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Abstract

Free-flying robots have been recently developed to operate on-board the Inter-
national Space Station (ISS) as semi-autonomous robotic assistants. Free-flyer
robots can be designed as modular base for integration of a wide range of hardware
and software as monitoring and maintenance tools of ISS systems. Thus, the free-
flyers are the ideal platform for manual observation of the ISS by ground control,
autonomous sensor readings and surveying of ISS conditions, and human-robot
interaction during long duration human missions. The NASA Astrobee project
aims to develop a highly capable robot that can operate for long periods of time
without crew supervision or operation.
The goal of this research is to realize a model and a robust attitude control system
for the NASA Astrobee, which is a free-flyer equipped with a 3 DoF manipulator.
Two subsystems, the Astrobee’s main body and the manipulator, have been mod-
elled and controlled independently, considering the torques and the disturbances
due to the manipulator motion.
For the attitude control and stabilization of the main body, the twisting sliding
mode controller (TW-SMC) and the back-stepping controller are proposed, while
for the manipulator motion a first order sliding mode controller is proposed. Ro-
bustness and performance are analyzed to show the effectiveness of the proposed
control system. First, the TW-SMC is designed to achieve a trade-off among control
law flexibility, robustness and precision attitude control. Among robust control
strategies, SMC are characterizes as low complexity, low computational and low
cost control methods. Including the chattering attenuation introduced with the
second order SMC and the hyperbolic tangent in the reaching law, the TW-SMC
is a suitable approach for the Astrobee’s main body attitude control.
The TW-SMC is compared with a back-stepping approach, which consist in an
adaptive controller based on Lyapunov functions, that use an iterative algorithm for
the control design. The controller outputs are torque taking into account attitude
error, the arm torque and motion, and the inertia variation, leading the Astrobee
to track the desired attitude.
Controllers’ performance is evaluated and analyzed both in MATLAB/Simulink
enviroment and with the NASA’s ROS/Gazebo Astrobee simulator. Simulink-ROS
combined simulations have been run to test the arm motion stabilization, attitude
changing and their combination. To show the robustness of the proposed control
methodologies, simulations with variable body mass, links masses and end-effector
mass have been run to test the controllers in off-design conditions.





Summary

Questo progetto si colloca nel recente scenario di ricerca riguardante la proget-
tazione di robot autonomi capaci di assistere gli astronauti all’interno della Stazione
Spaziale Internazionale (ISS). Il progetto Astrobee, condotto da NASA, asprira a
progettare un robot dotato di braccio meccanico, capace di operare autonomamente
all’interno della stazione spaziale per lunghi periodi di tempo.
L’obiettivo di questa ricerca è la realizzazione del modello matematico dell’Astrobee
e la progettazione di un controllore d’assetto robusto, capace di stabilizzare il volo
durante l’utilizzo del braccio robotico, cosiderando le coppie e i disturbi introdotti
dal suo movimento.
I due sistemi, corpo principale e braccio robotico, sono stati modellati e controllati
separatamente. Il twisting sliding mode controller (TW-SMC) e il backstepping
controller vengono proposti come controllori d’assetto, mentre per il controllo del
braccio robotico è stato utilizzato uno sliding mode controller (SMC) del primo
ordine.
Prima il TW-SMC è stato progettato raggiungendo un compromesso tra flessibilità,
robustezza e precisione del controllo. Generalmente i SMC sono caratterizzati da
bassa complessità, basso costo computazionale ed elevata robustezza, rendendo il
TW-SMC un possibile approccio per il controllo d’assetto dell’Astrobee.
Il TW-SMC è stato confrontato con il backstepping controller, che consiste in un
controllore adattivo, che sfrutta un algoritmo iterativo per la definizione della
legge di controllo. Questo controllore richiede un costo computazionale più alto,
ma il suo output sarà una coppia che considera l’errore d’assetto, la variazione
d’inerzia introdotta dal movimento del braccio e la coppia di disturbo, permettendo
all’Astrobee di mantenere l’assetto desiderato.
Le prestazioni dei controllori sono state valutate ed analizzate in ambiente MAT-
LAB/Simulink e con il simulatore NASA dedicato all’Astrobee, progettato in
abiente ROS/Gazebo. Sono state quindi eseguite simulatzioni combinate Simulink-
ROS per valutare il controllo d’assetto e la stabilizazzione del braccio robotico. Per
mostrare la robustezza delle strategie di controllo proposte, simulazioni con massa
variabile di corpo e braccio robotico sono state effettuate per valutare i controllori
in condizioni fuori progetto.
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Chapter 1

Introduction

The goal of this thesis is to design the attitude controller for a free-flyer robot op-
erating in the International Space Station (ISS). In particular, the NASA Astrobee
project has been considered, which aim to develop a highly capable robotic system,
equipped with a robotic arm, able to operate for long periods of time without crew
supervision. The Astrobee navigation and control system is based on trajectory
execution that are generated by ground station control or by the Astrobee’s flight
software. A Proportional-Integral-Derivative (PID) controller calculate forces/-
torques commands designed to overcome the error between the actual state and the
desired trajectory [1]. This control strategy leads to some challenges: first, since
the propulsion system has been projected as fan-based, it is non-trivial to calibrate
the propulsion physics model needed by the force allocator; second, the Astrobee
configuration changes, such as moving arm and adding or removing payloads, will
induce inertial property changes and new disturbance; third, during activities like
perching and docking, the controller will need to accommodate contact forces.

The coordinated control of attitude and manipulator is a topic discussed in
several researches about aerial and space manipulators, where the disturbances
introduced by the manipulator usage are reported, and robust control strategies
are proposed to stabilize the system [2, 3]. As well, the Astrobee is subjected
to variable disturbances induced by the manipulator motion, and it is why the
realization of an attitude controller able to stabilize the disturbances induced by the
Astrobee configuration changing and the manipulator motion is needed. Since both
the main body and the manipulator are non linear systems in terms of dynamics
and kinematics, the attitude controller should ensure high accuracy and robustness
against external disturbances and parameters variation [4]. The twisting sliding
mode controller (TW-SMC) has been proposed for precise attitude control. Among
robust control strategies, sliding mode controllers (SMC) are characterizes as low
complexity, low computational and low cost control methods, making the TW-SMC
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Introduction

Figure 1.1: IVA Freeflyers [7]

a suitable approach for the Astrobee’s main body attitude control [5].
The TW-SMC has been compared with a backstepping approach, which consist in
an adaptive controller based on Lyapunov functions. The controller outputs are
torques taking into account attitude error, disturbance torque and inertia varia-
tion induced by the arm motion, despite an higher computational cost than SMC [6].

Free-flying robots have been recently developed to operate on board the ISS as
semi autonomous robotic assistants, offering the opportunity to complement the
astronauts for monitoring and maintenance works.
Recently several free-flyer projects have been developed to perform intravehicular-
activity (IVA) on the ISS. The Synchronized Position Hold Engage and Reorient Ex-
perimental Satellites (SPHERES) project has been really successful as micro-gravity
research platform. Astrobee project is growing up on the legacy of SPHERES,
with the objective of improving the characteristics that limit its usefulness for ISS
operations. In fact, SPHERES use CO2 for propulsion, so the crew is needed to
refill CO2 tanks and change batteries, and for safety consideration SPHERES are
not allowed to work without crew supervision [8].
Int-Ball and CIMON are further examples of free-flyers already employed in the
international space station. Int-Ball, developed by Japan Aerospace Exploration
Agency (JAXA), is a free flying video-camera equipped with micro-fans and reaction
wheels to freely move in the ISS environment. It localize itself by using markers,
ultrasonic distance sensors and an on-board camera, so it is more autonomous than
SPHERES, but it still needs crew support for batteries recharging [7]. CIMON is
multi-camera free-flier realized by Airbus, able to assist astronauts by displaying ex-
periment instructions, maintenance procedures, and other documents and media [7].

The NASA Astrobee project aim to develop a highly capable robotic system to
help astronauts during routine duties, and letting them focus on operations that
only humans can do. It consist in a cubed-shaped robot, equipped with a 3 degrees
of freedom (DoF) manipulator, able to perform IVA. Thus, it is the ideal platform
for manual observation of the ISS by ground control, autonomous sensor reading
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and surveying of ISS conditions, and human-robot interaction during long duration
human missions.
The Astrobee system has been primary projected to be a platform for guest science,
to provide remotely operated mobile camera and to perform as mobile sensor
inside the ISS. Its technologies, including propulsion, navigation, co-located human
interaction and a payload interface, make the Astrobee the base to study concepts
of operations for future deep space missions, including robotic caretaking of manned
human spacecraft [7].

1.1 Overview
The goal of this research is to realize a model and a robust attitude control system
for NASA Astrobee robots. Specifically, TW-SMC and backstepping controller
have been implemented, analyzed, and compared for precise attitude control and
manipulator motion stabilization.

• In chapter 2, the Astrobee system is described in all its technologies and
features. Thus, all the mathematical equations to describe the system dynamics
are shown and explained in detail. The kinematics is studied with quaternion
formulation, while the Astrobee dynamics equation is derived from the angular
momentum conservation. Moreover, it’s explained the manipulator dynamics
and how its motion have an effect in the attitude dynamics.

• In chapter 3, the theoretical references of sliding mode controllers and back-
stepping controllers are introduced, and their features and characteristics are
presented.

• In chapter 4, the controllers are analyzed in detail, and the control problem of
main body attitude and manipulator is discussed. First, the first order sliding
mode controller for the manipulator motion is designed. Then, TW-SMC
and back-stepping controller are designed for the attitude control, underlining
their differences in control methodologies and implementation.

• In chapter 5, the simulations’ results of TW-SMC and back-stepping con-
troller tests are showed and analyzed. Moreover, to show the robustness
of the proposed control methodologies, simulations with variable Astrobee
parameters have been run to test the controllers in different condition of body,
manipulator’s links and end-effector masses.

• In chapter 6, the NASA’s ROS/Gazebo Astrobee simulator is presented and
ROS-Simulink combined simulations results are showed.

• In chapter 7, conclusions and future work are briefly discussed.
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Chapter 2

Astrobee system description
and mathematical model

The Astrobee system is a 32cm-on-a-side cube shaped robot able to move in each
direction and around any axis. To achieve the long time operation uses without
crew supervision or intervention, the Astrobee has been projected with a fan-based
propulsion system, that frees it from needing any consumables except for battery
charge, but it will able to replenish its charge by autonomously connecting to its
docking station.

The overall design and component breakdown is showed in Figure 2.1. The
propulsion system consists in two propulsion modules, which include a centrifugal

Figure 2.1: NASA Astrobee design and component breakdown [7]
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fan, to pressurize the module, and nozzles on each axis to allow 6 Degrees-of-
Freedom (DoF) holonomic control. Moreover, Astrobee will be equipped with a
perching arm able to grip to handrails to maintain the position without wasting
energy [1].
The power subsystem consists of Lithium Ion rechargeable batteries that the As-
trobee will be able to autonomously recharge when docked to its dock station [9].

The guidance, navigation and control (GNC) subsystem is essentially based
on visual-based navigation and IMU sensors to detect position and speed. The
forward face includes the NavCam, a fixed focus color camera, which send images
to the on-board visual navigation system, that provide situation awareness. The
forward face also include HazCam to detect obstacles with LIDAR, and SciCam
to stream live high-definition video. The back face is equipped with DockCam, to
trace the docking station position during autonomous docking maneuvers, and the
PerchCam, to detect ISS handrails for autonomously perching maneuvers [7, 1].
Moreover, to minimize collision risk, SpeedCam, that provides an optical estimation
of velocity, infrared ranging and IMU sensors, work together to cut off over-speed
levels.
To estimate its position the Astrobee combines the comparison between images
obtained trough the NavCam with an on-board map of the ISS interior and the
IMU inertial measurements [9].

The Astrobee can communicate with ground control or crew toward the ISS
WiFi, accepting commands and sending telemetry data. To exchange large files,
an Ethernet wired connection can be established in the dock station. Thus, to
avoid data losses, the Astrobee can keep on-board logs and the user can downlink
a complete copy after the activity [7].

The Astrobee is equipped with a pearching arm in its top-aft bay that allow it
to grasp ISS handrails and objects [10]. The manipulator has three DoF and it is
composed of two joints and a gripper. When not in use, the manipulator is stowed
in the top payload bay, while the joints allow the arm deploying and motion for
grasping. Its grip is not strong enough to injure crew, that can manually backdrive
the gripper and arm to perch the robot on an handrail when no needed. When the
arm is perched to an handrail, the Astrobee powers down the propulsion system
and the joints work for the SciCam pointing [7, 9].

The Astrobee is designed to interact with ISS crew and flight controllers. Thus,
it can be also used for human-robot interaction research. It is equipped with touch
screen, speaker and microphone, signal lights, and a laser pointer to help the crew
understand its state and intentions and as telepresence for flight controllers [7, 1].
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The Astrobee system has been analyzed considering its uncertainties and distur-
bance, that’s why robust attitude controllers have been considered.

2.1 Astrobee’s dynamics model
The Astrobee is a cube shaped robot, equipped with a manipulator, that will
influence the attitude dynamics of the main body. In fact, the manipulator motion
leads to a disturbance torque and a gyroscopic torque, as well as, to the overall
inertia changing. Moreover, its motion generate the shifting of the centre of mass
(CoM) [11].

Considering the body reference frame centered in the CoM of the main body
parallel to the Astrobee edges and oriented with the positive values of the x-axis
along the arm deployed position, z-axis along the arm vertical position and y-axis
to complete the Cartesian triad, as shown in Figure 2.2. For hypothesis, the CoM
of the combined structure, main body and manipulator, is assumed to be fixed in
the position of the CoM of the main body. Since the main body is much heavier
than the manipulator, the fixed CoM assumption leads to negligible errors. In this
way, the Astrobee inertia matrix can be obtained from:

J = Jbody + Jarm,0 (2.1)

where Jarm,0 is the inertia matrix of the manipulator referred to the CoM, that is
variable with the arm position, and Jbody is the inertia matrix of the main body
that is approximately constant value.

Attitude dynamics

The Astrobee’s dynamics can be derived from the the angular momentum conser-
vation [12], that can be expressed in the inertial reference frame by

Ti = Ḣi (2.2)

that can be rewritten in the body reference frame as

Ḣb = Tb − ωbi ×Hb (2.3)

The angular momentum of the combined system in the body reference-frame is
determined from both main body rotation and manipulator motion.

HB = Jω + Jarmωarm (2.4)
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Figure 2.2: Manipulator model

where the term Jarmωarm represents the angular momentum of the manipulator
rotation part around each joint expressed in the body reference frame. Thus, by
exploiting the angular momentum in Equation (2.3), as expressed in Equation (2.4),
the attitude dynamic equation can be determined

J̇ω + Jω̇ + J̇armωarm + Jarmω̇arm = T − ω × (Jω + Jarmωarm) (2.5)
ω̇ = J−1(Tcmd − Tarm)− J−1[ω × (Jω + Jarmωarm) + (J̇ω + J̇armωarm)] (2.6)

where each term linked to the manipulator motion can be determined from the
manipulator dynamics as expressed in the next section.
The quaternion formulation can be used to describe spatial rotations thanks to their
compactness, low computational cost and their lack of singularity. Determined
the angular velocity from the dynamics, the attitude can be computed with the
kinematics quaternian formulation:

q̇0
q̇1
q̇2
q̇3

 =


0 −ωx −ωy −ωz
ωx 0 −ωz ωy
ωy ωz 0 −ωx
ωz −ωy ωx 0



q0
q1
q2
q3

 (2.7)

Manipulator dynamics

As shown in Figure 2.2, the Astrobee’s manipulator can be modelled as a 2-link
robotic arm, where the first joint provides to open/close motion and the second one
to side motion. Let’s consider the first joint placed in the middle of the cube edge

x1 =


l/2
0
l/2

 (2.8)
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Defining θ1 as the first joint angle, and assuming as θ1 = 0 for the configuration
with deployed manipulator, the position of the second joint can be determined with

x2 = L1


cos(θ1)

0
sin(θ1)

 + x1 (2.9)

Defining θ2 as the second joint angle and assuming as θ2 = 0 for the aligned
configuration of the two links, the position of the end-effector can be determined
with

xEE = L2


cos(θ1)cos(θ2)

sin(θ2)
sin(θ1)cos(θ2)

 + x2 (2.10)

The joint angles θ1 and θ2 identify the arm state and can be determined from the
arm dynamics, expressed by one equation for each jointθ̈1 = M1

J1

θ̈2 = M2
J2

(2.11)

where Mi is the applied torque in the i-th-joint, and Ji identify the inertia of the
manipulator rotating part around each joint. Considering the overall torque applied
for the manipulator motion, it can be written in the body reference frame as

Tarm =


−M2cos(θ1)
−M1

M2sin(θ1)

 (2.12)

where the vector Tarm represents the product Jarmω̇arm expressed in the body
reference frame. From Tarm, the disturbance torque that acts in the main body
dynamics can be defined as

Tdis = −Tarm =


M2cos(θ1)

M1
−M2sin(θ1)

 (2.13)

In the same way, the manipulator angular momentum can be expressed in the body
reference frame as

harm = Jarmωarm =


J2ω2cos(θ1)

J1ω1
−J2ω2sin(θ1)

 (2.14)

The manipulator motion provides the overall inertia changing, which is determined
from the manipulator position. The overall inertia is computed in reference to the
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CoM of the main body, and it can be expressed by the sum of the body inertia
matrix, approximately constant, and the manipulator contribution as expressed in
the equation (2.1). Thus, the inertia variation can be expressed by the following
equation

J̇ = J̇body + J̇arm,0 (2.15)

Since the main body’s inertia matrix is constant, the inertia variation is completely
due to the manipulator term that be computed with

J̇ = J̇arm,0 = ∂Jarm,0
∂θ

∂θ

∂t
= ∂Jarm,0

∂θ
ωarm (2.16)

The inertia variation can be computed according to the manipulator state variables.
The matrix formulation output is a vector containing each inertia variation terms
that leads to the inertia variation matrix.

In this way, it is possible to define each terms in the main body attitude dynamics
due to the manipulator motion. If the manipulator is not moving, the attitude
dynamic can be traced back to the Euler equations, where the inertia is determined
by the main body inertia and the manipulator contribution, that will be a constant
value refered to the manipulator position. Thus, when the manipulator is moving,
each terms, introduced before, can be considered as a disturbance due to its motion,
and the overall inertia will change according to the manipulator position.

9



Chapter 3

Control strategies

The attitude and manipulator dynamics are both described by nonlinear systems,
and subjected to variable disturbances and inertia properties changing. Thus, the
attitude controller should assure high accuracy and robustness against disturbances
and parameters variation.
In this chapter the sliding mode and the backstepping approaches are introduced
and described.

3.1 Sliding mode approach
SMC is widely used to control nonlinear systems. It shows some noise-rejection
properties as a robust method. It is characterized by a solid mathematical base,
and its most important feature is the robustness against imprecise knowledge of
the controlled system and disturbances [5, 13].
The controller goal is to satisfy the tracking control problem, which means that
the plant output signal y(t) needs to reach in finite time the reference signal yr.
This can be mathematically expressed by

y(t)→ yr(t) t > tr (3.1)

The controller sends an input signal to the plant that is a function of the plant
state x(t) and output y(t).
SMC consists in the definition of a sliding surface σ, which has to be reached by
the system. Thus, the control forces lead the system on σ, and let it slide on the
surface, as shown in Figure 3.1.

The sliding surface is defined by a linear combination of the tracking error
derivatives

σ = kγe
(γ) + kγ−1e

(γ−1) + ...+ k1e (3.2)

10
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Figure 3.1: Sliding mode convergence [14]

where the terms ki have to lead to negative real part roots in the polynomial P (x),
defined as

P (x) = kγx
γ + kγ−1x

γ−1 + ...+ k1x (3.3)

When the trajectory is confined on the sliding surface, the tracking error will reach
0 in exponential way, according to the roots of P (x).

First-order sliding mode controller

Let’s consider the following single-input-single-output (SISO) dynamic systemẋ = f(x) + g(x)u
y = h(x)

(3.4)

where x(t) ∈ Rn is the system state vector, y(t) ∈ R is the system output, and
u(t) ∈ R is the control input. The tracking error can be expressed by

ỹ = y − yr (3.5)

where yr(t) is the desired output. Lets consider the sliding surface, defined by the
following equation:

S = {x(t) ∈ R3 : σ(t) = 0} (3.6)

where σ(t) is a function of the tracking error derivatives, as shown in Equation (3.2).

The control law has to be computed so that the sliding surface is both invariant
and attractive. So, a discontinuous term is needed in the u definition.

11
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The ideal control law is expressed by using the sign function

u = −k sign(σ) (3.7)

To improve these properties the equivalent control can be introduced in the control
law definition. It consists in exploiting σ̇ = 0 to find a relation between u and
the system dynamics. Applying this control to the system leads to the natural
attraction to the surface. The equivalent control is not considered in this study
to keep the low complexity, low computational, and low cost characteristics of
the SMC methodology. However, the discontinuous term brings high frequency
oscillation around the sliding surface. To overcome this problem, defined chattering
effect, the sign function in the control law can be approximated with a sigmoid
function, as in Equation (3.8), partially losing robustness, or by using an higher
order sliding mode [15].

sign(σ) ≈ tanh(ησ) (3.8)

Twisting sliding mode controller

The twisting controller is a SMC that takes advantage of the first-order sliding
surface derivative to improve the controller performance and to reduce the chattering
effect [16]

u = −r1sign(σ)− r2sign(σ̇) (3.9)

where k1 ∈ R3 and k2 ∈ R3 are constant parameters.
As Equation (3.9) shows, the control law is expressed by u = u(σ, σ̇), thus, the
twisting controller belongs to the second-order SMC family. The generally r-th
order sliding modes is determined from

σ = σ̇ = σ̈ = ... = σ(r−1) = 0 (3.10)

Considering a general second-order derivative of the sliding surface, it is given by
[17]

σ̈ = h(t, x) + g(t, x)u g(t, x) /= 0 (3.11)

where the functions h and g are defined as

h(t, x) = |σ̈u=0| g(t, x) = ∂σ̈

∂u
(3.12)

Analyzing the system dynamics, the bounds of the functions h and g can be
computed as

|σ̈u=0| < C 0 < Km <
∂σ̈

∂u
< KM (3.13)
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Figure 3.2: Second order sliding mode trajectory [17]

In order to achieve overall stability of the controlled system and the requested
accuracy, the controller gains r1 and r2 have to satisfyKm(r1 + r2)− C > KM(r1 − r2) + C

Km(r1 − r2) > C
(3.14)

In practice the parameters are not assigned considering this inequalities, because
usually the real system is not exactly known or the model is not really adequate, so
C, Km and KM parameters estimation is much larger than the actual values [17].

3.2 Backstepping approach
The backstepping procedure consists in an iterative algorithm for the controller
design based on Lyapunov functions [18]. In control theory, a Lyapunov function is
a function V (x) that is continuously differentiable, positive definite and such that

∀x /= 0,∃u V̇ (x, u) = ∇V (x)f(x, u) < 0 (3.15)

where the last condition stands that for each state x, a control u able to drive V (x)
to zero can be found. Thus, it means that the controller is able to bring the system
to an equilibrium stable state.
The controller will be designed to satisfy the tracking problem. At every iteration,
the back-stepping controller builds a Lyapunov function that certifies the stability
of the tracked state and the needed control law to reach it.
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Figure 3.3: Generic dynamic system

A generic dynamic system is given by:ẋ1 = f(x1) + g(x1)x2

ẋ2 = u
(3.16)

As Figure 3.3 shows, the dynamic system can be divided into two subsystems: the
first equation can be represented by the inner closed-loop, while the second one by
the integration of the controller output.
Let’s assume that for the closed-loop system stands

ẋ1 = f(x1) + g(x1)φ1

where φ1 ∈ C1, such that x̄1 = 0 is an equilibrium state for the closed-loop system
and let’s assume that the Lyapunov function V1(x) that certifies stability of x̄1 = 0
is known, then the dynamics of the error of the control variable can be defined and
computed by ẋ1 = f(x1) + g(x1)(x2 − φ1(x1))

ẋ2 = u
(3.17)

Equation (3.17) can be rewritten applying the following coordinate change asη = x2 − φ1(x1)
v = u− φ̇1

(3.18)

In this way φ1 is back-stepped before the integrator and v is such that for v̄ = 0,
the state x̄1 = η̄ = 0 is an equilibrium state. Equation (3.17) can be so rewritten
as ẋ1 = f(x1) + g(x1)φ1(x1) + g(x1)η

η̇ = v
(3.19)
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A second candidate Lyapunov function is needed to define the control law. Let’s
consider the following Lyapunov function V2(x1, η)

V2(x1, η) = V1(x1) + η2

2 (3.20)

and its derivative
V̇2 = Dx1 [V1]ẋ1 + ηη̇ (3.21)

Replacing ẋ1 and η̇ as expressed in Equation (3.19), V̇2 can be rewritten as

V̇2 = Dx1 [V1](f(x1) + g(x1)φ1(x1)) +Dx1 [V1]g(x1)η + ηv (3.22)

Choosing
v = −Dx1 [V1]g(x1)− k̃η k̃ > 0 (3.23)

and replacing its value in Equation (3.22)

V̇2 = V̇1 − k̃η2 (3.24)

It finds out that the Lyapunov function V2 is negative defined, so the system is
asymptotically stable. Going back in the original coordinates, the control u can be
defined as

u = v + φ̇1 = Dx1 [φ1](f(x1) + g(x1)x2)−Dx1 [V1]g(x1)− k̃(x2 − φ1(x1)) (3.25)

The control law is a function of the system dynamics, so the control input is adapted
to the actual state of system by using the estimation provided from the system
dynamics mathematical model. In this way it is possible to design a control input
that takes into account all the disturbances introduced by the manipulator motion,
by accepting an higher computational cost than the SMCs [6, 19].
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Chapter 4

Astrobee’s controllers
design

The Astrobee model has been realized considering the two subsystems, the main
body and manipulator, coupled with the relations defined in the previous chapter.
This leads to design two different controllers, first one to execute the desired arm
motion and the second one to handle attitude stabilization and control [20].

Figure 4.1 shows the overall scheme for the Astrobee’s model implementation.
The arm controller has been implemented to track the desired manipulator motion,
while the attitude controller is needed to keep the system stable during the arm
movements and to handle precise attitude control. In this way, the Astrobee is
able to perform any autonomous task just modifying the reference signals. The
manipulator controller has been implemented using the sliding mode approach,
while for the attitude controller the second-order sliding mode and the backstepping
approaches are proposed as suitable options.

Figure 4.1: Astrobee’s Simulink implementation
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4.1 Manipulator motion control design
The manipulator controller has been implemented as a first-order SMC, which has
been chosen thanks to its low computational and low complexity features. It is
based on the definition of a sliding surface where the system is forced to move.
For the manipulator motion control, the sliding surface has been defined by the
manipulator state variable θ and ω, respectively the joints angles and rotational
speed as

σ = λθe + ωe (4.1)
where θe and ωe are the tracking errors, defined as the differences between the
desired and the actual joint angle and angular velocityθe = θ − θdes

ωe = ω − ωdes
(4.2)

To make the sliding surface attractive, the control law has been defined as discon-
tinuous function

u = −ksign(σ) (4.3)
where k ∈ R is a constant parameter. In this way the controller will lead the system
to the sliding surface. To avoid the chattering introduced by the sign function, the
controller has been modified introducing the hyperbolic tangent formulation

u = −ktanh(ησ) (4.4)

4.2 Attitude control design
The attitude controller has been implemented in two different ways to evaluate two
different approaches. First, the TW-SMC has been designed to achieve a trade-off
among control law flexibility, robustness, and precision attitude control. Thus, the
TW-SMC has been compared with a back-stepping approach, which consists in an
adaptive controller based on Lyapunov functions. Its output takes into account
attitude error, the arm torque and motion, and the inertia variation, leading the
Astrobee to track the desired attitude.

Twisting sliding mode controller

The TW-SMC is a second-order SMC, which enjoys all the feature of the sliding
mode approach and improves performance and chattering attenuation introducing
the first-order sliding surface derivative in the control law definition. The TW-SMC
is defined by the following control law

u = −k1sign(σ)− k2sign(σ̇) (4.5)
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where k1 ∈ R3×3 and k2 ∈ R3×3 are diagonal matrices, which need to satisfy the
following relations to guarantee the system convergence and stabilityKm(k1 + k2)− C > KM(k1 − k2) + C

Km(k1 − k2) > C
(4.6)

where C, Km and KM are constant values defined by

|σ̈u=0| < C 0 < Km <
∂σ̈

∂u
< KM (4.7)

The sliding surface has been defined by the quaternion and angular velocity error

σ = qeλ+ ωe (4.8)

where qe is the quaternion error, which can be computed with

qe = q ⊗ q−1
des (4.9)

and ωe is the angular velocity error. To define the control law parameter’s bounds
an easier formulation of the dynamics has been considered

ω̇ = J−1(u+ Tdis − ω × (Jω) (4.10)

where Tdis is a constant value, introduced to approximate all the disturbances due
to the arm motion.
Since the parameter bounds are defined by Equation (4.7), the sliding surface
derivatives have to be computed. Considering σ defined by Equation (4.8), the
first derivative can be computed as

σ̇ = q̇λ+ ω̇ = 1
2λ(q0I + [q×])ω + J−1(u+ Tdis − ω × (Jω) (4.11)

From σ̇ = 0 the equivalent control can be determined

ue = ω × (Jω)− 1
2λJ((q0I + [q×])ω (4.12)

The equivalent control takes into account the system dynamics to define the control
input to lead the system to the desired configuration through the sliding surface.
From Equation (4.11) σ̈ can be computed as

σ̈ = 1
2λ(q̇0ω + q0ω̇ + q̇v × ω + qv × ω̇) + J−1(u̇− ω̇ × (Jω)− ω × (Jω̇)) (4.13)

that can be rewritten by using the Taylor envelop asσ̈u=0 = 1
2λ(q̇0ω + q0ω̇ + q̇v × ω + qv × ω̇)− J−1(ω̇ × (Jω) + ω × (Jω̇))

∂σ̈
∂t u=0 = 1

2λ(q0
∂ω̇
∂t u=0 + qv × ∂ω̇

∂t u=0)− J−1(∂ω̇
∂t u=0 × (Jω) + ω × (J ∂ω̇

∂t u=0))
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The bounds can be determined by running several simulations with random values
of initial attitude, angular velocity and external disturbances, and the equivalent
control is considered as control output. Figure 4.2 shows the simulations results
of σ̈u=0 and ∂σ̈

∂t u=0. The upper and lower plots’ limits identify C, Km, and KM

parameters. Generally, the computed parameters are not used to assign k1 and k2,

Figure 4.2: Second-order sliding mode parameters’ bounds
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because they are usually much larger than the actual values, but they have been
anyway computed to verify that the selected k1 and k2 values are contained into
the bounds.
The control law parameters k1 and k2 have been designed to achieve a trade-off
among control law robustness and precision attitude control. Thus, the control law
input is computed with the following equation

u = −k1sign(σ)− k2sign(σ̇) (4.14)

where σ̇ is numerically determinated. To further improve the chattering attenuation,
the hyperbolic tangent formulation has been implemented

u = −k1tanh(ησ)− k2tanh(ησ̇)

Backstepping controller

The backstepping controller is an adaptive controller based on Lyapunov functions.
The backstepping approach consists in the definition of a virtual control variable
to ensure the tracking of the desired attitude qd [21].
Let’s considering the tracking error, defined by the quaternion error, expressed as

qe =
I
q̃0
q̃v

J
(4.15)

Which derivative can be determined by

q̇e =
I

q̃Tv ω̃
1/2(q0I + [qv×])ω̃

J
(4.16)

Considering the backstepping variable q̃v, its derivative can be determined by:

˙̃qv = 1/2(q0I + [qv×])(ωc + ω̃ −R(qe)ωd) (4.17)

where R(q) is the rotational matrix and ωc is the back-stepping virtual control
variable. Let’s define the first Lyapunov function candidate as:

V1 = q̃Tv q̃v + (1− q̃0)2 (4.18)

The derivative of V1 can be determined using the Equation (4.16):

V̇1 = 2q̃Tv ˙̃qv − 2(1− q̃0) ˙̃q0 (4.19)

Defining ωc as
ωc = −K1q̃v +R(qe)ωd (4.20)
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The Equation (4.19) can be rewritten as:

V̇1 = −q̃TvK1q̃v + q̃Tv ω̃ (4.21)

When the angular velocity error is equal to the desired value, ω̃ = 0, V̇1 is negative
definite. This means that the system is able to reach and stop into the desired
configuration.
To define the control law, the second Lyapunov function candidate is needed to be
defined. Let’s consider the following Lyapunov function candidate

V2 = V1 + 1
2 ω̃

TJω̃ (4.22)

which has derivative

V̇2 = −q̃TvK1q̃v + q̃Tv ω̃ + ω̃TJ ˙̃ω + 1
2 ω̃

T J̇ ω̃ (4.23)

Let’s consider the following equality

J ˙̃ω + J̇ ω̃ = −(ω̃ + ωc)× J(ω̃ + ωc) + T − Jω̇c − J̇ωc (4.24)

Combining Equations (4.23) and (4.24), V̇2 can be rewritten as

V̇2 = −q̃TvK1q̃v + q̃Tv ω̃ + ω̃T (Σω̃ − [ωc×]Jω̃ + γ + T − 1
2 J̇ ω̃) (4.25)

where Σ and γ are defined asΣ = [Jω̃×] + [Jωc×]
γ = [Jωc×]ωc − Jω̇c − J̇ωc

(4.26)

Choosing the control law as

u = −K2ω̃ − q̃v − Tdis − γ + [ωc×]Jω̃ + 1
2 J̇ ω̃ (4.27)

then Equation (4.25) can be rewritten as

V̇2 = −q̃vTK1q̃v − ω̃TK2ω̃ (4.28)

which is a negative definite function. Thus, both V1 and V2 have been verified
as Lyapunov functions, and the proposed control law, expressed by Equation
(4.27), will request a torque taking into account the attitude error, the arm torque
and motion, and the inertia variation, leading the Astrobee to track the desired
attitude.
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Chapter 5

Simulation results

The Astrobee model has been implemented in MATLAB/Simulink environment.
The manipulator motion has been considered as disturbance for the attitude
dynamics, and the controllers have been designed to achieve a trade-off between
manipulator stabilization and precise attitude control.

The manipulator motion is regulated by the first-order SMC, which defines the
sliding surface using joints’ angles and angular speed to compute the needed torque

Figure 5.1: MATLAB/Simulink Astrobee 3D model
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with the control law
uarm = −karmtanh(σarm) (5.1)

For the attitude controller, the TW-SMC and the backstepping controller have been
proposed. The twisting controller defines the sliding surface using the quaternions
and the angular velocity errors. Thus, by using a simple formulation of the control
law, the control input can be determined by

u = −k1tanh(σ)− k2tanh(σ̇) (5.2)

where σ̇ is numerically determined. On the other hand, the backstepping controller
contains the mathematical model of the Astrobee, needed to compute all the control
law parameters in a function of the joints’ angles and rotational speed

u = −K2ω̃ − q̃v − Tdis − γ + [ωc×]Jω̃ + 1
2 J̇ ω̃ (5.3)

In this chapter, controllers’ performance is evaluated and analyzed in MAT-
LAB/Simulink, and to show the robustness of the proposed control methods,
simulations with variable body mass, links masses, and end-effector mass have been
run to test the controllers in off-design conditions.

5.1 Manipulator control
Two different manipulator motions have been considered to evaluate the distur-
bances generated during the manipulator deploying, stowing, and moving.
First, the manipulator deploying and stowing have been considered to test the
attitude dynamics and the stabilization to the rotation around y-axis. Figure
5.2a shows the desired manipulator motion, while Figure 5.3a shows the motion
provided from the manipulator controller, and 5.3b shows the disturbance torque
expressed in the body reference frame, defined in Equation (2.13). Then, a more
complicated manipulator motion has been considered, adding the second joint
rotation request during the deployed and vertical manipulator configuration. In
Figure 5.2b, the requested motion is showed, and in Figures 5.4a and 5.4b the
manipulator controller results are showed.

With both the manipulator motion references, when the desired joints’ angles
change, the manipulator controller request torque is proportional to the differences
between the desired and actual joints’ angles. Thus, with the angles error reducing,
the angular velocity error will prevail and the controller will work to slow down
the manipulator to reach the desired configuration.
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(b) Opening/rotating/closing motion

Figure 5.2: Manipulator motion references
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(b) Disturbance torque

Figure 5.3: Opening/closing manipulator motion
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(b) Disturbance torque

Figure 5.4: Opening/rotating/closing manipulator motion

26



Simulation results

5.2 Torque-free simulation
The torque-free simulation has been run to test the attitude dynamics. The ma-
nipulator deploying and stowing has been considered for this simulation and its
motion is shown in Figure 5.3a.

Figure 5.5 reports the simulation results. Without applying a control torque,
the manipulator movement is associated to the main body rotation. This effect
is due to the angular momentum conservation, in fact, considering the combined
system (the manipulator and main body), since the the application of a torque
in the joints is internal to the system the overall angular momentum will remain
constant. Thus, when the manipulator is rotating around the y-axis, the main
body will rotate in the opposite direction according to the angular momentum
conservation.
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Figure 5.5: Torque-free Euler angles
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5.3 Deploying/stowing manipulator stabilization
This simulation runs the manipulator motion shown in Figure 5.3a, which consists
in deploying and stowing task. Since the main body is already oriented in the
desired attitude, both the controllers have been tested for the stabilization of the
disturbances introduced by the manipulator motion, in terms of disturbance torque
and inertia variation.

Both the TW-SMC and the backstepping controller are able to stabilize the ma-
nipulator deploying and stowing motion. In Figure 5.6 the Euler angles are showed
and the performance of the controllers can be evaluated. The TW-SMC, thanks
to its attractive features, reacts to the disturbance introduced by the manipulator
motion whenever the system leaves the sliding surface. The backstepping controller
reacts faster to the disturbances, despite a small oscillation around the desired
configuration.

In Figure 5.8 is showed the controls input, to be provided to the system. The
backstepping controller can adapt its output to the disturbance, in fact, it is able
to react with an higher torque request to compensate the disturbances as fast as
possible. On the other hand, the TW-SMC has a limited control output due to the
constant parameters that define the control law.
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(b) Backstepping controller

Figure 5.6: Euler angles in deploying/stowing stabilization
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(b) Backstepping controller

Figure 5.7: Angular velocity in deploying/stowing stabilization
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(b) Backstepping controller

Figure 5.8: Command torque in deploying/stowing stabilization
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5.4 Full manipulator motion stabilization
A secondary manipulator motion has been considered. It is presented in Figure
5.4a and consists in introducing the second joint rotation during the deployed
and vertical manipulator configuration. A difference of the rotation around the
y-axis, the manipulator pan produces negligent inertia variation, so the disturbances
introduced are more controllable.

Figure 5.9 shows the simulation results in term of Euler angles. As noticed for
the manipulator deploying and stowing stabilization, the backstepping controller
reacts faster to the disturbances introduced, despite a small oscillation, and the
TW-SMC is able to restore the desired configuration with acceptable time.

Analysing the results of the simulation, it is evident how the backstepping
controller is well suited for the manipulator stabilization, since the system is subject
to variable disturbances.
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Figure 5.9: Euler angles in full motion stabilization
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Figure 5.10: Steady-state error
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Figure 5.11: Angular velocity in full motion stabilization
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Figure 5.12: Command torque in full motion stabilization
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5.5 Controller robustness test
TW-SMC and backstepping controller have been both proposed for their robustness
feature. To evaluate the robustness of these control methods, further simulations
have been run to test the controllers performance in off-design conditions. Thus,
the following tests have been considered:

• Attitude changing task;

• Variation of the main body weight and inertia;

• Variation of the manipulator links weight;

• Variation of the end-effector weight, to simulate the manipulator stabilization
while an object is grabbed.

All the robustness tests, except the attitude changing, are considering variation
of structural parameters to evaluate their influence in the manipulator motion
stabilization.

Attitude changing task

Precision attitude control is the main goal of attitude controllers. After designing
the controllers for the manipulator stabilization, several simulations with random
initial attitude have been executed to test the controllers goal to restore the desired
orientation.

Figures 5.13, 5.14 and 5.15 show the simulation results respectively with stowed
and deployed manipulator and with a gripped object in the end-effctor position.
The simulations results show the variation of Euler angles during time. Both the
controllers are able to complete the task in acceptable time, but the backstepping
controller reaches faster the desired attitude thanks to its adaptive feature, while
the twisting sliding mode controller needs few more seconds, because it has been
designed to achieve a trade-off between precision attitude control and manipulator
stabilization.

The gripped object test uses random value of object masses in the end-effector
position to evaluate its effect for precision attitude control. Both the controllers
are able to overcome the inertia changes due to the presence of the object achieving
the desired results in short simulation times.
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(a) TW-SMC

(b) Backstepping controller

Figure 5.13: Attitude changing with stowed arm
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(a) TW-SMC

(b) Backstepping controller

Figure 5.14: Attitude changing with deployed arm
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(a) TW-SMC

(b) Backstepping controller

Figure 5.15: Attitude changing with gripped object
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Variable core mass

The main body structural mass and inertia have been changed to evaluate their
influence for the controllers performance. Four different main body masses have
been considered.
At the start of the simulation, the Astrobee is already placed in the desired atti-
tude, and the full manipulator motion has been considered, as shown in Figure 5.4a.

Figure 5.16 shows the simulation results as the variation of the Euler angles
during time. Both the controllers show an improvement of performance with the
increasing of the main body mass. This is due to the improvement of the natural
stabilization of the system, in fact the higher main body inertia reduces the effects
of the inertia variation introduced by the manipulator motion, so the overall system
is more stable.
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(a) TW-SMC

(b) Backstepping controller

Figure 5.16: Variable main body mass and inertia
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Simulation results

Variable arm links mass

The manipulator links masses have been changed to evaluate its effect in the
manipulator motion stabilization. Three configurations of heavier manipulators
have been considered, and full motion shown in Figure 5.4a has been executed. At
the start of the simulation the Astrobee is placed in the desired attitude, so the
controllers’ goal is to stabilize the manipulator motion.

Figure 5.17 shows the simulation results in term of Euler angles. The variation of
the links masses doesn’t produce significant changes in controllers’ performance.
Since the manipulator motion is handled by the first-order SMC, the maximum
value of the disturbance torque doesn’t change, so the main changes in the attitude
dynamics are due to the inertia variation and gyroscopic torque introduced by the
arm motion.
The TW-SMC performance reduces with the links masses increase, due to the
higher disturbances. The backstepping controller estimates the disturbance torque
cosidering the manipulator’s real velocity and the inertia referred to the mathemat-
ical model of the Astrobee realized with the design parameters of the structure.
Since the initial joint torque is the same, increasing the links masses leads to a
slower manipulator motion. Thus, the backstepping controller estimates a slower
disturbance torque for the computation of its output. This leads to an initial
improvement of the performance, for links masses little heavier than the design
value, and to a consecutive reducing.
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(a) TW-SMC

(b) Backstepping controller

Figure 5.17: Variable manipulator links mass
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Variable end-effector mass

The end-effector mass has been changed to simulate the manipulator motion while
an object is grabbed. Three heavier masses in the end-effector have been consid-
ered, and full motion shown in Figure 5.4a has been execute. At the start of the
simulation the Astrobee is placed in the desired attitude, so the controllers’ goal is
to stabilize the manipulator motion.

Figure 5.18 shows the simulation results in term of Euler angles. Both the
controllers are able to restore the desired attitude, but adding an object in the
end-effector position will lead to higher errors during the manipulator motion. The
TW-SMC suffers more the inertia variation and the gyroscopic torque introduced
by the manipulator motion. The backstepping controller thanks to the adaptive
feature is able to handle better the disturbances introduced by the object mass
increasing.
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(a) TW-SMC

(b) Backstepping controller

Figure 5.18: Variable end-effector mass
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Chapter 6

NASA’s Astrobee simulator

The NASA’s Astrobee simulator has been used to validate MATLAB/Simulink
simulation results. It is realized in ROS-Gazebo enviroment and uses the Astrobee
CAD to simulate efficiently the physics in the micro-gravity environment of the
ISS [22].
To perform the attitude controller tests, ROS-Simulink combined simulation has
been realized. In this way, it is possible to get the information needed as controller
input from Gazebo, and to applying the requested torque directly on the Astrobee’s
main body.

6.1 Simulink implementation
The MATLAB ROS toolbox is needed to allow the communication between the
simulator and Simulink. The following blocks have been used to achieve the access
to the model data and to send the desired commands to the simulator:

• The Subscriber block, in combination with the bus selector, allows to access
to the output of the ROS topics;

• The Publisher block allows to send a message to a ROS topic.

• The Call Service block allows to execute a ROS service request.

• The Blank Message block, in combination with the bus assignment, allows to
prepare the correct message or service request needed to run a ROS topic or
service.

The Subscriber block has been used in the Simulink model to get the attitude and
the angular velocity from the topics /loc/truth/pose and /loc/truth/twist. The two
topics respectively send to Simulink the orientation of the main body, with the
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NASA’s Astrobee simulator

manipulator pointing backward, and the angular velocity expressed in the body
refernce frame.
The Call Service block has been used to call the ROS serivce /gazebo/ApplyBody-
Wrench to apply the requested control torque on the Astrobee’s body. The service
request for this ROS service need the torque expressed in the inertial reference
frame, so the computed control torque has been converted by using the rotational
matrix

Ti = R(q)Tb (6.1)
The ROS Service /gazebo/GetJointState has been also used to get access to the
manipulator’s joints state.
Moreover, the Real-time pacer block has been added to slow down the Simulink
simulation to synchronize Simulink and Gazebo’s simulation time. Practically,
the communication between Simulink and ROS slow down Simulink’s speed, so
the Gazebo simulation’s speed is needed to be also set to low, but by running
the ROS/Simulink co-simulation is impossible to perfectly synchronize the two
simulations, so some errors of time delay can be produced.

Twisting sliding mode controller

TW-SMC implementation is strictly related to the sliding surface computation,
which has been defined by using the quaternions and angular velocity errors.
The sliding surface can be computed reading the messages from the ROS topics
/loc/truth/pose and /loc/truth/twist, and the command torque can be obtained
from the control law:

u = −k1tanh(σ)− k2tanh(σ̇) (6.2)

Thus, it can be applied on the main body using the ROS serivce /gazebo/Apply-
BodyWrench.

Backstepping controller

The backstepping controller implementation requires further information rather
than attitude and angular velocity to define the control law.
The mathematical model of the Astrobee can be used to define each parameter of
the control law formulation in function of the joints’ angles. Using the ROS service
/gazebo/GetJointState to get the arm joints data, it is possible to define each term
of the control law, so that the command torque can be computed by:

u = −K2ω̃ − q̃v − Tdis − γ + [ωc×]Jω̃ + 1
2 J̇ ω̃ (6.3)

Thus, it can be applied to the Astrobee using the ROS serivce /gazebo/ApplyBody-
Wrench.
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6.2 Simulations results
The NASA’s Astrobee ROS/Gazebo simulator has been used in combination with
MATLAB/Simulink to perform attitude control and stabilization simulations to
evaluete the controllers performance in more accurate physical environment.
All the commands that interact directly with the simulator have been executed as
command line instructions, while Simulink has been used exclusively as interface
between the controller and the ROS/Gazebo simulator.

The Astrobee has been spawned inside the ISS module and oriented according
to the inertial reference frame

q =
è
1 0 0 0

é
(6.4)

Attitude change

The attitude changing simulation has been computed requesting a random orienta-
tion to the controllers. Figure 6.1 shows the attitude changing results in terms of
Euler angles. The TW-SMC and backstepping controller run two different simula-
tions, but the results are well-matched with the expectation. The backstepping
controller reacts faster to the attitute changing request reaching directly the desired
orientation, while the TW-SMC results show some oscillations before completing
the request.
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(b) Backstepping controller

Figure 6.1: Euler angles - Attitude changing
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Figure 6.2: Angular velocity - Attitude changing
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(b) Backstepping controller

Figure 6.3: Command torque - Attitude changing
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Manipulator motion stabilization

The manipulator motion can be executed with the simulator instructions related
to the arm_tool. The manipulator deploying and stowing have been considered,
but since the motion is requested by a manual instruction the simulations have
different execution times.

Since the high computational cost of the combined simulation, there are some
delays in the arm deployment, especially for the backstepping simulation. In Figure
6.6 the effect of the delay of Simulink simulation respect to ROS/Gazebo one is
much evident with TW-SMC, where there is the presence of the chattering effect.
The results in terms of Euler angles, shown in Figure 6.4, have about the same
magnitude of Simulink results, except for the backstepping controller that reports
an error increasing probably due to the time delay error.
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(b) Backstepping controller

Figure 6.4: Euler angles - Manipulator motion stabilization
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Figure 6.5: Angular velocity - Manipulator motion stabilization
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Figure 6.6: Command torque - Manipulator motion stabilization
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Combined motion

The combination of manipulator motion and attitude changing has been considered.
The simulation consists in the manipulator deployment, rotation of the Astrobee of
180◦ around z-axis, and the restoration of the initial attitude while the manipulator
is being stowed.

The high computational cost reports some errors due to the time delay between
the two simulations, especially when the manipulator is going to stop its motion.
During the rotation around the z-axis some oscillations are produced around y
and x axis. Figure 6.9 shows the controllers output. In this simulation, the
chattering effect introduced by the time delay is less evident, but, especially for the
backstepping controller, it can be noticed the presence of unjustified peaks, due to
the controller delays.
In Figure 6.7 the Euler angle are shown. As expected, the backstepping controller
reacts faster than TW-SMC reducing the errors introduced by the manipulator
motion.
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(b) Backstepping controller

Figure 6.7: Euler angles - Combined motion
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Figure 6.8: Angular velocity - Combined motion
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Figure 6.9: Command torque - Combined motion
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Chapter 7

Conclusions and future
work

The objective of this research is to propose an attitude control strategy to exploit
the full functionality of the Astrobee’s manipulator. The actual robotic arm has
been designed for handrail gripping and camera pointing, since its motion during
free-flying leads to important inertial changes and disturbances. Designing a robust
attitude controller able to overcome the disturbances introduced by the manipulator
moving during free-flight makes the Astrobee able to perform more challenging
tasks like object gripping and carrying.

An accurate model of the Astrobee system has been obtained neglecting the
centre of mass variation during the manipulator motion. The application of TW-
SMC or the backstepping controller is a suitable solution for the manipulator
motion stabilization and precision attitude control. From the results obtained
with MATLAB/Simulink simulations, the backstepping approach seems to be more
flexible and precise for the attitude changing request, but both the controllers are
able to reach the desired orientation in acceptable times, also when an object is
gripped. The Astrobee’s attitude is very well preserved against the manipulator’s
reactions, except with a gripped object, in fact, it is more challenging task to
stabilize the disturbances, since the relevant ones induced during a heavier object
motion.
The NASA Astrobee simulator has been used in collaboration with Simulink to run
ROS-Simulink combined simulations. In this way, the results obtained for attitude
changing and arm stabilization have been verified, despite synchronization errors
induced by the combined simulation.

However, the Astrobee model is considering the controller ideal torque request
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without the implementation of the actuator model. Thus, the first step for a
possible future work is to realize the actuators model to evaluate the controllers
performance in the real scenarios. At this point the combination between the
attitude and position control can be executed to evaluate the overall performance of
the Astrobee system in more challenging tasks, like object carrying, or by building
a more accurate model considering the possible disturbances introduced from
actuators failures and transitory effects in position and attitude control.
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