
Master Thesis

Public Transport Network analysis

Complex network analysis of 27 PTNs from cities around the

world

Sara Cabodi

Supervised by

Paolo Garza

Jari Saramäki
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Abstract

At least once in a lifetime, everyone has taken a means of public transport. Buses,

subways, trains, etc., are a part of our everyday life. They are how we commute to

work, meet a friend for a coffee and visit or travel to different places.

In the last decades, researches have studied the topology and characteristics

of Public Transport Networks (PTN) in order to understand, plan and optimize

their behaviour, cost and performance. In particular, when dealing with spatial

networks such as PTNs, complex network theory plays a huge role in analysing and

understanding their properties.

In this thesis we focus on the PTNs analysis of 27 cities located in three continents:

Europe (19), Oceania (5) and America (3). We model each transportation network

as a graph represented by an L-space topology, where stops and stations represent

nodes and their connections edges, e.g., a bus going from stop A to stop B. This

work aims at finding possible relations/patterns involving the city features, such as

area and population, and the properties of its PTN.

We collect basic static measurements for each city, such as number of nodes and

edges, clustering coefficient, density and diameter. We deepen the network analysis

discussing assortativity and average path length. We further explore the properties

of each network through the distributions of node measures, like degree and different

types of centrality. We then explore the networks in order to analyse shortest paths

and distances, computed by standard graph algorithms and evaluated taking into

account Euclidean distances. This allows us to partially capture some geographical,

topological and functional characteristics of the observed networks. We conclude our

work with a frequency analysis. The goal is to display and analyse the distributions

of number of vehicles throughout a typical day. The work is done separately for

each type of transport present in the dataset, which allows to better compare the

situation in different cities.

We use local as well as global features to evaluate characteristics of urban

transportation systems according to well-known network theory, e.g. small-world and
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scale-free properties. We make local and global analysis on individual and multiple

urban networks, considering their basic topology as well as clustering strategies based

on commonly used properties. Each analysis has its own level of details, depending

on the type of measure taken into consideration. For example, in some cases it is

possible to have both city level analysis and comparison among cities for all measures

considered, whereas other times it is necessary to divide by type of measurement.

The results obtained from the network analysis suggest that PTNs, as many

other real-world networks, are neither small-world nor scale-free. Lastly, for each of

the part of the analysis performed we were able to capture some insights both at

city level as well as in terms of comparisons among all cities.
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Chapter 1

Introduction, Motivations and

Goals

In our everyday lives we are surrounded by numerous complex systems formed by

many interacting elements. If we think about city mobility, public transport is the

choice for countless people. Network science is a discipline that aims to model these

systems of interacting components as networks where different entities are represented

as nodes and the relationships between them as edges [1]. The specific case of public

transport can be modeled as a network with stops as nodes and connections between

consecutive stops as edges. Starting from the 2000s, researches have began to study

the topology and peculiarities of Public Transport Networks (PTN) in order to

understand, plan and optimize their behaviour, cost and performance. In particular,

when dealing with spatial networks such as PTNs, complex network theory plays a

huge role in analysing and understanding their properties.

In this work we analyse the Public Transport Networks of 27 cities around the

world, divided between three continents as follows:

• America: Antofagasta (Chile), Detroit (USA), Winnipeg (Canada),

• Europe: Athens (Greece), Belfast (Northern Ireland), Berlin (Germany), Bor-

deaux (France), Dublin (Ireland), Grenoble (France), Helsinki (Finland), Kuo-

pio (Finland), Lisbon (Portugal), Luxembourg City (Luxembourg), Nantes

(France), Palermo (Italy), Paris (France), Prague (Czech Republic), Rennes

(France), Rome (Italy), Toulouse (France), Turku (Finland), Venice (Italy),

• Oceania: Adelaide (Australia), Brisbane (Australia), Canberra (Australia),

Melbourne (Australia), Sydney (Australia).
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The work aims at analysing the PTNs to first characterize the networks in terms

of static measures, topology and network models. Moreover, our goal is to find, if

present, relations or patterns between city features and PTN properties. To evaluate

these possible correlations, we consider area and population as city features and we

compute two main types of analysis:

• Distance analysis for the area

• Frequency analysis for the population

Chapter 2 presents the theoretical background needed to support the analysis.

In section 2.1, we offer an overview of the network theory. We report the significant

network representation and types, followed by a brief review of useful local and global

network properties. The second section (2.2) presents the features and literature

background of PTNs as networks. Firstly, we describe the essential features of spatial

networks, followed by specific topologies used in this context. To conclude, we offer

a quick review of the previous works studied to perform our analysis.

Chapter 3 explains the data structure. Section 3.1 presents the dataset, its

features, how it has been created and some basic statistics. It concludes with an

explanation of our collection process, concerning area and population information.

In section 3.2 we describe the networks creation, underlining their type, and the

process followed to plot the networks.

Chapter 4 is the main chapter, where we describe how we performed the analysis

itself and its results. It is divided in 5 threads, each one explaining a specific

part of the analysis. The first section (4.1) illustrates the network basic measures

analysed for each city. We talk about number of nodes, number of edges, density,

diameter and average clustering coefficient. Together these measures offer a first

rough interpretation of the dataset. Furthermore, an outlier analysis and a correlation

one give more detailed information about the different PTNs. The second section

(4.2) deepens the first one. In particular, we further the exploration of network

measures analysing assortativity, average path length, average degree and degree

distribution. Through this analysis, we compare some well known network models

and properties, i.e. small-world and scale-freeness. Section 4.3 offers an overview of

nodes centrality measures. To be more precise, we analyse four types of centrality:

betweenness, closeness, degree and eigenvector. We briefly review their meaning,

explain their distributions with fitting parameters and comment on some comparisons.

In section 4.4, we describe the distance analysis. We illustrate our approach, choices

and implementation, offering a specific subsection where we compare the breadth

first search, chosen one, to the Dijskstra one. The goal of this type of analysis was
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to evaluate the efficiency of the PTNs, characterizing trips as well as nodes and

their mutual reachability. To do so, we compared the real distances, considered as

the BFS ones, with the Euclidean distances. We furthered the analysis evaluating

the distances from a geographical center and finding out the network distribution

of peripheral nodes. All of the results are presented and discussed both at city

level and comparison one. During the implementation of this type of analysis, it

became necessary to investigate the connected components of the networks. The

results are presented in the last subsection of this part. In conclusion, section 4.5

deals with the frequency analysis. When approaching this last part, we aimed at

studying the distributions of vehicles frequency during a typical day. The information

were gathered and presented divided by type of transport, both for individual and

collective plots. Like for the previous section, we displayed the results at two different

level of detail: city level and comparison among city level. We deepened the study

for the bus transport networks, because all the cities had information about them.

Its results are shown and discussed in the last subsection.

The last chapter, 5, presents some general and specific conclusions for each

section of the analysis. In addition, we offer a few ideas for future works and some

suggestions on how the work done may be used to improve PTN planning and

service.
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Chapter 2

Background

This chapter overviews theoretical aspects on networks and graphs that are at the

base of the analysis tasks we performed on PTNs. We first introduce general concepts

on network representation, the types of networks and the local and global properties

we are interested at. We then focus on PTNs seen as spatial networks, we briefly

overview the main network topologies found in literature, and we finally overview a

set of related works that can be considered as most relevant to to our work.

2.1 Network theory

Network theory is the discipline studying graphs in order to represent sets of discrete

objects characterized by pairwise relations, that can be either symmetric or asym-

metric. In computer science and network science, network theory is a part of graph

theory: a network is a graph in which nodes and/or edges have attributes. Network

representations are exploited in many disciplines, such as physics, computer science,

electrical engineering, biology, economics, climatology, and sociology.

2.1.1 Network representation

The study of complex networks is a specific and relatively young (originated in the

early 2000) field of network theory, with applications in areas of scientific research,

based on the empirical study of real-world networks such as computer networks,

biological networks, technological networks, brain networks, climate networks and

social networks [2].

A network is a graph, i.e.,, a mathematical structure composed by a set of
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objects, in which some pairs of the objects are in some sense “related”. It is used to

model real-life phenomena composed by entities which interact with each other or

are interconnected.

To be able to model and study these phenomena, we need to exploit a mathe-

matical representation of the corresponding network. First of all, we need to uniquely

identify the entities of our model, the graph nodes, and to label them with proper

attributes. Graph nodes are thus unique, and one can store other significant informa-

tion inside, for example the position or coordinates of the geographical entities they

represent. The number of nodes in a graph is a widely used measure of the graph

size, and as a consequence of the cost of the operations to be done on it. We will

here refer to it as N .

Relationships between nodes are represented by edges connecting them, directed

or undirected, weighted or unweighted. Network edges are represented as edge lists,

adjacency matrices or adjacency lists, depending on choices to be done in terms of

memory usage and/or complexity of the algorithms.

Whereas edge lists and adjacency lists can be more compact, as they just

represent existing edges, the adjacency matrix is often considered a simpler/straight-

forward option: though representing both existing and non existing edges, it provides

an O(1) access to an edge, starting from the node pair it connects. It is a square

matrix (N ×N), where each element (Aij) indicates whether pairs of nodes (i and j)

are adjacent or not in the graph: the information is Boolean in unweighted graphs,

whereas it is the edge weight in weighted graphs.

A single edge list is a very simple representation, useful whenever an algorithm

just requires iterations on all graph edges. Adjacency lists represent lists of edges

on a per node basis: lists are collected either in arrays or lists of N lists, each one

describing the set of neighbours of the i-th node in the graph.

Each representation type has its pros and cons. For example, adjacency matrices

are useful for procedures needing easy and fast indexing. However, they may cause

higher memory consumption for sparse networks. Which representation to choose

depends on the network size and density, but also on the algorithms used for processing

and the memory constraints for the storage.

2.1.2 Network types

The great variety of real-life phenomena that can be modeled trough networks calls

for flexibility in the definition of the different types. For example transport networks
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have spatial constraints and require information about the coordination of their

nodes. In some more complex cases, the limitations of the network estimation

methods may have their effect on the network type produced, too. The thesis focuses

on unweighted and undirected graphs and studies properties associated with static

networks. The following subsections present some of the types of graph useful for

the analysis performed.

Simple graphs and multigraphs

The most basic type of network is the graph with no self-loops and no parallel edges,

called simple graph. The maximum number of possible edges in a simple graph with

N vertices is

Emax = N(N − 1)/2. (2.1)

On the other hand, the so-called multigraph can contain self-edges and multi-edges,

i.e., edges between a node and itself, or multiple edges between the same pair of

nodes.

Weighted and unweighted networks

Some kind of phenomena need to customize the interaction with some sort of

numerical attribute, which explains the intensity or the type of interaction itself. A

weighted graph is a graph in which each branch is given a numerical weight. It is,

therefore, a special type of labeled graph in which the labels are numbers (usually

positive). As opposed to a weighted graph, the unweighted one is characterized by

the fact that edges do not have any associated cost or weight. The difference between

a multigraph or a weighted network, in terms of edge representation, is not always

clear, especially for the adjacency matrix when the values are integers. For instance,

an unweighted multigraph could be represented by a weighted simple graph, where

integer edge weights represent the number of edges in the multigraph. The distinction

is normally rather clear when considering the phenomena being represented.

Directed and undirected networks

When dealing with relationships, up to now we considered two ways (symmetric)

ones (an edge from i to j is equivalent and undistinguishable from an edge from

j to i). These types of networks are referred to as undirected. However, in some

contexts, it might be necessary to separate the two directions, by creating a directed

graph: within the framework of transport networks, an edge between two nodes often
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represents a bi-directional connection, which means that means of transportation

run in both directions. Nonetheless, this is not always true, so depending on the

specific network, the undirected graph representation can be enough, or one should

resort to the directed version.

2.1.3 Local and global properties

Adjacency matrix

A graph with N nodes and E edges can be described by its N x N adjacency matrix

A, which is defined as

Aij =

{
1 if i and j are connected

0 Otherwise
(2.2)

If the graph is undirected then the matrix A is symmetric.

Degree

If there is an edge (vi, vj) ∈ L, we can say that vi and vj are adjacent, vi is a

neighbour of vj and the edge is incident to vi and vj.

The degree ki of vertex vi is the number of edges it is incident to. For simple

graph, this is the number of neighbours of the considered node. In case of directed

graphs, one can consider separate in- and out-degrees, corresponding to leaving and

incoming edges.

The average degree 〈k〉 of a network is

〈k〉 =
∑
i

ki
N

=
2E

N
, (2.3)

where E is the total number of edges and N is the total number of nodes.

The degree distribution P (k) is one of the central concepts in network analysis.

It represents the fraction of nodes having degree k or, equally, it is the probability

that a uniform randomly chosen node has degree k. That is,

P (k) =
Nk

N
, (2.4)

where Nk is the number of nodes of degree k.
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Some networks, notably the Internet, the world wide web, and some social

networks are found to have degree distributions that approximately follow a power

law: P (k) ∼ k−γ , where γ is a constant. Such networks are called scale-free networks

and have attracted particular attention for their structural and dynamical properties.

However, real-world networks are rarely scale-free, as it is thoroughly explained in

[3].

Clustering coefficient

The clustering coefficient of node i is the ratio of the number of edges between its

neighbours to that of the number of possible such edges:

ci =
Ei(
ki
2

) =
2Ei

ki(ki − 1)
ci ∈ [0, 1], (2.5)

where E is the number of edges between i’s neighbours. It can also be seen as the

density of the local neighbourhood of a node.

When applied to an entire network, it is the average clustering coefficient over

all of the nodes in the network. It can indicate if a network shows small-world

properties. For 〈c〉 to be meaningful, it should be significantly higher than the one

obtained from a random graph with the same number of nodes.

Diameter and average shortest path

In a network, a path is a walk where vertices are never repeated. The length of a

path is the number of edges on it. The path with the minimun number of edges

between two nodes is called shortest path. The (geodesic) distance dij of two vertices

is the length of their shortest path. The diameter d of a network is the maximum

distance found in it, d = max(dij). The average path length, together with the

clustering coefficient described above, contributes to underline possible small-world

behaviour of the network. In particular, if the average distance between the nodes is

proportional to the logarithm of the number of nodes, 〈l〉 ∼ lnN , then the network

has small-world properties.

Assortativity

In general the degrees at the two end nodes of a link are correlated, and to describe

if one can estimate the conditional probability P (k′|k). This quantity represents the

probability that any edge starting at a certain node of degree k ends at a node of
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degree k′. However, the function P (k′|k) is hard to estimate and one can define the

assortativity. The latter is defined as a preference for a network’s nodes to attach to

others that are similar in some way.

knn(k) =
∑
k′

P (k′|k)k′. (2.6)

Usually, the average nearest-neighbour degree knn is used instead:

knn(k) =
1

N(k)

∑
i,ki=k

[
1

k

∑
j∈Γi

kj

]
, (2.7)

where Γ(i) denotes the set of neighbors of i. Another common way to calculate

the assortativity is to use the Pearson correlation coefficient between degrees of

linked nodes:

r =
〈kikj〉 − 〈ki〉〈kj〉√

〈k2
i 〉 − 〈ki〉2

√
〈k2
j 〉 − 〈kj〉2

. (2.8)

If the value of the coefficient is positive, we find ourselves in the situation of an

assortative mixing, meaning that vertices with large degrees have a greater probability

to connect to similar nodes with a large degree. In general, social networks are

mostly assortative, while technological networks are disassortative. However, for

spatial networks, the spatial constraints usually imply a flat function knn(k).

Centrality measures

In network theory, we can find several measures of centrality that try to highlight

the importance of nodes or edges based on some features.

Here, we will explain only some of them, useful for the explanation of the analysis

that will follow in chapter 4.

Betweenness centrality

Betweenness centrality highlights important nodes which work as bridges, using the

number of shortest paths passing through each of those nodes. In a way, it measures

the traffic or flow through a node/link, if all nodes communicate to all others via

the shortest paths. Formally, betweenness centrality is the fraction of shortest paths

going through node/link. In the case of multiple shortest paths, it is divided by

multiplicity. This measure of centrality is very effective for spatial networks and it is

probably the most significant and largely used, even though it is hard to compute

for large networks.
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Closeness centrality

Closeness centrality highlights important nodes as those close to each other. The

closeness of one node to all the others is computed as follows

Cc(i) =
1

〈li〉
=

N − 1∑
j 6=i dij

, (2.9)

where dij is the length of shortest path between i and j, i.e., their distance; 〈li〉 is

the avg distance from i to others and Cc(i) is the inverse of the avg distance. This

centrality measure does not directly work for networks with disconnected components

where for some pairs dij =∞.

Degree centrality

Degree centrality, which is defined as the number of links incident upon a node, is

the first one invented and probably the simplest one. In case of directed networks, we

usually define two separate measures of degree centrality, in-degree and out-degree.

Accordingly, in-degree is a count of the number of links directed to the node and

out-degree is the number of links that the node directs to others.

Eigenvector centrality

Eigenvector centrality defines important nodes those which are connected to other

important nodes. It is a measure of the influence of a node in a network. It assigns

relative scores to all nodes in the network based on the concept that connections to

high-scoring nodes contribute more to the score of the node in question than equal

connections to low-scoring nodes.

2.2 Public transports as networks

In this thesis we analyse public transport networks of 27 cities around the world.

Together with airline networks, cargo ships networks, road networks, they belong to a

more general category of the so-called spatial networks. This section first introduces

general notions about spatial networks, then briefly describe existing Transport

Network topologies and their representation. Finally, we overview a set of related

works and references from the literature.
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2.2.1 Spatial networks

In this section we describe some key features of spatial networks, taking as reference

the paper [4], that can be considered as a very complete and thorough description of

spacial networks in multiple application domains, as well as the data structures and

algorithms adopted to solve the related problems.

Spatial networks are networks for which the nodes are located in a space equipped

with a metric, usually the Euclidean distance, for the case of a two-dimensional

space. When dealing with spatial networks, there are some key aspects to take into

consideration. For example, in this type of networks the probability for an arbitrary

pair of nodes to be connected by an edge typically decreases with their distance. In

the case of infrastructure networks, e.g. power grids, this means also that the network

is planar 1. The latter assumption, however, is not always true, since the links might

not be necessarily embedded in space, like for the airline passenger networks. Another

aspect to consider is, as just mentioned, how the network is embedded in space. Even

though some networks do not seem to be directly embedded in space, they might still

be considered as spatial. For instance, for social networks the space factor comes up

when talking about link probability, which decreases with the distance between the

nodes. It might be interesting to apply a Voronoi tessellation to a spatial network.

It is a way of dividing space into a number of regions, that can provide a natural

representation model to which one can compare a real world network. Topology is

a last aspect to consider, as another important way to characterize networks, by

examining the nature, disposition and relation of nodes and edges.

Let’s review some empirical results found in [4]. The distribution of degree P(k)

is usually a quantity of interest, as it can display some heterogeneity, such as the

ones observed in scale-free networks (see for example [5]). In addition, the authors of

[5] also observed in some types of networks, such as airline networks or the Internet,

node degrees are very heterogeneous. However, when physical constraints are strong

or when the cost associated with the creation of new links is large, a cut-off appears

in the degree distribution [6], and in some cases the distribution can be very peaked.

This is the case for the road network and more generally for of planar networks, for

which the degree distribution P(k) is of little interest.

1A planar graph is a graph that can be drawn in the plane in such a way that edges do not

intersect.
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2.2.2 Transport Network topologies

When focusing on transport networks, as a specific instance of spatial networks, routes

are an important component of the network topology. A route is an intermediate

notion between edges and paths: a route is the path serviced by a given mean of

transport. The available literature on transportation systems proposes two major

strategies to represent routes, based on the notions of L-space and P-space [7, 8].

The L-space topology connects nodes if they are consecutive stops on a given route.

The degree in L-space is then the number of different nodes one can reach within

one segment, and the path length represents the number of stops. In the P-space,

two nodes are connected if there is at least one route between them, so the degree of

a node is the number of nodes that can be reached, either directly or indirectly, on

that route. In P-space, a path length represents the number of connections/transfers

needed to go from one node to another.

Although in this thesis we analyse PTNs based on the L-space topology, we here

briefly list the topology classification made in paper [9].

L-space

This type of graph topology, sometimes referred also as space L, represents each

station by a node, a link between nodes indicates that there is at least one route

that services the two corresponding stations consecutively. In addition, no multiple

links are allowed, so just one edge will connect two nodes, even though they were

directly connected on multiple routes.

P-space

The P-space graph representation has proven particularly useful in the analysis of

PTNs. Here, the nodes are stations, like for the L-space, but they are linked if they

are serviced by at least one common route. In this way the neighbours of a P-space

node are all stations that can be reached without changing means of transport and

each route gives rise to a complete P-subgraph.

B-space

A somewhat different concept is that of a bipartite graph which has proven useful in

the analysis of cooperation networks. In this representation, which is called B-space,
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both routes and stations are represented by nodes. Each route node is linked to all

station nodes that it services. No direct links between nodes of the same type occur.

C-space

The complementary projection of the B-space graph to route nodes leads to the

C-space graph of route nodes, where any two route nodes are neighbors if they share

a common station.

2.2.3 Related works

In the last two decades, researchers around the world started analysing PTNs as

complex network systems, based on the observation that data analysis, based on

the complex network theory, could be a key step in planning, decision making as

well as simple performance evaluation of transport networks. This section presents

an overview of the related works that we studied, as a preliminary step, before

proceeding with the analysis of our dataset.

Chen et al. [10] investigated the bus transportation networks of four major cities

in China (Hangzhou, Nanjing, Beijing and Shanghai). They showed that both the

degree and the number of bus routes a stop joins distributions follow a power-law

with exponential decay. On the other hand, the distributions of the number of stops

in a bus route follow asymmetric, unimodal functions.

Sen et al. [7] studied the Indian railway network and discovered small-world

properties and exponential degree distribution. In particular, the study of the mean

distance of the network showed its goodness to measure the connectivity of the

network. Indeed, the observation of its logarithmic variation with the number of

nodes together with a high value of the clustering coefficient led to the discovery of

small-world properties of the networks.

Sienkiewicz and Holyst [11] collected and analyzed the data of the PTNs of

22 cities in Poland and found that the degree distributions in L-space follow a

power-law, while in P-space they are exponential. In addition, small-world behavior

was observed in both topologies, but it was much more pronounced in P-space, where

the hierarchical structure of the network was also deduced from the behavior of

clustering coefficient.

Ferber et al. [9] studied the PTNs of 14 major cities around the world. They

analysed different topologies and found that the networks have strongly correlated
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small-world structures and that the degree distributions follow a power-law with

various exponents giving strong evidence of correlations within these networks.

However, for the properties of degree distributions as well as for features of these

networks, such as clustering, assortativity and others they found considerable diversity

in their expression. Lastly, they also proposed an evolutionary model of growth of

PTNs.

Hàznagy et al. [12] analyzed the urban public transportation systems of 5

Hungarian cities, considering directed and weighted links, where the weights represent

the capacities of the vehicles (bus, tram, trolleybus) in the morning peak hours. They

discovered that, indipendently of the morphology of the cities, the PTNs have a few

high-degree nodes where many lines cross, but most of the nodes have a low degree

resulting in a fat-tailed degree distributions. They highlighted both similarities and

differences between the cities and managed to identify the most sensitive routes and

stations of the networks.

Xu et al. [13] analysed the bus-transport networks (BTN) of three cities in

China. They explored scaling laws and correlations that may govern intrinsic features

of the analysed networks. They observed distributions of degree, strength and weight

in a weighted representation of the networks. In accordance with other researches,

they found that degree distribution and distribution for the number of lines that

service each station obey power laws while the cumulative degree distribution in

P-space follows an exponential distribution. Moreover, small-world behavior was

observed in both topologies, but it was stronger in the P-space topology. Lastly,

they observed a heavy tailed power law for the weight distribution and a linear

dependence between the strength and degree.

Zhang et al. [14] analysed the bus transport network of Beijing using both L

and P-space topologies. In the L-space analysis they discovered that the network is

scale-free, is assortative and has 46 communities. With the P-space topology, they

investigated the property of transfer, discovering an average transfer time of 1.88

and that two pair nodes is reachable within 4 transfers.

Shanmukhappa et al. [15] studied the topological behavior of the bus transport

network structure of three cities: Hong Kong, London and Bengaluru. In 2017, they

proposed a novel approach called supernode graph structuring for modelling BTNs to

combine geographically closely associated nodes based on a specific criterion, resulting

in a more compact representation. It is observed that the supernode concept has

significant advantage in analyzing the inherent topological behavior. For instance, the

scale-free and small-world behavior becomes evident with supernode representation

as compared to conventional or regular graph representation for the Hong Kong
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network. Furthermore, they created weighted networks, assigning node weights based

on the POI (Point of Interest) density and the population distribution in the city over

various localized zones in order to obtain a better estimate on the dynamic behavior

of the network. Lastly, they evaluated topological efficiency through end-to-end

travel delays, finding out that Hong Kong is the most efficient among the three.

The same authors, together with Wu and Dong, [16] published another article

which describes how they modeled the public transport network structure of the

London city, using the “supernode” (set of geographically closely associated nodes)

graph structure representation. The bus transport and the metro transport network

structures are analyzed by treating them as independent mono-layer or multi-layer

network structures, using a method of spatial amalgamation to integrate the two

layers. Lastly, a node weight analysis method is presented and it is noticed that

the node weights differ between the mono-layer and multi-layer analyses, which

indicates that neglecting the interaction between the transport layers may bias our

understanding of the overall network behavior considering the real-world usage of

the network.

Another interesting work by Shanmukhappa et al. [17] brings together the

recent development in the field of public transport analysis from a graph theoretic

perspective with a focus toward bus transport network (BTN) and metro transport

network (MTN). They found that the notion of supernodes offers practical and more

insightful perspective to understanding the actual network behavior, which is difficult

to be captured by conventional graph representations. Furthermore, adding static

weights to nodes and edges has been found to be effective in capturing the significance

of nodes and links in PTNs. In addition, they suggested that merely representing

the PTN structure as a graph and analyzing various network parameters may not

lead to practically useful conclusions because the purpose of the public transport

systems is to meet travel needs of the community being served, which requires the

consideration of more practical network parameters. To summarize, this work offers

a recent collection of the different techniques, topologies and parameters used to

analysed PTNs and their advantages and differences.

Soh et al. [18] analysed the weighted networks of travel routes on the Singapore

rail and bus transportation systems, using both topological and dynamical analysis.

The results tell that the second approach adds information to the topological analysis,

giving a richer view of complex weighted networks. In addition, inspection of the

weighted eigenvector centralities highlighted a significant difference in traffic flows for

both networks during weekdays and weekends, suggesting the importance of adding

a temporal perspective missing from many previous studies.
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Zhang et al. [19] analysed the Shanghai subway network, studying its topolog-

ical characteristics and functional properties in order to assess the reliability and

robustness. In particular, the fraction of removed nodes of the network is discussed

and compared against that for a random network, and the critical threshold of

this fraction is obtained. Moreover, they proposed two novel parameters called

the functionality loss and connectivity of subway lines to measure the transport

functionality and the connectivity of subway lines. The results obtained indicate

that the subway network is robust against random attacks but fragile for malicious

attacks and that the highest betweenness node-based attacks can cause the most

serious damage to subway networks among the different attack protocols.

Chatterjee et al. [20] modeled the bus networks of six major Indian cities

as graphs in L-space, and evaluate their various statistical properties. Although

they observed the common feature of small-world property throughout the dataset,

their analysis reveals different network topologies due to significant variation in the

degree-distribution patterns in the networks. They also observed that these networks,

although robust and resilient to random attacks, are particularly degree-sensitive.
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Chapter 3

Data structure

In this chapter we describe a set of data representing the public transport networks

of 27 cities selected from different continents and countries. Section 3.1 first describes

the cities and the information and formats available for each one. Then, it deals

with the types of transport networks, offering some very basic statistics on their

distribution in the dataset. Afterwards, it offers a brief review of the spatial filtering

performed to the raw data, even though it is not part of this work. Lastly, it

presents the process of collecting city features data: area and population. Section 3.2

introduces the graph-based representation of PTNs. We briefly describe the choices

and process followed to create and plot the networks.

3.1 Data

This section introduces the set of data used. It briefly describes the which cities

are present and the data available for each one. We then introduce the Public

Transportation Networks (PTNs) considered presenting the types available and how

the information was spatially filtered. In addition, the section offers some very basic

statistics on the dataset, e.g., on the differentiation of type of transport and how

many each city has. Finally, we briefly discuss how we gathered data on population

and area and their possible relationship with transportation data and analysis.

3.1.1 Subjects

In this thesis, we worked on a dataset of 27 cities from different continents and

countries, created by a research group on complex networks at Aalto University,
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Espoo [21]. The dataset, thoughrouly explained in [22], includes cities from different

areas of the world, distributed among three continents as follows:

• Europe (19): Czech Republic (1), Finland (3), France (6), Germany (1), Greece

(1), Ireland (2), Italy (3), Luxembourg (1), Portugal (1)

• Oceania (5): Australia (5)

• America (3): Canada (1), Chile (1), USA (1)

Data were collected with the aim of covering cities of different sizes, located in

different continents, and representing various geographical characteristics, such as

location, area, population, landscape, etc. Figure 3.1 gives a high level representation

of the geographical distribution of cities: though it is clear that the majority of cities

are in Europe, the set includes instances from Australia, North and South America.

It is obvious that an expansion to cites in Asia and Africa would improve the global

coverage of the dataset.

For each city, the dataset contains information about its Public Transport

Networks (PTNs) in multiple files and formats, that include:

• network nodes list

• network edge lists

• temporal network event lists

• SQLite databases

• GeoJSON files

• GTFS data format

The dataset is obviously far from complete and fully representative, as the final

selection of cities was heavily affected by the availability of data, together with the

licensing terms for the source data. Just for further clarity, the cities reported in [22]

do not include Athens and Antofagasta for licensing problems, but they are included

in this thesis. In spite of the mentioned limitations, we believe the set of data is an

interesting starting point for a modern approach to data analysis of urban PTNs, as

the techniques described in this thesis could be easily applied and expanded to a

larger dataset, when available.
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Figure 3.1: Map of database cities around the world

3.1.2 Types of PTNs

The dataset includes eight different types of means of transport, that can be roughly

grouped in:

• most common and widely available: bus, tram, subway and railway

• occasionally found, such as ferries, available in some of the coastal cities or

cities with big rivers

• rarely found, as tied to very peculiar characteristics of cities: cablecar, gondola,

and funicular.

As shown in Figure 3.2a, we can see that all of the cities have bus transportation

networks. Tram is the other broadly present type of transport, available in over 50%

of the cities. Among the remaining types, we find the rail with 44%, subway and

ferry both with 33% and lastly cabelcar with just 4%.

Besides adapting to geographical characteristics of cities, we can also rank and

evaluate urban PTNs of a city, based on diversity, i.e., number of available different

PTNs. Figure 3.2b shows that the only three cities having five different types of

transportation are Berlin, Helsinki and Prague (only one with cablecar in the whole

dataset). It is also interesting to notice that these are not the biggest cities (in

terms of area) in the dataset. Furthermore, we can observe that some of the biggest

ones, like Melbourne and Sydney, have only three and four distinct types of PTNs

respectively. In light of these simple observation, we can come to a counterintuitive
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conclusion: the correlation between the area of a city and the number of its different

PTNs is weak.

(a)
(b)

Figure 3.2: Statistics on types of transportation in the dataset

3.1.3 Spatial information

Let’s now move to the concept of urban area and urban PTN. Cities are usually

identified in terms of municipality, urban and/or metropolitan areas, where the

terms, though widespread and universally understood, can have different meanings

and ties to political, administrative and social environments. Our work focuses

on the intermediate notion of urban area, that is not always easily identified in

publicly available data on transportation networks. Our dataset is the result of

a preprocessing step, that was not performed in this thesis, but is worth being

mentioned and understood, before starting the description of our main contributions.

Original data on urban PTNs often includes transportation stops and links from

metropolitan and regional areas, that are almost impossible to filter out, unless

with a heavy a difficult manual work, requiring additional area-specific data. So an

empirical filter was adopted, based on a geographical and topological definition of

the urban area of a given city, and of a stop, that could include a cluster of nearby

an very close physical stops.

Firstly, the stops that are less than one meter apart were aggregated in one.

Then, for each city they defined a central point, usually corresponding to the central

railway station, and a radius. Doing so, they managed to define an area for each

city. All the stops inside were kept, the links between in and out stops were lost
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and, if the trip returned inside the delimited area, it was split in two parts in order

to differentiate, but still keep the same trip identification. Lastly, they recorded

the information about stops latitude and longitude, so they can be geographically

plotted and it is possible to compute distances between them. In Figure 3.3, there is

a visual example on how the spatial filtering was made.

Figure 3.3: Spatial filtering from [22]

3.1.4 Area and population

One of the goals of this thesis is to discover possible correlations between city features

and their PTNs, and if existing, how to characterize them. In order to do so, we

started by gathering information about area and population, chosen as features to

be analysed.

In the spatial filtering of the preprocessing, for each city a radius R was defined.

It served the purpose of deciding the limit for each network and so it was calculated

approximately and not to define a precise area for the PTNs. Moreover, the infor-

mation about the radius did not come together with one of the population inside

that designated area. For these reasons, we decided to collect our own information

about both measure through several public sources. Given the non uniformity of

data (population is a very dynamic statistic, urban area in not always well defined)

we collected data and we compared them among different web sources, in order to

come up with a unique number for area and population.

Concerning the area, we applied a manual approach. We consulted two main

sources, [23] and [2], and compared the images of the areas represented in the [23]

website with those of the actual PTN network for each city. This choice was made

because there is not a unique definition of city area and the boundaries change based

on the context. In our research, we found three different definition of area:
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• municipality

• urban

• metro/metropolitan.

We found that from the first to the last definition we have increasing borders

considered. In particular the metropolitan area usually includes a wide surface,

which includes most of adjacent and close towns. Given the choice of the network

boundaries, defined in the previous paragraph, we decided to visually compared the

areas and take the more accurate one, even though it might not be perfectly fitted

for the network.

As for the population, in addition to the previously mentioned websites, we

compared the results also from [24] and [25] websites.

In both cases, the information was not easily collected and verified. The major

problems were related to different concepts of area, the year of reference of the

information and the lack of some recent or accurate data. We overcome these

obstacles by manually validating those data mostly through comparison of different

sources and visual comparison of maps. For example, Adelaide was one of the tricky

cases. The German website [23] suggests an area of 837 km2 (together with a map

representation) and a population in 2016 of 1165639 inhabitants. However, Wikipedia

[2] presents 1295 km2 and a population in 2010 of 1203873 inhabitants. Since the first

information is more recent and has a visual feedback on the actual area considered,

that is quite close to the one of the network, we chose to take this one into account

for our analysis. Another example of contrasting results is Rome. In this case, [23]

gave 424 km2 and [2] 1287. We did an additional verification through Google Maps,

taking an approximate radius on the map (given the round shape of the city), that

led us to confirm the first number found. On the other hand, we had cases where

the information were quite similar. Helsinki has an area of 683 km2 in the website

[23] and of 770 km2 in [2]. Another example is Detroit with a surface of 359 km2 in

[23] and 370 km2 in [2]. In the end, we tried to get the most recent and reasonable

data with the available resources, adopting a scientific approach.

3.2 Network creation

This section first describes the representation of transportation networks as un-

weighted undirected graphs, then discusses how to plot a given network, in order to

provide a meaningful visualization of its main characteristics.
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3.2.1 Unweighted and undirected network

During the development of our work, we based our static analysis tasks on a simple

graph representation. For each city, we created an unweighted and undirected graph

with the information about all the types of transportation combined. In particular,

we created a network in a L-space topology. This means that each node represents a

stop of a given mean of transportation. Two graph nodes (two stops) are connected

by an edge if they are consecutive stops on a given route. The degree of a node

in L-space is then the number of different nodes that one can reach within one

segment (a graph edge). Given two nodes, the related shortest path length represents

the number of intermediate stops1 necessary for mutual reachability. We used the

information inside network nodes.csv for the nodes and those in network combined.csv

for the edges.

It is important to mention that during the preprocessing, all stops less than

one meter apart were collapsed together and given a single id. Furthermore, since

an edge can be common to several routes, the creation of an undirected graph with

networkx python package allows to remove duplicates and it adds to the network

just the first copy.

3.2.2 Visualizing the network

Once the network has been loaded and internally represented as a graph, its visual-

ization is an important step, in order to get a first, though very high level view of

its shape, density and variability. At the very beginning, we wanted to plot it over

a map, but this turned out to be a tricky task. We explored options for a python

implementation based on a package called Basemap, which requires the support

of Anaconda. In our specific case, though adopting a Linux environment (usually

considered as the most flexible/favourable one) with all the required setups, we failed

in plotting the network over a map.

However, we managed to obtain an (almost) equivalent picture in two different

ways:

• through one of the functions available in the gtfspy Python package [26], created

by the research group which collected the data [21]

• with the functions available in networkx and matplotlib Python packages

1Path lengths in unweighted graph are measured in terms of number of edges, so the number of

intermediate stops is actually given by the number of edges minus 1.
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An example of the two different results are showed in Figure 3.4a and 3.4b,

respectively. The solution with the gtfspy package (a) shows a version of the network

with the map underneath and visible red nodes, while the other one (b) is the graph

visualization without the map and with not nodes style. The first is useful in terms

of representation of the network over a map and because it shows the density of

nodes in the network. For example we can see the difference between the Helsinki

network, where we cannot distinguish the nodes, and the Kuopio one 3.4c, where it

is clear the the number of nodes is definitely smaller and the percentage of red in

the Figure is reduced. However, this type of representation is worthless in terms of

possibility to show properties of the network, since it does not allow modification

to the visualization. For example, when we analyse the centrality measures, it is

beneficial to highlight on the map the important nodes through different colours and

sizes. On the other hand, the second visualization allows these kinds of manipulation

and visualization of the network, but it loses the possibility of showing the map

beneath, even though it keeps the coordinates between the stops. For these reasons,

it is important to take both representation into account.

(a) (b)

(c) (d)

Figure 3.4: Different visualization of Helsinki and Kuopio PTNs
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Chapter 4

Analysis methods and results

This chapter represents the core of this thesis, as it describes the analysis tasks done

on the set of data described in the previous chapter (3). The following chapter goes

more into details on the static analysis performed on the networks.

We describe a set of data analysis steps that we performed, starting form basic

network measures (4.1) such as size, density, diameter, and clustering coefficient.

These provide a very elementary and high-level information about the network

properties of the PTNs in the datatset.

Going further, we analyse some other significant measures (4.2) helpful to

understand the networks dynamic and topology. In particular, we chose to present

discussions about assortativity, calculated as Pearson coefficient, average path length,

average degree and degree distributions. As a matter of fact, this is a well known

set of graph-based measures commonly used for the analysis of systems modeled as

complex networks. We here discuss their meaning for the PTNs under analysis, and

we use them for local characterizations of single cities, as well as for comparisons

and global statistics.

Afterwards, we consider centrality measures (4.3), specifically four of the available

ones: betweenness, closeness, degree and eigenvector. These measures help finding

out hubs, if present, and better define the distribution of stations thorughout the

PTNs.

We then present a distance analysis (4.4), which deals with pairwise node

distances through breadth first search/visit of the graph, highlighting similarities

and differences between cumulative distances of the stations and the Euclidean one.

In addition, we present an exploration of the graphs starting from the geographical

central node, which helps define reachability and discover the so-called peripheral
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nodes. In particular, the latter can sometimes give information about the shape of

the city, not a feature under analysis in this work, but might be interesting for future

projects. Lastly, we present and comment the information about PTNs connected

components, which are a crucial factor to take into account for this type of distance

analysis.

The last section describes an analysis of the distribution of vehicle frequencies

throughout a typical day (4.5). This work aims at describing more in depth the

systems analysed and finding possible correlations between cities and their population

to overall compare PTNs. In particular, we approach this analysis dividing the data

for type of transport in order to be able to study the behaviour of each one separately.

In general, the dataset analysed in this work is bigger and more heterogeneous

than most of the previously studied, and we agreed on the importance of representing

our results at different levels:

• measure + city level (e.g., frequency of bus vehicles for a specific city)

• city level (e.g., betweenness centrality for a specific city)

• measure level among all cities (e.g., frequency of tram vehicles among all cities)

Depending on the measure analysed, some changes might be done to this model in

order to better represent both individual and collective information.

4.1 Basic measures

As a preliminary part of the network analysis, we started by computing some graph-

based measurements, that provide useful hints for a better understanding of the

dataset. According to most previous works on PTNs, mentioned in chapter 2, we

chose the following measures: number of nodes, number of edges, density, diameter

and average clustering coefficient.

The numbers of nodes and edges, as well as the density of the graph, provide a

coarse measure of the PTN size and overall connectivity. A more detailed insight on

connectivity can be obtained, as described later, by analysing node degrees and degree

distribution statistics. The network diameter provides a global measure of mutual

reachability, in terms of the longest shortest path between any two nodes. Finally,

the clustering coefficient addresses another aspect of connectivity, by analysing the

possibility to group network nodes in sets of closely related nodes.
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For each city, we gathered all the previously mentioned measures. We plot them

in Figure 4.1a, in order to provide a first, though rough, comparison among all PTNs

on our dataset.

(a)

(b)

Figure 4.1: Basic network measures. (a) Five subplots representing: number of nodes,

number of edges, density, diameter, average clustering coefficient. (b) Density of

nodes per area. In both plots the cities are in ascending order of number of nodes.
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4.1.1 Nodes, edges, and density

The two plots on number of nodes and edges show a strong similarity: the numbers

of nodes range from a minimum of about 500 to 20 thousands, the numbers of edges

are roughly proportional to nodes, by a factor of little more than 1. This result

suggests these are very sparse networks, as confirmed by the low density ratio.

Overall, the density Figure can be a bit misleading, due to the quadratic

denominator

ρ =
2E

N(N − 1)
, (4.1)

referring to the number of possible edges in a graph. As we can see from the plot

(fig. 4.1a), given the proportionality edges to nodes, this quantity produces higher

density values for smaller PTNs.

In order to better evaluate the concept of density in the analysed PTNs, we

plotted in Figure 4.1b another measure, which expresses the node density per unit

area. This method provides an indication of the distribution of nodes through the

overall city area, feature of interest in this work.

4.1.2 Diameter

Concerning the diameter, measured in number of links (hops), it approximately

follows the curves of nodes and edges, which means that the bigger the network,

the longer the diameter, with exceptions, that are probably due to the shape and

geographic characteristics of cities. Consider for instance Sydney and Melbourne,

both of them in Australia, ranked among the top in terms of number of nodes and

edges: Melbourne has the highest diameter (more than 200), whereas Sydney has

an average value (about 100). When one looks at the shape of the two cities, it

is easy to notice that Melbourne partly wraps around the Port Phillip Bay (which

motivates the presence of a long shortest path), whereas Sidney has a more compact

shape. Another city that pops up for its high diameter is Detroit, probably due to

its polygonal shape and the orthogonal distribution of its streets.

4.1.3 Average clustering coefficient

Finally, the average clustering coefficient is another measure of local connectivity,

partially orthogonal to other types of measures. It is partly related to the graph

density, since a higher number of edges could lead to higher connectivity and, when
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computed over a single node, it can be interpreted as the density of its neighbourhood.

The average clustering coefficient, defined as

〈c〉 =
1

N

∑
i∈G

ci, (4.2)

with ci presented in 2.5, tends to give higher scores to PTNs with better local

connectivity, and a certain redundancy in available routes/paths: see for instance

Berlin, Luxembourg, Antofagasta and Venice. As we can see from Figure 4.1a, the

maximum value is 0.12 of Berlin, which means that all the PTNs have quite low

values of average clustering coefficient. This result is partially in contrast to the

normal behaviour of spatial networks [4], where the fact that closer nodes have a

larger probability to be connected, usually leads to a large clustering coefficient.

However, as highlighted also in [11], we can see how for bus, subway and rail

networks the outcome is quite different, showing low values of 〈c〉. In our case,

the range is [0.0033-0.1240], though definitely higher than a CER ∼ 10−6 − 10−3

corresponding to a random ER graph with same parameters as the PNT one. In

addition, the ratio 〈C〉/CER, which is also explicitly considered in the previous work

[9], is consistently higher than 1 and presents a wide range [8.0-15647.6].

In general, having considered just the L-space topology, the density of the graph

is quite low [10−5-10−3] and it is reasonable that the clustering coefficient does not

reach high values. This conclusion is in line with previous works which have analysed

and compared both L-space and P-space PTNs topology.

4.1.4 Outliers

Overall, we ave already observed that, though the plots in the Figure show a certain

uniformity, is easy to notice ”outliers” in each of the plots.

Let’s consider for instance the density plot in fig. 4.1b, that shows the density

of nodes vs the area of the city. It is clear from Figure that Paris is the most dense

one. It’s concentration of nodes it’s definitely higher than all other cities. This is

probably because, the area considered for the network is just around 100 km2 with

more than 10k nodes. The area is quite small, compared to other big cities. Even if

we could also consider its geography, and maybe the availability of an old and well

established ”metro” and bus network, we could not give a sure answer on why this

happens, apart from the logical fact that Paris is one of the biggest cities in Europe.

Other examples are Rennes and Luxembourg City. The first one has a density

of node per area of 27.92, which is the second highest value, with a very high number
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of nodes over the small area of just 50.4 km2. The latter presents similar results,

with a ratio of 26.54 and an area of 50.1 km2. They both have a very round compact

shape whereas Kuopio, a comparable city in terms of area (47.9 km2) with a ratio of

11.46, less than half of the others, presents a elongated shape. On the other hand,

Rennes is definitely the most populated of the three (349K) against the 119K and

118K of Luxembourg City and Kuopio, respectively.

As for the average clustering coefficient shown in Figure 4.1a, we find that

Luxembourg City, again, deviates from the average trend with its 0.1 value of 〈c〉. In

addition we find Antofagasta (0.09), Venice (0.06) and Berlin (0.12). The latter has

a circular shape with a inland position, pretty similar to the one of Luxembourg City,

even though they do not share any other similarities in terms of area, population or

network measures. On the other hand, we have Antofagasta and Venice, which are

both on the sea and have an elongated shape. However, also here, the two cities do

not seem to share other features.

Lastly, if we look at the density plot in Figure 4.1a, there are two cities that

really differ from all the others, which are Kuopio and Antofagasta. They are the

only two PTNs in the dataset that have less than a thousand nodes and edges. They

share a similar shape, narrow and elongated, and they both present only a bus

transport network.

4.1.5 Correlating different measures

(a) (b)

Figure 4.2: Basic network measures correlation. (a) Area against average clustering

coefficient with names for cities that have x or y values higher that a third of the

respective maximum. (b) Number of edges against number of nodes. The city names

showed have area higher than half of the maximum one.

As the previously described plots show one measure at a time, we also decided

to represent the potential correlation between different measures by means of scatter
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plots. In Figure 4.2a we compare area (y-axis) vs. clustering coefficient (x-axis):

cities are represented through the dots of the scatter plots and coloured based on

the continent they belong to.

In addition to single-measure plots against area, we also tried to correlate

three different measures together in Figure 4.2b. For each city, the plot shows

the correlation between number of nodes and edges, together with the information

about the area, represented as the dimension of the dot. The first two measures are

directly proportional, as expected. Moreover, we can see how the European cities

are concentrated in the lower left side of the plot, whereas the biggest ones, mostly

Australian, are in the middle-higher part of it. This means that also the area is quite

correlated with the number of nodes and edges of the networks.

Of course, there are few exceptions to this trend, such as Paris, previously

mentioned, which has a small area compared to the number of its nodes and edges,

and Detroit, which, on the other hand, shows the opposite behaviour.

4.2 Additional measures

Next, we decided to expand the range of measures analysed in order to characterise

some basic network properties such as small-world and scale free behaviour.

In accordance with some previous works analysed ([4], [10], [7], [11], [18], [14]),

we added a few measures to those already collected. A summary of all the measures

can be found in Figure 4.3. As one can see, the additional data include average

degree 〈k〉, average assortativity 〈r〉 and average shortest path 〈l〉.

4.2.1 Assortativity

The assortativity, r, was calculated through the Pearson correlation coefficient (2.8).

In general, positive values of r indicate a correlation between nodes of similar degree,

while negative values indicate relationships between nodes of different degree. For

all the cities analysed, the coefficient presents low positive values [0.09-0.42], with

extreme values related to Grenoble and Kuopio, respectively, and 75% of the values

below 0.26. This means that the networks are slightly assortative, given their positive

values, but they do not show a strong similarity of connections with respect to the

node degree. These results are in line with other related works, such as [11], [9], [13],

[14], always concerning the L-space topology analysis.
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Figure 4.3: Tableof network measures

4.2.2 Average path length

The average path length, 〈l〉, represents the average number of stops needed in order

to go from one random stop to another. This value is especially important because

it can help detect small-world properties. As a matter of fact, if 〈l〉 ∼ lnN , then we

can say that the network has small-world behaviour.

In the current analysis, we find that the values range between 10.58 of Kuopio

and 75.29 of Melbourne. It is important to remind the reader that these values are

calculated on unweighted and undirected graphs, where all the different types of

transport networks are put together. Again, the 75% of the data are below 33.61,

so the majority of the distribution is concentrated on low values. The plot of 〈l〉
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vs. lnN (4.4), though showing some linear dependence (slope of 0.038), cannot be

considered as a proportional relationship (the interpolation line does not cross the

origin). This consideration together with the small values of 〈c〉 (4.3) do not support

a small-world behaviour of the networks. All in all, this is reasonable and in line

with the results found in other papers ([11], [9], [13], [14], [17]). In particular, this

might depend on the topology considered, which in this case is the L-space one.

Figure 4.4: 〈l〉 ∼ lnN for small world analysis

4.2.3 Average degree

The average degree, 〈k〉, is the average number of edges per node in the graph, which

in an undirected and unweighted network follows the simple formula

〈k〉 =
2 ∗ E
N

. (4.3)

Analysing this dataset, we found that this values range from a minimum of 2.09

(Detroit) to a maximum of 2.96 (Antofagasta). We analysed possible correlations

between the average degree of a city and its area without finding any significant

pattern. The plots created for this specific analysis can be found in the GitHub

repository [27] in the directory results/all/plots/stats/ under self-explaining file

names.

In general, the fact that all 〈k〉 are above 2.0 is in line with the expectations.

This is because in a PTN most of the nodes (stations) are usually connected with the

previous and the next one. There are, of course, cases of the starting and terminal

stations, but these are balanced out by those which are connected with more that
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two other nodes. It is also important to highlight that, with a mean of 2.45, 75% of

the 〈k〉 are below 2.55. This means that three quarters of the values are concentrated

in the first half of the distribution and, therefore, very few cities present an high

average degree. It is interesting to notice that these cities (Antofagasta, Berlin,

Luxembourg and Venice) all have a different number of types of transport: 1, 5, 2

and 3 respectively, as it can be seen in 3.2b.

4.2.4 Degree distribution

The degree distribution, P(k), is often analysed to determine the model of the

network. As presented in the work of Albert and Barabási, [28], there are three main

class of models: random graphs, a variant of the Erdős-Rényi model, small-world

models and scale-free ones. In particular, the latter focuses on network dynamics

and tries to explain the sources of the power-law tails and other non-Poisson degree

distributions that characterize a lot of real systems.

The degrees range from a minimum of 1, shared by all the cities, to a maximum

of 28, shown in the city of Brisbane, Australia. In particular, more than 75% of the

cities have a maximum degree equal or below 16, which is very close to the half of 28.

The only cities above this threshold are Adelaide (21), Berlin (21), Brisbane (28),

Luxembourg City (22), Sydney (20) and Venice (19), for a total of 6 cities over the

27 analysed. This means that most of the distributions are concentrated in the lower

half of the range of values considered.

As we can see from fig. 4.5, we analysed the degree distributions using log-log

plots, better solutions for fitting than semi-log ones, which we tried but are not

presented in the final work. Points with k = 1 are peculiar since they represent

routes’ starts and ends. On the contrary, the rest of the distributions seems to show

power law trend, represented by the formula

P (k) ∼ k−γ. (4.4)

In order to have a better understanding of the distributions, we analysed both

individual and collective behaviour, fitting city level curves and the average one in

the summary plot. More precisely, the fitting line shown in Figure 4.5 is obtained

averaging all the probability values for each k and interpolating the resulting average

distribution. Observed characteristic exponents γ are between 3.57 and 5.87, with

more than 25% of the cities above 4.34. The γ value obtained from the average

fitting process is 4.94. These results are quite far from the value γ = 3, characteristic

of the Barabási-Albert model of evolving networks with preferential attachment [28].
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As explained in [11], one can suppose that a corresponding model for transport

network evolution should include several other effects. In fact, various models taking

into account the effects of fitness, attractiveness, accelerated growth and aging of

vertices [29], or deactivation of nodes [30, 31] lead to γ from a wide range of values

γ ∈ [2,∞). It is important to notice though, that the requirements for scale-freeness

comprehend both very high N and large range of k-values. PTNs and, more in

general, spatially constrained networks do not meet these requirements. Therefore,

they cannot be considered as scale-free networks, but they do have broad degree

distributions, that, for the range of k considered, are practically indistinguishable

from power-law distributions.

Lastly, another important aspect to point out is the number of nodes with k = 1,

which is definitely smaller that those with k = 2 (maximum probability reached for

all the distributions). This means that most of the stops are directly connected to

two others and that this is the typical behaviour. Moreover, we can see from Figure

4.5 that there are some nodes with degree higher than 10, which can be considered as

network hubs, even though they are so few compared to the total number of nodes.
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Figure 4.5: Degree distributions of all cities with colour based on their area in km2
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4.3 Centrality measures

In complex networks, the research of important nodes and edges is one of the key

steps in order to analyse a graph. There are several ways of defining the importance

of a network component. Usually, the centrality measures serve as a way to measure

the importance of a node, even though they can be applied to edges too. Importance

can be conceived in relation to a type of flow or transfer across the network. This

allows centralities to be classified by the type of flow they consider important [32].

Importance can alternatively be conceived as involvement in the cohesiveness of

the network. This allows centralities to be classified based on how they measure

cohesiveness [33]. For example, when dealing with nodes, one can quantify their

relevance measuring the number of connections, their role of bridge in the network,

their closeness to other nodes and other etc. In this thesis, we decided to concentrate

on the influence of nodes. In particular, we collected data on city level and plot

them both locally and globally. As previously mentioned in the introduction to this

chapter 4, we will present results and plots at different levels of detail. Among all

the possible measures, we chose to compute the following four:

• betweenness centrality

• closeness centrality

• degree centrality

• eigenvector centrality.

For each measure we present a small section with comments on the work and

results. In general, for each centrality, we offer two ways of visualisation: distribution

and network-like. In addition, for each city, we gathered the information about all

four distribution in one single plot. We tried to represent these information for all

the cities together. However, we determined that it was not both feasible and useful

to represent, since the plot would have been too crowded and difficult to interpret.

Therefore, we decided to plot all the distributions for one measure at a time for all

cities together, adding the information about area or population through the use of

colorbars.

We now introduce one measure at a time, sorted in descending order by level

of importance for the analysis of PTNs (betweenness is the most important). In

addition, throughout the section we offer a couple of comparison between measures.
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4.3.1 Betweenness centrality

The betweenness centrality of a vertex is determined by its ability to provide a path

between separated regions of the network[4]. It is defined by the quantity

g(i) =
∑
s 6=t

σst(i)

σst
, (4.5)

where σst is the number of shortest paths going from s to t and σst(i) is the number

of shortest paths going from s to t through the node i.

In previous works on PTNs [11, 9, 12, 15, 17, 4], betweenness centrality is

considered the most significant one. Its importance is underlined by the criterion

of computation, based on the number of shortest paths passing through each node.

This is significant when dealing with spatial networks, because of their construction

and topology. Its relevance is confirmed by our findings, that place betweenness and

closeness above the other two in those terms.

Figure 4.6: Betweenness centrality (g(i)) complementary cumulative distribution

with colormap based on the AREA of the cities.
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In Figure 4.6, we present the complementary cumulative distribution function

of all the cities together with the colour depending on the area of the city. It is

clear that the cities have similar curves, all following an exponential trend. The drop

for some cities for very high degrees it’s probably due to “statistical noise”, since

there are so few high-degree nodes. In addition, for each city, we created single plots

showing the 1-CDF and fit line together (available in the repository [27]), adding in

the legend the information about fitting parameters. These results are available for

all the cities in the Table4.8, where the λ column displays the exponential fitting

parameter for each distribution.

Due to the nature of the betweenness centrality, in accordance with some previous

works [11, 9], we analysed the correlation between the average g(k) with k. In Figure

4.7a, we can see this relationship for all the cities together. Again, the color is related

to the area of the city. There are some outliers in the bottom right part of the plot,

probably because there are few nodes with high degree, that have high values of

betweenness. Even with these outliers, we can see how most of the curves follow a

power law

〈g(k)〉 ∼ kη, (4.6)

where the fitting parameters are presented in the Table4.8. Comparing our results

to those of [11], we find that the trend follows in both studies a power low. However,

our fitting parameters do not show such a specific pattern as they do in the previous

work on Polish cities. They plotted η against N and found that η is getting closer

to 2 for large networks, with a general increasing trend between the two measures.

In our work, though, we did not find such strong correlation. Indeed, the two

measures are negatively correlated, with a Pearson coefficient of -0.52. Furthermore,

a scatter plot confirmed our hypothesis, not showing any particular trend. These

results are probably due to the different nature of the PTNs considered in this

thesis. The previous papers analysed 22 polish cities, which migh share more features

than our 27 cities from around the world. In addition, we only analysed area and

population feature, when one could introduce information about morphology and

cultural differencies, which may influence the city PTN.

For a more detailed visualization, in the repository [27], we provide single plots

of the correlation with the corresponding fitting line for each city. Not all the curves

are well fitted by a line. In particular, scanning the values of η (4.8) for all the cities,

we see that Sydney presents a value of -0.911. If we take a look at the specific plot,

we can see how the process of fitting the line is biased by a few outliers, also visible

in fig. 4.7a. To points with high values of degree (> 10) correspond very low values

of 〈g(k)〉.
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(a)

(b)

Figure 4.7: (a) Average betweenness centrality against degree. The colours and

markers depend on the area of each city. (b)Betweenness centrality vs closeness

centrality for the city of Helsinki.

51



Figure 4.8: Tableof betweenness centrality measures for node and degree correlation.

The second and fifth columns presents maximum results for g(i) and g(k), respectively.

Third and sixth columns show average values of node betweenness and degree

betweenness, whereas λ and η columns show fitting parameters.
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4.3.2 Closeness centrality

The closeness centrality is a measure of how close is a node, on average, to all other

nodes. The basic concept is that the more central a node is, the closer it is to all

the others. It is defined as the inverse of the sum of the length of the shortest paths

between the considered node and all others in the graph,

Cc(i) =
1∑
j dij

, (4.7)

where dij is the length of shortest path between i and j, i.e., their distance.

However, when talking about closeness, people usually consider its normalized

value, representing the average length of the shortest paths instead of their sum. The

latter, multiplied by N-1, is computed as presented in 2.9. In this work, we adopt

this last formula to compute the measure, because it allows to compare nodes of

graphs of different sizes. Even though the computation does not directly work for

networks with disconnected components where for some pairs dij =∞, the algorithm

adopted by the networkx function [34] computes the closeness centrality for each

connected part separately.

As for the betwenneess, we computed the complementary cumulative distribution

function for all the PTNs, saving the results both separately and altogether. In Figure

4.9, we present the 1-CDF log-log plot of all the cities together. It is important to

notice that in this case the colours are based on the information about the population,

instead of the area (4.6). As before, all distributions have a similar and exponential

trend.

In addition, as mentioned in the introduction to this section 4.3, we provide a

visual representation of the PTNs and each centrality measure. We chose to plot

only the 20% most significant nodes, in order to give a clearer representation also for

the bigger PTNs. In Figure 4.10, we compare two network visualization of Berlin’s

PTN. The first one, 4.10a, representing the betweenness centrality, highlights a dozen

of hubs in the city and a lot of smaller ones. In particular, we can see that the

distribution of the important nodes is well balanced throughout the network, with

the most significant one around the central area. These information together with the

round shape of the city let us assume that the PTN is well constructed. The second

picture, 4.10b, represents the closeness centrality information. One can definitely

spot the difference between the two: the distribution here is more clustered, with a

big one in the center; the colours are brighter, because the values are better spread

throughout the range of values, even though the latter is smaller than the on of

the betweenness. In particular the values here range from 0 to 0.125 more or less,

whereas for the betweenness the upper value is around 0.35.
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Figure 4.9: Closeness centrality (Cc(i)) complementary cumulative distribution with

colormap based on the POPULATION of the cities

To further the comparison between the betweenness and closeness, in Figure

4.7b we report the scatter plot for the city of Helsinki as example. From the

result, we can say that, as expected, high values of betweenness correspond to high

values of closeness (high values for the range considered). Concerning low values of

betweenness, the situation changes. From 0 to 0.05 of betweenness we find quite a

wide range of closeness values, from 0.02 to 0.06. This happens because some nodes

might have a short distance from many others (so be close to them), but they do not

serve as bridges (low betweenness). In general, it is expected to have many nodes

with low values of betweenness, even though they might have a central/close position

to many others. We still find few nodes with values close to 0 for both measures, that

probably represent peripheral nodes. In conclusion, we can say that the betweenness

centrality helps understand if and where the hubs are located in the network and it

gives a visual understanding of the connectivity of the graph. On the other hand,

the closeness highlights the areas of the PTN with a high concentration of nodes

close to each other.
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(a) (b)

Figure 4.10: (a) Betweenness and (b) closeness centralities of Berlin’s PTN. The

colours depend on the value of the centrality considered. The brighter the colour,

the higher the value for the node.

4.3.3 Degree centrality

Degree is a simple centrality measure that counts how many neighbours a node has.

The networkx function computes for each node of the graph the fraction of nodes it

is connected to [35]. In particular, the values are normalized by dividing them by

the maximum possible degree in a simple graph N-1.

Even though we have already presented the analysis on degree distribution

and average degree, we wanted to offer an analysis from a different perspective. In

particular, this approach allows us to compare the degree, as measure of importance

of a node, with others, first among all the eigenvector centrality. Indeed, these two

give a local perspective on the centrality features, whereas the betweenness and

closeness, taking into account shortest paths, give more a global view.

Since degree and eigenvector centrality give very similar results in this context,

we postpone the discussion about comparison in the next subsection. In particular,

we approach the degree-eigenvector correspondence (fig. 4.13) and the betweenness-

eigenvector differences (fig. 4.11).
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4.3.4 Eigenvector centrality

The concept behind the eigenvector centrality is that important nodes are connected

to other important nodes. It has high values for nodes that have many neighbours

which, in turn, have many neighbours. It can be interpreted as a measure of the

influence of a node in the graph.

In general, these two measures give similar results just in a different range of

values. They analyse similar properties of the nodes and, in the case of spatial

networks, output similar results. Even though they are not the most used centrality

measures in this type of networks, we decided to include them in order to give a

complete analysis.

In Figure 4.12, we offer a comparison between the two complementary cumulative

distributions. It is clear that there are strong similarities between the two plots,

whereas they are very different from the betweenness one (4.6) and the closeness

one (4.9). On the other hand, the latters have similar trends represented by an

exponential function. In the case of degree and eigenvector, the trend resembles one

of a power law.

We decided not to average the points that share the same centrality value to

underline the expected behaviour that many nodes share low values of the centrality,

whereas high values of centrality are more sparse. In addition, the information about

the area allows us to underline the differences between the cities. In particular, it is

clear that bigger cities tend to be on the left side of the plot. This is due to the fact

that the values are normalized by N-1 and, therefore, bigger networks will have a

smaller x-range overall. Moreover, the bigger the area the wider will be the length of

the distribution, because these cities have more nodes. Indeed, the direct relation

betweeen area and dimension of the PTN is confirmed for most of the cities.

In the Figure 4.13, we offer a comparison based on network visualization of the

two measures. As done before for betweenness and closeness, we plot the network

with 20% of significant central nodes, based on degree (fig. 4.13a) and on eigenvector

(fig. 4.13b). It is interesting to notice that the two representations look exaclty the

same, apart from the range of values of the colormap. In particular, we see how the

first one ranges approximately from 0.001 to 0.0045, whereas the second one from

0.2 to 0.09. Comparing these plots to the one of betweenness, shown in fig. 4.10a,

we can see how the high centrality nodes are better distributed throughout different

part of the network, whereas those of 4.10a are concentrated in the central area. The

closeness plot (4.10b) offer a different comparison. The nodes are more clustered

and, in general, share high values of the centrality measure. On the contrary, the
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majority of nodes in Figure 4.13 share lower values of centrality and they do not

form such visible clusters, even though the central area has a higher concentration

than the others.

As anticipated in the degree centrality section, we now discuss the comparison

between eigenvector centrality and betweenness centrality. At a first glace, we can

see that the majority of the nodes are concentrated in the left part of the plot. More

specifically, up to 0.10 betwenness we find nodes with eigenvector values from 0

to 0.05 (almost maximum one). However, most nodes with low betweenness have

low eigenvector too, whereas only a few ones have high eigenvector values. This

means that hardly any node with low betweenness and many neighbours tend to be

connected with other nodes with many connections as well. On the other hand, the

right part of the plot is fairly sparse. Nodes with high betweenness seems to have

average or low eigenvector values. This means that bridges nodes do not seem to be

connected to other nodes with many neighbours.

Figure 4.11: Betweenness centrality vs eigenvector centrality for the city of Helsinki.
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(a) (b)

Figure 4.12: (a) Degree and (b) eigenvector centralities 1-CDF log-log plots of all

the cities. The colours are based on the city area

(a) (b)

Figure 4.13: (a) Degree and (b) eigenvector centralities network representations for

the Berlin’s PTN. The colours in (a) and (b) depend on the area of the city (blue for

small area and yellow for big one). In (c) and (d) the colour of the nodes depends

for (c) on the degree value and on (d) on the eigenvector centrality one.
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4.4 Distance analysis

When dealing with spatial networks, computing shortest paths is a key step in

evaluating and characterizing trips, as path lengths are considered as relevant

components of inter-node reachability analysis. Given any two nodes, for which we

aim at studying their mutual reachability, shortest paths are the obvious solution to

most problems of best path computation. There can be different ways, and related

algorithms, in order to measure path lengths:

• Breadth-First Search considers path lengths in terms of number of edges

• Dijkstra and Bellman-Ford algorithms work on weighted graphs, with edge

weights given by either distance or time, based on the desired optimization

criterion

Defining a clear, unanimously accepted and simple path cost/weight is an uneasy

task in PTNs. Time, i.e., trip duration, is an obviously important aspect to be

minimized, but one could also evaluate cost, comfort, length, number of transportation

means and stops/changes, timed schedules, transit times, as well as other factors.

Furthermore, one could consider the graph as dynamically weighted, in order to take

into account factors that change on a daily, weekly, or even monthly/seasonal base.

In this section we limit our analysis to static graphs, we do not attempt to

evaluate trip duration, as we assume it related to the traveled distance. We compare

travel distances to Euclidean distances, as a way to take into account geographic

and territorial aspects and shapes of transport lines: the closer path lengths are to

Euclidean distances, the higher the chance of finding good, almost straight, transport

paths. So part of our analysis was oriented to study probability distributions of path

lengths with respect to Euclidean distances.

Concerning path optimality, we compared pure path length minimization, com-

puted by the Dijkstra algorithm, to minimizing the number of graph edges, so using

a BFS traversal. Though with general weighted graphs BFS does not guarantee

shortest paths, it can be optimal, or nearly optimal, whenever edge weights are

rather uniform. In our graphs, edges represent trips between stops, which could be

considered, under certain conditions, as a rough estimation of trip duration, and

they are often used by travellers/commuters as an empiric measure of a trip length.

We thus use BFS measures as our primary optimum path evaluation strategy, while

providing a comparison to shortest paths computed by the Dijkstra algorithm.

In order to properly visualize some of the collected measures, it became essential

to create groups of cities simply to declutter the plots and facilitate the reading of
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the results. We decided that a manual clustering was the best option for our work.

In particular, we divided the 27 cities in 5 groups based on their area:

• 0-100 km2: 4 cities (Antofagasta, Kuopio, Luxembourg and Rennes)

• 100-300 km2: 4 cities (Belfast, Palermo, Paris and Turku)

• 300-500 km2: 8 cities (Athens, Camberra, Detroit, Dublin, Prague, Rome,

Venice and Winnipeg)

• 500-1000 km2: 5 cities (Adelaide, Grenoble, Helsinki, Nantes and Toulouse)

• 1000+ km2: 6 cities with area bigger than (Berlin, Bordeaux, Brisbane,

Lisbon, Melbourne and Sydney)

In the following, we’ll first address distance analysis at city level, so within

nodes of a given city, then we will make a comparison among cities, based on overall

statistics, such as average measures, counters etc.

4.4.1 City level

In this part, we explain the procedure and results obtained on city level, with the

aim of studying city level probability distributions of distances, as well as an attempt

to characterize central and peripheral nodes. We first analyze reachability given a

starting point, as a means to characterize the overall expected distances traveled

when moving within PTNs.

So first of all, we decided to explore two different criteria for choosing the

starting node:

• random starting node

• central node

For each city we calculated its geographical barycenter and then record the

nearest node in the graph, defining it as the central node of the graph. Furthermore,

just for capital cities, we manually selected a (well known) central POI (point of

interest). For most of the capitals we selected the main railway station. However, in

cities with several stations we either chose one (e.g., Lisbon) or we selected another

POI (e.g., Paris, where we chose the metro station Chatelet).
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When starting from a random node, we chose it from the biggest connected

component, in order to reach as many nodes as possible. In every case, we proceeded

by applying a given graph visit algorithm, repeated for each of the selected starting

points.

As already discussed in 4.4, we chose BFS visits as minimum hop paths are a

good compromise for shortest paths in PTNs. During the visit of each node, we thus

recorded its distance from the source node both in terms of hops and of distance

in kilometers, viewed as the sum of all previous edges. This type of distance (in

km) is referenced in the plots as“bfs distance”. At the same time, we calculated

its Euclidean distance from the source node, referenced as “eu/Euclidean distance”.

The ratio bfs distance vs. the Euclidean one gives us a clear indication of how much

the considered path is far from a simple straight connection.

Random source nodes

We repeated the process presented above 20 times with different random source

nodes collecting for each city bfs and Euclidean distances. Then, we put together all

the results divided by type of measure to plot their distributions.

In Figure 4.14 we present an example of this type of plot, a probability dis-

tribution, for the city of Adelaide. As this kind of plot requires a discretized X

axis, we empirically chose a number of bins given by the square root of the number

of reached nodes (the size of the connected component the starting node belongs

to), then divided by ten. We observed this to be a good compromise, which gave

accepTablesolutions for all the cities. In the specific case of Adelaide, we can see how

the results confirm the prediction. The Euclidean curve provides a distribution of

node distances, which is obviously more pointed and on the left, indicating that the

majority of nodes has a distance of less that 20, averaged at nearly 17 kilometers.

On the other hand, the bfs curve is softer and it reaches higher values of distances,

confirming the fact that the distribution is broader and lower than the Euclidean

one. The ratio between mean values (31 kilometers to 17), as well as the shape of

distribution curves, shows that bfs distances are nearly double than the Euclidean

ones, confirming that paths are on average fare from the straight linear ones, probably

related to the city area and territorial characteristics.
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Figure 4.14: Distances distributions for the city of Adelaide. The red curve represent

the Euclidean distances and the blue one the bfs one (explanation on how they were

calculated can be found at 4.4.1.

Central source nodes

Whereas the previous section studied reachability by a randomly selected starting

point, we repeat here the process by starting from a conventionally accepted important

node, a central one. Assuming that, on average, central nodes are well connected and

reachable, we studied their reachability from two sets of nodes, those in the central

area and in the peripheral one: the motivation for this choice is based on analyzing

whether the center is mostly well connected to a central city area, or to suburban

areas as well. We thus decided to analyse the distributions of close and far nodes

starting from the central point of the network. For each city, we selected a central

node as explained in 4.4.1. After collecting the information about the distances from

the source node, we created two subsets, one for the close nodes and the other for

the far ones. In particular, we considered a node to be near the source one if it had

a bfs distance at most equal to a quarter of the maximum Euclidean one. On the

other hand, we defined far nodes, those which had a bfs distance of more than half

the maximum Euclidean one.

In Figure 4.15, we can see the specific case of Melbourne. Here we used a

binning criterion based on the square root of the number of nodes considered in the
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distribution. In the plot we notice how the result follows the expectations, having the

close nodes distribution on the left and the far one on the right. In particular, the

first one has a narrow and pointed shape with many small bins, whereas the second

one have a broader and lower shape with wider bins. These differences highlight

the fact that the distribution of close nodes is quite dense and there is a higher

probability of finding a node with a low distance from the center, whereas the second

distribution is quite sparse.

Figure 4.15: Close and far nodes distances distributions for the city of Melbourne.

The blue curves represent the nodes that have a bfs distance < 1/4 maximum

Euclidean distance, whereas the red curves those which have a bfs distance of > 1/2

maximum Euclidean one. The shades of colours differentiate the bfs distances from

the Euclidean ones.

We followed the same process and collected for the capital cities the two subsets

(close and far nodes) after visiting the graph starting from the POI central node.

The information available in the repository [27] show that for most of the cities, e.g.,

Berlin, Paris, Prague, the two distribution plots (for geographical centre and POI

one comparable to the one in fig. 4.15) are very similar: intuitively this is because

the two nodes are likely close to each other and have almost the same reachability.

For other cities, e.g., Lisbon, the two plots are quite different both in terms of trend

and number of bins. In particular, Lisbon is a special case, because of its shape and

the division in two main connected components (see Table4.20). The fact is that the

central POI is in the second biggest connected component and it does not reach as
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many nodes as the geographical centre. However, kept it this way since the shape of

the city is peculiar, having the city centre in the second component and the estuary

of river Tago between the two parts of the city. A last case study is represented

by Athens, where the close nodes distribution is alike, whereas the far nodes one is

fairly different when it come to its trend. The latter has a higher probability for

the nodes that have distances close to the threshold for the geographic central node,

with a mean of 24 km. On the other hand, the distribution of the distances from the

POI one is smoother and more uniform, with a higher mean of 31 km.

In addition, we created complementary cumulative distribution plots for distances

from central nodes. This decision was made to offer a city level representation that

could be exploited a for better comparison among cities, given the nature of the

normalized plot. For all the dataset, we plotted the complementary cumulative

distribution of the distances obtained starting from the geographical centre, whereas

for the capital cities we added the one about the POI centre. In both cases, we

plotted the 1-CDF distribution both for the bfs and the Euclidean distances from the

central source node. If we compare the two representation for the capital cities, we

find that for most of the cities, 9 out of 10, the two plots are quite similar, showing

an exponential trend. Just for Lisbon, the trend is still similar, but the density of the

distributions is quite lower when starting from the central POI. This is due to the

city peculiar shape and connected components definition, already explained in 4.4.1.

For each city, we exploit relative distances from the central point in order to

determine a set of peripheral nodes. As one can grasp, with peripheral we identify

nodes at the boundaries the connected component where the central node is located.

We call a node peripheral whenever farther from the city center, relative to a set

of nearby nodes. Given the set of nodes picked for comparison, a node could be

”peripheral” on a mode local basis, or an absolute one, within the city. So peripheral

nodes could help us track the city shape, as well as to identify transportation localities.

Let us use c for the index of the central node. In order to identify peripheral nodes,

we adopted a two step algorithm:

• we first looked for nodes farther to the center, with respect to all their adjacent

nodes. We labelled all reached nodes as peripheral (∀i 6=cperipheral [i] = 1).

Then we iterated over all edges, by comparing the Euclidean distances of their

two end nodes. Let us use ed for Euclidean distance. Given an edge (i, j),

we compare edic to edjc: if (edic < edjc), then peripheral [i] = 0, otherwise

peripheral [j] = 0, so the closer to the center, between node i and j is labelled

as non peripheral.

• as the previous step could identify nodes with all adjacent nodes closer to the
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center (e.g., terminal nodes of bus lines), this step generally labelled too many

nodes as peripheral, so we applied a second filter, on nodes close enough (though

not directly connected), to other nodes farther from the center. We empirically

identified a reference distance edref , given by 1/10 of the maximum Euclidean

distance from the center: edref = (MAXiedic)/10. Then for every couple of

nodes i, j, still labeled as peripheral (peripheral [i] = 1 and peripheral [j] = 1),

such that edij < edref , we compare edic to edjc and we reset the peripheral flag

of the node closer to c.

In Figure 4.16a we show the representation of the peripheral nodes obtained

for the city of Paris. The set is composed by 39 nodes out of the total 11950 of

the graph and the 10644 of the biggest connected component (visible in Table4.20).

These nodes seem to delimit quite nicely the shape of the city, which turns out to be

circular.

(a) (b)

(c) (d)

Figure 4.16: Peripheral nodes representation. Red nodes are the peripheral ones,

green nodes are the geographical centre and blue nodes are the POI centre for capital

cities. (a) Paris, (b) Berlin, (c) Athens and (d) Helsinki. In the parenthesis there is

the number of peripheral nodes for the current city.
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4.4.2 Comparison among cities

This section provides an inter-city comparison, based on probability distributions of

distances, with the aim of understanding how well optimal (shortest) path lengths are

close to the ideal best provided by Euclidean distances. To facilitate the comparison

for some plots, we grouped cities in clusters, where the criterion we adopted for

clustering has been explained in 4.4.

As a first comparison, we plot the fraction between the Euclidean distance and

the bfs one. Though we could obviously take the inverse fraction, our choice has the

advantage to provide values included between 0 and 1. The goal of this representation

is to highlight how different the two measures are. The closer the fraction is to

1, the more the related bfs distance nears the Euclidean one. We represented

how different the two are for all the cities, under the 1 to many (reachable nodes)

distance computation scheme. In particular, we plotted the information gathered

by a repeated random selection of the source node. In Figure 4.17 we present an

overview of the results for all the clusters. In every plot, curves, and the related

distance distributions, can be evaluated by observing

• how much they span on the right part of the graph, as a 1 value means bfs

distance equals the Euclidean one. To this respect, “good” curve peaks can be

found close to the 0.8 value;

• peak height and curve thickness around the peak, as tight and high peaks mean

highly probable values close to the peak.

In general, it is reasonable to think that a pointed distribution well located on the

right of the plot will correspond to a city’s PTN more efficient than another where

the curve is smoother/fatter and left-centred.

Analysing one cluster at a time, we can see how the first one (fig. 4.17a), which

contains cities with an area between 0 and 100 km2, have results in pairs. Antofagasta

and Rennes share similar shape of their distributions, indicating that their PTNs

might be quite efficient as they are. On the other hand, we have Luxembourg City

and Kuopio, which share a lower curve with a smaller mean. These differences are

likely related both to the shape of the city and, more probably, to the morphology

of the territory. The second cluster (100-300 km2), shown in Figure 4.17b, is fairly

homogeneous. We can see how all the cities (Belfast, Palermo, Paris, Turku) share

a similar trend, suggesting that in this case the dimension of the city might be a

good grouping parameter. The majority of the nodes in all PTNs show path-based

distances not far from the Euclidean ones, indicating fairly efficient planning of the
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networks, especially in the cases of Palermo and Turku, with peak values of about

0.8. The third cluster, fig. 4.17c, is the biggest one, with its 7 cities with area from

300 to 500 km2. Here, 6 out of 7 cities have similar trends, where the curves are

not too sharp (maximum density of 2.0 to 2.5), with the peak value in the 0.5 to

0.7 range. Rome behaves as a partial outlier, with a sharper peak not far from 0.75.

The situation for the fourth cluster (500-1000 km2), fig. 4.17d, is quite similar to

the previous one. In this case, 4 cities out of 5 have a similar trend, with slight

variations in the peak location and curve tightness. However, here the different city,

Adelaide, characterized by a smoother and more oscillating trend, somehow missing

a real and dominating peak. This could be related to the geography of the city, a

flat coastal land, crossed by multiple rivers and/or streams. As a consequence, the

nodes could be decomposed in reachability clusters, witnessed by the multiple peaks

and valleys in the curve. The last cluster, with cities bigger than 1000 km2 and

shown in Figure 4.17e, seem to have one city that stands out from the others, Lisbon,

have a wide and oscillating trend, with peaks and valleys. An explanation similar to

Adelaide could apply, based on the fact that, again, the territory is characterized by

reachability areas/clusters, due to the river Tago, splitting the city in two.

Overall we can say that most of the city clusters have similar trends and they

are pretty homogeneous, with few outliers. This might mean that city clustering

by area, for this specific analysis, was a fair choice. The differences evidenced by

outlier cases are generally related to the city’s morphology, which in this work is not

a parameter under analysis.

In addition to the plots explained above, we also compared the mean and

standard deviation of all the cities, in order to obtain a higher level and global view.

This allowed us to compare all cities in a single plot. We sorted cities by increasing

mean values, and we also explicitly plotted city areas, so that we could better capture

the possible correlation between distances and the size of the city. In particular,

we plot two different representations, one for the bfs distributions and one for the

Euclidean ones, all obtained by the randomized visit of the graphs. These are shown

in Figure 4.18, where the cities are ordered by ascending mean value of bfs distance.

Over the bar plot, we added the information about the city area to better compare

the results. On a first look, it is clear that there are some discrepancies from the

smooth and increasing trend of the mean in the first plot, 4.18a, and the trend in

the second one, 4.18b. The most significant outlier here is Lisbon. In the first plot,

it clearly shows a higher standard deviation, relative to the mean value, followed

by Athens, meaning that their spread of values is wider than other cities’. When

considering also Figure 4.18b (Euclidean distances), Lisbon is a clear outlier, with

a ratio Euclidean vs. bfs distances much lower than the rest of the cities. As we

already noticed, the peculiarity of this city and the results confirm that its PTN is
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not, and probably cannot be, distance efficient.

Another aspect to notice is the distance range. As we can see in the first plot,

Melbourne mean reaches 50 km distance from the source node, whereas in the second

plot the maximum Euclidean distance reached is 25 km, half of the first one. This is

in line with the expected result, but it is still important to quantify the difference

from bfs and Euclidean ranges. Concerning the area, we see that the more or less

increasing trend of the distances is not shared by the area. A first evident outlier is

Bordeaux. It has one of the biggest area of the dataset, but we find it in the left side

of the distance plots. With its bfs mean between 20 and 30 and its Euclidean one

a bit above 10, we might be surprised that the average distances are quite close to

each other compared to such a big area. An explanation could be found in the choice

between the urban and city areas: we chose for Bordeaux the urban area, hosting

a little less than 1 million people. As the public transportation network covers an

intermediate (not easily identified) area between the two, the urban area is clearly

somehow big, whereas the city area would be small, resembling cities such as Paris

and Luxembourg.
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(a) (b)

(c) (d)

(e)

Figure 4.17: Fractions of Euclidean distances over the bfs ones. Each Figure

correspond to a cluster defined as explained in 4.4. The figures are ordered by the

clusters range of area, starting from the smallest range, 0-100, for the (a) Figure to

the biggest one, 1000+, for the (e) one.
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(a)

(b)

Figure 4.18: Bar plots of comparison between mean and standard deviation of

distances distributions. (a) Bfs distances and (b) Euclidean distances. For both plots

the order of the cities is by bfs mean ascending and the information on the right side

is the area of the corresponding city.
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4.4.3 Shortest paths vs breadth first

In this subsection we present a comparison between the shortest path lengths

computed over a weighted network and those obtained through a breadth first search

of the graph. This comparison was made to support and further explain our choice

to consider the breadth first approach. To reach this goal, we created a weighted

and undirected graph for each city, where the weights on the edges represent the

Euclidean distances from the two nodes in km. Then, for each city we used the

random source node approach (20 times) computing the paths from each source

using Dijkstra algorithm and recorded their lengths. We computed the same breadth

first visit approach explained in 4.4.1. In order to compare the two measures, we

calculated the fractions between shortest path length and bfs distance and plotted

together the results for all the cities together. The latter are visible in Figure 4.19,

where we can see that the majority of the bfs distances correspond to the Dijkstra

ones. All of the cities have a similar trend, even if these vary on maximum density

reached.

Even thought the bfs distance might not always be the shortest one, since it is

based on hops and not on the weight, we find that it fairly approximates the Dijkstra

one. In light of our considerations and results, we consider our choice to be suited

for the type of analysis explained throughout the section.

Figure 4.19: Fractions between shortest paths distances and bfs ones for all the cities

with the random source nodes process.

71



4.4.4 Connected components analysis

As we approached the distance analysis, we came across the problem of connected

components. In particular, in order to explore a graph through one of the available

algorithms, it is important to do so on a connected component. We thus thought

that an analysis on the networks connected components was necessary to better

comprehend all the results shown before and the network topology. We remind here

the reader that for this work we created unweighted and undirected graphs with all

the types of transport together.

In Table4.20 we present an overview on the information about connected com-

ponents in the dataset. For each city we show the number of total nodes in the

graph, the number of nodes in the first four connected components, if present, the

percentage of nodes includes in the first four components, and then we show the total

number of connected components for each graph. Taking a first look at the table,

we see that only 5 out of 27 cities have one connected components and all of them

have just the bus transport network. For the other 22 cities the components may be

mixed, having different types of transport in it, or divided. It is important to notice

that a strong majority of the cities that have more than three connected components

have a very high percentage of coverage by those components. On average, we see

that the first four components cover more than 97% of the nodes in the graph. Only

for Paris the percentage reaches 93, which is still a pretty good coverage. We did

not find a common pattern between all these cities apart from the fact that, usually,

the biggest ones are again the whole or a part of the bus transport network.

In addition, for all the cities we plotted each connected component with the

colour of the edges in accordance with the type of transport. If one is inter-

ested, the plots may be found in the repository [27] in the directory results/c-

ity name/connected components/plots/, where the components are ordered by number

of nodes, starting from the biggest one.
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Figure 4.20: Tableof connected components information. The N column indicates

the number of nodes of the starting network. Comp i columns indicate the number

of nodes in the i-th connected components, where the first one is the biggest. The

fifth column shows the percentage of nodes covered by the first four connected

components, if the city have four or more.The last column shows the number of

connected components for the current city.

73



4.5 Frequency analysis

Lastly, we present an analysis over the behaviour of vehicles frequency during the

hours of a typical day. We decided to conclude offering a different perspective on

the dataset. The aim of this sort of work is to highlight differences and similarities

between peak hours and other hours of the day, with the goal of establishing which

PTNs are more likely to have a well distributed load and which ones are not.

Furthermore, we try to correlate the results found with the city population.

For each city, the information used to perform this analysis is contained in the

network temporal day.csv file obtained from [21]. In the file, for each line we have

information about

• start stop id, which identifies the starting node

• end stop id, which identifies the ending node

• departure time in Unix time (number of seconds after 1.1.1970 00:00:00 UTC)

• arrival time also expressed in Unix time

• route type, which identifies the type of transport (e.g., bus, tram, rail etc.)

• trip id, which identifies a trip (i.e., a sequence of two or more stops that occurs

at specific time)

• route id, which identifies the route (i.e., a group of trips that are displayed to

riders as a single service).

In the following section we illustrate how we used the above mentioned informa-

tion to study the distribution of the number of vehicles throughout a typical day. In

the first subsection 4.5 we present how we processed the information and analysed

the frequencies of vehicles for one city at a time. In the second subsection 4.5.1 we

show the comparison between cities. For this type of analysis we chose to divide the

comparison between type of transport. More specifically, we decided to put together

the information about mean and standard deviation for the frequency distributions

of each city. Moreover, we added the information about the population to compare

the number of vehicles information with the number of inhabitants. In the last

subsection 4.5.2 we present a more specific comparison between the frequencies of

the bus transport network for all the cities. Since every PTN has BTN, which is also

the biggest one, we decided to analyse more in depth this type of transport.
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4.5.1 City level

Here we present the process to calculate the frequency of vehicles for each city

and type of transport. In the first part, 4.5.1, we illustrate how we calculated and

represented the hourly frequency of vehicles. In the second part, 4.5.1, we explain

the choices made to compare the peak hours to the others, how we computed the

node frequency. In both cases we offer some visual examples of the results.

Hourly frequency

First of all, the temporal information presented in 4.5 are expressed in Unix time and

they do not take into account time zones. Therefore, the first operation performed

was to manually record for each city their hours difference from the central meridian.

Then, we were able to sum these differences and convert the time for each city, in

order to have the information about the hour of the day, form 00 to 23, when a

certain vehicle would leave the start stop. In fact, for each type of transport, we

wanted to collect the number of vehicles that would transit in each hour of the day.

In practice, to calculate the number of vehicles we added the trip id to a specific

set for the type of transport and hour defined in the same row of the csv file. At

the end of the file processing, we counted the elements of each set, which would

create the hourly number of vehicles for the specific type of transport. The usage of

a set allowed us to remove duplicates. For example, the same vehicle would result in

multiple lines with a different start stop and departure time, but with the same trip

id. Counting unique trip ids was our way to calculate the number of vehicles with

the minimum count error.

In Figure 4.21a we offer a visual representation of the results of this process for

the bus frequencies for the city of Belfast. In the bar plot we highlighted both the

morning (11:00 to 12:00) and afternoon (20:00 to 21:00) peak hours to stress the

difference between the other time slots. As we can see from the picture, the majority

of the vehicles transit during day hours, especially from 10:00 to 22:00, where the

distribution of the number of vehicles is quite stable. In particular, it is clear that

buses do not transit at all from 03:00 to 7:00, hour where they slightly start moving.

In Figure 4.21b we show the distribution plot for the same city of Belfast and

type of transport (bus) as before. In this case, we do not take into account the

hours with zero vehicles, that is night hours. For each number of vehicles, shown

on the x axis, we present its probability. The distribution curve is pretty smooth

and presents two small peaks, one among low values of frequency and one among

high ones. In addition, the legend offers the information about mean and standard
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deviation values. With a mean of 270.55 vehicles and a standard deviation of 159.37,

we can say that the low values bring significantly down the mean value and increase

that of the deviation. If one considers only the slots from 10 to 21, he would probably

find a higher mean and definitely a lower standard deviation.

These two plots together offer a reasonable overview on the distribution of the

frequencies for the wanted city, divided by type of transport. To be complete, the

colour of each plot depend on the type of transport considered. In particular, here

we offer a detailed list of the correlation between colour and type of transport, which

is also the same used in the network representation:

• Blue for bus transport network

• Green for tram transport network

• Red for rail transport network

• Orange for subway transport network

• Aqua for ferry transport network

• Yellow for cablecar transport network (only one city).

Peak and mean hour stop frequency

In the previous section 4.5.1, we presented a first visual representation of the

comparison between peak and other hours frequencies in Figure 4.21a. Here, we

go a bit more in depth in this comparison explaining the choices made and process

followed.

In order to highlights the differences and similarities, if present, for each city

and type of transport, we chose to compare two network visualisations. Each one

would represent a specific hour of the day, colouring the nodes based on the number

of vehicles departed from that node in the considered hour. To do so, we defined

two specific hours for each city:

• Peak hour: hour slot with the maximum number of vehicles in the whole day

• Mean hour: closest hour to an ideal one with average number of vehicles,

that would guarantee a homogeneous distribution of the vehicles throughout

the day.
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In particular, when defining the mean hour, sometimes referred also as average

hour, we considered only the hour slots with a number of vehicles higher than zero.

Then, we computed the average between the values and we took the hour with the

closest frequency to the average one.

Afterwards, we collected the information about number of vehicles departing

from each stop in both time slots. The process was almost identical to the one used

for the frequencies per hour presented before in 4.5.1, but we added a counter for

each node of the network. We chose to register the number of vehicles for the starting

stop. We plotted the network with the nodes colour depending on the number of

vehicles starting from/passing through that node in the specified hour. We chose not

to represent the nodes with zero number of vehicles. Even with this threshold, the

representation is often crowded. In the solution presented in this work, we decided

to maintain this approach even though some cities might have a higher concentration

of nodes, most in the bus representation. For further analysis, we offer a solution for

adding a relative threshold which gives a less crowded representation.

In Figure 4.21c, we present the network representation of Belfast’s BTN during

the peak hour, whereas in Figure 4.21d during the mean/average hour. The colours

of the nodes reflect the number of vehicles departing/passing through the stop. The

range of the colorbar is based on the peak hour one. We chose the same one for

both plots to highlight the differences between nodes frequencies. We can see how

the first picture exploits all the available shades of colours, meaning that the nodes

represented have number of vehicles from 1 to 50. On the other hand, we see how

the second picture uses only 3/4 of the available range. Overall, the number of nodes

represented is pretty similar, and what differs is the frequencies of the nodes. From

our perspective, this is a good news, because it means that the territory is served

either way, just with different frequencies.
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(a) (b)

(c) (d)

Figure 4.21: (a) Vehicle frequency for all hours of the day, (b) frequency distribution,

(c) peak hour network visualization, (d) average/mean hour network visualization

for bus transport network of Belfast

4.5.2 Comparison between cities

In this section, we present a first comparison between all the cities for the frequency

analysis. To achieve this goal, we gathered together the data about mean and

standard deviation for all the cities separated by type of transport and plotted them.

Moreover, we decided to add the information about the population, to give a better

picture of the results and allow to correlate them with that city feature.

In Figure 4.22 we show 5 out of 6 type of transport plots. We do not show here

the cablecar plot, since it concerns only the city of Prague. However, we remind

the reader that all the results are available at [27], where one can browse them
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extensively.

In the first plot, 4.22a, we show the comparison between the frequencies of

all the bus transport networks. The cities are ordered by ascending mean value.

Visually, it is clear how the trend in the population does not follow those of the

frequency information. The first outlier that we talk about is Athens, which is the

8th city (starting from right), but has a population of more than 3 millions people.

Taking a look to its frequency plot in the repository, we can see how this city has

all hours with frequency higher than zero, even night hours. This factor is probably

the reason why the mean is lower than expected. If we did not consider night hours

at all, Athens would probably have a more balanced frequency mean with respect

to its population. The night hour factor does probably influence two other outliers:

Melbourne and Sydney. Again, they have very low numbers of vehicles during nigh

hours, but still above zero, which is the threshold considered in out study. Both cities

share a high value of standard deviation. For the case of Melbourne this is most

probably due to the night hours factor, whereas for Sydney the distribution during

day hours is still quite unstable. The last case that we discuss is the one of Paris. It

is the city with highest mean value, but population below many other cities. This is

probably due to the fact that it is a very busy and small city, compared to others in

the dataset. We remind the reader of the fact that Paris was already a specific case,

having a concentration of nodes per area significantly higher than all other cities

(fig. 4.1b). Therefore, this result might be explained also by that information. The

first half of the cities shares a common trend between frequencies and population,

whereas the second one is significantly less stable. Lastly, we can say that all cities

have a fairly high standard deviation, which, in some cases, might be attributed to

the contribution of nigh hours, late evening hours and early morning ones.

In Figure 4.22b we present the comparison between tram transport networks.

Here, it is clear that there is no similar trend between the frequencies and the

population of the cities. It is interesting to notice how a city big and richly populates

as Sydney has a very small tram transport network. This is, however, compensated

by one of the biggest, in terms of number of vehicles, bus transport network. Adelaide

too has a very low mean value of frequency. This probably indicates that these

cities have a poor tram service. On the other hand, we find the third Australian city

in this plot, Melbourne, that have the second tram transport network, in terms of

frequency of vehicles. Lastly, Prague is a sort of outlier in the other sense. It has

quite a small population compared to other cities, but boats a very frequent tram

transport network, with a around 700 vehicles during morning and afternoon peak

hours.

In Figure 4.22c we show the results for the rail transport network. Given the
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spatial filtering explained in 3.3, the information about this type of transport is

partial and limited to the city area. However, we can still highlight some features

from the plot. For example, we notice how all the cities with a rail transport networks

are either capitals (8) or Australian cities (4). In fact, the latter are all present in

this plot, even if the information about Canberra are not very significant. In Figure

4.22d we show the subway transport network frequency results. Here, as before,

most of the cities are capitals (7 out of 9). However, none of the Australian cities

is present, meaning that they prefer other types of transport and do not have this

one. The most significant STN is the one of Paris, with a mean above 800 vehicles

per hour. All the other cities have a mean that do not go beyond half of that value.

Lastly, in Figure 4.22e we show the ferry transport network. Here, the famous Venice

is, as expected, the most active. Two of the five Australian cities also share high

values of vehicles per hour. All the other cities, do not exceed 30 ferries per hour.

Overall we notice how there are some cities, like Berlin and Paris, which are

almost always present and usually have fairly high values of frequency. This is not a

surprise, given that they are two of the most important cities in Europe. On the

other hand we have the Australian cities, that tend to have all types of transport

except the subway, but they have discordant behaviours depending on the type of

transport. The addition of the population information helps to give a bigger picture

on the specific city, but, overall, there do not seem to be any strong correlation

between the population and the mean frequency of vehicles throughout the dataset.
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(a)

(b) (c)

(d) (e)

Figure 4.22: Mean and standard deviation of vehicle frequency distribution for all

the cities divided by type of transport. In all the plots the cities are ordered based

on increasing mean value for the specific type of transport.
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4.5.3 Bus transport network

In conclusion to the frequency analysis, we offer a deeper study on the bus transport

network (BTN) for all the cities. It is an addition to the previous subsection, where

we compared general statistics of all the cities divided by type of transport. Here, we

chose to expand more the discussion about the only means of transport that every

city has.

Figure 4.22a, already commented in 4.5.2, offers a first rough comparison between

all the cities BTNs, presenting their mean and standard deviation information,

together with their population data. In addition, in Table4.23 we present an overview

of some information about the BTN of each city:

• Number of lines: counter of all the bus routes available for a city. A route

is a group of trips that are displayed to riders as a single service.

• Peak hour: two digits number indicating the hour where there is the maximum

number of vehicles.

• Number of vehicles in the peak hour: how many vehicles transit during

the peak hour

• Mean hour: closest hour to an average value of frequency of vehicles. It

represents what a typical hour would be if the distribution was uniform.

• Number of vehicles in the mean hour: how many vehicles transit during

the mean hour.

• Total number of vehicles: number of vehicles throughout a typical day.

Analysing the results we can say that the city with the maximum number of

lines is Lisbon, with its 820 different bus routes. Furthermore, 75% of the dataset

has a number of lines below half of the maximum value, this implies that on average

the number of routes is between 16 (Antofagasta) and 348 (Melbourne). The number

of lines is positively correlated with all the frequencies of vehicles, with a 0.71 for the

peak hour number, 0.67 for the mean hour and the total number of vehicles. It is

slightly correlated with the population information with a Pearson coefficient of 0.51.

Turning our attention towards the peak and mean hour data, it is interesting

to underline how 7 out 27 cities have a morning peak hour (either 8:00 to 9:00 or

9:00 to 10:00). Only one city, Palermo, has a mid day peak hour from 12:00 to 13:00,

probably due to different working hours in the south of Italy. The majority of the

dataset has an afternoon peak hour: 2 cities at 16:00, 3 cities at 17:00, 12 cities at
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18:00 and 1 at 19:00. Also in this case, only one city, Belfast, has an evening rush

hour from 20:00 to 21:00. Overall, we can say that the most common peak houris

from 18:00 to 19:00, which is probably expected given the most widespread working

hours. The situation for the average hour is more balanced between morning and

evening. We find 13 cities from 6:00 to 12:00, more specifically 1 at 6:00, 7 at 7:00, 1

at 8:00 and 4 at 11:00. Only Winnipeg has a mean hour in the first afternoon from

14:00 to 15:00 and the rest of the cities have an evening average hour (4 at 20:00, 6

at 21:00 and 3 at 22:00).

The three types of frequencies (peak hour, mean hour and total) all have a fairly

spread range. The first one goes from a minimum of 124 vehicles for the city of

Kuopio to a maximum of 7110 in Paris. The mean hour has a less extensive range

but the two cities are the same, with 74 vehicles for Kuopio and 4382 for Paris. In

both cases, the 3/4 of the dataset have values of frequencies lower or equal to 32% of

the maximum one. For the total number of vehicles during the day the situation is

quite similar, with a range of 1573-94377 and the majority of the cities with values

less than 35% of the maximum one.
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Figure 4.23: Tablefrequencies
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Chapter 5

Conclusions

The purpose of this thesis was to characterise and study the network properties of

the PTNs in our dataset and to find possible correlations between properties and

city features, such as area and population. To achieve this goal we analysed 27

PTNs from different points of view: network measures, addressed in the first three

sections of chapter 4 (basic, additional and centrality measures), distance analysis

and frequency analysis. The various analysis tasks done can be roughly split in three

main categories, or more appropriately in different levels of detail:

• city level, where we studied graphs in order to identify important nodes,

probability distributions, distances and path lengths within single cities

• comparison among cities, on selected (often averaged) measures and statistics

• comparison among measures taken as overall/summary data in order to capture

potential affinities/correlations and to possibly obtain hints on general features

of PTNs

Here we review the most significant ones for each area of analysis and then we

draw few general conclusions.

The first part of the analysis was oriented to describe and evaluate the dataset in

terms of network properties and models. We started from some basic measurements:

number of nodes, number of egdes, density, diameter and clustering coefficient. The

analysis of results basically confirmed some rather obvious facts: as expected, the

number of nodes N and the number of edges E have values that span over well

identified ranges. They are clearly related to the ranges of area and population, and

to the to spatial constraints. N and E are roughly proportional, and density is,

overall, quite low, indicating that the networks are fairly sparse, which is typical of
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PTNs as instances of spatial graphs; network diameters are generally proportional to

nodes and edges, which means that the bigger the network,the longer the diameter,

with exceptions, that are probably due to the shape and geographic characteristics

of cities; the low values of average clustering coefficients have to do with wiring

(transport routes/connections) cost and to the fact that most nodes have degree 2

(they are just transit nodes), which corresponds to a 0 clustering coefficient.

We then deepened our analysis by considering more targeted and specific mea-

sures, like assortativity, average path length, average degree and degree distribution.

This part of the analysis revealed some interesting results. In particular, our PTNs

do not behave as small-worlds and they are not scale-free. The first conclusion

was drawn through the study of the scaling between 〈l〉 and ln(N) joint with the

analysis of the clustering coefficient. The scale-freeness usually requires very large

networks and a large range of k-values, both of which are criteria not met for our

PTNs. However, we still found that the degree distributions are broad and, for the

range of k considered in our work, are practically indistinguishable from power-law

distributions. Furthermore, it is important to highlight that a wide majority of the

nodes have low degree, k = 2 for transit nodes and k = 1 for start/end stops, but

there are still few hubs, usually represented by crossing stops or stations.

The last part of the network measures deals with nodes centrality measures.

The study analyses four measures that are able to characterize a city network stops:

betweenness, closeness, degree and eigenvector. In line with previous works, we

focused more on the first two centrality measures, that are deemed more important

for PTNs. In particular, betweenness centrality helped us understand if and where

the hubs were located in the network. As expected, the majority of the nodes

share low values of betweenness, whereas only few ones can be considered hubs

and they are usually concentrated in the central area, even though there might be

some exceptions where each city district has its owns. On the other hand, closeness

centrality highlights PTN areas with a high concentration of nodes close to each

other. Overall, in many PTNs, nodes with low betweenness seem to have fairly

high closeness values, meaning that they might be central, but not a crossing stop.

In our study, degree and eigenvector centrality output very close, and sometimes

equal, results. In particular, there is not any specific relation between eigenvector

centrality and betweenness one. Hubs do not necessarily connect to nodes with many

neighbours, even though it might happen.

The second big part of the analysis is on distance analysis, where we aim at

studying the mutual reachability of the nodes by comparing euclidean distances

and shortest path lengths. In particular, we exploit the breadth first search (bfs)

algorithm, which provides a reasonable result in term of minimum hop number.
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Even though, strictly speaking it does not always give a shortest path, it is often

equal or very close to the minimum path obtained by the Dijkstra algorithm. The

comparison between travel distances, computed with bfs, to euclidean distances is

used to evaluate the quality of the transport network. This type of analysis takes into

accounts geographic and territorial aspects, shapes of transport lines and we look for

relations between the results and the city area. The cluster analysis highlights some

interactions between the fraction of distances and the area of the cities. Even though

there are few outliers, it seems that area clustering is a fair grouping parameter

for the distance analysis. Furthermore, the identification of peripheral nodes offers

results that might, in some cases, underline the shape of the city. Another interesting

finding concerns connected components. In this part of the analysis we study their

number and distribution throughout the PTNs. More than 80% of the PTNs have

more than one connected component and it does not always correspond to the type of

transport division. On the other hand, the main component usually matches the first

one, with the only exception of Lisbon. In general, however, given the heterogeneity

of the dataset, we cannot draw strong conclusion for all the cities together.

The last section deals with the frequency analysis. The aim here was to study

the distribution of vehicles frequency throughout a typical day, highlighting the

differences and similarities between the peak hour and an average one. We performed

the analysis divided for type of transport, with a more detailed study on the bus

transport data. The results are fairly different both for distinct types of transport in

the same city and for comparison among cities. In general, all the cities present two

main peak hours, one during the morning and the other during the evening. Our

choice for the comparison was to take under consideration the maximum peak hour

and the closest hour to an ideal one, which would guarantee a uniform distribution

of frequencies during the day. The main difference between the two hours, for most

cities, is in terms of number of vehicles running. The two situations seem to serve

almost the same number of stops, which means that the public transport network

considered reaches quite the same city areas in both hours. However, depending on

the city the gap between the number of stops served during peak hours and during

the average one might be significant. In conclusion, this analysis does not highlight

a specific trend between vehicles frequency and city population. There are many

factors to take into consideration that, due to time effort and resources, we were not

able to consider.
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Final conclusions and future works

Even though our work is just a starting one, we drew some interesting con-

clusions that helped us capturing both expected and not so clearly visible trends

and characteristics. The frequency analysis results may be a good starting point to

redistribute the vehicle load throughout the day or to analyse and extend the service

to more peripheral areas. Of course, these suggestions have to be coupled with data

and analysis about people movements and probably political decisions about working

hours. On the other hand, the results obtained from the distance analysis represents

a first step in the efficiency analysis of the PTNs. One could decide to plan a different

distribution of the stops and routes to enhance the fraction betwenne travel and

euclidean distance. Again, one would need to deepen and customize the analysis for

the city, considering for example morphology, points of interests and travel times.

In addition, we opened a path for future works, in three directions:

• improve the analysis of data that we already considered, by revising and refining

the measures, possibly add more cities, improve the study of correlation among

different measures;

• expand the analysis of time related and dynamic data, that could better capture

the problems and peculiarities of transportation scenarios that vary on a daily,

weekly and seasonal/yearly basis;

• improve the interface between data analysis and decision making applications

such as public transportation planning and control at various levels.
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[31] Konstantin Klemm and Vı́ctor M. Egúıluz. “Highly clustered scale-free net-

works”. In: Phys. Rev. E 65 (2002). doi: 10.1103/PhysRevE.65.036123. url:

https://link.aps.org/doi/10.1103/PhysRevE.65.036123.

[32] Stephen P. Borgatti. “Centrality and network flow”. In: Social Networks 27.1

(2005), pp. 55–71. issn: 0378-8733. doi: https://doi.org/10.1016/j.socnet.

2004 . 11 . 008. url: http : / / www . sciencedirect . com / science / article / pii /

S0378873304000693.

[33] Stephen P. Borgatti and Martin G. Everett. “A Graph-theoretic perspective on

centrality”. In: Social Networks 28.4 (2006), pp. 466–484. issn: 0378-8733. doi:

https://doi.org/10.1016/j.socnet.2005.11.005. url: http://www.sciencedirect.

com/science/article/pii/S0378873305000833.

[34] url: https://networkx.github.io/documentation/networkx-1.10/reference/

generated/networkx.algorithms.centrality.closeness centrality.html.

[35] url: https://networkx.github.io/documentation/stable/reference/algorithms/

generated/networkx.algorithms.centrality.degree centrality.html#networkx.

algorithms.centrality.degree centrality.

91

https://www.citypopulation.de/
https://www.macrotrends.net/cities/20997/toulouse/population
https://worldpopulationreview.com/world-cities/
https://github.com/CxAalto/gtfspy
https://github.com/scabodi/thesis
https://doi.org/10.1103/RevModPhys.74.47
https://link.aps.org/doi/10.1103/RevModPhys.74.47
https://doi.org/10.1080/00018730110112519
https://doi.org/10.1080/00018730110112519
https://doi.org/10.1103/PhysRevE.67.046111
https://link.aps.org/doi/10.1103/PhysRevE.67.046111
https://doi.org/10.1103/PhysRevE.65.036123
https://link.aps.org/doi/10.1103/PhysRevE.65.036123
https://doi.org/https://doi.org/10.1016/j.socnet.2004.11.008
https://doi.org/https://doi.org/10.1016/j.socnet.2004.11.008
http://www.sciencedirect.com/science/article/pii/S0378873304000693
http://www.sciencedirect.com/science/article/pii/S0378873304000693
https://doi.org/https://doi.org/10.1016/j.socnet.2005.11.005
http://www.sciencedirect.com/science/article/pii/S0378873305000833
http://www.sciencedirect.com/science/article/pii/S0378873305000833
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.algorithms.centrality.closeness_centrality.html
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.algorithms.centrality.closeness_centrality.html
https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.degree_centrality.html#networkx.algorithms.centrality.degree_centrality
https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.degree_centrality.html#networkx.algorithms.centrality.degree_centrality
https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.degree_centrality.html#networkx.algorithms.centrality.degree_centrality

	Abstract
	Acknowledgements
	Abbreviations
	Introduction, Motivations and Goals
	Background
	Network theory
	Network representation
	Network types
	Local and global properties

	Public transports as networks
	Spatial networks
	Transport Network topologies
	Related works


	Data structure
	Data
	Subjects
	Types of PTNs
	Spatial information
	Area and population

	Network creation
	Unweighted and undirected network
	Visualizing the network


	Analysis methods and results
	Basic measures
	Nodes, edges, and density
	Diameter
	Average clustering coefficient
	Outliers
	Correlating different measures

	Additional measures
	Assortativity
	Average path length
	Average degree
	Degree distribution

	Centrality measures
	Betweenness centrality
	Closeness centrality
	Degree centrality
	Eigenvector centrality

	Distance analysis
	City level
	Comparison among cities
	Shortest paths vs breadth first
	Connected components analysis

	Frequency analysis
	City level
	Comparison between cities
	Bus transport network


	Conclusions
	Bibliography

