
POLITECNICO DI TORINO

Master’s Degree

in

Mechatronic Engineering

Master’s Thesis

Testing of a Docking Mechanism with a 6 Degree of Freedom
Manipulator and a Force-Torque Sensor

Thesis Supervisor Candidate

Marcello Chiaberge Alberto Combina

Academic Year 2019/2020



Dedication

For mom, dad, Ludovica, Gabriele, Vanessa and Zack.

1



Acknowledgements

Foremost, I would like to express my sincere gratitude to my thesis supervisor Prof.

Marcello Chiaberge and to all the PIC4SeR collaborators, in particular Gianluca Dara,

Dario Gandini and Luigi Mazzara. Their guidance, patience and motivation deeply

helped me during all the time of research and writing of this thesis.

I want to thank my supervisors at Thales Alenia Space, Andrea Merlo, Ciro Napoli-

tano and Genny Scalise for encouraging me in the most stressful moments and not

letting me give up, becoming friends as well as colleagues.

My appreciation also extends to my laboratory colleagues, Paolo Bocchiardi, Gabriele

Gennaro and Giuseppe Terranova, to whom I wish every success for the future.

2



Contents

1 Introduction 7

2 The Docking Mechanism 9

2.1 Mating operations and On-Orbit Servicing . . . . . . . . . . . . . . . . 9

2.2 Active central docking mechanism . . . . . . . . . . . . . . . . . . . . . 12

2.3 Docking maneuver phases . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Schunk LWA 4P 17

3.1 The Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Finite State Machine, Controller and Console . . . . . . . . . . 18

3.1.2 Cartesian Helper . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 The PowerBall layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Configuration File and Initialization Matrix . . . . . . . . . . . 27

3.2.2 Powerball Graphical User Interface . . . . . . . . . . . . . . . . 30

4 The CAN protocol 34

4.1 ISO 11898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Schunk FTM 115 CAN Bus Interface . . . . . . . . . . . . . . . . . . . 39

4.3.1 Functions and Status . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.2 Data Acquisition and Matrix Calculation . . . . . . . . . . . . . 45

5 Control Strategy 47

5.1 Description of the experiment . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Impedance control: state of the art . . . . . . . . . . . . . . . . . . . . 48

5.3 Black-box approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.1 Proportional Control . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.2 Practical implementation . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Limits and possible upgrades . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Conclusions 62

3



A Procedures and known issues 63

A.1 Start-up and shut-down procedures . . . . . . . . . . . . . . . . . . . . 63

A.2 Known issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B Code 69

4



List of Figures

2.1 Berthing operation schematic and the Canadarm2 manipulator of the

ISS grappling a Dragon spacecraft (credit: NASA) . . . . . . . . . . . . 9

2.2 Docking operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Representation of the Strong mission . . . . . . . . . . . . . . . . . . . 11

2.4 Four possible docking mechanisms for the STRONG mission . . . . . . 12

2.5 Schematic view of the active part . . . . . . . . . . . . . . . . . . . . . 13

2.6 View of the internal elements of the retraction system of the STEPS’

docking mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Schematic view of the passive part . . . . . . . . . . . . . . . . . . . . 15

2.8 Phases of the docking maneuver . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Powerball main features . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Finite State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Powerball joints’ direction and frames’ poses . . . . . . . . . . . . . . . 21

3.4 Powerball Finite State Machines . . . . . . . . . . . . . . . . . . . . . . 26

3.5 PowerballGUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Joints control parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 Cartesian control parameters . . . . . . . . . . . . . . . . . . . . . . . . 31

3.8 Angles control parameters . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.9 Trajectory Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 ISO 11898 standard architecture for CAN networks . . . . . . . . . . . 35

4.2 Example of the physical connection in a high-speed CAN network . . . 36

4.3 Standard structure of a CAN-message . . . . . . . . . . . . . . . . . . . 37

4.4 Arbitration example scheme on a CAN bus . . . . . . . . . . . . . . . . 39

4.5 Schunk’s force torque sensor FTM 115 . . . . . . . . . . . . . . . . . . 40

4.6 F/T Matrix Calculations . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Initial position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Block scheme of the inverse dynamics control strategy [4] . . . . . . . . 50

5.3 Block scheme of the impedance control strategy [4] . . . . . . . . . . . 52

5.4 Set point control force/velocity characteristic . . . . . . . . . . . . . . . 54

5



5.5 PCI to CAN adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Angular error compensation . . . . . . . . . . . . . . . . . . . . . . . . 59

A.1 Contactor for the LWA 4P . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.2 Power supplies for the control logic and the motors . . . . . . . . . . . 64

6



Chapter 1

Introduction

A docking maneuver is defined as the joining of two separate free-flying space vehicles in

space, usually called chaser or servicer and target or customer. This delicate operation

is crucial in on-orbit servicing missions and has proved its value in the last decades.

Thales Alenia Space and ”Politecnico di Torino”, after an intensive research on the

already existing solutions, developed an active soft docking system for the SAPERE-

STRONG mission, a program co-funded by MIUR (Italian Ministry of Education,

Universities, and Research). The aim of this work is to simulate a docking maneuver

with the Schunk Powerball LWA 4P, a 6 degree of freedom robotic arm, equipped

with the Schunk FTM115 force torque sensor, in order to test the mechanism. To

accomplish this task, the control strategies were implemented to work with a pre-

existing framework for the manipulator, customly designed by ”Università di Genova”,

in particular by ”Genoa Robotics And Automation Laboratory” (G.R.A.A.L), and with

the PCAN-PCI adapter, essential to communicate with the sensor.

This dissertation contains, besides this introductory part, five chapters. The first

one defines what are rendezvous and docking operations and their applications, and it

also describes the main characteristics of the docking mechanism.

Chapter 3 explains in detail the most relevant aspects of the framework developed

by G.R.A.A.L to drive the Schunk LWA 4P manipulator, giving a general description

of the entire structure, but with particular attention on the higher levels of abstraction

and the elements with which the user can interact, such as the terminal commands,

the finite state machine of the controller and the graphical user interface.

Chapter 4 gives an overview of the Controller Area Network (CAN) protocol, start-

ing from how it was born to the actual state of the ISO 11898 and the main features of

the protocol today. It continues with a detailed description of how it is implemented

for the Schunk FTM115, how to interact with the sensor and how to properly manage

collected data and errors.

Chapter 5 describes the phases to test the mechanism and the possible control

strategies suitable for the job, explaining why the classical impedance control approach

7



was not implementable. Because of its lacks, two solutions are reported.

Chapter 6 presents the conclusions of this work.

After the conclusions there are two Appendices, the first one aims to be a small

guide for any user to properly start up, shut down and use the the manipulator and the

framework, avoiding critical situations that can compromise the correct functioning of

the arm. In the second appendix it is possible to find the code that implements the

control algorithms described in Chapter 5.

8



Chapter 2

The Docking Mechanism

2.1 Mating operations and On-Orbit Servicing

On-orbit servicing consists on the execution of refueling, repair, assembly and upgrade

satellites after they are launched. Most satellites consist of expensive components, so,

using a servicing spacecraft to repair or replace critical units or to move the satellite

into another orbit, will save additional utility from what would have been a loss. A

clear example are the service missions of the Hubble Space Telescope (HST) [5]. More-

over, if the goal is to travel to distant destinations, depots are a potential enabling

infrastructure, so satellite servicing is needed in order to constitute such depots. The

servicing capabilities can also be applied for removing debris in the low Earth Orbit

(LEO) and in the Geostationary Earth Orbit (GEO) [5].

In all the applications of on-orbit servicing there is always the necessity to precisely

couple the two crafts involved, so during the past fifty years two techniques were de-

veloped: berthing and docking [1], showed respectively in figures 2.1 and 2.2. Berthing

deals with joining two spacecraft, in which the inactive one is placed into the mating

interface of the other using a robotic arm.

Figure 2.1: Berthing operation schematic and the Canadarm2 manipulator of the ISS grappling a
Dragon spacecraft (credit: NASA)

9



According to [1], it is divided into different phases. For example the following ones

are necessary to complete the mating between the ISS and a visiting satellite [16]:

1. Acquisition of the berthing box.

2. Positioning of the arm in the ”ready position”, done after the acquisition of the

berthing box for safety reasons.

3. Switch-off the thrusters of the chaser and initiation of capture.

4. Grappling of the capture interface by the manipulator.

5. Transfer to the berthing port.

6. Insertion into the reception interfaces.

7. Structural connection.

Figure 2.2: Docking operation

Instead, in the docking operation, the Guidance, Navigation, and Control (GNC)

system of the chaser (or servicer) satellite controls the relative state with the target (or

customer) so as to ensure suitable contact conditions (relative misalignments, relative

velocities, etc) [16]. It is generally composed by four main steps: approach, alignment,

soft docking and hard docking. Initially the chaser approaches the target and the

two interfaces are prepared for the impact, and by geometrical features or by other

means, the poses are aligned. Then, with a first connection that still allows relative

displacements and rotations, usually called soft docking, a great amount of the energy

associated to the relative velocity of the two satellites is safely dissipated. Finally a

firm connection between the two is ensured by the hard docking, where a secondary

fastening device creates a stiff and final connection [16].

The aim of the STRONG mission is the development of a reusable space tug with

electric propulsion. This tug should be able to deploy satellite platforms from low

injection orbits into their final destination orbits with considerable savings in weight

and a strong optimization of the payload/platform ratio. The tug has also the aim of

10



allowing the re-entry of vehicles for the retrieval of payload samples. After each orbit

raising, the space tug is expected to perform an on-orbit refueling with an orbital tank

[16]. Figure 2.3 shows a graphical representation of the mission.

Figure 2.3: Representation of the Strong mission

Due to the performance of the GNC of the tug, the docking mechanism has to

recover some position and angular misalignments as well as to dissipate the energy

associated with the relative velocities between the spacecraft [16].

Figure 2.4 shows four different types of central docking mechanisms suitable for the

STRONG mission. The first one, in the top left corner is a 6SPS parallel manipulator

with impedance control, composed by an active half based on a Stewart-Gough platform

and a drogue as passive half. In the top right corner a compliant articulated arm

mechanism can be seen. The bottom left corner shows the central docking mechanism

developed by Thales Alenia Space Italia (TAS-I) during the STEPS project. Finally, in

the bottom right corner a central active mechanism, where the active part is equipped

with a linear actuator for controlling the longitudinal approaching between the chaser

and the target. A trade study was performed to choose the most balanced solution,

considering the following criteria [16]:

• Mass of the mechanism, to be taken into consideration to reduce the cost of the

mission.

• Mechatronic complexity, composed by mechanical complexity, sensors and actu-

ators.

• Control complexity, that evaluates a system in terms of the control architecture

needed to use it properly during the docking maneuver.

• Compatibility with different spacecraft masses.

• Energy consumption to drive sensors and actuators.

• Expected reliability and functional confidence.

11



Figure 2.4: Four possible docking mechanisms for the STRONG mission

After evaluating all these parameters for each candidate, the STEPS’ probe and

drogue was further investigated [16].

2.2 Active central docking mechanism

In the first design iteration, a modified version of the STEPS’ system, passively con-

trolled with two sets of springs, was developed. The 2D and 3D simulations showed

that the passiveness and the lack of dumping devices were the two main problems,

mostly in the soft docking phase. On the other hand, the second design iteration pro-

duced the final active docking mechanism, which required to be tested with the Schunk

LWA 4P described in this section. Figure 2.5 shows a schematic view of the active part

and its main components [16].

12



Figure 2.5: Schematic view of the active part

The probe (1) uses the same retraction system developed by Thales Alenia Space

during the project STEPS (figure 2.6). To achieve the translational movement needed

after the soft docking phase, an electric motor and a ball screw, rigidly connected to

the internal part of the probe, are used [16]. The motor rotates the ball screw through

a planetary gearhead and since the internal probe must only translate relative to the

external part, three dowel pins are connected to it. In addition to these pins, the

external probe has three built-in tracks that combined with three low friction Torlon

4301 keys prevent the rotation of both the external and internal parts of the probe.

The cap of the probe (5) contains a set of springs to avoid large contact forces with

the passive half during the first phase of the maneuver [16].

13



Figure 2.6: View of the internal elements of the retraction system of the STEPS’ docking mechanism

In order to constrain the roll of the probe, a universal joint (2) is used. It is mounted

on a slide (3) that translates, driven by an actuator based on a ball screw on linear

rails. The slide plus the rails can translate orthogonally since the whole is mounted on

an analogous slide equipped with a linear actuator. The rails of this second slide are

bolted to the mechanism support plate (4), that is the interface between chaser and

target [16]. In order to mechanically re-align the probe with the longitudinal axis of

the servicer spacecraft traction springs (6) are used, while mutually orthogonal laser

triangulation displacement sensors (7) measure the displacements of the rear end of the

probe [16]. Linear actuators use these measurements as reference to move the slides

on which the probe is mounted, in order to reduce the contact force.Once the spring

loaded petals (8) overpass the female socket of the passive element (figure 2.7), the soft

docking is completed, and a damper mounted at the end of the socket dissipates the

energy associated with the relative velocities.

14



Figure 2.7: Schematic view of the passive part

Then the probe retracts and the contact between the male cone (9) and the female

cone eliminates the pitch and yaw misalignments [16]. During the retraction, elastic

energy is stored with the compression springs (10) mounted inside the male cone, which

will be used during the undocking operation. Three rods (11), in combination with

the v-shaped guides of the passive half, are used to eliminate roll misalignments. After

that the linear actuators have returned to their nominal position on the base of the

female cone is in contact with the support plate of the chaser, three radial hooks (12)

secure the two parts, completing the hard docking.

2.3 Docking maneuver phases

A general introduction to what is intended for docking in space was already given in

section 2.1, meanwhile this section the four phases are explained considering to use the

active central docking mechanism described in the previous section. Referring to figure

2.8, it is possible to see how the mechanism works during the entire maneuver. During

phase 1, Approach and Deployment, the axis of the passive half and the active one

are misaligned. At the end of this phase the tip of the probe and the drogue are in

contact. To compensate the contact forces between the two parts, the linear actuators

move the slides accordingly to the inputs coming from the laser displacement sensors,

in order to complete the Alignment phase.

15



Figure 2.8: Phases of the docking maneuver

An active alignment is necessary for the success of the maneuver. The STEPS

mechanism, that was passively controlled by two groups of springs, was re-designed

because the simulations showed that any misalignment could produce too high contact

forces and, in the worst case, a contact between the base of the passive half and the

male cone. This contact in reality would make the two spacecrafts bounce away from

each other before the soft docking is completed [16].

When the spring loaded petals overpass the female socket, the Soft docking phase

is completed. At this point small relative movements are still allowed due to tolerances,

but the two axis are now almost coincident. To complete the last phase, the Hard

docking, the active element has to be moved back to its initial position by the linear

actuators. Then the probe is retracted until contact between the base of the drogue

and the support plate. Finally the three radial hooks secure the two parts, completing

the hard docking [16].

16



Chapter 3

Schunk Powerball LWA 4P

The Schunk Powerball Light Weight Arm (LWA) 4p is a 6 Degree-of-Freedom (DOF)

arm produced by Schunk, leader in manipulator design [17]. It has high gear ratio

for each axes, in order to stand gravitational loadings, but it can still be driven for

impedance control and friction identification [13]. One of the most interesting features

of the LWA 4P is that it is modular, so it’s compatible with a number of accessories,

such as the Force/Torque sensor FTM115. In figure 3.1 are reported the most relevant

technical aspects of the robotic arm.

Figure 3.1: Powerball main features

The manipulator is essentially composed by [17]:

• A base for mechanical mounting and for housing the electrical connections.

• Three double-axis rotary modules, ERB145 for joints 1-2 and 3-4, ERB 115 for

17



joints 5-6.

• A coupling flange for an end-effector/gripper or sensor.

• Connecting elements between the rotary modules.

It is equipped with a CAN bus interface with the CANopen protocol, dedicated to the

rotary modules, and a second CAN bus interface, in this case used for the FTM 115,

as well as an RS232 one. Since the arm has to be fed with a 24 V power supply and

requests low current inputs, it can be alimented either via a power supply or battery.

3.1 The Framework

Università di Genova and, in particular, Genoa Robotics and Automation Laboratory

(GRAAL) developed, starting from the real time operative system ORTOS (based on

CentOS 6.5) [14], a modular framework adaptable to different manipulators, in order to

have full control of these items and let the robotic control system developer concentrate

only on the algorithmic part [3].

The Framework was developed using the Object Oriented Paradigm (OOP) in

C++, and is divided in growing levels of abstraction. Each one has its own tasks, that

are connected and managed in real time. The lowest level, the Kernel Abstraction Layer

(KAL), has been developed to obtain independence of the control algorithms’ code

from the underlying software platform and to increase portability, since all the specific

calls of the used operative system are concentrated here [3]. The second layer is the

WorkFrame (WF), which takes care of centralizing the control of the system resources

and helping the user to administer the whole system, for minimizing the code lines not

directly related to the control system algorithm implementation [3]. In particular, it

implements the tasks and functions related to the controller, the console and the finite

state machine. The calls provided by the KAL are exploited by the Network (NET)

layer, whose job is to abstract the communication mechanisms from the underlying

physical data channels [3]. To allow a standard communication mechanism between

control tasks that has a minimum impact on the algorithmic part, the Black Board

System (BBS) layer was implemented [3]. It’s also important to underline that at

this point the code is not strictly related to the LWA 4P, but is adaptable to every

manipulator once its mathematical model is correctly linked to the framework.

3.1.1 Finite State Machine, Controller and Console

To obtain the compliant control of the arm and since the Framework is not modifiable

by the developer, it is not convenient to dive into every aspect of this compounded

structure. Is better to stay at an higher level and to concentrate on the three most

18



important elements of the control structure: the Finite State Machine (FSM),

which describe every operating condition of the Controller, and that can be driven

by the user with the Console. In figure 3.2 is reported a schematic of the FSM, whose

core states are [14]:

• INIT: once the workframe starts its preliminary operations it has also to check if

the arm is ready to be used and, if everything goes well, the state is automatically

switched to disarm.

• DISARM: the controller is correctly initialized but the manipulator is still dis-

armed, so the brakes are still active.

• HOLDING: the arm is ready to work and current position is maintained, so

brakes are enabled until the user selects the next command.

• JOINT POSITION CONTROL: the controller makes the arm reach a posi-

tion reference, specified by the user, in the joint space.

• JOINT VELOCITY CONTROL: the controller makes the arm follow a ve-

locity reference, specified by the user, in the joint space, for a predefined amount

of time.

• Cartesian POSITION CONTROL: the controller makes the arm reach a

position reference, specified by the user, in the Cartesian space.

• Cartesian VELOCITY CONTROL: the controller makes the arm follow a

velocity reference, specified by the user, in the Cartesian space, for a predefined

amount of time.

• APPROACHING and PARKING: if the user wants to disarm the manipu-

lator, the controller makes it reach automatically an exit position first (approach-

ing), and then a parking one (parking).

• FAILURE: if the controller or another part of the framework detects an error,

the robot is automatically disarmed.

19



Figure 3.2: Finite State Machine

The controller changes its state for two reasons: a Command or an Event. Events

are automatically managed by the framework and are generated if an error occurred

or if the controller has executed the requested operation. For example, if the user

wants the arm to reach a specific pose in the Cartesian space, once this assignment is

correctly concluded, the framework will make the state of controller switch back from

CPosCtrl to Holding. On the other side the user can act actively on the controller using

the console, that in practice consists of a set of commands provided to the controller

through the command line or with a specific GUI for the LWA 4P (section 3.2.2).

20



Figure 3.3: Powerball joints’ direction and frames’ poses

The commands that are implemented at the framework level [14] refer to figure 3.3

for the joint number, direction and base and tool frames pose:

• arm: arm the robot, enabling the actuators and switching the state of the con-

troller from disarmed to holding.

• cgain <value> and jgain <value>: change, respectively, the Cartesian or

the Joint position loop gains to the specified value.

• cmove <number><value> and chmove <number><value>: move the

arm in Cartesian space (Cartesian position control) and need two variables num-

ber and value, that represent respectively the Catesian axis and the wanted pose,

measured in meters. Table 3.1 summarises all the possible values for the number :

Number Axis

1 yaw

2 pitch

3 roll

4 x

5 y

6 z

Table 3.1: Number possible values for Cartesian position control

21



The only difference between cmove and chmove is that the first always moves

the tool frame with respect to the base frame, the second one uses the Cartesian

Helper (see 3.1.2). For example, if a movement of 10 cm in the positive x direction

is wanted to be performed, the user can user the command as follows:

cmove 4 0.10

• cmoveall<v1><v2><v3><v4><v5><v6> and

chmoveall<v1><v2><v3><v4><v5><v6>: move the arm in the Carte-

sian space (Cartesian position control), with the possibility to specify a value for

each DOF (rotation are in radianss, translations in meters). So six input are

expected, following the order reported in table 3.1. Even for these command is

possible to choose between the standard or the one with the Cartesian Helper

(see 3.1.2), here follows an example, a rotation around the x axis of 0.1 rad and

a translation of 30 cm along z, in the negative direction:

cmoveall 0 0 0.1 0 0 -0.3

• cvel<number><value> and chvel<number><value>: similarly to cmove

and chmove, move the robot with a specified Cartesian velocity, again using as

input a number, that this time follows the order described in table 3.2 and a

value.

Number Axis

1 roll

2 pitch

3 yaw

4 x

5 y

6 z

Table 3.2: Number possible values for Cartesian velocity control

The requested velocity value will be maintained for a predefined amount of time

(default = 3000 ms), that can be changed with the GUI or with the command

parvtime. Rotation as to be specified in rad/s, translation in m/s. Example of

a rotation around y (pitch), using the Cartesian Helper, with a velocity of 0.03

rad/s:

chvel 2 0.03

22



• cvelall<v1><v2><v3><v4><v5><v6> and

chvelall<v1><v2><v3><v4><v5><v6>: the structure is the same of

cmoveall and chmoveall, but these use the axis’ order of table 3.2. Rotation as to

be specified in rad/s, translation in m/s. Example of a rotation around x (roll),

using the Cartesian Helper, with a velocity of 0.01 rad/s and two translation,

along x and y at 10 cm/s:

chvelall 0.01 0 0 0.1 0.1 0

• cpos and jpos: print the current arm Cartesian or Joint position respectively.

• disarm: disarm the robot, disabling the actuators and enabling the brakes.

• exitpark: exit from park position, moving to a predefined exit park position.

• help: print all the available commands with a short description.

• hold: hold the robot in the current position.

• jmove<number><value>: referring to figure 3.3 for the joint number and

positive direction, move a joint to a specified value (rad). For example, a move-

ment of the last joint of -0.5 rad:

jmove 6 -0.5

• jmoveall<v1><v2><v3><v4><v5><v6>: move all the joints of the arm

simultaneously, specifying six rotations in radianst. For example, to move joints

1, 4 and 6 of respectively 0.5, -0.3 and 1 rad, the user can use the following

command from the console:

jmoveall 0.5 0 0 -0.3 0 1

• jvel<number><value>: move a joint at a specified velocity (rad/s). This

command needs two input: a number, that represent which joint the user want

to move, and a value, that is the angular velocity. The rotation will last for a

default time (3000 ms), that can be modified with the GUI or with the command

parvtime. For example, a movement of joint 4 at 0.3 rad/s can be requested

with:

jvel 4 0.3

23



• jvelall<v1><v2><v3><v4><v5><v6>: move all the joints of the arm

simultaneously, specifying six values, that are angular velocities (rad/s). For

example, to move all the joints at 0.5 rad/s, the user can use the following

command from the console:

jmoveall 0.5 0.5 0.5 0.5 0.5 0.5

• parcalg<alg>: set Cartesian algorithm (J = jacobian, I = iterative, T = task-

based).

• parcsat <lin><ang> : set Cartesian linear and angular velocity saturation.

• parcth <lin><ang>: set Cartesian linear and angular position error thresh-

old.

• paroer : enable or disable the end of races.

• parexited: set joint positions for exited preset.

• parfen: enable or disable joint velocity filter and Cartesian filter.

• parfvel: display joint velocity filter parameters.

• pargfvel: display gripper velocity filter parameters.

• paritern: iterative algorithm.

• parjsat<sat>: set joint velocity saturation.

• parjth <err>: set joint position error threshold.

• park: park the robot, moving it to the predefined parking position, passing

through the exit position. Once the robot is parked the controller will be dis-

armed.

• parpark: set joint position for parked reset.

• parseteor <number><value>: set joint number new end of race to value

(type: H = race high limit, L = race low limit).

• partaskprec: change precision-rate task gain and saturation parameters (task:

e = end effector).

• partaskset: change set-rate task gain, saturation, s1 and s2 parameters (task:

m = manipulability, j = joint limits).

24



• partasksvd: change the Task threshold and lambda parameters (task: e = end

effector m = manipulability, j = joint limits) (parameter: t = tikhonov, p =

pseudoinverse, w = w-matrix).

• parvfgain: Cartesian virtual frame maximum gain.

• parvtime <jvalue><cvalue>: set two values, both in milliseconds, respec-

tively the Joint and the Cartesian velocity timeouts. With the following command

the joint timeout is set to 1 second and the Cartesian one to 20 ms:

parvtime 1000 20

• showpar: show the current arm parameters.

3.1.2 Cartesian Helper

With the console commands cmove, cmoveall, cvel and cvelall the controller will

always move the end-effector frame with respect to the base frame in the Cartesian

space. There is an alternative set of commands (chmove, chmoveall, chvel, chvelall)

that can act in a different way, depending on Cartesian Helper configuration [14]. To

modify it the commands chtrasl and chrot have to be used, stating three parameters:

the first one sets the frame where the movement is applied (b: base, g:goal), the second

one sets the frame with respect to which references are projected (b: base, g:goal), the

last one sets references as absolute or relative (a: absolute, r: relative) [14]. The default

settings used by the set of commands that don’t use the Cartesian Helper correspond

to:

chtrasl g b a

chrot g b a

If, for example, there is the need to move the end-effector (goal) frame with respect

to the actual end-effector pose, using the Cartesian Helper set of commands after the

following once will produce the desired effect (these settings will be maintained until

the manipulator is switched on):

chtrasl g g r

chrot g g r

25



3.2 The PowerBall layer

The PowerBall (PB) layer, which is composed by a set of classes and functions based

on or inherited by the lower levels of abstraction, is the only part of the framework

modifiable by the developer. This layer expands the finite state machine (figure 3.4)

and adds some new commands.

Figure 3.4: Powerball Finite State Machines

The Low Level Joint Position Control and Low Level Cartesian Position

Control states are essentially equal to Joint and Cartesian Position control, with the

only difference that here internal controllers are used. These states are associated

with the console commands llcmove, llchmove, llcmoveall, llchmoveall, lljmove

and lljmoveall, that work exactly the same as the corresponding counterparts of the

framework.

Another really useful state is Manual Homing, whose purpose is to reset the

encoders if an error regarding them occurs, that can happen for example if the arm is

manually forced to change position, or sometimes even for a CAN error. The operation

needed to correctly recalibrate the joints is the following:

1. Enter the Manual Homing state in with the command gohoming. In some cases

it’s the framework itself that forces the controller into this state.

26



2. Center all the joints in the zero position (figure 3.3) using the commands:

• sirad <number> <inc> <speed>: moves the robot in the joint space

and needs three arguments: number, that represents the joint that is wanted

to be moved, inc is the increment in radians, that can be positive or negative,

and also the speed, in rad/s, has to be specified (must be positive). Here

follows an example to move joint 1 of -0.5 rad at a speed of 0.1 rad:

sirad 1 -0.5 0.1

• sistep <number> <inc> <speed>: moves the robot in the joint space

and needs three arguments: number, that represents the joint that is wanted

to be moved, inc is the increment in steps (can be positive or negative, it’s

a natural number) and also the speed, in mdeg/s, has to be specified (must

be positive). Here follows an example to move joint 1 of -20 steps at a speed

of 1 deg/s:

sistep 1 -20 1000

3. Reset each encoder with the command encreset <number>:

encreset 1

encreset 2

encreset 3

encreset 4

encreset 5

encreset 6

4. End the procedure with the command homingdone

The last command added to the existing ones is sensor, which activates the com-

pliant control algorithm, that will be deeply described in section 5.3.

3.2.1 Configuration File and Initialization Matrix

The configuration file powerball.conf contains a number of parameters that can be set

permanently, and will become the default values once the workframe will be switched

on. If the developer wants to change these parameters, not only the configuration file

has to be modified, but the framework needs to be re-built [14].

27



Joints

• velocity timeout: indicates how much time (nanoseconds), in Joint Velocity

Control, the controller will keep the specified reference, before stopping the ma-

nipulator.

• velocity saturation: joint speed upper limit (rad/s).

• gain: gain of the control loop. enable filter: enable for first order joint reference

filtering.

• park position and exit position: joint positions for parking and exiting from

parking (rad).

• joints limits high and joints limits low: upper and lower limit positions for

the joints (rad). It’s essential to set these values once an external module/gripper

is mounter on the arm to avoid collisions.

Cartesian

• velocity timeout: indicates how much time (nanoseconds), in Cartesian Veloc-

ity Control, the controller will keep the specified reference, before stopping the

manipulator.

• linear velocity saturation and angular velocity saturation: Cartesian lin-

ear and angular speed upper limit, respectively in m/s and rad/s.

• linear position error threshold: Cartesian linear position error threshold (in

meters) under which the controller will automatically switch from the Cartesian

Position Control state to the Holding one.

• angular position error threshold: Cartesian angular position error thresh-

old (in radians) under which the controller will automatically switch from the

Cartesian Position Control state to the Holding one.

• algorithm: active Cartesian algorithm: Jacobian, Iterative or Task-Based.

• gain: gain of the control loop. enable filter: enable for first order joint reference

filtering.

• virtual frame gain: gain of the filtering Cartesian virtual frame loop.

• enable filter: enable for the filtering Cartesian virtual frame loop.

28



Tasks and powerball

• disable manipulability: flag for disabling the manipulability task.

• qdotmax: maximum velocity requested for the arm for a single task.

• pr ee approach: task that controls the end effector goal tracking.

• sr joint limits: task in charge of the avoidance of joint limits.

• sr manipulability: task in charge of avoiding arm configurations where the arm

agility is compromised.

• showStatusWordChanges: enable flag for joints status words printing on

change.

The Initialization Matrix (InitMatrix()) can be set in the PBModel.cc file, and

it is composed by the six roto-translation matrices, that for each joint use the DH

parameters, in the standard form [4], reported in table 3.3:
cθi −sθicαi

sθisαi
aicθi

sθi cθicαi
−cθisαi

aisθi

0 sαi
cαi

di

0 0 0 1


Joint Number θ d a α

1 0 0.205m 0 -π/2

2 -π/2 0 0.350m π

3 -π/2 0 0 -π/2

4 0 0.305m 0 π/2

5 0 0 0 -π/2

6 0 0.075m 0 0

Table 3.3: Nominal DH parameters

In addition to these transformations, there are other two constant ones, wTb0

and eTt , whose purpose is to change the pose of the base and end-effector frames

respectively. By default these matrices are I4x4, but since the sensor is 8.25 cm tall, it

is possible to use the following eTt to translate the end-effector frame up along the z

axis:

eTt_(1,1) = 1; eTt_(1,2) = 0; eTt_(1,3) = 0; eTt_(1,4) = 0;

eTt_(2,1) = 0; eTt_(2,2) = 1; eTt_(2,3) = 0; eTt_(2,4) = 0;

eTt_(3,1) = 0; eTt_(3,2) = 0; eTt_(3,3) = 1; eTt_(3,4) = 0.0825;

eTt_(4,1) = 0; eTt_(4,2) = 0; eTt_(4,3) = 0; eTt_(4,4) = 1;

29



3.2.2 Powerball Graphical User Interface

In addition to the command that the user can apply through the console terminal, it

is possible to control the Schunk Powerball LWA 4P with a dedicated graphical user

interface. It is divided in two parts: PowerballGUI and Tragectory Manager .

Starting with the PowerballGUI (figure 3.5) on the left there are six sliders, that can

be used to move singularly each joint.

Figure 3.5: PowerballGUI

On the right of each slider is placed a colored line to represent at which point of

its range the joint is, that is also reported numerically under the sliders. The active

state can be red in the left bottom corner under the sliders. To change manually the

state of the controller eight buttons are placed in the center of the GUI. Since it is not

possible to jump from a particular state to every other one, these buttons will activate

and deactivate accordingly to the mapping between states defined in the finite state

machine (see figure 3.4). Same thing happens for the functionalities that can’t be called

in a particular state. For example in figure 3.5 the controller is in the holding state,

so this means that the only two operations not available are arming and gohoming.

The ninth, smaller button, named Presets_Locked/Preset_Unlocked has the ability

to unlock the nine presets placed on the right, that can be modified, added or deleted

only if this button is manually switched off. The button Read saves the current joint

position and it is also possible to add or change the name of the presets directly in the

tab under the two buttons. Once one Apply button is pressed, the end-effector frame

will be automatically moved in the saved pose.

Important note: using the Read (see section 3.2.2) button near the zero position

of the joints, some of the saved joint positions could be corrupted, so, before using the

new preset issue the jpos command from the console terminal to print all the current

joint values to double check that the reading was successful.

30



Figure 3.6: Joints control parameters

Figure 3.7: Cartesian control parameters

On top right corner of the PowerballGUI it is possible to set all the constant pa-

rameters relative to the arm. By pressing ”p” on the keyboard, the Control Parameters

page will be opened. With the first two sub-pages, Joints and Cartesian, it is possible

to set error thresholds, control gains, velocity saturation, velocity timeouts and other

parameters. Instead the Angles page is dedicated to positive and negative end of races,

park position and exit position. It is advisable, specially when the sensor or other gad-

gets are mounted on the arm, to reduce the end of races in order to avoid contacts

with the protection case of the arm itself, that will produce problems during the next

arming phase (see Appendix A).

31



Figure 3.8: Angles control parameters

The Trajectory Manager (figure 3.9) shows the current end-effector pose and can

be used for uploading a desired trajectory. It must be contained in formatted .dat

file, where in the left column are reported the time instants and in the right one the

corresponding velocities, where Vx, Vy and Vz are the linear velocities, and Rot_Petal1,

Rot_Petal2 and Rot_Petal3 correspond to ωx, ωy and ωz. To properly separate each

velocity the last data sample must be at 0.01 seconds from the previous one and its

value must be zero, then ENDATA closes the sequence:

XYDATA, REQ/70000158 Vx

0.0000000000e+000 3.0000000000e-002

0.1000000000e+000 3.0000000000e-002

0.2000000000e+000 3.0000000000e-002

0.2100000000e+000 0.0000000000e+000

ENDATA

XYDATA, REQ/70000159 Vy

0.0000000000e+000 5.0000000000e-002

0.1000000000e+000 2.0000000000e-002

0.2000000000e+000 4.0000000000e-002

0.2100000000e+000 0.0000000000e+000

ENDATA

XYDATA, REQ/70000160 Vz

0.0000000000e+000 9.0000000000e-002

0.1000000000e+000 8.0000000000e-002

0.2000000000e+000 -3.0000000000e-002

0.2100000000e+000 0.0000000000e+000

ENDATA

32



XYDATA, REQ/70000161 Rot_Petal1

0.0000000000e+000 1.0000000000e-002

0.1000000000e+000 0.0000000000e-002

0.2000000000e+000 1.0000000000e-002

0.2100000000e+000 0.0000000000e+000

ENDATA

XYDATA, REQ/70000162 Rot_Petal2

0.0000000000e+000 4.0000000000e-002

0.1000000000e+000 4.0000000000e-002

0.2000000000e+000 4.0000000000e-002

0.2100000000e+000 0.0000000000e+000

ENDATA

XYDATA, REQ/70000163 Rot_Petal3

0.0000000000e+000 5.0000000000e-002

0.1000000000e+000 -5.0000000000e-002

0.2000000000e+000 5.0000000000e-002

0.2100000000e+000 0.0000000000e+000

ENDATA

Figure 3.9: Trajectory Manager

33



Chapter 4

The CAN protocol

Controller Area Network - CAN - is a communication protocol developed by R. Bosch

GmbH at the beginning of the 1980s as a working method for enabling robust serial

communication, aimed for the automotive area. In 1990 Mercedes-Benz was the first

manufacturer to use the protocol in one of their flagship model, the S-class. In 1993,

it became an international standard with ISO 11898, CAN 2.0A and 2.0B were also

released, and in 1994 other CAN-related higher level protocols have been standardized,

such as CANopen and DeviceNet [6]. In 1997, 24 million CAN interfaces were produced

in 1 year; 2 years later there were already more than three times as many, and today

almost every road vehicle uses this protocol [12]. The reason why CAN became so

popular is that it provides an inexpensive (because it can reduce a lot the amount of

cables needed) and a durable way to make the numerous micro-controllers present in a

car to communicate with one another. Today the CAN networks are also used in space

and aerospace applications, robotics, railed transportation, hospitals and even coffee

machines [6].

4.1 ISO 11898

Since CAN has evolved and has become more and more complicated in the past 50

years, ISO 11898 had to expand and include all the details of the protocol. Today ISO

11898 is divided in five parts:

• ISO 11898-1 Road vehicles—Controller area network (CAN) —Part 1: Data

link layer and physical signalling

• ISO 11898-2 Road vehicles—Controller area network (CAN) —Part 2: High-

speed medium access unit

• ISO 11898-3 Road vehicles—Controller area network (CAN)—Part 3: Lowspeed,

fault-tolerant, medium-dependent interface

34



• ISO 11898-4 Road vehicles—Controller area network (CAN)—Part 4: Timetrig-

gered communication

• ISO 11898-5 Road vehicles—Controller area network (CAN)—Part 5: High-

speed medium access unit with low-power mode

Without diving too much into the standard, a simple representation of the layers

that form this communication structure are the ones shown in figure 4.1.

Figure 4.1: ISO 11898 standard architecture for CAN networks

The Application layer provides high level communication functions that can be

implemented by a software developer or handled by a higher level protocol such as:

• CAL (CAN Application Layer): originally developed by Philips Medical Sys-

tems, is an application-independent layer that is now maintained by the CAN in

automation (CiA) user group.

• CANopen: built on top of CAL, using some of its services and communication

protocols. With this protocol every node in the network is associated to an Object

Dictionary (OD) that contains all the parameters that describe the device and its

behavior. Also CANopen is now maintained by the CAN in automation (CiA)

user group.

• DeviceNet: developed by the American company Allen-Bradley (now owned

by Rockwell Automation), adapts the technology from the Common Industrial

Protocol and takes advantage of CAN, making it low-cost and robust compared

to the traditional RS-485 based protocols.

Then, the Datalink layer is responsible to transfer the messages from a node

to all the other ones. It’s divided into Logic Link Control layer (LLC) and Medium

Access Control layer (MAC) and it handles bit stuffing and error control, waiting for

35



acknowledgement from the receivers after a message is sent [6].

Figure 4.2 shows how nodes are connected in a typical CAN network. The Physical

layer implements physical signaling, bit encoding and decoding, bit transmitting and

synchronization [6].

Figure 4.2: Example of the physical connection in a high-speed CAN network

Different kinds of physical layers are used to satisfy the system specification both

from a cost or performance point of view. The most used are:

• High-speed CAN hardware: it’s the most common physical layer, it uses two

wires to allow communication at 1 Mbit/s rate. It is mostly used for anti-lock

brake systems, engine control modules and emission systems, and it’s also known

as CAN-C (ISO 11898-2).

• Low-speed/fault-tolerant CAN hardware: also known as CAN-B (ISO 11898-3),

it uses again two wires for the communication, but up to 1 Mbit/s transfer rate.

In the automotive field is primarily used for comfort devices.

• Single-wire CAN hardware: using just a single wire for the communication, the

transfer rate is limited to 33.3 kbit/s (88.3 kbit/s in high-speed mode). Also

known as CAN-A, within an automobile is used just for those devices that do

not have any performance requirement, such as mirror adjusters.

36



4.2 Main features

By being such a robust, fast, safe and widely used protocol, it is inevitably complex.

The communication is asynchronous, half duplex (usually with differential signaling),

up to 1 Mbit/s. The number of nodes is virtually unlimited, they don’t have an

address, but filter the data on the bus to determine if it’s useful or not, and a master-

slave designation is not used. Logic values are ”dominant” (low - 0) or ”recessive”

(high - 1), and dominant overrides recessive, so any node can start a message, so an

arbitration process is applied, without any loss of time or data. It’s also important

to mention that high level of data security since a node that, after error checking,

recognise that it’s faulty, can disconnect itself from the network [10].

Since all the nodes are equal, it’s not possible to simply send ”only” the data on

the bus, so the communication is based on messages or frames that allows to carry

much more information. Figure 4.3 shows how typically a CAN-message is organized

for CAN 2.0A (standard) and can 2.0B (extended).

Figure 4.3: Standard structure of a CAN-message

Considering just the 11-Bit-Identifier frame, which is the one used for the Schunk

FTM115 force-torque sensor, the message is divided in the following parts [12]:

• Start of Frame (SOF) = 1 bit (low, dominant): always used to start a

frame, the falling edge synchronizes all network nodes.

• Arbitration Field = 12 bit:ID and RTR together compose the Arbitration

Field. Each message has its own ID = 11 bit that basically is the ”name” of

the message (CAN 2.0B has a 29 bit ID), the lower is the identifier the higher

is the priority. Remote Transmission Request (RTR) = 1 bit is the last

bit of the arbitration field. If RTR is high=recessive it means that the message

is asking for data (data request frame), otherwise if RTR is low the message

contains the data itself (data frame) or doesn’t have to contain data because it

only triggers some operations that don’t need it. It is important to note that

these two messages have the same ID but different RTR so aren’t the same.

37



• Control Field = 6 bit : is composed by the Identifier Extension Flag

(IDE) bit that indicates that the ID is completed, the r0 bit that is reserved and

the Data Length Code (DLC) 4 bit that indicates how many bytes of data

the message is carrying.

• Data Field = 0–8 bytes of data: contains the actual data of the message.

• Cyclic Redundancy Check (CRC) Field = 16 bits: the first 15 bits (CRC

sequence) are used only for fault detection, adding redundant check bits at the

transmission end, then this bits are recomputed at the receiver end and tested

again the received bits, if there is a misalignment a CRC error occurred [9]. The

CRC field is closed by that last bit, called CRC delimiter (high).

• Acknowledge Field = 2 bits: All the nodes that have recognized the message

as correct will send a dominant level in the ACK slot, if no node send the low level

an ACK error occurred. The acknowledge field is closed by the ACK delimiter

(high).

• End of Frame (EOF) = 7 bit: indicates the end of the data frame (usually

all recessive).

• Inter Frame Space (IFS) = 3 bit (high): separates the frame from the

following one. The time for this operation is used inside the node to transfer the

message from the controller to a receive buffer or to transfer a message from a

transmit buffer to the controller.

It’s clear that inside the message structure a good part is dedicated to error de-

tection, another important feature of the CAN protocol, with the CRC field and the

ACK field. Another way in which an error active node or the transmit one can report

an error is by transmitting an error frame (usually six consecutive low level bits), a

particular message that violates the rules of bit stuffing and frame format, causing all

the other nodes to send an error frame as well [2], then bus activity returns to normal.

Instead also an error passive node can indicates that have detected an error by sending

an error-passive flag (usually 14 recessive bits), so if the fault is not detected by an

error active node or the transmit one the message will continue transmission [9].

Generally hundreds if not thousands of nodes are connected and try to transmit

messages in a single CAN network, and since there is no master-slave designation, a

bit-wise arbitration is used to give priority to e frame instead of another one. Figure

4.4 shows how it works.

38



Figure 4.4: Arbitration example scheme on a CAN bus

Node B and Node C start transmitting on the CAN bus at the same moment

but after some identical bits, B tries to put on the bus a recessive (high) bit while C

transmits a dominant (low) one. So B loses arbitration and stops transmitting, while C

finishes its message and after that B wins arbitration again, completing its frame. This

functionality is part of the ISO 11898 physical layer, which means that it is contained

entirely within the CAN controller and is completely transparent to a CAN user [2].

4.3 Schunk FTM 115 CAN Bus Interface

The robotic arm Schunk LWA 4P implements two separate CAN networks, one ded-

icated only for the six motors, that uses an higher level protocol (CANopen CiA

DS402:IEC61800-7-201) [17], and the other one for all the modules compatible with

the robot, as the Schunk FTM 115 force torque sensor (figure 4.5), which instead has

to be managed at a lower level.

Table 4.1: Characteristics of the FTM 115

Range of measurement Fx, Fy [N] ± 580

Range of measurement Fz [N] ± 1160

Range of measurement Mx, My, Mz [Nm] ± 20

Resolution Fx, Fy, Fz [N] ± 1/4

Resolution Mx, My [Nm] ± 1/188

Resolution Mz [Nm] ± 1/376

Weight [Kg] 1.0

Continued on next page

39



Table 4.1 – Continued from previous page

Power Supply [V] 24

Bus Interface CAN

Figure 4.5: Schunk’s force torque sensor FTM 115

The F/T sensor integrates the custom designed 9105-TW-MINI45 transducer with

through-hole and a F/T-to-CAN interface board (NETCANOEM) [7], produced by

ATI Industrial Automation.

As mentioned earlier, the frame format can be quite complex, but with this interface

the user has to pay attention only to the identifier and the data (always in big-endian

format). The identifier (11 bits) is split into two parts: the first 7 bits are called Base

Identifier (default = 0x20) that the developer can change. Every CAN message for

the F/T sensor will start with it. The last 4 bits are called OPcode and each different

function implemented by the sensor has its own. The message can contain data or not,

depending on the function.

Other significant elements are Active Calibration , Counts per Unit , Cali-

bration Matrix , Strain Gauge Data and Status . The first three have to be

computed just once, then they will be used to transform the strain gauge data into

forces and torques. The status has to be periodically checked in order to guarantee a

safe use of the hardware and verify that the communication is not corrupted.

40



The CAN bus interface allows the user to [7]:

• Determine which calibration is active and select the one to be active.

• Read the calibration matrix.

• Select the baud rate (up to 2 Mbit/s, default = 250 Kbit/s).

• Select the base identifier.

• Reset the NETCANOEM interface.

• Read the firmware version of the NETCANOEM.

• Read FT calibration serial number

• Request strain gage data and status information.

4.3.1 Functions and Status

As previously said the ID for each function is composed by the base identifier and the

OPcode, moreover some functions don’t need any data or even a response. To be more

clear an example will come in handy (supposing to use the default base ID = 0x20): if

the SG (strain gauge) data to be red, function that correspond to the OPcode = 0x0

and doesn’t need any data, the user must compose and send a message with ID = 0x200

and will receive a response. If he wants to reset the NETCANOEM, OPcode = 0xC

and again doesn’t need any data, the message will contain just the ID = 0x20C but in

this case no response from the sensor will be generated. Here follows a description of all

the functions from the user point of view, or rather what the programmer has to send

to the sensor to activate a certain functionality and what he will eventually receive back.

Read SG data
OPcode: 0x0

Data: None

Two response packets are sent: One with the opcode set to 0x0, which contains the

two byte status, followed by the two byte values (signed integers) for sg0, sg2, and

sg4 (total of eight bytes), and another packet with the opcode 0x1, which contains the

three two byte values sg1, sg3, and sg5 (total of six bytes). It will be necessary to

reorder the strain gauges (sg0, sg1, sg2, sg3, sg4, sg5) before performing the matrix

multiplication. Alternatively, you can rearrange the order of the columns in the matrix

to match the ordering in this response [7] (sg0, sg2, sg4, sg1, sg3, sg5).

41



Read Matrix
OPcode: 0x2

Data: 1 byte indicating axis row to read (0=Fx, 1=Fy, 2=Fz, 3=Tx, 4=Ty, 5=Tz)

Three response packets (8 bytes each) are sent. All matrix coefficients are in 4 byte

floating point format:

Opcode 0x2 containing the SG0 and SG1 coefficients for the requested axis.

Opcode 0x3 containing the SG2 and SG3 coefficients.

Opcode 0x4 containing the SG4 and SG5 coefficients [7].

Read F/T Serial Number
OPcode: 0x5

Data: None

One response packet with the opcode 0x5, with 8 data bytes which contain an ASCII

string representing the F/T serial number [7].

Set Active Calibration
OPcode: 0x6

Data: 1 byte indicating index of calibration to use, possible index values are 0 to 15

One response packet with opcode 0x6 with one data byte echoing the selected calibra-

tion index [7].

Read Counts Per Unit
OPcode: 0x7

Data: None

One response packet with opcode 0x7, with 8 bytes of data. The first 4 bytes are

the counts per force, followed by the 4 byte counts per torque. Both count values are

integers [7].

Read Unit Codes
OPcode: 0x8

Data: None

Table 4.2: Force unit and unit codes

Force Unit Force Unit Code

lbf 1

N 2

klbf 3

Continued on next page

42



Table 4.2 – Continued from previous page

kN 4

kgf 5

gf 6

Table 4.3: Torque unit and unit codes

Torque Unit Torque Unit Code

lbf-in 1

lbf-ft 2

N-m 3

N-mm 4

kgf-cm 5

kN-m 6

One response packet with the opcode 0x8, with two bytes of data. The first byte is

the force unit code (table 4.2), the second one is the torque unit code (table 4.3) [7].

Reset
OPcode: 0xC

Data: None

The interface will be reset but no response is generated by the sensor [7].

Set base identifier (first 7 bits)
OPcode: 0xD

Data: 1 byte indicating the first 7 bits to use. The 7 bits are right-justified in the data

byte.

One response packet with opcode 0xD with no data. The command will take effect at

the next power-up [7].

Set baud rate
OPcode: 0xE

Data: 1 byte indicating the divisor code used to set the baud rate. A base rate of 2

mbps is divided by this value + 1 to generate the effective baud rate. For example:

value=3 → divisor=4 → baud rate = 500kbps.

One response packet with opcode 0xE with no data. The command will take effect at

43



the next power-up [7].

Read Firmware version
OPcode: 0xE

Data: None

One response packet with opcode 0xF with 4 bytes of data. The first byte is the major

version, the second byte is the minor version, and the next two bytes are the build

number [7].

The response message with OPcode 0x0 not only contains data relative to forces

and torques, but also 16 bits representing the Status. If there isn’t any error, every bit

will be set to 0, in the opposite case it’s possible to translate the error considering the

position of the bit that lighted up. In case of a critical error, the NETCANOEM will

not stop transmitting strain gauge data (see table 4.4 [7]). The sensor can’t solve the

problems reported with the two status byte, so is responsibility of the user’s application

to handle that properly.

Table 4.4: NETCANOEM Status Register

Bit Name Type Remark / Recommended error handling

0 Watchdog Reset Can occur after firmware-upgrade; replace

NETCANOEM if this happens during normal

operation

1 DAC/ADC check result

too high

Critical Analog Acquisition system gets checked once

after reset

Stop operation - replace NETCANOEM

2 DAC/ADC check result

too low

Critical Analog Acquisition system gets checked once

after reset

Stop operation - replace NETCANOEM

3 Artificial analog ground

out of range

Critical Stop operation - replace NETCANOEM

4 Power supply too high Critical Stop operation - check power supply to NET-

CANOEM

5 Power supply too low Critical Stop operation - check power supply to NET-

CANOEM

6 Bad active calibration Critical Select a valid calibration slot. Checksum of

the selected calibration is wrong.

7 EEPROM failure Critical Stop operation - No or invalid EEPROM re-

sponse; Checksum error in EEPROM memory,

replace NETCANOEM if this happens during

normal operation

8 Configuration Invalid Checksum error in stored configuration data;

NETCANOEM will use default settings

Continued on next page

44



Table 4.4 – Continued from previous page

9 Reserved

10 Reserved

11 Sensor temperature too

high

Critical Stop operation - Make sure that ambient tem-

perature of the NETCANOEM stays within

the specified range

12 Sensor temperature too

low

Critical Stop operation - Make sure that ambient tem-

perature of the NETCANOEM stays within

the specified range

13 Reserved

14 CAN bus error CAN bus error detected; turns status LED to

red

15 Any error causes this bit

to turn on

4.3.2 Data Acquisition and Matrix Calculation

The SG data don’t correspond to the real forces and torques so, to correctly compute

them, some preliminary operation are needed [7]:

• Select the correct active calibration and verify it. If there is no valid calibration

in the selected slot, then bit 6 “Bad active calibration” in the status register will

be on. After a reset the calibration slot 0 will be always selected.

• Read the active calibration matrix.

• Read the Counts per Force and Counts per Torques constants.

45



Figure 4.6: F/T Matrix Calculations

At this point it is possible to request iteratively the SG data and transform them

into real F/T data using the scheme shown in figure 4.6 [7]. A critical operation is

the offset correction, since it could be quite significant, which means that is important

to perform it at each data acquisition, in order to have a precise reading. Another

possible case to consider is when one of the strain gauge data is saturated (nominally

-32768 or +32767). For example, this can be caused by a broken transducer cable. In

this case, the sensor data is not usable anymore. It is the responsibility of the receiving

application to handle this error situation appropriately (e.g., request maintenance) [7].

46



Chapter 5

Control Strategy

This chapter is dedicated to the description of the control strategy adopted to success-

fully test the docking mechanism described in Chapter 2, starting with a brief overview

of the four phases to be performed in the laboratory to simulate the docking maneuver.

Then it follows the description of classical impedance control algorithm, and the one

of the approach chosen for this particular application. The code relative to the control

strategy finally implemented is reported in appendix B.

5.1 Description of the experiment

In order to demonstrate the validity of the docking mechanism, the Powerball LWA 4P,

in conjunction with the FTM115 force/torque sensor, can be used in order to simulate

the rendez-vous and docking maneuvers, following a precise procedure divided in 4

main steps.

The chaser (servicer) is mounted on the sensor with a 3D printed connection, fun-

damental to have a break-point between the arm and the mechanism, so both are

preserved in case of failure or unwanted behaviours. As shown in figure 5.1, the axis

of the target (customer) and the one of the chaser are parallel, but not coincident, to

simulate a real approach and deployment phase. At this point the arm moves in the

Cartesian space along the positive z-axis and, once the probe and the drogue are in

contact, the control system of the chaser will shift the active half in order to reduce

the contact forces, until the tip of the probe overpasses the female socket of the passive

half.

47



Figure 5.1: Initial position

The customer and the moving part of the servicer are now mechanically connected,

but still able to move on a horizontal plane with respect to the support plate of the

chaser, so the soft docking procedure is now completed.

Now the goal is to re-align the moving part with the fixed one to proceed with the

hard docking. A set of linear actuators pulls the coupled elements towards the center

until the initial position of the active half is restored. During this process, and in

the following operations, the arm simply has to follow the movement imposed by the

mechanism, or, in other words, has to be compliant.

Finally the system is ready to complete the docking: the probe is retracted until

the base of the drogue touches the support plate and , with the aim of securing the

two parts, three radial hooks makes the two elements rigidly coupled.

5.2 Impedance control: state of the art

Since the manipulator must interact with the environment for this application, a suit-

able control strategy is Impedance Control, where the robot end-effector is usually

asked to render particular forced mass, spring, and damper system properties [15].

48



mẍ+ bẋ+ kx = fext (5.1)

Referring to the equation (5.1), impedance is defined by the transfer function from

position perturbation to forces, Z(s) = F (s)/X(s) [15].

The starting point is the dynamic model of an n-joint manipulator, derived with

the Lagrange formulation equation (5.2), where q are the generalized coordinates of

the joints of the manipulator:

B(q)q̈ + C(q, q̇)q̇ + Fv q̇ + Fssgn(q̇) + g(q) = τ − JT (q)he (5.2)

• B(q) is a configuration dependent matrix whose elements on the main diagonal bii

represent the moment of inertia at joint i axis,in the current arm configuration,

when the other joints are blocked. The coefficients bij account for the effect of

acceleration of joint j on joint i.

• C(q, q̇) is a configuration and velocity dependent matrix whose coefficients rep-

resent the centrifugal effect and the Coriolis effect.

• Fv is the nxn diagonal matrix of viscous friction coefficients. Fs is the nxn

diagonal matrix of static friction coefficients. Since Fssgn(q̇) corresponds to a

simplified model of static friction torques, usually hard to model and not so

significant in this study case, later on the non conservative forces will be grouped

in a single element, Fv q̇ + Fssgn(q̇) = F q̇.

• g(q) is the nx1 configuration dependent vector, whose terms gi represent the

moment generated at joint i axis by the presence of gravity.

• τ are the actuation torques and −JT (q)he are the torques at each joint, where

he is the 6x1 vector of forces and moments exerted by the end-effector on the

environment if there is contact between the two.

Considering a simplified model, in which all the non-linear terms are grouped in a

single one (equation (5.3) and (5.4)), the idea is to find a control vector u capable of

realizing an input/output relationship of linear type. This is guaranteed by the form

of the simplified dynamical model in equation (5.3), linear in the control u and has a

full-rank matrix B(q), invertible for any manipulator configuration.

B(q)q̈ + n(q, q̇) = u (5.3)

n(q, q̇) = C(q, q̇)q̇ + F q̇ + g(q) (5.4)

If now the control u is taken as a function of the manipulator state, leads to:

49



u = B(q)y + n(q, q̇) (5.5)

q̈ = y (5.6)

This non-linear control law u is also called Inverse Dynamics Control, since is

based on the computation of manipulator inverse dynamics . The system described by

equation (5.5) is, with respect to the new input y (which has to be determined yet),

linear and decoupled [4]. It’s now time to define the new stabilizing input y for the

linear system and the reference r. so, by choosing:

y = −KP q −KDq̇ + r (5.7)

leads, using equation (5.6) and (5.7) to:

q̈ +KDq̇ +KP q = r (5.8)

Under the assumption that KP and KD are positive definite matrices, is possible to

demonstrate that the system is asymptotically stable [4]. To track a desired trajectory

qd(t) the following reference must be chosen, realizing the block scheme in figure 5.2:

r = q̈d +KDq̇d +KP qd (5.9)

The dynamics of the position error q̃ = qd − q is so obtained substituting equation

(5.9) in (5.8):

¨̃qd +KD
˙̃qd +KP q̃d = 0 (5.10)

Figure 5.2: Block scheme of the inverse dynamics control strategy [4]

50



Inverse dynamics control is often chosen when the task is to make the manipulator

follow a joint space trajectory when there isn’t interaction with the environment, but

it is also an essential block of impedance control.

In presence of end-effector forces a nonlinear coupling term due to contact forces

arises in equation (5.6) , that becomes:

q̈ = y −B−1(q)JT (q)he (5.11)

The first operation to obtain again linearity and decoupling is to modify equation

(5.5) as follows:

u = B(q)y + n(q, q̇) + JT (q)he (5.12)

Defining the end-effector pose xe and using time differentiation is possible to demon-

strate that:

ẍe = JA(q)q̈ + J̇A(q, q̇)q̇ (5.13)

where JA is the analytical Jacobian. Under the assumption of error-free force

measurements, to obtain a dynamic behaviour of the position error in the operational

space:

x̃ = xd − xe (5.14)

formally equivalent to a mass, spring, dumper system, the following control action

y must be chosen:

y = J−1A (q)M−1
d (Mdẍd +KD

˙̃x+KP x̃−MdJ̇A(q, q̇)q̇ − hA) (5.15)

Finally substituting equations (5.13), (5.14) and (5.15) in (5.11) yields

Md
¨̃x+KD

˙̃x+KP x̃ = hA (5.16)

where Md is a positive definite matrix that represent the mass, KD the dumper

and KP the spring of the system to render, while hA is the vector of equivalent forces.

Figure 5.3 shows the block scheme of this control strategy.

51



Figure 5.3: Block scheme of the impedance control strategy [4]

5.3 Black-box approach

The impedance control algorithm would be a suitable solution to complete success-

fully all the operations needed to test the docking prototype. Unfortunately, a series

of impediments of practical nature made the implementation of the control strategy

unachievable, as described in section 5.2:

• A direct communication with the arm is not realizable, due to the fact that the

PCAN-PCI adapter has only two channels. Channel 1 is used by the framework,

and has to be kept connected, otherwise the finite state machine will enter in an

error state. Channel 2 must be used for the FTM 115 sensor.

• The dynamic model (equation (5.2)) is not implemented for the LWA 4P, and

is not realizable externally due to the lack of documentation regarding the arm

parameters, and the impossibility to read directly from the arm the generalized

coordinates q and their derivatives q̇.

• The framework hasn’t a function to read the end-effector velocity ẋe, needed to

close the loop (figure 5.3).

• Only the code related to the LWA 4P is directly accessible and modifiable, while

the underlying functionalities are already compiled and, in many cases, also the

related source code is missing.

Moreover, the goal of these tests is to prove that the docking prototype can com-

pensate for small offsets between the axis of the target and the chaser, so rendering a

specific dynamic behavior at the end-effector is not mandatory.

In the first phase of the test, while the target approaches the chaser, the control

system of the active part will move the slides on which the probe is mounted accordingly

52



to the measurements coming from the displacement sensor, so using a small vertical

velocity, starting from the initial position shown in figure 5.1 is sufficient.

In the following phases the only few conditions must be guaranteed:

• The axis of the target has to be vertical, so any unwanted rotation around any

axis of the end-effector frame must be corrected. In other words only linear

movements are allowed.

• For safety reasons the linear velocities must be limited to low values, in the order

of some cm/s.

• The end-effector frame must move in the same direction of the forces sensed by

the FTM115.

• Initial bias and noise coming from the sensor, that could produce false readings,

must be properly managed.

To guarantee the precedent conditions and to work around all the practical imped-

iments, a Black-box approach was chosen. In practice this means that, using the

data from the sensor, a velocity reference is iteratively computed and given as an input

to the arm, using the user command cvelall, described in section 3.1.1. In sections 5.3.1

and 5.4 two different control strategies suitable for testing the docking mechanism are

described.

5.3.1 Proportional Control

Since it is not mandatory to reproduce a particular dynamic behaviour, a possibility

is to implement a control algorithm that tries to nullify the forces, measured by the

sensor, by moving in the Cartesian space the end-effector in the same direction of the

forces. So the set point to use as reference in the negative feedback loop is a null vector:

Fref =

Fx

Fy

Fz

 =

0

0

0


The algorithm must eliminate the noise ns produced by the sensor, at least for small

forces, in order to guarantee that the movement of the end-effector will always be in

the same direction of the force. The simplest solution to this problem, since |ns| < 1N ,

is to impose a null velocity for small forces (red line in figure 5.4). The relationship

between the force and the velocity to use as input can be chosen arbitrarily, for this

application a proportional one, that transform N in mm/s is sufficient (blue line in

figure 5.4). It is also mandatory, for safety reasons, to limit the maximum velocity, so

53



the force readings are saturated via software at |Fmax| = 100N , producing a maximum

velocity of |ẋmax| = 0.1m
s

(green line in figure 5.4), so even if the forces grow, over

a certain threshold the velocity will be kept constant. These three condition finally

produce the characteristic in figure 5.4

ẋin =


0, if |F | < 2

−0.001 · (Fref − F ), if |F | < Fmax

ẋmax, if |F | ≥ Fmax

(5.17)

Figure 5.4: Set point control force/velocity characteristic

This strategy produces a passive compliant behaviour whose characteristic can be

easily modified and that is quite safe for the prototype, since once the sensor doesn’t

read any linear force, no movement will be imposed to the end-effector frame.

5.3.2 Practical implementation

In order to communicate with both the robotic arm and the force/torque sensor the

PCAN-PCI dual channel adapter (part number IPEH-002065) is used. Since the ma-

nipulator uses the CANopen (CiA DS402:IEC61800-7-201) protocol for the motors,

while the communication with the sensor is based on a lower level one, described in

section 4.3, it’s necessary to use both the available channels.

54



Figure 5.5: PCI to CAN adapter

The main features of this device (figure 5.5) are [11]:

• PC plug-in card for PCI slot.

• 2 High-speed CAN channels (ISO 11898-2).

• Bit rates up to 1 Mbit/s.

• Compliant with CAN specifications 2.0A (11-bit ID) and 2.0B (29-bit ID).

• CAN bus connection via D-Sub, 9-pin (in accordance with CiA R© 102).

• NXP SJA1000 CAN controller, 16 MHz clock frequency.

• NXP PCA82C251 CAN transceiver.

• 5-Volts supply to the CAN connection can be connected through a solder jumper,

e.g. for external bus converter.

• Extended operating temperature range from -40 to 85 ◦C (-40 to 185 ◦F).

PEAK-System Technik GmbH provides also a free driver, whose functionalities

are contained in the pcan.h and libpcan.c files, compatible with this (and other)

adapter, with a ioctl() interface. In this way user programs are able to receive and to

55



transmit CAN-telegrams, to get information about the channel status and to initialize

the CAN-channel [8].

Important note: since the framework runs on a Linux-based operative system

(CentOS), external devices are seen by the operative system as device nodes. The

framework will automatically create the pcan0 and pcan1 nodes, correspondent to

channel 1 and channel 2, once the workframe is started for the first time after a power

cycle, using the pcan\_make\_devices function provided by the driver.

To implement the algorithms described in sections 5.3.1 and 5.4, a new command

called sensor is added to the set available to the user, automatically integrated in the

workframe by the constructor of the class PBConsole.

Once the sensor command is called by the user in the console terminal, four groups

of variables are created. The PCAN PARAMETERS are used by all the functions related

with the initialization or communication with the sensor (based on the driver library).

Each of these functions return only error code (DWORD) relative to the PCAN driver, to

be compared with the ones contained in pcan.h. If some error occurred, the execution

of the command will be killed. The second group of variables, the FTM115 PARAMETERS,

is related to the ones needed for the computation of forces and torques, described in

section 4.3. Active calibration, unit codes, counts per unit and matrix of coefficients

will be saved in this variables one time, at the beginning, since they will remain con-

stant, while the SG data and the bias are iteratively requested. The last two group,

CARTESIAN VELOCITY PARAMETERS and CARTESIAN POSITION PARAMETERS, need re-

spectively to produce a velocity reference for the Cartesian Velocity controller, and

to measure possible angular misalignment that must be compensated. In particular

the structures CartesianVelocityReference and CartesianPositionFeedback are

defined in the file ctrl_defines.h.

At this point the INITIALIZATION PHASE stars, giving the following output:

>>>>>>>>>>>>>>>>>>>>>>>>>INITIALIZATION PHASE<<<<<<<<<<<<<<<<<<<<<<<<<

Driver Version: Release_20130131_n

Tx/Rx ID DLC D0 D1 D2 D3 D4 D5 D6 D7

[1] Read FT Serial Number -----> Serial Number= FT18373

Tx 0x205 0

Rx 0x205 8 46 54 31 38 33 37 33 0

[2] Set Active Calibration -----> activeCalibration= 0

Tx 0x206 1 0

Rx 0x206 1 0

56



[3] Read Counts per Units -----> CpF= 1000000, CpT= 1000000

Tx 0x207 0

Rx 0x207 8 0 F 42 40 0 F 42 40

[4] Read Unit Codes -----> ucF = 2 , ucT = 3

Tx 0x208 0

Rx 0x208 2 Force: N Torque: N-m

[5] Read Matrix

Tx 0x202 1 0

Rx 0x202 8 C3 5F 32 26 42 E3 C4 4E

Rx 0x203 8 45 EF 80 B5 C6 EB C4 E6

Rx 0x204 8 C5 2A A3 FA 46 E0 7A DA

Tx 0x202 1 1

Rx 0x202 8 C5 C2 AC E0 47 1 E4 51

Rx 0x203 8 45 6F C8 EE C6 88 AB D4

Rx 0x204 8 45 52 D5 AA C6 83 2C B3

Tx 0x202 1 2

Rx 0x202 8 47 1C 46 29 44 BF 6A AE

Rx 0x203 8 47 21 87 76 44 E9 2F 56

Rx 0x204 8 47 16 C8 46 44 97 69 31

Tx 0x202 1 3

Rx 0x202 8 C2 76 3F CC 43 63 F0 E6

Rx 0x203 8 C4 1B 95 E8 C3 19 CE 15

Rx 0x204 8 44 22 51 45 C2 BB 95 83

Tx 0x202 1 4

Rx 0x202 8 44 3E DD 49 41 EE 98 FD

Rx 0x203 8 C3 DB CB 4E 43 3E D 6

Rx 0x204 8 C3 AE 8B 57 C3 51 A4 EC

Tx 0x202 1 5

Rx 0x202 8 42 6E F 66 C3 D2 71 2D

Rx 0x203 8 43 6 FA F8 C3 DA 68 26

Rx 0x204 8 42 2E 58 F0 C3 D1 6D 53

------------------------Matrix of Coefficients------------------------

G0 G1 G2 G3 G4 G5

Fx -223.20 113.88 7664.09 -30178.45 -2730.25 28733.43

Fy -6229.61 33252.32 3836.56 -17493.91 3373.35 -16790.35

Fz 40006.16 1531.33 41351.46 1865.48 38600.27 1211.29

57



Tx -61.56 227.94 -622.34 -153.81 649.27 -93.79

Ty 763.46 29.82 -439.59 190.05 -349.09 -209.64

Tz 59.52 -420.88 134.98 -436.81 43.59 -418.85

At the end the user is asked to specify manually the velocity timeouts for the joint

space and the Cartesian space:

Set velocity timeouts :

This step is added for safety reasons, but is redundant if the user, before using the

sensor command, manually sets the Cartesian velocity timeout to a value small enough

but still greater than the sampling time, defined at the end of the loop by the function

Sleep(1) (see later). Actually the Sleep(1) function stops the execution of the while

loop for one millisecond, so no data request is sent to the sensor and the velocity

reference is maintained for this amount of time, which is basically the sampling time.

During this period the framework will move in the Cartesian space the end-effector

until a new reference is issued. At the last iteration, since the data acquisition phase

is finished, a new reference won’t but produced, so the framework will maintain the

last one for a period equal to the Cartesian velocity timeout that, by default is set

to 3 seconds. To avoid any dangerous behaviour, each time the sensor command is

used, the user will be asked to set the velocity timeouts. It is recommended to set the

Cartesian one (second number) between the sampling time and two times the sampling

time, while the joint timeout won’t affect the execution of the command:

Set velocity timeouts : 1000 2

The second operation needed is the initialization of channel two, that needs the

device node path (/dev/pcan1). Then the parameters, needed for the computation

of forces and torques, are requested in the order described in section 4.3. During this

phase all these information are printed in the console terminal.

Then a finite while loop starts and at each iteration the function ReadRawData asks

for the strain gauge data and the status of the sensor. If for any reason the sensor

produces an error code, it will be reset just before the execution of the loop may break

down.

At this stage the force torque readings should be zero, but the sensor is affected

by a strong initial bias, to be subtracted from the future readings. For the first 100

iterations the function BiasCorrector(bias,newbias) performs the mean between

the mean of the precedent bias (bias) and the new sensed one, saving it in the variable

newbias. Although this method to estimate the exact bias is extremely simple, it

works fine for this application. A great advantage of this method is that if some heavy

hardware is mounted on the sensor its weight won’t be considered as an active force,

so it won’t produce any velocity reference.

58



Once the bias is finally estimated, the new raw data readings are converted in

a meaningful form by the function ForceTorqueComputation, that uses the previ-

ously saved parameters of the sensor and saves forces and torques inside the array

forceTorque[6].

Important note: The end-effector frame and the axis of forces and torque are

not coincident. The sensor frame and the end-effector one have in common the same z

axis, but the first one is rotated with respect to the second of 60◦ around the vertical

axis, counter clock wise. This aspect doesn’t affect the sensed forces and torques, but

must be taken into consideration during the computation of the velocities.

Then, before computing the velocities, the last step is about the Cartesian angular

position (Pa). The VelComputation function will generate a linear velocity reference

accordingly to the user’s request, and a small and constant angular velocity (ẋa) in the

event that the angular error is greater than a predefined threshold (figure 5.6):

ẋa =

0, if |Pa| < 0.01rad

−sgn(Pa) · 0.03, if |Pa| ≥ 0.01rad
(5.18)

Figure 5.6: Angular error compensation

Finally a velocity reference is given to the arm controller and, before restarting

the loop, the Sleep(1) function stops the execution for 1 millisecond, while the arm

performs the requested movement. The last operation to perform is closing the channel

since, if kept open, a new call of the sensor command will generate an error during the

initialization phase.

59



Since the loop is limited to a certain amount of iteration but is not possible to know

how much time the test will takes, a possible improvement could be make the while

loop endless until a predefined keyboard input arises, or still maintain it limited but,

before exiting, ask the user if the test is finished or if the loop has to continue.

5.4 Limits and possible upgrades

The biggest limit of the Black-box approach is related to the fact that, once the velocity

reference is generated and passed to the Cartesian velocity control of the arm it is

guaranteed that the end-effector will move in the same direction of the sensed force,

but it isn’t guaranteed that the real velocity is equal to the reference. When the arm is

moving towards a singular configuration the framework will automatically reduce the

velocity and, in some cases, even stop completely the operation. During the tests of

the mechanism this behaviour won’t damage nor the manipulator or the mechanism,

but is necessary top place the active element of the mechanism in such a way that the

LWA 4P doesn’t have to move near singularities.

For what concerns the code two small upgrades can be performed:

1. Each time the command sensor is called from the console terminal, the user has

to specify the velocity timeouts, as described in section 5.3.2, because the default

one (3000 milliseconds) could cause problems once the while loop is completed.

A good idea could be to substitute this operation with a two function, one that

at the beginning automatically sets the Cartesian velocity timeout accordingly to

the sampling time, and the other that resets to the default value this parameter

once the execution of the command is almost completed.

2. The second possible upgrade regards the while loop. Since there is no way to

know how much a test will take, it would be better to use an endless loop instead

of a limited one, adding the option to break it in any moment with an input from

the keyboard.

Another possibility is to try to reproduce the impedance control algorithm, simu-

lating the dynamics of a satellite in space. Starting from equation (5.1), that describes

a mass-spring-damper system, it’s possible to simplify it to:

mẍ(t) = fext(t) (5.19)

considering that in orbit, if the gravitational effect are counterbalanced by the cen-

trifugal one, a mass is subject just to external forces and its inertia. Again, the only

practical option is to give to the arm controller a velocity reference after each sampling

period, so, manipulating equation (5.19):

60



mẍ(k) = m
ẋ(k)− ẋ(k − 1)

k
= fext(k) (5.20)

Using as initial condition ẋ(0) = 0, and choosing arbitrarily the mass, with a fixed

sampling time k = 1 ms, a new input can be iteratively computed, according to the

following equation:

ẋ(k) =
k · fext(k)

m
+ ẋ(k − 1) (5.21)

This approach will be more challenging for the controller of the prototype and the

chosen mass can’t be too high, in order to avoid damaging the hardware. For safety

reasons, even in this case, the maximum velocity must be limited and only linear

movements should be allowed. To implement this control strategy most of the code

reported in Appendix B can be re-used and, probably, the most efficient way could be

implementing it inside the command sensor and the Sensor.h and Sensor.cc files,

asking at the beginning which strategy the user prefers.

61



Chapter 6

Conclusions

The focus of this thesis project was to implement a suitable control strategy for a

six degrees of freedom robotic manipulator and a force/torque sensor, to test a dock-

ing mechanism for servicing missions, characterized by an unmanned servicer and a

cooperative target.

A brief discussion on the most common mating techniques in space introduces a

detailed description of the main elements of the second design iteration of the mecha-

nism which has been tested, in order to better understand its main features and how

they have to be put to the test.

Then all the information collected about the Schunk LWA 4P and the G.R.A.A.L

framework are presented, with a particular attention to the finite state machine, the

controller and the commands available to the user. Practical examples are added to

create a solid knowledge of the system and how to operate it safely.

The CAN bus protocol, used to communicate both with the sensor and the arm, is

presented starting from the ISO 11898 and its layers. The standard data frame and the

main features of the protocol are deeply illustrated to introduce and better understand

how it was implemented for the Schunk FTM 115, and minutely describes its functions

and the procedure to properly obtain the data.

It is then followed by a description of the test, that recalls directly the phases of a

real docking maneuvers. Although the impedance control strategy would be suitable

to complete all the needed operations, some impediments of practical nature led to an

easier but still effective approach, based on the available functionalities of the existing

software.

Two appendices are added, one to guide future users through the possible issues

that they can encounter while operating this system, the other to report all the code

relative to the sensor and the control strategy implemented.

62



Appendix A

Procedures and known issues

The purpose of this appendix is to give to the reader the essential information to prop-

erly and safely use the Schunk LWA 4P, the FTM115 and the G.R.A.A.L framework.

Then it follows a brief list of warnings and a description of how to manage particular

situations and the known issues.

A.1 Start-up and shut-down procedures

This section contains all the steps to safely start-up both the arm and the framework.

• Verify that the orange contactor behind the protection cage of the arm is in safe

position (down, as shown in figure A.1).

Figure A.1: Contactor for the LWA 4P

• Connect the three plugs of the two power supplies to three 220 V electric sockets.

63



• Switch on both the power supplies and verify that:

1. The outputs are correctly enabled.

2. The output voltages are both set at 24 V.

3. The maximum output current for the one that supplies the control logic is

set to 2.2A (to set this limit the output must be disabled).

4. The maximum output current for the one that supplies the motors is set to

7A.

Figure A.2: Power supplies for the control logic and the motors

• Enable the orange contactor; after this operation the current readings on the

displays of the power supplies should be the one reported in figure A.2 and the

four leds behind the arm base plate should be all green.

• Switch on the control pc and open three terminals.

• On two of the three terminals enter as Super User typing:

su

and after pressing Enter use the password tbratbra.

• Use one of the two terminal to start-up the workframe typing:

64



workframe start && console start

This command will also create the two device nodes needed by the PCAN-PCI

adapter.

• Once this operation is completed use the second super user terminal to start-up

the controller and wait for the completion of the preliminary operations:

controller-powerball start && controller-powerball console

A list of all the available commands will be printed on this terminal.

• Finally, on the workframe terminal type:

start

At this point is possible to control the arm using the commands described in

Chapter 3 just the console.

• To open the GUI use the third terminal and type:

cd Desktop

./PowerballGUI

In order to safely turn off the arm and the workframe:

• Disarm the manipulator using or the dedicated button in the GUI, or the com-

mand from the console terminal.

• On the workframe terminal use the command:

shutdown

• Exit from the super user mode in both the workframe and console terminals using

the command:

exit

65



• Close the GUI and the three terminals.

• Disable the contactor and turn off the power supplies.

To compile the software relative to the Schunk manipulator enter the powerballctrl

folder from the terminal using the cd devel/powerballctrl/ command and then issue

the following commands to clean, compile and install (waiting that each one completes

its operations):

make rtai_clean

make rtai_all

make rtai_install

A.2 Known issues

In this section are listed the problems encountered while using the framework developed

by G.R.A.A.L, the Schunk LWA 4P manipulator, the FTM115 force/torque sensor and

the PCAN drivers, in order to avoid possible dangerous configurations for both the

hardware or the future users.

• Encoders reset: Sometimes, mainly during the arming procedure, the joint po-

sition gets corrupted. In this case the controller will enter automatically in the

GOHOMING state. To solve the problem is necessary to follow the steps de-

scribed in section 3.2 to reset the encoders, shutdown and restart the workframe.

• Arming errors due to contact: If the robot was disarmed stopped with the

emergency button in a pose where one of its components touches with the ground,

the safety cage or itself, the next arming procedure will generate errors and in

most of the cases the controller won’t automatically switch in the GOHOMING

state. For example, if the FTM115 is mounted, it is better to not use the full

range of joint 5 because the sensor will touch the component that connects joint

3 and 4 with 5 and 6. To solve the problem is necessary to give manually to the

stuck elements a little bit of clearance, re-arm and perform the encoders reset

procedure. It is recommended to use only small velocities, to limit the range of

the joints and always be ready to press the emergency button to avoid this case.

• Arming errors due to joint 6: To attach the sensor to the arm, two c-shaped

spring loaded elements are used. By tightening two bolts the relative position of

the c-shaped components is reduced around the conic base of the sensor, ensuring

a solid connection. But when nor the sensor or other additional elements are used

with the arm, it is important to not tighten too much the previously mentioned

66



bots. In this case joint 6 will produce an error during the arming procedure

and the controller will remain endlessly in the ARMING state. This is just a

temporary state dedicated to automatic operation and checks before entering

the ARMED state, so the user can’t use any command and can’t even force the

controller to enter in the GOHOMING one. Fortunately it’s sufficient to simply

loosen the bolts and restart the workframe.

• CAN errors: these are sporadic errors and usually it is not so simple to find

why they happen. For sure the first operation to perform is controlling that

the CAN cable of the motors of the arm is properly connected to channel 0 of

the PCAN-PCI board. If this is not the problem, probably it is correlated to

the control pc and its interaction with the PCAN-PCI, so usually is enough to

restart the pc and the workframe.

• GUI compilation problem: if the code is re-compiled the trajectory manager

won’t function properly anymore, and the sliders will still maintain their function,

but won’t graphically represent the proper range of the joints.

• GUI presets corrupted readings: using the Read button (see section 3.2.2)

near the zero position of the joints, some of the saved joint values could be

corrupted, so, before using the new preset issue the jpos command from the

console terminal to print all the current joint values, in order to double check

that the reading was successful.

• PCAN drivers: the PCAN driver is properly configured to work with the work-

frame, but if for any reason they have to be re-installed, follow the PCAN Driver

for Linux -User Manual guide, specifying during the compilation and installation

process the option for no real time support:

make clean

make RT=NO_RT

su -c \make install"

If the real time support, that by default is active, will be kept in this state, it

won’t be possible to start-up the workframe.

• FTM115 frame misalignment: an important aspect to consider while using

the force/torque sensor is that x and y axis of the frame related to the mea-

surement of forces and torques is rotated of about sixty degrees clock-wise with

respect to the end-effector frame. In listing B.3 it’s possible to see that, to com-

pensate for this problem, in the function VelComputation the sensed Fx and Fy

67



(ft[0] and ft[1]) are rotated to obtain forces in the same direction of the x and y

axis of the end-effector (realFx and realFy).

68



Appendix B

Code

In this appendix all the code relative to the FTM115 is listed, from the data acquisition

to the transformation of this data in Cartesian velocity references. In listing B.1

are reported the parts of code relative to the new command sensor inside the class

PBConsole. The command is automatically created by the class constructor, once it

is called, by the function AddCommand.

Listing B.1: PBConsole.cc

1 #inc lude ” Sensor . h”

2 .

3 .

4 .

5 //PBConsole cont ruc to r :

6 PBConsole : : PBConsole ( void )

7 {
8 .

9 .

10 .

11 AddCommand( ”SENSOR” , ”” , ”Use the s enso r to dr i v e the arm” ,

12 ( ConsoleMemberFunction)&PBConsole : : CommandSENSOR) ;

13 .

14 .

15 .

16 }
17 .

18 .

19 .

20

21 i n t PBConsole : : CommandSENSOR( void )

22 {
23 //PCAN PARAMETERS

24 DWORD er r ;

25 HANDLE deviceHandle ;

26

27 //FTM115 PARAMETERS

28 u i n t 8 t ucF ;

29 u i n t 8 t ucT ;

30 u i n t 8 t a c t i v eCa l i b r a t i o n ;

31 u in t 32 t CpF;

32 u in t 32 t CpT;

69



33 f l o a t matrix [ 3 6 ] ;

34 i n t 1 6 t rawData [ 6 ] ;

35 char FTMstatus [ 1 6 ] ;

36 f l o a t forceTorque [ 6 ] ;

37 i n t 1 6 t newbias [ 6 ] ;

38 i n t 1 6 t b i a s [ 6 ] ;

39

40 char yawEnable = ’n ’ ;

41

42 //CARTESIAN VELOCITY PARAMETERS

43 i n t 3 2 t r e t=CTRL RV OK;

44 f l o a t l i n e a rVe l [ 3 ] ;

45 f l o a t angularCompensation [ 3 ] ;

46

47 // Car t e s i anVe loc i tyRe f e r ence i s de f ined in c t r l d e f i n e s . h

48 Car t e s i anVe loc i tyRe f e r ence c v e l r e f ;

49

50 c v e l r e f . enable [ 0 ] = true ;

51 c v e l r e f . enable [ 1 ] = true ;

52 c v e l r e f . enable [ 2 ] = true ;

53 c v e l r e f . enable [ 3 ] = true ;

54 c v e l r e f . enable [ 4 ] = true ;

55 c v e l r e f . enable [ 5 ] = true ;

56

57 // Cartes ian po s i t i o n f o r angular compensation

58 // Cartes ianPos i t ionFeedback i s de f ined in c t r l d e f i n e s . h (yaw p i t ch r o l l x y z )

59 Cartes ianPos i t ionFeedback cpos fbk ;

60 f l o a t angu larError [ 3 ] ;

61

62

63 cout << ”>>>>>>>>>>>>>>>>>>>>>>>>>INITIALIZATION PHASE<<<<<<<<<<<<<<<<<<<<<<<<<” << endl ;

64 e r r = PcanInit (SENSOR PATH, dev iceHandle ) ;

65 e r r = ReadFTSerialNumber ( dev iceHandle ) ;

66 e r r = SetAct i v eCa l i b ra t i on ( deviceHandle , a c t i v eCa l i b r a t i o n ) ;

67 e r r = ReadCountsPerUnits ( deviceHandle , CpF, CpT) ;

68 e r r = ReadUnitCodes ( deviceHandle , ucF , ucT ) ;

69 e r r = ReadMatrix ( deviceHandle , matrix ) ;

70 PrintMatr ix ( matrix ) ;

71

72

73 cout <<”Set v e l o c i t y t imeouts ( wr i t e ’1000 2 ’ and pre s s Enter ) : ” ;

74 CommandSetParameterVelocityTimeouts ( ) ;

75 cout << ”Do you want to enable the yaw ax i s ? ( y=YES, n=NO) ” ;

76 c in >> yawEnable ;

77

78 i f ( yawEnable==’y ’ | | yawEnable==’Y ’ )

79 cout << endl << ”Yaw Enable = YES” ;

80 e l s e

81 cout << endl << ”Yaw Enable = NO” ;

82

83 cout << endl << ”>>>>>>>>>>>>>>>>>>>>>>>ACQUIRING DATA<<<<<<<<<<<<<<<<<<<<<<<” << endl ;

84 //PrintFTHeader ( ) ;

85

86 i n t i = 0 ;

87 whi l e ( i <25000){
88

89 i f ( i <100){// Bias computation

90 e r r = ReadRawData( deviceHandle , newbias , FTMstatus ) ;

91 BiasCorrec tor ( bias , newbias ) ;

70



92

93 } e l s e {
94 e r r = ReadRawData( deviceHandle , rawData , FTMstatus ) ;

95

96 i f ( FTMerrorCheck (FTMstatus ) ){
97 //Computation o f Fx , Fy , Fz ,Tx ,Ty , Tz s t a r t i n g from the raw data coming from the senso r

98 // (ATTENTION: the s enso r frame i s ro ta ted o f 60 deg ccw , t h i s aspect i s taken in to

99 // con s i d e r a t i on in the computation o f the l i n e a r v e l o c i t i e s , but j u s t f o r Fx and Fy)

100 ForceTorqueComputation ( forceTorque , rawData , bias , matrix , CpF, CpT) ;

101 //PrintForceTorque ( forceTorque ) ;

102

103 //Reading the c a r t e s i a n po s i t i o n to even tua l l y compensate e r r o r s f o r r o l l ,

104 // p i t ch and yaw

105 pbCt r l I n t e r f a c e −>ReadCartes ianPosit ionFeedback ( cpos fbk ) ;

106 angularError [ 0 ] = cposfbk . x [ 2 ] ;

107 angularError [ 1 ] = cposfbk . x [ 1 ] ;

108 angularError [ 2 ] = cposfbk . x [ 0 ] ;

109

110 //The f o r c e s are converted in to l i n e a r v e l o c i t i e s and even tua l l y

111 // the angular compensation

112 VelComputation ( l i n ea rVe l , angularCompensation , forceTorque , angularError ) ;

113 // Pr intL inearVe l ( l i n e a rVe l ) ;

114

115 i f ( yawEnable==’y ’ | | yawEnable==’Y ’ ){
116 angularCompensation [ 2 ] = YawComputation ( forceTorque [ 5 ] ) ;

117 }
118

119 c v e l r e f . r e f e r e n c e [ 0 ] = angularCompensation [ 0 ] ; // r o l l

120 c v e l r e f . r e f e r e n c e [ 1 ] = angularCompensation [ 1 ] ; // p i t ch

121 c v e l r e f . r e f e r e n c e [ 2 ] = angularCompensation [ 2 ] ; //yaw

122 c v e l r e f . r e f e r e n c e [ 3 ] = l i n e a rVe l [ 0 ] ; // x

123 c v e l r e f . r e f e r e n c e [ 4 ] = l i n e a rVe l [ 1 ] ; // y

124 c v e l r e f . r e f e r e n c e [ 5 ] = l i n e a rVe l [ 2 ] ; // z

125

126 r e t = pbCt r l I n t e r f a c e −>WriteCarte s i anVe loc i tyRe fe rence ( c v e l r e f ) ;

127 r e t = WriteCommand(CTRLCOMMANDCVELCTRL) ;

128

129 } e l s e {// I f something goes wrong the senso r i s r e s e t t e d

130 cout << ”Rese t t ing the s enso r ! ” << endl ;

131 e r r = Reset ( dev iceHandle ) ;

132 cout << ”Please shutdown the arm and the workframe , then try again ! I f

133 something doesen ’ t work r e s t a r t a l s o the pc” << endl ;

134 break ;

135 }
136 }
137

138 i f ( r e t == CTRL RV OK){
139 Sleep ( 1 ) ; //ms

140 ++i ;

141 } e l s e {
142 break ;

143 }
144 }
145

146

147 // Clos ing the can channel o f the s enso r

148 e r r = CAN Close ( dev iceHandle ) ;

149

150 // Returning in Holding s t a t e

71



151 r e t = WriteCommand(CTRLCOMMANDHOLD) ;

152 i f ( r e t !=CTRL RV OK)

153 return r e t ;

154

155 re turn r e t ;

156 }

Listings B.2 and B.3 contain the code to manage the CAN communication with the

sensor, the error handling and the transformation of the raw data in usable one. The

files Sensor.cc and Sensor.h are in the same folder of the code relative to the LWA

4P (powerballctrl). Since they were added, in the makefile, to the list of files to be

compiled, during the compilation and installation procedure described in Appendix A,

they will be automatically integrated inside the framework.

Listing B.2: Sensor.h

1 #i f n d e f SENSOR H

2 #de f i n e SENSOR H

3

4 #inc lude <iostream>

5 #inc lude <iomanip>

6 #inc lude <b i t s e t>

7 #inc lude <cmath>

8 #inc lude <vector>

9 #inc lude <s t r i ng>

10 #inc lude <s t d i n t . h>

11 #inc lude <math . h>

12 #inc lude ” l ibpcan . h”

13 #inc lude ” time . h”

14 #inc lude ” f c n t l . h”

15

16

17 // DEFAULT PORT FOR THE SENSOR (ON PCAN0 IS MOUNTED THE ARM)

18 #de f i n e SENSOR PATH ”/dev/pcan1”

19

20 //−−−−−FORCE/TORQUE INDEX−−−−−
21 #de f i n e FX (0)

22 #de f i n e FY (1)

23 #de f i n e FZ (2)

24 #de f i n e TX (3)

25 #de f i n e TY (4)

26 #de f i n e TZ (5)

27

28 //−−−−−MESSAGES−−−−−
29 #de f i n e STATUS SG0 SG2 SG4 (0 x200 )

30 #de f i n e SG1 SG3 SG5 (0 x201 )

31 #de f i n e MATRIX SG0 SG1 (0 x202 )

32 #de f i n e MATRIX SG2 SG3 (0 x203 )

33 #de f i n e MATRIX SG4 SG5 (0 x204 )

34 #de f i n e FT SERIAL NUMBER (0 x205 )

35 #de f i n e SET ACTIVE CALIBRATION (0 x206 )

36 #de f i n e COUNTS PER UNIT (0 x207 )

37 #de f i n e UNIT CODES (0 x208 )

38 #de f i n e RESET (0x20C)

39 #de f i n e SET BASE ID (0x20D)

40 #de f i n e SET BAUD RATE (0x20E)

41 #de f i n e FIRMWAREVERSION (0x20F )

72



42

43 //−−−−−STATUS−−−−−
44 #de f i n e WATCHDOGRESET (0)

45 #de f i n e DAC ADC TOO HIGH (1)

46 #de f i n e DACADCTOOLOW (2)

47 #de f i n e ANALOGGROUNDOOF (3)

48 #de f i n e POWER SUPPLY TOO HIGH (4)

49 #de f i n e POWER SUPPLYTOOLOW (5)

50 #de f i n e BAD ACTIVE CALIBRATION (6)

51 #de f i n e EEPROM FAILURE (7)

52 #de f i n e CONFIGURATION INVALID (8)

53 #de f i n e RESERVED 1 (9)

54 #de f i n e RESERVED 2 (10)

55 #de f i n e TEMPERATURETOOHIGH (11)

56 #de f i n e TEMPERATURETOOLOW (12)

57 #de f i n e RESERVED 3 (13)

58 #de f i n e CAN BUS ERROR (14)

59 #de f i n e ANYERROR (15)

60

61 //−−−−−UNIT CODES−−−−−
62 #de f i n e LBF (1)

63 #de f i n e N (2)

64 #de f i n e KLBF (3)

65 #de f i n e KN (4)

66 #de f i n e KGF (5)

67 #de f i n e GF (6)

68 #de f i n e LBF IN (7)

69 #de f i n e LBF FT (8)

70 #de f i n e N M (9)

71 #de f i n e NMM (10)

72 #de f i n e KGFCM (11)

73 #de f i n e KNM (12)

74

75

76 //−−−−−PROTOTYPES−−−−−
77

78 //−−−CAN Functions

79 DWORD PcanInit ( const char ∗ path , HANDLE &deviceHandle ) ;

80 DWORD Reset (HANDLE &deviceHandle ) ;

81 DWORD Sen so r In i t (HANDLE &deviceHandle ) ;

82 DWORD ReadFTSerialNumber (HANDLE &deviceHandle ) ;

83 DWORD SetAct i v eCa l ib ra t i on (HANDLE &deviceHandle , u i n t 8 t &ac t i v eCa l i b r a t i o n ) ;

84 DWORD ReadCountsPerUnits (HANDLE &deviceHandle , u i n t 32 t &CpF, u i n t 32 t &CpT) ;

85 DWORD ReadUnitCodes (HANDLE &deviceHandle , u i n t 8 t &ucF , u i n t 8 t &ucT ) ;

86 DWORD ReadMatrix (HANDLE &deviceHandle , f l o a t m[ 3 6 ] ) ;

87 void MatrixFeeder ( const TPCANRdMsg &rM, f l o a t m[ 3 6 ] , const i n t &row , const i n t &column ) ;

88 DWORD ReadRawData(HANDLE &deviceHandle , i n t 1 6 t rawData [ 6 ] , char FTMstatus [ 1 6 ] ) ;

89 void DataStatusFeeder ( const TPCANRdMsg &rM, i n t 1 6 t rawData [ 6 ] , char FTMstatus [ 1 6 ] ) ;

90 void DataStatusFeeder ( const TPCANRdMsg &rM, i n t 1 6 t rawData [ 6 ] ) ;

91 bool FTMerrorCheck ( const char FTMstatus [ 1 6 ] ) ;

92 void ForceTorqueComputation ( f l o a t f t [ 6 ] , const i n t 1 6 t rawD [ 6 ] , const i n t 1 6 t b [ 6 ] ,

93 const f l o a t m[ 3 6 ] , const u i n t 32 t &CpF, const u i n t 32 t &CpT) ;

94 void BiasCorrec tor ( i n t 1 6 t b i a s [ 6 ] , i n t 1 6 t newbias [ 6 ] ) ;

95 void VelComputation ( f l o a t l i nVe l [ 3 ] , f l o a t angComp [ 3 ] , f l o a t f t [ 6 ] , f l o a t angErr [ 3 ] ) ;

96 f l o a t YawComputation ( const f l o a t yawTorque ) ;

97

98 //−−−U t i l i t i e s

99 TPCANMsg MsgAssembler ( const DWORD id ) ;

100 TPCANMsg MsgAssembler ( const DWORD id , const BYTE len , const BYTE data ) ;

73



101 void S leep ( const i n t &m i l l i s e c ) ;

102 void PrintMessage ( const TPCANMsg &msg ) ;

103 void PrintMessage ( const TPCANRdMsg &rdMsg ) ;

104 void PrintHeader ( ) ;

105 void PrintMatr ix ( f l o a t m[ 3 6 ] ) ;

106 void PrintFTMerror ( const i n t &code ) ;

107 void PrintForceTorque ( const f l o a t f t [ 6 ] ) ;

108 void Pr intL inearVe l ( const f l o a t l i nVe l [ 3 ] ) ;

109 void PrintFTHeader ( ) ;

110

111 //−−−Convers ions

112 long long i n t BinToDec ( const std : : s t r i n g &bin ) ;

113 f l o a t HexToFloat ( const std : : s t r i n g& binaryHex ) ;

114 i n t HexToDecSigned ( const std : : s t r i n g &bin ) ;

115

116

117 #end i f

Listing B.3: Sensor.cc

1 #inc lude ” Sensor . h”

2

3 us ing namespace std ;

4

5 //−−−−−CAN FUNCTIONS−−−−−
6 /∗>>>>>INITIALIZATION PHASE<<<<<∗/
7 DWORD PcanInit ( const char ∗ path , HANDLE &deviceHandle ){
8 char t x t I n f o [ 1 0 2 4 ] ;

9 DWORD er r ;

10 // Opening the dev i ce node /dev/pcan1

11 dev iceHandle = LINUX CAN Open( path , ORDWR) ;

12 /∗ By de f au l t the s enso r baud ra t e i s 250 kb i t /s , so the hardware has

13 to be i n i t i a l i z e d proper ly ∗/
14 e r r = CAN Init ( deviceHandle ,CAN BAUD 250K,CAN INIT TYPE ST ) ;

15 // Pr int v e r s i on i n f o

16 CAN VersionInfo ( deviceHandle , t x t I n f o ) ;

17 cout << ”Driver Vers ion : ” << t x t I n f o << endl << endl ;

18 PrintHeader ( ) ;

19 re turn e r r ;

20 }
21

22 DWORD Reset (HANDLE &deviceHandle ){
23 DWORD re t ;

24

25 // Composing and t ransmi t t ing the wr i t e message

26 TPCANMsg writeMessage ;

27 writeMessage = MsgAssembler (RESET) ;

28 r e t = CAN Write ( deviceHandle ,&writeMessage ) ;

29

30 re turn r e t ;

31 }
32

33 DWORD ReadFTSerialNumber (HANDLE &deviceHandle ){
34

74



35 DWORD re t ;

36

37 // Composing and t ransmi t t ing the wr i t e message

38 TPCANMsg writeMessage ;

39 writeMessage = MsgAssembler (FT SERIAL NUMBER) ;

40 r e t = CAN Write ( deviceHandle ,&writeMessage ) ;

41 i f ( r e t != 0)

42 re turn r e t ;

43

44 // Rece iv ing the re sponse

45 TPCANRdMsg readMessage ;

46 r e t = LINUX CAN Read( deviceHandle ,&readMessage ) ;

47 i f ( r e t != 0)

48 re turn r e t ;

49

50 // Pr in t ing ( op t i ona l )

51 cout << endl << ” [ 1 ] Read FT S e r i a l Number −−−−−> S e r i a l Number= ” ;

52 f o r ( i n t i =0; i<readMessage .Msg .LEN; ++i )

53 cout << uppercase << readMessage .Msg .DATA[ i ] ;

54 cout << endl ;

55 PrintMessage ( writeMessage ) ;

56 PrintMessage ( readMessage ) ;

57

58 re turn r e t ;

59 }
60

61 DWORD SetAct i v eCa l ib ra t i on (HANDLE &deviceHandle , u i n t 8 t &ac t i v eCa l i b r a t i o n ){
62

63 DWORD re t ;

64

65 // Composing and t ransmi t t ing the wr i t e message

66 TPCANMsg writeMessage ;

67 writeMessage = MsgAssembler (SET ACTIVE CALIBRATION, 1 , 0 ) ;

68 r e t = CAN Write ( deviceHandle ,&writeMessage ) ;

69 i f ( r e t != 0)

70 re turn r e t ;

71

72 // Rece iv ing the re sponse

73 TPCANRdMsg readMessage ;

74 r e t = LINUX CAN Read( deviceHandle ,&readMessage ) ;

75 i f ( r e t != 0)

76 re turn r e t ;

77 a c t i v eCa l i b r a t i o n = readMessage .Msg .DATA[ 0 ] ;

78

79 // Pr in t ing ( op t i ona l )

80 cout << endl << ” [ 2 ] Set Active Ca l i b r a t i on −−−−−> a c t i v eCa l i b r a t i o n= 0” <<

81 endl ;

82 PrintMessage ( writeMessage ) ;

83 PrintMessage ( readMessage ) ;

84

85 re turn r e t ;

86 }
87

88 DWORD ReadCountsPerUnits (HANDLE &deviceHandle , u i n t 32 t &CpF, u i n t 32 t &CpT){
89

90 DWORD re t ;

91

92 // Composing and t ransmi t t ing the wr i t e message

93 TPCANMsg writeMessage ;

75



94 writeMessage = MsgAssembler (COUNTS PER UNIT) ;

95 r e t = CAN Write ( deviceHandle ,&writeMessage ) ;

96 i f ( r e t != 0)

97 re turn r e t ;

98

99 // Rece iv ing the re sponse

100 TPCANRdMsg readMessage ;

101 r e t = LINUX CAN Read( deviceHandle ,&readMessage ) ;

102 i f ( r e t != 0)

103 re turn r e t ;

104 CpF = ( readMessage .Msg .DATA[0]<<24) | ( readMessage .Msg .DATA[1]<<16) |
105 ( readMessage .Msg .DATA[2]<<8) | readMessage .Msg .DATA[ 3 ] ;

106 CpT = ( readMessage .Msg .DATA[4]<<24) | ( readMessage .Msg .DATA[5]<<16) |
107 ( readMessage .Msg .DATA[6]<<8) | readMessage .Msg .DATA[ 7 ] ;

108

109 // Pr in t ing ( op t i ona l )

110 cout << endl << ” [ 3 ] Read Counts per Units −−−−−> CpF= ” << dec <<

111 CpF << ” , CpT= ” << dec << CpT << endl ;

112 PrintMessage ( writeMessage ) ;

113 PrintMessage ( readMessage ) ;

114

115 re turn r e t ;

116 }
117

118 DWORD ReadUnitCodes (HANDLE &deviceHandle , u i n t 8 t &ucF , u i n t 8 t &ucT){
119

120 DWORD re t ;

121

122 // Composing and t ransmi t t ing the wr i t e message

123 TPCANMsg writeMessage ;

124 writeMessage = MsgAssembler (UNIT CODES) ;

125 r e t = CAN Write ( deviceHandle ,&writeMessage ) ;

126 i f ( r e t != 0)

127 re turn r e t ;

128

129 // Rece iv ing the re sponse

130 TPCANRdMsg readMessage ;

131 r e t = LINUX CAN Read( deviceHandle ,&readMessage ) ;

132 i f ( r e t != 0)

133 re turn r e t ;

134 ucF = readMessage .Msg .DATA[ 0 ] ;

135 ucT = readMessage .Msg .DATA[ 1 ] ;

136

137 // Pr in t ing ( op t i ona l )

138 cout << endl << ” [ 4 ] Read Unit Codes −−−−−> ucF= ” << ( ucF ) << ” ,

139 ucT= ” << (ucT) << endl ;

140 PrintMessage ( writeMessage ) ;

141 cout << l e f t << setw (10) << ”Rx” << ”0x” << setw (10) << hex << readMessage .Msg . ID <<

142 setw (10) << ( readMessage .Msg .LEN + 0 ) ;

143

144 switch (ucF){
145 case 1 :

146 cout << setw (12) << ”Force : l b f ” ;

147 break ;

148 case 2 :

149 cout << setw (12) << ”Force : N” ;

150 break ;

151 case 3 :

152 cout << setw (12) << ”Force : Klbf ” ;

76



153 break ;

154 case 4 :

155 cout << setw (12) << ”Force : kN” ;

156 break ;

157 case 5 :

158 cout << setw (12) << ”Force : kgf ” ;

159 break ;

160 case 6 :

161 cout << setw (12) << ”Force : g f ” ;

162 break ;

163 d e f au l t :

164 cout << setw (12) << ”Force : ERROR” ;

165 break ;

166 }
167 switch (ucT){
168 case 1 :

169 cout << setw (13) << ”Torque : lb f−in ” << endl ;

170 break ;

171 case 2 :

172 cout << setw (13) << ”Torque : lb f−f t ” << endl ;

173 break ;

174 case 3 :

175 cout << setw (13) << ”Torque : N−m” << endl ;

176 break ;

177 case 4 :

178 cout << setw (13) << ”Torque : N−mm” << endl ;

179 break ;

180 case 5 :

181 cout << setw (13) << ”Torque : kgf−cm” << endl ;

182 break ;

183 case 6 :

184 cout << setw (13) << ”Torque : kN−m” << endl ;

185 break ;

186 d e f au l t :

187 cout << setw (13) << ”Torque : ERROR” << endl ;

188 break ;

189 }
190

191 re turn r e t ;

192 }
193

194 DWORD ReadMatrix (HANDLE &deviceHandle , f l o a t m[ 3 6 ] ) {
195 cout << endl << ” [ 5 ] Read Matrix ” << endl ;

196 DWORD re t ;

197

198 f o r ( i n t i =0; i <6; ++i ){
199 // Composing and t ransmi t t ing the wr i t e message

200 TPCANMsg writeMessage ;

201 writeMessage = MsgAssembler (MATRIX SG0 SG1 , 1 , i ) ;

202 r e t = CAN Write ( deviceHandle ,&writeMessage ) ;

203 i f ( r e t != 0)

204 re turn r e t ;

205 PrintMessage ( writeMessage ) ;

206

207 // Rece iv ing the re sponse

208 TPCANRdMsg readMessage ;

209 r e t = LINUX CAN Read( deviceHandle ,&readMessage ) ;

210 i f ( r e t != 0)

211 re turn r e t ;

77



212 MatrixFeeder ( readMessage , m, i , 0 ) ;

213 PrintMessage ( readMessage ) ;

214

215 r e t = LINUX CAN Read( deviceHandle ,&readMessage ) ;

216 i f ( r e t != 0)

217 re turn r e t ;

218 MatrixFeeder ( readMessage , m, i , 2 ) ;

219 PrintMessage ( readMessage ) ;

220

221 r e t = LINUX CAN Read( deviceHandle ,&readMessage ) ;

222 i f ( r e t != 0)

223 re turn r e t ;

224 MatrixFeeder ( readMessage , m, i , 4 ) ;

225 PrintMessage ( readMessage ) ;

226 }
227

228 re turn r e t ;

229 }
230

231 void MatrixFeeder ( const TPCANRdMsg &rM, f l o a t m[ 3 6 ] , const i n t &row , const i n t &column ){
232

233 s t r i n g binaryHex1 = b i t s e t <8>(rM.Msg .DATA[ 0 ] ) . t o s t r i n g ( ) +

234 b i t s e t <8>(rM.Msg .DATA[ 1 ] ) . t o s t r i n g ( ) +

235 b i t s e t <8>(rM.Msg .DATA[ 2 ] ) . t o s t r i n g ( ) +

236 b i t s e t <8>(rM.Msg .DATA[ 3 ] ) . t o s t r i n g ( ) ;

237

238 s t r i n g binaryHex2 = b i t s e t <8>(rM.Msg .DATA[ 4 ] ) . t o s t r i n g ( ) +

239 b i t s e t <8>(rM.Msg .DATA[ 5 ] ) . t o s t r i n g ( ) +

240 b i t s e t <8>(rM.Msg .DATA[ 6 ] ) . t o s t r i n g ( ) +

241 b i t s e t <8>(rM.Msg .DATA[ 7 ] ) . t o s t r i n g ( ) ;

242

243 m[6∗ row + column ] = HexToFloat ( binaryHex1 ) ;

244 m[6∗ row + column+1] = HexToFloat ( binaryHex2 ) ;

245 }
246

247

248 /∗>>>>>ACQUIRING DATA<<<<<∗/
249 DWORD ReadRawData(HANDLE &deviceHandle , i n t 1 6 t rawData [ 6 ] , char FTMstatus [ 1 6 ] ) {
250 DWORD re t ;

251

252 // Composing and t ransmi t t ing the wr i t e message

253 TPCANMsg writeMessage ;

254 writeMessage = MsgAssembler (STATUS SG0 SG2 SG4 ) ;

255 r e t = CAN Write ( deviceHandle ,&writeMessage ) ;

256 i f ( r e t != 0)

257 re turn r e t ;

258 //PrintMessage ( writeMessage ) ;

259

260 // Rece iv ing the re sponse ( Status , sg0 , sg2 and sg4 )

261 TPCANRdMsg readMessage ;

262 r e t = LINUX CAN Read( deviceHandle ,&readMessage ) ;

263 i f ( r e t != 0)

264 re turn r e t ;

265 DataStatusFeeder ( readMessage , rawData , FTMstatus ) ;

266 //PrintMessage ( readMessage ) ;

267 // Rece iv ing the re sponse ( sg1 , sg3 and sg5 )

268 r e t = LINUX CAN Read( deviceHandle ,&readMessage ) ;

269 i f ( r e t != 0)

270 re turn r e t ;

78



271 DataStatusFeeder ( readMessage , rawData ) ;

272 //PrintMessage ( readMessage ) ;

273

274 re turn r e t ;

275 }
276

277 void DataStatusFeeder ( const TPCANRdMsg &rM, i n t 1 6 t rawData [ 6 ] , char FTMstatus [ 1 6 ] ) {
278 // Status

279 s t r i n g binaryHexstatus = b i t s e t <8>(rM.Msg .DATA[ 0 ] ) . t o s t r i n g ( ) +

280 b i t s e t <8>(rM.Msg .DATA[ 1 ] ) . t o s t r i n g ( ) ;

281 f o r ( i n t i =0; i <16; ++i )

282 FTMstatus [ i ] = binaryHexstatus . at ( i ) ;

283

284 // SG0 , SG2 and SG4

285 s t r i n g binaryHexSG0 = b i t s e t <8>(rM.Msg .DATA[ 2 ] ) . t o s t r i n g ( ) +

286 b i t s e t <8>(rM.Msg .DATA[ 3 ] ) . t o s t r i n g ( ) ;

287 rawData [ 0 ] = HexToDecSigned ( binaryHexSG0 ) ;

288 s t r i n g binaryHexSG2 = b i t s e t <8>(rM.Msg .DATA[ 4 ] ) . t o s t r i n g ( ) +

289 b i t s e t <8>(rM.Msg .DATA[ 5 ] ) . t o s t r i n g ( ) ;

290 rawData [ 2 ] = HexToDecSigned ( binaryHexSG2 ) ;

291 s t r i n g binaryHexSG4 = b i t s e t <8>(rM.Msg .DATA[ 6 ] ) . t o s t r i n g ( ) +

292 b i t s e t <8>(rM.Msg .DATA[ 7 ] ) . t o s t r i n g ( ) ;

293 rawData [ 4 ] = HexToDecSigned ( binaryHexSG4 ) ;

294 }
295

296 void DataStatusFeeder ( const TPCANRdMsg &rM, i n t 1 6 t rawData [ 6 ] ) {
297 // SG1 , SG3 and SG5

298 s t r i n g binaryHexSG1 = b i t s e t <8>(rM.Msg .DATA[ 0 ] ) . t o s t r i n g ( ) +

299 b i t s e t <8>(rM.Msg .DATA[ 1 ] ) . t o s t r i n g ( ) ;

300 rawData [ 1 ] = HexToDecSigned ( binaryHexSG1 ) ;

301 s t r i n g binaryHexSG3 = b i t s e t <8>(rM.Msg .DATA[ 2 ] ) . t o s t r i n g ( ) +

302 b i t s e t <8>(rM.Msg .DATA[ 3 ] ) . t o s t r i n g ( ) ;

303 rawData [ 3 ] = HexToDecSigned ( binaryHexSG3 ) ;

304 s t r i n g binaryHexSG5 = b i t s e t <8>(rM.Msg .DATA[ 4 ] ) . t o s t r i n g ( ) +

305 b i t s e t <8>(rM.Msg .DATA[ 5 ] ) . t o s t r i n g ( ) ;

306 rawData [ 5 ] = HexToDecSigned ( binaryHexSG5 ) ;

307 }
308

309 bool FTMerrorCheck ( const char FTMstatus [ 1 6 ] ) {
310 bool r e t = true ;

311 f o r ( i n t i =0; i <16; ++i ){
312 i f ( FTMstatus [ i ] == ’ 1 ’ ){
313 cout << ”FTM115 STATUS ERROR CODE: ” << i << endl ;

314 PrintFTMerror ( i ) ;

315 r e t = f a l s e ;

316 }
317 }
318 re turn r e t ;

319 }
320

321 void ForceTorqueComputation ( f l o a t f t [ 6 ] , const i n t 1 6 t rawD [ 6 ] , const i n t 1 6 t b [ 6 ] ,

322 const f l o a t m[ 3 6 ] , const u i n t 32 t &CpF, const u i n t 32 t &CpT){
323 f t [ 0 ]=0 ;

324 f t [ 1 ]=0 ;

325 f t [ 2 ]=0 ;

326 f t [ 3 ]=0 ;

327 f t [ 4 ]=0 ;

328 f t [ 5 ]=0 ;

329 f o r ( i n t row=0; row<6; ++row ){

79



330 f o r ( i n t c o l =0; co l <6; ++co l ){
331 // these are f o r c e s and torques AROUND THE AXIS OF THE SENSOR

332 // (x i s ro ta ted o f 60 deg counter c l o ck wise with r e sp e c t to

333 // the end−e f f e c t o r ax i s )

334 i f ( row<3)

335 f t [ row ] += (m[6∗ row + co l ] ∗ (rawD [ c o l ] − b [ c o l ] ) ) /CpF;

336 e l s e

337 f t [ row ] += (m[6∗ row + co l ] ∗ (rawD [ c o l ] − b [ c o l ] ) ) /CpT;

338 }
339 }
340 }
341

342 void BiasCorrec tor ( i n t 1 6 t b i a s [ 6 ] , i n t 1 6 t newbias [ 6 ] ) {
343 f o r ( i n t i =0; i <6; ++i ){
344 b ia s [ i ] = ( b i a s [ i ]+newbias [ i ] ) / 2 ;

345 }
346 }
347

348 void VelComputation ( f l o a t l i nVe l [ 3 ] , f l o a t angComp [ 3 ] , f l o a t f t [ 6 ] , f l o a t angErr [ 3 ] ) {
349 // To compute the l i n e a r v e l o c i t i e s f o r the end−e f f e c t o r Fx and Fy o f the s enso r

350 //has to be p ro j e c t ed along the r e a l end e f f e c t o r ax i s ( x o f the s enso r i s r o t e t ed

351 // counter c l o ck wise with r e sp e c t to x o f the end−e f f e c t o r )

352 //−−−−−LINEAR VELOCITIES

353 f l o a t cos60 = 0 . 5 ;

354 f l o a t cos30 = sq r t ( 3 ) / 2 ;

355 f l o a t rea lFx = f t [ 0 ] ∗ cos60 − f t [ 1 ] ∗ cos30 ;

356 f l o a t rea lFy = f t [ 0 ] ∗ cos30 + f t [ 1 ] ∗ cos60 ;

357

358 f t [ 0 ] = rea lFx ;

359 f t [ 1 ] = rea lFy ;

360

361 f o r ( i n t i =0; i <3; ++i ){
362

363 l i nVe l [ i ] = 3∗( f t [ i ] / 1 0 0 0 . 0 ) ;

364

365 i f ( abs ( f t [ i ])<2)

366 l i nVe l [ i ] = 0 ;

367 e l s e i f ( l i nVe l [ i ]>0.2)

368 l i nVe l [ i ] = 0 . 2 ;

369 }
370

371 //−−−−−ANGULAR COMPENSATIONS

372 //ROLL

373 i f ( angErr [0 ] >0 .01)

374 angComp [ 0 ] = −0.03;

375 e l s e i f ( angErr [0]<−0.01)

376 angComp [ 0 ] = 0 . 0 3 ;

377 e l s e

378 angComp [ 0 ] = 0 . 0 ;

379 //PITCH ( f o r some reason p i t ch works in the oppos i t e way)

380 i f ( angErr [1 ] >0 .01)

381 angComp [ 1 ] = 0 . 0 3 ;

382 e l s e i f ( angErr [1]<−0.01)

383 angComp [ 1 ] = −0.03;

384 e l s e

385 angComp [ 1 ] = 0 . 0 ;

386 //YAW

387 i f ( angErr [2 ] >0 .01)

388 angComp [ 2 ] = −0.03;

80



389 e l s e i f ( angErr [2]<−0.01)

390 angComp [ 2 ] = 0 . 0 3 ;

391 e l s e

392 angComp [ 2 ] = 0 . 0 ;

393

394 }
395

396

397 f l o a t YawComputation ( const f l o a t yawTorque ){
398 f l o a t yawVel=0;

399 f l o a t max=1;

400 f l o a t ve lSat =0.1 ;

401 i f ( abs ( yawTorque )<0.05)

402 yawVel=0;

403 e l s e i f ( yawTorque>max)

404 yawVel = 0 . 1 ;

405 e l s e i f ( yawTorque<−max)

406 yawVel = −0.1;

407 e l s e

408 yawVel = ( ve lSat /max)∗yawTorque ;

409

410 re turn yawVel ;

411 }
412

413 //−−−−−USEFULL FUNCTIONS−−−−−
414

415 TPCANMsg MsgAssembler ( const DWORD id , const BYTE len , const BYTE data ){
416 TPCANMsg msg ;

417 msg . ID = id ;

418 msg .MSGTYPE = MSGTYPESTANDARD;

419 msg .LEN = len ;

420 msg .DATA[ 0 ] = data ;

421

422 re turn msg ;

423 }
424

425 TPCANMsg MsgAssembler ( const DWORD id ){
426 TPCANMsg msg ;

427 msg . ID = id ;

428 msg .MSGTYPE = MSGTYPESTANDARD;

429 msg .LEN = 0 ;

430 re turn msg ;

431 }
432

433 void S leep ( const i n t &m i l l i s e c ){
434 s t r u c t t imespec req = {m i l l i s e c /1000 , m i l l i s e c %1000 ∗ 1000000L} ;
435 // double s ec = m i l l i s e c /1000 ;

436 // cout << ” S l e ep ing f o r ” << s e c << ” seconds ” << endl ;

437 nanos leep(&req ,NULL) ;

438 }
439

440 void PrintMessage ( const TPCANMsg &msg){
441 cout << l e f t << setw (10) << ”Tx” << ”0x” << setw (10) << hex << msg . ID <<

442 setw (10) << (msg .LEN + 0 ) ;

443 i f (msg .LEN != 0){
444 f o r ( i n t i =0; i<msg .LEN; ++i )

445 cout << l e f t << setw (5) << hex << (msg .DATA[ i ]+0) ;

446 }
447 cout << endl ;

81



448 }
449

450 void PrintMessage ( const TPCANRdMsg &rdMsg ){
451 TPCANMsg msg = rdMsg .Msg ;

452 cout << l e f t << setw (10) << ”Rx” << ”0x” << setw (10) << hex << msg . ID << setw (10) <<

453 (msg .LEN + 0 ) ;

454 i f (msg .LEN != 0){
455 f o r ( i n t i =0; i<msg .LEN; ++i )

456 cout << l e f t << setw (5) << hex << uppercase << (msg .DATA[ i ]+0) ;

457 }
458 cout << endl ;

459 }
460

461 void PrintHeader ( ){
462 cout << l e f t << setw (10) << ”Tx/Rx” << l e f t << setw (12) << ”ID” << setw (10) <<

463 ”DLC” << setw (5) << ”D0” << setw (5) << ”D1”<< setw (5) << ”D2”<< setw (5) << ”D3”<<

464 setw (5) << ”D4”<< setw (5) << ”D5”<< setw (5) << ”D6” << setw (5) << ”D7”<< endl ;

465 }
466

467 void PrintMatr ix ( f l o a t m[ 3 6 ] ) {
468 cout << endl << ”−−−−−Matrix o f Co e f f i c i e n t s−−−−−” << endl ;

469 cout << r i g h t << setw (14) << ”G0” << setw (12) << ”G1”

470 << setw (12) << ”G2” << setw (12) << ”G3”

471 << setw (12) << ”G4” << setw (12) << ”G5” ;

472

473 cout << f i x e d << s e t p r e c i s i o n (2 ) << endl ;

474 f o r ( i n t row=0; row<6 ; ++row){
475 cout << l e f t ;

476 i f ( row == 0)

477 cout << setw (4) << ”Fx” ;

478 e l s e i f ( row == 1)

479 cout << setw (4) << ”Fy” ;

480 e l s e i f ( row == 2)

481 cout << setw (4) << ”Fz” ;

482 e l s e i f ( row == 3)

483 cout << setw (4) << ”Tx” ;

484 e l s e i f ( row == 4)

485 cout << setw (4) << ”Ty” ;

486 e l s e i f ( row == 5)

487 cout << setw (4) << ”Tz” ;

488

489 f o r ( i n t c o l =0; co l <6; ++co l ){
490 cout << r i g h t << setw (12) << m[6∗ row +co l ] ;

491 }
492 cout << endl ;

493 }
494

495 }
496

497 void PrintFTMerror ( const i n t &code ){
498

499 switch ( code ){
500 case WATCHDOGRESET:

501 cout << ”Error d e s c r i p t i o n : Watchdog Reset ” << endl ;

502 break ;

503 case DAC ADC TOO HIGH:

504 cout << ”Error d e s c r i p t i o n : DAC/ADC check r e s u l t too high (CRITICAL) ” << endl ;

505 break ;

506 case DACADCTOOLOW:

82



507 cout << ”Error d e s c r i p t i o n : DAC/ADC check r e s u l t too low (CRITICAL) ” << endl ;

508 break ;

509 case ANALOGGROUNDOOF:

510 cout << ”Error d e s c r i p t i o n : A r t i f i c i a l analog ground out o f range

511 (CRITICAL) ” << endl ;

512 break ;

513 case POWER SUPPLY TOO HIGH:

514 cout << ”Error d e s c r i p t i o n : Power supply too high (CRITICAL) ” << endl ;

515 break ;

516 case POWER SUPPLYTOOLOW:

517 cout << ”Error d e s c r i p t i o n : Power supply too low (CRITICAL) ” << endl ;

518 break ;

519 case BAD ACTIVE CALIBRATION:

520 cout << ”Error d e s c r i p t i o n : Bad a c t i v e c a l i b r a t i o n (CRITICAL) ” << endl ;

521 break ;

522 case EEPROM FAILURE:

523 cout << ”Error d e s c r i p t i o n : EEPROM f a i l u r e (CRITICAL) ” << endl ;

524 break ;

525 case CONFIGURATION INVALID:

526 cout << ”Error d e s c r i p t i o n : Conf igurat ion i n v a l i d ” << endl ;

527 break ;

528 case RESERVED 1:

529 case RESERVED 2:

530 case RESERVED 3:

531 cout << ”Error d e s c r i p t i o n : Reserved” << endl ;

532 break ;

533 case TEMPERATURETOOHIGH:

534 cout << ”Error d e s c r i p t i o n : Sensor temperature too high (CRITICAL) ” << endl ;

535 break ;

536 case TEMPERATURETOOLOW:

537 cout << ”Error d e s c r i p t i o n : Sensor temperature too low (CRITICAL) ” << endl ;

538 break ;

539 case CAN BUS ERROR:

540 cout << ”Error d e s c r i p t i o n : CAN bus e r r o r ” << endl ;

541 break ;

542 case ANYERROR:

543 cout << ”Error d e s c r i p t i o n : Any e r r o r causes t h i s b i t to turn on” << endl ;

544 break ;

545 }
546 }
547

548 void PrintForceTorque ( const f l o a t f t [ 6 ] ) {
549 cout << s e t p r e c i s i o n ( 3 ) ;

550 f o r ( i n t i =0; i <6; ++i )

551 cout << setw (13) << f t [ i ] ;

552 cout << endl ;

553 }
554

555 void PrintFTHeader ( ){
556 cout << ” ” << l e f t << setw (13) << ”Fx” << setw (13) << ”Fy” << setw (13) << ”Fz” <<

557 setw (13) << ”Tx”<< setw (13) << ”Ty”<< setw (13) << ”Tz”<< endl ;

558 }
559

560 void Pr intL inearVe l ( const f l o a t l i nVe l [ 3 ] ) {
561 cout << s e t p r e c i s i o n ( 3 ) ;

562 f o r ( i n t i =0; i <3; ++i )

563 cout << setw (13) << l i nVe l [ i ] ;

564 cout << endl ;

565 }

83



566

567

568 //−−−−−CONVERSIONS FUNCTIONS−−−−−
569

570 long long i n t BinToDec ( const s t r i n g &bin ){
571 i n t r e s u l t = 0 ;

572 f o r ( unsigned i n t i =0; i<bin . l ength ( ) ; ++i ){
573 i f ( bin . at ( i ) != ’ 0 ’ )

574 r e s u l t += pow(2 , bin . l ength ()− i −1);

575 }
576 re turn r e s u l t ;

577 }
578

579 f l o a t HexToFloat ( const s t r i n g& binaryHex ){
580 s t r i n g s i gn = binaryHex . subs t r ( 0 , 1 ) ;

581 f l o a t s = 0 ;

582 s t r i n g exponent = binaryHex . subs t r ( 1 , 8 ) ;

583 f l o a t e = 0 ;

584 s t r i n g mantissa = binaryHex . subs t r ( 9 , 2 3 ) ;

585 f l o a t m = 0 ;

586 //Determining the s i gn

587 ( s i gn == ”0” )? ( s =1):( s=−1);
588 // Ca l cu l a t ing the exponent

589 e = pow(2 , BinToDec ( exponent )−127);

590 // Ca l cu l a t ing the mantissa

591 f o r ( i n t i = 0 ; i<i n t ( mantissa . l ength ( ) ) ; ++i ){
592 i f ( mantissa . at ( i ) != ’ 0 ’ )

593 m += pow(2 ,− i −1);

594 }
595 m += 1 ;

596

597 re turn ( s ∗e∗m) ;

598 }
599

600 i n t HexToDecSigned ( const s t r i n g &bin ){
601 i n t r e s u l t = 0 ;

602 ( bin . at (0 ) == ’ 1 ’ )? r e s u l t = −32768 : r e s u l t = 0 ;

603 f o r ( i n t i =1; i<i n t ( bin . l ength ( ) ) ; ++i ){
604 i f ( bin . at ( i ) != ’ 0 ’ )

605 r e s u l t += pow(2 , bin . l ength ()− i −1);

606 }
607 re turn r e s u l t ;

608 }

84



Bibliography

[1] Wigbert Fehse. Automated rendezvous and docking of spacecraft. Cambridge Uni-

versity Press, 2003.

[2] Steve Corrigan. Introduction to the Controller Area Network (CAN). Texas In-

strument, 2008.

[3] Genoa Robotics and Automation Laboratory (GRAAL). Framework User’s Guide.

Version 2.0. 2009.

[4] B. Siciliano et al. Robotics, Modelling, Planning and Control. Springer, 2009.

[5] National Aeronautics and Space Administration: On-Orbit Satellite Servicing

Study. 2010. url: https://sspd.gsfc.nasa.gov/images/nasa_%20satellite%

20servicing_project_report_0511.pdf (visited on 05/15/2020).

[6] Peng Zhang. Advanced Industrial Control Technology. Elsevier, 2010.

[7] ATI Industrial Automation. Schunk Light Weight Arm F/T Integration. Instal-

lation and Operation Manual. 2011.

[8] PEAK-System Technik GmbH. PCAN Driver for Linux. User Manual. Ver-

sion 7.1. 2011.

[9] Sudhakar Maradana. CAN Basics. 2012. url: https://automotivetechis.

wordpress.com/2012/06/01/can-basics-faq/ (visited on 03/18/2020).

[10] R. Toulson and T. Wilmshurst. Fast and Effective Embedded Systems Design.

Second Edition. Elsevier, 2012.

[11] PEAK-System Technik GmbH. PCAN-PCI. PCI to CAN Interface. Version 2.2.1.

2013.

[12] Wolfhard Lawrenz. CAN System Engineering. From Theory to Practical Appli-

cation. Ed. by Wolfhard Lawrenz. Second Edition. Springer, 2013.

[13] Curtis Bradley. “Robotic Arm Calibration and Control. 6-DOF Powerball LWA

4P”. In: (2014).

[14] Genoa Robotics and Automation Laboratory (GRAAL). Schunk Powerball Ma-

nipulator. Software Guide. Version 1.0. 2014.

85



[15] Kevin M. Lynch and Frank C. Park. Modern Robotics. Mechanics, Planning, and

Control. Cambridge University Press, 2017.

[16] Tharek Mohtar. Design, modeling, and testing of a space docking mechanism for

cooperative on-orbit servicing. Politecnico di Torino, 2017.

[17] SCHUNK GmbH & Co.KG. Assembly and Operating Manual LWA 4P. Powerball

lightweight arm. Version 4. 2018.

86


