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Abstract 
 
Due to the dynamic environment in which cable-stayed bridges work, sudden failure of stay 
cables are likely to happen for diverse reasons. The more rapid is the failure the more severe 
will be the effect on the bridge, risking not just the breakage of one or more elements due to a 
zipper-type collapse, but of the whole system. The impact of a vehicle is the event that most 
likely is able to produce such a consequence and the regulations only consider a possible loss 
of just one element. For this reason in the following study the impact of a heavy vehicle is 
considered in order to see how a single cable would respond or how a system of cables would 
respond, if more than one is affected. a combination of an energy-based approach and a step by 
step solution is used to define the deformation and dynamic response and a sliding and no-
sliding models are used for the interaction between vehicle and cable. 
Keywords: stay cable, impact, vehicle, energy, deformation 
 
 
1. Introduction 
 
Cable-stayed bridges became popular due to the fact that they are perfectly suitable in situations 
that are in between the common suspension bridges, where the span to cover would not be long 
enough to be economically advantageous and cantilever bridges, where the span would be too 
long and the self-weight unsustainable. In this disposition there is a direct connection between 
the deck and the pylons with the stay cables, positioned in different possible configurations. 
The most common materials used for these types of bridges are mostly two combined together, 
steel or concrete for pylons, post-tensioned concrete deck and steel cables, composed by several 
strands with high performance characteristics put together in helical shapes. 
 
The origin of cable-stayed bridges goes back to 1595, where the Italian inventor Fausto 
Veranzio in his book Machinae Novae presented the first design attempt, in which stay cables 
were constructed by linked rods because there was not an industrial production yet of heavy 
structural cables. After this the first notable projects started in the 19th century, just to cite some 
of them the Albert Bridge (1872), Brooklyn Bridge (1883) and Bluff Dale bridge (Texas, 1890). 
The problem with these early bridges was that the static and dynamic concept was not well 
understood yet, and the impossibility to pre-tension the cables gave a lack in stiffness to the 
system, with consequent inadequate resistance to wind and vehicle induced vibrations. 
The design improved in the 20th century where just after World War II, the Architect Elizabeth 
Mock presented a book where historical and aesthetic analysis were coupled together and all 
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the best-known bridges up to 1949 were described. The same year saw another publication that 
marked the future design of cable-stayed bridges with the Engineer Frank Dischinger, 
presenting a pioneering theory on how the cable theory could be used for design of cables. With 
his new theory new bridges started to improve both structurally and aesthetically, reaching 
spans of almost a 1000 m using new materials with high strength and new construction 
technologies, like the Skarnsund Bridge (Norway, 530m), the Pont de Normandie (France, 
856m) and in the most recent days the Edong Yangtze River Bridge (China, 926m). 
 
Due to their dimensions, complexity and importance from the safety point of view, each 
component is studied in terms of vulnerability and resistance to abrupt events like fire, blast, 
corrosion and especially impact from vehicles and the consequent dynamic response. One 
delicate issue is the case where one element is loss or absent momentarily due to these extreme 
events or maintenance and some regulations tried to manage these scenarios with some 
guidelines, considering for example a Dynamic Amplification Factor (DAF) to be applied to 
the intact components that should not have any repercussions deriving from the single failure. 
Some studies highlighted that the DAF of 2.0 generally taken by the regulations in some cases 
could not be enough to cover every possible scenario (Ruiz-Teran and Aparicio, 2006; Mozos 
& Aparicio, 2010). The main reason is that the DAF is strongly dependant on the position and 
type of the abrupt event, so it is not easy to generalise a single value to be always in a safe 
condition (Hoang, Kiyomiya & An, 2018).  
 
This paper should be seen as an integration and improvement of the present studies on the abrupt 
loss of a stay cable due to a sudden impact of a vehicle, trying to have a better understanding 
of the response of a single or multiple cables to the impulsive force and the repercussions on 
the structure. 
 
 
2. Objectives of the analysis 
 
The main objectives of the following research are: 

• To analyse the current studies and regulations to see what type of requirements exist; 
• To analyse the response of a generic cable to the impact of a mass representing a vehicle, 

with variation of its geometrical and mechanical parameters; 
• To analyse the influence of elastic and plastic response of the cable during the breakage 

event; 
• To analyse how several cables could be affected; 
• To define if one or more cables have to be considered as lost after the impact. 

 
 
3. Research gap analysis 
 
The five different regulations presenting guidelines for an impacting force on a bridge structure 
and its response (PTI, FIB, SETRA, EC1, EC3) consider just the effect of the loss of one cable 
or its temporary absence. So far there are no documented studies in which the reliability analysis 
of long-span cable-stayed bridges, subjected to sudden cables failure, has been conducted 
considering the dynamic excitations from wind and traffic and further an impact (Zhou & Chen, 
2016). 
 
 

https://en.wikipedia.org/wiki/Skarnsund_Bridge
https://en.wikipedia.org/wiki/Pont_de_Normandie
https://en.wikipedia.org/wiki/Edong_Yangtze_River_Bridge
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4. Literature review 
 
4.1. Regulations and guidelines for cable(s) loss 
A cable(s) loss in cable-supported structures, mostly in cable-stayed bridges, is the results of 
extreme events like blast, fire or the impact of a vehicle. Different entities during the years have 
incorporated guidelines like the American Post-Tensioning Institute (PTI), Eurocode 1 and 
Eurocode 3, the French regulations Service d’Etudes Techniques des Routes et Autoroutes 

(SETRA) and the Fédération Internationale du Béton (FIB). 
 
4.1.1. Post-Tensioning Institute (PTI) guidelines 
The PTI D-45.1-12 2012 states that “The impact dynamic force resulting from the sudden 
rupture of a cable shall be 2.0 times the static force in the cable, or the force as determined by 
non-linear dynamic analysis of a sudden cable rupture, but in no case less than 1.5 times the 
static force in the cable. This force shall be applied at both the top and bottom anchorage 
locations.”. 
The guideline also considers a nominal yield strength equal to 90% of the ultimate strength. 
The impact dynamic force stated above is calculated with the factor of 2 generally called Impact 
force factor (Kiviluoma et al,2015), it can be seen in Figure 1.It is defined as: 
 

 
𝐼𝐹 =

∆𝑁

𝑁0
=
|𝑁0 − 𝑁𝑚𝑖𝑛|

𝑁0
 (1) 

 
Where N0 is the initial force in the cable, as soon as the cable breaks it reaches a minimum and 
begin to vibrate and at the end the tension goes to zero. 
Note: If a non-linear dynamic analysis is used, the dynamic model should be initialised with 
full permanent load and live load condition for the bridge. 
 

 
Figure 1- change in force after the breakage 

 
4.1.2. Fédération Internationale du Béton (FIB) guidelines 
The failure of one single stay cable should not lead to immediate failure of the entire cable-
stayed structure. The Designer should take into account in his design accidental breakage of 
any one stay cable in the structure including the dynamic effects caused by the failure. 
Generally, redundant stay cable systems, i.e. systems consisting of multiple parallel tensile 
elements, are preferred to cables consisting of a single tensile element. 
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4.1.3. Service d’Etudes Techniques des Routes et Autoroutes (SETRA) guidelines 
The SETRA entity gives its recommendations through the publication “Haubans - 
Recommandations de la commission interministérielle de la précontrainte”. 
Particular attention should be taken for the accidental action of the breakage of any stay cable, 
considering only one cable at the time. This rupture is represented by a force opposite to the 
tension of the shroud, exercised at its two anchors, and weighted by a dynamic amplification 
factor defined between 1.5 and 2.0. The dynamic amplification coefficient depends on the nature 
of the rupture (vehicle impact, corrosion of reinforcements, etc.) as well as the dynamic 
response of the structure. A coefficient value of 2.0 is a particularly severe enveloping value, 
corresponding to the unlikely case of a sudden break in the entire cable. For stay-cables with 
independent parallel frames, the simultaneous breaking of all the reinforcements being 
unlikely, the amplification factor can be reduced to 1.5. Local and global checks for the 
breakage of the shroud are carried out at the SLU, in combination of the effect of the 
breakdown, the working values are taken with their multiplicative coefficients. 
 
4.1.4. Eurocode 1 - Actions on structures - Part 1-7: General actions - Accidental actions 
This section defines accidental actions due to the following events:  

• impact from road vehicles (excluding collisions on lightweight structures); 
• impact from forklift trucks; 
• impact from trains (excluding collisions on lightweight structures); 
• impact from ships; 
• the hard landing of helicopters on roofs. 

For bridges, the actions due to impact and the mitigating measures provided should take into 
account, amongst other things, the type of traffic on and under the bridge and the consequences 
of the impact.  
Actions due to impact should be determined by a dynamic analysis or represented by an 
equivalent static force. 
NOTE 1: The forces at the interface of the impacting object and the structure depend on their 
interaction. 
NOTE 2: The basic variables for impact analysis are the impact velocity of the impacting object 
and the mass distribution, deformation behaviour and damping characteristics of both the 
impacting object and the structure. Other factors such as the angle of impact, the construction 
of the impacting object and movement of the impacting object after collision may also be 
relevant. 
For structural design the actions due to impact may be represented by an equivalent static force 
giving the equivalent action effects in the structure. This simplified model may be used for the 
verification of static equilibrium, for strength verifications and for the determination of 
deformations of the impacted structure. 
For structures which are designed to absorb impact energy by elastic-plastic deformations of 
members (Le. soft impact), the equivalent static loads may be determined by taking into account 
both plastic strength and the deformation capacity of such members. 
Impact is an interaction phenomenon between a moving object and a structure, in which the 
kinetic energy of the object is suddenly transformed into energy of deformation. To find the 
dynamic interaction forces, the mechanical properties of both the object and the structure 
should be determined. Static equivalent forces are commonly used in design. 
Advanced design of structures to sustain actions due to impact may include explicitly one or 
several of the following aspects: 

• dynamic effects; 
• non-linear material behaviour. 
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Within the structure these forces may give rise to dynamic effects. An upper bound for these 
effects can be determined if the structure is assumed to respond elastically and the load is 
realised as a step function (i.e. a function that rises immediately to its final value and then stays 
constant at that value). In that case the dynamic amplification factor (i.e. the ratio between 
dynamic and static response) φdyn is 2.0. If the pulse nature of the load (i.e. its limited time of 
application) needs to be taken into account, calculations will lead to amplification factors φdyn 
ranging from below 1,0 up to 1,8 depending on the dynamic characteristics of the structure and 
the object. In general, it is recommended to use a direct dynamic analysis to determine φdyn. 
In particular cases, when specific information is available, different design values may be 
chosen, depending on the target safety, the traffic intensity and the accident frequency. 
In the absence of a dynamic analysis, the dynamic amplification factor for the elastic response 
may be assumed to be equal to 1,4. 
 
4.1.5. Eurocode 3 - Design of steel structures - Part 1-11: Design of structures with tension 
components 
The replacement of at least one tension component should be taken into account in the design 
as a transient design situation. 
NOTE: The National Annex may define the transient loading conditions and partial factors for 
replacement. 
Where required, a sudden loss of anyone tension component should be taken into account in 
the design as an accidental design situation. 
NOTE 1: The National Annex may define where such an accidental design situation should 
apply and also give the protection requirements and loading conditions, e.g. for hangers of 
bridges. 
NOTE 2: In the absence of a rigorous analysis the dynamic effect of a sudden removal may 
conservatively be allowed for by using the additional action effect Ed: 
 

 𝐸𝑑 = 𝑘 ∙ (𝐸𝑑2 − 𝐸𝑑1) (2) 

Where: 
− k is 1,5 
− Ed1 represents the design effects with all cables intact; 
− Ed2 represents the design effects with the relevant cable removed. 

 
4.1.6. Eurocode 3 - Design of steel structures - Part 2: Steel Bridges 
The design of the bridge should ensure that when the damage of a component due to accidental 
actions occurs, the remaining structure can sustain at least the accidental load combination 
with reasonable means. 
NOTE: The National Annex may define components that are subjected to accidental design 
situations and also details for assessments. Examples of such components are hangers, cables, 
bearings. 
The effects of corrosion or fatigue of components and material should be taken into account by 
appropriate detailing, see also EN 1993-1 -9 and EN 1993-1 -10. 
NOTE 1: EN 1993-1-9, section 3 provides assessment methods using the principles of damage 
tolerance or safe life. 
NOTE 2: The National Annex may be a choice of the design method to be used for fatigue 
assessment. 
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5. Breakage events  
 
When talking about cables loss or failure in general of a cable-stayed bridge, different 
mechanisms are possible and normally they have in common the fact the there is a disproportion 
in size between the consequence and a triggering event. In case of impact, the progressive event 
is characterised by the fact that the collapse starts from one or few elements, then the 
repercussion of the loss is transmitted to the other parts that, if are not able to withstand to the 
redistributed forces or excessive deformations, collapse as well. Four classes and six different 
typologies of failure are possible (Starossek, 2007), but in case of a collision event the main 
one is the “zipper-type collapse”. This type is mainly seen when a failure of one or several cable 
elements cause an impulsive overloading on the adjacent cables, that are not able to withstand 
the increased force and break. 
When analysing the single cable, the failure can be classified in three different types: pure 
tensile, shearing and bending breakage (Hoang, kyiomiya & Tonxiang, 2015), in case of a 
collision the last one best describes the event, where there is a big force in a short period of 
time, but it is not intensive enough to suddenly break the cable without deforming it. The cable 
undergoes to a significant deformation, this increases the tension in the element that breaks if 
the ultimate strength is reached. 
 
 
6. Cables 
 
The cable is the main element of a cable-stayed bridge, ensuring its stability and resistance. The 
composition and characteristics are similar to the ones used for the prestressed concrete, this 
means high resistance and higher content of carbon respect to normal steel, that increases the 
strength but on the other side has the effect of reducing the ductility. The size of a single cable 
can reach a maximum of 0.034 m2 normally (Gimsing & Georgakis, 2012), where the number 
of strands depends on the type of strand used (standard, super or compact). 
The mechanical resistance of a cable derives from the properties of its basic components that 
are the wires. The wire is made by electro galvanized steel and it follows an elastic-plastic law 
with hardening, given in Figure 2.The value of the elastic modulus is normally a bit smaller 
than the normal structural steel, due to the increased quantity of Carbon as said before, and it 
can oscillate between values of 190-200 GPa (Gimsing & Georgakis, 2012), in this study it has 
been taken a mean value of 195 GPa, given by the regulations as well. 
 

  
Figure 2-constitutive law of the steel 

Where: 
− 𝑓𝑝𝑡𝑘 =  1860 𝑀𝑃𝑎 
− 𝑓𝑝0.1𝑘 =  1640 𝑀𝑃𝑎 
− 𝐸𝑠𝑝  =  195 𝐺𝑃𝑎 

fptk 

fp0.1k 

εyk εuk 

Esp 

Ep 

ε 

σ 
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− 𝐸𝑝  =  8260 𝑀𝑃𝑎 

− 𝜀𝑦𝑘 = 
𝑓𝑝0,1𝑘

𝐸𝑠𝑝
= 8.41‰  

− 𝜀𝑢𝑘 = 35‰  

In this study it has been used the standard strand, with the area of 139 mm2 and a diameter of 
0.62′′ (equivalent to 15.7 mm) and for the weight is has been considered the normal density of 
the steel 𝜌 = 8000 Kg/m3. 
 
 
7. Spatial model 
 
In consideration of a generic cable in the space, the two possible collisions are shown in Figure 
3: 

 

 
Figure 3-first type of impact on the left, second type of impact on the right 

 
Where some of the parameters are defined as follow: 
 

 𝑇0 = 𝑝 ∙ 𝑓𝑝𝑡𝑘 ∙ 𝐴 (3) 

 𝜎0 = 𝑝 ∙ 𝑓𝑝𝑡𝑘 (4) 

 𝜀0 =
𝜎0
𝐸𝑠𝑝

 (5) 
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 𝑙𝑥 + 𝑙𝑠 = 𝐿 (6) 

 𝐿0 =
𝐿

(1 + 𝜀0)
 (7) 

 ∆𝐿0 =
𝑇0 ∙ 𝐿0
𝐸𝑠𝑝 ∙ 𝐴

 (8) 

 ∆𝐿0𝑥 =
∆𝐿0 ∙ 𝑙𝑥
𝐿

 (9) 

 ∆𝐿0𝑠 =
∆𝐿0 ∙ 𝑙𝑠
𝐿

 (10) 

 𝑙0𝑥 =
𝑙𝑥

(1 + 𝜀0)
 (11) 

 𝑙0𝑠 =
𝑙𝑠

(1 + 𝜀0)
 (12) 

 𝑚 =
𝜌 ∙ 𝐿0 ∙ 𝐴

2
 (13) 

 𝑚𝑥 =
𝜌 ∙ 𝑙0𝑥 ∙ 𝐴

2
 (14) 

 𝑚𝑠 =
𝜌 ∙ 𝑙0𝑠 ∙ 𝐴

2
 (15) 

 
When the collision starts, in the impacted point the mass is now m plus the mass of the vehicle 
M, as shown in Figure 4. The two masses keep moving in the horizontal direction until the cable 
breaks or, being able to withstand the impact, reaches the maximum displacement and it goes 
back. 
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Figure 4-representation of the total mass during the impact,  

first type of impact on the left, second type of impact on the right 
 
In any moment of the displacement the geometry of the deformed cable can be defined by 
analysing the triangles shown in Figure 5. In specific, this will be done in relation to certain 
deformations of the cable, as it will be presented later in this paper. 
 
 

  
Figure 5-geometrical parameters of a cable during the displacement 

 

mx 

ms 

m m+M m+M 

mx 

ms 

m 

u u 
h 

h 

θs 
θs 

θx θx 

ωs 

ωx 
ωx ωs 

γ 

γ π-γ 
π-γ 

l’s l's 

l'x 
l'x 

ls 
ls 

lx 
lx 

x x 

y y 



Breakage of stay cables due to the impact of vehicles Luca Gonella 

10 
 

8. Energetic approach 
 
8.1. Vertical cable, middle point impact 
The resistance of a cable is studied with an energetic approach, where before the impact there 
is a certain kinetic energy, given by the vehicle with a specific velocity, that is totally transferred 
to the cable in the form of elastic-plastic energy, if the cable is able to withstand the deformation 
required, or partly transferred if the elongation required is greater than the ultimate value and 
the cable breaks. 
The study starts with a simple example of a vertical cable with the impact in the middle point, 
it is not realistic, but it will help to understand the phenomenon giving results for further 
implementation. In Figure 6 it is presented how the cable absorbs the energy in relation to which 
part of the constitutive law it is working in. Basically, the area under the graph is the elastic or 
elastic-plastic energy gained by the cable and the representation corresponds just to when the 
cable does not break, otherwise in case of breakage the whole area till εuk⸱L0 should be filled. 
Considering now a generic area and length of the cable, the elongation required to absorb the 
energy is calculated assuming that the cable stays in its elastic range: 
 

 𝑇0 ∙ ∆𝜀 ∙ 𝐿0  +  
1

2
∙ 𝐸𝑠𝑝 ∙ 𝐴 ∙ ∆𝜀

2 ∙ 𝐿0  =  
1

2
∙ 𝑀 ∙ 𝑣2 (16) 

 
The strain ∆𝜀 is calculated solving (16): 

 𝑎 =  
1

2
∙ 𝐸𝑠𝑝 ∙ 𝐴 ∙ 𝐿0  (17) 

 𝑏 =  𝑇0 ∙ 𝐿0  (18) 

 𝑐 =  −
1

2
∙ 𝑀 ∙ 𝑣2 (19) 

 ∆𝜀 =  
−𝑏 + √𝑏2 − 4 ∙ 𝑎 ∙ 𝑐

2 ∙ 𝑎
 (20) 

 
If ∆𝜀 + 𝜀0 is bigger than 𝜀𝑦𝑘 then it goes into the plastic range and the equation is modified as 
follow: 
 

 
𝑇0 ∙ ∆𝜀 ∙ 𝐿0  +  

1

2
∙ 𝐸𝑠𝑝 ∙ 𝐴 ∙ (𝜀𝑦𝑘 − 𝜀0)

2
∙ 𝐿0  + (𝑓𝑝01𝑘 ∙ 𝐴 −  𝑇0) ∙ (∆𝜀 + 𝜀0

− 𝜀𝑦𝑘) ∙ 𝐿0 + 
1

2
∙ 𝐸𝑝 ∙ 𝐴 ∙ (∆𝜀 + 𝜀0 − 𝜀𝑦𝑘)

2
∙ 𝐿0  =  

1

2
∙ 𝑀 ∙ 𝑣2 

(21) 
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As before the strain ∆𝜀 is calculated solving equation (21): 
 

 𝑎 =  
1

2
∙ 𝐸𝑝 ∙ 𝐴 ∙ 𝐿0  (22) 

 𝑏 =  𝑇0 ∙ 𝐿0 + (𝑓𝑝01𝑘 ∙ 𝐴 −  𝑇0) ∙ 𝐿0 + 𝐸𝑝 ∙ 𝐴 ∙ (𝜀0 − 𝜀𝑦𝑘) ∙ 𝐿0 (23) 

 
𝑐 =  

1

2
∙ (𝐸𝑠𝑝 + 𝐸𝑝) ∙ 𝐴 ∙ 𝐿0 ∙ (𝜀0 − 𝜀𝑦𝑘)

2
 + (𝑓𝑝01𝑘 ∙ 𝐴 − 𝑇0) ∙ (𝜀0 − 𝜀𝑦𝑘) ∙ 𝐿0

− 
1

2
∙ 𝑀 ∙ 𝑣2 

(24) 

 
substituting equations (22)-(24) in equation (20). 
 

 
Figure 6-representation of the energy absorbed by the cable,  
just elastic range on the left, elastic-plastic range on the right 

 
As it can be seen in equations (16), (21) and in Figure 7 there are two parameters that mainly 
affect the scale of the graph, the area A and the length L0. If the area A is fixed, all the values 
on the vertical axis are fixed as well, so the only way to increment the area under the graph is 
to increase the length. in the same way if the length L0 is fixed, the only way to increment the 
area is by increasing the area of the cable. 
 

 
Figure 7-representation of the influence on the response of the  

area on the left and the length on the right 
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The same aspect can be presented more in specific by the analysis of equation (21) (as well as 
equation (16) in case of elastic range), obtaining a single equation in function of length and 
area. Starting with the substitution of equation (3) in equation (21) (or equation (16)), obtaining 
equation (25) (or (26)), then grouped in equation (27) (or (28)) with some simple manipulations, 
to have the single term “A⸱L0”: 
 

 𝑝 ∙ 𝑓𝑝𝑡𝑘 ∙ 𝐴 ∙ ∆𝜀 ∙ 𝐿0  +  
1

2
∙ 𝐸𝑠𝑝 ∙ 𝐴 ∙ ∆𝜀

2 ∙ 𝐿0  =  
1

2
∙ 𝑀 ∙ 𝑣2 (25) 

 

𝑝 ∙ 𝑓𝑝𝑡𝑘 ∙ 𝐴 ∙ ∆𝜀 ∙ 𝐿0  +  
1

2
∙ 𝐸𝑠𝑝 ∙ 𝐴 ∙ (𝜀𝑦𝑘 − 𝜀0)

2
∙ 𝐿0  + (𝑓𝑝01𝑘 ∙ 𝐴 −  𝑝 ∙ 𝑓𝑝𝑡𝑘 ∙ 𝐴)

∙ (∆𝜀 + 𝜀0 − 𝜀𝑦𝑘) ∙ 𝐿0 + 
1

2
∙ 𝐸𝑝 ∙ 𝐴 ∙ (∆𝜀 + 𝜀0 − 𝜀𝑦𝑘)

2
∙ 𝐿0  

=  
1

2
∙ 𝑀 ∙ 𝑣2 

(26) 

 (𝑝 ∙ 𝑓𝑝𝑡𝑘 ∙ ∆𝜀 +
1

2
∙ 𝐸𝑠𝑝 ∙ ∆𝜀

2) ∙ 𝐴 ∙ 𝐿0 =
1

2
∙ 𝑀 ∙ 𝑣2 (27) 

 
(𝑝 ∙ 𝑓𝑝𝑡𝑘 ∙ (𝜀𝑦𝑘 − 𝜀0) +

1

2
∙ 𝐸𝑠𝑝 ∙ (𝜀𝑦𝑘 − 𝜀0)

2
+ 𝑓𝑝01𝑘 ∙ (∆𝜀 + 𝜀0 − 𝜀𝑦𝑘) +

1

2
∙ 𝐸𝑝

∙ (∆𝜀 + 𝜀0 − 𝜀𝑦𝑘)
2
) ∙ 𝐴 ∙ 𝐿0 =

1

2
∙ 𝑀 ∙ 𝑣2 

(28) 

 
The whole term in the parenthesis is now defined as deformative constant k(p) in equations (29) 
and (30) and it is function of the increment in strain Δε and the initial strain ε0 as well as the 
percentage of initial tension p, but if a specific maximum elongation is set then k(p) is only 
influenced by the initial tension. Now equation (31) is obtained by the substitution of (29) (or 
(30)) in (27) (or (28)) and it can be seen how length and area are tied together by an hyperbolic 
function once the right hand side of the equation is defined: 
 

 𝑘(𝑝) = 𝑝 ∙ 𝑓𝑝𝑡𝑘 ∙ ∆𝜀 +
1

2
∙ 𝐸𝑠𝑝 ∙ ∆𝜀

2 (29) 

 
𝑘(𝑝) = (𝑝 ∙ 𝑓𝑝𝑡𝑘 ∙ (𝜀𝑦𝑘 − 𝜀0) +

1

2
∙ 𝐸𝑠𝑝 ∙ (𝜀𝑦𝑘 − 𝜀0)

2
+ 𝑓𝑝01𝑘 ∙ (∆𝜀 + 𝜀0 − 𝜀𝑦𝑘)

+
1

2
∙ 𝐸𝑝 ∙ (∆𝜀 + 𝜀0 − 𝜀𝑦𝑘)

2
) 

(30) 

 𝐴 ∙ 𝐿0 =
𝑀 ∙ 𝑣2

2 ∙ 𝑘(𝑝)
 (31) 
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With equation (31) it is possible to define whether an existing cable breaks or not and set the 
minimum size to resist to the impact or to stay in a specific range in the constitutive law. In the 
following sections the values of k(p) are defined. 
 
8.1.1. Breakage condition 
If the cable breaks it means it has reached the maximum strain εuk and it is obviously in the 
plastic range. With this consideration, by substituting equation (32) in equation (30), equation 
(33) is derived where k(p) depends just on the initial strain now: 
 

 ∆𝜀 + 𝜀0 = 𝜀𝑢𝑘 (32) 

 
𝑘(𝑝) = (𝑝 ∙ 𝑓𝑝𝑡𝑘 ∙ (𝜀𝑦𝑘 − 𝜀0) +

1

2
∙ 𝐸𝑠𝑝 ∙ (𝜀𝑦𝑘 − 𝜀0)

2
+ 𝑓𝑝01𝑘 ∙ (𝜀𝑢𝑘 − 𝜀𝑦𝑘) +

1

2

∙ 𝐸𝑝 ∙ (𝜀𝑢𝑘 − 𝜀𝑦𝑘)
2
) 

(33) 

 
The values of k(p), for a normal range of initial tension going from 30% to 60% of the ultimate 
strength, are presented in Table 1: 
 

Table 1-values of the parameter k(p)  
for the breakage condition 

 
p(%) k(MPa) 

30 52.63 
40 52.00 
50 51.21 
60 50.23 

 
It can be seen that even a variation in the initial tension has a small influence on the value of 
k(p), for this reason a conservative choice can be made selecting a unique value coming from 
p equal to 60% that will give a unique requirement for the breakage when substituted in equation 
(31). 
 
8.1.2. Zero-tension condition 
This is the condition where the cable has reached a certain plastic deformation without breaking, 
but when it goes back in place it has lost the whole initial tension T0, keeping a residual 
deformation as shown in Figure 8. 
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Figure 8-representation of the zero-tension condition 

 
In order to get Δε the system (34) is solved: 
 

 
{

𝜎∗ = 𝐸𝑠𝑝 ∙ ∆𝜀

𝜎∗ = 𝐸𝑠𝑝 ∙ 𝜀𝑦𝑘 + 𝐸𝑝 ∙ (∆𝜀 + 𝜀0 − 𝜀𝑦𝑘)
 (34) 

 
Getting equation (35): 
 

 ∆𝜀 = 𝜀𝑦𝑘 +
𝐸𝑝

𝐸𝑠𝑝 − 𝐸𝑝
∙ 𝜀0 = 𝜀𝑦𝑘 +

𝐸𝑝

𝐸𝑠𝑝 − 𝐸𝑝
∙
𝑝 ∙ 𝑓𝑝𝑡𝑘

𝐸𝑠𝑝
 (35) 

 
Where: 

 𝜀∗ = ∆𝜀 + 𝜀0 (36) 

 
Again the cable is moving over the plastic range, so by using directly equation (35) in equation 
(30) new values for k(p) can be calculated, given in Table 2: 
 

Table 2-values of the parameter k(p)  
for the zero-tension condition 

 
p(%) k(MPa) 

30 11.04 
40 12.08 
50 12.95 
60 13.65 

 
8.1.3. Elastic condition 
If the cable stays in this condition it never exits from the elastic range, so now the equation to 
consider is the (29), with the use of equation (37): 
 

 ∆𝜀 + 𝜀0 = 𝜀𝑦𝑘 (37) 

σ 

σ* 

σ0 

ε0 
Δε 

ε* ε 
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 𝑘(𝑝) = 𝑝 ∙ 𝑓𝑝𝑡𝑘 ∙ (𝜀𝑦𝑘 − 𝜀0) +
1

2
∙ 𝐸𝑠𝑝 ∙ (𝜀𝑦𝑘 − 𝜀0)

2 (38) 

 
And Table 3 is given as a result of equation (38): 
 

Table 3- values of the parameter k(p)  
for the elastic condition 

 
p(%) k(MPa) 

30 6.10 
40 5.48 
50 4.68 
60 3.70 

 
8.2. Relation between displacement and size of the cable 
Given the geometry of the cable, it can be seen how a combination of area and length influences 
the displacement by calculating first the elongation required to have a specific strain, then the 
displacement with the simple use of the Pythagoras’s theorem with a focus on just one side due 
to the symmetry of this model (Figure 9). 

 ∆𝐿𝑥 = ∆𝜀 ∙
𝐿0
2
= (𝜀 − 𝜀0) ∙

𝐿0
2

 (39) 

 
Using now equations (4), (5) and (7) in equation (39) a direct relation between the elongation 
and the length can be defined in equation (40), depending on the initial tension and the strain: 
 

 ∆𝐿𝑥 =

(
𝜀
2 −

𝑝 ∙ 𝑓𝑝𝑡𝑘
2 ∙ 𝐸𝑠𝑝

)

(1 +
𝑝 ∙ 𝑓𝑝𝑡𝑘
𝐸𝑠𝑝

)

∙ 𝐿 (40) 

 
and the displacement is calculated with equation (42) as shown in Figure 9: 
 

 𝑢 = √(𝑙𝑥 + ∆𝐿𝑥)2 − 𝑙𝑥2 (41) 

 𝑢 = √

(

 
𝐿

2
+

(
𝜀
2 −

𝑝 ∙ 𝑓𝑝𝑡𝑘
2 ∙ 𝐸𝑠𝑝

)

(1 +
𝑝 ∙ 𝑓𝑝𝑡𝑘
𝐸𝑠𝑝

)

∙ 𝐿

)

 

2

− (
𝐿

2
)
2

= 𝐿 ∗ √

(

 
1

2
+

(
𝜀
2 −

𝑝 ∙ 𝑓𝑝𝑡𝑘
2 ∙ 𝐸𝑠𝑝

)

(1 +
𝑝 ∙ 𝑓𝑝𝑡𝑘
𝐸𝑠𝑝

)
)

 

2

− (
1

2
)
2

 (42) 
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Figure 9-geometry of the displacement for a vertical cable 

 
The relation between the maximum displacement and the length of the cable is linear once the 
initial tension and a strain are defined. In specific if the three different conditions presented 
previously are analysed the following procedure can be followed in order to get the 
displacement: 
1. The range in which the cable will work is chosen: breakage, zero-tension or just elastic; 
2. Given a specific initial tension, the tables give the value of k(p); 
3. Given a specific length the cable has to cover, the area required to stay in the range chosen 

above is defined: 

 𝐴 =
𝑀 ∙ 𝑣2

2 ∙ 𝐿 ∙ 𝑘(𝑝)
 (43) 

 
4. With equations (40), (42) the increment in elongation and the displacement are calculated. 
 
 
9. Inclined cable, generic point impact 
 
In consideration now of a cable with an inclination and a shifted point of impact, as presented 
in Figure 3 and Figure 5, there is no symmetry anymore so the type of the impact has an 
influence on the response. One important aspect now is the interaction between the cable and 
the vehicle, these two can slide or stick in respect to each other during the impact, the real 
behaviour will not be either of them but something in between. For this reason, both approaches 
are going to be analysed in the following sections. 
 
9.1. Sliding model 
With this model the vehicle freely slides over the cable, this means that there are no differences 
between the inferior and superior part and the whole length L is responding in the same way. 
By comparing this situation with the vertical cable presented before, it can be seen then that 
there are no differences in terms of the way in which the cable transforms the kinetic energy in 
elastic-plastic energy and this means that the whole process performed before, from equation 
(16) to equation (38), is still valid giving at the end exactly the same results. The only aspect 
changing is the geometry, as a result the procedure to calculate the displacement will be 
different. 
 

u 

lx l0x+ΔLx 



Breakage of stay cables due to the impact of vehicles Luca Gonella 

17 
 

9.1.1. Relation between displacement and size of the cable 
Given the non-symmetry the Carnot’s theorem must be used to define the geometry. Equations 
(39) and (40) are still valid but in relation to the whole cable as shown in equations (44) and 
(45): 
 

 ∆𝐿 = ∆𝜀 ∙ 𝐿0 = (𝜀 − 𝜀0) ∙ 𝐿0 (44) 

 ∆𝐿 =

(𝜀 −
𝑝 ∙ 𝑓𝑝𝑡𝑘
𝐸𝑠𝑝

)

(1 +
𝑝 ∙ 𝑓𝑝𝑡𝑘
𝐸𝑠𝑝

)

∙ 𝐿 (45) 

Due to the fact that an explicit formula for the displacement cannot be easily defined, the latter 
is calculated with an iterative procedure until the elongation that the displacement produces is 
exactly the one coming from equation (45): 
1. The initial displacement is zero, utry=0; 
2. The initial elongation increment is zero as well because the displacement is zero, ΔLtry=0; 
3. Using the Carnot’s theorem the length of the two parts of the deformed cable is defined. 

a. In case of the first type of impact, presented on the left in Figure 5: 

 𝑙′𝑥 = √𝑙𝑥
2 + 𝑢𝑡𝑟𝑦2 − 2 ∙ 𝑙𝑥 ∙ 𝑢𝑡𝑟𝑦 ∙ 𝑐𝑜𝑠(𝜋 − 𝛾) (46) 

 𝑙′𝑠 = √𝑙𝑠
2 + 𝑢𝑡𝑟𝑦2 − 2 ∙ 𝑙𝑠 ∙ 𝑢𝑡𝑟𝑦 ∙ 𝑐𝑜𝑠(𝛾) (47) 

 
b. In case of the second type of impact, presented on the right in Figure 5: 

 𝑙′𝑥 = √𝑙𝑥
2 + 𝑢𝑡𝑟𝑦2 − 2 ∙ 𝑙𝑥 ∙ 𝑢𝑡𝑟𝑦 ∙ 𝑐𝑜𝑠(𝛾) (48) 

 𝑙′𝑠 = √𝑙𝑠
2 + 𝑢𝑡𝑟𝑦2 − 2 ∙ 𝑙𝑠 ∙ 𝑢𝑡𝑟𝑦 ∙ 𝑐𝑜𝑠(𝜋 − 𝛾) (49) 

 
4. Given the deformed length the corresponding elongation is derived: 

 ∆𝐿𝑡𝑟𝑦 = 𝑙
′
𝑥 + 𝑙

′
𝑠 − 𝐿 (50) 

 
5. If ∆𝐿𝑡𝑟𝑦  −  ∆𝐿 ≥  0 It means that the point where the elongation is the same as the one 

coming from the energy equation has been reached, the process can be stopped. The 
displacement corresponds to the last utry calculated; 
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6. If ∆𝐿𝑡𝑟𝑦  −  ∆𝐿 <  0 the displacement is increased (utry = utry + 0.001) and the procedure 
goes back to point 3. 

The area is calculated in the same way with equation (43). 
Now given the value of ε the tension and the stress can be defined: 
1. If 𝜀 ≤  𝜀𝑦𝑘: 

 𝜎 =  𝐸𝑠𝑝 ∙ 𝜀 (51) 

2. If 𝜀 >  𝜀𝑦𝑘: 

 𝜎 = 𝐸𝑠𝑝 ∙ 𝜀𝑦𝑘 + 𝐸𝑝 ∙ (𝜀 − 𝜀𝑦𝑘) (52) 

3. Tension: 

 𝑇 = 𝜎 ∙ 𝐴 (53) 

9.2. No-sliding model 
With this model now it is assumed that the friction forces between cable and vehicle are that 
high that there is no sliding. For this reason, the point of contact never changes during the 
impact, therefore the superior and inferior part of the cable now respond differently. The generic 
form of the energy equation is given by equation (54): 
 

 𝐸𝑛𝑒𝑟𝑔𝑦(𝑙0𝑠) + 𝐸𝑛𝑒𝑟𝑔𝑦(𝑙0𝑥) =
1

2
∙ 𝑀 ∙ 𝑣2 (54) 

 
With consideration of both types of impact, it cannot be said a priori which is the part reaching 
the breakage first or in which part of the constitutive law the two sides are working, then it is 
not possible to get an explicit equation in function of the size of the cable. For some range of 
displacement, depending on the type of impact, one side or the other undergoes a shortening 
and if this happens it means that it is losing the initial tension. The cable does not have resistance 
in compression so once the tension is lost it becomes just zero till the point it goes in traction 
again, if that happens. During this shortening range that side of the cable is not absorbing any 
energy because there is not any increment in elongation neither it is going in compression, as 
shown in Figure 10: 
 

  
Figure 10-representation of the shortening in the energy graph 

ε0⸱L0 
 

T0 

0 ΔL 

T T 
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In general, an iterative procedure is required, but depending on the type of impact analysed 
some simplifications can be made as presented in the following sections. These simplifications 
derive from the fact that the part lx is always shorter than ls, because it depends on the height of 
the centre of mass of the vehicle that is generally small in relation to the length of the cable. 
Some numerical parameters will be presented later in the study. 
 
9.2.1. First type of impact 
This type allows to simplify the equation, because the part ls always undergoes a shortening and 
this means the term Energy(ls) is always zero, as shown in Figure 10. Theoretically, if the lx 
part had enough resistance to allow ls to reach the elongation range again, the latter would 
contribute to absorb the kinetic energy as well, but as said previously the two sides have a 
difference in length that makes lx breaking before. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
For the reason described above, it is possible to rewrite equations (16) and (21) with the use of 
the length l0x: 

 𝑇0 ∙ ∆𝜀 ∙ 𝑙0𝑥  +  
1

2
∙ 𝐸𝑠𝑝 ∙ 𝐴 ∙ ∆𝜀

2 ∙ 𝑙0𝑥  =  
1

2
∙ 𝑀 ∙ 𝑣2 (55) 

 
𝑇0 ∙ ∆𝜀 ∙ 𝑙0𝑥  + 

1

2
∙ 𝐸𝑠𝑝 ∙ 𝐴 ∙ (𝜀𝑦𝑘 − 𝜀0)

2
∙ 𝑙0𝑥 + (𝑓𝑝01𝑘 ∙ 𝐴 −  𝑇0) ∙ (∆𝜀 + 𝜀0

− 𝜀𝑦𝑘) ∙ 𝑙0𝑥 + 
1

2
∙ 𝐸𝑝 ∙ 𝐴 ∙ (∆𝜀 + 𝜀0 − 𝜀𝑦𝑘)

2
∙ 𝑙0𝑥  =  

1

2
∙ 𝑀 ∙ 𝑣2 

(56) 

 
By following the same process, the k(p) values are the same for the three conditions presented 
previously. If now the centre of mass of the vehicle has a height of c, the length l0x depends on 
the inclination of the cable as shown in equation (57): 
 

 𝑙0𝑥 =
𝑐

(1 + 𝜀0) ∙ 𝑠𝑖𝑛(𝛾)
 (57) 

 

ls 

ls 

lx 

l0s+Δls 

l0x+Δl
x 

Δls 
Δls<0 

Δlx>0 
Δlx 

Δls>0 Δls=0 Δls<0 
Figure 12- representation of the range of 

deformation of the part of the cable above impact 
Figure 11- representation of the 

deformation of the two parts of the cable 
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Equations (56)and (57) together define the final form: 
 

 𝐴 =
𝑀 ∙ 𝑣2

2 ∙ 𝑐 ∙ 𝑘(𝑝)
∙ (1 + 𝜀0) ∙ 𝑠𝑖𝑛(𝛾) (58) 

Because of the centre of mass of the vehicle is fixed and the inclination of the cable can be fixed 
as well, the only missing parameter is the area, that now is a constant. There is no relation 
anymore with the length of the cable because the resisting part is the side below impact, that 
depends just on c and γ. If γ is not fixed, it can be seen how the area required grows with gamma, 
because l0x decreases. 
 
9.2.2. Relation between displacement and size of the cable 
In terms of elongation, equation (40) is still valid, but instead of having half of the cable now 
the length is fixed to lx: 
 

 ∆𝐿𝑥 =

(𝜀 −
𝑝 ∙ 𝑓𝑝𝑡𝑘
𝐸𝑠𝑝

)

(1 +
𝑝 ∙ 𝑓𝑝𝑡𝑘
𝐸𝑠𝑝

)

∙ 𝑙𝑥 (59) 

 
Now in consideration of Figure 5 (on the left) the maximum displacement can be calculated 
with equations (60)-(62): 
 

 𝜔𝑥 = 𝑠𝑖𝑛
−1 ((

𝑙𝑥
𝑙𝑥 + ∆𝐿𝑥

) ∙ 𝑠𝑖𝑛(𝜋 − 𝛾)) (60) 

 𝜃𝑥  =  𝜋 − 𝜔𝑥 − (𝜋 − 𝛾) (61) 

 𝑢 =  √𝑙𝑥
2 + (𝑙𝑥 + ∆𝐿𝑥)2 − 2 ∙ 𝑙𝑥 ∙ (𝑙𝑥 + ∆𝐿𝑥) ∙ 𝑐𝑜𝑠(𝜃𝑥) (62) 

 
The steps to follow are the same as presented before from 1. to 4., but equation (40), (42) and 
(43) are substituted with equations (59), (62) and (58). 
 
9.2.3. Second type of impact 
With this type of impact, no simplifications can be made a priori. Now the part that undergoes 
a shortening is lx, but the difference from the previous situation is that the range in which it has 
negative or zero deformation is smaller, as shown in Figure 13 and Figure 14. As a result, in 
some situations the part breaking could be ls, in others lx and more it could be that if it is ls to 
break, lx could have reached the elongation range again having contributed to the absorption of 
the kinetic energy. 
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Because of the reasons just described it is not possible to get an explicit form like equations 
(31) and (58), the length and the inclination of the cable change the behaviour. As said before, 
now the iterative procedure is required: 
1. Initial displacement utry=0; 
2. The elongation of the two sides is defined: 

 ∆𝐿𝑥 = √𝑙𝑥
2 + 𝑢𝑡𝑟𝑦2 − 2 ∗ 𝑙𝑥 ∙ 𝑢𝑡𝑟𝑦 ∙ 𝑐𝑜𝑠(𝛾) − 𝑙𝑥 (63) 

 ∆𝐿𝑠 = √𝑙𝑠
2 + 𝑢𝑡𝑟𝑦2 − 2 ∙ 𝑙𝑠 ∙ 𝑢𝑡𝑟𝑦 ∙ 𝑐𝑜𝑠(𝜋 − 𝛾) − 𝑙𝑠 (64) 

 ∆𝜀𝑥 =
∆𝐿𝑥
𝑙0𝑥

 (65) 

 ∆𝜀𝑠 =
∆𝐿𝑠
𝑙0𝑠

 (66) 

 
3. Check of the maximum capacity: 

a. If ∆𝜀𝑥 > 𝜀𝑢𝑘; 
b. If ∆𝜀𝑠+𝜀0 > 𝜀𝑢𝑘; 

Then there has been the failure and the process is stopped. The parameters calculated are 
the ones at the breakage. If there is no breakage, the procedure proceeds to point 4. 

4. The behaviour of ls is defined. 
a. If ∆𝜀𝑠+𝜀0 ≤ 𝜀𝑦𝑘 it is in the elastic range: 

 𝐸𝑛𝑒𝑟𝑔𝑦(𝑙𝑠) = 𝑇0 ∙ ∆𝜀𝑠 ∙ 𝑙0𝑠  +  
1

2
∙ 𝐸𝑠𝑝 ∙ 𝐴 ∙ ∆𝜀𝑠

2 ∙ 𝑙0𝑠  (67) 

lx 

ls 

lx 

l0s+Δls 

l0x+Δl
x 

Δls 
Δls<0 

Δlx><0 
Δlx 

Δlx>0 Δlx=0 Δlx<0 

Figure 14-representation of the range of 
deformation of the part of the cable below impact 

Figure 13- representation of the deformation of 
the two parts of the cable 
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b. If ∆𝜀𝑠+𝜀0 > 𝜀𝑦𝑘 it is in the plastic range: 

 
𝐸𝑛𝑒𝑟𝑔𝑦(𝑙𝑠) = 𝑇0 ∙ ∆𝜀𝑠 ∙ 𝑙0𝑠  +  

1

2
∙ 𝐸𝑠𝑝 ∙ 𝐴 ∙ (𝜀𝑦𝑘 − 𝜀0)

2
∙ 𝑙0𝑠  + (𝑓𝑝01𝑘 ∙ 𝐴 −  𝑇0)

∙ (∆𝜀𝑠 + 𝜀0 − 𝜀𝑦𝑘) ∙ 𝑙0𝑠 + 
1

2
∙ 𝐸𝑝 ∙ 𝐴 ∙ (∆𝜀𝑠 + 𝜀0 − 𝜀𝑦𝑘)

2
∙ 𝑙0𝑠 

(68) 

5. If ∆𝐿𝑥 < −𝜀0 ∙ 𝑙0𝑥 → ∆𝐿𝑥 = −𝜀0 ∙ 𝑙0𝑥. 

6. The behaviour of lx is defined. 
a. If ∆𝐿𝑥 ≤ 0 → 𝐸𝑛𝑒𝑟𝑔𝑦(𝑙𝑥) = 0; 

b. If ∆𝐿𝑥 > 0: 

i. If ∆𝜀𝑥 ≤ 𝜀𝑦𝑘 it is in the elastic range: 

 𝐸𝑛𝑒𝑟𝑔𝑦(𝑙𝑥) =  
1

2
∙ 𝐸𝑠𝑝 ∙ 𝐴 ∙ ∆𝜀𝑥

2 ∙ 𝑙0𝑥  (69) 

 
ii. If ∆𝜀𝑥 > 𝜀𝑦𝑘 it is in the plastic range: 

 
𝐸𝑛𝑒𝑟𝑔𝑦(𝑙𝑥) =  

1

2
∙ 𝐸𝑠𝑝 ∙ 𝐴 ∙ 𝜀𝑦𝑘

2 ∙ 𝑙0𝑥  + 𝑓𝑝01𝑘 ∙ 𝐴 ∙ (∆𝜀𝑥 − 𝜀𝑦𝑘) ∙ 𝑙0𝑥 + 
1

2
∙ 𝐸𝑝 ∙ 𝐴

∙ (∆𝜀𝑥 − 𝜀𝑦𝑘)
2
∙ 𝑙0𝑥 

(70) 

 
7. If: 

 𝐸𝑛𝑒𝑟𝑔𝑦(𝑙𝑠) + 𝐸𝑛𝑒𝑟𝑔𝑦(𝑙𝑥) =
1

2
∙ 𝑀 ∙ 𝑣2 (71) 

 
The equilibrium configuration has been found and the procedure stops; 

8. If: 

 𝐸𝑛𝑒𝑟𝑔𝑦(𝑙𝑠) + 𝐸𝑛𝑒𝑟𝑔𝑦(𝑙𝑥) <
1

2
∙ 𝑀 ∙ 𝑣2 (72) 

  
The displacement is updated and the process goes back to point 2: 
 

 𝑢𝑡𝑟𝑦 = 𝑢𝑡𝑟𝑦 + 0.001 (73) 

 
When calculating the deformation of the part lx the values related to the initial tension are not 
added because it has been considered that surely it loses the tension at the beginning, to go then 
again in elongation but now starting from zero. This aspect is not true in the case of a vertical 
cable, where the whole initial tension is kept or in case of a high inclination, where it is just 
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partly lost and the initial tension terms have to be added again. In reality these inclinations are 
not reached, so it is correct to assume this simplification. 
The process just described is valid for every combination of γ and L, but under some 

circumstances the model can be simplified in the same way it has been done for the first type 
of impact. For every inclination there is a limit length for which when the cable reaches the 
breakage it is because the part ls has reached the ultimate strain, but at the same time the part lx 
has not reached the elongation range. This is the specular situation of the first type of impact 
and the final equation is going to be similar. The procedure that allows to define this limit length 
is presented below. 
1. The  limit displacement u* for which the part lx does not go in elongation again is defined, 

as shown in Figure 15. When the displacement is u* then the length is the initial length l0x 
again. The result is calculated starting from the equation (74) given by the Carnot’s theorem: 

 𝑙0𝑥 = √𝑙𝑥
2 + 𝑢∗2 − 2 ∙ 𝑙𝑥 ∙ 𝑢∗ ∙ 𝑐𝑜𝑠(𝛾) (74) 

 𝑢∗2 − 2 ∙ 𝑙𝑥 ∙ 𝑐𝑜𝑠(𝛾) ∙ 𝑢
∗ + 𝑙𝑥

2 − 𝑙0𝑥
2 = 0 (75) 

 
The equation (75) can be simplified by neglecting the term 𝑙𝑥

2 − 𝑙0𝑥
2 because it is almost 

zero, as demonstrated in equation (76): 

 𝑙𝑥
2 − 𝑙0𝑥

2 = 𝑙𝑥
2 −

𝑙𝑥
2

(1 + 𝜀0)2
~𝑙𝑥

2 − 𝑙𝑥
2 = 0 (76) 

 

 
Figure 15-definition of the limit displacement 

 
The remaining part is a second degree equation that gives the positive result in equation 
(77): 

 𝑢∗ =
2 ∙ 𝑐

𝑡𝑔(𝛾)
 (77) 

lx l0x 

u* 

u' u' 

l0x 
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2. The maximum length l’s is the value that the second part does not have to exceed, depending 
on a set strain. This strain could be the ultimate resistance or one of the other conditions: 

 𝑙′𝑠 = (1 + 𝜀) ∙ 𝑙0𝑠 =
(1 + 𝜀)

(1 + 𝜀0)
∙ 𝑙𝑠 (78) 

 
3. With the use of the Carnot’s theorem again the length ls is defined using equation (80): 

 𝑙′𝑠 = 𝑙𝑠
2 + 𝑢∗2 − 2 ∙ 𝑙𝑠 ∙ 𝑢

∗ ∙ 𝑐𝑜𝑠(𝜋 − 𝛾) = 𝑙𝑠
2 + 𝑢∗2 + 2 ∙ 𝑙𝑠 ∙ 𝑢

∗ ∙ 𝑐𝑜𝑠(𝛾) (79) 

 (1 − (
(1 + 𝜀)

(1 + 𝜀0)
)
2

) ∙ 𝑙𝑠
2 +

4 ∙ 𝑐

𝑡𝑔(𝛾)
∙ 𝑐𝑜𝑠(𝛾) ∙ 𝑙𝑠 + (

2 ∙ 𝑐

𝑡𝑔(𝛾)
)
2

= 0 (80) 

 𝑎 = (1 − (
(1 + 𝜀)

(1 + 𝜀0)
)
2

) (81) 

 𝑏 =
4 ∙ 𝑐

𝑡𝑔(𝛾)
∙ 𝑐𝑜𝑠(𝛾) (82) 

 𝑐 = (
2 ∙ 𝑐

𝑡𝑔(𝛾)
)
2

 (83) 

 𝑙𝑠 = 
−𝑏 − √𝑏2 − 4 ∙ 𝑎 ∙ 𝑐

2 ∙ 𝑎
 (84) 

 
4. from ls the total length L can be calculated: 

 𝐿 = 𝑙𝑠 +
𝑐

𝑠𝑖𝑛(𝛾)
 (85) 

 
Given the result above, the whole iterative procedure from 1. to 8. can be substituted with the 
usual equation: 
 

 𝐴 ∙ 𝑙0𝑠 =
𝑀 ∙ 𝑣2

2 ∙ 𝑘(𝑝)
 (86) 
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9.2.4. Relation between displacement and size of the cable 
In a generic cable the displacement derives from the iterative procedure presented before, in the 
case where the simplification given in equation (86) can be followed the calculation is direct 
like it was for the first type of impact. In consideration of Figure 5 on the right: 
 

 ∆𝐿𝑠 =

(𝜀 −
𝑝 ∙ 𝑓𝑝𝑡𝑘
𝐸𝑠𝑝

)

(1 +
𝑝 ∙ 𝑓𝑝𝑡𝑘
𝐸𝑠𝑝

)

∙ 𝑙𝑠 (87) 

 𝜔𝑠 = 𝑠𝑖𝑛
−1 ((

𝑙𝑠
𝑙𝑠 + ∆𝐿𝑠

) ∙ 𝑠𝑖𝑛(𝜋 − 𝛾)) (88) 

 𝜃𝑠  =  𝜋 − 𝜔𝑠 − (𝜋 − 𝛾) (89) 

 𝑢 =  √𝑙𝑠
2 + (𝑙𝑠 + ∆𝐿𝑠)2 − 2 ∙ 𝑙𝑠 ∙ (𝑙𝑠 + ∆𝐿𝑠) ∙ 𝑐𝑜𝑠(𝜃𝑠) (90) 

 
The steps to follow are the same as presented before from 1. to 4., but equation (40), (42) and 
(43) are substituted with equation (87), (90) and (86). 
 
 
10. Step by step approach 
 
The energy approach allows to define all the limit conditions for a single cable whether it breaks 
or not or under which range it is working during the impact. Linked with this aspect, there is 
the displacement that is important to understand if during the collision just one cable will be 
affected, or if it is bigger than the spacing, several of these. In case where more than one cable 
is touched the kinetic energy is absorbed by all of them, but when the second or further cables 
are hit the speed of the vehicle has decreased. This section is going to analyse this issue, to 
understand how at the end several cables respond. The procedure is the following one: 
1. The system vehicle + cable has an initial velocity right at the starting moment of the impact, 

considering an inelastic collision: 

 𝑣0 =
𝑀

(𝑀 +𝑚)
∙ 𝑣 (91) 

 
2. The time step for the analysis has to be defined. Starting from the displacement u derived 

from the energy approach, imagining just for hypothesis a uniformly decelerated motion 
where the velocity at the end is zero in any case, the time is: 
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 ∆𝑡 =
2 ∙ 𝑢

𝑣0
 (92) 

 
Given the fictitious total time, equation (92) is divided for 104 that gives the time step in 
equation (93): 

 𝑡𝑠 =
∆𝑡

104
 (93) 

 
3. The initial condition of every point is defined. 

a. lumped mass: 

 𝑚𝑙𝑖 =
𝜌 ∙ 𝐴 ∙ (𝑙0,𝑖 + 𝑙0,𝑖+1)

2
 (94) 

 
The point hit by the vehicle also has its mass: 

 𝑚𝑙𝑤 =
𝜌 ∙ 𝐴 ∙ (𝑙0,𝑖 + 𝑙0,𝑖+1)

2
+ 𝑀 (95) 

b. velocity, the cable is considered still apart for the hit point that has the initial velocity 
v0; 

c. initial shape, it can be simplified with a straight line. It has been performed a check 
with the catenary shape (Irvine, 1981; Russell & Lardner, 1981), that would be more 
precise, but due to the initial tension the difference between the two results does not 
lead to consistent errors: 

 𝑥𝑖(0) = 𝑠 ∙ 𝑠𝑖𝑛(𝛾) (96) 

 𝑦𝑖(0) = 𝑠 ∙ 𝑐𝑜𝑠(𝛾) (97) 

 
d. initial tension T0, simplified as constant through the whole cable; 

4. Additional displacement: 

 ∆𝑥𝑖(𝑡) = 𝑣𝑥,𝑖(𝑡 − 𝑡𝑠) ∙ 𝑡𝑠 (98) 

 ∆𝑦𝑖(𝑡) = 𝑣𝑦,𝑖(𝑡 − 𝑡𝑠) ∙ 𝑡𝑠 (99) 
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5. Nodes new position: 

 𝑥𝑖(𝑡) = 𝑥𝑖(𝑡 − 𝑡𝑠) + ∆𝑥𝑖(𝑡) (100) 

 𝑦𝑖(𝑡) = 𝑦𝑖(𝑡 − 𝑡𝑠) + ∆𝑦𝑖(𝑡) (101) 

 
6. The node hit by the impact keeps moving horizontally with the vehicle: 

 𝑥𝑤(𝑡) = 𝑥𝑤(0) (102) 

 
7. If 𝑦𝑤(𝑡) ≤ 𝑦𝑤(0) the impacted point reached the initial position without breaking and the 

process is stopped; 
8. Strained length of every element in that moment in time: 

 𝑙𝑖(𝑡) = √(𝑦𝑖(𝑡) − 𝑦𝑖−1(𝑡))
2
+ (𝑥𝑖(𝑡) − 𝑥𝑖−1(𝑡))

2
 (103) 

 
9. The strain is calculated. 

a. In case of the sliding model it is the total strain: 

 ∆𝑙𝑖(𝑡) =∑𝑙𝑖(𝑡) − 𝐿0 (104) 

 𝜀𝑖(𝑡) =
∆𝑙𝑖(𝑡)

𝐿0
 (105) 

 
b. In case of the no-sliding model it is the strain of every element: 

 ∆𝑙𝑖(𝑡) = 𝑙𝑖(𝑡) − 𝑙0,𝑖 (106)  

 𝜀𝑖(𝑡) =
∆𝑙𝑖(𝑡)

𝑙0,𝑖
 (107)  

 
10. The tension depends on which range of the constitutive law the element is working in, as 

shown in Figure 16. 
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Figure 16-range identification for the element 

 
a. The element is in the elastic range: 

 𝜎𝑖(𝑡) = 𝐸𝑠𝑝 ∙ 𝜀𝑖(𝑡) (108) 

 𝜀𝑟𝑒𝑠,𝑖 = 0 (109) 

 
b. The element is in the plastic range: 

 𝜎𝑖(𝑡) = 𝐸𝑠𝑝 ∙ 𝜀𝑦𝑘(𝑡) + 𝐸𝑝 ∙ (𝜀𝑖(𝑡) − 𝜀𝑦𝑘(𝑡)) (110) 

 𝜀𝑚𝑎𝑥,𝑖 = 𝜀𝑖(𝑡) (111) 

 𝜀𝑟𝑒𝑠,𝑖 = 𝜀𝑖(𝑡) −
𝜎𝑖(𝑡)

𝐸𝑠𝑝
 (112) 

 
c. The element is in the elastic range again, but with a residual deformation that has 

been calculated at point b: 

 𝜎𝑖(𝑡) = 𝐸𝑠𝑝 ∙ (𝜀𝑖(𝑡) − 𝜀𝑟𝑒𝑠,𝑖) (113) 

 
And the tension at the end: 

 𝑇𝑖(𝑡) = 𝜎𝑖(𝑡) ∙ 𝐴 (114) 

 
11. If 𝜀𝑖(𝑡) > 𝜀𝑢𝑘 the element broke and the procedure stops; 
12. The tensions give the resultant of the forces in x and y direction at every node, knowing the 

positions: 

σ 

ε εres 

εmax 

a 

b
 

c
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 𝐹𝑦,𝑖(𝑡) =
𝑦𝑖−1(𝑡) − 𝑦𝑖(𝑡)

𝑙𝑖(𝑡)
∙ 𝑇𝑖(𝑡) +

𝑦𝑖(𝑡) − 𝑦𝑖+1(𝑡)

𝑙𝑖+1(𝑡)
∙ 𝑇𝑖+1(𝑡) (115) 

 𝐹𝑥,𝑖(𝑡) =
𝑥𝑖−1(𝑡) − 𝑥𝑖(𝑡)

𝑙𝑖(𝑡)
∙ 𝑇𝑖(𝑡) +

𝑥𝑖(𝑡) − 𝑥𝑖+1(𝑡)

𝑙𝑖+1(𝑡)
∙ 𝑇𝑖+1(𝑡) − 9.81 ∙ 𝑚𝑙𝑖 (116) 

 
13. The acceleration is considered constant in the time step: 

 𝑎𝑥,𝑖(𝑡) =
𝐹𝑥,𝑖(𝑡)

𝑚𝑙𝑖
 (117) 

 𝑎𝑦,𝑖(𝑡) =
𝐹𝑦,𝑖(𝑡)

𝑚𝑙𝑖
 (118) 

 
14. The velocity is considered constant in the time step: 

 𝑣𝑥,𝑖(𝑡) = 𝑣𝑥,𝑖(𝑡 − 𝑡𝑠) + 𝑎𝑥,𝑖(𝑡) ∙ 𝑡𝑠 (119) 

 𝑣𝑦,𝑖(𝑡) = 𝑣𝑦,𝑖(𝑡 − 𝑡𝑠) + 𝑎𝑦,𝑖(𝑡) ∙ 𝑡𝑠 (120) 

 
15. The time is incremented by one time step and the procedure restarts from point 4. 

At the end of the loop there are all the parameters to get the maximum tension and displacement, 
whether the cable breaks or not: 
 

 𝑇𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑇𝑖(𝑡)) (121) 

 𝑢 = 𝑚𝑎𝑥(𝑦𝑤(𝑡) − 𝑦𝑤(0)) (122) 

 
The velocity of interest will be the value at the timestep in which the displacement is equal to 
the one defined at the beginning of the process, depending on the breakage of the cable or the 
reaching of the next element. 
 
11. Unique solution 
 
The procedures described so far allows to define requirements and results for a cable but with 
a separated analysis of the sliding and no-sliding models. These two implementations present 
the two extreme behaviours that the cable and the vehicle have while in contact, but the true 
interaction will not be either of them, but a combination and the result will be in between. The 
idea is that if the inclination is low the real behaviour will be closer to the sliding model, if the 
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inclination is high the real behaviour will be closer to the no-sliding model. Following this 
reasoning the following statements are considered: 

• If the cable is vertical the real response is the no-sliding model; 
• If the cable is horizontal the real response is the sliding model; 
• In between the real response is a weighted mean. 

The weighted mean is calculated in relation of the angle γ, as presented in the following 
procedure. Consider the subscript “ns” for a value representing the no-sliding model and “s” 

for the sliding model: 
1. A parameter is selected in both models, that could be the displacement as well as a minimum 

number of strands required or even other elements; 
2. With equation (123) unique result is calculated: 

 𝑧 = 𝑧𝑛𝑠 ∙
2 ∙ 𝛾

𝜋
+ 𝑧𝑠 ∙

𝜋 − 2 ∙ 𝛾

𝜋
 (123) 

 
 
12. Relation between the two approaches 
 
A combination of the energy and the step by step approaches allows to define if during an 
impact one or more cables will be affected and how they will be affected. In consideration now 
of the simplification made before for specific situations, taking as an example the breakage 
condition the equations (31), (58) and (86) give the minimum requirements and two things can 
happen: 
1. The cable breaks and the maximum displacement is smaller than the spacing. When this 

happens, right at the moment of the breakage the vehicle will have a new velocity with 
which the new kinetic energy is calculated and the same process described so far is repeated 
for a new cable; 

2. The cable breaks or not but with a displacement that should be greater than the spacing. 
When this happens, it means that before reaching the maximum displacement one or more 
cables are affected as well and they contribute to the absorption of the kinetic energy. As in 
the previous point, every time that the following cable is reached a new kinetic energy is 
calculated depending on the velocity of the vehicle. 

The second point is the one needing further implementation, so in relation to this the following 
process is followed in consideration of both the models: 
1. Given a spacing b, the velocity that the impacted point has when yw(t)-yw(0)=b is calculated 

with the step by step approach. It is likely that for the no-sliding model the maximum 
displacement is smaller than the spacing, in this case it is considered the velocity at the 
breakage, assuming it does not decrease before the next cable; 

2. At yw(t)-yw(0)=b the energy approach gives the tension. If the maximum displacement is 
smaller than the spacing, it is the ultimate resistance tension. The tension just calculated is 
going to be the new initial tension; 

3. The starting hypothesis is that two cables are going to be affected by the impact, without 
reaching further ones. The energy absorbed at the maximum displacement of the first cable 
is calculated considering Figure 5. The energy absorbed now by the two cables has to be 
calculated with the following steps: 
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a. no-sliding model: 
i. assuming as said before that the maximum displacement is smaller than 

the spacing, the calculations are performed twice like two separated 
cables, where the only difference is the velocity that has decreased for 
the second element; 

b. Sliding model: 
i. The new initial conditions of the first cable are: 

 𝜀0 = 𝜀(𝑢 = 𝑏) (124) 

 𝑝 =
𝜎(𝑢 = 𝑏)

𝑓𝑝𝑡𝑘
 (125) 

ii. when the first cable reaches the second, they work together and they 
could stop the vehicle without breaking the first one. The energy 
absorbed at the maximum displacement by both elements is calculated  
and it is checked if it is greater or smaller than the kinetic energy, using 
equation (123); 

iii. if it is greater it means that the displacement is too high, consequently 
the first cable will not break. The calculations are repeated to find the 
right displacement. if it is smaller it means the first cable breaks and the 
second cable keeps deforming; 

iv. if the first cable is to break, the second cable has now new initial 
conditions and it is analysed like an isolated cable. 

4. if two cables cannot resist to the impact or further cables are reached, the calculations are 
performed for as many elements as necessary. 

 
13. Numerical results 
 
After having presented the procedure to define the generic requirements, in order to have the 
numerical limits some parameters have to be fixed. In general, for specific bridges there could 
be some limits in terms of maximum weight of the vehicles or maximum speed, consequently 
these cases can be studied with the use of these limits. The following study is presented as a 
generic situation where no limits are considered, hence the maximum size in terms of mass is 
taken as 40 tons, with the relative maximum velocity of 80 Km/h. A vehicle with this mass is a 
big truck, with a height of about 3m and a centre of mass that could be considered in the middle 
at 1.5m. The inclination of the cable is low, 20°. The following graphs present the results with 
the parameters stated above. 
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13.1. Sliding model, first type of impact 
 

 
Figure 17-breakage condition for sliding model, first type of impact 

 

 
Figure 18-zero-tension condition for sliding model, first type of impact 
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Figure 19-elastic condition for sliding model, first type of impact 

 
Considering now 40% of initial tension as an example: 
 

 
Figure 20-displacement in breakage condition for sliding model, first type of impact, initial tension at 40% 
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Figure 21-displacement in zero-tension condition for sliding model, first type of impact, initial tension at 40% 

 

 
Figure 22-displacement in elastic condition for sliding model, first type of impact, initial tension at 40% 

 
The plots can be merged in order to compare the different conditions and displacements, as 
shown in Figure 23 and Figure 24: 
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Figure 23-representations of the conditions for sliding model, first type of impact, initial tension at 40% 

 

 
Figure 24-representation of the displacements for sliding model, first type of impact, initial tension at 40% 

 
Analysing Figure 23, it can be seen how the curves divide the space into four different parts: 
1. In this part the combination of area and length of the cable gives a value that is too small 

and the cable is not able to withstand the impact, therefore it breaks; 
2. In this part the combination of area and length is big enough to not break, but when it goes 

back in place it keeps a residual deformation and the tension is totally lost; 
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3. In this part the combination of area and length is big enough to absorb all the energy, to 
not break and at the end when it goes back in place it still has some elastic tension and a 
small residual deformation; 

4. In this part the combination of area and length of the cable is that big that allows the cable 
to stay in its elastic range. 

 
13.2. No-sliding model, first type of impact 
For this case the values are constant because all the parameters are fixed, the results are reported 
in Table 4: 
 

Table 4-limits for no-sliding model, first type of impact 
 

p 30% 40% 50% 60% 

condition strand
s n° u(m) strands 

n° u(m) strand
s n° u(m) strands 

n° u(m) 

breakage 325 0.149 325 0.145 325 0.14 325 0.136 
zero-

tension 1471 0.0397 1346 0.0399 1257 0.04 1194 0.0402 

elastic 2663 0.0258 2967 0.0214 3477 0.0169 4402 0.0125 
 
These results are for an inclination of 20°, in Figure 25 and  
Table 5 it can be seen how the numbers vary depending on γ for an initial tension at 40%: 
 

 
Figure 25-variation of the requirement depending on the inclination, for no-sliding model, first type of impact 
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Table 5-variation of the requirements depending on the inclination, for no-sliding model, first type of impact 
 

 breakage zero-tension elastic 
γ(°) Strands n° Strands n° Strands n° 
20 325 1346 2967 
25 401 1666 3666 
30 474 1971 4337 
35 544 2262 4975 
40 610 2534 5576 
45 671 2788 6134 
50 727 3020 6645 
55 777 3230 7106 
60 822 3415 7513 
65 860 3574 7862 
70 891 3706 8152 

 
13.3. Sliding model, second type of impact 
The graphs given in Figure 17, Figure 18 and Figure 19 are still valid, the only thing changing 
is the displacement due to the different geometry. 
 

 
Figure 26-displacement in breakage condition for sliding model, second type of impact, initial tension at 40% 
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Figure 27-displacement in zero-tension condition for sliding model, second type of impact, initial tension at 40% 

 

 
Figure 28-displacement in elastic condition for sliding model, second type of impact, initial tension at 40% 

 
The plots can be merged in order to compare the different conditions and displacements, as 
shown in Figure 29: 
 

1.72
1.92
2.12
2.32
2.52
2.72
2.92
3.12
3.32
3.52
3.72
3.92
4.12
4.32
4.52
4.7230

80
130
180
230
280
330
380
430
480
530
580

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

u(
m

)

st
ra

nd
s n

°

L(m)

zero-tension condition, 40%

AL u

1.31
1.51
1.71
1.91
2.11
2.31
2.51
2.71
2.91
3.11
3.31
3.51
3.71
3.91

65
165
265
365
465
565
665
765
865
965

1065
1165
1265

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

u(
m

)

st
ra

nd
s n

°

L(m)

elastic condition, 40%

AL u



Breakage of stay cables due to the impact of vehicles Luca Gonella 

39 
 

 
Figure 29-representation of the displacements for sliding model, second type of impact, initial tension at 40% 

 
13.4. No-sliding model, second type of impact 
As said previously in the paper, under specific circumstances some simplifications can be made 
and equation (86) can be used. The limit length given in equation (85) will allow to decide if 
the simplified equation is valid or not. Considering as an example an initial tension at 40%: 
 

 
Figure 30-limit length for the three different conditions for no-sliding model, second type of impact 
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If the length is smaller than the length defined in Figure 30 then equation (86) is valid, otherwise 
the iterative procedure given in equations (63)-(73) has to be used. Given the inclination of 20° 
the simplified procedure can be followed for the lengths studied here. 
 

 
Figure 31-breakage condition for no-sliding model, second type of impact 

 

 
Figure 32-zero-tension condition for no-sliding model, second type of impact 
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Figure 33-elastic condition for no-sliding model, second type of impact 

 
Considering now 40% of initial tension as an example: 
 

 
Figure 34-displacement in breakage condition for no-sliding model, second type of impact, initial tension at 40% 
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Figure 35-displacement in zero-tension condition for no-sliding model, second type of impact, initial tension at 40% 

 

 
Figure 36-displacement in elastic condition for no-sliding model, second type of impact, initial tension at 40% 
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And again, the merged graphs in Figure 37 and Figure 38: 
 

 
Figure 37-representations of the conditions for no-sliding model, second type of impact, initial tension at 40% 

 

 
Figure 38-representation of the displacements for no-sliding model, second type of impact, initial tension at 40% 
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13.5. First type of impact, unique solution 
Number of strands defined with the weighted mean: 
 

 
Figure 39-strands n° required for a specific length, first type of impact 

 
13.6. First type of impact, unique solution 
Number of strands defined with the weighted mean: 
 

 
Figure 40- strands n° required for a specific length, second type of impact 
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14. Cables performance, example 
 
Given the previous results, it is possible now to define what happens when the vehicle collides 
against a specific setup of cables. Consider the configuration given in Figure 41 and the first 
type of impact: 
 

 
Figure 41-configuration of the set of cables 

 
• Cable 1: 100m long, 50 strands; 
• Cable 2: 89.36m long, 50 strands; 
• Cable 3: 78.72m long, 50 strands. 

The reported lengths are to be considered as strained lengths, the initial tension is at 40%. 
 

 𝜀0 = 0.4 ∙
1860

195000
= 3.82 ∙ 10−3 (126) 

 
Starting from cable 1, in considerations of both models, the total response is going to be defined. 
The minimum requirements for the length of 100m, starting from the breakage condition, are 
defined with the use of Figure 17 and Table 4 (result given by Figure 39): 

• Sliding model, minimum number of strands 14; 
• No-sliding model, minimum number of strands 325. 

With the use of equation (123) the minimum value to not have breakage is: 
 

 𝑠𝑡𝑟𝑎𝑛𝑑𝑠 𝑛° = 325 ∙
20

90
+ 14 ∙

90 − 20

90
~84 (127) 

 
The result just found says that the cable alone will break, even if with the sliding model it would 
not. For this reason, the maximum displacement of the no-sliding model is the one at the 
breakage, while for the sliding model it is calculated depending on the strain required, using 
equation (20), then (44) and at the end the iterative procedure given by equations (46)-(50): 

• Sliding model, maximum displacement 16.51 m; 
• No-sliding model, maximum displacement 0.15 m. 

γ 

Cable 1 Cable 2 Cable 3 

10m 
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 𝑢 = 0.15 ∙
20

90
+ 16.51 ∙

90 − 20

90
= 12.87 𝑚 (128) 

 
It means that the cable before breaking has reached the second cable and they start to work 
together and using again the two models the procedure is repeated but now with two cables.  
The velocity at 10 m is defined with the step by step approach: 

• Sliding model, 55.37 Km/h. 
The maximum displacement reached by the first cable is considered as a start for the 
second cable: 

 𝑢2 = 12.87 − 10 = 2.87 𝑚 (129) 

 𝑙′𝑥 = √4.122 + 2.872 − 2 ∙ 4.12 ∙ 2.87 ∙ 𝑐𝑜𝑠(𝜋 − 𝛾) = 6.89 𝑚 (130) 

 𝑙′𝑠 = √85.242 + 2.872 − 2 ∙ 85.24 ∙ 2.87 ∙ 𝑐𝑜𝑠(𝛾) = 82.55 𝑚 (131) 

 ∆𝐿 = 6.89 + 82.55 − 89.36 = 0.079 𝑚 (132) 

 ∆𝜀 =
0.079

89.36
∙ (1 + 3.82 ∙ 10−3) = 0.87 ∙ 10−3 (133) 

 𝑘2(𝑝) = 0.4 ∙ 1860 ∙ 0.87 ∙ 10
−3 +

1

2
∙ 195000 ∙ (0.87 ∙ 10−3)2 = 0.73 𝑀𝑃𝑎 (134) 

  
For the first cable, at 10 m: 

 

 𝑙′𝑥 = √4.122 + 102 − 2 ∙ 4.12 ∙ 10 ∙ 𝑐𝑜𝑠(𝜋 − 𝛾) = 13.94 𝑚 (135) 

 𝑙′𝑠 = √95.882 + 102 − 2 ∙ 95.88 ∙ 10 ∙ 𝑐𝑜𝑠(𝛾) = 86.55 𝑚 (136) 

 ∆𝐿 = 13.94 + 86.55 − 100 = 0.491 𝑚 (137) 

 ∆𝜀 =
0.491

100
∙ (1 + 3.82 ∙ 10−3) = 4.93 ∙ 10−3 (138) 

 𝜀0 = (3.82 + 4.93) ∙ 10
−3 = 8.75 ∙ 10−3 (139) 
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 𝜎0 = 195000 ∙ 8.41 ∙ 10
−3 + 8260 ∙ (8.75 − 8.41) ∙ 10−3 = 1643 𝑀𝑃𝑎 (140) 

 𝑝 =
1643

1860
= 0.88 (141) 

  
For the first cable, at 12.87 m: 

 

 𝑢1 = 12.87𝑚 (142) 

 𝑙′𝑥 = √4.12
2 + 12.872 − 2 ∙ 4.12 ∙ 12.87 ∙ 𝑐𝑜𝑠(𝜋 − 𝛾) = 16.80 𝑚 (143) 

 𝑙′𝑠 = √95.882 + 12.872 − 2 ∙ 95.88 ∙ 12.87 ∙ 𝑐𝑜𝑠(𝛾) = 83.90 𝑚 (144) 

 ∆𝐿 = 16.80 + 83.90 − 100 = 0.70𝑚 (145) 

 ∆𝜀 =
0.70

100
∙ (1 + 3.82 ∙ 10−3) = 7.04 ∙ 10−3 (146) 

 𝜀 = (7.04 + 3.82) ∙ 10−3 = 10.86 ∙ 10−3 (147) 

 
𝑘1(𝑝) = (1643 ∙ (10.86 − 8.75) ∙ 10

−3 +
1

2
∙ 8260

∙ ((10.86 − 8.75) ∙ 10−3)
2
) = 3.49 𝑀𝑃𝑎 

(148) 

 
• No-sliding model, 73.51 Km/h. 

With the assumption of the same displacement, the part of the cable below the impact 
breaks and the two cables are studied separately. 

Now, the total energy absorbed and the velocity are calculated with equation (123): 
 

 𝑣 = 73.51 ∙
20

90
+ 55.37 ∙

70

90
= 59.40 𝐾𝑚/ℎ (149) 

 1

2
∙ 40000 ∙ (

59.40

3.6
)
2

= 5.45 ∙ 106 𝑁𝑚  (150) 
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139 ∙ 50

1 + 3.82 ∙ 10−3
∙ ((100 ∙ 3.49 + 89.36 ∙ 0.73) ∙

70

90
+ (4.37 ∙ 50.23) ∙

20

90
)

= 2.57 ∙ 106 𝑁𝑚 
(151) 

 
The kinetic energy is greater than the energy absorbed, it means that the elongation, hence the 
displacement, need to be increased. The consequence is that the first cable breaks and the study 
of the second cable is again performed like an isolated cable, with new initial conditions. 

• Sliding model. 
The results for a displacement of 2.87 m have been calculated already in equations 
(129)-(134): 
 

•  
𝐿 = 6.89 + 82.55 = 89.44 𝑚 (152) 

•  𝜀0 = (3.82 + 0.87) ∙ 10
−3 = 4.69 ∙ 10−3 (153) 

 𝜎0 = 195000 ∙ 4.69 ∙ 10
−3 = 915 𝑀𝑃𝑎 (154) 

 𝑝 =
915

1860
= 0.49~0.50 (155) 

 
• No-sliding model. 

the initial stress is calculated as a weighted mean between sliding and no-sliding. In case 
of the no-sliding model at the displacement of 2.87 m the cable has already broken, so 
the maximum tension is taken. 

 𝜎0 = 1860 ∙
20

90
+ 915 ∙

70

90
= 1125 𝑀𝑃𝑎 (156) 

 𝜀0 =
1125

195000
= 5.77 ∙ 10−3 (157) 

 𝑙𝑥 =
6.89

1 + 5.77 ∙ 10−3
= 6.85 𝑚 (158) 

 𝑝 =
1125

1860
= 0.60 (159) 

 
The last parameter to calculate is the new velocity. It is influenced by both cables between the 
displacement of 10 m and 12.87 m, for this reason the forces of both cables against the vehicle 
are considered in the step by step approach. The velocity to consider as a starting value is the 
new v0 given by the impact with the second cable. 
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• Sliding model, 33.15 Km/h, with the starting velocity given in equation (160): 
 

 𝑣0 =
40000 + 2770

40000 + 2770 + 2475
∙ 55.37 = 52.34 𝐾𝑚/ℎ (160) 

 
• No-sliding model, 63.86 Km/h, with the starting velocity given in equation (161): 

 𝑣0 =
40000

40000 + 2475
∙ 73.51 = 69.23 𝐾𝑀/ℎ (161) 

 
At the end, the velocity is calculated again with equation (123): 

 

 𝑣 = 63.86 ∙
20

90
+ 33.15 ∙

90 − 20

90
= 39.97 𝐾𝑚/ℎ (162) 

 
Now with the new velocity, the minimum requirements can be calculated with the same 
procedure as before. Starting with the breakage condition: 

• Sliding model: 

 
𝑠𝑡𝑟𝑎𝑛𝑑𝑠 𝑛° =

40000 ∙ (
39.97
3.6 )

2

2 ∙ 50.23 ∙ 89.44 ∙ 139
∙ (1 + 4.69 ∙ 10−3)~4 (163) 

 
• No-sliding model: 

 
𝑠𝑡𝑟𝑎𝑛𝑑𝑠 𝑛° =

40000 ∙ (
39.97
3.6 )

2

2 ∙ 50.23 ∙ 6.85 ∙ 139
∙ (1 + 4.69 ∙ 10−3)~52 (164) 

 
With equation (123) calculate the minimum number of strands to not reach the breakage: 
 

 𝑠𝑡𝑟𝑎𝑛𝑑𝑠 𝑛° = 52 ∙
20

90
+ 4 ∙

90 − 20

90
~15 (165) 

 
Therefore, the second cable will not break, but the range in which it is going to work still has 
to be defined. Given the values of p in equations (155) and (159) and using Table 2, it is possible 
to first check the zero-tension limit. 
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• Sliding model: 

 
𝑠𝑡𝑟𝑎𝑛𝑑𝑠𝑛° =

40000 ∙ (
39.97
3.6 )

2

2 ∙ 12.95 ∙ 89.44 ∙ 139
∙ (1 + 4.69 ∙ 10−3)~16 (166) 

 
• No-sliding model: 

 
𝑠𝑡𝑟𝑎𝑛𝑑𝑠 𝑛° =

40000 ∙ (
39.97
3.6 )

2

2 ∙ 13.65 ∙ 6.85 ∙ 139
∙ (1 + 4.69 ∙ 10−3)~190 (167) 

 𝑠𝑡𝑟𝑎𝑛𝑑𝑠 𝑛° = 190 ∙
20

90
+ 16 ∙

90 − 20

90
~55 (168) 

 
As a result, the cable will have reached the zero-tension limit and passed it and it will have 
totally lost the initial tension. The same steps can be repeated between the second and third 
cable, but at the end the last element will not be involved because the maximum displacement 
is smaller than the spacing. 
 
 
15. Generic vehicle 
 
In the whole process a big vehicle of 40 tons has been considered, the same reasoning could be 
done with a normal vehicle with a mass of about 2000 Kg, that now have a greater velocity, and 
see if this will give more restrictive conditions. Considering a velocity of 120 Km/h: 
 

 1

2
∙ 𝑀 ∙ 𝑣2 =

1

2
∙ 2000 ∙ (

120

3.6
)
2

= 1.11 ∙ 106𝑁𝑚 (169) 

 
In comparison with the previous result there is a difference of almost one order of magnitude: 
 

 1

2
∙ 𝑀 ∙ 𝑣2 =

1

2
∙ 40000 ∙ (

80

3.6
)
2

= 9.88 ∙ 106 𝑁𝑚 (170) 

 
In case of the sliding model when the usual equation (31) is analysed, the resultant value “AL” 

fixing the minimum requirement will be smaller and it will not present any worst situations. 
In case of the no-sliding model there is a difference since now in consideration of a normal car, 
the centre of mass is lower in respect to the 1.5 m considered before. Considering now a height 
of 0.5 m and the first type of impact: 
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 𝑙𝑥 =
0.5

𝑠𝑖𝑛(𝛾)
 (171) 

 𝐴 =
𝑀 ∙ 𝑣2

2 ∙ 𝑘(𝑝)
∙
𝑠𝑖𝑛(𝛾)

0.5
∙ (1 + 𝜀0) =

𝑀 ∙ 𝑣2

𝑘(𝑝)
∙ (1 + 𝜀0) ∙ 𝑠𝑖𝑛(𝛾) (172) 

 
The terms k(p), sin(γ) and ε0 are the same, by comparing the term with mass and velocity the 
result is: 
 

 𝑀 ∙ 𝑣2

3
=
40000 ∙ (

80
3.6
)
2

3
= 6.58 ∙ 106 𝑁𝑚 (173) 

 𝑀 ∙ 𝑣2 = 2000 ∙ (
120

3.6
)
2

= 2.22 ∙ 106 𝑁𝑚 (174) 

 
The value is almost 3 times smaller, so again this is not going to change any of the minimum 
requirements or present any more unfavourable situation. 
In case of the impact in the opposite direction, in consideration of the simplified condition given 
by equation (85), the following equation is valid: 
 

 𝐴 ∙ (𝐿 −
0.5

(1 + 𝜀0) ∙ 𝑠𝑖𝑛(𝛾)
) =

𝑀 ∙ 𝑣2

2 ∙ 𝑘(𝑝)
 (175) 

 
The term in the parenthesis has increased while the term related to the mass and velocity has 
decreased, as stated above. Again, the requirements coming from this type of impact will be 
smaller than the previous one, giving a less severe outcome. 
One aspect that could be further analysed when the mass starts to be relatively small is the fact 
that with the sliding model there is the possibility that the vehicle at one point loses contact 
with the road. This would happen in the cases of big cables, strong enough to resist to the impact 
and to push the vehicle upwards. As a result, the deformation in the cable will be even smaller 
presenting at the end conditions that could even be non-damaging for the system. 
 
 
16. Conclusions 
 
Cable-stayed bridges are imponent structures subjected to many aggressive events, such as the 
impact of a heavy vehicle. For this reason, they are constructed with a special attention to the 
redundancy of the cables to ensure that in case of a loss of an element, the rest of the structure 
will not suffer excessive damage or reach any ultimate state. This work has been developed to 
analyse the breakage of the cables using an energetic and step by step solution in order to 
confirm if the loss of one cable is a safe consideration or not and to analyse under which 
conditions an element could break. The full study on the response of a single isolated cable has 
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been developed, presenting the limit conditions that lead to the failure, loss of the tension or 
just elastic behaviour. At the end a numerical example has been presented with a possible 
configuration of several elements, in order to see how many of them could be involved and how 
many could be considered as lost, if the breakage or total loss of tension has occurred. Finally, 
the main conclusions have been drawn and presented as follow: 
• The size of the cable follows a hyperbolic function when a maximum strain is set, if the 

length increases the area could decrease and vice versa, without changing the response. 
• When analysing short cables, the number of strands required starts to be really high. The 

breakage condition is more likely to be reached in respect to long cables, but in case of the 
zero-tension or elastic behaviour the minimum requirement is out of the normal 
construction range, as a result the loss has to be considered in any case. 

• When analysing long cables, it is more likely that the cable will not break because the 
number of strands required starts to decrease, but still the elastic and zero-tension ranges 
are hard to guarantee due to the still high number of strands required. 

• The maximum displacement reached is an important aspect both in case of breakage and 
not, because it allows to define weather the next cables will be touched and if for certain 
ranges more than one cable are going to work together against the vehicle. It can happen 
that one cable stops the vehicle, that several cables will be broken and they work as isolated 
cables, because the maximum displacement is always smaller than the spacing or that 
several cables will be touched by the impact due to the fact that the maximum displacement 
is way higher than the spacing. In the latter case it might be that there is no breakage, but 
the cables have passed the zero-tension condition and are close to the maximum strain. 

• If the inclination grows the number of strands required increases, considered fixed the 
height of the centre of mass of the vehicle. 

• The impact of a normal car is less severe than a heavy vehicle, even if it has a greater 
velocity. 

• In the final numerical example, it has been proved that in case of the collision of a heavy 
vehicle at least two cables are going to be affected, where the first one will break and the 
second one will have lost totally the initial tension. The consequence is that in this and many 
other cases, considering the loss of just one cable could not be enough and the effect on the 
rest of the structure could be more severe than what expected. 
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Appendix A – symbolic notations 
 
IF   impact factor 
N0  initial tension in the cable 
Nmin  minimum tension in the cable 
fptk   ultimate strength of steel 
fp0.1k   yielding strength of steel, stress at 0.1% of residual deformation 
Esp  elastic modulus 
Ep  plastic modulus 
εyk  yielding strain of steel 
εuk  ultimate strain of steel 
γ  inclination of the cable in respect of the horizontal direction 
T0  initial tension in the cable 
σ0  initial stress in the cable 
L  strained length of the cable 
lx  strained length of the part of the cable below impact 
ls  strained length of the part of the cable above impact 
ΔL0, ε0⸱L0 initial elongation in the cable, due to the initial tension 
ΔL0x  initial elongation of the part of the cable below impact, due to the initial tension 
ΔL0s  initial elongation of the part of the cable above impact, due to the initial tension 
L0  unstrained length of the cable 
ε0  initial strain in the cable, due to the initial stress 
l0x  unstrained length of the part of the cable below impact 
l0s  unstrained length of the part of the cable above impact 
M  mass of the vehicle 
ρ  density of the steel 
m  half of the mass of the cable concentrated in the point of the impact 
mx  mass concentrated in the bottom node 
ms  mass concentrated in the top node 
v  velocity of the vehicle 
l'x  deformed length of the part of the cable below impact 
l's  deformed length of the part of the cable above impact 
ωx, ωs, θx, θs angles formed by the cable in the deformed shape 
h  height of the triangle formed by the cable in the deformed shape 
u  maximum displacement of the cable in the point of the impact 
T  tension in the cable after the impact 
Tmax  tension in the cable after the impact 
Δε⸱L0, ΔL increment in elongation of the cable after the impact 
εyk⸱L0  yielding elongation of the cable 
εuk⸱L0  ultimate elongation of the cable 
ε⸱L0  maximum elongation of the cable after the impact 
fpo.1k⸱A  yielding tension of the cable 
fptk⸱A  ultimate tension of the cable 
k(p)   deformative constant 
ΔLx  increment in elongation of the part of the cable below the impact 
ΔLs  increment in elongation of the part of the cable above the impact 
c  height of the centre of mass of the vehicle 
v0  initial velocity of the system vehicle + cable 
Δt  fictitious duration of the impact 
ts  time step for the step by step solution 
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s  Lagrangian coordinate along the cable 
t  time 
x  vertical coordinate 
y  horizontal coordinate 
Δx  displacement increment in the vertical direction 
Δy  displacement increment in the horizontal direction 
l0i  strained length of the element 
li  strained length of the element 
vx  velocity in the vertical direction 
vy  velocity in the horizontal direction 
w  index used to define the point of impact 
z  generic variable 
ki(p)  value of the constant for different cables if more than one has to be considered 
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