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Summary

Understanding the dynamics of stock market, has always been a goal for researchers,
because investors need accurate tools to conduct their investments. In this thesis, the
stock market will be modeled with a multi-agent reinforcement learning environment.
Once trained, this model will allow to collect data accurately and to know everything
about transactions, the financial status of investors and macroeconomic variables
such as price of shares. These data will be analyzed using Topological Data Analysis
(TDA), which will allow to observe the shape of the underlying structure hidden
in data. Persistent entropy was used extensively, in order to have a quantitative
measure of financial status of investors in an instant of time. Thanks to sliding
window, it was possible to extrapolate a signal that represents the dynamics of
the stock market over time. We will therefore calculate the Pearson correlation
between the entropy signal in homology 1 and the momentum of the price obtaining
a positive correlation value.
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Chapter 1

Introduction

As defined by Charles Kirkpatrick, in finance, technical analysis through the study
of past market data as price and volume, proposes market study methodologies
for forecasting the price trend [1]. For a trader, using a more reliable tool than
competitors is an important advantage to make better choices. It is for this reason
that the scientific community has always studied this field of research, making it
progress by applying the most advanced mathematical and statistical theories of the
time. A multitude of research have been carried out trying to apply mathematical
and statistical models, for the development of forecast tools. In the last few years
researchers have used extensively machine learning and neural networks to build
models that, starting from a dataset, were able to build models capable of predicting
the trend of financial variables such as price [2][3][4].

While machine learning has already been used extensively by scientific commu-
nity, Topological Data Analysis (TDA) has still found few applications in this field.
TDA is a relatively new field of study in which methods based on topology and
geometry of data are used to analyse big and complex collections of data [5]. One
of the methods belonging to the TDA group, most used to study large and complex
data systems is persistent entropy, which will be exposed and used in this thesis.
Persistent entropy method is particularly appreciated because is able to describe
the global dynamics of a complex system [6]. One of the main works is that of
Marian Gidea and Yuri Katz [7], where TDA is used to detect early warning signals
of imminent market crashes. For a detailed introduction to topology topics, that
will be covered in the following chapters, it is advisable to consult the paper by
Chazal and Michel [8].

The aim of this thesis is to try to understand what happens behind the price
chart of a stock, understanding the dynamics of the exchanges that take place and
transform them into a signal that could be related to the price. Being more aware
of what is happening in the market, that is what and how traders decide to buy or
sell, could be the key to recognizing patterns that were unknown and to use them
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to build better forecasting tools.
In order to study the dynamics that regulate a market, it was decided to build

a model that allows to simulate and to collect data about the exchanges and
financial situation of agents. For this reason a Multi Agent Reinforcement Learning
(MARL) (chapter 4) was built, trained through Reinforcement Learning Algorithms
as PPO (chapter 3.5.3). In this environment, an agent is our model of a trader,
so when we following will say agent, we are referring to a trader who owns shares
and money and is able to act on the market by buying or selling shares with
another agent. The environment allows any number of agents to participate in
the market. However, the limit is computational, in fact increasing the number of
agents increases the time and ram memory required by the process. The choice to
build such an environment allowed us to build a realistic but simplified model of
a real market, which to make simulations and therefore to generate an indefinite
amount of data. Reinforcement learning has already been used in the past to
simulate market dynamics. For example, in the work of Bao and Liu [9] it has been
used in order to find optimal liquidation strategies. Another important work is
that of Yagna Patel [10] where a model has been built that exploits reinforcement
learning to address the problem of optimizing market making. In this case, the
agents are not placed in any particular situation as in the papers mentioned above,
but will face normal auctions for a stock market. Agents will be free to develop
any type of strategy in order to increase their net worth. Reading this article [11]
by Adam King was of fundamental importance for the construction of this model,
helping a lot on how to build the model.

As already mentioned, to analyze the data generated by the environment it
was decided to use TDA, which as shown in [12] is an excellent tool for giving a
geometric representation of complex data sets. As suggested by Marian Gidea [7],
thanks to TDA and in particular to persistent entropy it is possible to detect and
quantify topological patterns that appear in multidimensional time series. In this
case, as will be seen in the last chapter, the agents will be characterized based on
their net worth and based on net worth value they will be represented in space. As
explained later 5.4.5, persistent entropy is used to detect the presence of topological
structures in space and to provide a quantitative measure, that represents the
topological state of the environment at a given moment. In this way it is possible
to transform the topological information in a signal, that, will then be related
with a macro variable, such as the momentum of price, in order to study how the
topological state influences the price trend.

In order to find a relationship between the price and the topological signal, a
thousand simulations of market sessions were held in which ten traders participated
and the data were collected. After carrying out the topological analyzes and
extrapolating the topological signal, the Pearson correlation will be calculated
for each simulation between the topological signal and the moment of the price.
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In order to evaluate the quality of the measurements shown, the Bootstrapping
technique will be used.

Hypotheses will be formulated on the meaning of the correlation between the
two time series and some ways to deepen the research will be suggested in the last
chapter.
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Chapter 2

Related Works

As stated by J. Gong and S. Sun, « Stock market forecasting has always been a
highly appreciated research field due to its volatile, complex and regular changing
nature, making it difficult for reliable predictions » [2]. In fact, it has been studied
by many researchers from different fields, who have tried to understand its nature
by applying the state of the art of their study disciplines. However, it is possible to
divide research into two main areas of study. The first area, called behavioral finance,
analyzes the behavior of investors from a psychological, social and emotional point
of view [13][14] and trying to understand how these factors influence their ability to
make decisions. Second area of study is more technical and concerns the application
of mathematical and statistical models for forecasting of the price trend. In the last
few years, the interest in machine learning has increased and as result it is possible
to find papers in abundance that apply machine learning concepts to the financial
market. For example, Siew and Nordin used regression techniques to predict stock
price trend [3][2][15]. However, these two areas are not strictly separate, but are
often used together by researchers. Sentiment analysis, which seeks to interpret
and classify the emotions of investors, is often used in combination with machine
learning algorithm in order to do more accurate prediction. An example is the
article "Stock Prediction Using Twitter Sentiment Analysis" by Anshul Mittal and
Arpit Goel [16].

A field of research that has grown significantly in recent years is reinforcement
learning and this too was used in the research field of stock market forecasting. It
is important to mention the article by Adam King [11], where an agent is trained
to make the best choice between buying or selling stocks basing on market trends
of a real time series. This project is inspired by Adam King’s article, but has
been extended by adapting it to a multi-agent model. In fact the complexity of
the environment in the financial markets, has encouraged the use of modeling by
multi-agent platforms and particularly in the case of the stock market [17]. It is
already possible to find many papers that use this approach, which allows to find
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effective strategies to increase the benefit of investors in different situations. Agent
models based on reinforcement learning, are very useful because once modeled
and trained the environment allows you to simulate the behavior of investors in
different conditions decided by researchers and to study how these behaviors affect
the market. In fact, the price trend is also determined by the decisions taken
by investors. This offer the opportunity to study the dynamic, heterogeneous
and adaptive behavior of market players and its impact on market dynamics. In
the paper "Multi-agent modeling and simulation of a stock market" addresses
the problem of modeling the market using a multi-agent model, making some
choices similar to those undertaken in this thesis, especially from the point of
view of modeling [17]. As a result, researchers can reproduce the situation of
their interest to find out which are the best strategies to follow. An example is
the paper by W. Bao and X. Y. Liu, where they apply reinforcement learning for
Liquidation Strategy Analysis [9]. There are already numerous published papers
that use reinforcement learning for price prediction [18][19] but another paper
where reinforcement learning has been used in a similar way to this thesis, that
is to simulate the stock market in an artificial way and to collect data is that of
Rutkauskas and Ramanauskas where reinforcemen learning algorithm combined
with some evolutionary selection mechanism [20]. To understand the theory of
reinforcement learning it is convenient to refer to the book "Reinforcement Learning:
An Introduction" written by Richard S. Sutton, Andrew G. Barto [21] which offers
a detailed explanation of the theory of reinforcement learning. For a more concise
explanation, the Open AI Spinning Up site is recommended [22].

As defined by Chazal and Michel, « Topological Data Analysis (TDA) is a
recent and fast growing eld providing a set of new topological and geometric tools
to infer relevant features for possibly complex data » [8]. TDA was also used by
researchers to study the stock market, where the main target in Topological Data
Analysis (TDA) is to find the shape or the underlying structure of shapes in data
[23][12]. TDA can also be used in conjunction with machine learning algorithms.
Currently, in the field of the stock market, TDA has been used mainly to detect
stock crashes, for example D. Basu and T. Li from their work they deduced that
incorporating TDA leads to substantial improvements in timely detecting the onset
of a sharp market decline [15]. Also in the article "Detect-ing stock market crashes
with topological data analysis" [24] the results suggested that the periods of high
volatility preceding a crash produces geometric signatures that can be more robustly
detected using topological data analysis.

As you will read in the following chapters, topological analyzes will be carried
out on a multi agent model of the stock market based on reinforcement learning
algorithms. The two research fields mentioned above will therefore be put together
to study the stock market in a totally new way than in the past. This new approach
will allow to bring together the positive aspects of reinforcement learning and TDA.
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In fact, it will be possible to model an environment with great flexibility, adapting
it to the context you want to analyze. Being a multi agent model, it will be possible
to vary the number of investors in the market. Thanks to TDA, it will be possible
to analyze the agents behaviors from a geometric point of view, going to detect
possible collaborations or indeed competitions between them.
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Chapter 3

Reinforcement Learning

Figure 3.1: View of the relationship
between Supervised Learning, Reinforce-
ment Learning and Unsupervised Learn-
ing. Some fields of study are located at
the intersection of one field of research
and another. Deep reinforcement learn-
ing for example arises from the integra-
tion of neural networks into reinforce-
ment learning models.
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3.1 Introduction
Reinforcement Learning (RL) is a branch of artificial intelligence that trains
algorithms using a system of reward and punishment. The problem involve learning
the best action to take in certain situations so as to maximize a numerical reward
signal. As stated by Sutton and Barto in one of the most complete books on
Reinforcement Learning:

Moreover, the learner is not told which actions to take, as in many forms
of machine learning, but instead must discover which actions yield the
most reward by trying them out. In the most interesting and challenging
cases, actions may affect not only the immediate reward but also the
next situation and, through that, all subsequent rewards [21].

In order to collect a large dataset, we had to build a model that simulated the
dynamics of a real market and allowed us to collect all data. We have chosen
to build a MARL model that exploits reinforcement learning for several reasons.
Firstly, during the training phase, reinforcement learning allows agents to explore
different strategies, allowing them to learn cooperation or competition strategies
that are very interesting to observe in following analyzes. Secondly, a MARL model
is extremely flexible and has allowed us to model the agents and the environment
in which the agents operate, allowing us to vary the number of agents easily.

3.2 Examples
A good way to get to know the philosophy behind Reinforcement Learning is
to consider some of the examples and possible applications that have guided its
development.

• Games - Reinforcement learning has literally become famous in this field of
scientific research. It is often used to find winning strategies that a human
player would not be able to find, even with a high number of moves. Very
famous is the alpha go victory over the go world champion Lee Sedol in 2016
[25]. Another common application is Atari games like Pong, whose input is
raw pixels and whose output is a value function estimating future rewards
[26].

• Traffic Light Control - Reinforcement Learning is used to scheduling of traffic
signals in a vehicular networks, to obtain an efficient traffic signal control
policy. In order to minimising the average delay, congestion and likelihood of
intersection cross-blocking [27].

10
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• Robotics - Reinforcement Learning enables a robot to autonomously discover
an optimal behavior through trial-and-error interactions with its environment.
Instead of explicitly detailing the solution to a problem, in Reinforcement
Learning, a robot can explore the solutions to find and optimal solution [28].

• Chemistry - chooses new experimental conditions to improve the reaction
outcome [29] and to design new molecules with specific desired properties.
This is especially important in material design or drug screening. Currently,
this process is expensive in terms of time and cost: it can take years and cost
millions of dollars to find a new drug. The goal of this study is to partially
automate this process through Reinforcement Learning [30].

3.3 Key Concepts and Terminology
3.3.1 Introduction

Figure 3.2: A single agent reinforce-
ment learning model. The agent per-
forms an action on the environment and
the environment returns to the agent the
new state and the reward. As in a loop
the agent continues to perform actions
until a termination condition such as a
maximum number of actions is reached.

In a single agent RL system there are two actors, the agent and the environment.
The agent is the active part of the system, which carries out the actions on the
environment, receiving from it a reward value which identifies how good the action
was. The sum of all rewards obtained by the agent is called return. Agent’s goal is
to maximize the final return. The agent also collects observations that represent
part of the state of the environment in order to use this information to choose
the next action. Below, the set of actions taken by agent and the states of the
environment will be defined as game. In the training phase, as in a loop, the agent
continues to perform actions on the environment for a finite number of steps or
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until the agent reaches a goal previously imposed as a minimum return threshold.
After the training phase, the agent has collected enough experience to achieve his
goal in many of the situations in which the environment can put him.

3.3.2 States and Observation
A state s contains all the information to describe the current situation of the
environment. Instead, an observation o is a partial description of a state, which
may omit information. Based on the observations it is possible to define as fully
observed an environment in which the agent is able to observe the complete state of
the environment. Instead we say that the environment is fully observed. When the
agent can only see a partial observation, we say that the environment is partially
observed [22].

3.3.3 Action Spaces

Figure 3.3: Atari game: Pong. Very
simple game to model with reinforce-
ment learning. The arrows show the only
two possible actions. At each step the
agent must choose between two possible
actions: up and down.

In the simplest cases, the actions that an agent can do are few and well defined.
For example, in the game of Pong (figure 3.3) an agent must decide to move his
racket either up or down according to the situation that is presented to him. A
slightly more complex case is that of the game of Go, where it is necessary to choose
where to insert a new stone in a set of 2,08 ·10170 positions, that is a finite number of
possible actions but much more numerous. The situations just described are cases
where the action space is discrete and finite. There are other more complex cases,
where the action space cannot be simplified as a discrete space, but a continuous
space must necessarily be used, for example if it is necessary to specify a quantity.

12
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We can formalize an action as a tuple of n values (s1, ..., sn), where each value has
its own domain and expresses information related to the action. For example, in
the game of chess it is necessary to indicate which piece you want to move and
the target box. So the tuple will be (s1, s2) where s1 will indicate the piece to
be moved and s2 the target box. But the values are not always discrete, in more
complex cases they can also be continuous. The distinction between continuous
space and discrete space is very important, because some families of algorithms are
usable in one case and not in the other.

3.3.4 Policies
Policy is the core of the RL problem. As defined in [31] a policy is an action plan
that the agent follows to determine the next action based on the current state. The
policy can be of two types: deterministic or stochastic.

• Deterministic policy: Is a function of the form a = π(s) from the set of states
of the environment, S, to the set of actions, A. For example, in a grid world,
the set of states of the environment, S, is composed of each cell of the grid,
and the set of actions, A, is composed of the actions left, right, up and down.
Given a state s ∈ S, π(s) is, with probability 1, always the same action (e.g.
up), unless the policy changes.

Figure 3.4: Graphical representation
of a deterministic policy, where the gray
boxes indicate the exit and the arrows the
actions indicated by the policy. The ar-
rows indicate the most convenient move
to reach the exit as quickly as possible.
The boxes with two arrows indicate two
possible moves that have the same utility.

13
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• Stochastic policy: A stochastic policy is often represented as a family of
conditional probability distributions, πs(A|S) = P [At = a|St = s, θ], where
each state is associated with a probabilistic distribution function parameterized
by θ.

Figure 3.5: Normal distribution, nor-
mally centered in zero, describes the
probability distribution of taking a given
action by defining s and θ. Where the
parameter θ is a parameter of the nor-
mal function, which is used to define the
function while s characterizes the state,
this function returns the probability of
taking an action.

3.3.5 Episodes
Episodes are also called trajectories τ and are defined by the sequence of states
taken by the environment and by the actions taken by the agent, according to its
policy, since the beginning of the history. τ = (s0, a0, s1, a1, ...). s0 is randomly
chosen by the start-state distribution, denoted by ρ0 [32].

3.3.6 Reward and Return
Reward is a value that the agent gets from the environment after taking an action
on it. Reward function rt = R(st, at, st+1) maps the current state, the action taken
and the consecutive status after the action taken in a value, the reward. It is
therefore extremely important to define this function in order to obtain positive
rewards when the action leads the environment to a desired state and negative
rewards when the actions are not considered useful to achieve the objective. The
goal of the agent is to maximize cumulative function reward over an episode. We
indicate the function with R(τ) which can differ in the following ways:
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• finite-horizon undiscounted return, which is just the sum of rewards
obtained in a fixed window of steps [33]:

R(τ) = rt+1 + rt+2 + rt+3 + rt+4 + ... =
∞Ø
k=0

rt+k+1 (3.1)

• infinite-horizon discounted return, which is the sum of all rewards ever
obtained by the agent [33]:

R(τ) = rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + ... =
∞Ø
k=0

γkrt+k+1 (3.2)

Where γ ∈ (0,1) is a discount factor and is used to give different weights
based on how far ahead we are in the episode. The two benefits of defining
return this way is that the return is well defined for infinite series, and that it
gives a greater weight to earlier rewards, meaning that we care more about
imminent rewards and less about rewards we will receive further in the future.
Intuitively, cash immediately could be better than cash later [34].

3.3.7 Model
In some RL systems is used the model of the environment. The model is a
mathematical object used to simulate the behavior of the environment. The models
are used for planning the actions to be taken, without changing the state of
the environment, considering possible future situations before they are actually
experienced [21].

3.4 The Reinforcement Learning Problem
The goal in RL is to select a policy which maximizes the expected return when
the agent acts according to it. To calculate the expected return value we will have
to define probability distributions over trajectories. Let’s suppose that both, the
environment transitions and the policy are stochastic. In this case, the probability
of a T step trajectory is [22]:

P (τ |π) = ρ0(s0)
T−1Ù
t=0

P (st+1|st, at)π(at|st) (3.3)

The previous formula consists of the multiplication of three parts. The first ρ0(s0)
is the probability of being in the state s0 at the beginning of the trajectory. The
second is the probability that a certain sequence of states can follow one another. In
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fact, it is possible that a certain trajectory is impossible, therefore it has probability
0, if a state cannot follow the previous one. Third is the probability that a certain
trajectory will be implemented following a certain strategy π. In fact, if the agent
does not consider it advantageous to carry out a certain action in a certain state
then the probability will be zero.
The expected return (for whichever measure), denoted by J(π), is then:

J(π) =
Ú
τ

P (τ |π)R(τ) (3.4)

The central optimization problem in Reinforcement Learning can then be expressed
by:

π∗ = arg max
π

J(π) (3.5)

3.4.1 Value Functions
Value function is a function that, defined a policy, given a state, returns a value
that represents the quality of a state if the agent were acted following the defined
policy. For example, in the figure 3.6, you can see how the values decrease as you
move away from the end box. The concept of value function is really important, in
fact is used, in different ways, in almost every Reinforcement Learning algorithm
[35].

As reported on the Open AI Spinning Up website [35], there are four types of
Value Functions, listed below:

• The On-Policy Value Function, V π(s), which gives the expected return if you
start in state s and always act according to policy π:

V π(s) = E
τ∼π

[R(τ)|s0 = s] (3.6)

• The On-Policy Action-Value Function, Qπ(s, a), which gives the expected
return if you start in state s, take an arbitrary action a (which may not have
come from the policy), and then forever after act according to policy π:

Qπ(s, a) = E
τ∼π

[R(τ)|s0 = s, a0 = a] (3.7)

• The Optimal Value Function, V ∗(s), which gives the expected return if you
start in state s and always act according to the optimal policy in the environ-
ment:

V ∗(s) = max
π

E
τ∼π

[R(τ)|s0 = s] (3.8)
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Figure 3.6: Graphical representation
of an example of Value Function. Agent
’s goal is to go from start to exit. In
the boxes there is a value indicating how
convenient it is to be in that box. The
boxes closest to the exit have higher val-
ues than the more distant ones or the
boxes that are in a wrong path.

• The Optimal Action-Value Function, Q∗(s, a), which gives the expected return
if you start in state s, take an arbitrary action a, and then forever after act
according to the optimal policy in the environment:

Q∗(s, a) = max
π

E
τ∼π

[R(τ)|s0 = s, a0 = a] (3.9)

Knowing the optimal value function and its definition, it is very easy to deduce
the best action to take following the optimal policy. In fact starting in s, the best
action is the following:

a∗(s) = arg max
a

Q∗(s, a) (3.10)
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3.4.2 Bellman Equations
The Bellman equations are ubiquitous in RL and are necessary to understand how
RL algorithms work. The importance of the Bellman equations is that they let us
express values of states as values of other states. This means that if we know the
value of st+1, we can very easily calculate the value of st. This opens a lot of doors
for iterative approaches for calculating the value for each state, since if we know
the value of the next state, we can know the value of the current state [34]. The
Bellman equation for a Policy π is:

V π(s) =
Ø
a

π(s, a)
Ø
sÍ
PaSSÍ [Ra

SSÍ +π (sÍ)] (3.11)

where P is the transition probability. If we start at state s and take action a we
end up in state s’ with probability PassÍ :

PaSSÍ = Pr(st+1 = sÍ|st = s, at = a) (3.12)
and Ra

ssÍ is another way of writing the expected (or mean) reward that we receive
when starting in state s, taking action a, and moving into state s’.

Ra
ssÍ = E[rt+1|st = s, st+1 = sÍ, at = a] (3.13)

Instead, the Bellman equation for the action value function is:
Qπ(s, a) =

Ø
sÍ
PaSSÍ [Ra

SSÍ +
Ø
aÍ

π(sÍ, aÍ)Qπ(sÍ, aÍ)] (3.14)

3.5 Kinds of RL Alghorithms
The main property that differentiates Reinforcement Learning algorithms is the
presence or absence of a model. Algorithms that use a model are called model
based, those that don’t use it are called model free. [36]

3.5.1 Model based properties
The algorithms that can leverage a model of the environment are often much more
efficient than those that can’t. An example is AlphaZero which uses a model-based
algorithm. These algorithms are much more performant, because they have the
possibility of making better choices, because they can test their choices on the
model to see what reactions they will have in the future. To do this, however,
it is necessary to have a perfect model of the environment. If this is absent it is
necessary to build the model from experience and this is not always feasible. The
main problem is that there is a risk that agents learn to perform well on the model
learned and not on the real environment. « Model-learning is fundamentally hard,
so even intense effort—being willing to throw lots of time and compute at it can
fail to pay off » [36].
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Figure 3.7: Graphical representation of taxonomy of algorithms in modern
RL [37]. In this figure, the division between model-free and model-based
is very clear. In this thesis we will use the PPO algorithm that descends
from the policy optimization algorithms which is of the model-free type.

Figure 3.8: An example of a workflow
of a model based algorithm [38]. As you
can see in the figure, there is a model
which is updated at each step and which
simulates the policy.
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3.5.2 Model Free properties
Model free algorithms mainly use two different techniques: Q-Learning and Policy
Optimization. As part of this project, an algorithm called PPO was used, which is
part of the Policy Optimization algorithms. In order to understand the difference
between the two techniques, it is necessary to define the difference between off-policy
and on-policy. As excellently defined by David Poole and Alan Mackworth: « An
off-policy learner learns the value of the optimal policy independently of the agent’s
actions. Q-learning is an off-policy learner. An on-policy learner learns the value
of the policy being carried out by the agent, including the exploration steps » [39].
The Q-Learning algorithms are always off-policy algorithms, where we try to find
the action that maximizes the Qθ(s, a).

a(s) = arg max
a

Qθ(s, a) (3.15)

Policy Optimization algorithms are always on-policy algorithms, where as re-
ported in [40] « Methods in this family represent a policy explicitly as πθ(a|s). They
optimize the parameters θ either directly by gradient ascent on the performance
objective J(πθ), or indirectly, by maximizing local approximations of J(πθ) ».

3.5.3 Proximal Policy Optimization - PPO
In recent years, researchers have focused mainly on the study of algorithms be-
longing to the family of policy optimization. What they were looking for was
an algorithm that could overcome the problems of existing algorithms. In fact,
Q-learning fails in many simple problems and is difficult to understand. Vanilla
policy gradient methods have poor data effiency and robustness; and trust region
policy optimization (TRPO) is relatively complicated, and is not compatible with
architectures that includes noise [41]. These needs led to the formalization of a new
family of algorithms called Proximal Policy Optimization (PPO). The basic idea of
PPO is that one performs not just one but multiple minibatch gradient steps with
the experience of each iteration [42]. As stated by Schulman in his research, based
on experiments test PPO on a collection of benchmark tasks, including simulated
robotic locomotion and Atari game playing. He shows that PPO outperforms other
online policy gradient methods, and overall strikes a favorable balance between
sample complexity, simplicity, and wall-time [41].
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3.6 Multi Agent Reinforcement Learning - MARL
3.6.1 Introduction
Multi Agent systems are an approach to building complex distributed applications.
A multi agent system consists of a population of autonomous entities (agents)
situated in a shared structured entity (the environment)[43]. The agents can have
cooperative, competitive, or mixed behaviour in the system [44].

Figure 3.9: Illustrative figure of a Multi
Agent System. In the figure there are
n agents who carry out actions in the
environment and receive rewards and ob-
servations. The model is very simple, it
extends the single agent model by adding
other agents.
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3.6.2 Environment
Intuitively, the environment can be seen as a place where agents interact with
domain objects and resources, and with other agents. As reported in [45], important
responsibilities of the environment are as follows.

• Structuring: The environment is first of all a shared common ‘space’

• Managing resources and services: The environment acts as a container for
resources and services

• Maintaining environmental processes: Besides the activity of the agents, the
environment can assign particular activities to resources as well.

• Enabling communication: The environment defines concrete means for agents
to communicate. The most used scheme is a message-passing style from one
agent to the other.

• Ruling the multiagent system: The environment can define different types of
rules or laws on all entities in the multiagent system.

• Providing observability: The environment must be observable, agents must
have access to resources and services. Agents may even be able to observe the
actions of other agents; to be accessed. Resources are objects with a specific
state.

3.6.3 Policies
Compared to a single agent scenario where the agent has only one policy, in multiple
agent scenarios it is possible to model agents with different criteria, in order to make
them react to events differently. For example, if we wanted to model traffic, we
would have to think differently about cars than bicycles, for this purpose it is logical
to assign different policies to agents who have different roles in the environment.

3.6.4 Examples of MARL applications
MARL systems allow to model different aspects of an environment and agents with
different characteristics. For this reason they come much closer to a real scenarios
than a single agent system. MARL systems have already been applied to different
contexts by scientific research, some of these have already been documented and
reported below [44]:
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Figure 3.10: The figure represents the difference between a SingleAgen-
tEnv and a MultiAgentEnv. In particular, multiple agents are present in a
MultiAgentEnv. Each agent can either have their own policy or share the
policy with another agent [46].

• Online Distributed Resource Allocation: Applying MARL to come up with
effective resource allocation in a network of computing [47].

• Cellular Network Optimisation: Applying MARL in LTE networks, guide base
stations to maximise mobile service quality [48].

• Smart Grid Optimisation: Applying MARL to control power flow in an
electrical power grid with optimum efficiency [49].

• Smart Cross Light: Applying MARL to control traffic lights to minimise wait
time for each car in a city, making them more adaptable based estimates of
expected wait time [50].
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Chapter 4

Multi Agent Stock
Exchange Environment

4.1 Introduction - The Stock Market
«A stock market, equity market or share market is the aggregation of buyers and
sellers of stocks (also called shares), which represent ownership claims on businesses»
[51].

The concept behind how the stock market works is pretty simple. Operating
much like an auction house, the stock market enables buyers and sellers to negotiate
prices and make trades.

Buyers offer a bid or the highest amount they’re willing to pay, which is usually
lower than the amount sellers ask for in exchange. This difference is called the
bid-ask spread [52].

To create a model of a stock market close to reality, we have chosen to use a
MARL system, because it allows the interaction of multiple agents, just as happens
in real stock markets. The environment allows us to simulate auctions where it is
possible to choose all the starting parameters. It is therefore possible to choose
the number of agents participating in the auctions, the number of auctions in a
game to which they must participate and also the starting conditions with which
the agents will have to deal.

Great attention was paid to respect the main characteristics and methods that
regulate the environment in order to ensure a good consistency with the real world.

Once all the parameters have been set and the environment has been trained,
agents can play a large number of games and collect the data. What we want to
observe is the presence of patterns that are repeated during the game and how
they influence the price trend. By pattern we mean precise strategies adopted by
agents to ensure the highest possible reward at the end of the game. Agents could
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for example learn when the share price will drop and adopt buffering strategies.
In literature there are, for example, models such as that of Lotka-Volterra [53]
or predator prey model, where two populations of different classes follow precise
models of growth or decrease in the size of the population.

4.2 Agent
An agent is a model of a stock trader. An attempt has been made to represent
the conditions as close as possible to reality, but this is made impossible by the
computational limits and the impossibility of representing all the factors considered
in a trader’s decisions, like personal and emotional characteristics. In the real stock
market agents can interact with each other by buying and selling different stocks,
but in this model it was chosen to analyze the behavior of agents focusing on a
single stock, therefore limiting the number of actions that they can perform, but
leaving the possibility of extending the project also implementing this functionality
hereafter.

An agent is characterized by its attributes, exposed in the next chapter 4.2.1.
Attributes are values that define some properties of the agent such as balance and
the number of shares held, which, based on the current share price, will shape its
ability to act on the market. It’s very important to define it coherently with the
scenario that you want to study.

In this case the dynamic we want to analyze is that of buying and selling shares
among agents. It is therefore important to immediately clarify the way with which
a transaction takes place and what are the degrees of freedom with which an agent
can act. In fact, an agent can only make an offer to sell or buy shares. The
transaction occurs only when a purchase offer is consistent with a sale offer. It’s
called bid an offer that proposes to buy shares, while ask an offer that proposes to
sell shares. The transaction will only occur when an agent has made a bid with a
higher price than an ask, that is, when an agent is willing to sell at a lower price
than another agent wants to buy. The transaction price will be the ask price and
the current price will also be updated with the current transaction price.
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4.2.1 Attributes
All agents are modeled in the same way, have the same initial skills and compete
in the market with the same initial resources. In particular, the attributes that
define the financial state, initialized with standard values, are:

1. nshares indicates the number of shares owned by the agent and it is always a
positive integer.

2. balance indicates the amount of cash in £ owned by the agent.

3. net worh indicates the value owned by the agent. It consists of the sum of the
balance and the number of shares for the price at that precise moment.

The value with which the balance and the number of shares are initialized is very
important, because it defines the context in which the agents will act. Obviously
if the value of the initial balance is very low compared to the price of the initial
shares, the agents will find themselves in a situation of scarcity, on the contrary,
if they have a lot of balance available, they will find themselves in a situation of
abundance, this will lead them to develop different strategies, coherent with the
environment. It is therefore very important to define in which situation the agents
are made to live. In the case of our analyzes, it was decided to initialize the balance
at one thousand and the number of shares held at one hundred, the agents will
therefore start playing in a situation of abundance.

4.2.2 Action Space
An agent can only do 3 actions: buy, sell and wait. if it decides to buy it fixes a
bid, if decides to sell it fixes an ask.
In order to buy or sell, the agent must be able to indicate the type of action, The
amount of shares he decided to sell or the amount of money he decided to invest,
and the price chosen. The action is modeled through a tuple of three continue
values thus constructed: [a, b, c]:

• a ∈ [0, 3] indicate the type of the action.

– a ∈ [0, 1] the action chose is buy;
– a ∈ (1, 2] the action chose is sell;
– a ∈ (2, 3] the action chose is wait;

• b ∈ [0, 0.5]

– if a ∈ [0, 1] then b indicates the percentage of the balance that the agent
intends to invest in the purchase of new shares;
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– if a ∈ (1, 2] then b indicates the percentage of the owned shares that the
agent intends to sell;

• c ∈ [-1, 1] it indicates the percentage change in price from the current price

– if a ∈ [0, 1] the chosen price indicates the maximum price that an agent
is willing to pay to buy a share;

– if a ∈ (1, 2] the chosen price indicates the minimum price that an investor
is willing to accept if he decides to sell his own shares;

4.2.3 Observation Space
Observation space is defined as a continuous set of normalized values bounded
between 0 and 1, with the shape (6, lookback-window-size + 1). For each agent
and for each time step in the window, we will observe the following value:

• the current price: It is the current stock price;

• balance: It is the amount of cash held by the agent;

• shares held: It is the number of shares owned by the agent and it is always an
integer value;

• total shares sold: It is the total number of shares owned since the beginning
of the epoch;

• maximum net worth value reached: The net worth is the sum of the balance
and the value of the shares owned by the agent. This value stores the maximum
value reached by net worth of the agent;

It has been chosen to use these attributes as observations, because they can give
a representation of the agents’ current financial situation and history. By default
lookback-window is set to 10, so for each step the agent will observe the values of
the above variables in the previous ten days. In this way, agents will be able to
observe the trend over time of the environment, returning a behavior more similar
to that of a real agent, in fact a trader always observes the price trend over time.
Based on past experience, agents will be able to recognize patterns and develop
strategies.
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4.2.4 Step

A step consists of three phases:

• The first one is decided by the agents, in which they can perform their actions
and therefore make their bets, which will be collected in an Order Book;

• The second in which, based on the bets made, the environment performs the
matching engine and solves the Order Book;

• The third in which the outcome of the transactions is finally distributed among
the agents and the corresponding rewards are calculated.

4.2.5 Reward function

The reward function is the function according to which the environment returns
feedback of the goodness of the action taken by the agent. It is important to indicate
to agents which behaviors are considered positive and which are less positive or
negative. The last thing to consider is reward function that is:

R = (2 · networth− initialnetworth− pastnetworth) · γ (4.1)

γ = currentstep

MAXSTEPS
(4.2)

The reward function focuses on the value of net worth. Recall that the value of the
net worth is given by the sum between the balances and the value of the shares held.
Was chosen to use net worth as core of reward function because it fully represents
an agent’s financial status. The reward value is therefore positive if the current net
worth is greater than the initial value and the previous value. The purpose of γ is
to allow to explore during the first steps and to be more cautious during the last
steps. This function wants to incentives choice that brings profits during a long
period of time. In fact, the agents will be free to make risky moves at the beginning
of a game precisely because γ will be a very small value and therefore any negative
reward will not be so decisive. During the first steps the agent will be able to
explore more risky moves. While at the end of the game gamma will be close to
one and therefore it is better not to take risks. In order to better understand the
behavior of the agents that will be seen in the following chapters, it is necessary to
note that the value of the net worth is directly proportional to the value of the
price of the shares. When the share price increases, the net worth also increases.
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4.3 Multi Agent Environment
4.3.1 Introduction
In this section, will be explained how agents interact with each other and how
transactions actually take place. This role is entrusted to the MultiAgentEnv
class which acts like a real Stock Market, receiving bids and asks and making
transactions. At the beginning of a trading session the market reset all agent
parameters and chooses randomly an open price between a determined range of
values. The price is different for each epoch in order to always provide different
scenarios during the training phase.

4.3.2 Step
The step simulates a trading session, with a first phase in which the agent make
their bet by adding a bid or ask to the book and a second session in which the
book is resolved.

During the first phase, the bet-an-offer-wrapper method of the agent, is called
for each agent in order to give everyone the opportunity to bet based on current
environmental conditions such as the share price.

During the second phase, stock market, as we will see in the next section, will
take care of solving the book of bets, after which it will call the step method in
which it will pass the transactions that took place, in order to update the portfolio
of agents that get involved in a transaction.

4.3.3 Price Disturbance
In economics and in the stock market, there are external factors, called exogenous
variables that are capable of disturbing the price of shares. There are extremely
negative events such as wars, crises and pandemics that can bring the share price
down, but also positive situations that can quickly raise the share price. To have
a similar effect, a function called random walk was used. Random Walk is a
mathematical function that takes a random value at each step, given by the sum
of the previous value and the value assumed by a stochastic function. As his name
suggests, his behavior is very similar to that of a walk in which each step is done
randomly [54] [55].

In this case the function used has this form:

α = α +N (0,0.1) (4.3)

price = price + price · α (4.4)
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The reason why we chose to use the random walk was his ability to maintain his
value for some time steps. We will therefore never have rapid positive or negative
changes. If alpha becomes positive, it may turn negative but it is likely that it will
remain positive for some time. This type of behavior is visible in 4.1

Figure 4.1: Example of eight Random
Walks starting from 0 [56]. From the
figure it is easy to understand that each
step takes the previous one as a starting
point, making a random choice both on
the direction and on the amplitude of the
next step.

Alpha will not have the opportunity to act on the price at each step, but can
act, based on a random choice only in certain steps. In the analyzed case, it was
decided to make alpha act only every 100 or 150 steps, in order to not make these
phenomena permanent but related only to specific moments and to understand the
strategies that agents put in place to respond to these events.
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4.3.4 Order Book - Matching Engine
In the first phase of a step, the agents set their own bet, a bid or an ask, which
are collected within a structure which is called order book. At this point it is
important to specify that agents cannot decide with which other agent to carry out
the transaction, but they will only be able to decide the quantity of shares they
want to buy or sell and the price at which they are willing to buy or sell. Once all
the bets have been collected, it will be the order matching system, an automatic
algorithm to match asks and bids and to carry out transactions.

The first step that the order matching system carries out is to sort the bids by
decreasing price and ask by increasing price obtaining a situation like the one in
Figure 4.2.
The purpose of the sort is to satisfy first who is willing to spend more than others

Figure 4.2: A list of bids and a list of asks sorted by
price. Bids are sorted by decreasing price while asks are
sorted by increasing price.

to buy and who is willing to sell by offering the lowest price by beating competitors.
By calling bp the price offered by the generic buyer and ap the price offered by the
generic seller, then a transaction can only take place if bp >= ap, that is, if the
buyer is willing to spend more than the seller expects to receive.

Each agent can be involved in multiple transactions respecting the only constraint
of bp >= ap. In this case we chose to set the transaction price at the price offered
by the seller.

For example in figure 4.3 we can see how the order matching system would have
solved the offers in the book of figure 4.2. We can see how agent A0 buys 10 shares,
buying 5 shares from A1, at the best available price and 5 shares from A4.
At the end of each step the share price is updated by making a weighted average
of the transactions that have taken place. In the case of the transactions shown in
figure 4.3 the price will be updated to the value

pricet+1 = 1.98 · 5 + 2.05 · 5 + 2.05 · 2 + 2.09 · 3
15 = 2.03 (4.5)

32



Figure 4.3: List of transaction obtained
from the solution of bids and asks. agent
A0 makes two transactions, one with
agent A1 and agent A4.





Chapter 5

Library used

5.1 Introduction

In the previous chapter, MARL model was exposed from a theoretical point of
view, in particular the reasons and the ways in which the agents act within the
environment. In this chapter, you will see how this model has been implemented
in practice. In particular we will see all the libraries that have been used and what
role they play.

In this chapter, however, we will explain how the model was implemented in
practice. As mentioned in the introduction, to build the model we started from the
single agent model built by Adam King and exposed in [11], making substantial
changes and making it a MARL model. The example exposed by Adam King was
very important because it explained how to implement in practice a model that
exploits reinforcement learning using very complete existing libraries. Another
important source was the documentation of the Ray library [57], which excellently
explains how it is possible to build a reinforcement learning environment by putting
together different libraries. Figure 5.1 illustrates the stack of libraries, showing
how they are put in communication with each other. At the base of the stack
there is Ray, which makes it possible to distribute the execution of the code, but in
this project no use was made of these features. Immediately above is RLlib which
provides a large and updated set of algorithms and all the abstractions necessary
to train an environment. At the top instead we find Gym that provides classes to
build your own environment and many examples to be inspired by.
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Figure 5.1: Stack of libraries [58]. The stack is divided
into three levels: distributed execution, abstractions for
RL and application support.

5.2 Gym
Gym is a toolkit for developing and comparing reinforcement learning algorithms
[59]. The library is a collection of test problems environments that you can use
to work out your reinforcement learning algorithms. These environments have a
shared interface, allowing you to write general algorithms.

5.2.1 Gym’s interface
[60] The core gym interface is env, which is the unified environment interface. The
following are the env methods that would be quite helpful to us:

• env.reset(): Resets the environment. The process gets started by calling
reset(), which returns an initial observation.

• env.step(action): Step the environment by one timestep. Returns:

– observation (object): an environment-specific object representing your
observation of the environment. For example, pixel data from a camera,
joint angles and joint velocities of a robot, or the board state in a board
game.

– reward (float): amount of reward achieved by the previous action. The
scale varies between environments, but the goal is always to increase your
total reward.

– done (boolean): whether it’s time to reset the environment again. Most
(but not all) tasks are divided up into well-defined episodes, and done
being True indicates the episode has terminated. (For example, perhaps
the pole tipped too far, or you lost your last life.)
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– info (dict): diagnostic information useful for debugging. It can sometimes
be useful for learning (for example, it might contain the raw probabilities
behind the environment’s last state change). However, official evaluations
of your agent are not allowed to use this for learning. [59]

• env.render(): Renders one frame of the environment, helpful in visualizing the
environment.

5.3 RLlib

5.3.1 RLlib: Scalable Reinforcement Learning
RLlib is an open-source library for reinforcement learning that offers both high
scalability and a unified API for a variety of applications. RLlib natively supports
TensorFlow, TensorFlow Eager, and PyTorch, but most of its internals are frame-
work agnostic [58]. To better understand the potential of the Rllib library, it is
recommended to refer to the article by Eric Liang [61].

5.3.2 Policy
Policies are a core concept in RLlib. In a nutshell, policies are Python classes that
define how an agent acts in an environment. Rollout workers query the policy to
determine agent actions. In a gym environment, there is a single agent and policy.
In vector envs, policy inference is for multiple agents at once, and in multi-agent,
there may be multiple policies, each controlling one or more agents [62].

The policy class of rllib library is shown in figure 5.3 and it is visible how the
policy class is made up of three objects: Model, Action Distribution and Policy
Loss.

Figure 5.2: The figure represents the relationship with the policy of
a gymEnv object, a VectorEnv and a MultiAgentEnv [62]. While the
agents of a VectorEnv must share the policy and therefore only one will be
present, in a MultiAgentEnv, there can be categories of different agents
characterized by different policies.
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5.3.3 RLlib Training APIs
Figure 5.3 shows the workflow of a worker, that is, of the class that takes care of
running the environment. The figure highlights the classes that are editable in
green and those that are not in purple, showing the great flexibility of the RLlib
library. At a high level, RLlib provides a Trainer class which holds a policy for

Figure 5.3: Block model of a worker workflow [63]. A worker is
an instance of the model that has editable components such as the
environment and user-editable components.

environment interaction. Through the trainer interface, the policy can be trained,
checkpointed, or an action computed. In multi-agent training, the trainer manages
the querying and optimization of multiple policies at once.

Figure 5.4: The figure shows how the trainer class that deals
with improving the policy can simultaneously manage multiple
workers each with their own environment[64]

.
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You can train a simple DQN trainer with the following command:

rllib train --run DQN --env CartPole-v0

5.3.4 Evaluating Trained Policies
In order to save checkpoints from which to evaluate policies, set –checkpoint-freq
(number of training iterations between checkpoints) when running rllib train.

An example of evaluating a previously trained DQN policy is as follows:

rllib rollout \
~/ray_results/default/DQN_CartPole-v0_0upjmdgr0/checkpoint_1/checkpoint-1 \
--run DQN --env CartPole-v0 --steps 10000

5.3.5 Tune: Scalable Hyperparameter Tuning
[65] Tune is a Python library for experiment execution and hyperparameter tuning
at any scale. Core features:

• Launch a multi-node distributed hyperparameter sweep in less than 10 lines
of code.

• Supports any machine learning framework, including PyTorch, XGBoost,
MXNet, and Keras. See examples here.

• Visualize results with TensorBoard.

5.4 Giotto-tda
Topological Data Analysis (TDA) uses tools from algebraic and combinatorial
topology to extract features that capture the shape of data[66] [5].In recent years,
algorithms based on topology have proven very useful in the study of a wide range
of problems. In particular, persistent homology has had significant impact on data
intensive challenges[66]. Giotto-tda is a high-performance topological machine
learning toolbox in Python built on top of scikit-learn and is distributed under the
GNU AGPLv3 license. It is part of the Giotto family of open-source projects. [67]
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5.4.1 Simplicial and Simplicial Complex
As excellently defined by C. Kelleher and A. Pantano [68]: an n-simplex is a
geometric object with (n + 1) vertices which lives in an n-dimensional space (and
cannot fit in any space of smaller dimension). The vertices of the simplex generate
the simplex through a simple geometric construction which we illustrate below.
The idea is easy: one vertex generates a point, two vertices generate a segment (by
connecting the two points), three vertices generate a triangle (by connecting every
pair of points with segments and filling the space in between) and so on.

Figure 5.5: Simplexes of increasing size [68]. a 0-simplex is a point, a
1-simplex is a line segment, a 2-simplex is a triangle, a 3-simplex is a
tetrahedron.

Instead, a simplicial complex K is a collection of simplices such that:

• If K contains a simplex σ, then K also contains every face of σ.

• If two simplices in K intersect, then their intersection is a face of each of them.
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Figure 5.6: An exam-
ple of Simplicial Com-
plex. It is composed of
points, line segments, tri-
angles and a tetrahedron.

41



Library used

5.4.2 Persistent Homology
Persistent homology is one of the main tools in TDA. It measures the presence of
topological invariants like connected components, holes, and voids across varying
length scales. The birth and death of these invariants is summarised via a persistence
diagram or a persistence barcodes, which is the most common and intuitive way to
generate new types of features to feed to downstream machine learning tasks [69].

Figure 5.7: The filtration process applied to a 2-dimensional point cloud.
At each step m, the distance threshold Ô is increased, in fact, the circle
around the point gets bigger and bigger. Each bar indicates a topological
structure. At the first step there are as many b0 bars as there are points.
By increasing the Ô threshold, the b0 structures are destroyed and generate
new b1 structures. The bars indicating the point of birth and death [70][71].

Taking figure 5.7 as a reference, where there is a simplicial complex K, as
explained by Christian Block [70], a filtration is a process in which K grows as the
epsilon threshold increases. In fact, as the threshold increases, as you can clearly
see in figure, connected components are destroyed and new ones are formed. It is
now possible to define the birth of a topological features as the epsilon value to
which it was formed, while death is the epsilon value to which the component was
destroyed. In the persistence barcodes, there will therefore be as many bars as
there are topological features that are generated in the simplex.
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5.4.3 From data to persistence diagrams
The first step is to represent the data as points in the space having coordinates
(x, y, z). The set of points thus represented form a point cloud, as shown in figure
5.8, from which it is possible to extract important information. A good way to
visually represent the information of the persistent homology is to use a collection
of points represented on a Cartesian plane, where the x axis represents birth and
the y axis death [72]. As we can see in figure 3.4, the points that are on the dotted
line are the points that arise and die immediately, while a point that is at the top
of the line is a long-lived topological feature. The color of the points indicates the
dimension of the topological features. For example, a 0-dimensional topological
feature is a connected component or cluster, a 1- dimensional topological feature is
a hole, and so on as reported in [73].

Figure 5.8: A point cloud for a
set of data. Figure 5.9: Persistence diagram

of the point cloud in the previous
figure. Connected components
(H0) are shown in red, holes (H1)
in cyan, and voids (H2) in purple.

Thanks to Giotto library it is possible to calculate the persistent diagram simply by
using the VietorisRipsPersistence function as follows where X windows is a point
cloud:

1 homology_dimensions = (0 , 1 , 2)
2 VR = V i e t o r i s R i p s P e r s i s t e n c e ( metr ic =’ euc l idean ’ , max_edge_length=100 ,

homology_dimensions=homology_dimensions )
3 X_diagrams = VR. f i t_t rans fo rm (X_windows)
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5.4.4 Sliding Windows
Sliding Windows is useful in time series analysis to convert a sequence of objects
(scalar or array-like) into a sequence of windows of the original sequence. Each
window has a width and stacks together consecutive objects, and consecutive
windows are separated by a constant stride. This method is useful for segmenting
a sequence of objects and analyzing them one by one. In fact, it is possible to
study the evolution of the different topological features that may be present in the
windows of a time series. To learn more about this technique it is useful to read
Perea’s work [74].

Figure 5.10: An example of the sliding window technique applied to a time
series. The meaning of the width and stride parameters are highlighted.
The width of the window indicates the number of time steps that are
analyzed, while the stride is the number of time steps that is moved
forward the window.

With Giotto library it is possible to obtain a sequence of windows as follows:.

1 window_width = 40
2 window_stride = 10
3 SW = SlidingWindow ( width=window_width , s t r i d e=window_stride )
4 X_windows = SW. f i t_t rans fo rm ( point_cloud )

44



Library used

• width (int, optional, default: 10) – Width of each sliding window. Each window
contains width + 1 objects from the original time series.

• stride (int, optional, default: 1) – Stride between consecutive windows.

There is no method for choosing the parameters optimally, but the choice should
be made on the basis of the sequence of data to be analyzed.

5.4.5 Persistence Entropy
Persistent entropy is a summary statistic of the information obtained from the
persistent homology.

As defined in [75] Persistent entropy is an stable topological statistic [76] and
can be seen as an adaptation of Shannon entropy (Shannon index in ecology) to the
persistent homology context. Given a barcode without infinite bars B = [ai, bi]i =
1...n consider the length of the bars li = bi − ai and their sum L(B) = l1 + ... + ln.
Then, its persistent entropy is:

PE(B) =
nØ
i=0
− li

L(B) log li
L(B) (5.1)

in the following chapter, entropy will be differentiated into PE1, PE2 and PE3
and will refer to homologies of sizes 0,1 and 2.

Persistent entropy therefore makes it possible to transform the persistent diagram
into a quantitative measure.
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Chapter 6

Experiments and Results

In order to understand how agents behave in different contexts, focusing on aspects
of collaboration and competition, the model has been trained in two different
scenarios: without external perturbation and with external perturbation. This
chapter discusses about the analyzes that have been carried out in this two scenarios.
The first section describes the implementation of the environment and in particular
how it was trained and how the data was collected. The second section discusses
the scenario in which there is no price perturbation. In the third, however, we will
consider an alpha coefficient that disturbs the price. In both cases, we will try to
understand how the agents’ behavior is linked to the price trend. In the first case
we will discover, thanks to game theory, that the agents collaborate. In the second,
thanks to TDA, that there is a direct correlation between persistent entropy and
price momentum.

6.1 Implementation
This paragraph explains in more specifically how the model shown in chapter 4
was implemented from a technical point of view. When setting the parameters of
the environment and agents, it is important to be consistent with the scenario that
needs to be analyzed.

It is necessary to set the initial parameters of the agents, defined in 4.2.1, such
as the balance and the number of shares. But it is also necessary to set the common
parameters, such as the initial price of the shares and the space to be given to agents
in the actions they can take. In fact, it must be decided, the maximum quantity
of shares that an agent can sell or want to buy and the maximum price variation,
from the current price, with which to make the bet. Important parameters to keep
in mind are the number of agents participating in the game and the number of
steps that make up a game.
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In this model two equal scenarios have been studied, the only difference being the
presence of an exogenous variable (4.3.3) which disturbs the price. In particular,
10 agents were chosen with balance set at 1000 and number of shares at 100. The
initial price of the shares is a random value between 1 and 5. We chose these values
to give all agents the same initial financial position, with a good chance to buy
or sell shares, thus starting from a situation of abundance. In fact, our interest is
not to study how one agent manages to win over another, but to study how the
relationships between agents are reflected in the share price and how they manage
to respond to external disturbances, ensuring as little economic damage as possible.
Each game consists of 1000 steps in which the agents are called to perform an
action, in which they will be able to buy or sell a quantity of shares equal to half
of those owned at a price having a maximum variation of 10 percent with respect
to the current price.
Before collecting data from the environment it is necessary to train the agents.
The training phase is carried out using the Tune library which reports all the
parameters of the policy and the rewards, including the maximum, average and
minimum rewards obtained in a game. The environments that were used in the
data collection were trained until the parameters obtained as outputs were stable.

6.2 First Experiment (without price pertubation)
The first simulations were carried out without the presence of an exogenous variable
that modifies the price of the shares. The price is therefore determined only by the
transitions that take place between the agents. Recall that in this model agents
can act on only one stock, and therefore it is impossible to observe particularly
clever strategies. We also remind you that the agents’ goal is to maximize the
reward and that the formula used to calculate the reward shown in paragraph 4.2.5
is based on the net worth which is directly linked to the share price.

6.2.1 Price always grows, why?
Carrying out these analyzes, the first thing that can be noticed is that during the
game the price of the shares always rises. In fig 6.1 we can see how in 1000 steps
the price has almost tripled.

It might seem like an anomalous behavior, but also looking at figure 6.2 we
can see how the net worth of agents generally has a growing trend. The agents
may have understood that by increasing the share price their net worth grows and
therefore they manage to obtain positive rewards.

To provide theoretical justifications for this behavior, was used game theory to
allow us to simplify our model and study agent choices. From game theory we
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Figure 6.1: Example of the price trend
during a one thousand steps game. As
it is possible to observe the price in-
creases rapidly without ever decreasing,
this means that agents tend to always
bet bids or asks with a raised price.

Figure 6.2: Example of the net worth
trend of agents during a one thousand
steps game. The game to which this
figure refers is the same to which the
figure 6.1 refers. In this figure it is visible
how the value of the net worth directly
correlated with the price of the shares.
Increasing the value of the shares means
increasing the value of the net worth and
therefore generating positive rawards.

understood that the choice of agents to raise the share price is rational. Game
theory and the simplified model are set out in the following paragraphs.

6.2.2 Game Theory
Game Theory is a mathematical concept, which deals with the formulation of
the correct strategy that will enable an individual or entity (i.e., player), when
confronted by a complex challenge, to succeed in addressing that challenge [77]. As
defined by Giacomo Bonanno in the introduction of his book on game theory [78]:

Game Theory provides a formal language for the representation and anal-
ysis of interactive situations, that is, situations where several “entities”,
called players, take actions that affect each other. The nature of the
players varies depending on the context in which the game theoretic
language is invoked: in evolutionary biology (see, for example, John
Maynard Smith, 1982) players are non-thinking living organisms;1 in
computer science (see, for example, Shoham-Leyton-Brown, 2008) players
are artificial agents; in behavioral game theory (see, for example, Camerer,
2003) players are “ordinary” human beings, etc. Traditionally, however,
game theory has focused on interaction among intelligent, sophisticated
and rational individuals. For example, Robert Aumann describes game

49



Experiments and Results

theory as follows: « Briefly put, game and economic theory are concerned
with the interactive behavior of Homo rationalis – rational man. Homo
rationalis is the species that always acts both purposefully and logically,
has well-defined goals, is motivated solely by the desire to approach these
goals as closely as possible, and has the calculating ability required to do
so. » (Aumann, 1985, p. 35.)

6.2.3 Game definition

Let G be a game. Usually G is characterized by the following components:

• The agents who play the game and who then make a decision within the game,
receiving a payoff. We indicate them with I, with i = 1,2,3, ..., I.

• The actions that each agent can perform in the game, which we indicate Ai.

• The presence of strategies: strategy is simply a predetermined way of play that
guides an agent as to what actions to take in response to past and expected
actions from other agents (i.e., players in the game) [77].

• The utility function (also called agent payoff) is a concept that refers to the
amount of satisfaction that an agent derives from an object or an event [77].

6.2.4 Theory hypothesis

Our scenario is a symmetric and simultaneous game. Symmetrical means that
all players can choose their moves from the same set of actions, and if the two
players interchange their moves, the payoffs are also interchanged [79]. Instead,
a simultaneous game or static game [80] is a game where each player chooses
their action without knowledge of the actions chosen by other players [80]. As
well defined in [81] the most important, and maybe one of the most controversial,
assumption of game theory which brings about this discipline is that individuals are
rational. An individual is rational if she has well defined objectives (or preferences)
over the set of possible outcomes and she implements the best available strategy to
pursue them.
One of the possible strategies that an agent can follow is maxmin strategy, where
maximin, as defined in [82] value is the highest value that the player can be sure to
get without knowing the actions of the other players; equivalently, it is the lowest
value the other players can force the player to receive when they know the player’s
action.
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6.2.5 Nash equilibrium theorem
As well defined in [83], it’s possible to define nash equilibrium as: « A collection of
strategies, one for each player in a social game, where there is no benefit for any
player to switch strategies. In this situation, all players of the game are satisfied
with their game choices at the same time, so the game remains at equilibrium. »
Following this, where the natural world is governed by the laws of physics, the
social world is governed by the Nash equilibrium. The concept is named after the
American Mathematician John Nash, who won the 1994 Nobel Memorial Prize in
Economic Sciences for his work on game theory.

6.2.6 Nash equilibrium example - Prisoner’s dilemma
One of the most famous examples of game theory is the prisoner’s dilemma. Which
as well described in [77] is set out below.
In this game, two prisoners were arrested and accused of a crime; the police do
not have enough evidence to convict any of them, unless at least one suspect
confesses. The police keep the criminals in separate cells, thus they are not able to
communicate during the process. Eventually, each suspect is given three possible
outcomes:

• If one confesses and the other does not, the confessor will be released and the
other will stay behind bars for ten years (i.e. -10);

• If neither admits, both will be jailed for a short period of time (i.e. -2,-2);

• If both confess, both will be jailed for an intermediate period of time (i.e. six
years in prison, -6).

Figure 6.3: Scheme prisoners dilemma game. On the rows there is the
action performed by one of the two prisoners and on the columns by
the other prisoner. For each cell there is the value returned by the utility
function. For example for the action (Cooperate, Cooperate) both prisoners
will have 2 years in prison. From this scheme it is possible to note that
this game is a symmetrical game, in fact the utility of the actions (Defect,
Cooperate) are the same as the actions (Cooperate, Defect).

51



Experiments and Results

To solve this game, we must find the dominating strategy of each player, which
is the best response of each player regardless of what the other player will play.
From player one’s point of view, if player two cooperates (i.e. not admitting), then
he is better off with the defect (i.e. blaming his partner). If player two defects,
then he will choose defect as well. The same will work with player two. In the end,
both prisoners conclude that the best decision is to defect, and are both sent to
intermediate imprisonment.

6.2.7 Game of transactions between two agents
In the model studied there are 10 agents in the market, but we want to study what
happens in a transaction and each transition is made by a pair of agents, so from
the point of view of game theory there are 2 players. The set of actions from which
an agent can choose are the following:

• 0 : the agent does nothing;

• B+ : the agent buys at a higher price than the current price;

• B- : the agent buys at a lower price than the current price;

• A+ : the agent sells at a higher price than the current price;

• A- : the agent sells at a lower price than the current price;

To be consistent with the model used, it was decided to use net worth as utility
function. Like the reward function defined in paragraph 4.2.5, agents will prefer to
perform actions that improve their net worth. Figure 4.3 shows a table showing
the actions taken by two agents who make a transaction. The table values indicate
the satisfaction of the agents for having made that transaction. The values are
qualitative and not quantitative. They are used to express preferences between
actions. The value 0 in some boxes of the table indicates the transactions that
cannot take place. Recall that a transaction takes place only if those who want to
buy offer a higher price than those who want to sell, for this reason the box (A +,
B -) is 0.

The only actions that lead to a transaction are:

• (A+, B+): In this case both players are satisfied, because their net worth
increases in value. In fact, the agent who buy will convert the money into
shares, while the agent who sell will convert the shares into money. But what
will both benefit is the increase in the price of the shares, which will increase
the value of the shares owned and therefore the net worth. Both agents will
have the same benefit, so the same value has been given as utility value, that
is, one.
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Figure 6.4: Scheme that shows the model of transactions following game
theory. On the rows there is the action performed by one of the two
prisoners and on the columns by the other prisoner. For each cell there is
the value returned by the utility function. As with the prisoner’s dilemma,
this game is also symmetric. In fact, the cell (A +, B +) has the same
utility values as the cell (B +, A +).

• (A-, B+) and (A-, B-): These two cases are both possible and can be considered
equal, because the price of the transition is always the one offered by the seller.
In this case both agents will get a negative value because lowering the price,
they will also lower the value of the shares they own and consequently also
their net worth.

As you can see from the figure 6.4, the agents have no reason to make different
choices other than A + and B +, because they guarantee profits. The moves (A +,
B +) and (B +, A +) have in fact (1, 1) as utility values which is the highest value
that can be found in the cells of the diagram. While the moves (A +, A +) and (B
+, B +) both have a utility equal to (0, 0) that do not cause a loss of value of their
net worth. We can therefore say that the moves (A +, B +) are Nash’s equilibria.
It is therefore plausible that agents continue to pursue this strategy causing the
price increase seen in figure 6.1.

Game theory was used to provide justification for an empirically observed com-
partment that is systematically repeated in all simulations that is, the increase in
the price of the shares.
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6.3 Last Experiment (with price pertubation)
After studying the behavior of agents in an environment in which they have full
control of the price of shares, we studied an environment in which there is a
exogenous variable, called alpha, able to modify the trend of shares price (chapter
4.3.3). In this case the goal is to understand if the agents manage to predict the
sudden change in the price and how these strategies are reflected in the price trend.

6.3.1 Observed behaviors
After training the environment, some empirical tests were carried out to evaluate
the price trend and the agents behavior. In figure 6.5 and in figure 6.6 it is possible
to observe the trend of the price and the alpha coefficient in a thousand steps
game. In figure 6.5 it is possible to see the trend of the alpha coefficient, which
in this case is negative and therefore will act by decreasing the price value. This
coefficient does not act at every step but only in the steps in which its value
changes, from figure 4.4 it is possible to deduce what these steps are by looking
at the steps the alpha coefficient changes value. Although the value of alpha
coefficient is negative, so it negatively affects, it is possible to observe that the
price trend in figure 6.6 has positive peaks due to the strategies adopted by the
agents. In fact, observing the trend of the net worth in figure 6.6 it is possible
to observe the trend of the net worth of the 10 agents during the 1000 steps that
make up a game. Recall the formula used to model the reward in the chapter 4.2.5,
the reward depends by net worth. At the end of the game the average reward
obtained by the agents, step by step, is positive. We can therefore deduce that
the agents are adopting strategies that allow to reach the end of the 1000 steps
with a medium positive reward, therefore, on average, an increase in the net value
of agents is guaranteed. Unfortunately it is difficult to deduce from these charts,
if collaborative or competitive strategies are present and if there is actually a
correlation between the actions taken by the agents and the price trend, for this
reason it was decided to use topological data analysis (TDA), in order to extract
information more accurately from high-dimensional datasets.
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Figure 6.5: Trend of the alpha coef-
ficient in a thousand steps game. It is
possible to recognize the random walk as
seen in figure [56].

Figure 6.6: Trend of the price with the
influence of alpha in a thousand steps
game. The case represented is the same
in which the alpha coefficient of the figure
6.5 acts.

Figure 6.7: Trend of net worthes of the 10 agents in different colors. The
case represented is the same in which the alpha coefficient of the figure 6.5
and 6.6 acts. As can be seen, just before the 800 step, some agents follow the
price trend in the figure 6.6, this probably because their net worth depends
almost exclusively on the shares held. The agents that have a more constant
net worth value are those who base their wealth on balance.
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6.3.2 Topological analyzes
The topological analysis was carried out by analyzing the trend of the net worth
for each agent, step by step. We have chosen to analyze the value of the agents net
worth for each step because this value is considered to be the most representative
of the agents financial status. The analyzed values were extracted from a dataset
of 1000 games. Once the net worth values are collected, they are sampled with a
period of 10, in order to lighten the calculations by eliminating periods in which no
transaction took place and there are no changes. After that, to obtain a sequence
of point clouds that represent topologically the evolution of the financial state of
the agents during the game, the sliding window technique was used (chapter 5.4.4),
setting the width of a window to 40 and the stride to 10. Then we proceeded with
extrapolating the persistent diagrams of each windows and with the calculation of
the persistent entropy (chapter 5.4.5) of each diagram. From the calculation of the
persistent entropy of a diagram, 3 values are obtained, representing the value of
entropy for the components in homology 0, 1 and 2. In figure 6.8 you can observe
the trends of these 3 values during 1000 steps. While entropy in homology 2 always
remains at 0, entropy in homology 1 has peaks, also called spikes. While entropy
in homology 2 always remains at 0, telling us that components in homology 2
never form, entropy in homology 1 has peaks or spikes, which tell us that in those
windows, components in homology 1 were formed. In figure 6.9 it is possible to
visually observe the point cloud of window 14, that relating to the first spike, while
in figure 6.10 it is possible to study its persistence diagram. In order to interpret
the signal of homology 1, an attempt was made to relate it to the time series of
the price.
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Figure 6.8: Persistent entropy signal indexed by the sliding window number.
In red, the signal of persistent entropy in homology 1 clearly shows the pres-
ence of intact peaks at window 10, 20 and 60, highlighting the formation of
components in homology 1.
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Figure 6.9: Point cloud, show one point
for each step.

Figure 6.10: Persistence Diagram of
window number 14. The value of birth is
present on the abscissa axis, while death
is on the ordinate axis. The red points
are the homologies 0 and as you can see
they all arise with zero abscissa and die
when they connect to another topological
structure.
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6.3.3 Correlations
In the previous paragraph have been exposed the topological analyzes that have
been carried out and the results that have been obtained. As you can see in figure
6.8 a clear topological signal has been obtained. In this section we will try to
understand if the topological phenomenon that have been exposed have an effect
on macroscopic variables such as the price of shares. We assume therefore that
there is a direct relationship between the topological signal in homology 1 and the
price, if this is true this relationship can be quantified by calculating the Pearson
correlation.

To calculate the correlation, it was decided to relate the first derivative of the
signal PE1 and the first derivative of the price, that is, the momentum. As defined
in [84] momentum is the speed or velocity of price changes in a stock, security, or
tradable instrument. Momentum shows the rate of change in price movement over
a period of time to help investors determine the strength of a trend. It is possible
to observe the two time series in figure 6.11 where they are overlapped.

Figure 6.11: The figure shows the time series of the
persistent entropy derivative in homology 1 in blue and
the price derivative in red. Pearson’s correlation will be
calculated between these two time series.

To calculate the correlation, the entropy time series were moved with respect to
the other two time series in a range of 40 positions forward and 40 backwards from
its initial position, calculating the correlation and collecting only the maximum
value.

In figure 6.12 it is possible to see the histogram of the maximum correlation
between the price derivative and the PE1 derivative calculated on the basis of

59



Experiments and Results

Figure 6.12: Histogram of the values of the correlation
between the price derivative and the PE1 derivative ob-
tained over one thousand games. This histogram is the
starting histogram used in the Bootstrapping procedure
exposed below.

about a thousand simulations. The red line represents the average of the correlation
values and stands at around 0.16. This value indicates the presence of a positive
correlation and therefore confirms our hypothesis. In the next paragraph the result
obtained will be validated using the Bootstrapping technique.
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6.3.4 Bootstrapping
As excellently explained in [85], the bootstrap is a technique for evaluating the
properties of the estimators (variance, bias) through re-sampling with replacement
from the collected sample. In this case we will evaluate the mean of the correlation
histogram obtained in previous paragraph. The algorithm used by bootstrapping
can be summarized in these 4 points:

Figure 6.13: Illustrative figure of the bootstrapping workflow [86]. As can be
seen, B resample with replacement is carried out from an initial data sample,
generating B new datasets. For each of these B datasets the statistics will be
calculated, in this case the correlation, generating B new values. With these
B values it is possible to calculate a histogram, in this case it is shown in the
figure 6.14.

• A sample X∗
1 , ..., X∗

n of number n is extracted with replacement from X1, ..., Xn

which constitute the population of samples collected.

• The correlation is calculated as Corr(X∗
1 , ..., X∗

n)

• The first two steps are repeated B times, obtaining Corrn,1, ..., Corrn,B

• The significance level of the data was assessed

In this case, the first two steps were repeated 10.000 times obtaining the same
number of correlation values between momentum and H1 signal. The histogram of
this set of values is visible in figure 6.14. The histogram of the correlations that
we want to validate in figure 6.12 has an average value of 0.16. To calculate the
level of significance of the data, we will calculate the percentage of the correlation
values obtained by re-sampling which are greater than 0.16 that is the average of
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the histogram in figure 6.12. In figure 6.14 it is possible to see the histogram of
the correlation values calculated on the one thousand re-sampling samples. As
you can see, no value is greater than 0.16. The bootstrapping therefore allows us
to say that the value 0.16, that is the average value of the correlation calculates
empirically, has a significance level of 100%.

Figure 6.14: Histogram of correlation values obtained
from one thousand re-samples. This histogram is obtained
following the Bootstrapping procedure as shown in the
figure 6.13.
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6.3.5 What does this correlateion mean?
By studying the literature it is possible to find examples of interaction dynamics
between agents that can influence the price trend. An example is the prey predator
model which has been excellently treated by Miquel Montero in [87]. In particular
Miquel states that «One of the most appealing properties of such a system is the
presence of large oscillations of the number of agents sharing the same perspective,
what may be linked with the existence of bullish and bearish periods in financial
markets». In the case of this thesis, the dynamics with which the agents interact
have not been specifically studied, it is therefore impossible to say whether the
market model analyzed is predatory prey or not, but the existence of the topological
signal in PE1 confirms that the agents do not act randomly but follow a precise
dynamic. But it was important to be able to quantify the existence of these
dynamics. The paragraph 6.3.2, using topology, has demonstrated the existence of
a signal in Homology 1. It is possible to interpret this result as the measurement of
the dynamics with which the agents interact. Topology and in particular persistent
entropy has been an excellent and easy tool for quantifying a dynamic that would
otherwise be difficult to represent. Thanks to the PE1 signal we can know when
the agents are following certain strategies and correlate this signal to the price
trend. In the paragraph 6.3.3 it has been explained how the correlation between
the topological signal and the momentum of the price has been calculated. The
result was positive and was subsequently validated in paragraph 6.3.4.

The existence of the correlation certifies that the agents do not act casually, but
learn to follow strategies that have direct effects on the momentum of the price.
This tells us that persistent entropy is able to read these strategies and quantify
them through persistent entropy and that there is a direct relationship between
these two signals, which can for example be used for the construction of forecasting
models.
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Chapter 7

Conclusion and future
works

As anticipated in paragraph 6.3.5, the most interesting result is certainly the
positive correlation between the trend of entropy in Homology 1 and the time
series of the momementum of the price. For example because it could be a useful
tool to read the time series of the price and deduce that kind of strategies were
adopted by the agents. I therefore imagine that the direction to follow for future
project developments is to continue to investigate the meaning of the correlation
and to understand in which situations topological structures are formed and try to
interpret what they mean from a practical point of view. A spike in PE1 means
that the agents are cooperating or competing? If so, how? It is in fact acceptable
that agents put into practice certain behavior models that allow them to defend
themselves from price fluctuations. As reported in 6.3.5 an example can be the
predator prey model. Another point to be improved is certainly to make the model
even closer to reality. In fact, it is possible to insert in the observation of the agents,
other variables that an agent should take into account when making a choice. In
fact, it would be useful to carry out a survey among traders to understand what
are the technical variables they take into consideration when making a choice and
then bring them back into the model. Improving the model could mean finding an
even higher correlation value. Once better understood the nature of the topological
signals, researchers could study after how many steps the spikes have effects and
build an algorithm that exploits machine learning, which starting from the times
series of price reconstructs the times series of persistent entropy and therefore also
of the events that happened.

There are certainly other points in the model that can be improved to create new
study possibilities. For example, in this model trading takes place on a single stock,
it would be useful to extend the model, allowing you to trade on multiple stocks.
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This would give agents the opportunity to implement more complex strategies
which can then be analyzed by topology.
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