border samples of a frame can now be found in the
middle of either the previous or the next one. At this point, we perform
the Fourier Transform over the data of each frame

Xf(j) = F (X̂t(n))(j) 0 ≤ n ≤ Na − 1, 0 ≤ t ≤ T − 1 (2.8)

Since humans can not sense phase variations, we are only interested in the
amplitude spectrum. We use filters that emulate the human apparatus.
The mel scale [3] defines frequency bands to divide the acoustic signal
spectrum. For each band, the energy of corresponding samples is evaluated
as

Ei(f) =
Hi∑
j=Li

|Xf(j)|2 1 ≤ i ≤ Nf (2.9)

13

2 – Background

where Ei(f) is the energy of the i–th band, Li is the lower bound of the
corresponding band, Hi is its higher bound and Nf is the number of bands.
MFCCs are then obtained computing the Discrete Cosine Transform of the
logarithm of the energy parameters Ei(f) so that the i–th MFCC for frame
k is given by

Ci(k) =
Nf∑
j=1

log(Ej(k)) cos
[
i(j − 1

2) π
Nf

]
0 ≤ i ≤ Nf (2.10)

The total energy of the frame can be evaluated as

E(k) =
Nf∑
j=1

Ej(k) (2.11)

Usually the cepstral parameter C0(k) is discarded since it carries the same
energy information given by E(k). Furthermore, cepstral parameters carry
decreasing information as their indices grow, hence high index parameters
can be discarded too. The number of cepstral parameters is usually be-
tween 12 and 24.

Depstral parameters, MFCC differential counterparts, can be used to
better model the acoustic signal. An approximation of the temporal
derivative of MFCCs is used to evaluate these parameters. A gain, G,
can be used to have similar variance between the set of MFCCs and the
set of depstral parameters

∆C̄i(k) = G
N∑

j=−N
jC̄i(k − j) 1 ≤ i ≤ p (2.12)

and N is half the size of the window used to approximate the derivative.
Similarly, differential energy can be evaluated as

∆E(k) =
N∑

j=−N
jE(k − j) (2.13)

Second-order derivatives of cepstral coefficients can be computed sim-
ilarly. Finally, combining cepstral parameters and their derivatives we
obtain the feature vector

Ot = {C̄1(t), ..., C̄p(t),∆C̄1(t), ...,∆C̄p(t),
∆∆C̄1(t), ...,∆∆C̄p(t), E(t),∆E(t),∆∆E(t)} (2.14)

14

2.2 – Probabilistic Model

2.2 Probabilistic Model
The main problem in speaker recognition (SR) is to extract meaningful
characteristics from the feature. One of the first attempts was the Gaus-
sian Mixture Model (GMM), a long time state-of-the-art approach. [5] [6]
A more advanced technique is based on the Hidden Markov Model, where
the temporal evolution of acoustic features can be modeled. Improvements
came with the introduction of Front-End Joint Factor Analysis, which im-
proves the pre-existent GMM model. And finally the pre-Neural Network
state of the art, the i-vector.

2.2.1 Gaussian Mixture Model
GMM is a combination of Gaussian probability density functions (pdf).
Given a set of samples Xs = x1, ..., xn from random variable X with pdf
f(x), a GMM can be used to approximate an estimate of f(x). Assuming
that the samples are i.i.d., the pdf can be decomposed as

p(Xs) =
n∏
i=1

p(xi) (2.15)

A weighted sum of a set of m multivariate normal distributions can be
used to approximate the pdf p(x)

p(x|M) =
m∑
i=1

wiN(x|µi,Σi) (2.16)

where p(x|M) is the probability of x given the GMM M and wi are the
mixture weights constrained by

m∑
i=1

wi = 1 wi ≥ 0 (2.17)

N(x|µi,Σi) is a normal pdf with mean µi and covariance matrix Σi:

N(x|µi,Σi) = 1
(2π)D

2 |Σi|
1
2

exp
(
−1

2(x− µi)TΣ−1
i (x− µi)

)
(2.18)

where the dimensionality of input space is denoted by D. The main ad-
vantage in using GMM, given enough components in the mixture, is their
ability to accurately approximate any probability density function.

15

2 – Background

Discrete latent variables [6] can be used to represent a GMM, with
Z = [z1, ..., zm] as a m-dimensional random variable such that zi ∈ {0, 1}
and

m∑
i=1

zi = 1. The distribution of zk can be defined in terms of the mixing
coefficients wi as

p(zk = 1) = wk (2.19)
but, only one term of Z is equal to one so

p(Z) =
m∏
i=1

wzi
i (2.20)

We can interpret the realizations of Z as representations of m mutually
exclusive states of which only one is active. Then, given the state zk = 1,
the conditional probability of random variable X is

p(x|zk = 1) = N(x|µk,Σk) (2.21)

and the marignal probability of X can be evaulated as

p(x) =
∑
k

p(zk = 1)p(x|zk = 1) =
m∑
k=1

wkN(x|µk,Σk) (2.22)

which has the same form of (2.16)
To estimate GMMs parameters θ = {wi, µi,Σi} describing a model M

from a sufficiently large amount of data the Maximum-Likelihood (ML)
approach is taken [6] [7] [8]:

θML = argmax
θ
P (Xs|θ) (2.23)

Finally, representing a GMM as a latent variable model allows the Maximum-
Likelihood estimate to be computed with the Expectation-Maximization
algorithm [6] [7].

2.2.2 Hidden Markov Models
Since a GMM considers all frames as independent the temporal informa-
tion is lost. Hidden Markov Models (HMM) are a possible solution. [9]

Given a set of nodes or states S and a set of edges E, an HMM is
a directed graph G(E, S). Each node is connected to any other node,
but since we are interested in modeling the temporal evolution of the

16

2.2 – Probabilistic Model

acoustic features, a simplified model is used. The simplified model or left-
to-right model [10] presents only three kinds of edges: self–loop edges,
forward edges, and skip edges. Stationary intervals of the acoustic event
are represented by the states. Then in order to remain on the same state
for a longer period, self-loops are used, while to move to an adjacent state
or a non–adjacent state forward-edge and skip-edge can be used. This
structure allows imposing a minimum duration to the acoustic event and
allows dynamically aligning acoustic segments to the model.

Transition probabilities describe the stochastic process controlling the
evolution through the states of an HMM. Given a state active at time t,
qt, we define the probability of being in state Si at time t = 1 as

πi = P (qi = Si) 1 ≤ i ≤ Ni (2.24)

and the array of initial probabilities π = (π1, ..., πn) constrained by

N∑
i=1

πi = 1 (2.25)

The probability of reaching state Sj from state Si in a single step is
aij = P (qt+1 = SJ |qt = Si). These probabilities are organized in a matrix

A = aij 1 ≤ i, j ≤ N (2.26)

constrained by
aij ≥ 0 ∀(i, j) (2.27)

N∑
j=1

= 1∀i (2.28)

Following these definitions, the transition at time t will depends only on
the state at time t−1, no other factors, like time t and observed sequence
of features, are taken into account.

Each state is associated to a stochastic function fi(xt) , representing
the probability that features xt are generated when the system is in Si,
P (xt|qt = Si). In many real speaker recognition systems fi are GMMs.
Usually, in these models, only the GMM weights are state-dependent,
while all the states share the mean vectors and the covariance matrix,
allowing a reduction in the number of parameters.

17

2 – Background

2.3 Speaker verification with Latent Vari-
able Models

Probabilistic models of a speaker can be built with latent variables. These
variables can represent both speaker identity or channel information, but
they also can be used to perform dimensionality reduction.

In speaker verification, we are interested in systems able to assess wheter
if an utterance belongs to a target speaker or not. These systems should
produce a verification score or log-likelihood [11].

The next introduced frameworks represented state-of-the-art perfor-
mance before the advent of deep learning representation.

2.3.1 Universal Background Model
In a GMM-only speaker recognition approach enrollment utterances are
used to model the distribution of the acoustic featuresX of a given speaker
s, P (X|s). The probability that utterance X with associated acoustic
observations X is spoken by speaker s can be represented by the likelihood
of a test utterance evaluated using this distribution. This likelihood can
then be compared with the likelihood of non-target speakers. A model
of the non-target speaker is hard to define in a GMM basic approach. A
possible solution is to build a Universal Background Model (UBM), which
is obtained training a single GMM over a large set of utterances from many
different speakers pooled together [12] [13]. The UBM can also represent
the common characteristics of the acoustic space, then be used to estimate
speaker models with Maximum–a–Posteriori (MAP) adaptation [13] [14].
Parameters can be evaluated by the Maximum-Likelihood estimate as

θML = argmax
θ
P (X|θ) (2.29)

where θ is the set of parameters of the model. MAP instead, given the
prior probability g(θ) evaluates the parameters as

θMAP = argmax
θ
P (X|θ)g(θ) (2.30)

The speaker-independent UBM is used by classical GMM MAP to esti-
mate the speaker-dependent GMMs. Usually, different speakers will share
the GMM parameters (weights and covariance matrices), and only the

18

2.3 – Speaker verification with Latent Variable Models

UBM means are adapted. From now on a GMM supervector is obtained
stacking the GMM means, it has shape CF × 1, where C is the number
of Gaussian components and F is the dimension of the acoustic feature
vector associated to each component.

2.3.2 Factor Analysis Model
The next techniques are based on Factor Analysis, they provide a proba-
bilistic framework to perform MAP estimate of speaker-dependent GMM.
These techniques are the foundation of Joint Factor Analysis [15] and
subsequently of i-vectors [16].

Utterance statistics

Before introducing Joint Factor Analysis and i-vectors, it is useful to in-
troduce some definitions which will be used next.

Given a set of observations X(s) = x1, ..., xn for speaker s, we can
obtain the alignment of X over the components of a GMM. This means
associating each observation to a single mixture component. The occu-
pation probability, given GMM model parameters w, µ and Σ, is defined
as

γit = wiN(xt|µi,Σi)∑
j wjN(xt|µj,Σj)

(2.31)

We can then define zero-order, first-order and centered–first order Baum
Welch statistics [17]

Ni(s) =
n∑
t=1

γit (2.32)

Fi(s) =
n∑
t=1

γitxt (2.33)

FX,i(s) = Fi(s)−Ni(s)µi (2.34)

and the second–order and centered second–order statistics

Si(s) =
n∑
t=1

γitxtx
T
t (2.35)

SX,i = Si(s)− 2Fi(s)µi +Ni(s)µiµTi (2.36)

19

2 – Background

Stacking these statistics allows us to vectorize computation. N(s) is a
CF×CF block diagonal matrix whose blocks are the F×F matrices given
byNiI. F (s) and FX(s) are obtained by stacking respectively vectors Fi(s)
and FX,i(s). S(s) and S(s) are block–diagonal matrices whose blocks are
respectively the matrices Si(s) and SX,i(s). These statistics can then be
used to approximate the log-likelihood for a given GMM supervector as

logP (X) =
C∑
c=1

Nc(s) log 1
(2π)F

2 |Σc|
1
2
− 1

2
∑

t|xt∈Xi(s)
γct(xt − µc)TΣ−1

c (xt − µc)]


=

C∑
c=1

Nc(s) log 1
(2π)F

2 |Σc|
1
2
− 1

2tr
(
Σ−1
c SX,s(s)

) (2.37)

Map Adaptation

JFA models a speaker’s utterance, represented by a GMM supervector, as
a combination of multiple factors containing information about different
properties: speaker, channel, and residual characteristic.

In [15] an interpretation of MAP adaptation in terms of hidden variables
was introduced, in which channel factors are ignored. In this model, each
utterance h from speaker s can be represented by a supervector

M(s) = µ+Dz(s) (2.38)

where µ is the UBM supervector, D is a diagonal CF × CF matrix and
z(s) are CF speaker–dependent hidden variables with prior distribution
following N(z|0, 1)

Eigenchannel

The second approach tries to explicitly model inter-session variability. In-
ter–session variability is assumed to be mostly due to channel effects. In
channel effects, we also model the noise-causing differences between en-
rollment and test utterance. A GMM supervector, for a given recording
h, can be expressed as the contribution of two terms

gh(s) = s(s) + ch(s) (2.39)

where s(s) is a speaker dependent component, and ch(s) denotes the chan-
nel component. In eigenchannel adaptation [18] the channel component

20

2.3 – Speaker verification with Latent Variable Models

lies in a small subspace spanned by the columns of a rectangular matrix
U of size CF ×RC , with RC � CF :

ch(s) = Uxh(s) (2.40)

The channel effects are represented by a standard normal distributed hid-
den variable, xh(s).

Eigenvoice

The last approach assumes that adaptation parameters are shared among
utterances from the same speaker s, then an utterance supervector can be
represented as

M(s) = µ+ V y(s) (2.41)

where V is a rectangular matrix of size C × RF , with R � CF [15] and
y(s) is a hidden Rs × 1 hidden vector with standard normal distribution.
This approach is called Eigenvoice MAP, which describes the utterance
supervectors in terms of the speaker characteristics and is more suitable
when a small number of speakers is available.

Joint Factor Analysis

The combination of the three is referred to as Joint Factor Analysis (JFA)
[15]

g = µ+ V y + Ux+Dz (2.42)

where µ is a speaker-independent supervector from UBM, V , U , and D
are defined as the eigenvoice, eigenchannel and residual matrix. And the
vectors y, x, and z are the speaker, session, and common factors, and each
is assumed to be a random variable with distribution N(0,1).

JFA provides a framework for speaker modeling and scoring of test ut-
terances. However, classical JFA is very demanding from a computational
point of view. For this reason, JFA is usually used as a feature extractor.

2.3.3 i-vector
JFA can estimate and compensate channel effects. But it was shown [19]
that in channel factors may lie useful information about a speaker, even if
the channel factor was assumed to model only channel and noise. For

21

2 – Background

this reason, an adapted version of JFA was proposed in which a sin-
gle subspace is estimated, assuming most of the useful information lies
within [16]. Channel compensation is then deferred to a subsequent stage
(Within–Class Covariance Normalization). This new model can be ex-
pressed as

g(s) = µ+ Tw(s) (2.43)

where T is a CF ×M matrix whose columns span the subspace where
GMMs live and w(s) represent a GMM in the subspace associated with
T . The matrix T contains both speaker and channel information. The
MAP point estimate of the posterior of hidden variable w is referred to
as i–vector. It’s noticeable that i-vectors and eigenvoice share the same
formulation, however, while in eigenvoice MAP it is assumed that record-
ings from the same speakers share the same values for the hidden variable,
i-vectors assume different values for each recording.

An i-vector extractor is trained in a similar way to JFA, through Max-
imum–Likelihood. Assuming that statistics are always computed from
the UBM, the training phase can be restricted to T . As in the previ-
ous model, the EM algorithm can be used to compute the ML estimate
of T [20]. I–vectors represented for a long time the standard in speaker
recognition, in fact, the first applications of Deep Learning included the
estimation of T .

2.4 i-Vector Backends
In this section we present the backend systems used with i-vectors, the
same concepts and methods can be used with different speaker represen-
tations and will be used with embeddings obtained in chapter 4.

One of the original score methods proposed in [16, 21] is the cosine
distance

Scos(ω1, ω2) = ωt1ω2

‖ ω1 ‖ × ‖ ω2 ‖
(2.44)

where ω1 and ω2 are the target and test i-vectors. Cosine scoring doesn’t
use speaker labels. If they are available, Linear Discriminant Analysis
(LDA) and Within-Class Covariance Normalization (WCNN) are used
alone or in combination as variability compensation techniques to improve
accuracy. However more effective techniques exist, like Probabilistic LDA

22

2.4 – i-Vector Backends

and Support Vector Machine. In the following these techniques are briefly
explained in the i-vector case, but as stated before they are appliable for
any feature vectors.

Linear Discriminant Analysis

LDA is used to find directions along which within-class variation is min-
imized and between-class variation is large. Data are then projected on
those directions in order to reduce dimensionality and make classification
easier. Given S speakers and n i-vectors, ns i-vectors for each speaker s
then the between and within-class covariance matrix are defined as

Sb = 1
n

S∑
s=1

ns(ωs − ω)(ωs − ω)t (2.45)

Sw = 1
n

S∑
s=1

ns∑
i=1

(ωs,i − ω)(ωs,i − ω)t (2.46)

where ωs,i is the ith i-vector of speaker s, ωs is the speaker dependent
mean, obtained from the class of s, and ω is speaker independent mean,
obtained on the whole data.

Within-Class Covariance Normalization

WCCN is a normalization technique and it was mainly used for improving
the robustness of cosine distance and SVM based speaker recognition [22].
The within-class covariance matrix Sw obtained as in (2.46) is used to
computed the WCCN projection matrix, W

S−1
w = WW t (2.47)

where the Cholesky factorization of S−1
w is used. Unlike LDA, WCCN

doesn’t reduce the dimensionality and preserves the original directions.
The new i-vectors are then obtained as

ω̂ = W tω (2.48)

2.4.1 PLDA
Probabilistic Linear Discriminant Analysis (PLDA) is a probabilistic ex-
tension of LDA. PLDA was introduced to combine and use the feature
extracted through LDA to perform object recognition [23].

23

2 – Background

Given J utterances each of I individuals and their relative embeddings,
PLDA assumes that each embedding can be decomposed as:

xij = µ+ Uhi + V wij + εij

Two parts can be distinguished: Uhi depending only on the identity of the
speaker, models between-speaker variation. V wij + εij depending on the
particular audio for that speaker, models within-speaker variation, and µ
is the global dataset mean.
U contains the basis for the between-speaker subspace while V the

within-speaker one. hi and wij represent speaker identity and channel
effects. The noise and unexplained information are modeled by the term
εij. In this model, we assume that embeddings from the same speaker
share the same hidden variable hi. In its original formulation [24], PLDA
assumes Gaussian priors for the latent variables

hi ∼ N(0, I)
wij ∼ N(0, I) (2.49)

εij ∼ N(0,Λ−1)
where Λ is a diagonal positive defined matrix. This model is also known as
Gaussian PLDA (GPLDA). In [25] the more complex heavy-taled (HPLDA)
model was presented, where Gaussian priors are substitute with Student’s
t distribution

hi ∼ N(0, u−1
i I), ui ∼ G(ni/2, ni/2)

wij ∼ N(0, u−1
ij I), uij ∼ G(nij/2, nij/2) (2.50)

εij ∼ N(0, v−1
ij Λ−1), vij ∼ G(/2, /2)

G(a, b) is the Gamma distribution with corresponfing probability density
function

G(u|a, b) = ba

Γ(a)u
a−1e−bu (2.51)

where Γ(a) = ∫+∞
0 xa−1e−axdx.

Speaker Verification Likelihood

The PLDA model can be used to evaluate the speaker’s identity. Given
some test segments of speaker st with corresponding i-vectors, or embed-
dings, and a set of enrolled ones of a known speaker se, we can evaluate

24

2.4 – i-Vector Backends

the likelihood of the observed embeddings under the same speaker and
different speaker hypothesis [25] [26]. Given one enrollment i–vector φe
and one test i-vector φt the log-likelihood ratio will correspond to

l = log
P (φe, φt|Hs)
P (φe, φt|Hd)

(2.52)

where Hs and Ht are the same speaker and different speaker hypotheses.
The result will tell if the test segments and enrollment segments are from
the same speaker. In case we have n enrollment i-vectors and m test
i-vectors the log-likelihood ratio would be

l = log
P (φe1, ..., φen, φt1, ..., φtm|Hs)
P (φe1, ..., φen, φt1, ..., φtm|Hd)

(2.53)

However, in practice, the mean of the n enrolled and the mean of the m
test i-vectors are used to compute the log-likelihood ration as the binary
case showed before (2.52). Maximum–likelihood can be used to train the
PLDA model through the Expectation–Maximization algorithm [25] [24]

2.4.2 Support Vector Machine
PLDA and HPLDA try to model the i-vector speaker classes, another
possible approach is to address directly the problem of discriminating
between same speaker and different speaker pairs of utterance, this is
what Pairwise SVM does [27,28].

Given two classes, support vector machine (SVM) [6, 29–31] looks for
the hyperplane that separates the classes with maximum margin. In its
original formulation SVM is a linear classifier

D(x) = wTx+ b (2.54)

D(x) define the decision function and the distance of x from the hyper-
plane can be evaluated as D(x)

‖w‖ . If the classes are not separable, the hy-
perplane is obtained optimizing a trade-off between points that fall inside
the margin and the margin size. The SVM objective function is given by:

minw
1
2 ‖ w ‖2 +C

n∑
i=1

max(0, 1− ζiwTxi) (2.55)

25

2 – Background

where the second term is the Hinge Loss evaluated on training data xi
with associated class label ζi ∈ {−1,+1}.

When features are not linearly separable, input features are projected
into a higher dimensional space where a linear separating hyperplane hope-
fully exists. To avoid an explicit feature expansion kernel functions can
be used to perform scalar product computations into the new feature
space. The kernel used in Pairwise SVM is directly derived from the
two-covariance method, a particular case of PLDA. Given two i-vector φ1
and φ2, the likelihood–ratio l between same speaker and different speaker
hypotheses can be written as

log l =φT1 Λφ2 + φT2 Λφ1 + φT1 Γφ1 + φT2 Γφ2

+ (φ1 + φ2)T c+ k (2.56)

where Λ and Γ depend on the PLDA model parameters and B and
W are the between and within covariance matrix from the two-matrix
model [26]. This expresses the log-likelihood ratio as a quadratic form
of the two considered i–vectors. Expression (2.56) is linear in Λ and Γ.
Thus, these parameters can be interpreted as a separating hyperplane in
the expanded feature space [5]. PSVM estimates the values of Λ and Γ
that optimize the SVM objective function.

26

Chapter 3

Neural Network
In the previous chapter, the old state-of-the-art representations have been
introduced. Thanks to the advancements in machine learning brought by
the surge of novel deep learning techniques, embeddings extracted from
the hidden layer of a neural network started to replace i-vectors. In the
next section, there is a brief introduction to the neural networks and their
functioning. Next, the architectures used in our tests are presented.

3.1 Neural Network
Neural networks are a well known and not so recent tool of computer
science. The ambition to mimic our brain architecture has driven the re-
search in this field since Turing and the early stage of computer program-
ming. NN had different periods of fortune and popularity, due to their
intrinsic complexity and limited past resource. But in the last period,
Deep Learning has sprinted their development and utilization, thanks to
new advancements in both hardware and data availability. In DL neural
networks become bigger, deeper, and wider, and their ability to model
has increased providing impressive results in solving problems in different
fields.

3.1.1 Perceptron
NN consists of a set of artificial neurons, inspired by biological ones, called
perceptron (Figure 3.1). A perceptron has n inputs x1, ..., xn and one out-
put y. Each input is weigthed by w1, ..., wn. A bias is used, and it can be

27

3 – Neural Network

represented as an additional input x0 = 1 weighted by w0. The weighted

Figure 3.1: A simple perceptron with n inputs and one output.

input is linearly combined and pass through the activation function σ(x).
Activation function mimics the human neural activity firing a signal when
the inputs surpass a certain threshold. A variety of activation functions
exists, each with different properties.

3.1.2 Feed Forward Neural Network

A neural network can be seen as a graph, where perceptrons are nodes
and can be conceptually organized as layers, which is a set of perceptrons
at the same level of the architecture. A Multi-Layer Perceptron [32] is an
example of a famous simple architecture, known as Feed-Forward neural
network (FFNN). The main feature of the FFNN is the absence of cycles
in their graph, fig. 3.2. In the feed-forward architecture, there are multiple
layers and they can be identified by their position or level in the network.
The input and ouput layer can be easily recognized as the first and last
layer of the network, respectively. The middle ones are called hidden
layers. The number of hidden layers determines the depth of the network.
While the input layer contains only the input values, hidden and output
layers are composed of multiple perceptrons called units, their number
defines the width of the network. Usually, in speaker recognition, the
sigmoid function is used as the activation function of the hidden units

σ(x) = 1
1 + e−x

(3.1)

28

3.1 – Neural Network

Figure 3.2: A feed forward neural network example

altough in this work we used the ReLU function

σ(x) = max(0, x) (3.2)

The output units have a softmax activation function (3.1.3).
Each unit in a hidden layer is fully connected to the units of the next

layer. This architecture leads to a fast increase in the number of param-
eters as the network becomes wider and deeper. However, with enough
hidden layers and units with the right activation function, the FFNN can
approximate any kind of separation surface.

Given
• the node, or unit, ni
• the set of input S(i)

• the weights connecting a node to a previous one wi,j
• the output of previous nodes oj(x)

then each unit evaluates its input value as

ni(t) =
∑

j∈S(i)
wi,joj(x) + bi (3.3)

29

3 – Neural Network

where bi is a fixed bias. The ouptut will be evaluated as

oi(x) = σ(ni(x)) (3.4)

with σ(x) defined in (3.1) or (3.2).

3.1.3 Training
For this work, we focused on supervised training. In supervised training
the expected output for each input is available, that is we have a set of
training patterns xp = (x1p, ..., xNp), with a corresponding set of output
vector tp = (t1p, ..., tMp), where N and M are the input and output units.
Given the network function f(xp; Θ) = op, where Θ are the network pa-
rameters, the goal of the training phase is to minimize the error between
the predicted output and the given ones. At this point a loss function
(3.5) is introduced to achieve this.

J(Θ) =
∑
i

loss(f(xp,Θ), tp) (3.5)

A loss function maps the discrepancy between the function f(xp; Θ) and
the target value tp to a single value of R. The training algorithm used
with feedforward networks goes under the name of backward propagation
and it minimizes the loss function using gradient descent. The weights are
updated, in an iterative way, with the gradient evaluated in the space of
the parameters

Θ← Θ− η∂J(Θ)
∂Θ (3.6)

where η is the learning rate.

Backpropagation

To compute the gradient with respect to the weights in an efficient way
backpropagation is used, this algorithm backpropagates the error from the
loss, updating the weights of the hidden layers. The backpropagation al-
gorithm allows obtaining the gradient for every weight through a recursive
equation

∂J(Θ)
∂wlj,k

= δljy
(l−1)
k (3.7)

30

3.1 – Neural Network

with

δ
(l)
i =


δJ(Θ)
δy

(l)
j

· σ′

l(z
(l)
j), if l is the output layer(∑q

i=1 δ
l+1
j · w(l+1)

i,j

)
· σ′

l(z
(l)
j), if l is a hidden layer

Where y(l)
j describes the output of unit j in layer l and q is the size of

units in layer l + 1. σl is the activation function of layer l and z
(l)
j =∑K

i=0w
(l)
i,j · y

(l−1)
i is the activation value from unit j in layer l. To ob-

tain these values the forward propagation must be computed. Once the
gradient is obtained, gradient descent can be applied

w
(l)
j,k ← w

(l)
j,k − η ·

δJ(Θ)
δw

(l)
j,k

(3.8)

Loss Function

The backpropagation algorithm needs a loss function, that gives an error to
minimize. Different loss functions exist depending on the problem. Since
we want to classify the speaker cross-entropy (CE) is used. CE calculates
a loss between two distribution, this means we need to encode the network
output in a distribution. Softmax activation function is usually adopted in
the output layers. This allow to interpret the network outputs as posterior
class probabilities P (ci|xt), for class ci given the observed feature vector xt.
Given K classes and output vector z = [z1, ..., zK]T the softmax function
is defined as

σj(z) = ezj∑K
k=1 e

zk
, for j = 1, ..., K (3.9)

The target label is encoded as a vector p, also called a one-hot vector,
in which only one entry is 1 and all the other are 0. The classes are
enumerated and each one corresponds to an entry in the vector, class i is
represented in vector p at index i. The two vectors, targets, and outputs
represent a probability distribution, in fact, the sum of all the entries is 1
and all the entries are ≥ 0. We can then define the CE loss function

L(p, q) = −
n∑
i=0

pi · ln(qi) (3.10)

Softmax and cross-entropy loss work well in a classification context, but
not necessarily producing good encoding, for this reason, we also tested
some different loss functions (Section 4.3).

31

3 – Neural Network

3.2 Deep Learning and i-vector
Deep Learning can be used to solve the entire end-to-end recognition pro-
cess, and both in the frontend or backend of the speaker recognition sys-
tem. In this work, we focused on DL as the frontend of our process.

As introduced in Section 2.3.3 in the i-vector approach there are differ-
ent steps, Baum-Welch statistics collection, extraction, and PLDA back-
end. However, using DNN in place of GMM in order to compute the
Baum-Welch statistics or using bottleneck features in addition to conven-
tional spectral features, a substantial improvement can be achieved [33]
[34]. Usually, a bottleneck layer is a much smaller layer, respect to the
other hidden layers, before the last hidden layer, and its features are called
bottleneck features. In order to extract BW statistics and bottleneck fea-
tures, a network (Figure 3.3) has to be trained for acoustic modeling in
Automatic Speech Recognition (ASR). ASR feature vectors, usually log
banks filter energies, are used as input and output layers represent the
acoustic classes. Typically these are the states of the Hidden Markov
Model (HMM) in ASR.
Then given the DNN acoustic model, the statistics in (2.32) and (2.33)

Figure 3.3: A DNN architecture used for acoustic modeling and bottleneck
feature extraction

become
Ni(s) =

n∑
t=1

p(oi|xt) (3.11)

32

3.2 – Deep Learning and i-vector

Fi(s) =
n∑
t=1

p(oi|xt)x̂t (3.12)

where p(oi|xt) is the posterior probability of k-th output unit given the
ASR feature vector xt and x̂t is the speaker feature vector which can differ
from xt. Despite the improvement in respect to the i-vector approach,
this method has some disadvantages. In fact, the computational cost
of the statistics increases considerably using DNN. Also, the number of
the output units is usually much higher than the number of Gaussian
mixtures in the GMM leading to greater complexity in both T matrix
training and i-vector extraction. For this reason, another use of DNN in
frontend has rapidly become the new state-of-art. In this approach, the
i-vector is substituted by a low dimensional vector, often known as speaker
embeddings.

3.2.1 Embeddings

Embeddings are relatively low dimensional vectors representing an input
in a new space. The objective of the embeddings representation is to map
similar objects close together in the embeddings space. Embeddings can
be used to represent movies in recommendation systems, or to condense
information from a text, or as in our case to extract speaker-related infor-
mation from raw audio data [35,36]. Embeddings are extracted from one
of the hidden layers of the network, where the number of units d defines
the dimension of the embedding space. The network is trained as usual
and the hidden units learn how to represent the input in the d-dimensional
embedding space to optimize the final objective. In speaker recognition,
DL networks are trained to classify speakers. [36, 37] The inputs are the
acoustic features of a speech segment, which is associated with a label
representing the speaker’s identity. The objective of training a network
to distinguish between different speakers, is to allow it to project similar
speakers near to each on the embeddings space. This means that the same
network can be used to extract embeddings from a speaker that was not
seen during the training phase.

33

3 – Neural Network

Figure 3.4: A DNN architecture used for embedding extraction

3.3 Architectures
The set of activation functions, the number of neurons in each layer as
well the number of layers define the network architecture. A variety of
neural network architectures exist, but given the temporal related nature
of the data in this work, only a subset can be exploited. The goal of an
automatic system is to build a speaker representation from speech. This
means the system has to deal with both short term related characteristics
and long term acoustic dependencies. For this reason, we focused on
Time Delay and Recurrent architecture, showed in this section, and some
combinations involving Residual networks [cit res net] , which will be
presented in Chapter Chapter 4.

3.3.1 Time Delay Neural Network
To be effective a feed-forward network has to be complex enough to cap-
ture the nonlinearity of the data. Given the nature of speech data, it
should be able to represent and capture the time-dependant relationship
of spectral coefficients and higher-level features. The network should also
learn time-invariant abstractions or features from the data. Finally, to let
the network be able to model the input in some encoded form, the num-
ber of parameters should be small compared to the training set dimension.
Time Delay Neural Network (TDNN) was introduced explicitly satisfying

34

3.3 – Architectures

these constraints. [38]

Figure 3.5: The TDNN unit cell.

Differently from Figure 3.1, in the TDNN a delay Di is introduced on
each input. The units at each layer will not receive the outputs of the
activations, or features, of the layer below but from a subset of units and
its context. Given the feature xt, a moving window [xt−m, ..., xt, ..., xt+n]
is input into the network. Each neuron will process the same features, in
different windows, with different sets of weights, as shown in 3.5.

3.3.2 Recurrant Neural Network and LSTM

Unlike a feedforward neural network, like a deep one, recurrant neural
network (RNN) has cycles feeding the current layer with inputs from the
previous time step. This architecture introduces a state variable, storing
old information and enabling the network to learn from a long temporal
context in contrast to the static window presented to the units of a feed-
forward NN. Long Short-Term Memory (LSTM) has been introduced to
resolve some problems related to the training phase of the classical RNN
architecture [39]. While RNN uses a single state variable to store memory-
related information, LSTM uses two state terms to address both long and
short memory.

35

3 – Neural Network

Figure 3.6: The inside architecture of an LSTM cell

LSTM architecture

In Figure 3.6 the internal structure of an LSTM cell is shown. Three zones
can be distinguished, called gates. In the middle of the figure, there is the
so-called input gate. This filter decides the new information to be stored
in the long term memory or cell state

i1 = σ(Wi1 ∗ (H(t−1), xt) + biasi1)
i2 = tanh(Wi2 ∗ (H(t−1), xt) + biasi2)

iinput = i1 ∗ i2

The first gate in the picture is called forget gate, which filters information
to be discarded from the cell state using the current short memory, or
hidden state, and input

Ct = Ct−1 ∗ σ(Wforget ∗ (Ht−1, xt) + biasforget) + iinput

The last one is called the output gate, all the fresh updated states are
used with the input to produce the new short memory state

O1 = σ(Wo1 ∗ (Ht−1, xt) + biaso1)
O2 = tanh(Wo2 ∗ Ct + biaso2)

Ht, Ot = O1 ∗O2

36

3.3 – Architectures

3.3.3 Residual Neural Network
In the definition of deep learning, the number of layers of the architecture
plays a fundamental role. However, at some point stacking more hidden
layers will not increase accuracy. In fact, various problems arise in deep
architectures, like vanishing or exploding gradient. But even if some so-
lutions have been adopted, when deep architectures are able to converge
accuracy gets saturated and also starts to degrade. This is known as the
degradation problem, referred also as overfitting.

This problem has been addressed introducing a deep residual learning
framework [40]. Traditionally given the input x, a neural network block
tries to learn the true distribution H(x). The difference between them is
also called the residual

R(x) = H(x)− x (3.13)
That can be rearranged as

H(x) = R(x) + x (3.14)

The block is trying to learn H(x) but since the identity connection x it
will try to learn R(x), hence residual network. The formulation in 3.14
is obtained in a feed-forward neural network with “shortcut connections”.
As shown in 3.7, shortcut simply skip one or more layers, performing

Figure 3.7: Single residual block

an identity mapping that is added to the output of the stacked layers.
Residual Neural Networks were implemented to solve image recognition
problems, but this architecture became a general approach in different
fields. In our test, we used the standard resnet34 architecture, but we
also tried some adaptation to work with audio data (Section 4.2.2)

37

38

Chapter 4

Experiments

In this chapter, we present the methodologies used to implement a speaker
verification pipeline. First, we introduce the training data used in our
tests. Then we present the actual network implementation, and some
training strategies directly inspired by image recognition.

4.1 Data
In this work, we used different datasets to train the classifiers from which
embeddings are extracted. Each dataset consists of a collection of different
speech segments, of different duration, from different speakers. In the next
subsection, a brief description of each dataset is provided.

VoxCeleb

The principal and bigger dataset we use is VoxCeleb (VC), consisting of
two dataset VoxCeleb1 and VoxCeleb2. VoxCeleb is a large set of text-
independent speech segments collected from youtube videos, with a system
based on speech detection and face recognition [41].

Mixer

Mixer is a collection of data consisting of different datasets, Mixer6 and
MixerPhone, where the last one contains different versions like Mixer5,

39

4 – Experiments

Mixer10, and so on. Mixer 61 contains native speaker talking for a longer
time than VoxCeleb speaker’s as noticeable from tab Table 4.1.

Different from VC, this dataset contains interviews, transcript readings,
and conversation over telephone speeches.

Table 4.1: Statistics of the datasets used.

Number of speaker Number of file Avg duration

VoxCeleb1 1,251 22,496 43.59 s
VoxCeleb2 5,994 145,569 46.49 s
Mixer6 594 13,088 388.65 s
MixerPhone 3,269 37,909 106.04 s
SwitchBoard 1,676 24,556 116.68 s

4.1.1 Augmentation
Having a large dataset, and numerous speakers improve the system per-
formance as discussed in Chapter 5. The evaluation data are not seen by
the network during the training phase. The network has to learn how to
extract characteristics from the available data and be able to do the same
for new and unseen data. To make the system more robust augmentation
is often used. In augmentation, data are preprocessed and transformed to
replicate the original audio in different “scenarios”. The replicated data
provide additional distorted data and hopefully training the network with
them will make it invariant to these distortions and generalize better to
unseen data.

There are different ways to perform speech augmentation, in this work
we used four different methods

• Music augmentation: a segment of random music is added as a back-
ground to the original utterances.

1More details on this dataset is available here:
https://catalog.ldc.upenn.edu/LDC2013S03

40

4.1 – Data

• Noise augmentation: differents noises are added to the original utter-
ances.

• Babble augmentation: a random number of speech segments belong-
ing to different people is added to the background of the original
utterance.

• Reverb augmentation: reverberation in different kind of room, from
small to large, is simulated for each original utterance.

Music, speech and noises are taken from the corpus MUSAN [42]. Rever-
beration is done using Room Impulse Response and Noise Database2.

The effect of the augmentation process on the performance is presented
in the results chapter.

4.1.2 Extraction
As in Section 2.1 the raw audio file has to be processed to be used in an
automatic system, in this case as an input for our network. We extract a
45-dimensional feature vector from each utterance, by stacking together 18
cepstral, 19 delta, and 8 double-delta parameters. These parameters are
obtained by extracting 19 Mel frequency cepstral coefficients every 10 ms
and the frame log–energy on a 25 ms Hamming window, and processing
them with short time mean and variance normalization using a 3 s sliding
window.

Moreover, each utterance is divided into 3 seconds segments that are
then used as input. In our first experiment, the extraction of these seg-
ments was done on-the-fly. Thanks to the characteristic of the DataSet and
DataLoader3 framework offered by PyTorch this solution was very easy to
implement and zeroed the space overhead since no data was saved. But
the multiple extractions from a single file, for each segment, was extremely
time-consuming. For this reason, we decided to save all the extracted data
and use the stored features to form the segments in the training phase.
This lets us speed up the training process. Table 4.2 shows the dura-
tion of a training epoch using 800 speakers from VoxCeleb1 and a smaller
network, compared to the one used in our test.

2https://www.openslr.org/28/
3https://pytorch.org/docs/stable/data.html

41

4 – Experiments

Table 4.2: Training time of one epoch.

On-The-Fly All Saved Biggest Saved

15 hours 12 minutes 1 hour

As shown in table 4.2 we also tried a third approach. Since the available
space is limited we decided to save only the bigger and longest files, and
extract on-the-fly the smaller ones. Analysis of VoxCeleb1, in fact, showed
that more than 80% of the time was spent on multiple extractions of the
largest files that correspond to 20% of space.

4.2 TDNN

The general architecture of our networks is showed in 4.1. In the next
subsection, each component is explained in greater detail.

Figure 4.1: The general architecture of the classifiers.

42

4.2 – TDNN

4.2.1 Training

In gradient descent all the training data are used to compute one back-
propagation step, this means that from millions of input one update will
be made after feed-forwarding the entire training set. This approach is
slow both in computation time and update speed. For this reason, some
variations have been introduced. The one used in our test is the Adam. [43]

The training data is divided into small subsets, called batches, and one
backpropagation step is taken at the end of the forwarding of each of them.
The weights are updated multiple times based on a small fixed quantity
of data. Even if some update will go in the wrong direction, the huge
number of updates will go in the right direction and minimize the loss. In
our case, the batch is a subset of 128 segments. The shape of a segment is
T × F , where T is the number of frames and F is the number of features
for each frame. As said before, usually 3 seconds segments are used so
T = 300, while F = 45. The batches will be 128× 300× 45. The learning
rate, defined in (3.6), is updated in a cyclic way4 [44]. This approach set
two boundaries for the learning rate and change it with a fixed frequency.
In our case, 0.0001 is the lower boundary and 0.001 the upper one. The
value is increased by half each 1500 iteration. Batch normalization is used
between each layer to increase the stability and speed of the network [45].

4.2.2 Frame-Level

At this level, the network has to extract patterns and characteristics work-
ing at the frame-level. In this stage, the various architectures introduced
in Section 3.3 have been tested. The basic unit of the network consists
of three components: a layer, implementing the architecture principles, a
Batch Normalization layer and a ReLU activations layer. PyTorch comes
with the implementation of some of the most used networks including
LSTM and classic ResNet. In the next Section we present our implemen-
tation of the TDNN architecture.

4Pytorch CyclicLR

43

https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#CyclicLR

4 – Experiments

TDNN implementation

TDNN, as explained in [38], can be easily implemented with a 1-D convo-
lutional layer, exploiting the dilation parameter. As shown in Figure 4.2
the inputs are convoluted with a matrix of weights taking into account a
window of frames, in this specific case frames at time [t − 2, t, t + 2]. As
in [46] in our implementation, the single layer of the network is a sequence
of three elements: the TDNN layer, or 1-D convolutional layer, a Batch
Normalization layer and finally a ReLU layer. This structure is replicated
with different time windows as showed in table 4.3.

Figure 4.2: A 1-D convolution with dilation representation. Image taken
from [1]

Table 4.3: Frame-Level layers of the full TDNN architecture

Layer Layer Type Context Size
1 TDNN+BN+RL [t-2, t+2] 512
2 TDNN+BN+RL t 512
3 TDNN+BN+RL [t-2, t, t+2] 512
4 TDNN+BN+RL t 512
5 TDNN+BN+RL [t-3, t, t+3] 512
6 TDNN+BN+RL t 512
7 TDNN+BN+RL [t-4, t, t+4] 512
8 TDNN+BN+RL t 512
9 TDNN+BN+RL t 1500

44

4.2 – TDNN

ResNet and TDNN combination

The resnet implemented with PyTorch, resnet34, takes 2× 2 matrix data.
However, our data must be interpreted as a 1-D sequence of vectors. In
our experiments resnet34 performance was significantly lower than the
simple TDNN, due to this. For this reason, we decided to change the
original implementation that uses 2-D convolutional layers, substituting
them with the 1-D convolutional layer used in the TDNN. This resulted
in a hybrid structure, with better results.

4.2.3 Pooling
The pooling layer takes as input the patterns and features extracted focus-
ing on single frames and aggregates them obtaining a segment represen-
tation. Usually, the pooling layer is applied after some convolution layers
and its purpose is to reduce the spatial size of the feature maps. The pool-
ing layer has no activation function or weights to learn. This layer helps
the network to learn characteristic invariant to the small translations of
the input. The first kind of pooling applied in our test is the one used
in [46]. The output of the frame-level layers is collapsed over the time
dimension. This is done computing the mean and standard deviation of
each features over time and stacking them together. In terms of batch
dimensionality, given an input of B×F ×T , where B is the batch dimen-
sion, F feature dimension and T is the sequence length, the pooling layer
transforms it in B × 2 ∗ F .

Learnable Dictionary Encoding

In [47] a new learnable dictionary encoding (LDE) layer has been pro-
posed. The new layer is directly inspired by the GMM supervector en-
coding. Given a F × T temporal ordered feature sequence as input, the
LDE aggregates them over time, obtaining an utterance level of shape
F × C. This new method combines the encoding of a vector with the
dictionary learning in a single layer. We recall that for a C component
GMM UBM model λ wih λc = {pc, µc,Σc}, given an utterance with L
frames x = {x1, ..., xL} the 0th order Baum-Welch statistics on the UBM
is calculated as

Nc =
L∑
t=1

P (c|xt, λ) (4.1)

45

4 – Experiments

where c is the GMM component and P (c|xt, λ) is the occupancy proba-
bility for xt on λc. This layer introduces two groups of parameters to be
learned. The center of the dictionary component, µ = [µ1, ..., µC], and
the weights, w, used to assign the features to the components, imitating
P (c|xt, λ). Generally, the assignment can be done in two ways:

• Hard-assignment: each feature xt is assigned with the nearest dictio-
nary component using a binary weight.

• Soft-assignment: the feature is assigned to each component, using
non-negative weights.

However, the hard assignment is not differentiable, this means that it is
not learnable with gradient descent. Soft-assignment is used in LDE and
weights are given by a softmax function

wtc = exp(−sc ‖ rtc ‖2)∑C
m=1 exp(−sc ‖ rtm ‖2)

(4.2)

where rtc is the residual vector defined as rtc = xt − µc and sc is the
c-th learnable smoothing factor. The encoding can then be obtained as
E = [e1, ..., eC] where

ec =
L∑
t=1

etc =
∑L
t=1(wtc · rtc)∑L

t=1wtc
(4.3)

4.2.4 Embedding layer
The last two layers, before the classification one, are the layers from which
embeddings are extracted. These layers follow the structure presented at
the frame-level. Three components are stacked together: a linear layer, a
Batch Normalization, and a ReLU. Embeddings correspond to the output
of the two linear layers Figure 4.1. In the test presented in the next chapter
both embedding from layer A and B are taken. However, this structure is
not the only one tested, we also tried to have only one layer, or to extract
embeddings from the output of the ReLU layer.

4.3 Loss Function
As introduced in Section 3.1.3 we used the standard softmax loss func-
tion. Softmax function performs well in the classification task, however,

46

4.3 – Loss Function

it’s not assured to provide separable embeddings, that are discriminative
for unseen speakers. For this reason, we used some adaptation and refor-
mulation of the loss function introduced to improve the face recognition
system. First, we recall the original softmax function definition for a single
point, given the input feature xi and its label yi

L = 1
N

N∑
i

−log(e
fi,yi∑

j
efi,j

) (4.4)

where fj denotes the j-th element of the class score vector, usually the
output of the last layer. And N is the number of training samples.

4.3.1 Angular Softmax
To introduce the Angular Softmax [48], also SpeherFace, we have to refor-
mulate the original softmax function. Given the weights of the last layer
W then fi,j = W T

j xi + bj and fi,yi = W T
yi
xi + byi where xi, Wj and Wyi

are the i-training sample, the j-th and yi-th column of W then 4.4 can be
reformulate as

L = − 1
N

N∑
i

log
 eW

T
yi
xi+byi∑

j e
WT

j xi+bj

 (4.5)

= − 1
N

N∑
i

log

 e‖Wyi‖‖xi‖ cos(θyi,i)+byi∑
j e‖Wj‖‖xi‖ cos(θj,i)+bj

 (4.6)

in which 0 ≤ θj,i ≤ π is the angle between Wj and xi. In the binary class
case this equations define a decision boundary (W1−W2)x+b1−b2 = 0 and
constraining ‖Wi‖ = 1, bi = 0 the decision boundary becomes cos(θ1) −
cos(θ2) = 0. This is knonw as modified softmax. In this case, given
x belonging to class 1, classifing it correctly requires cos(θ1) > cos(θ2).
In [48] it is suggested to require a more stringent boundary: cos(mθ1) >
cos(θ2), with m > 2. By rewriting 4.6 including the new constrain we
finally obtain the Angular softmax

Lang = 1
N

∑
−log

 e‖xi‖φ(θyi,i)

e‖xi‖φ(θyi,i)+
∑

j /=yi
‖xi‖cos(mθj,i)

 (4.7)

47

4 – Experiments

where φ(θyi,i) is a function introduced to remove the constrain on cos(θ(mθyi,i)).
In this form, in fact, θyi,i has to be in the range of [0, πm].

φ(θyi,i) = (−1)kcos(mθyi,i)− 2k (4.8)

now θyi,i ∈ [kπm ,
(k+1)π
m] and k ∈ [0,m − 1]. The parameter m controls the

size of the angular margin, and it can be shown that when m = 1 equation
(4.7) becomes the modified softmax.

4.3.2 Additive Margin Softmax
The second softmax derived function used in our test is the one presented
in [49], called Additive Margin or CosFace. In this paper, the authors pro-
pose an analogous approach to the Angular Softmax but simplifying the
implementation of an angular margin. In fact they proposed to substitute
φ(θ) defined at 4.8 with φ = cos(θ)−m, from here the name. Assuming,
as for the modified and angular function, that both Wi and x norms are
normalized to 1.

Lams = − 1
N

N∑
i=1

log
 es·(cos θyi,i−m)

es·(cos θyi,i−m) + ∑
j /=yi

es·cos θi,j

 (4.9)

= − 1
N

N∑
i=1

log
 es·(W

T
yi
xi−m)

es·(W
T
yi
xi−m) + ∑

j /=yi
es·W

T
j xi

 (4.10)

where s is a scaling factor. It has been noted that the scaling factor s if
learnable, converges slowly, and the better results are obtained when fixed
at the beginning.

4.3.3 Additive Angular Margin Softmax
The last approach tested enforcing angular margin is the one proposed
in [2], ArcFace. The author proposed a new φ function in which the
margin m is now added directly to the angle between W and f

φ(θyi,i) = cos(θyi,i +m) (4.11)
They also presented an unified framework combining SphereFace, CosFace
and ArcFace

L = − 1
N

N∑
i=1

log es(cos(m1θyi,i+m2)−m3)

es(cos(m1θyi,i+m2)−m3) + ∑
j /=yi

es·cos θi,j
(4.12)

48

4.4 – Setup

Comparison

Figure 4.3: Decision boundary in a binary case with different loss func-
tions. Image taken from [2]

4.4 Setup
Given the size of the dataset and the complexity of our training, we use
the HPC cluster5. Network training was done using a two GPUs available
on a cluster node.

Table 4.4: Hardware and software specifications of the workstation used
to run the Model Trainer and the Link Evaluator.

Workstation hardware and software specifications

CPU model 2x Intel Xeon E5-2680 v3 2.50 GHz 12 cores.
GPU model 2x nVidia Tesla K40 - 12 GB - 2880 cuda cores.
OS Centos 7 - OpenHPC 1.3
SW packages CUDA toolkit 9.2, Python 3.7.6, PyTorch 1.2

5Computational resources provided by hpc@polito (http://hpc.polito.it)

49

http://hpc.polito.it

50

Chapter 5

Evaluation

In Section 2.4 we presented some backend systems used to obtain scores
from i-vectors or in general using embeddings. Labels can then be assigned
using those scores. The case in which positive samples are classified as
negative, or the reverse one, is called misclassification. A threshold divide
scores that yield a positive classification from scores that yield a negative
one, leading to different kinds of classification mistakes. Calibration is the
process through which this threshold is chosen and it depends on which
mistake is more costly for a given target application.

5.1 Errors Evaluation
The output of a binary classifier, producing continuous scores in the range
(0, 1), can be interpreted as an estimate of the probability of belonging to
the positive class p or the negative one n. Through calibration, a threshold
0 < θ < 1, is chosen so that scores s > θ will be interpreted as positive
and negative otherwise. Classifying a sample with different threshold and
score will produce four possible outcomes:

• True Positive: a positive sample classified as positive

• True Negative: a negative sample classified as negative

• False Positive: a negative sample classified as positive

• False Negative: a positive sample classified as negative

51

5 – Evaluation

A classifier for speaker recognition can be evaluated in terms of the proba-
bility that a target speaker (belonging to the positive class) is misclassified
as an impostor (belonging to the negative class) and the probability that
an impostor is misclassified as the enrolled speaker. These two probabil-
ities are called False Reject Rate (FRR) and False Accept Rate (FAR),
given by

FRR = #false negatives
#total positive samples = #target speaker scores < θ

#total target speaker samples (5.1)

FAR = #false positives
#total negative samples = #impostor scores > θ

#total impostor samples (5.2)

The threshold θ controls the tradeoff between FRR and FAR. For example,
to decrease the probability of the model to accept an impostor, or increase
the FRR, θ has to be increased but FAR will decrease and the system will
reject target speakers more often. The value of θ at which FAR = FRR
is called Equal Error Rate (EER). Being EER an upper bound for error
measures, reducing it will mean improving the maximum error of the other
operating points [11]. The EER can be used to evaluate the performance
of a classifier or comparing it with other classifiers.

5.1.1 ROC curve
The ROC curve can be obtained plotting FAR and FRR with respect
to different threshold θ values. A set of points pθ = (FARθ, FRRθ) is
obtained by evaluating FAR and FRR at different values of θ. The ROC
curve lets visualize the tradeoff between FAR and FRR changing with
different thresholds while giving an easy way to obtain the EER point, it
can be evaluated as the intersection between the curve and the quadrant
bisector y = x. The better a classifier performs, the closer the curve will
be to the axes.
An useful variant of the ROC curve is the DET curve, where the axes
representing FAR and FRR are scaled so that the plot is more spread and
the curve is closer to a linear line [50]. The original interval of the axes
[0,1] is transformed to [− inf,+ inf] through the probit transformation [11]:

probit(p) =
√

2erf−1(2p− 1) (5.3)

52

5.1 – Errors Evaluation

where erf is the error function

erf = 2√
π

∫ p

0
e−t

2
dt (5.4)

The intersection between the new curve and the bisector y = x repre-
sents the EER. Due to the linear nature of the DET curve it’s easier to
compare classifiers performance, using their distance from each other, the
distance from the origin and differences in regions with low error–rates [11].

 2 5 10 20 40
 2

 5

 10

 20

 40

Figure 5.1: An example of DET curves

5.1.2 Detection Cost Function
Given two weights α1 and α2, depending on the application and the type
of evaluation, the class prior probability πT and πF = 1 − πT , and the
decision threshold t then the Detection Cost Function (DCF) is defined
as the weighted sum of FAR and FRR

DCF (t) = πTα1FRR(t) + πFα2FAR(t) (5.5)

Usually α2 is higher in order to penalize the acceptance of a non target
speaker. One of the main metrics in speaker recognition is the minimum
value of DCF (t) referred as minDCF.

53

5 – Evaluation

5.2 Experiental Results
In this chapter we present some experimental results obtained with the ar-
chitectures shown in Section 3.3 and the different optimization techniques
presented in Chapter 4. The test set used to evaluate the performance is
the NIST Speaker Recognition Evaluation 2019 (SRE19)1 dataset. In the
following tables we present the results obtained on the Eval set. Table 5.1
shows the results achieved by our baseline system, which is an Hybrid
DNN - GMM trained i-vector system [51].

Table 5.1: Baseline i-vector result.

EER minDCF
i-vector 11.3% 0.685

5.2.1 Clean Training
In the first stage of this work, we focused on the contribution of the net-
work architectures, training different models on the clean version of the
dataset. The first experiment used VoxCeleb1 (VC1) only. We recall that
the network has two hidden layers before the output one, A and B in Fig-
ure 4.1. The output from the linear layer is the embedding, respectively
embedding A and embedding B. As shown in Table 5.2 embedding A al-
lows better performance and there isn’t great improvement using a TDNN
with LDE as the pooling layer against a TDNN with standard deviation
and mean. The bad performance of resnet34 is expected as explained
previously.

In Table 5.3 we added Mixer6 (M6) to the training data, obtaining a
relative improvement of about 20% for all the networks. In this case, we
also tested the ResNet implemented with TDNN layers obtaining a fur-
ther 10% improvement in the EER with respect to the classical resnet34.

1https://www.nist.gov/itl/iad/mig/nist-2019-speaker-recognition-
evaluation

54

https://www.nist.gov/itl/iad/mig/nist-2019-speaker-recognition-evaluation
https://www.nist.gov/itl/iad/mig/nist-2019-speaker-recognition-evaluation

5.2 – Experiental Results

Table 5.2: Results for different architectures trained with VoxCeleb 1 clean
data only.

Emb. A Emb. B
EER minDCF EER minDCT

TDNN 13.9% 0.779 18.6% 0.873
TDNN + LDE 13.8% 0.802 18.7% 0.872
ResNet34* 16.2% 0.870 — —

We also tried to train the network with only one layer, obtaining only
embedding A, noticing no worsening in performance overall.

Table 5.3: Results for different architectures trained with VoxCeleb 1 and
Mixer 6 clean.

Emb. A Emb. B
EER minDCF EER minDCT

TDNN 11.0% 0.676 14.7% 0.729
ResNet34* 12.5% 0.741 — —
ResNet34+TDNN 11.4% 0.684 14.4% 0.787
ResNet34+TDNN+LDE* 11.2% 0.697 — —
ResNet34+TDNN+LDE 11.2% 0.705 13.4% 0.783

Table 5.4 shows the result obtained using all the dataset available to
train a TDNN network. Training the network with all the speakers allowed
a further 20% improvement with respect to using only VC1 and M6, and
almost 40% against VC1 alone. Despite the promising result, the huge
amount of data and the consequent long training time for a single model
didn’t allow us to train other architectures. In Figure 5.2 we plotted
the DET curves obtained from the different architectures trained with
VoxCeleb1 and Mixer6 without augmentation.

55

5 – Evaluation

Table 5.4: Results for different architectures trained with ALL clean
dataset.

Emb. A Emb. B
EER minDCF EER minDCT

TDNN 8.7% 0.573 11.2% 0.682

Figure 5.2: DET plot of different architectures.

 2 5 10 20 40
 2

 5

 10

 20

 40

tdnn

res+tdnn+lde

res+tdnn+lde

resnet34

5.2.2 Augmentation
In this section, the training data are augmented as introduced in Sec-
tion 4.1.1. Table 5.5 shows the results obtained using VoxCeleb1 aug-
mented in all the 4 ways. This leads to a 10% reduction of the EER on
all the networks, once again the combination of TDNN and LDE achieves
slightly better results, while resnet34 performs the worst.

56

5.2 – Experiental Results

Table 5.5: Results for different architectures trained with VoxCeleb1 aug-
mented 4 times.

Emb. A
EER minDCF

TDNN 12.0% 0.722
TDNN+LDE 11.9% 0.727
ResNet34∗ 13.4% 0.775

The second set of experiments with augmented data used VoxCeleb1
and Mixer6, both augmented either 4 times or once for each epoch. In
Table 5.6 it is possible to notice the similar performance obtained, this is
important due to the long training time in case of full augmentation and
space required to save the data. Due to this, and given the overall better
performance of TDNN, we only tested this architecture.

Table 5.6: Results for different architectures trained with VoxCeleb1 and
Mixer6 augmented.

Emb. A Emb. B
EER minDCF EER minDCT

TDNN 4×epoch 9.6% 0.620 11.7% 0.681
TDNN 1×epoch 9.9% 0.622 13.0% 0.732

Figure 5.3 shows the curves of a TDNN trained with VoxCeleb1 and
Mixer6 at different level of augmentation.

57

5 – Evaluation

Figure 5.3: DET plot of TDNN trained with VC1 and M6

 2 5 10 20 40
 2

 5

 10

 20

 40

clean

4 augment

1 augment

5.2.3 Optimization
In the last section, we present the results obtained changing the loss func-
tion. Given the good performance of embedding A, we decide to bypass
the layer B and use the first one as input for the new loss functions. Ta-
ble 5.7 shows the results achieved with the resnet34 using VoxCeleb1 and
Mixer6 as training data. The focus was to let the network train for some
extra epochs with different loss functions.

Table 5.7: Results for ResNet34 and optimization with VoxCeleb1 and
Mixer6.

Softmax SphereFace
Ep5 Ep6 Ep7 Ep6 Ep7 Ep9

EER 12.5% 12.5% 12.6% 16.3% 16.6% 16.5%
minDCF 0.741 0.740 0.733 0.900 0.900 0.907

In Table 5.8 the results obtained by the different loss functions on the
TDNN are shown. The additional epoch without changing the loss func-
tion achieved 20% better while using the Angular Softmax (SphereFace)

58

5.2 – Experiental Results

allowed to reduce the EER of 25%. On the other hand, our implemen-

Table 5.8: Results for TDNN and optimization with VoxCeleb1 and
Mixer6.

Spftmax SphereFace CosFacea ArcFaceb

Ep5 Ep6 Ep6 Ep7 Ep6 Ep7 Ep6
EER 11.0% 11.0% 10.6% 10.3% 11.2% 12.0% 11.1%
minDCF 0.676 0.669 0.649 0.653 0.727 0.741 0.707

aOur implementation
bNo softmax pretraining.

tation of the Additive Margin (CosFace) achieved worst results in the
additional epochs. We also tried to apply the Additive Angular Margin
Loss (Arcface) from scratch. The result of this training is similar to the
one trained with classical softmax.

The model trained with VoxCeleb1 and Mixer6 augmented once each
epoch, was further trained with SphereFace loss. The results of the addi-
tional training are shown in Table 5.9. The classic Softmax decreased the
EER of about 1%, while SphereFace achieved a reduction of 4% and 5%
in the two extra epochs.

Table 5.9: Results for TDNN and optimization with VoxCeleb1 and
Mixer6 augmentd Once.

Softmax SphereFace
Ep5 Ep6 Ep6 Ep7

EER 9.9% 9.8% 9.6% 9.5%
minDCF 0.622 0.623 0.630 0.646

In Table 5.10 we present the results obtained with a different backend,
Pairwise SVM instead of PLDA. The model evaluated is the same one

59

5 – Evaluation

used to obtain the results shown in Table 5.8. The EER calculated using
PSVM is around 10% less than the one obtained using PLDA.

Table 5.10: Results for TDNN with VoxCeleb1 and Mixer6 clean using
PSVM.

Emb. A
EER minDCF

SphereFace Ep6 PSVM 9.45% 0.623
PLDA 10.6% 0.649

Overall our embeddings achieved better results than the one obtained
with the i-vector, Table 5.1. The best result was achieved using all the
datasets to train a TDNN, Table 5.4. The results obtained using augmen-
tation,Table 5.6, suggests that augmenting all the datasets will produce
better results. Also, SphereFace showed to be able to further improve the
performace of a pretrained network, Table 5.8.

60

Chapter 6

Conclusions and Future
Work
In this work we have shown how the embeddings extracted from a deep
architecture, like TDNN, allows us to obtain comparable if not better
performance than the i-vector. In particular, it has been shown how in-
creasing the number of speakers in the training dataset allows the net-
work to learn to better generalize the characteristics of the speakers not
yet seen. The contribution of the augmentation is also important, al-
lowing us to achieve performance similar to that obtained using datasets
with many more speakers. It has also been shown that having 4 aug-
mentations, music, noise, babble, and reverberation, does not have many
benefits compared to having a different augmentation per epoch, allowing
to save space and time for training. The results obtained with the loss
functions originally developped for image recognition were promising. An-
gular softmax and additive angular margin allowed to further improve the
results obtained by a pre-trained TDNN network. On the other hand, our
implementation of additive margin proved to be slightly less performing
than the two. Future work will focus on extending the results obtained
here to further improve the results, trying to obtain state-of-the-art per-
formance. For this, we will study new combinations of architectures, and
new layers. Other approaches to optimizing embeddings, such as end-to-
end training, or other loss functions, will be considered. Furthermore,
we will try to combine speaker recognition and face recognition to obtain
more robust and multimodal recognition systems.

61

62

Bibliography

[1] “Time delay neural network,” https://kaleidoescape.github.io/tdnn/,
accessed: 05/07/2020.

[2] J. Deng, J. Guo, and S. Zafeiriou, “Arcface: Additive angular mar-
gin loss for deep face recognition,” 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 4685–4694,
2019.

[3] L. R. Rabiner and B.-H. Juang, “Fundamentals of speech recogni-
tion,” in Prentice Hall signal processing series, 1993.

[4] S. Davis and P. Mermelstein, “Comparison of parametric representa-
tions for monosyllabic word recognition in continuously spoken sen-
tences,” IEEE Transactions on Acoustics, Speech and Signal Process-
ing, vol. 28, pp. 357–366, 1980.

[5] S. Cumani, “Speaker and language recognition techniques,” Ph.D.
dissertation, Politecnico di Torino, 2012.

[6] C. M. Bisho, Pattern Recognition and Machine Learning. Springer,
2006.

[7] D. A. Reynolds and R. C. Rose, “Robust text-independent speaker
identification using gaussian mixture speaker models,” IEEE Trans.
Speech Audio Process., vol. 3, pp. 72–83, 1995.

[8] N. M. L. A. P. Dempster and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the Royal
Statistical Society, pp. 1–39, 1977.

[9] M. A. Mohamed and P. D. Gader, “Generalized hidden markov mod-
els — part i : Theoretical frameworks,” 2008.

[10] A. H. Waibel and K.-F. Lee, “Readings in speech recognition,” 1990.
[11] N. Brümmer, “Measuring, refining and calibrating speaker and lan-

guage information extracted from speech,” Ph.D. dissertation, Uni-
versity of Stellenbosh, 2010.

63

https://kaleidoescape.github.io/tdnn/

Bibliography

[12] D. A. Reynolds, “Comparison of background normalization methods
for text-independent speaker verification,” in EUROSPEECH, 1997.

[13] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verifica-
tion using adapted gaussian mixture models,” Digit. Signal Process.,
vol. 10, pp. 19–41, 2000.

[14] J.-L. Gauvain and C.-H. Lee, “Maximum a posteriori estimation for
multivariate gaussian mixture observations of markov chains,” IEEE
Trans. Speech Audio Process., vol. 2, pp. 291–298, 1994.

[15] P. Kenny, “Joint factor analysis of speaker and session variability:
Theory and algorithms,” Technical report CRIM-06/08-13, 2005.

[16] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-
end factor analysis for speaker verification,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 19, pp. 788–798, 2011.

[17] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel, “Joint factor
analysis versus eigenchannels in speaker recognition,” IEEE Transac-
tions on Audio, Speech, and Language Processing, vol. 15, pp. 1435–
1447, 2007.

[18] P. Kenny, M. Mihoubi, and P. Dumouchel, “New map estimators for
speaker recognition,” in INTERSPEECH, 2003.

[19] N. Dehak, “Discriminative and generative approaches for long- and
short-term speaker characteristics modeling: application to speaker
verification,” 2009.

[20] P. Kenny, G. Boulianne, and P. Dumouchel, “Eigenvoice modeling
with sparse training data,” IEEE Transactions on Speech and Audio
Processing, vol. 13, pp. 345–354, 2005.

[21] N. Dehak, R. Dehak, J. R. Glass, D. A. Reynolds, and P. Kenny,
“Cosine similarity scoring without score normalization techniques,”
in Odyssey, 2010.

[22] A. O. Hatch, S. S. Kajarekar, and A. Stolcke, “Within-class covari-
ance normalization for svm-based speaker recognition,” in INTER-
SPEECH, 2006.

[23] S. Ioffe, “Probabilistic linear discriminant analysis,” in ECCV, 2006.
[24] S. Prince and J. H. Elder, “Probabilistic linear discriminant analysis

for inferences about identity,” 2007 IEEE 11th International Confer-
ence on Computer Vision, pp. 1–8, 2007.

[25] P. Kenny, “Bayesian speaker verification with heavy-tailed priors,” in
Odyssey, 2010.

64

Bibliography

[26] N. Brü"mmer and E. de Villiers, “The speaker partitioning problem,”
in Odyssey, 2010.

[27] S. Cumani, N. Brümmer, L. Burget, and P. Laface, “Fast discrim-
inative speaker verification in the i-vector space,” 2011 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4852–4855, 2011.

[28] L. Burget, O. Plchot, S. Cumani, O. Glembek, P. Matejka, and
N. Brümmer, “Discriminatively trained probabilistic linear discrimi-
nant analysis for speaker verification,” 2011 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pp.
4832–4835, 2011.

[29] C. Hc, “Burges: A tutorial on support vector machines for pattern
recognition,” 1998.

[30] J. C. BurgesChristopher, “A tutorial on support vector machines for
pattern recognition,” Data Mining and Knowledge Discovery, 1998.

[31] V. N. Vapni, “The nature of statistical learning theory,” 1995.
[32] C. M. B. G. Hinton, “Neural networks for pattern recognition,” 2005.
[33] Y. Lei, N. Scheffer, L. Ferrer, and M. McLaren, “A novel scheme for

speaker recognition using a phonetically-aware deep neural network,”
2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 1695–1699, 2014.

[34] F. Richardson, D. A. Reynolds, and N. Dehak, “Deep neural net-
work approaches to speaker and language recognition,” IEEE Signal
Processing Letters, vol. 22, pp. 1671–1675, 2015.

[35] C. Guo and F. Berkhahn, “Entity embeddings of categorical vari-
ables,” ArXiv, vol. abs/1604.06737, 2016.

[36] Y. Konig, L. Heck, M. Weintraub, and K. S. Sonmez, “Nonlinear
discriminant feature extraction for robust text-independent speaker
recognition,” 1997.

[37] L. Heck, Y. Konig, M. K. Sönmez, and M. Weintraub, “Robustness to
telephone handset distortion in speaker recognition by discriminative
feature design,” Speech Commun., vol. 31, pp. 181–192, 2000.

[38] A. H. Waibel, T. Hanazawa, G. E. Hinton, K. Shikano, and K. J.
Lang, “Phoneme recognition using time-delay neural networks,” IEEE
Trans. Acoust. Speech Signal Process., vol. 37, pp. 328–339, 1989.

[39] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, pp. 1735–1780, 1997.

65

Bibliography

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 770–778, 2016.

[41] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: A large-scale
speaker identification dataset,” in INTERSPEECH, 2017.

[42] D. Snyder, G. Chen, and D. Povey, “MUSAN: A Music, Speech, and
Noise Corpus,” 2015, arXiv:1510.08484v1.

[43] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” CoRR, vol. abs/1412.6980, 2015.

[44] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An
imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–8035.
[Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[45] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” ArXiv, vol.
abs/1502.03167, 2015.

[46] D. A. Snyder, J. Villalba, N. Chen, D. Povey, G. Sell, N. Dehak, and
S. Khudanpur, “The jhu speaker recognition system for the voices
2019 challenge,” in INTERSPEECH, 2019.

[47] W. Cai, Z. Cai, X. Zhang, X. Wang, and M. Li, “A novel learnable dic-
tionary encoding layer for end-to-end language identification,” 2018
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp. 5189–5193, 2018.

[48] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface:
Deep hypersphere embedding for face recognition,” 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp.
6738–6746, 2017.

[49] F. Wang, J. Cheng, W. Liu, and H. Liu, “Additive margin softmax
for face verification,” IEEE Signal Processing Letters, vol. 25, pp.
926–930, 2018.

[50] A. F. Martin, G. R. Doddington, T. Kamm, M. Ordowski, and M. A.

66

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Bibliography

Przybocki, “The det curve in assessment of detection task perfor-
mance,” in EUROSPEECH, 1997.

[51] S. Cumani, P. Laface, and F. Kulsoom, “Speaker recognition by means
of acoustic and phonetically informed gmms,” in INTERSPEECH,
2015.

67

	List of Tables
	List of Figures
	Introduction
	Speaker Recognition
	Outline

	Background
	Extraction
	Sampling, quantization and filtering
	Mel-Frequency Cepstral Coefficients

	Probabilistic Model
	Gaussian Mixture Model
	Hidden Markov Models

	Speaker verification with Latent Variable Models
	Universal Background Model
	Factor Analysis Model
	i-vector

	i-Vector Backends
	PLDA
	Support Vector Machine

	Neural Network
	Neural Network
	Perceptron
	Feed Forward Neural Network
	Training

	Deep Learning and i-vector
	Embeddings

	Architectures
	Time Delay Neural Network
	Recurrant Neural Network and LSTM
	Residual Neural Network

	Experiments
	Data
	Augmentation
	Extraction

	TDNN
	Training
	Frame-Level
	Pooling
	Embedding layer

	Loss Function
	Angular Softmax
	Additive Margin Softmax
	Additive Angular Margin Softmax

	Setup

	Evaluation
	Errors Evaluation
	ROC curve
	Detection Cost Function

	Experiental Results
	Clean Training
	Augmentation
	Optimization

	Conclusions and Future Work
	Bibliography

