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ABSTRACT 
 
In the operation of a run-of-river hydropower plant, flow control to ensure a suitable head in the 
forebay is a key issue and is often performed by a regulation system combining a level sensor, a 
controller and a downstream valve. The stability assessment of this system is performed to avoid 
filling or emptying of the upstream tank. In the past, stability assessment was performed by 
analytical means but neglecting the transients in the conduits, the uncertainties of the sensor, the 
delays in the PLC, the finite velocity downstream valve and the backlash in mechanical parts. 
However, these mechanisms are real-life phenomena and assessing stability considering them 
has gained attention nowadays. For this purpose, a stability assessment is here performed on a 
hydropower plant including these mechanisms. The analysis is performed using numerical 
simulations where the behaviour of the plant is reproduced and then the oscillations of the level 
in the forebay are studied to determine stability. The obtained results include the analysis of the 
effect of each mechanism on the stability of the system, the effects of the chosen stability criteria 
and stability curves showing when a system is stable under certain combinations of variables of 
the system. 
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1. INTRODUCTION 
 
Hydropower has been present in human history for a long time, dating from the ancient 
civilisation to modern times, and today represents one of the most important alternatives facing 
the climate change and other social issues in the world (international hydropower association 
[iha], 2019). Hydropower has been developed widely in form of big dams, representing even the 
largest source of renewable energy in the world, but, though this type of hydropower has been 
implemented in many countries in the world, its costs of construction and operation along with 
the environmental and social impact has led to the development of small hydropower in the form 
of Run-of-river (ROR) hydropower plants (Farris & Helston, 2017; Nunez, 2019). ROR 
hydropower plants work diverting only some discharge from a flowing river, maintaining a head 
in a forebay (upstream tank) and then conveying water by head difference at a downstream 
turbine where electric power is produced (international hydropower association [iha], 2019). The 
key difference between ROR hydropower plants and big dams is that in the former, the upstream 
tank is not intended for large water volume storage but only to ensure a suitable head in order to 
maintain a regular electricity production. 
 
Following this idea, the challenge that arises when designing and operating a ROR hydropower 
plant is thus that, since water storage is not the main scope of these systems, a level regulation 
needs to be done in order to maintain a suitable head in the forebay. Fluctuations of the level in 
the forebay may occur randomly due to river discharge variations, instrumental errors and other 
effects, therefore, due to these fluctuations, the level in the forebay is controlled to avoid 
emptying or filling because in the former case, air entering could occur, causing cavitation 
phenomena and problems in the restarting of the plant and in the latter, water could be wasted 
(Vesipa & Fellini, 2019). This control is done by varying the opening of the turbine, but, as 
fluctuations in the forebay level may occur randomly and continuously throughout time, an 
automatic control system of the level in the forebay and the turbine opening is used. 
 
A usual automatic control system of a hydropower plant integrates a tank level sensor in the 
forebay, a PLC or computer that performs the desired algorithms and a downstream valve (Vesipa 
& Fellini, 2019). The PLC may have different configurations but one that has been used in this 
field is the PI Controller where the level in the forebay is continuously monitored, compared with 
the reference or target value and then adjusted via the modification in the downstream valve. The 
PI Controller parameters need to be tuned up to fit the hydropower geometry and hydraulic 
requirements of the plant to maintain the suitable head and to avoid large deviations (Jiménez & 
Chaudhry, 1992). A controller that can restore or keep the reference value head against the 
possible disturbances is called a “stable” system whereas a control system where equilibrium is 
never restored is called “unstable”. The stability assessment is thus the core task in the tuning of 
the controller and the fate of the disturbances need to be determined to fine the optimum 
controller parameters (Vesipa & Fellini, 2019). The stability assessment may be performed 
through adequate modelling of the plant where a set of equations is stated, and a stability criterion 
is then applied to determine stability. 
 
In the past, a stability assessment approach that was used included a set of dimensionless 
governing equations as a function of time and stability based on the Routh-Hurwitz criterion 
(Jiménez & Chaudhry, 1992). However, when this approach has been used, a number of 
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mechanisms have been neglected such as the hydraulic transients, the uncertainties in the 
measure, delays between the sensor, the PLC and the valve, the finite valve velocity and the 
backlash between mechanical parts of the valve. Thus, the purpose of this paper is to propose a 
stability assessment including all these mechanisms, discussing the effects of each of them and 
the stability criteria. 
 
In this framework, this paper is organized as follows, first a detailed description of the problem 
and the variables involved is presented, then the equations and methods through which the 
behaviour of the system is modelled  is presented followed by the numerical methods to solve 
this equations. Finally, the results and a discussion are exposed along with a study case that 
helped to prove the effectiveness of the methods that were proposed. 

2. PROBLEM STATEMENT 
 

2.1. Typical Run-of-River Hydropower Plant 
 
A typical ROR hydropower plant provided with a surge tank as the one shown in Figure 2.1 is 
considered. From the hydraulic point of view this plant is divided in two major group of 
components: hydraulic components and regulation system. It is important to study both in detail. 
 

 
Figure 2.1 - Typical ROR Hydropower plant (with surge tank) adapted from Chaudhry (1979) 

 
2.1.1. Hydraulic Components and working scheme 

 
The hydraulic components in this document are defined as the components that are necessary to 
run the plant from the hydraulically, this means that the electric components or other structural 
components that make up the plant are not taken into account. As shown in Figure 2.1 it is 
considered 
 

- The forebay or upstream reservoir 
- The head-race tunnel 
- The penstock 
- The surge tank 
- The turbine 
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The forebay or upstream reservoir is the component of the system that guarantees a low storage 
of water and a suitable head on the system. It is characterized by Af = Surface area of the forebay, 
Hf (t)= Theorical head in the forebay, Hfm (t)= Head in the forebay considering uncertainties in 
the measure, Hf,measure = measured head in the forebay, taken every tm seconds, Htarget = reference 
or optimum forebay head and Qin (t)= Flowrate entering the forebay coming from the river. 
Water is conveyed from the forebay to the turbine through a long tunnel which carries the water 
with a small slope and low pressure to a point in which a greater slope is going to be found and 
a penstock will carry the water at high pressure to the turbine. The tunnel is characterized by 
hydraulic diameter Dh,t, cross-section area At, length Lt, equivalent roughness εt, lining Ypung 
Modulus E and surrounding rock rigidity modulus ER. The hydraulic diameter is defined by 
(White, 2011) 
 

𝐷ℎ,𝑡 =
4𝐴𝑡
𝑃𝑡

 

 
where Pt = wetted perimeter. If the tunnel is circular the hydraulic diameter coincides with the 
diameter of the circular tunnel. The penstock is a steel pipe characterized by diameter Dp, Length 
Lp, equivalent roughness εp, wall thickness e, wall’s Young Modulus E and wall’s Poisson’s ratio 

μ. 
From the hydraulic point of view, the turbine works as a control valve that is opened or closed 
when the level in the forebay Hf increases or decreases to control the discharge that comes in. In 
this sense, the characteristics of interest of the turbine are the valve discharge Qv, the valve area 
Av, coefficient of discharge cv, and maximum closing/opening velocity vv,max. 
The surge tank is a component of the ROR hydropower plant whose task is to reduce or mitigate 
the overpressures developing in the tunnel following a flow change and is characterized by 
surface area As and head Hs(t). 
 

2.1.2. Regulation System 
 
The regulation system of the hydropower plant is the component that links the discharge coming 
from the forebay and the discharge in the valve to keep the level in the forebay at Htarget. The 
regulation system integrates: 
 

▪ a level sensor in the forebay 
▪ a PLC or computer 
▪ the opening/closure mechanism of the turbine 

 
The regulation system is an automatic control system that works continuously in time following 
these operations: 
 

1. A level sensor measures the level Hf,measure in the forebay 
2. The sensor sends the measured value Hf,measure to the computer and is compared with the 

desired level Htarget 
3. Through an algorithm, the computer decides the next position of the actuator in order to 

change the opening of the turbine 
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4. The desired position is then sent to the actuator 
5. The actuator performs the mechanical operation to adjust the turbine opening 

 
Different algorithms may be used to transform Hf (input signal) to the next turbine opening Av 
(output signal). In this document the PI Controller is used (Jiménez & Chaudhry, 1992) 
 
Opening/closure mechanism 
 
The opening/closure turbine system depends on the type of turbine, for Pelton and Francis 
turbines, for example, the opening systems are a needle nozzle valves and guide vanes, 
respectively. Since the opening/closure mechanism of the turbine works as a valve, in this 
document, unless specified, this mechanism is called Downstream Valve (DS Valve) 
 
In this document it is going to be referred as flow control system to the whole regulation system 
of the plant. 
 

2.2. Assessment of the Flow Control System Stability 
 
The aim of flow control system is to keep a constant level Htarget in the forebay by adjusting the 
DS valve (opening/closure of the turbine). If the flow that supplies the forebay Qin is constant 
and the valve opening, Av, is such that Qv(Av)=Qin, the level of the forebay Hf is kept constant 
and no valve adjustment is required, however, this ideal configuration of equilibrium is very 
uncommon in real systems due to variations in the river discharge and other mechanisms. The 
result of these processes is that the flow discharged by the DS valve is different from the flow 
entering the forebay, thus, since Qv≠Qin, the level of the forebay deviates from is target value 
Htarget and adjustments of the valve opening must be performed. 
The deviations of the valve opening from its equilibrium configuration are called “disturbances” 

and the assessment of the fate of these disturbances (i.e., the stability of the dynamical system) 
is a key point. If the characteristics of the control system are such that the disturbances are 
damped (i.e., after a transient time the equilibrium configuration is restored), the dynamical 
system is defined as “stable”. On the other hand, if the disturbances amplify (e.g. flow or level 

oscillations arise), the dynamical system is defined as unstable (Vesipa & Fellini, 2019). 
 
To determine the stability of a dynamical system there is no exclusive way and there may be 
different approaches. The approach to be used depends on the set of governing equations, that is, 
on the level of detail extracted from the plant and ultimately, on the number of variables involved. 
When adequate simplifications are considered, namely, if some variables are neglected in the 
analysis, the approach to determine stability may be simpler. 
 
Jiménez & Chaudhry (1992) proposed a flow control system that uses a PI Controller and works 
neglecting some phenomena that take place in this kind of plants: 
 

▪ No transients in the conduits 
▪ No measuring instrument issues 

• No instrumental uncertainties 
• Instantaneous measure 



11 
 

▪ No delays 
▪ Instantaneous valve 
▪ No backlash 

 
This flow control system has been widely used in the past and its key characteristic is that stability 
may be assessed linearizing the set of governing equations and using the Routh-Hurwitz criterion, 
thus, leading to determination of the dynamic stability by analytical means. Although this 
approach has given reasonable results and has been tested by numerical simulations, since the 
exposed phenomena are real-life issues in hydropower plants, the question whether the 
assumption to neglect them is relevant or not arises, and if considering these variables affect the 
stability of the control system. Thus, in this document the assessment of flow control system 
stability was performed considering the presence of these phenomena, for this reason they are 
exposed in more detail. 
 

2.2.1. New Mechanisms included in the present study 
 
Hydraulic transients 
 
Hydraulic transient is the term referred to the unsteady flow caused by flow changes such as 
opening/closing of the valve, starting of a pump, among others. Following a flow change there 
is a pressure wave that travels with finite velocity along the conduits, therefore flow rate 
variations do not take place immediately but require finite times to be effective (Chaudhry, 1979). 
Mathematically speaking, the consideration of hydraulic transients in the conduits means that 
flowrate and head variations are considered as functions of both time and distance. In the present 
study, hydraulic transients in both the penstock and the head-race tunnel are considered 
 
Uncertainties 
 
In the field of metrology, it is stated that when a variable x is measured, its true value xtrue is never 
known, instead, depending on the measuring instrument, it is only possible to determine a 
measured value xmeasured with an interval Δx in which xtrue lies with a given probability (Freedman 
& Young, 2012). The control of ROR hydropower requires continuous measure of the water level 
in the forebay, thus, following the ideas stated by metrology, it is always associated to a degree 
of uncertainty. 
 
Instantaneous measure 
 
Instantaneous measure means that it was considered that the instrument did the measure in 
continuous time. However, no measuring instrument can do this, and it always take finite times 
to take a measure. 
 
Delays 
 
Delays in this context are understood as the interval of time taken by the control system from the 
measure of the water level in the forebay to the activation of the actuator, or in other words, the 
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time to perform the steps 1-4 described in the automation of the control. This time interval is 
referred as delay by the fact that the control operations are not performed immediately. 
 
Non-instantaneous valve 
 
An instantaneous valve means that any opening Av set by the computer may be achieved  
This is not always true because the valve has a finite velocity and the Av is requested during a 
finite time interval. If the Av is big enough it may never be achieved by the valve. 
 
Backlash 
 
Backlash (Figure 2.2.)  is a clearance or loss of motion in a mechanism due to gaps between the 
parts or insufficient torque (friction) (Wang et al., 2019). Considering backlash in control systems 
is an important issue because if it occurs, it is not certain that an operation requested by the 
controller will be actually achieved. 
 

 
Figure 2.2 - Backlash in mechanical parts adapted from Liu et al. (2017) 

 
Numerical Simulations 
 
The consequence of considering flow transients in the conduits is that no analytical approach has 
been developed to assess stability, however, in fluid mechanics and hydraulic engineering, the 
stability properties of a dynamical system can be assessed by numerical simulations. To perform 
these numerical simulations the characteristics and the governing equations are modelled and 
implemented in a computer, then the equations are solved, the behaviour of a hydropower plant 
is reproduced and time series of the forebay level and the valve opening are obtained to assess 
the stability of the control system. 
 
Numerical simulations were thus adopted in this study to assess the stability of the water-level 
PI controller considering the new phenomena exposed. In detail, the Palomo Hydroelectric 
Project in Costa Rica was considered (Jiménez & Chaudhry, 1992). The system was set to be at 
equilibrium position at the beginning working at the steady-state condition and then subjected to 
disturbances caused by the instrumental uncertainties, delays, non-instant valve effects and 
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backlashes, and analysed considering the hydraulic transients in the conduits. Moreover, 
different parameters of the PI controller were varied to study its stability. 
 
Time-series of the forebay level and the DS valve opening were analysed to determine whether 
the PI-controller was stable or not. The stability of the system was determined after the simulation 
evaluating if the oscillations in Hf(t) tended to damp to Htarget in respect to time. Since for every 
numerical simulation stability depends on the disturbances considered and the parameters of the 
PI controller, stability limit curves were produced and analysed considering combinations of 
different instrumental uncertainties, measuring times, delay times, non-instant valve effects, 
backlash effects and parameters of the PI controller. The stability limit curves show for given 
values of instrument uncertainty, measuring times, delays, non-instant valve parameters, 
backlash parameters and PI Controller parameters, the limit values of the PI controller parameters 
for which any point inside the curve will represent a stable case and any point outside it an 
unstable one. An additional analysis on the mean and the standard deviation of the time-series 
was done to control the centre and the amplitude of the oscillations.  

3. METHODS 
 
To perform a stability assessment of the flow control system the following two tasks need to be 
done, first, it is necessary to state the governing equations that describe the operation of the 
dynamic system in a mathematical way. To this scope, control variables that describe this 
operation are defined relating them to the plant characteristics in form of equations based on 
physical laws. This process is called the construction of the mathematical model of the flow 
control system. Then, the second task is to define the mathematical method that determines 
whether the dynamic system is stable or not. 
 

3.1. Mathematical Model of the dynamic system 
 
To state the set of equations that describe the system let us first consider the general scheme of 
the ROR hydropower plant presented in Figure 2.1. The following notation is used: t is the time, 
x is the longitudinal coordinate and Q(x,t) and  H(x,t) are the space-time dependent discharge 
and piezometric head, respectively. The longitudinal coordinate is taken locally for each conduit, 
therefore xt and xp are the local longitudinal coordinates of the tunnel and the penstock, 
respectively. Using this notation, xt=0 represents the entrance in the tunnel, xt=Lt and xp=0 
represent the node at which the tunnel, the penstock and the surge tank converge and, xp=Lp 
represent the linking node between the penstock and the turbine. 
- 
Control Variables 
 
The dynamics of a ROR hydropower plan are controlled by the level in the forebay Hf(t), the 
level in the surge tank Hs(t) and the valve opening Av(t). The water level in the forebay varies 
over the time according to the mass balance equation 
 

𝑑𝐻𝑓(𝑡)

𝑑𝑡
=
𝑄𝑖𝑛(𝑡) − 𝑄𝑡(𝑡, 𝑥𝑡 = 0)

𝐴𝑓
 (3.1) 
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where Hf = head in the forebay, Qt(t,xt=0) = the discharge at the entrance of the tunnel, Qin = the 
discharge entering from the river and Af = Surface area of the forebay. The level in the surge 
tank is described by 
 

𝑑𝐻𝑠(𝑡)

𝑑𝑡
=
1

𝐴𝑠
𝑄𝑠(𝑡) (3.2) 

 
in which Hs = water level in the surge tank and Qs = flowrate in the surge tank, taken positive if 
flow is entering the surge tank, and given by 

𝑄𝑠(𝑡) = 𝑄𝑡(𝑡, 𝑥𝑡 = 𝐿𝑡) − 𝑄𝑝(𝑡, 𝑥𝑝 = 0) (3.3) 

 
The turbine opening Av is regulated by the PI controller. In this type of control, the level in the 
forebay is measured and compared with a reference value, then, if the measured level is different 
to the reference value valve opening is modified using the equations (Jiménez & Chaudhry, 1992) 
 

𝑑𝜏(𝑡)

𝑑𝑡
=
𝐻𝑓𝑚(𝑡) − 𝐻𝑟𝑒𝑓

𝑇𝑖
+ 𝑘

𝑑(𝐻𝑓𝑚(𝑡) − 𝐻𝑟𝑒𝑓)

𝑑𝑡
 (3.4) 

𝜏(𝑡) =
𝐴𝑣(𝑡)

𝐴𝑟𝑒𝑓
 (3.5) 

 
where τ= the ratio between the current valve opening and the steady-state valve opening and 
Href = the reference water level in the forebay which is considered as the steady-state level, 
namely 

𝐻𝑟𝑒𝑓 = 𝐻𝑡𝑎𝑟𝑔𝑒𝑡 = 𝐻𝑓𝑜 (3.6) 

Ti, k are the integral and proportional constants of the PI given by 
 

𝑇𝑖 =
𝐿𝑡  𝑄𝑜𝐻𝑡𝑎𝑟𝑔𝑒𝑡 𝜏𝑜  

𝐾1 𝑔 𝐻𝑠𝑜 𝐴𝑡
 (3.7) 

𝑘 =
𝛼 𝜏0

𝐻𝑡𝑎𝑟𝑔𝑒𝑡 
 (3.8) 

 
in which α and K1 are parameters of the PI controller, g is the gravity acceleration and the 
subscript o means the initial state of the variable 
 
Dynamic and Continuity Equations 
 
The dynamic and the continuity equations are the equations that couple the discharge and the  
piezometric head in the conduits. The dynamic equation is obtained by applying Newton’s 
Second Law of motion to an element of fluid and the continuity equation is obtained by 
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considering mass conservation and deformation in a control volume of a conduit (Chaudhry, 
1979), i.e.,  

𝜕𝑄

𝜕𝑡
+ 𝑔𝐴

𝜕𝐻

𝜕𝑥
+

𝑓

2𝐷𝐴
𝑄|𝑄| = 0 (3.9) 

 

𝑎2

𝑔𝐴

𝜕𝑄

𝜕𝑥
+
𝜕𝐻

𝜕𝑡
= 0 (3.10) 

 
In both equations g = gravity acceleration, D = diameter of the conduit, A = cross-sectional area 
of the conduit,  f = friction factor according to Darcy-Weisbach formula and a = wave speed in 
the conduit. The wave speed a is not unique for all conduits and depends on the fluid and the 
conduit deformation properties and constraints (Chaudhry, 1979). The wave speed formulas of 
the type of conduits considered in this document are (Streeter & Wylie, 1978) 
 
If the conduit is a circular tunnel excavated in rock 

𝑎2 =
𝐾

𝜌 [1 + (2
𝐾
𝐸𝑅
+ (1 + 𝜇))]

 (3.11) 

 
where ρ = density of the fluid, K = bulk modulus of elasticity of the fluid, ER = Modulus of 
rigidity of the tunnel material, μ = Poisson’s ration of the tunnel material.  
 
If the conduit is a steel pipe 

𝑎2 =
𝐾

𝜌 [1 + (
𝐾𝐷
𝑒𝐸 ) 𝑐1]

 (3.12) 

 
where ρ = density of the fluid, D = diameter of the pipe, K = bulk modulus of elasticity of the 
fluid, E = Young modulus of elasticity of the conduit material, e = conduit wall thickness and c1 

is a coefficient that depends on the support conditions of the conduit. In the cases considered 
c1=1 if pipe anchored with expansion joints throughout and c1=2Ee/(ERD+2Ee) for steel lined 
circular tunnels. 
 
Boundary Conditions 
 
Since the equations involve both time and space dependence, boundary and initial conditions 
must be stated. The boundary conditions depend on the physical constrictions found in the 
hydropower plant. Boundary conditions for forebay, surge tank and downstream valve are here 
presented (Chaudhry, 1979): 
 
Forebay 
 
As a result of the flow entering from the forebay, the discharge Qt(t=0, xt=0) and the head Qt(t=0, 
xt=0)  at the entrance of the tunnel may be computed coupling equation (3.1) with the following 
equation 
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𝐻𝑡(𝑡, 𝑥𝑡 = 0) = 𝐻𝑓(𝑡) − (1 + 𝑘𝑒)
(𝑄𝑡(𝑡, 𝑥𝑡 = 0))2

2𝑔𝐴𝑡
2  (3.13) 

 
ke = coefficient of entrance loss 
 
Surge tank 
 
The losses at the junction are neglected, so the head in the node in which the tunnel, the penstock 
and the surge tank converge is 

𝐻𝑡(𝑡, 𝑥𝑡 = 𝐿𝑡) = 𝐻𝑝(𝑡, 𝑥𝑝 = 0) = 𝐻𝑠(𝑡) (3.14) 

 
Downstream valve 
 
Considering the datum at the free surface of the tailrace (approximately the level of the turbine), 
the discharge flowing through the needle valve is described by the equation 

𝑄𝑣(𝑡) = 𝐴𝑣(𝑡)𝑐𝑣√2𝑔𝐻𝑣(𝑡) (3.15) 

 
In which the head at the end of the penstock is taken as the head at the valve that is                          
Hv(t) = Hp(t, xp = Lp)  
 
Initial Conditions 
 
The initial conditions are set as the steady-state flow when the level in the forebay is Htarget. The 
initial condition is thus obtained solving the following system of equations 
 

𝐻𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐻𝑡(𝑡 = 0, 𝑥 = 0) = −(1 + 𝑘𝑒)
(𝑄𝑜)

2

2𝑔𝐴𝑡
2 (3.16) 

𝐻𝑡(𝑡 = 0, 𝑥 = 0) − 𝐻𝑡(𝑡 = 0, 𝑥 = 𝐿𝑡) = 𝑓𝑡
𝑙𝑡
𝐷ℎ,𝑡

𝑄𝑜|𝑄𝑜|

2𝑔𝐴𝑡
2  (3.17) 

𝐻𝑡(𝑡 = 0, 𝑥 = 𝐿𝑡) = 𝐻𝑝(𝑡 = 0, 𝑥 = 0) (3.18) 

𝐻𝑝(𝑡 = 0, 𝑥 = 0) − 𝐻𝑣(0) = 𝑓𝑝
𝑙𝑝

𝐷𝑝

𝑄𝑜|𝑄𝑜|

2𝑔𝐴𝑝
2  (3.19) 

𝑄𝑜 = 𝐴𝑣(𝑡 = 0)𝑐𝑣√2𝑔𝐻𝑣(0) 
(3.20) 

Where the subscript o represents a steady-state condition. The system is solved for Ht(t=0, xt=0), 
Ht(t=0,xt=Lt), Hs(t=0,x=0), Av(t=0) and Hv(t=0) 
 
 



17 
 

3.1.1. New Mechanisms 
 
Uncertainty of the measure 
 
The uncertainty in a measure may be accounted in the mathematical model by considering the 
measured value as a random variable X=Hmeasure described by a certain probability distribution 
function. In the present study, the Standard Normal Distribution is used described by the 
probability density function (Devore, 2012) 
 

φ(𝑍) =
𝑒−

𝑍2

2

√2𝜋
 (3.21) 

 
 
with standardized normal random variable  
 

𝑍 =
𝐻𝑓,𝑚𝑒𝑎𝑠𝑢𝑟𝑒 − 𝐻𝑓

𝜎1
 (3.22) 

 
 
where 𝜎1= standard deviation of the distribution. 
 
Non-instantaneous measure 
 
The finite time that a measuring instrument takes to perform a measure is considered setting a 
measuring time tmeasure, i.e., the level in the forebay is supposed to be measured every tmeasure 
seconds. 
 
Delays 
 
The delay in the system is considered by setting a delay time tdelay, therefore, the operation 
performed by the actuator is supposed to be carried out tdelay seconds after the measure in the 
forebay. 
 
Non-instant valve 
 
To acknowledge the presence of a non-instant valve it is considered that the valve has a finite 
maximum velocity vv,max. In consequence, the maximum operation that the valve can perform for 
a given time t is 

(
𝑑𝜏(𝑡)

𝑑𝑡
)
𝑚𝑎𝑥

= 𝑣𝑣𝑎𝑙𝑣𝑒,𝑚𝑎𝑥 (3.23) 

 
 
The dτ that can be arranged due to the non-instant-valve effects, denoted by dτeff is 
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𝑑𝜏𝑒𝑓𝑓(𝑡)

𝑑𝑡
=

{
 

 
𝑑𝜏(𝑡)

𝑑𝑡
;      𝑖𝑓 

𝑑𝜏(𝑡)

𝑑𝑡
< (

𝑑𝜏(𝑡)

𝑑𝑡
)
𝑚𝑎𝑥

 

(
𝑑𝜏(𝑡)

𝑑𝑡
)
𝑚𝑎𝑥

;      𝑖𝑓 
𝑑𝜏(𝑡)

𝑑𝑡
≥ (

𝑑𝜏(𝑡)

𝑑𝑡
)
𝑚𝑎𝑥

 (3.24) 

 
 
Due to insufficient velocity of the valve, the quantity of dτ that could not be arranged, denoted 
by dτmiss is 
 

𝑑𝜏𝑚𝑖𝑠𝑠(𝑡) =

{
 

 0;        𝑖𝑓   
𝑑𝜏(𝑡)

𝑑𝑡
≤ (

𝑑𝜏(𝑡)

𝑑𝑡
)
𝑚𝑎𝑥

 

𝑑𝜏(𝑡) − 𝑑𝜏𝑒𝑓𝑓(𝑡);       ;      𝑖𝑓   
𝑑𝜏(𝑡)

𝑑𝑡
> (

𝑑𝜏(𝑡)

𝑑𝑡
)
𝑚𝑎𝑥

 (3.25) 

 
Backlash 
 
The gaps are modelled as a percentage of the steady-state area (Norconsult SA, 2016), referring 
to Figure 2.2 this means that 
 

𝑔𝑎𝑝𝑝𝑜𝑠(𝑡) =
𝐴𝑠𝑝𝑎𝑐𝑒 ,𝑜𝑝𝑒𝑛𝑖𝑛𝑔(𝑡)

𝐴𝑣𝑜
 (3.26) 

𝑔𝑎𝑝𝑛𝑒𝑔(𝑡) = −
𝐴𝑠𝑝𝑎𝑐𝑒,   𝑐𝑙𝑜𝑠𝑖𝑛𝑔(𝑡)

𝐴𝑣𝑜
 (3.27) 

 
where Aspace,opening(t)= area of space between mechanical parts in the opening direction,        
gappos(t) = ratio between the area of space between mechanical parts in the opening direction and 
the steady-state area of the valve, Aspace,closing(t)= area of space between mechanical parts in the 
closing direction and gapneg(t) = ratio between the area of space between mechanical parts in the 
closing direction and the steady-state area of the valve, considered always as a negative quantity. 
The total amount of gap is always given by 

𝑔𝑎𝑝𝑡𝑜𝑡𝑎𝑙 = 𝑔𝑎𝑝𝑝𝑜𝑠(𝑡) + |𝑔𝑎𝑝𝑛𝑒𝑔(𝑡)| (3.28) 

The friction is considered setting a parameter b defined as 

𝑏 = (1 − 𝑓𝑟) (3.29) 

in which b = is a parameter that expresses for each operation what percentage of movement 
between mechanical parts can be effectively performed due to frictional losses and fr = friction 
coefficient between mechanical parts expressed as a percentage of area that cannot be opened or 
closed due to frictional losses. The friction forces are always opposite to the direction of the 
movement. The dτ that can be arranged due to backlash effects, denoted by dτreal is 
 
For opening operations, i.e. dτ is positive 
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𝑑𝜏𝑟𝑒𝑎𝑙(𝑡) = {
0;      𝑑𝜏(𝑡) ≤ 𝑔𝑎𝑝𝑝𝑜𝑠(𝑡)

𝑏 ∙ (𝑑𝜏(𝑡) − 𝑔𝑎𝑝𝑝𝑜𝑠(𝑡)) ;     𝑑𝜏(𝑡) > 𝑔𝑎𝑝𝑝𝑜𝑠(𝑡)
 (3.30) 

 
For closing operations, i.e. dτ is negative 
 

𝑑𝜏𝑟𝑒𝑎𝑙(𝑡) = {
0;      𝑑𝜏(𝑡) ≥ 𝑔𝑎𝑝𝑛𝑒𝑔(𝑡)

𝑏 ∙ (𝑑𝜏(𝑡) − 𝑔𝑎𝑝𝑛𝑒𝑔(𝑡)) ;      𝑑𝜏(𝑡) < 𝑔𝑎𝑝𝑛𝑒𝑔(𝑡)
 (3.31) 

 
For a given time t, the dτreal con be obtained from the graph shown in Figure 3.1 
 
 

 
Figure 3.1 - dτreal obtained at a given time t as a function of dτ, the gaps and b 

 
If the non-instant-valve effects are taken into account, the τ in equations (3.30) and (3.31) must 
be taken as τeff. 
 

3.2. Mathematical model of the stability assessment 
 

3.2.1. The Stability Function, the Stability Criterion, and the Stability Limit 
 
A dynamic system is defined as “stable” if the disturbances tend to damp in time and “unstable” 

if the disturbances amplified or did not converge to a certain value. This definition is rather 
qualitative and the necessity of defining stability in a more mathematical way arises to 
systematically determine it. For this reason, the stability function and the stability criterion are 
here defined. 
 
Let us define mathematically the stability as a Boolean function of the form 
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𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑠𝑦𝑠𝑡𝑒𝑚 = "𝑠𝑡𝑎𝑏𝑙𝑒" 
0, 𝑖𝑓 𝑡ℎ𝑒 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑠𝑦𝑠𝑡𝑒𝑚 = "𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒"

 (3.32) 

 
 
To determine the stability of the flow control system by numerical simulations time-series of 
Hf(t) as shown in Figure 3.2 (a) are obtained. The stability requires the oscillations of Hf(t) to 
damp after a certain transient time tt, in this sense let us define H as 

𝐻 = lim
𝑡→𝑡𝑡

(𝐻𝑓 − 𝐻𝑡𝑎𝑟𝑔𝑒𝑡) (3.33) 

 
The dynamic system will be stable if 

𝐻 = lim
𝑡→𝑡𝑡

(𝐻𝑓 − 𝐻𝑡𝑎𝑟𝑔𝑒𝑡) = 0 (3.34) 

 
To determine whether this condition is satisfied or not, after the time-series of Hf(t) has been 
obtained, the peaks of the oscillations of Hf(t) around Htarget are identified (Figure 3.2 (b)) and 
subjected to an exponential fit  (Figure 3.2 (c)) of the form 

𝑒𝑥𝑝𝑓𝑖𝑡 = 𝑒𝑓 = 𝑎 ∙ 𝑒𝑆𝑡 (3.35) 

 
If S<0 then H tends to 0 and the system is stable because 

lim
𝑡→∞

𝑎 ∙ 𝑒𝑆𝑡 = 0 (3.36) 

 
only if 
 

𝑆 < 0 
 
This behaviour is known as asymptotic stability so stability may be redefined as 

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑎𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑎𝑠 = {
1; 𝑆 < 0 
0; 𝑆 ≥ 0

 (3.37) 

 
or 

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑎𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑎𝑠 = {
1;𝐻 = 0 
0; 𝐻 ≠ 0

 (3.38) 

 
It is important to emphasize that S=0 does not represent asymptotic stability because in this case, 
although the oscillations do not amplify, H does not tend to 0. The condition of S<0 in the 
exponential fit is defined as the stability criterion and is used to determine whether the system is 
stable or not. 
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Figure 3.2 – (a) Evolution of Hf(t) throughout time – (b) Individuation of the peaks of Hf(t) around Htarget – (c) Peaks of Hf(t) 

around Htarget subjected to an exponential fit 

 
Now, to compute S, the time-series of Hf(t) must first be obtained. This time-series are obtained 
after defining a certain number of variables Yi, so S is a function of Yi, that is 

𝑆 = 𝑓(𝑌1, 𝑌2, … , 𝑌𝑛) (3.39) 

 
Where n is the number of variables involved 
 
If the set of variables that need to be defined to find S is called Y these variables may be classified 
into three major subsets (Figure 3.3) 
 

- Set of variables related to the hydraulic components of the plant YP, e.g., the surface area 
of the forebay Af or the length of tunnel Lt 

- Set of variables related to the effects of the mechanisms of the flow control system YFE, 
e.g., the uncertainties effects or the backlash effects 

- Set of variables related to the PI Controller YC. 
 
So 
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𝑆 = 𝑓 (𝑌𝑃1, 𝑌𝑃2, … , 𝑌𝑃𝑛𝑝 , 𝑌𝐹𝐸1, 𝑌𝐹𝐸2, … , 𝑌𝐹𝐸𝑛𝑓𝑒 , 𝑌𝐶1, 𝑌𝐶2, … , 𝑌𝐶𝑛𝑐  ) (3.40) 

 
Where np = number of variables contained in YP, nfe = number of variables contained in YFE and 
nc = number of variables contained in YC.  
 
Each of the variables contained in the set of YFE may be also a function of two subsets of variables 
 

- The set Boolean variables which represent the on or off variables of the mechanisms that 
are taken into consideration yB,M  

- The set of parameters that describe the effects of that mechanism yFE,M 
 
where the subscript M represents the M-th mechanism so that 

𝑌𝐹𝐸,𝑀 = 𝑓1(𝑌𝐵,𝑀, 𝑌𝐹𝐸,𝑀,1, 𝑌𝐹𝐸,𝑀,2, … , 𝑌𝐹𝐸,𝑀,𝑛𝑚) 
(3.41) 

 
in which nm = number of variables contained in YFE,M.  
 
Combining equations (3.40) and (3.41) it is obtained 

𝑆 = 𝑓 (
𝑌𝑃1, 𝑌𝑃2, … , 𝑌𝑃𝑛𝑝 , 𝑌𝐹𝐸,1(𝑌𝐵,1, 𝑌𝐹𝐸,1,1, 𝑌𝐹𝐸,1,2, … , 𝑌𝐹𝐸,1,𝑛𝑚,1), 𝑌𝐹𝐸2(𝑌𝐵,2, 𝑌𝐹𝐸,2,1, 𝑌𝐹𝐸,2,2, … , 𝑌𝐹𝐸,2,𝑛𝑚,2),…

… , 𝑌𝐹𝐸𝑛𝑓𝑒 (𝑌𝐵,𝑛𝑓𝑒 , 𝑌𝐹𝐸,𝑛𝑓𝑒,1, 𝑌𝐹𝐸,𝑛𝑓𝑒,2, … , 𝑌𝐹𝐸,𝑛𝑓𝑒,𝑛𝑚) , 𝑌𝐶1, 𝑌𝐶2, … , 𝑌𝐶𝑛𝑐  
) (3.42) 

 
In which S is defined as the stability function and its form depends on the fitting technique. 
 

 
Figure 3.3 – Set of variables necessary to define the stability function 
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Let us now define as global case any combination of the variables YP,i and YFE (without 
considering YC) and a particular case of a global case as any combination of all the variables YC 

after already defined the variables YP,i and YFE. to determine the stability of a stability function, a 
particular case must be defined, i.e. all the variables Yi may be defined, then time-series must be 
obtained and at last the stability criterion is applied. 
 
Now, it is defined as stability limit for a global case the surface of the stability function where 

𝑆(𝑌𝐶1, 𝑌𝐶2, … , 𝑌𝐶𝑛𝑐) = 0 (3.43) 

 
This surface represents the border between the “stable” and the “unstable” particular cases of a 
global case. 
 

3.2.2. Statistical stability assessment 
 
In addition to the exponential fit of the oscillations of Hf(t) around Htarget it is of interest to 
determine the mean value and the standard deviation of the time-series of Hf(t) and τ(t). This is 
done fundamentally to study the centre and the amplitude of the oscillations. 
 
The mean values 𝐻𝑓̅̅ ̅ and 𝜏̅ and the standard deviations 𝑠𝑑_𝐻𝑓 and 𝑠𝑑_𝜏 of a particular case are 
computed with (Devore, 2012) 
 
 

𝐻𝑓̅̅ ̅ =
1

𝑡𝑡
∫ 𝐻𝑓(𝑡) 𝑑𝑡
𝑡𝑡

0

 (3.44) 

 

𝜏̅ =
1

𝑡𝑡
∫ 𝜏(𝑡) 𝑑𝑡
𝑡𝑡

0

 
(3.45) 

 

 

𝑠𝑑_𝐻𝑓
2 =

1

𝑡𝑡
∫ (𝐻𝑓(𝑡) − 𝐻𝑓̅̅ ̅)

2 𝑑𝑡
𝑡𝑡

0

 (3.46) 

 

𝑠𝑑_𝜏2 =
1

𝑡𝑡
∫ (𝜏(𝑡) − 𝜏̅)2 𝑑𝑡
𝑡𝑡

0

 
(3.47) 
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4. NUMERICAL METHODS 
 
The dynamic and continuity equations have been adopted to describe transient flow in the 
conduits  
 

𝜕𝑄

𝜕𝑡
+ 𝑔𝐴

𝜕𝐻

𝜕𝑥
+

𝑓

2𝐷𝐴
𝑄|𝑄| = 0 (4.1) 

 

𝑎2

𝑔𝐴

𝜕𝑄

𝜕𝑥
+
𝜕𝐻

𝜕𝑡
= 0 

(4.2) 

 

 
are hyperbolic, partial differential equations (PDE). The functions Q(x,t) and H(x,t) that satisfy 
the equations are the solution of the system. Due to the nature of this problem, analytical solutions 
of these equations are impossible to find. Instead, some numerical methods have been developed 
to solve them. The method of the characteristics is here used (Chaudhry, 1979) 
 

4.1. Method of the Characteristics 
 
To apply the method of the characteristics to these equations the following procedure is followed 
 

▪ The equations (a) and (b) are reduced to ordinary differential equations, valid 
along the characteristic lines, and solved by the finite-difference technique. 

▪ A suitable time step Δt and the total simulation time ttotal are chosen. The solutions 
at each time step are indexed with the subscript i. 

▪ The conduits are numbered and are indexed with m. For the plant considered, m=1 
represents the tunnel and m=2 represents the penstock. 

▪ The wave speed am is computed for every conduit 
▪ To guarantee a numerically stable solution a space discretization of Δxm=Δt∙am is 

computed for each conduit. 
▪ Each conduit is divided in n reaches of length Δxm. where n=0 and n=N refer to 

the first and last nodes, respectively. 
▪ The following notation is used 

 
𝑌𝑚,𝑛
𝑖  

 
where Y=the generic variable that is being computed, i = i-th time step, m = m-th conduit and       
n = n-th node 
 

4.1.1. Governing Equations 
 
Following the finite difference scheme, the flowrate and the piezometric head at the m-th  
conduit, at the n-th node at time step i can be calculated as a function of Q and H, at previous 
time step i-1 and at the neighbouring nodes n±1 as 
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𝑄𝑚,𝑛
𝑖 = 0.5 (𝐶𝑝𝑜𝑠 + 𝐶𝑛𝑒𝑔) (4.3) 

 

𝐻𝑚,𝑛
𝑖 = 

0.5 (𝐶𝑝𝑜𝑠 − 𝐶𝑛𝑒𝑔)

𝐶𝑎,𝑚
 

(4.4) 

 

where Cpos and Cneg are the positive and negative characteristics defined as 

𝐶𝑝𝑜𝑠 = 𝑄𝑚,𝑛−1
𝑖−1 +

𝑔𝐴𝑚
𝑎𝑚

𝑄𝑚,𝑛−1
𝑖−1 −

𝑓𝑚∆𝑡

2𝐷𝑚𝐴𝑚
𝑄𝑚,𝑛−1
𝑖−1 |𝑄𝑚,𝑛−1

𝑖−1 | (4.5) 

 

𝐶𝑛𝑒𝑔 = 𝑄𝑚,𝑛+1
𝑖−1 +

𝑔𝐴𝑚
𝑎𝑚

𝑄𝑚,𝑛+1
𝑖−1 −

𝑓𝑚∆𝑡

2𝐷𝑚𝐴𝑚
𝑄𝑚,𝑛+1
𝑖−1 |𝑄𝑚,𝑛+1

𝑖−1 | 
(4.6) 

 

 
and 

𝐶𝑎,𝑚 =
𝑔𝐴𝑚
𝑎𝑚

 

 

(4.7) 

 
The equations shown above may be used to compute the discharge and head for any internal 
point of the m-th pipe, however, special boundary conditions are required to determine the 
discharge and the head at the nodes n=0 and n=N of each m-th conduit. 
 

4.1.2. Boundary Conditions 
 
Boundary condition for upstream tank (forebay) 
 
The time evolution of the water level in the US tank from the i-th to the (i+1)-th time step is 
given by the finite-difference expression of equation (3.1) 
 

𝐻𝑓
𝑖 = 𝐻𝑓

𝑖−1 + (𝑄𝑖𝑛
𝑖−1 − 𝑄𝑚=1,𝑛=0

𝑖−1 )
∆𝑡

𝐴𝑓
 

 

(4.8) 

 
in which 𝑄𝑖𝑛𝑖+1 and 𝑄𝑚=1,𝑛=0𝑖+1  = flows into and out from the forebay at time step i+1, 𝐻𝑓𝑖  is assumed 
to remain constant during each i-th time step and is used to evaluate the head 𝐻𝑚=1,𝑛=0𝑖+1  and the 
discharge 𝑄𝑚=1,𝑛=0𝑖+1  at the initial section of the conduit according to the relation in equation 
(3.13). 
 
Using the finite-difference scheme, this equation is solved together with the negative 
characteristic [Equation (4.6)] and gives the upstream boundary conditions 
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𝑄𝑚=1,𝑛=0
𝑖 =

−1 + √1 + 4𝑘(𝐶𝑛𝑒𝑔 + 𝐶𝑎,𝑚=1𝐻𝑓
𝑖)

2𝑘1
 

(4.9) 

𝐻𝑚=1,𝑛=0
𝑖 =

𝑄𝑚=0,𝑛=0
𝑖 − 𝐶𝑛𝑒𝑔

𝐶𝑎,𝑚=1
 (4.10) 

 
where 
 

𝑘1 =
𝐶𝑎,𝑚(1 + 𝑘)

(2𝑔𝐴𝑚=1
2)

 

 

(4.11) 

 
k=coefficient of entrance loss 
 
Boundary condition for surge tank 
 
In the case of the surge tank, the boundary conditions are given combining the time variations of 
the level in the surge tank and the characteristic equations of the adjacent pipes. To start, the 
losses at the junction are neglected, therefore at any time 
 

𝐻𝑚=1,𝑛=𝑁
𝑖 = 𝐻𝑚=2,𝑛=0

𝑖 = 𝐻𝑠
𝑖 

 

(4.12) 

 
The flowrates at the final and initial section of the adjacent pipes are given by their characteristic 
equations 

𝑄𝑚=1,𝑛=𝑁
𝑖 = 𝐶𝑝𝑜𝑠 − 𝐶𝑎,𝑚=1 𝐻𝑚=1,𝑛=𝑁

𝑖  (4.13) 

𝑄𝑚=2,𝑛=0
𝑖 = 𝐶𝑛𝑒𝑔 − 𝐶𝑎,𝑚=2 𝐻𝑚=2,𝑛=0

𝑖  (4.14) 

 
The flowrate in the surge tank at the end of the time step is given by 
 

𝑄𝑠
𝑖 = (𝐻𝑠

𝑖 − 𝐻𝑠
𝑖−1) (

2𝐴𝑠
∆𝑡
) − 𝑄𝑠

𝑖−1𝐻𝑚=1,𝑛=𝑁
𝑖 = 𝐻𝑚=2,𝑛=0

𝑖 = 𝐻𝑠
𝑖 

 

(4.15) 

 
 
Flow control with new mechanism and boundary condition for downstream valve 
 
The boundary condition for the downstream valve depends on the opening set by the PI 
Controller at each time step i, therefore it is first presented how the opening of the valve is 
computed by the controller and then the boundary condition of the valve. The flow control of the 
system is carried out varying the opening of the valve using equation (3.4) in a finite-difference 
form. 
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∆𝜏𝑖 = ((
𝐻𝑓𝑚
𝑖 − 𝐻𝑡𝑎𝑟𝑔𝑒𝑡

𝑇𝑖
) + (𝑘((𝐻𝑓𝑚

𝑖 − 𝐻𝑡𝑎𝑟𝑔𝑒𝑡) − (𝐻𝑓𝑚
𝑖−1 − 𝐻𝑡𝑎𝑟𝑔𝑒𝑡)))) ∗ ∆𝑡 (4.16) 

 
However, to account for uncertainties, delays, non-instant-valve and backlashes this equation 
may take several forms. In the first place, the measured forebay water level 𝐻𝑓𝑚(𝑡) in the finite-
difference scheme takes the form of 𝐻𝑓𝑚𝑖 . As shown in Figure 4.1 (a) to determine 𝐻𝑓𝑚𝑖  a level 
measure Hmeasure is simulated to be taken every tmeasure seconds where tmeasure>Δt and the index j 
is used. The number of time intervals Δt to take a measure is 
 

𝑟 =
𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒
∆𝑡

 (4.17) 

 
This means that a measure is taken every time that  
 

𝑖 = 𝑛𝑚𝑟       𝑤𝑖𝑡ℎ  𝑛𝑚 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (4.18) 

 
 
To model the behaviour of 𝐻𝑓𝑚𝑖    between each measure a filter is used with the form of 
 

1 − 𝑒
−(
𝑡𝑖−𝑡

∗
𝑗

𝑇𝑓
)
 

(4.19) 

 
where ti = current time step, t*j= elapsed time when the j-th measure has been taken and Tf= 
parameter of the filter. Thus, 𝐻𝑓𝑚𝑖   is described by the following equation 
 

𝐻𝑓𝑚
𝑖 = 𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒

𝑗−1
+ ∆𝐻 ∗ (1 − 𝑓 ∙ 𝑒

−(
𝑡𝑖−𝑡

∗
𝑗

𝑇𝑓
)
)   𝑓𝑜𝑟 𝑡𝑗

∗ < 𝑡𝑖 < 𝑡𝑗+1
∗ (4.20) 

 
where 
 

∆𝐻 = 𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒
𝑗

− 𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒
𝑗−1  (4.21) 

 
The variable f in equation (4.20) allows to decide whether the signal filtering is used (f=1) or not 
(f=0). If the filter is not used, then 
 

𝐻𝑓𝑚
𝑖 = 𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒

𝑗
  𝑓𝑜𝑟 𝑡𝑗

∗ < 𝑡𝑖 < 𝑡𝑗+1
∗ (4.22) 

 
This means that the measured water level is considered constant until the next measure. Every r 
time intervals the measured level 𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒

𝑗  is computed with the expression 
 

𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒
𝑗

= 𝐻𝑓
𝑖 + (𝜎 ∗ 𝑟𝑎𝑛𝑑) (4.23) 
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where 𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒
𝑗  = measured value taken by the sensor at time i, 𝐻𝑓𝑖  = theoretical value in the 

forebay at time i, σ = instrumental uncertainty (precision)  and rand is a casual number extracted 
from the standard normal distribution (equation (3.21)) . If the delays are considered, the flow 
control is performed with a delay of tdelay seconds or s time intervals after 𝐻𝑓𝑚,𝑖 has been 
computed (Figure 4.1 (b)) 
 

𝑠 =
𝑡𝑑𝑒𝑙𝑎𝑦

∆𝑡
 (4.24) 

 

 
Figure 4.1 – (a) Hf in the finite difference scheme (without delays) – (b) Hf in the finite difference scheme (with delays) 

The general equation of the PI Controller with delays and uncertainties included is 
 

∆𝜏𝑖 = ((
𝐻𝑓𝑚
𝑖−𝑠 −𝐻𝑡𝑎𝑟𝑔𝑒𝑡

𝑇𝑖
) + (𝑘((𝐻𝑓𝑚

𝑖−𝑠 −𝐻𝑡𝑎𝑟𝑔𝑒𝑡) − (𝐻𝑓𝑚
𝑖−𝑠−1 −𝐻𝑡𝑎𝑟𝑔𝑒𝑡)))) ∗ ∆𝑡 (4.25) 

 
- If no delays are considered, then s=0 
- If no measurement is performed 

 
𝐻𝑓𝑚
𝑖 = 𝐻𝑓

𝑖  (4.26) 

 
That is, the level in the forebay is known from the mass balance equation (4.8) 
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- The usage of filter is considered in equation (4.20) 
 
To account for the effect of the non-instant-valve in the flow control then, equation (3.23) is used 
in the finite-difference form, the maximum operation ∆𝜏𝑚𝑎𝑥 that can be achieved during time 
interval Δt is 

∆𝜏𝑚𝑎𝑥 = 𝑣𝑣𝑎𝑙𝑣𝑒,𝑚𝑎𝑥 ∙ ∆𝑡 (4.27) 

 
Therefore, it could be supposed that 
 

∆𝜏𝑒𝑓𝑓
𝑖 = {

∆𝜏𝑖;                     |∆𝜏𝑖| < ∆𝜏𝑚𝑎𝑥

𝜏𝑚𝑎𝑥 ∙ 𝑠𝑖𝑔𝑛(∆𝜏
𝑖);                 |∆𝜏𝑖| > ∆𝜏𝑚𝑎𝑥

 (4.28) 

However, this is not the situation. Instead, for the computation of ∆𝜏𝑒𝑓𝑓𝑖  the following analysis is 
made: for each time step i the ∆𝜏𝑒𝑓𝑓𝑖   depends on the consideration of the measurements, the 
delays and especially on the filter usage. Let us consider a case with no delays and redefine 
equation (4.25) as 

∆𝜏𝑖 = ((
𝐸𝑖

𝑇𝑖
) + (𝑘 𝑑𝐸𝑖)) ∗ ∆𝑡 (4.29) 

where 

𝐸𝑖 = 𝐻𝑓𝑚
𝑖 − 𝐻𝑡𝑎𝑟𝑔𝑒𝑡 (4.30) 

𝑑𝐸𝑖 = ((𝐻𝑓𝑚
𝑖 − 𝐻𝑡𝑎𝑟𝑔𝑒𝑡) − (𝐻𝑓𝑚

𝑖−1 −𝐻𝑡𝑎𝑟𝑔𝑒𝑡)) (4.31) 

 
From equations (4.30) and (4.31)  and according to equation (4.20), the form of Hfm depends on 
the filter usage and it is possible to say that (Figure 4.2) 
 

𝐻𝑓𝑚
𝑖−1  ≠ 𝐻𝑓𝑚

𝑖          𝑓𝑜𝑟 𝑡𝑗
∗ < 𝑡𝑖 < 𝑡𝑗+1

∗ ;    𝑖𝑓   𝑓 = 1 (4.32) 

𝐻𝑓𝑚
𝑖−1 = 𝐻𝑓𝑚

𝑖           𝑓𝑜𝑟 𝑡𝑗
∗ < 𝑡𝑖 < 𝑡𝑗+1

∗;    𝑖𝑓   𝑓 = 0 (4.33) 

 

 
Figure 4.2 – Hfm(t) modelled with and without filter 
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When a filter is used then both 𝐸𝑖 and  𝑑𝐸𝑖 is considered in the computation of ∆𝜏𝑖 and therefore 
∆𝜏𝑖 is in general different to 0. However, as shown in Figure 4.3 when the filter is not considered 
𝑑𝐸𝑖 is only considered when a new measure is taken [equation (4.18)] because only it this time 
step that equation  

𝐻𝑓𝑚
𝑖−1  ≠ 𝐻𝑓𝑚

𝑖  (4.34) 

for the successive time steps 

𝐻𝑓𝑚
𝑖−1 = 𝐻𝑓𝑚

𝑖 = 𝐻𝑗        𝑓𝑜𝑟 𝑡𝑗
∗ < 𝑡𝑖 < 𝑡𝑗+1

∗ (4.35) 

and therefore 
 

𝑑𝐸𝑖 = ((𝐻𝑗 −𝐻𝑡𝑎𝑟𝑔𝑒𝑡) − (𝐻
𝑗 − 𝐻𝑡𝑎𝑟𝑔𝑒𝑡)) (4.36) 

𝑑𝐸𝑖 = 0 (4.37) 

Thus only 𝐸𝑖 is used in the computation of ∆𝜏𝑖. In this research it is concerned on the stability of 
the flow control system and therefore variations of the forebay level are expected to be close to 
the target value, thus in a range of some centimetres, therefore 𝐸𝑖 is often little and has little 
impact in the computation of ∆𝜏𝑖 compared to that of 𝑑𝐸𝑖. In consequence when no filter is used 
(Figure 4.3) 

∆𝜏𝑖 ≠ 0     𝑖𝑓  𝑖 = 𝑛𝑚𝑟       𝑤𝑖𝑡ℎ  𝑛𝑚 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟   (4.38) 

∆𝜏𝑖 ≈ 0    𝑖𝑓  𝑖 ≠ 𝑛𝑚𝑟       𝑤𝑖𝑡ℎ  𝑛𝑚 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟    (4.39) 

 
 

 
Figure 4.3 – Computation of Δτ when a filter is not used 
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Now, the consequence of this situation is that if to account for non-instant-valve effects the 
equation (4.28) was and it happened that 
 

|∆𝜏𝑖| > ∆𝜏𝑚𝑎𝑥 
 
when the measure has just been taken then 
 

∆𝜏𝑒𝑓𝑓
𝑖 = ∆𝜏𝑚𝑎𝑥 ∙ 𝑠𝑖𝑔𝑛(∆𝜏

𝑖) 
 
and then for the other time intervals 
 

∆𝜏𝑒𝑓𝑓
𝑖 = 0 

 
As shown in Figure 4.4 
 

 
Figure 4.4 – Comparison between the computation of Δτ and  Δτeff  when a filter is not used 

The consequence is that the valve could not arrange the desired operation when the measure is 
taken and, in addition, it would not perform any operation until the next measure.  
 
To take advantage that however the level in the forebay is supposed to be constant until the next 
measure is taken then if filter is not used the ∆𝜏𝑒𝑓𝑓𝑖  is determined as follows (Figure 4.5).  
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If a measure has just been taken that is 
 

𝑖 = 𝑛𝑚𝑟       𝑤𝑖𝑡ℎ  𝑛𝑚 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 
 

∆𝜏𝑒𝑓𝑓
𝑖 = {

∆𝜏𝑖;                     |∆𝜏𝑖| < ∆𝜏𝑚𝑎𝑥

𝜏𝑚𝑎𝑥 ∙ 𝑠𝑖𝑔𝑛(∆𝜏
𝑖);                 |∆𝜏𝑖| ≥ ∆𝜏𝑚𝑎𝑥

 (4.40) 

 

∆𝜏𝑚𝑖𝑠𝑠
𝑖 = {

0;                    |∆𝜏𝑖| < ∆𝜏𝑚𝑎𝑥

|∆𝜏𝑖| − ∆𝜏𝑚𝑎𝑥;                  |∆𝜏
𝑖| ≥ ∆𝜏𝑚𝑎𝑥

 (4.41) 

 
after the measure, that is 
 

𝑖 ≠ 𝑛𝑚𝑟       𝑤𝑖𝑡ℎ  𝑛𝑚 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 
 

∆𝜏𝑒𝑓𝑓
𝑖 = {

∆𝜏𝑚𝑖𝑠𝑠
𝑖−1 ∙ 𝑠𝑖𝑔𝑛(∆𝜏𝑒𝑓𝑓

𝑖−1);                    ∆𝜏𝑚𝑖𝑠𝑠
𝑖−1 < ∆𝜏𝑚𝑎𝑥

∆𝜏𝑚𝑎𝑥 ∙ 𝑠𝑖𝑔𝑛(∆𝜏𝑒𝑓𝑓
𝑖−1);                 ∆𝜏𝑚𝑖𝑠𝑠

𝑖−1 ≥ ∆𝜏𝑚𝑎𝑥
 (4.42) 

 

∆𝜏𝑚𝑖𝑠𝑠
𝑖 = {

0;                ∆𝜏𝑚𝑖𝑠𝑠
𝑖−1 < ∆𝜏𝑚𝑎𝑥 

∆𝜏𝑚𝑖𝑠𝑠
𝑖−1 − ∆𝜏𝑚𝑎𝑥;      ∆𝜏𝑚𝑖𝑠𝑠

𝑖−1 ≥ ∆𝜏𝑚𝑎𝑥
 (4.43) 

 
 

 
Figure 4.5 – Actual modelled computation of Δτeff when a filter is not used 
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If a filter is considered  
 

∆𝜏𝑒𝑓𝑓
𝑖 = {

∆𝜏𝑖;                     |∆𝜏𝑖| + ∆𝜏𝑚𝑖𝑠𝑠
𝑖−1 < ∆𝜏𝑚𝑎𝑥

∆𝜏𝑚𝑎𝑥 ∙ 𝑠𝑖𝑔𝑛(∆𝜏
𝑖);                  |∆𝜏𝑖| + ∆𝜏𝑚𝑖𝑠𝑠

𝑖−1 ≥ ∆𝜏𝑚𝑎𝑥
 (4.44) 

 

∆𝜏𝑚𝑖𝑠𝑠
𝑖 = {

0;                |∆𝜏𝑖| + ∆𝜏𝑚𝑖𝑠𝑠
𝑖−1 < ∆𝜏𝑚𝑎𝑥

|∆𝜏𝑖 − ∆𝜏𝑚𝑎𝑥|;     ∆𝜏𝑚𝑖𝑠𝑠
𝑖−1 > ∆𝜏𝑚𝑎𝑥

 (4.45) 

 
If the non-instant valve effects are not considered 

∆𝜏𝑒𝑓𝑓
𝑖 = ∆𝜏𝑖 (4.46) 

To account for the backlash effects, consider that at time i the mechanical parts of the valve have 
a positive gap gappos, a negative gap gapneg then ∆𝜏𝑟𝑒𝑎𝑙𝑖  is given by 
 
If ∆𝜏𝑒𝑓𝑓𝑖  is positive, i.e. the valve is opened 

∆𝜏𝑟𝑒𝑎𝑙
𝑖 = {

0;                ∆𝜏𝑒𝑓𝑓
𝑖 < 𝑔𝑎𝑝𝑝𝑜𝑠

𝑖−1  

𝑏 ∙ (∆𝜏𝑒𝑓𝑓
𝑖 − 𝑔𝑎𝑝𝑝𝑜𝑠

𝑖−1);                ∆𝜏𝑒𝑓𝑓
𝑖 ≥ 𝑔𝑎𝑝𝑝𝑜𝑠

𝑖−1
 (4.47) 

𝑔𝑎𝑝𝑝𝑜𝑠
𝑖 = {

𝑔𝑎𝑝𝑝𝑜𝑠
𝑖−1 − ∆𝜏𝑒𝑓𝑓

𝑖 ;                 ∆𝜏𝑒𝑓𝑓
𝑖 < 𝑔𝑎𝑝𝑝𝑜𝑠

𝑖−1

0;                  ∆𝜏𝑒𝑓𝑓
𝑖 ≥ 𝑔𝑎𝑝𝑝𝑜𝑠

𝑖−1
 (4.48) 

 

𝑔𝑎𝑝𝑛𝑒𝑔
𝑖 = {

−(𝑔𝑎𝑝𝑡𝑜𝑡𝑎𝑙 − 𝑔𝑎𝑝𝑝𝑜𝑠
𝑖−1);                ∆𝜏𝑒𝑓𝑓

𝑖 < 𝑔𝑎𝑝𝑝𝑜𝑠
𝑖   

−𝑔𝑎𝑝𝑡𝑜𝑡𝑎𝑙;                   ∆𝜏𝑒𝑓𝑓
𝑖 ≥ 𝑔𝑎𝑝𝑝𝑜𝑠

𝑖
 

(4.49) 

 
If ∆𝜏𝑒𝑓𝑓𝑖  is negative, i.e. the valve is closed 
 

∆𝜏𝑟𝑒𝑎𝑙
𝑖 = {

𝑏 ∙ (∆𝜏𝑒𝑓𝑓
𝑖 − 𝑔𝑎𝑝𝑛𝑒𝑔

𝑖−1);                   ∆𝜏𝑒𝑓𝑓
𝑖 ≤ 𝑔𝑎𝑝𝑛𝑒𝑔

𝑖−1   

0;                    ∆𝜏𝑒𝑓𝑓
𝑖 > 𝑔𝑎𝑝𝑛𝑒𝑔

𝑖
 (4.50) 

𝑔𝑎𝑝𝑛𝑒𝑔
𝑖 = {

0;                   ∆𝜏𝑒𝑓𝑓
𝑖 ≤ 𝑔𝑎𝑝𝑛𝑒𝑔

𝑖−1   

𝑔𝑎𝑝𝑛𝑒𝑔
𝑖−1 − ∆𝜏𝑒𝑓𝑓

𝑖 ;                    ∆𝜏𝑒𝑓𝑓
𝑖 > 𝑔𝑎𝑝𝑛𝑒𝑔

𝑖
 (4.51) 

 

𝑔𝑎𝑝𝑝𝑜𝑠
𝑖 = {

𝑔𝑎𝑝𝑡𝑜𝑡𝑎𝑙;                    ∆𝜏𝑒𝑓𝑓
𝑖 ≤ 𝑔𝑎𝑝𝑛𝑒𝑔

𝑖−1   

−(𝑔𝑎𝑝𝑡𝑜𝑡𝑎𝑙 + 𝑔𝑎𝑝𝑛𝑒𝑔
𝑖−1);                   ∆𝜏𝑒𝑓𝑓

𝑖 > 𝑔𝑎𝑝𝑛𝑒𝑔
𝑖

 
(4.52) 
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Which is the same behaviour described in Figure 3.1. and which in the finitie-difference scheme 
becomes Figure 4.6 - Δτreal obtained at a given time t as a function of dτ, the gaps and b 
 
 

 
Figure 4.6 - Δτreal obtained at a given time t as a function of dτ, the gaps and b 

 
Once the PI controller has determined the operation to be performed, the τ of the valve at time 
interval i may be computed as 
 

𝜏𝑖 = 𝜏𝑖−1 + ∆𝜏𝑟𝑒𝑎𝑙
𝑖 ;       𝑏𝑎𝑐𝑘𝑙𝑎𝑠ℎ 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 (4.53) 

𝜏𝑖 = 𝜏𝑖−1 + ∆𝜏𝑒𝑓𝑓
𝑖 ;       𝑛𝑜𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 𝑣𝑎𝑙𝑣𝑒 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 (4.54) 

𝜏𝑖 = 𝜏𝑖−1 + ∆𝜏𝑖;  𝑖𝑛𝑠𝑡𝑎𝑛𝑡 𝑣𝑎𝑙𝑣𝑒 𝑎𝑛𝑑 𝑛𝑜 𝑏𝑎𝑐𝑘𝑙𝑎𝑠ℎ 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 (4.55) 

 
Hence the area of the valve at any time interval is  

𝐴𝑣
𝑖 = 𝜏𝑖 ∙ 𝐴𝑣𝑜 (4.56) 

Once the area of the valve at time step i has been determined, the boundary conditions for the 
downstream valve may be found solving together the equation (3.15) in the finite-difference 
scheme and equation (4.5) 
 

𝑄𝑚=2,𝑛=𝑁
𝑖 =

−𝜂𝑖 +√(𝜂𝑖)2 + 4𝜂𝑖𝐶𝑝

2
 

(4.57) 

𝐻𝑚=1,𝑛=0
𝑖 =

𝐶𝑛 − 𝑄𝑚=2,𝑛=𝑁
𝑖

𝐶𝑎,𝑚=2
 (4.58) 
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where 
 

𝜂𝑖 =
2𝑔(𝑐𝑣𝐴𝑣

𝑖 )2

𝐶𝑎,𝑚=2
 (4.59) 

 
4.1.3. Initial Conditions 

 
The system of equations that described the steady-state flow described in the Mathematical 
Model is solved using iterative methods 
 

4.2. Stability function 
 
The variables that make up the stability function were determined analysing the sets defined in 
Chapter 3. 
 

4.2.1. Set of hydraulic components variables YP   
 
Since an existing plant is analysed, all these variables have already been defined, therefore they 
are not considered in the stability function. 
 

4.2.2. Set of variables related to the flow control system mechanisms effects YFE  
 
The mechanisms that are considered in the flow control system are: 
 

- Hydraulic transients 
- Instrumental uncertainties 
- Measuring times 
- Delays 
- Non-instant valve effects 
- Backlash effects 

 
Therefore, the function YFE,M  for each of these mechanisms must be found 
 
Hydraulic Transients 
 
The hydraulic transients are considered in the model itself when the governing equations as 
functions of time and space were stated, therefore, it will not be considered as a function or as a 
variable in the stability function. 
 
Instrumental uncertainty function 
 
The instrumental uncertainty function Ue has as Boolean variable UB = Boolean variable and 
parameters σ = instrumental uncertainty and f = function. However, considering σ=0 is equivalent 
to considering the Boolean variables UB=0 therefore it is convenient not to consider the Boolean 
variable always on (=1), hence 
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𝑈𝑒 = 𝑓(𝜎, 𝑓) (4.60) 

Measuring time function 
 
The measuring time function Me does not have a Boolean variable to turn it on or off, instead it 
is considered always on. The only parameter is the time of measuring tmeasure so  

𝑀𝑒 = 𝑓(𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒) (4.61) 

Delays function 
 
As well as the measuring time function the delays function has no Boolean variable and is 
considered always turned on. The only parameter that defines it is the time of delay tdealy, hence 

𝐷𝑒 = 𝑓(𝑡𝑑𝑒𝑙𝑎𝑦) (4.62) 

Non-instant valve function 
 
The non-instant valve function NIVe has Boolean variables NIVB and the parameter 
vv,max=maximum valve velocity. This parameter is considered to be already known so  

𝑁𝐼𝑉𝑒 = 𝑓(𝑁𝐼𝑉𝐵) (4.63) 

Backlash function 
 
The backlash effects function BLe has Boolean variable BLB=Boolean variable and parameters 
gappos, gapneg, fr. The gaps and the friction are constant values (Norconsult SA, 2016), thus 

𝐵𝐿𝑒 = 𝑓(𝐵𝐿𝐵) (4.64) 

4.2.3. Set of variables related to the PI Controller 
 
The only parameters that are variable in the PI Controller are α and K1 therefore 

𝑃𝐼𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟𝑒 = 𝑓(𝛼, 𝐾1) (4.65) 

4.2.4. Definitive stability function 
 
Ultimately, combining equations (4.60), (4.61), (4.62), (4.63), (4.64) and (4.65) with equation  
(3.42), the stability function of this dynamical system is made up by the following variables 
(Figure 4.7)  
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𝑆 = 𝑓(𝐵𝐿𝑒(𝐵𝐿𝐵),𝑁𝐼𝑉𝑒(𝑁𝐼𝑉𝐵), 𝑈𝑒(𝜎, 𝑓), 𝐷𝑒(𝑡𝑑𝑒𝑙𝑎𝑦),𝑀𝑒(𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒), 𝛼, 𝐾1) (4.66) 

𝑆 = 𝑓(𝐵𝐿𝐵, 𝑁𝐼𝑉𝐵, 𝜎, 𝑓, 𝑡𝑑𝑒𝑙𝑎𝑦, 𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒 , 𝛼, 𝐾1) (4.67) 

 

 
Figure 4.7 – Definite set of variables considered in this study 

 
The empty sets in Figure 4.7. are intended to show the lack of Boolean or other variables in a set. 
 
Let us now define w=generic global case, αx, a generic α value and K1y, a generic K1 value so 
that the exponential fit parameter S associated to a particular case is called 

𝑆𝑤,𝛼𝑥,𝐾1𝑦 = 𝑆(𝑤, 𝛼𝑥, 𝐾1𝑦) (4.68) 

4.3. The Benchmark global case 
 
Let us define as the benchmark case the global case in which none of the exposed mechanisms 
but the hydraulic transients are considered, therefore a case in which all the variables in the set 
of YFE are 0. If the benchmark case is denoted with the subscript BM then stability function of 
the benchmark case is named as 𝑆𝐵𝑀,𝛼𝑥,𝐾1𝑦 and is defined by 

𝑆𝐵𝑀,𝛼𝑥,𝐾1𝑦 = 𝑓(𝐵𝐿𝐵 = 0, 𝑁𝐼𝑉𝐵 = 0, 𝜎 = 0, 𝑓 = 0, 𝐷 = 0,𝑀 = 0, 𝛼, 𝐾1) (4.69) 
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4.4. Exponential fit parameter S 
 
To find the parameter S of a particular case 𝑆𝑤,𝛼𝑥,𝐾1𝑦 it was followed this process: 
 
After finding the time series of Hf(t), the new function Hf1(t) was computed as 

𝐻𝑓1(𝑡) = |𝐻𝑓(𝑡) − 𝐻𝑡𝑎𝑟𝑔𝑒𝑡| (4.70) 

As Hf1(t) was expected to oscillate around 0, all the peaks were identified and tagged. The peaks 
were subjected to an exponential fit using a certain fitting method, obtaining the function 

𝑒𝑥𝑝𝑓𝑖𝑡 = 𝑒𝑓𝑤,𝛼𝑥,𝐾1𝑦 = 𝑎𝑤,𝛼𝑥,𝐾1𝑦 ∙ 𝑒
𝑆𝑤,𝛼𝑥,𝐾1𝑦 ⋅𝑡 (4.71) 

The values of 𝑎𝑤,𝛼𝑥,𝐾1𝑦 and 𝑆𝑤,𝛼𝑥,𝐾1𝑦 depend on the fitting technique used, in this document the 
least squares method was used. 
 

4.5. Stability limit curves 
 
The stability limits were defined in chapter 3 as the surfaces that represent the border between 
the “stable” and “unstable” cases. The control in this plant is performed by a PI Controller thus 

the variables YC are only α and K1 therefore the stability limit of a generic global case for this 
plant is defined as 

𝑆𝑤 = 𝑓(𝛼, 𝐾1) = 0 (4.72) 

Since it involves only two variables then it is a curve in the α-K1 plane and is called stability limit 
curve of a certain global case. To determine the stability limit curve of a global case a finite 
number of particular cases are simulated. Each of the 𝑆𝑤,𝛼𝑥,𝐾1𝑦 are organized in an exponential 
fit stability matrix [Sw] defined as 
 

[𝑆𝑤] = [

𝑆𝑤,𝛼1,𝐾11 ⋯ 𝑆𝑤,𝛼1,𝐾1𝑦
⋮ ⋱ ⋮

𝑆𝑤,𝛼𝑛𝑥,𝐾11 ⋯ 𝑆𝑤,𝛼𝑛𝑥,𝐾1𝑛𝑦

] (4.73) 

 
where nx=number of α values considered and ny=number of K1 values considered. The stability 
limit curve is obtained interpolating the values of S=0 in the matrix. 
 
 
 

4.6. Statistical stability assessment 
 
Since Hf(t) and τ(t) are discrete functions the mean values and the standard deviations of a 
particular case are described by the discrete form of equations (3.44) to (3.47), hence 
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𝐻𝑓,𝑤,𝛼𝑥,𝐾1𝑦
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

∑ 𝐻𝑓,𝑤,𝛼𝑥,𝐾1𝑦𝑖
𝑛𝑡
𝑖=1

𝑛𝑡
 (4.74) 

𝜏𝑤,𝛼𝑥,𝐾1𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
∑ 𝜏𝑤,𝛼𝑥,𝐾1𝑦𝑖
𝑛𝑡
𝑖=1

𝑛𝑡
 (4.75) 

𝑠_𝐻𝑓,𝑤,𝛼𝑥,𝐾1𝑦 =
√
∑ (𝐻𝑓,𝑤,𝛼𝑥,𝐾1𝑦 − 𝐻𝑓,𝑤,𝛼𝑥,𝐾1𝑦

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2

𝑛𝑡
𝑖=1

𝑛𝑡 − 1
 

(4.76) 

𝑠_𝜏𝑤,𝛼𝑥,𝐾1𝑦 =
√
∑ (𝜏𝑤,𝛼𝑥,𝐾1𝑦 𝑖 − 𝜏𝑤,𝛼𝑥,𝐾1𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

2
𝑛𝑡
𝑖=1

𝑛𝑡 − 1
 

(4.77) 

 
 
When the oscillations tended very fast to Htarget the computation of the mean value and the 
standard deviation was limited to the time intervals before a level ΔHstability was reached, this 
means that if for a particular case it existed a time ts where 

|𝐻𝑓 − 𝐻𝑡𝑎𝑟𝑔𝑒𝑡| ≤ ∆𝐻𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦;    𝑓𝑜𝑟 𝑡 ≥ 𝑡𝑠 (4.78) 

the mean values and the standard deviations were computed for values of nt= nt,s where nt,stability 
are the time intervals comprised in t<ts. Here the value ΔHstability = 1mm was used. 
 
Regarding the mean value, more than the mean value itself it was of interest to analyse how much 
it deviated from Htarget therefore the deviations were computed as 
 

∆𝐻𝑓,𝑤,𝛼𝑥,𝐾1𝑦
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐻𝑓,𝑤,𝛼𝑥,𝐾1𝑦

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐻𝑡𝑎𝑟𝑔𝑒𝑡 (4.79) 

𝛥𝜏𝑤,𝛼𝑥,𝐾1𝑦
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝜏𝑤,𝛼𝑥,𝐾1𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝜏𝑡𝑎𝑟𝑔𝑒𝑡 (4.80) 

 
where τtarget is taken as the steady-state value of τ which in this case is τtarget=1. 
 
To compare the standard deviation of a particular case of a global case w with the standard 
deviation of a particular case of the benchmark case the ratios of standard deviations were 
computed as well as 
 

𝑟_𝑠_𝐻𝑓,𝑤,𝛼𝑥,𝐾1𝑦 =
𝑠_𝐻𝑓,𝑤,𝛼𝑥,𝐾1𝑦
𝑠_𝐻𝑓,𝐵𝑀,𝛼𝑥,𝐾1𝑦

 (4.81) 

𝑟_𝑠_𝜏𝑤,𝛼𝑥,𝐾1𝑦 =
𝑆_𝜏𝑤,𝛼𝑥,𝐾1𝑦
𝑆_𝜏𝐵𝑀,𝛼𝑥,𝐾1𝑦

 (4.82) 

 
The mean values, the standard deviations and the ratios of standard deviations were organized in 
matrices called statistical matrices and defined as: 
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Mean deviation matrices 
 

[∆𝐻𝑓,𝑤̅̅ ̅̅ ̅̅ ̅̅ ] = [

∆𝐻𝑓,𝑤,𝛼1,𝐾11
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⋯ ∆𝐻𝑓,𝑤,𝛼1,𝐾1𝑦

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

⋮ ⋱ ⋮
∆𝐻𝑓,𝑤,𝛼𝑛𝑥,𝐾11
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⋯ ∆𝐻𝑓,𝑤,𝛼𝑛𝑥,𝐾1𝑛𝑦

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
] 

 

(4.83) 

[∆𝜏𝑤̅̅ ̅̅ ̅] = [

∆𝜏𝑤,𝛼1,𝐾11
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⋯ ∆𝜏𝑤,𝛼1,𝐾1𝑦

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

⋮ ⋱ ⋮
∆𝜏𝑤,𝛼𝑛𝑥,𝐾11
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⋯ ∆𝜏𝑤,𝛼𝑛𝑥,𝐾1𝑛𝑦

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
] (4.84) 

 
Standard deviation matrices 
 

[𝑠_𝐻𝑓,𝑤] = [

𝑠_𝐻𝑓,𝑤,𝛼1,𝐾11 ⋯ 𝑠_𝐻𝑓,𝑤,𝛼1,𝐾1𝑦
⋮ ⋱ ⋮

𝑠_𝐻𝑓,𝑤,𝛼𝑛𝑥,𝐾11 ⋯ 𝑠_𝐻𝑓,𝑤,𝛼𝑛𝑥,𝐾1𝑛𝑦

] 

 

(4.85) 

[𝑠_𝜏𝑤] = [

𝑠_𝜏𝑤,𝛼1,𝐾11 ⋯ 𝑠_𝜏𝑤,𝛼1,𝐾1𝑦
⋮ ⋱ ⋮

𝑠_𝜏𝑤,𝛼𝑛𝑥,𝐾11 ⋯ 𝑠_𝜏𝑤,𝛼𝑛𝑥,𝐾1𝑛𝑦

] (4.86) 

 
Ratio of standard deviation matrices 
 

[𝑟_𝑠_𝐻𝑓,𝑤] = [

𝑟_𝑠_𝐻𝑓,𝑤,𝛼1,𝐾11 ⋯ 𝑟_𝑠_𝐻𝑓,𝑤,𝛼1,𝐾1𝑦
⋮ ⋱ ⋮

𝑟_𝑠_𝐻𝑓,𝑤,𝛼𝑛𝑥,𝐾11 ⋯ 𝑟_𝑠_𝐻𝑓,𝑤,𝛼𝑛𝑥,𝐾1𝑛𝑦

] 

 

(4.87) 

[𝑟_𝑠_𝜏𝑤] = [

𝑟_𝑠_𝜏𝑤,𝛼1,𝐾11 ⋯ 𝑟_𝑠_𝜏𝑤,𝛼1,𝐾1𝑦
⋮ ⋱ ⋮

𝑟_𝑠_𝜏𝑤,𝛼𝑛𝑥,𝐾11 ⋯ 𝑟_𝑠_𝜏𝑤,𝛼𝑛𝑥,𝐾1𝑛𝑦

] (4.88) 

 
4.7.Comparison between Jimenez’s and the present document’s approach 

 
Before stepping into the simulation setup and the results it is interesting to make a comparison 
between the approach proposed by Jimenez and the present document approach to analyse their 
differences and the consequences of using each one. The comparison is done confronting the 
characteristics of both methods in two separate columns, being able to compare the 
characteristics of each method in parallel. At the left side, the Jimenez’s approach is presented 

and at the right side the present document’s one. 
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Sets of variables involved 
- Set of variables related to the 

hydraulic components YP 
- Set of variables related to the PI 

Controller YC 
 
 
 
 
Control variables 

- Hf 
- Hs 
- τ 

 
Governing equations 
 

- Conduit dynamic equation 
 

𝐿𝑡
 𝑔 𝐴𝑡

 
𝑑𝑄𝑡
𝑑𝑡

+ 𝐶𝑡|𝑄𝑡|𝑄𝑡 + 𝐶𝑠|𝑄𝑠|𝑄𝑠 = 𝐻𝑓 −𝐻𝑠 

 
The equation involves the whole tunnel length, 
moreover, since the penstock length is much 
shorter than the tunnel length it is neglected 
 

- Continuity equation for the forebay 
 

𝐴𝑓
𝑑𝐻𝑓  

𝑑𝑡
= 𝑄𝑟−𝑄𝑤 −𝑄𝑡 

 
- Continuity equation for the surge tank 

 

𝐴𝑠
𝑑𝐻𝑠  

𝑑𝑡
= 𝑄𝑠 = 𝑄𝑡 − 𝑄𝑣 

 
- Discharge in the downstream valve 

 

𝑄𝑣 = 𝜏𝑄𝑜√ 
𝐻𝑠 + 𝐶𝑠|𝑄𝑠|𝑄𝑠

𝐻𝑜
 

 
- Water-level controller (PI Controller) 

 

 
𝑑𝜏

𝑑𝑡
=
𝐻𝑓 −𝐻𝑟𝑒𝑓

𝑇𝑖
+ 𝑘

𝑑(𝐻𝑓 −𝐻𝑟𝑒𝑓)

𝑑𝑡
 

 
Ct, Cs= head loss coefficients for the tunnel 
and the surge tank orifice 

Sets of variables involved 
- Set of variables related to the 

hydraulic components YP 
- Set of variables related to the effects 

of the mechanisms of the flow control 
system YFE 

- Set of variables related to the PI 
Controller YC 

 
Control variables 

- Hf 
- Hs 
- τ 

 
Governing equations 
 

- Generic conduit dynamic equation 
 
𝜕𝑄

𝜕𝑡
+ 𝑔𝐴

𝜕𝐻

𝜕𝑥
+

𝑓

2𝐷𝐴
𝑄|𝑄| = 0 

 
- Generic conduit continuity equation 

 
𝑎2

𝑔𝐴

𝜕𝑄

𝜕𝑥
+
𝜕𝐻

𝜕𝑡
= 0 

 
- Continuity equation (mass balance 

equation in the forebay) 
 

𝐴𝑓
𝑑𝐻𝑓(𝑡)

𝑑𝑡
= 𝑄𝑖𝑛(𝑡) − 𝑄𝑡(𝑡, 𝑥 = 0) 

 
- Continuity equation for the surge tank 

(mas balance equation in the surge 
tank) 

 

𝐴𝑠
𝑑𝐻𝑠(𝑡)

𝑑𝑡
= (𝑄𝑡(𝑡, 𝑥 = 𝐿𝑡) − 𝑄𝑝(𝑡, 𝑥 = 0)) 

 
- Discharge in the downstream valve 

 
𝑄𝑣(𝑡) = 𝐴𝑣(𝑡)𝑐𝑣√2𝑔𝐻𝑣(𝑡) 

 
Water-level controller (PI Controller) 
 

 
𝑑𝜏

𝑑𝑡
=
𝐻𝑓 −𝐻𝑟𝑒𝑓

𝑇𝑖
+ 𝑘

𝑑(𝐻𝑓 −𝐻𝑟𝑒𝑓)

𝑑𝑡
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Methods of solution and stability analysis 
 
The aim is to find 

- Qt(t) 
- Hf(t) 
- Hs(t) 
- τ(t) 

Jimenez rewrites the governing equations to 
obtain a set of dimensionless form and 
linearized. This allows him to obtain a system 
of equations written in the matrix form as 
follows 

 
𝑑𝑿

𝑑𝑡
= 𝑨𝑿+ 𝑩 

 
Where X is the vector of dimensionless 
variables to be found. 
 
Jimenez determines the stability without 
solving the system of equations but by means 
of the Routh-Hurwitz criterion. 
 
According to the Routh-Hurwitz criterion, the 
system is stable if the real parts of the 
eigenvalues of the matrix A are negative. 
 
The stability assessment is performed by 
analytical means. 
 
Using this criterion, Jimenez determines that 
the stability of the system is a function of five 
variables: 
 
n, m, p = variables related to the characteristics 
of the plant 
 
and 
 
α, K1 = variables related to the PI controller 
 
if the variables n, m and p are known, i.e., the 
stability analysis is studied over an existing 
plant, then the stability depends only on the 
parameters of the PI controller. Since only two 
variables are left, Jimenez presents his stability 
analysis on the Rio Macho Hydropower plant 
using stability curves shown plotted in a α- K1 
plane where the points inside the curve 
represent the stable region. 
 
 
 

Methods of solution and stability analysis 
 
The aim is to find 

- Q(x,t) in the conduits 
- H(x,t) in the conduits 
- Hf(t)  
- Hs(t) 
- τ(t) 

In opposition to the method exposed by 
Jimenez, there is no analytical way to assess 
the stability and, in addition, the set of 
equations is a set of hyperbolic partial 
differential equations that has no analytical 
solution, therefore numerical methods need 
to be used. In this context the method of the 
characteristics is used to solve the PDE. 
 
Since the equations are functions of the time t 
and the distance x, both initial and boundary 
conditions need to be stated. 
 
In the case of the initial conditions they are 
found by computing the steady-state flow. In 
the case of the boundary conditions, special 
conditions are used in each special node of the 
system, i.e., the forebay, the surge tank and the 
control valve. All the new mechanisms are 
included in the boundary condition for the 
control valve 
 
Since no analytical solution exists, the 
behaviour of the system needs to be 
numerically modelled. The stability of the 
system is determined after the simulation 
evaluating if the oscillations in Hf(t) tend to 
damp in respect to time. To determine if the 
oscillations dampened the maximum values of 
the oscillations were subjected to an 
exponential fit of the form 
 

𝑓 = 𝑎 ∙ 𝑒𝑆𝑡 
 
If the coefficient S<0 it meant that the 
oscillations tended to damp. 
 
Since no analytical way exists to assess 
stability with this method the equations must 
be solved for different values of variables YP 

and YFE and then the stability is determined. 
 

ODE PDE 
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Stability function, Stability criterion  
 
According to the method of solution exposed 
and the stability analysis done by Jimenez it is 
possible to say that: 
 
If the assessment is performed over an existing 
plant, the Stability function will have the 
following variables 
 

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑓(𝛼, 𝐾1) 
 
And would be represented by the characteristic 
polynomial of the Matrix A. It is necessary to 
highlight the fact that the stability function in 
this approach is not represented by the 
parameter S because an exponential fit is no 
necessary. 
 
In addition, due to the simplifications, the 
stability is only function of the PI Controller 
parameters 
 
The Stability criterion in this approach would 
be the Routh-Hurwitz criterion, i.e., if the real 
parts of the eigenvalues of the matrix A are 
negative. 
 

Stability function, Stability criterion  
 
The Stability function is 
 
𝑆 = 𝑓(𝐵𝐿𝐵 , 𝑁𝐼𝑉𝐵 , 𝜎, 𝑓, 𝑡𝑑𝑒𝑙𝑎𝑦 , 𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒 , 𝛼, 𝐾1) 

 
Where S is the parameter of the exponential fit 
and whose form depend on the fitting 
technique. 
 
Since the new mechanisms are considered, the 
stability function depends not only on the PI 
Controller parameters but on the variables of 
the different mechanisms. 
 
The Stability criterion used was: 
 
a dynamic system is stable if 
 

𝑆 < 0 
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4.8.Simulation setup 
 
Numerical simulations were performed to systematically assess the stability of the flow control 
system. 
 
The followed process was: 
 

1. Set hydropower plant characteristics 
- Hydraulic conditions 
- Geometry 
- Steady-state conditions 
- Simulation parameters 

▪ Total time of simulations 
▪ Δt 
▪ Δx 

2. Fix a global case, i.e., define the YFE variables 
3. Fix a particular case, i.e., define α and K1. 
4. Perform numerical simulation using the Method of the Characteristics for the given case 
5. Obtain time-series of Hf(t) and τ(t) 
6. Determine stability using the exponential fit and the stability criterion 
7. Determine the mean values and the standard deviations of Hf(t) and τ(t) 

 
The steps 2-7 were performed in a loop varying all the variables to finally  
 

8. Obtain the exponential fit matrices [S] 
9. Obtain the stability limit curves in the α-K1 plane. 
10. Obtain the mean values, standard deviations, and ratio of standard deviations matrices 

[H] [τ] [s_H] [s_τ] [r_s_H] [r_s_τ] 
 
Regarding the stability function the Boolean variables considered were those considered in Table 
4.1. 
 

Table 4.1 – Boolean variables considered 

Boolean variable Symbol Range 
Non-instant valve NIVB 0, 1 
Backlash BLB 0, 1 

 
The rest of the variables were considered in ranges reported in Table 4.2 
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Table 4.2 – Values and ranges of the non-Boolean variables 

Variable Symbol Unit Range 
Instrumental uncertainty σ m 0, 0.01, 0.05, 0.1 
Filter f (-) 0, 1 
Delay time tdelay s 0, 0.1, 0.5, 1 

Measuring time tmeasure s 0, 1 

PI Controller parameter 1 α (-) 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 
80, 85, 90 

PI Controller parameter 2 K1 (-) 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5 
7.0, 7.5, 8.0, 8.5, 9.0 

 
Any combination of these parameters was tested and the only restrictions that were added were 

▪ If σ≠0 then tmeasure=1  
▪ If σ =0 then f=0  

These combinations can be organized in a tree diagram from Figure 4.8. In the figure the delays 
tdelay and the measuring time tmeasure are represented by the variables D and M, respectively. The 
most relevant constant parameters that describe the plant and each of the mechanisms are shown 
in Table 4.3 

Table 4.3 –Most relevant constant parameters used in the simulations 

Variable Symbol Unit Value 
Forebay 

Incoming river flow Qin m3/s 36.1 

Surface area of the forebay Af m2 1297.3 

Head target value Htarget m 112 

Tunnel 
Tunnel Length Lt m 4005.00 

Cross-sectional area of the tunnel At m2 8.04 

D-W Friction factor ft (-) 0.009 

Tunnel wave speed at m/s 1365.1 

Penstock 
Penstock Length Lp m 276 

Cross-sectional area of the penstock Ap m2 8.04 

D-W Friction factor fp (-) 0.01 

Penstock wave speed ap m/s 683.5 

Surge tank 
Surface area of the surge tank As m2 61.20 

Non-instant valve 
Maximum valve velocity vv,max %/s 2.5 

Backlash 
Positive gap gappos % 0.15 

Negative gap gapneg % -0.15 

Backlash friction fr % 0.5 
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Figure 4.8 – Tree diagram of the possible combinations of global cases 
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The particular and global cases shown in Table 4.4 and Table 4.5 respectively are considered to 
show typical results. 

Table 4.4 – Particular cases shown in typical results 

Variable Symbol Unit Particular 
Case A (BM) 

Particular 
Case B 

Particular 
Case C 

Particular 
Case D 

Non-instant valve NIVB (-) 0 0 1 0 
Backlash BLB (-) 0 0 0 1 
Instrumental uncertainty σ m 0 0.1 0 0 
Filter f (-) 0 1 0 0 
Delay time tdelay s 0 0.5 0.1 1 
Measuring time tmeasure s 0 1 0 1 
PI Controller parameter 1 α (-) 65 45 25 50 
PI Controller parameter 2 K1 (-) 2.5 5.5 3.5 5 

 
Table 4.5 – Global Cases shown in typical results 

   
Exponential Fit Statistical Analysis 

Variable Symbol Unit Set of  
Global 

Cases A 

 Set of  
Global 
Cases B 

Set of  
Global 

Cases C 

 Global 
Case D 

Global 
Case E 

Global 
Case F 

Non-instant valve NIVB (-) 0 1 0 0 1  1 
Backlash BLB (-) 0 0 0 1 0  1 
Instrumental uncertainty σ m 0 0 0.05 0 0.05 0.1 
Filter f (-) 0 0 0 0 0 1 
Delay time tdelay s 0, 1 0, 1 0, 1 1 1 1 
Measuring time tmeasure s 0 0 1 0 1 1 

 
The simulations were performed for the values shown in Table 4.6. 
 

Table 4.6 – Values used for the simulation 

Variable Symbol Unit Value 
Tunnel space discretization  Δxt m 58.44 
Penstock space discretization  Δxp m 29.26 
Time discretization Δt s 0.04 
Total simulation time ttotal s 104 

Number of time intervals nt (-) 2.5 x 105 
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5. RESULTS 
5.1.Typical Results of a Particular Case 

 
Typical results of a particular case after one simulation consisted of: time-series of the level in 
the forebay Hf(t), the valve opening τ(t) and the valve opening derivative Δτ(t), namely, the 
variable that is modified by the PI Controller; Exponential fit of the peaks of the oscillations of 
Hf(t) around Htarget and computations of the mean, the standard deviation and the ratio of standard 
deviation of Hf(t) and τ(t). The results from the particular cases exposed in Table 4.4 are shown 
in Figure 5.1 and Figure 5.2 
 
 

 
Figure 5.1 – Results of the Particular Cases A and B from Table 4.4 

 

Particular Case A Particular Case B 

expfit 

Time- 
series 

Mean - 
Std dev 
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Figure 5.2 - Results of the Particular Cases C and D from Table 4.4 

The time-series are graphs showing the simulation time t and the variables Δτ(t), τ(t) and Hf(t) as 
a function of time. The straight black lines in the time-series graphs represent the reference 
values, thus, in the case of the level in the forebay Hf(t) and the valve opening τ(t) these lines 
represent Htarget and τtarget, and in the case of the valve opening derivative Δτ(t), this black line 
represent the zero-value which is arranged when Hf(t) has converged to Htarget. The exponential 
fit part of the figures shows a variable y which is the same variable described by equation (4.70), 
namely y=Hf1(t) and the peaks and exponential fit curves in red colour. Finally, the part of the 
statistical values shows the time series of Hf(t) and τ(t) at left and at right the obtained probability 
density function (pdf) of the corresponding variables. The dashed lines indicate the interval 
 

|𝐻𝑓 − 𝐻𝑡𝑎𝑟𝑔𝑒𝑡| ≤ ∆𝐻𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
 
Described in section 4.6. The results obtained from the particular cases in Table 4.4 are shown 
in Table 5.1. 

expfit 

Time- 
series 

Mean - 
Std dev 

Particular Case C Particular Case D 
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Table 5.1 – Computed typical results for the particular cases 

Variable Symbol Unit Particular 
case A (BM)  

Particular 
case B 

Particular 
case C 

Particular 
case D 

Parameter S of the expfit Sw,αx,K1y (-) -3.52E-05 1.73E-06 -9.88E-05 -1.52E-06 

Hf(t) mean value Hf,w,αx,K1y m 111.99 112.00 111.99 112.00 

τ(t) mean value τw,αx,K1y (-) 0.9985 0.9992 0.9984 0.9986 

Hf(t) mean deviation value ΔHf,w,αx,K1y cm -4.47E-02 5.56E-02 -8.21E-02 1.16E-03 

τ(t) mean deviation value Δτw,αx,K1y (-) -0.0015 -8.43E-04 -0.0016 -0.0014 

Hf(t) standard deviation s_Hf,w,αx,K1y cm 0.26 1.85 0.42 0.48 

τ(t) standard deviation s_τw,αx,K1y (-) 0.0014 0.0346 0.0011 0.0017 

Hf(t) ratio of standard 
deviation 

r_s_Hf,w,αx,K1y (-) 1 5.02 1.0009 1.42 

τ(t) ratio of standard 

deviation 
r_s_τw,αx,K1y (-) 1 21.71 1.0011 1.12 

 
5.2.Typical Results for Global Cases 

 
Typical results of a global case were obtained after the simulation of all the particular cases and 
consisted on the stability limit curve obtained from the exponential fit matrix, mean deviation, 
standard deviation, and ratio of standard deviation matrices of Hf,w and τw (Figures Figure 5.3 to 
Figure 5.6). The results are shown in graphs instead of numerical. On the first hand, the 
exponential fit the stability limit curve was obtained interpolating the 0-value across the 
exponential fit matrix and is plotted in the α-K1 plane in red colour. On the other hand, the mean, 
standard deviation and ratio of standard deviation matrices are shown in form of graphs with 
scaled colors using the values shown in Table 5.2. This means that for the computed value of 
each pair (αx, K1y) (e.g. s_Hf,w,αx,K1y), a color was assigned, so that the computed values could be 
compared easily knowing that the scaled colours go from the lightest colour (lower numerical 
value) to the darkest colour (greater numerical value). In Figure 5.3, in black colour, it was also 
plotted the analytical stability limit curve obtained by Jimenez & Chaudhry (1992), This is done 
to compare the effect the variables on the stability of the system. In each of the graphs of Figure 
5.4 and Figure 5.5, the analytical stability limit curve obtained by Jimenez & Chaudhry (1992) 
is also shown together with the stability limit curve obtained from the global benchmark case. 
This is done to show only results of the statistical values under these curves because there was 
no concern of studying the statistical parameters on presumably unstable pairs of (α, K1). 
 

Table 5.2 – Values and units of the colorbars 

Variable Symbol Colorbar 
range 

Unit 

Hf mean deviation matrix graph [Hf,w] 0  - 0.5 m 
τ mean deviation matrix graph [Δτw] 0  -  0.01 (-) 
Hf standard deviation matrix graph [s_Hf,w] 0  - 1.5 m 
τ standard deviation matrix graph [s_τw] 0  -  0.25 (-) 
Hf ratio of standard deviation matrix graph [r_s_Hf,w] 0  -  400 (-) 
τ ratio of standard deviation matrix graph [r_s_τw] 0  -  250 (-) 
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Figure 5.3 – Stability limit curves for the set of global cases A, B and C from Table 4.5 

 
 

Set of 
Global 
Cases A 

Set of 
Global 
Cases B 

Set of 
Global 
Cases C 

tdelay = 0s tdelay = 1s 
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Figure 5.4 – Computed statistical matrices from the Global Case D from Table 4.5 shown in scaled color graphs 

 
 
 

Global Case D 

Level in the forebay Hf Valve opening τ 

Mean 

Std dev 

Ratio of  
Std dev 
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Figure 5.5 - Computed statistical matrices from the Global Case E from Table 4.5 shown in scaled color graphs 

 

Global Case E 

Level in the forebay Hf Valve opening τ 
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Std dev 

Ratio of  
Std dev 
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Figure 5.6 - Computed statistical matrices from the Global Case F from Table 4.5 shown in scaled color graphs 

 

 

Global Case F 

Level in the forebay Hf Valve opening τ 
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Std dev 

Ratio of  
Std dev 
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5.3. Results discussion 
 
The analysis of the results may be divided in two: first, it is discussed the effect of each variable 
(mechanism) alone on the stability and then, some remarkable combinations of variables are 
analysed. In the second place the exponential fit technique as stability criterion is studied with 
the statistical matrices. 
 

5.3.1. Effect of each variable maintaining the rest off(=0) 
 
It is now possible to expose the effect of each of the mechanisms involved. They are shown first 
as isolated cases, that is, the effect of them alone maintaining the other variables off (=0) and 
then some of their combinations are shown in more detail due to their impact 
 
Transients  
 
The only transients’ particular cases have a stability function of the form 
 

𝑆 = 𝑓(𝐵𝐿𝐵 = 0,𝑁𝐼𝑉𝐵 = 0, 𝜎 = 0, 𝑓 = 0, 𝑡𝑑𝑒𝑙𝑎𝑦 = 0, 𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 0, 𝛼, 𝐾1) 
 
and make up the benchmark global case. Considering the transients in the conduits alone (while 
keeping the other variables off), as in the Particular Case A of  Figure 5.1, showed to have 
negligible impact on the stability of the flow control system. In fact, the stability limit curve of 
the Global Cases A in Figure 5.3 with tdelay=0s, here amplified (Figure 5.7), corresponds to the 
benchmark case and as observed the curve has just slightly shrunk in respect to the analytical 
curve. 
 

 
Figure 5.7 – BM Global Case stability limit curve 
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Delays 
 
With stability function of the form 
 

𝑆 = 𝑓(𝐵𝐿𝐵 = 0,𝑁𝐼𝑉𝐵 = 0, 𝜎 = 0, 𝑓 = 0, 𝑡𝑑𝑒𝑙𝑎𝑦 ≠ 0, 𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 0, 𝛼, 𝐾1) 
 
the delays in the control system did not show to have an important impact on the stability of the 
controller. In the particular cases the behaviours of Hf(t) and τ(t) were similar to that of the only 
transients case and in the global cases the impact in the stability curve is very similar to the only 
transients case as well, as may be seen in the set of Global Cases A of Figure 5.3 with tdelay=1s. 
In fact, if a delay were applied to the Particular Case A of Table 4.4, almost identical time-series 
would be obtained as shown in Figure 5.8. 

 
Figure 5.8 – Comparison of the time-series of Particular Case A from Table 4.4 for delay times of 0s and 1s 

For the delays to be an important issue in the flow control system, the tdelay must be of around 30 
seconds or more, which is not verified in these systems. The time-series of the Particular Case A 
from Table 4.4 are shown with a time of delay of 30 and 45 seconds in Figure 5.9 to evidence 
how the flow control system starts to lose control with the delay of 30s and how it becomes 
absolutely instable for a delay of 45s. 
 

 
Figure 5.9 – Particular Case A from Table 4.4  with time of delay of 30 and 45 seconds 

tdelay = 0s tdelay = 1s 
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Non-instantaneous valve 
 
With stability function of the form 
 

𝑆 = 𝑓(𝐵𝐿𝐵 = 0,𝑁𝐼𝑉𝐵 = 1, 𝜎 = 0, 𝑓 = 0, 𝑡𝑑𝑒𝑙𝑎𝑦 = 0, 𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 0, 𝛼, 𝐾1) 
 
the non-instantaneous valve alone did not affect the stability of the controller, in fact, the cases 
with NIVB=1 while maintaining the other variables off(=0) showed to have the same behaviour 
of the BM case. However, this behaviour may be explained analysing that in the BM case the 
Δτ(t) kept always under Δτmax hence Δτeff(t)=Δτ(t). As a matter of fact, the stability limit curves 
from the set of global cases B (Figure 5.3) shows that the non-instantaneous valve alone is 
equivalent to have the BM case. 
 
Measuring time 
 
The measuring time alone is described by a stability function of the form 
 

𝑆 = 𝑓(𝐵𝐿𝐵 = 0,𝑁𝐼𝑉𝐵 = 0, 𝜎 = 0, 𝑓 = 0, 𝑡𝑑𝑒𝑙𝑎𝑦 = 0, 𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 1, 𝛼, 𝐾1) 
 
To analyse the physical effect of this variable let us inspect Figure 5.10 in which a measuring 
time has been added to the particular case A from Table 4.4. 
 
 

 
Figure 5.10 - Comparison of the time-series of Particular Case A from Table 4.4 for measuring times of 0s and 1s 

 

 
As may be observed, the main difference is present in the form of the function Δτ(t) in which, 
when the measuring time is not considered, the function is continuous whereas when the 
measuring time is considered it appears to have a strange form giving the sense like if an integral 
were being computed. However if a little interval of Δτ(t) with measuring time is amplified, as 
in Figure 5.11, it will show that in fact what happens is that the function is discontinuous but 
when shown in a bigger interval seems to have that form of “integral” and, in addition, it has 

tmeasure = 0s tmeasure = 1s 
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non-zero values only for integer values of time every second. This situation arises from the fact 
that, in reality, the measuring time has been set as 1s and additionally, when this measuring time 
is set up, it considers the level in the forebay to be constant during the measuring time interval  
(except for the case of uncertainties with filter whose case is analysed later) and therefore it is 
only at this time interval that the controller performs an operation. This situation was already 
described in section 4.1.2 where the details of the  flow control were given.  
 
In spite of this difference in the form of Δτ(t), the time-series Hf(t) and τ(t) seem to be almost 
identical. The comparison of the BM global case with the global case 
 

𝑆 = 𝑓(𝐵𝐿𝐵 = 0,𝑁𝐼𝑉𝐵 = 0, 𝜎 = 0, 𝑓 = 0, 𝑡𝑑𝑒𝑙𝑎𝑦 = 0, 𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 1) 
 
as shown in Figure 5.12 shows us that the stability limit curves are almost identical, therefore, it 
could be said that the measuring time alone has negligible impact on the stability of the system. 
 

 
Figure 5.11 – Time- series of a particular case with measuring time considered and amplification of a little interval of Δτ(t) 

 
 

 
Figure 5.12 – Comparison of the stability limit curves of the BM case and the global case with only measuring time considered 

tmeasure = 0s tmeasure = 1s 
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Uncertainties 
 
Considering the case of uncertainties alone, i.e., having stability function with the form of 
 

𝑆 = 𝑓(𝐵𝐿𝐵 = 0,𝑁𝐼𝑉𝐵 = 0, 𝜎 ≠ 0, 𝑓 = 0, 𝑡𝑑𝑒𝑙𝑎𝑦 = 0, 𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 0, 𝛼, 𝐾1) 
 
showed to significantly affect the behaviour of the flow control system. From the Particular Case 
B in Figure 5.1 it can be seen that with the uncertainties, Hf(t) oscillates around Htarget but does 
not converge to it throughout time, meaning that asymptotic stability is not verified with this 
mechanism. This situation however, may can be explained studying equations (4.16) and (4.20) 
to (4.23) 
 

∆𝜏𝑖 = ((
𝐻𝑓𝑚
𝑖 − 𝐻𝑡𝑎𝑟𝑔𝑒𝑡

𝑇𝑖
) + (𝑘((𝐻𝑓𝑚

𝑖 − 𝐻𝑡𝑎𝑟𝑔𝑒𝑡) − (𝐻𝑓𝑚
𝑖−1 −𝐻𝑡𝑎𝑟𝑔𝑒𝑡)))) ∗ ∆𝑡 (4.16) 

𝐻𝑓𝑚
𝑖 = 𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒

𝑗−1
+ ∆𝐻 ∗ (1 − 𝑓 ∙ 𝑒

−(
𝑡𝑖−𝑡

∗
𝑗

𝑇𝑓
)
)   𝑓𝑜𝑟 𝑡𝑗

∗ < 𝑡𝑖 < 𝑡𝑗+1
∗ (4.20) 

∆𝐻 = 𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒
𝑗

− 𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒
𝑗−1  (4.21) 

𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒
𝑗

= 𝐻𝑓
𝑖 + (𝜎 ∗ 𝑟𝑎𝑛𝑑) (4.23) 

 
Let us suppose that for given values of α and K1 the PI Controller could in fact make Hf converge 
to Htarget, in this case if Htarget is subtracted from equation (4.23) and the limit is taken then 
 

(𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒
𝑗

− 𝐻𝑡𝑎𝑟𝑔𝑒𝑡) = (𝐻𝑓
𝑖 − 𝐻𝑡𝑎𝑟𝑔𝑒𝑡) + (𝜎 ∗ 𝑟𝑎𝑛𝑑) (5.1) 

lim
𝑡→𝑡𝑡

(𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒
𝑗

− 𝐻𝑡𝑎𝑟𝑔𝑒𝑡) = lim
𝑡→𝑡𝑡

(𝐻𝑓
𝑖 − 𝐻𝑡𝑎𝑟𝑔𝑒𝑡) + lim

𝑡→𝑡𝑡
(𝜎 ∗ 𝑟𝑎𝑛𝑑) (5.2) 

lim
𝑡→𝑡𝑡

(𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒
𝑗

− 𝐻𝑡𝑎𝑟𝑔𝑒𝑡) = lim
𝑡→𝑡𝑡

(𝜎 ∗ 𝑟𝑎𝑛𝑑) (5.3) 

 
Since the limit has no fixed value and does not converge to 0 because the combination (σ+rand) 
always gives a casual number, then in general from equations (4.20) and (4.21) 
 

𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒
𝑗

≠ 𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒
𝑗−1  (5.4) 

∆𝐻 ≠ 0 (5.5) 

𝐻𝑓𝑚
𝑖 ≠ 𝐻𝑡𝑎𝑟𝑔𝑒𝑡 (5.6) 

 
And therefore, from equation (4.16) 
 

∆𝜏𝑖 ≠ 0 (5.7) 
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In addition to the non-convergence (non-asymptotical stability) of the uncertainties case, another 
important effect that this variable has on the dynamic system is the magnitude of the amplitude 
of the oscillations. As may be seen in Figure 5.13 where the time-series of the Particular Case B 
from Table 4.4 are compared to the time-series of the same case but with σ=0m, the maximum 
amplitude of the uncertainties case is around six times bigger than the BM particular case. This 
situation may be observed in a more general way in Figure 5.14 where the standard deviation and 
the ratio of standard deviation matrices of the level in the forebay are shown. The oscillations 
may be up to 10 times greater but are kept in a smaller range for pairs (α, K1) away from the 
stability limit curve. Though the amplitude of the alone uncertainties cases is in general bigger 
than the BM cases, they do not have the biggest amplitudes, instead the biggest amplitudes are 
found in a combination of uncertainties with other variables which is detailed in section 5.3.2. 
 

 
Figure 5.13 - Comparison of the time-series of Particular Case B from Table 4.4 for instrumental uncertainty of 0m and 0.1m 

 
 Std dev Ratio of Std dev 
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Figure 5.14 – Standard deviation and Ratio of standard deviation matrices for a global case considering only uncertainties 

with σ=0.1 with and without filter 

Backlash 
 
With stability function of the form 
 

𝑆 = 𝑓(𝐵𝐿𝐵 = 1,𝑁𝐼𝑉𝐵 = 0, 𝜎 = 0, 𝑓 = 0, 𝑡𝑑𝑒𝑙𝑎𝑦 = 0, 𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 0, 𝛼, 𝐾1) 
 
Backlash is a mechanism that showed to have a significant impact on the stability of the flow 
control system. Just as what happened to the instrumental uncertainty and as can be observed in 
the particular case D of Figure 5.2, Hf  oscillates around Htarget without converging to it, i.e., there 
is no asymptotic stability. This behaviour may be explained inspecting equations (4.16), (4.47) 
and (4.50) and Figure 4.6 supposing NIVB=0 (Δτeff=Δτ). 
 

 
Figure 4.6. (repeated) - Δτreal obtained at a given time t as a function of dτ, the gaps and b 
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The valve opening is given by 
 

∆𝜏𝑖 = ((
𝐻𝑓𝑚
𝑖 − 𝐻𝑡𝑎𝑟𝑔𝑒𝑡

𝑇𝑖
) + (𝑘((𝐻𝑓𝑚

𝑖 − 𝐻𝑡𝑎𝑟𝑔𝑒𝑡) − (𝐻𝑓𝑚
𝑖−1 −𝐻𝑡𝑎𝑟𝑔𝑒𝑡)))) ∗ ∆𝑡 (4.16) 

 
If ∆𝜏𝑖  is positive, i.e. the valve is opened 
 

∆𝜏𝑟𝑒𝑎𝑙
𝑖 = {

0;                ∆𝜏𝑖 < 𝑔𝑎𝑝𝑝𝑜𝑠
𝑖−1  

𝑏 ∙ (∆𝜏𝑖 − 𝑔𝑎𝑝𝑝𝑜𝑠
𝑖−1);                ∆𝜏𝑖 ≥ 𝑔𝑎𝑝𝑝𝑜𝑠

𝑖−1
 (4.47) 

 
If ∆𝜏𝑒𝑓𝑓𝑖  is negative, i.e. the valve is closed 
 

∆𝜏𝑟𝑒𝑎𝑙
𝑖 = {

𝑏 ∙ (∆𝜏𝑖 − 𝑔𝑎𝑝𝑛𝑒𝑔
𝑖−1);                   ∆𝜏𝑖 ≤ 𝑔𝑎𝑝𝑛𝑒𝑔

𝑖−1   

0;                    ∆𝜏𝑖 > 𝑔𝑎𝑝𝑛𝑒𝑔
𝑖

 (4.50) 

 
 
Let us analyse an interval of time from the particular case D  
 

 
Figure 5.15 – Sample interval from the time-series of the particular case D 
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From points A to B, Hf is close enough to Htarget and therefore  
 

𝑔𝑎𝑝𝑛𝑒𝑔
𝑖−1 < ∆𝜏𝑖 < 𝑔𝑎𝑝𝑝𝑜𝑠

𝑖−1 
 
So 
 

∆𝜏𝑟𝑒𝑎𝑙
𝑖 = 0 

 
The level in the forebay will keep rising because no operation has been performed due to backlash 
effects. Then at point B the gap is overpassed, and the valve starts to change its τ, so from points 
B to C the flow control is going to have nonzero Δτreal 

 
𝑔𝑎𝑝𝑛𝑒𝑔

𝑖−1 > ∆𝜏𝑖       𝑜𝑟      ∆𝜏𝑖 > 𝑔𝑎𝑝𝑝𝑜𝑠
𝑖−1 

 
∆𝜏𝑟𝑒𝑎𝑙

𝑖 ≠ 0 
 
As Hf approaches again Htarget  in the C-D interval, the Δτ decreases and enters again in the zone 

where 
 

𝑔𝑎𝑝𝑛𝑒𝑔
𝑖−1 < ∆𝜏𝑖 < 𝑔𝑎𝑝𝑝𝑜𝑠

𝑖−1 
 
And will have zero Δτreal until the backlash effects will be again overpassed at interval D-E. This 
situation occurs in loops throughout time and that is why asymptotic stability is never verified. 
 
Though the backlash cases are not asymptotically stable, in contrast to the uncertainties case, the 
amplitudes of the oscillations are not a big issue as may be seen in Figure 5.16 where the time-
series of the Particular Case D from Table 4.4 are shown with and without backlash. As observed, 
the amplitude of the oscillations is kept under similar values which, in this case, is around 0.1m. 
 

 
Figure 5.16 - Comparison of the time-series of Particular Case D from Table 4.4 with and without backlash 

Evaluating the standard deviation and the ratio of standard deviation matrices of Hf(t) of the only-
backlash global case (Figure 5.17) (using a different scale colour than the one from Table 5.2)  it 
may also be seen that the standard deviations are, in general, kept within a small range of 0.05m 
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and the ratios of standard deviation exceed the value of 5 only for cases near the BM stability 
limit curve. 
 

 
Figure 5.17 – Standard deviation and ratio of standard deviation matrices of the only backlash global case 

5.3.2. Remarkable combinations of variables 
 
The effects of the mechanisms in the last section were exposed for those mechanisms maintaining 
the rest of the variables off(=0), however, there are some remarkable combinations of variables 
that need special attention and that represent the key derivations from the stability assessment. 
 
Delays or measuring time + any other mechanism 
 
The delays and measuring time with any other mechanism are represented by the stability 
functions of the form 
 

𝑆 = 𝑓(𝐵𝐿𝐵, 𝑁𝐼𝑉𝐵, 𝜎, 𝑓, 𝑡𝑑𝑒𝑙𝑎𝑦 ≠ 0, 𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒 ≠ 0, 𝛼, 𝐾1) 
 
Their combination with any other variable has shown to have no significant impact in the stability 
of the controller. Table 5.3 shows three particular that were evaluated in  Figure 5.18 (a)-(c) with 
and without the effect of the delays.  
 

Table 5.3 – Particular Cases used to show the negligible effect of the delays and the measuring times 

 Variable Symbol Unit Particular 
cases D-M-1 

Particular 
cases D-M-2 

Particular 
cases D-M-3 

Global 
Cases 

Non-instant valve NIVB (-) 0 0 0 0 0 0 
Backlash BLB (-) 0 0 0 0 1 1 
Instrumental uncertainty σ m 0 0 0.1 0.1 0 0 
Filter f (-) 0 0 1 1 0 0 
Delay time tdelay s 0 1 0 1 0 1 
Measuring time tmeasure s 0 1 1 1 0 1 

 PI Controller parameter 1 α (-) 35 35 50 50 25 25 
 PI Controller parameter 2 K1 (-) 3 3 2 2 1 1 

Std dev Ratio of Std dev 
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Figure 5.18 – Time-series of the Particular cases from Table 5.3 

 
As shown in the figures the consideration of these mechanisms has no relevant impact on the 
stability and therefore may be neglected. However, the measuring time must be always 
considered when combined with uncertainties because it has no sense to have an instantaneous 
measuring instrument. 
 
 

Particular 
Case 
D-M-1 

Particular 
Case 
D-M-2 

Particular 
Case 
D-M-3 

tdelay = 0s 

tmeasure = 0s 

tdelay = 1s 

tmeasure = 1s 
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Backlash + Non-instant valve without Uncertainties 
 
The combination of the backlash and non-instant variables without uncertainties is represented 
by a stability function of the form 
 

𝑆 = 𝑓(𝐵𝐿𝐵 = 1,𝑁𝐼𝑉𝐵 = 1, 𝜎 = 0, 𝑓, 𝑡𝑑𝑒𝑙𝑎𝑦, 𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒 , 𝛼, 𝐾1) 
 
Such a combination results to have little impact on the stability of the system as shown in figures 
This occurs because though backlash does not have asymptotic stability, its amplitudes are very 
narrow, thus Δτ is in general kept under Δτmax and therefore Δτeff = Δτ. Figure 5.19 shows the 
Particular Case C from Table 4.4 for only backlash, only non-instant valve and the combination 
of both and, as may be seen, when backlash is combined with non-instant valve without 
uncertainties, the backlash predominates over non-instant valve effects. 
 

 
Figure 5.19 - Comparison of the time-series of Particular Case C from Table 4.4 for only backlash, only non-instant valve and 

the combination of both 
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Uncertainties + Backlash 
 
In both uncertainties and backlash consideration there was no asymptotic stability in the dynamic 
system, and they were the most relevant cases when the other variables are not considered, 
however, when both mechanisms are combined, namely 
 

𝑆 = 𝑓(𝐵𝐿𝐵 = 1,𝑁𝐼𝑉𝐵, 𝜎 ≠ 0, 𝑓, 𝑡𝑑𝑒𝑙𝑎𝑦, 𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒 , 𝛼, 𝐾1) 
 
the backlash effects vanish because due to the uncertainties in general 
 

𝑔𝑎𝑝𝑛𝑒𝑔
𝑖−1 > ∆𝜏𝑖       𝑜𝑟      ∆𝜏𝑖 > 𝑔𝑎𝑝𝑝𝑜𝑠

𝑖−1 
 

∆𝜏𝑟𝑒𝑎𝑙
𝑖 ≠ 0 

 
Therefore, when they are combined the uncertainties effects have more weight and backlash 
effects become negligible, as shown in Figure 5.20 where the Particular Case B from Table 
4.4Figure 4.4 has been evaluated also for only backlash and for the combination of backlash and 
uncertainties. 
 

 
Figure 5.20 - Comparison of the time-series of Particular Case B from Table 4.4 for only uncertainties, only backlash and the 

combination of both 
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Non-instantaneous valve + Uncertainties 
 
Although the non-instantaneous valve has shown to have no impact in the stability while keeping 
the other variables off, it takes a key role when it is combined with the instrumental uncertainties, 
i.e., 
 

𝑆 = 𝑓(𝐵𝐿𝐵, 𝑁𝐼𝑉𝐵 = 1, 𝜎 ≠ 0, 𝑓, 𝑡𝑑𝑒𝑙𝑎𝑦, 𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒 , 𝛼, 𝐾1) 
 
This situation occurs because it is when uncertainties are considered that significant values of Δτ 
take place, causing the available Δτeff to have an important effect and making it not certain 
whether the desired operations will be actually achieved. To examine this situation in a more 
detailed way, let us analyse the Particular Case B from Table 4.4 including this time the non-
instant valve and evaluated with and without filter. 
 
When the filter is considered (Figure 5.21) 
 

𝑆 = 𝑓(𝐵𝐿𝐵, 𝑁𝐼𝑉𝐵 = 1, 𝜎 ≠ 0, 𝑓 = 1, 𝑡𝑑𝑒𝑙𝑎𝑦, 𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒 , 𝛼, 𝐾1) 
 

 
Figure 5.21 – Time-series of the Particular Case B from Table 4.4 with filter and non-instant valve 
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the effects of the non-instant valve are important but less harmful for the stability because the 
filter gives the opportunity to perform gradual opening/closing operations in the valve. This 
situation has been depicted in Figure 5.21 amplifying a little interval of time and enclosing with 
a blue square a portion of the function Δτeff, where a gradual change could be performed due to 
the filter effects.  
 
In contrast when a filter is not considered (Figure 5.22) 
 

𝑆 = 𝑓(𝐵𝐿𝐵, 𝑁𝐼𝑉𝐵 = 1, 𝜎 ≠ 0, 𝑓 = 0, 𝑡𝑑𝑒𝑙𝑎𝑦, 𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒 , 𝛼, 𝐾1) 
 

 
Figure 5.22 - Time-series of the Particular Case B from Table 4.4 without filter and non-instant valve 

 
The non-instantaneous valve becomes a big problem in the stability assessment, because without 
a filter and with big instrumental uncertainty, the values of Δτ become significantly high respect 

to the other cases. Although the model was programmed to adjust the equations when filter was 
not considered (as shown in Figure 4.5 and equations (4.40) to (4.43) ) the differences in the 
amplitude of the oscillations considering filtering or not showed to be very high. To illustrate 
this situation, Figure 5.23 and Figure 5.24 show the standard deviations s_Hf,w of the set global 
cases from Table 5.4. Both sets of global cases include non-instant valve and uncertainties with 
and without filter. 
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Table 5.4 – Set of Global Cases used to show the effect of the combination of the uncertainties and non-instant valve 

Variable Symbol Unit Set of Global  
Cases G 

Set of Global  
Cases H 

Non-instant valve NIVB (-) 1 1 

Backlash BLB (-) 0 0 

Instrumental uncertainty σ m 0.05 0.1 
Filter f (-) 0, 1 0, 1 
Delay time tdelay s 1 1 

Measuring time tmeasure s 1 1 

 
 

 
Figure 5.23 – Standard deviation matrices of the forebay level of the set of Global Cases G from Table 5.4 

 

 
Figure 5.24 - Standard deviation matrices of the forebay level of the set of Global Cases H from Table 5.4 

 

σ = 0.05m 

σ = 0.1m 
 

f=0 

 

f=1 

 

f=0 

 

f=1 
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As observed from Figure 5.23 and Figure 5.24, the usage of a filter can reduce the standard 
deviation significantly. In the worst case scenario, which corresponds to σ=0.1m, the usage of 

filter may keep the standard deviation even under a meter and for pairs (α, K1) well inside the 
curve, enclosed with a red square (approximately in the range of (20≤α≤50, 1≤K1≤3.5)) the 
standard deviation may be kept even around 0.5m whereas when a filter is not used, for either 
σ=0.05m or σ=0.1m, the standard deviation is in general equal or greater than 1.5m. 
 
In general, such combination of non-instantaneous valve with uncertainties and no filter showed 
to change absolutely the behaviour. Figure 5.5 shows the Global Case E where this combination 
was used and inspecting the mean values it could be thought that the cases are in general unstable, 
however, when a particular case of this global case is analysed, using values of α=55 and K1=4, 
the situation depicted in Figure 5.25 is observed. The Mean value of Hf(t) is evidently away from 
Htarget but the particular case does not seem to have a strong instability, meaning that nor remarked 
filling or emptying of the forebay nor unreasonable values of τ (e.g. negative values) are 
observed. A similar situation was found for pairs (α, K1) out of the BM stability limit curve as 
shown in Figure 5.25, where the same global case with α=20 and K1=7.5, showed not to be 
strongly unstable. 
 
When the combination of non-instant valve with uncertainties and no filter is thus used, it is 
obtained: deviated mean and wide oscillations but no strong instability for the whole α - K1. The 
incompatibility of these results suggests that the non-instant valve effects should not be 
considered as in equations (4.40) to (4.43) but should be implemented in the tuning of the PI 
Controller itself rather than from this numerical approach. 
 
 
 
 
 

 
Figure 5.25 – Time-series of two particular cases, one with (α=55, K1=4) and the other one with (α=20, K1=7.5)), of the 

Global Case E from Table 4.5 

 

α = 55 
K1 = 4 

α = 20 
K1 = 7.5 
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5.3.3. Exponential fit as a stability criterion 
 
Up to this point a lot has been said about the effect of the mechanisms on Hf or τ themselves but 
none has been said about the stability criterion to define mathematically if they were stable or 
not. The exponential fit technique showed to be an effective stability criterion when the 
oscillations of Hf showed an asymptotic stability as was observed in any case where uncertainties 
or backlash were not considered, that is where 
 

𝑆 = 𝑓(𝐵𝐿𝐵 = 0,𝑁𝐼𝑉𝐵, 𝜎 = 0, 𝑓 = 1, 𝑡𝑑𝑒𝑙𝑎𝑦, 𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒) 
 
In such cases the 0-values can be easily interpolated in the exponential fit matrix [Sw] because 
they show a clear monotonical decay until some (α, K1) pairs and then amplify. In addition, for 
such cases, a small zone shown in green colour is enclosed (Figure 5.3) representing a zone 
defined as very stable zone where Hf did not even oscillated around Htarget but converged 
immediately as can be observed in Figure 5.26 where the following particular case was simulated 
 

𝑆 = 𝑓(𝐵𝐿𝐵 = 0, 𝑁𝐼𝑉𝐵 = 0, 𝜎 = 0, 𝑓 = 0, 𝑡𝑑𝑒𝑙𝑎𝑦 = 0, 𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 0, 𝛼 = 35, 𝐾1 = 0.5) 
 

 
Figure 5.26 – Time-series for a particular case in the very stable zone 

 
The nearby points to this zone are also very stable cases as they show very fast convergence to 
Htarget or small oscillations around it, so it is convenient to defined as optimum stability zone the 
pairs (α, K1) contained in the following domain (Figure 5.27) 
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20 ≤ 𝛼 ≤ 50 
 

0 < 𝐾1 ≤ 2 
 

 
Figure 5.27 – optimum stability zone on the α - K1 plane 

 
When the uncertainties or the backlashes are considered, the peaks oscillations of Hf around Htarget 
do not have a monotonical decay but have a random behaviour as may be seen in Figure 5.28 
which show the particular cases B and D from Table 4.4. 
 

 
Figure 5.28 – Exponential fit applied on the Particular cases B and D 



74 
 

Because of this randomness, when the exponential fit is applied, the fitting parameter 𝑆𝑤,𝛼𝑥,𝐾1𝑦 
may take any value and as a consequence, the interpolation of the 0-values in the exponential fit 
matrix [Sw] does not enclose a defined stability limit curve as shown in Figure 5.3 for the set of 
global cases C which has been amplified in  Figure 5.29 
 

 
Figure 5.29 – Exponential fit for the set of global cases C 

 
5.3.4.  Mean deviation, Standard deviation, and ratio of standard deviation matrices 

 
The mean deviation, standard deviation and the ratio of standard deviation matrices graphs show 
information about the centre and the amplitude of the oscillations. From the obtained matrices it 
is possible to say that 
 

- The mean deviation is not affected by any global cases and thus the centre of the 
oscillations remains very close to Htarget. 

- The amplitude of the oscillations is very narrow where there is asymptotic stability and 
do not represent a problem for the dynamic system, but for the cases in which there are 
uncertainties this becomes an important issue. In the graphs, many of the uncertainties’ 

cases show standard deviations of 1m or more, therefore, attention must be paid to the 
maximum amplitude and safety zones where the Hf may be allowed to oscillate. 

- It is important to notice the amplitude differences of using or not filtering, because as 
shown in the graphs a difference between their standard deviations may have values up 
to 50cm. Nevertheless, as has been said before the combination of non-instantaneous 
valve with no filtering should not be analysed because of the incompatibility of the results 
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5.3.5. Results summing-up 
 
To end the discussion, Table 5.5 summarized the effect of the variables and their combinations 
as well as the effect of the stability criterion and the statistical analysis.  
 

Table 5.5 – Results summary 

Variable Method of analysis Effect of the  
variable alone 

Remarkable 
combination 

Final  
observations  

Expfit Statistical 

Transients ✔ ✔ Negligible - - 

Non-instant valve ✔ ✔ Negligible 

Very harmful 
when 
combined with 
uncertainties 

Should be 
implemented in 
the PI Controller 
tuning 

Backlash ✘ ✔ 

No asymptotic 
stability 
but small 
amplitude of 
oscillations 

When combined 
with uncertainties 
it is negligible 

Backlash may 
increase in 
time due to wear 
of mechanical 
parts 

Instrumental  
uncertainty ✘ ✔ 

No asymptotic 
stability 
but considerable 
amplitude of 
oscillations 

Very harmful 
when combined 
with non-instant 
valve effects 

Consider 
implementation 
in PI controller 
tuning 

Delay time ✔ ✔ 
Negligible for the 
considered values 
of tdelay 

Negligible for any 
combination - 

Measuring  
time ✔ ✔ 

Negligible for the 
considered values 
of tmeasure 

Negligible for any 
combination - 

 
 

5.3.6. Redefining stability and new stability criteria 
 
Until now and based on the stability criterion of the exponential fit only for the global cases 
without uncertainties or backlash a defined stability limit curve has been obtained and only for 
their particular cases the dynamic systems have been classified as “stable” or “unstable”. The 
results obtained from the exponential fit showed not to be suitable for any global case having 
uncertainties or backlashes because the time-series of their particular cases did not expose 
monotonic decay or asymptotic stability. However, for such cases, although the oscillations of 
Hf(t) did not damp or converge to Htarget, as long as the (α, K1) pairs remained under the BM 
stability curve, the oscillations of Hf(t) did not amplify, giving a new sense of stability. This 
suggests that stability may be also assessed for these cases if the concepts of “stability” in a 

mathematical way and the stability criterion are changed. 
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In this sense, let us redefine stability and divide it in two types, the first being the already defined 
asymptotic stability based upon convergence of Hf(t) to Htarget throughout time using the 
exponential fit criterion, hence using the same equations from chapter 3 for a particular case  
 

𝑎𝑠𝑤,𝛼𝑥,𝐾1𝑦 = {
1; 𝑆𝑤,𝛼𝑥,𝐾1𝑦 < 0 

0; 𝑆𝑤,𝛼𝑥,𝐾1𝑦 ≥ 0
 (5.8) 

 
 
Where S is the exponential fit parameter from equation (4.71). The stability limit curve is found 
afterwards using the interpolation of S=0 along the exponential fit matrix. 
 
Now, let us define a second type of stability called pseudo-stability  
 

𝑝𝑠𝑤,𝛼𝑥,𝐾1𝑦 = {
1; 𝑝𝑠1𝑤,𝛼𝑥,𝐾1𝑦 = 1 𝑎𝑛𝑑 𝑝𝑠2𝑤,𝛼𝑥,𝐾1𝑦 = 1

0; 𝑒𝑙𝑠𝑒 𝑐𝑎𝑠𝑒
 (5.9) 

 
 
Where  
 

𝑝𝑠1𝑤,𝛼𝑥,𝐾1𝑦 = {
1; |∆𝐻𝑓,𝑤,𝛼𝑥,𝐾1𝑦
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅| ≤ ∆𝐻𝑙𝑖𝑚 

0; |∆𝐻𝑓,𝑤,𝛼𝑥,𝐾1𝑦
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅| > ∆𝐻𝑙𝑖𝑚

 

 
 

(5.10) 

𝑝𝑠2𝑤,𝛼𝑥,𝐾1𝑦 = {
1;   𝑠_𝐻𝑓,𝑤,𝛼𝑥,𝐾1𝑦 ≤ 𝑠_𝐻𝑙𝑖𝑚 

0;   𝑠_𝐻𝑓,𝑤,𝛼𝑥,𝐾1𝑦 > 𝑠_𝐻𝑙𝑖𝑚
 (5.11) 

 
 
∆𝐻𝑓,𝑤,𝛼𝑥,𝐾1𝑦 and 𝑠_𝐻𝑓,𝑤,𝛼𝑥,𝐾1𝑦 are the mean deviation and the standard deviation defined in 
equations (4.79) and (4.76) 
 
This means that a new type of stability has been created based upon the fact that Hf(t) of a 
particular case may oscillate around Htarget without converging to it but without amplifying its 
oscillations. The pseudo-stability type I (ps1) refers to the centre of the oscillations and limits the 
mean deviation and the pseudo-stability type II (ps2) refers to the amplitude of the oscillations 
and limits their width. The values of ΔHlim and s_Hlim are not fixed and depend on the particular 
case considered, because every plant has its own restrictions and the designer shall have 
knowledge of the restrictive value that keeps the oscillations harmless to the conditions of the 
plant. 
 
The stability limit curves based on pseudo stability may be found inspecting the limit values of 
the both types of pseudo-stability or shall be omitted simply performing the stability assessment 
for pairs of (α, K1) under the BM case stability curve. 
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5.3.7. Recommendations in the design and the running on the plant 
 
After deriving the consequences of considering each of the mechanisms, some recommendations 
in the design or the running phases may be proposed: 
 

1. Considering the transients in the flow may be negligible because their effect made the 
stability limit curve to shrink slightly compared to Jimenez’s model 

2. The values of delays and measuring times should be kept as little as possible. It has been 
proven that when the values remain in the ranges used in this document, they can be 
neglected. 

3. When considering backlash effects, though the dynamic system does not show asymptotic 
stability, there is no significant impact on the oscillations as they remain very narrow. 
However, it should be highlighted that the backlash effects were considered constant in 
time but they may change after some months or years of operation due to wear of the 
mechanical parts and therefore changing their impact on the flow control system 

4. Since the instrumental uncertainties are the most significant mechanism considered, 
special attention should be paid to them and the precision of the instrument should be 
kept in ranges less than 0.05m. It was proved that keeping the uncertainties under this 
value allows to have very narrow oscillations. 

5. The non-instantaneous valve should be only used with filtering when considered with the 
uncertainties case. However, in general, to the author’s opinion, the non-instant valve 
effects should be included in the PI Control tuning rather than in the numerical 
simulations. 

6. APPLICATION (STUDY CASE) 
 
To validate the information extracted from the simulations applied on the Palomo Hydroelectric 
Project in Costa Rica, a set of simulations were also applied in the Bajo Tuluá ROR hydropower 
plant in Colombia. This plant, unlike the Palomo one, had a different hydraulic scheme because 
the surge tank was not directly linked to the tunnel but was connected with a standpipe, as shown 
in Figure 6.1. 
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Figure 6.1 – Bajo Tuluá ROR Hydropower plant scheme adapted from Chaudhry (1979) 

 
The Bajo Tuluá ROR hydropower plant has two Francis turbines and the characteristics shown 
in Table 6.1 
 

Table 6.1 – Characteristics of the Bajo Tuluá ROR Hydropower plant  

Variable Symbol Unit Value 
Incoming river flow Qin m3/s 12 

Surface area of the forebay Af m2 810.98 

Surface area of the surge tank As m2 102.07 

Tunnel Length Lt m 5735.04 

Penstock length Lp m 398.03 

Standpipe length Lsp m 106.73 

 
The behaviour of the plant was simulated for the same particular cases from Table 4.4 and the 
results are shown in Figure 6.2 
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Figure 6.2 – Results of the particular cases A, B, C and D for the Bajo Tuluá ROR Hydropower plant 

 
The results show to be compatible with those obtained in Chapter 5 and therefore the model 
shows to be applicable. 
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