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Summary

Composite materials are not new, they have been leading the way in the construction
of technologically cutting- edge structures for several decades, specially in the field
of aeronautics. In the last few years their use has, however, jumped to some other
sectors. The main reason for this popularisation for "earthlier" applications, has
been the deepening in their knowledge, specially regarding their manufacturing and
maintenance processes, what has caused without any doubt a cheapening in their
use. On the other hand, in the last two decades it has arisen across all industries,
fields, sectors and social layers of population a raising awareness of care taking of
the planet, what has caused an important ecological wave, as resources are limited
and the human being is consuming them at an accelerated rate. As a consequence of
this deeper knowledge in composites and following this ecological upward tendency,
bio composite materials appeared in the 90’s. Among these bio composites the
flax fibre is gaining an important role due to its characteristics, which keep a good
balance between weight/density and mechanical properties. VESO- Concept is a
company settled in Toulouse whose aim is to develop complete organic elements
made up with bio composite materials. This thesis fits within the BOPA project, a
project between VESO- Concept and ISAE- SUPAERO, the Institut superieur de
l’aeronatique et de l’espace. Final objective of this project is the characterization
of the behaviour of plies made of flax fibre, specially regarding damage. Models
of damage will be developed following others authors theories and they will be
put to test taking advantage of the powerful tools that represent the currently
finite elements programs. To compare results, real experiments will be carried
out. At the same time these experiments will be replicated with FEM program.
Experiments will put the bio composite elements under static loads (three point
bending test and fracture test) and dynamic loads, through an impact test. Results
comparison will help to analyse the validity of the models and improve them.
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Chapter 1

Introduction

BOPA is a project which is being held between ISAE-SUPAERO and a company
called VESO-CONCEPT, specialized in composite materials. The objective of the
project is to develop complete organic elements made from bio-composite materials
able to compete with the classic inorganic composite panels.

Composite materials are defined as those materials which are made of the union,
chemical or not, of two or more different materials, in order to achieve a combination
of properties that is not possible to get in the original material. A composite material
can be defined as the macroscopic combination of a reinforcement material and a
different material that acts as a binder or matrix, and that has a differentiated and
recognizable interphase (Guemes et. al, 2012) [1]. Materials can be considerate as
composites when they fulfil the following conditions:

1. They are made of two or more components which can be physically distin-
guished and mechanically divisible.

2. They present several phases chemically different, completely insoluble between
them and separated by an internphase. Each one of the components must
maintain its identity and they cannot react between them.

3. Their mechanical properties are superior to the simple addition of the proper-
ties of their components, what is called synergy.

The reinforcement material, in the form of discontinuous phase, provides the
interesting mechanical properties. Meanwhile the matrix, that surrounds the
reinforcement material and causes the whole element to be a monolithic structure,
is responsible of holding the fibres together, of transferring the loads on it, and of
the thermal and environmental resistance.
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Introduction

As aeronautic materials, they present a series of clear advantages when faced with
traditional materials. This has favoured a considerable increase in the use of these
materials in the last decades. This can be seen when comparing the weight of
composite material faced with the operational empty weight. In veteran airplanes
such as the Airbus A320-100 (1987) composites are a 15% of the OEW, while in
newer ones such as the Airbus A-350 XWB (2013) this percentage is above 50%.

Figure 1.1: Airbus A350-XWB [2]

In the typical conception of a composite material, with a series of fibres orientated
under a direction, and a matrix acting as a binder between them, it is seen
the clear objective pursued with the use of these materials. They are intended
to offer good mechanical properties in the direction of the fibre, which will be
placed in the direction of the main stresses, and poorer properties in the unloaded
directions, achieving through this anisotropy a weight reduction when compared
with an isotropic material that would have same properties in all directions. As
construction with composites is “modular”, more plies can be applied in the most
loaded directions, while a few ones are put in the unloaded ones, ensuring through
this way that they are not totally abandoned and achieving the weight reduction.
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A bio-composite is a composite material whose matrix and reinforcement have an
animal or vegetable origin. Matrix are usually compounded of polymers which
come from renewable and nonrenewable resources, while bio-fibres typically come
from biological origins, e.g. recycled wood, fibres from crops (cotton, hemp or flax)
etc.

The main difference for this kind of composites is that they are biodegradable,
renewable, in some cases completely recyclable, and cheaper, and therefore pollute
the environment less. This is the reason why there has been heightened interest in
its use in recent years, due to the increasing concern with the environmental change
and pollution and the sustainability of using resources such as petroleum, which is a
usual base for many polymers, for example. In addition, natural fibres usually have
lower manufacturing costs than conventional composites and are easily processed,
and are suited for a wider range of applications, such as packaging, building,
automobiles, aerospace, military applications, electronics, consumer products and
medical industry (prosthetic, bone plate, orthodontic archwire, and composite
screws), and research, as is the case of this thesis.

One of the most important advantages of natural fibres is their low density, which
results in a higher specific tensile strength and stiffness than glass fibres, besides
of its lower manufacturing costs. Natural fibres have a hollow structure, which
gives insulation against noise and heat. Bio-composites may be employed alone,
or complementing other materials, like carbon or glass fibre. Some side- effect
advantages are that they improve health and safety in their production, are lighter
in weight when compared with traditional materials, have a pleasant visual appeal,
similar to the one of wood, and are environmentally superior.

In this sense, a project called BOPA is being held between ISAE-SUPAERO
(Institut Superior de l’Aéronautique et de l’Espace) and a company called VESO-
CONCEPT, settled in Toulouse and which is specialized in composite and bio-
composite materials. The aim of the project in a long term scale is to develop
complete organic elements made of bio-composite materials able to compete with
the classic inorganic composite panels.

The project is guided in the university by Prof. Frédéric Lachaud, from the Research
and Development department DMSM (Département Mécanique des Structures
et Matérieux). Since BOPA has an environmental and eco-friendly background,
this project is considered of high interest and this is the reason why the project is
partially financed by ADEME (Agence de l’Environnement et de la Maîtrise de
l’Énergie).

3
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ADEME is a public institution under the supervision of the French ministry
of Ecological Transition and the ministry of Superior Education, Research and
Innovation. Regarding the aim of the project, the main fibre that is being used and
tested is the flax fibre. Glass fibre is also being studied within BOPA project but not
in this thesis. Flax fibre has a unique series of properties that make it interesting for
the manufacturing of composite panels, presenting high values of Young modulus
and ultimate stress, which does not allow construction of primary but secondary
structures at a fewer weight than other non biodegradable composites.

As the goal is to develop pre-preg plies with correct mechanical properties when
compare with classic composite solutions, specific engineering applications are being
studied, that is the case for example of corrugated panels, in order to substitute
the classical honeycomb core sandwich solutions.

To reach the final goal, the whole project is divided in several steps:

1. Characterization of the mechanical properties of plies made of flax fibre,
including the damage modelization.

2. Study the use of organic matrix in place of epoxy or phenolic resin.

3. Development of a completely organic ply.

The project is still in its first phase, and that is why the characterization of the
flax fibre is being studied in plies made of epoxy resin, instead of using an organic
matrix.

4



Chapter 2

Problem approach

As previously explained, the main goal of this thesis is to collaborate in the BOPA
project, through the characterization of the mechanical properties of the bio flax
composite materials.

The characterization is not easy, as the main problem is that these fibres do not
present a linear behaviour, in other words, their stiffness matrix is not constant
throughout the loading phase. As its obvious, there is a point at which the material
fails and the stiffness is sharply decreased, but through the loading phase until
that point the stiffness is neither constant, but suffers from a degradation that is
not given for example in isotropic metals (or at least not in such a strong way, as
all the materials suffer from small internal imperfections with growing mechanisms
such as dislocations in metals).

Therefore, the main objective for this characterization is the creation of damage
models able to replicate the behaviour of these materials when submitted to two
types of loads, static and dynamic. The static load will be typically a three point
bending test whereas the dynamic load will be the low velocity impact of a mass.

In order to do so, plies made up of flax fibre and epoxy matrix are being manu-
factured in the laboratory. These plies are later being used for creating several
elements with different shapes and ply configurations that are tested in different
analysis, later explained. According to the results of these tests, several damage
models are studied, created and applied. These models are then put to test with
models created in a FEM program, equal to the real tested ones. The program
used is ABAQUS, as it allows a simple implementation of the characterization
of different kinds of materials through means of routines written in several pro-
gramming languages such as C or FORTRAN. After, results are out taken from
ABAQUS and compared with the real test results in order to validate the degree

5
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of approximation with reality of the chosen damage model.

It is important, in order to understand later the damage model, that the flax fibre
when used for the creation of the plies is used with a fabric configuration, this is,
fibre has been weaved in a warp and a weft direction , as shown in figure 2.1. The
plies used are not pre-preg plies, but the liquid epoxy is distributed with the help
of a brush, filling the gaps in the weaved configuration and also between a ply and
the next one. After that, the configuration of stacked plies is cured in an autoclave
or in a normal oven creating the negative pressure with the help of a vacuum bag.

Figure 2.1: Warp and weft scheme [3]

Taking this into account, a mathematical model based on mechanics of materials
has been adopted. The model is used for 3D analysis and its adapted for a 2D
analysis on ABAQUS too.

6
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2.1 Mathematical model

This chapter means to explain the mathematical model inside the theory of strength
of materials used, and which are the different properties which are meant to be
characterized. This mathematical model is important as it is necessary in order to
understand later the damage models that will be implemented.

For most of the analysis, models are created with volumetric (3D elements). This
is done to achieve the best possible approach to reality. However, sometimes is
interesting to prepare first a 2D model of the part, in order to carry out a faster
simulation and see if results are as expected, and if it is therefore logic and worthy to
prepare later a more complex and time – consuming 3D model. 2D models are mesh
with plane elements (shell elements) and the mathematical model implemented in
the routine differs slightly from the one used for three dimensions ones.

For all the analysis carried out in this work, a theory of linear elasticity will be
considered. This law, also known as Hooke law, establishes a linear evolution of
stress when face with strain. When considering the most generic case, this means
that the stiffness tensor (here called C) will be constant with the time, and will be
therefore made of constants terms.

This Hooke law can be expressed as:

þσ = C : þÔ (2.1)

Being C a 6x6 matrix for the 3D case of stresses. Different notations can be
used for þσ as:

þσ = {σ1 σ2 σ3 σ4 σ5 σ6}T = {σ11 σ22 σ33 τ12 τ13 τ23}T (2.2)

And the same happens with þÔ :

þÔ = {Ô1 Ô2 Ô3 Ô4 Ô5 Ô6}T = {Ô11 Ô22 Ô33 γ12 γ13 γ23}T (2.3)

7
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It is useful to remember that :

Ô4 = γ12 = 2Ô12 Ô5 = γ13 = 2Ô23 Ô6 = γ23 = 2Ô23 (2.4)

Since it is intended to model damage and non linearities, its obvious that our final
matrix will not be constant, so changes in the Hooke’s law will be introduced,
multiplying the terms of the constant matrix C with factors that will not be
constant, obtaining therefore CD , the stiffness damaged matrix. This will be
explained later.

Composite materials belong to a group of materials called orthotropic materials.
An orthotropic material properties vary along three mutually-orthogonal twofold
axes of rotational symmetry at a given point. They are considered a subgroup
inside anisotropic materials, as their material properties differ when measured from
different directions.

Attending to the on-ply configuration explained before, the material considered
will be an orthotropic material with three axes mutually perpendicular (although
later some simplifications will be introduced): the one in the warp direction, the
weft direction one, and the perpendicular to this plane, called stacking direction,
where there is epoxy.

Attending to this the undamaged stiffness matrix will look like this:

C =



C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66


(2.5)

And will depend exclusively of these nine independent constants.

E1 E2 E3 ν12 ν13 ν23 G12 G13 G23 (2.6)
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It must be kept in mind that the following expression is always true:

Ei

νij

= Ej

νji

(2.7)

The form of the terms will be the following:

C11 = 1 − ν23ν32

E2E3∆

C12 = ν21 + ν31ν23

E2E3∆ = ν12 + ν32ν13

E1E3∆

C13 = ν31 + ν21ν32

E2E3∆ = ν13 + ν12ν13

E1E2∆

C22 = 1 − ν13ν31

E1E3∆

C23 = ν32 + ν12ν31

E1E3∆ = ν23 + ν21ν13

E1E2∆

C33 = 1 − ν12ν21

E1E2∆
C44 = G12

C55 = G13

C66 = G23

(2.8)

Being ∆ :

∆ = 1 − ν12ν21 − ν23ν32 − ν31ν13 − 2ν21ν32ν13

E1E2E3
(2.9)
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1. The stiffness in the warp and weft directions are very similar and can be
approximated by the same one.

E1 = E2

Due to equation 2.7, the Poisson modulus will obey to:

ν12 = ν21

2. The shear modulus in the planes 23 and 13 will be considered to be the same
as they slightly differ from one to another.

G13 = G23
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2.1.1 2D Case

In a in plane stress case, for a shell, the stresses and strains vectors will be:

þσ = {σ11 σ22 τ12}T (2.10)

þÔ = {Ô11 Ô22 γ12}T (2.11)

So the system remains like in 2.1 :

þσ = C : þÔ

In order to have the stiffness matrix that relates the stresses vector with the
strains one, it will be necessary to carry out a static condensation of the stiffness
matrix previously calculated for the 3D case.

σ11
σ22
τ12

 =

H11 H12 0
H21 H22 0
0 0 H33


Ô11

Ô22
γ12

 (2.12)

Operating, the elements will be the following:

H11 = C11 − C2
13

C33

H22 = C22 − C2
23

C33

H12 = C12 − C13C23

C33

H33 = C44

(2.13)

Being C11 C12 C22 C13 C23 C44 the ones of the 3D case.
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Finally, in table 2.1, values of the different parameters are presented.

Property Value

E1 17500 MPa

E2 17500 MPa

E3 8000 MPa

G12 1900 MPa

G13 1500 MPa

G23 1500 MPa

ν12 0.06

ν13 0.06

ν23 0.06

Table 2.1: Properties of the manufactured flax fibre ply

These values have been obtained through several tensile tests in each direction.
However, as told, flax fibre presents non linearities during the loading phase that
affect these values. Next chapter will intent to give an explanation to the reason and
origin of these non linearities. Objective is not the characterisation of these values,
but to create reliable damage models able to represent efficiently this behaviour
presented by the flax fibre.
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Chapter 3

Flax fibre non linearities

This chapter’s aim is to give and explanation to the non linearities found when
working with flax fibre, and that make necessary the implementation of damage
models that reproduce these non linearities and changes in the stiffness matrix. To
do so, is necessary to have a closer view into the morphological features of the flax
as a plant.

Figure 3.1: Flax plant [4]

Flax, is a bast fibre plant, and, since it is one of the oldest agricultural crops and
most widely spread, it has been largely used mainly in textile. Its applications for
construction regarding the bio-composites have begun to be exploited in the last
two decades.
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Flax fibre non linearities

On figure 3.2 pictures taken with the SEM (Scanning electrone microscope) are
shown. In them it is possible to see the cross section of the fibres, with diameters
within the 10 and 20 µm. It can be easily seen how the cross sections have not
well defined borders, sometimes sharply and sometimes rounded. Outside the fibre,
fibrenodes can be seen as perpendicular dislocations. These dislocations, distinctive
of the flax fibre, have an origin which is not fully understood. In these regions
enzymes and moisture penetrate, modifying the mechanical properties of the fibre.
They have been recognized as a source of weak points in tensile tests and can be
also in implicate compression failure (Mussig & Stevens, 2010) [5] .

Figure 3.2: SEM pictures of a sectioned flax fibre [6]

As other natural fibres, the flax cells have a cellular wall which is the responsible
for the mechanical stability. Its constitutive molecules are stiff cellulose fibril,
embedded in matrix of complex macromolecules such as hemicelluloses, pectins and
lignin. The cellular wall is composed of one or more layers with different thicknesses
depending on the stage of development. (Mussig & Stevens, 2010)

When the flax plant reaches maximum height and shape, cells start to synthesise
a new secondary wall that begins to grow in the stem. This new secondary wall,
known as S2 zone, is very important and will determine final properties.

This secondary wall is thick, in comparison with the others, and in it cellulose
fibrils are helix winding parallel to each other around the cell, figure 3.3.

The angle of the parallel cellulose microfibrils to the longitudinal cell axis is labeled
as MFA, cellulose microfibril angle, and it greatly determines the mechanical
properties. For bast fibre this angle goes from 0º to 10°, in flax fibre it is around
10°. For seed hairs fibre as cotton, MFA values round 5°-12°, while for wood fibres
it can reach higher values, around 30°-45°. (Mussig & Stevens, 2010)
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Flax fibre non linearities

Figure 3.3: Fibre cell wall organization [5]

As a summary, it can be said that those fibres useful for the industrial application
are long and cellulose-rich fibres, and are fully developed between the outer skin
and the inner core of the plant stem.

In table 3.1 some of the main properties of the most common bio-fibres are shown.
Values shown great variability as fibres properties are very influenced by the climate
in which they have been cropped, the manufacturing process etc. As it can be
seen, flax fibre properties are among the best in natural fibres and this is one of
the reasons of their huge popularisation for their employment in bio composite
materials.

Fibre MFA [º] Young’s modulus [GPa] Ultimate stress [MPa] Density Elongation at break %

Flax 10 27.6-160 345-1100 1.39-1.5 1.5-5

Hemp 6 30-60 199 1-1.40 -

Jute 7-9 2.7-12.6 345-1500 1.3-1.46 7-8

Soft wood 7-45 0.88 199 - -

Sisal 1.061 9.4-24 468-640 1.35-1.45 3-7.4

Banana 1.061 3.4-32 54-789 1.3-1.35 2-7

PALF 1.061 6.26-24.6 170-635 1.44 3

Cotton 6 5.5-12.6 287-597 - -

Table 3.1: Main bio-fibres properties (P. Asokan and others, 2012) [7]
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Flax fibre non linearities

In the following diagrams it is shown how the thickness of the cell wall layers and
their cellulose fibril orientations play a dominant role in the mechanical properties,
with the Young modulus increasing when density does so, and it can be seen too
how the non-linear behaviour is increased with MFA.

Figure 3.4: Stress–strain curves of (A) low- and high-density fibre with constant
MFA and (B) fibres with different microfibril angles [5]

Fibre length is another aspect to take into account as it is responsible too for the
appearance of non- linearities. When a fibre is submitted to a tensile tension, there
appears a tensional flow between the fibrils and with it micro shear stresses in
addition to the axial ones and consequently deformations which are responsible for
the appearance of non linearities.

Finally, the last source of variability comes with the treatment given to the plies
in the impregnation process with the resin, together with the curing process
parameters.

This chapter is intended to be useful in order to understand why the natural fibres
have in general more variability regarding their properties than the chemically-
obtained fibres such as aramodic, carbon or fibreglass.
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Chapter 4

Damage model

In order to characterize correctly the properties of the flax fibre composites, and
regarding, as it has been explained, their nonlinear behaviour, it is necessary to
introduce a correct damage modeling.

In this chapter they will be explained the different theories that have been adapted
for modeling the damage, the different kinds of damages that have been considered
and the elements which are needed for their correct application.

In order to conduct the tests with FEM models, ABAQUS has been chosen due
to its functionality regarding the possibility of introducing subroutines in order to
change the properties and behaviour of the materials. In this sense, UMAT routine
has been chosen for conducting the static analysis while VUMAT is the chosen one
for the dynamic tests.
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4.1 Types of damages

Three different kinds of damage have been taken into account for a static analysis.
These ones are the diffuse damage, the failure damage, and the viscous damage.

1. Diffuse damage

The diffuse damage is a damage that degrades the stiffness matrix during
the loading phase, and therefore creates the non linearities present in the
curve stress-strain characteristic of the flax fibres. Although any material
has a constant stiffness during loading phase, as all materials have internal
imperfections that degrade the stiffness matrix, these ones are more significant
in the flax fibre and lead to a much greater degradation than for example in
metals. It will be seen later how the form of the curve in this loading phase
can be approached by a logarithmic function.

2. Failure damage

The failure damage is a failure whose mission is to define the ultimate load
that leads to the fracture of the fibre or matrix. Failure is of course present in
all materials, but what is not common among them is the form of the curve
after the failure, which can vary. Metals are typical examples of the formation
of neck sections after the tensile strength in which the section is drastically
reduced but some stiffness is maintained. In flax fibre the failure form has
been proven to depend on some factors related with measurable properties of
the material, such as the fibre energy released rate. Failure damage evolution
can be approached by an exponential form, as will be explained later.

3. Viscous regularization

The third kind of damage is the viscous damage. Viscous damage is an
artificial procedure, more than a damage, that has been used for stabilizing
the numerical simulation in the static analysis, and that is used to ensure
the convergence of the solution which is a typical issue when trying to solve
problems which involved non linear effects. It has been used only in the static
case and will be later explained.
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4.2 Diffuse damage

Diffuse damage is the first one to act on the ply as it’s a damage in charge of
degrading the matrix, this is, creating the non-linear behaviour during the loading
phase. As it has been said, this smoothing of the stiffness is due to the presence of
fibrenodes in the flax fibre, which are perpendicular dislocations that deteriorate
the mechanical properties. However, this damage does not appear straight from the
beginning. In the model, a series of conditions have to be accomplished in order for
this damage to be active. The damage model that has been used for programming
the routine is based on the one of Ladeveze- Le Dantec model, 1992 [8].

First, in order to understand how this damage is acting, a real test conducted in
the laboratory is going to be briefly explained. In this test a typical sample for
a tensile test was put to test. A tensile traction test was conducted on several
directions. These directions are: the direction taken as reference (0°), also called
warp, the direction perpendicular to this one (90°), also called weft, and a 45°
direction for the first one, in order to measure the in-plane/in-ply shear stress. As
expected results are very similar for warp and weft because, as it has been said, in
a fabric in-ply configuration the properties are the same in both directions due to
the fact that fibre is weaved in both directions.

Figure 4.1: Stress- Strain plot in the warp direction
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Figure 4.2: Stress- Strain plot in the weft direction

Figure 4.3: Shear tress- Strain plot in the in-plane lamina
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Figure 4.1 shows the test in the warp direction, figure 4.2 the test in the weft
direction, and figure 4.3 the shear stress test. In figure 4.1 there has only been one
loading and unloading phase, while in figures 4.2 and 4.3 the failure was achieved
through five loads and unloads cycles. The curves achieved with the final damage
model are also shown in the last two in green colour.

It can be seen in the three tests, how after a small linear zone there begins a
nonlinear zone which consists in a decrease in the slope that essentially reduces the
stiffness. Basically this decrease in the slope can be modeled by a damage d that is
going to be acting in the stiffness term in that direction in the form σ = E(1 − d)Ô
, and this damage ”d” zone can be approached by a logarithmic function that is
going to depend of the elastic energy together with some fitter constants in order
to approach it to the curve in the tests, all this would be explained lately.

Two things can be remarked. First one is that tests have been pushed until failure
of the samples, around deformations of 1.5 % for for warp and weft directions
( Ô11 = Ô22 = 0.015 ) and 6 % for the shear strain in 12 plane ( γ12 = 0.06 ).

Second one is that the undamaged stiffness can be calculated with the slope of
the first linear zone before the initiation of the diffuse damage. This value has
some variability mainly due to the negative pressure when the resine is cured in
the oven or autoclave. In the tests above this value for warp and weft is around
13000 MPa, as they were cured in an oven applying a vacuum bag and therefore
having a negative pressure of 1 atm, while some other samples tested register higher
values due to the fact that they were cured in an autoclave where in addition to
the vacuum bag an additional negative pressure is applied. In this second case the
stiffness registered for the warp and weft is around 17500 MPa.

To explain how this damage has been modeled, the stress-strain plot in weft
direction, is taken as example.

The load is applied with 5 charges, each one with increasing load. The stress-strain
curve is the one of figure 4.2, registering therefore 5 maximums in stress, and 5
minimums in strain (the point from which each charge restarts).

The model here has been inspired by the one of P.Lavedeze & E. Le Dantec (1992).
In general damage in one of the directions of the ply can be model through a term
d that is going to influent in the stiffness matrix in the form:

Ed = E(1 − d) (4.1)
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The elastic energy is:

Y = 1
2E Ô2 (4.2)

And the stress is:

σ = E0(1 − d)Ô (4.3)

Therefore Y can be expressed too as:

Y = 1
2

σ2

E0(1 − d)2 (4.4)

And the damage can be expressed as:

d = 1 − Ei

E0
(4.5)

Being E the stiffness in that direction. What is done is registering the different
stiffness modulus E in the tensile direction, calculating then as:

Ei = σmaximumi

Ôreestarti

And with this way five values of the damage are calculated. Then, this damage
is represented in front of the square root of the elastic energy. The curve is
interpolated and approached through a logarithmic function. The value of the
fitting constants depends on the system of units used, which is usually different
between explicit and implicit simulations. The values for creating the plot are
shown in table 4.1. For this direction, the value of E0 = 13146MPa (Although in
table 2.1 another value is presented, because, as explained, this sample was cured
with fewer negative pressures than the used later).
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Stress [MPa] Ô Ei[GP a] di

√
Y

36.98 0.3 12326 0.06236 0.24323

64.2 0.607 10576 0.19548 0.49213

87.4 0.927 9428 0.28283 0.75157

102.1 1.17 8726 0.33621 0.94858

115.7 1.4587 7931 0.39667 1.12265

Table 4.1: Values for creating the diffuse damage tendency curve in the weft
direction

With the values of the table 4.1 the curve of the figure 4.4 can be plotted. With
these values it is possible to get a logarithmic tendency curve, which is the one that
approaches better to the curve, and get the law for the evolution of the damage
that is going to be used, written in figure 4.4 too.

Figure 4.4: Evolution of damage and logarithmic tendency curve for the weft
direction
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This evolution of damage is valid whenever the strain is comprised between a
minimum and a maximum. The minimum value of the strain can be obtained
through the elastic energy when the value of the damage is zero, while the maximum
value is taken at the point in the test where the failure damage is initiated. This
exact process is repeated for the other two main directions of the stress, the warp
and the in-ply shear.

As a summary, for the diffuse damage model, there are three damage evolution
variables present that are going to degrade the stiffness matrix. They are three as
each one of them will act in a direction of the space, one for the warp direction,
one for the weft direction, and one for the in-ply shear direction.

The damage activation is based on a threshold for the damage value. If same of
the following relations is accomplished, then there will start to be damage in that
direction. These relations or thresholds are:

FD1 = 1
2Ô2

1C1 > FD01

FD2 = 1
2Ô2

2C2 > FD02

FD3 = 1
2γ2

12C44 > FD03

(4.6)

FD01 , FD02 and FD03 can be seen as the minimum values of strain energy
above which the diffuse damage starts to act. In fact, as it has been seen, the first
thing to do is to interpolate the logarithmic function and after these minimum
thresholds can be obtained.

After that, the damaged is computed (if the threshold value is exceeded in that
direction) as:

Dd1 = c0 + c1 ln(
ñ

FD1)

Dd2 = c2 + c3 ln(
ñ

FD2)

Dd3 = c4 + c5 ln(
ñ

FD3)

(4.7)

As has been said, c0 , c1 , c2 , c3 , c4 , c5 are fitting constants whose value
depends on the units used, something that will differ between static and dynamic
analysis.
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And the damaged stiffness matrix CD when considering just diffuse damage is
the one shown below:



(1 − Dd1)C11 (1 − Dd2)C12 (1 − Dd2)C13 0 0 0
C21 (1 − Dd2)C22 (1 − Dd2)C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 (1 − Dd3)C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66



Two things must be said regarding the behaviour of the diffuse damage. First,
the diffuse damage has memory, this is, even if strain is reduced, the value of the
damage does not do so, and therefore the stiffness lost in one direction cannot be
recover. Second, when the strain reaches the point in which the failure begins, the
diffuse damage does not increase more even if the strain do so.

25



Damage model

4.3 Failure damage

The failure damage is the one in charge of defining the ultimate load which will
lead to the break and failure of the ply. Model is based on the one implemented
by Linde et al, 2004 [9]. Original author considered that material was damaged
with two variables, which represented the damage in the fibre and in matrix. Here,
model has been adapted, and there will be three different kinds of damages, for
warp direction, weft direction and one for failure of the matrix in shear. Criteria
for initiation of damage is given by the following equations. Once again, if some of
the relations is true, then the damage will start in that direction.

FF1 =
ó

Ô2
1

ỖT 1ỖC1
+ Ô1(ỖC1 − ỖT 1)

ỖT 1ỖC1
> 1

FF2 =
ó

Ô2
2

ỖT 2ỖC2
+ Ô2(ỖC2 − ỖT 2)

ỖT 2ỖC2
> 1

FF3 = γ12

γ̃12
> 1

(4.8)

Where ỖT 1 , ỖC1 , ỖT 2 , ỖC2 , γ̃ are the strains at which failure occurs, "1" &
"2" stands for warp and weft directions, and "T " & "C" for traction and compression.
Meanwhile, γ̃ is the in-plane shear strain in which failure occurs but for shear
stress. While the criteria for warp and weft is a bit more complex, following the
model of Linde et al, 2004, the one written for the failure in shear just implies
that when the shear strain is above the one of failure, failure damage starts. The
damage, when activated, will take the form :

Df1 = 1 − e
(1−F F1)

C11 Ỗ2
T 1CELENT

Gfib

FF1

Df2 = 1 − e
(1−F F2)

C22 Ỗ2
T 2CELENT

Gfib

FF2

Df3 = 1 − e
(1−F F3) C44 ˜γ12

2CELENT

Gmat

FF3

(4.9)
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The curve has an exponential form to represent the drop of the curve after the
failure. How this curve has been model can be seen in figures 4.2 and 4.3, in green,
which represents the plot achieved with the numeric model. This is also valid for
4.1 but this curve has not been plotted here.

Two magnitudes that appear in the evolution of damage must be explained.

1. "G" energy released rate

The energy released rate represents the released energy when a crack advances
per unit of new area created. It will be explained later, as a whole experiment
was designed in order to characterise it, but it is a very important magnitude
and plays a key role in the fracture of mechanics, and it is important to have
a correct value in order to create a reliable damage model. As a composite
material is being considered, this magnitude is not the same in all the directions,
but there is one for the direction of the fibre, this is, warp and weft direction,
and another one for the matrix, in the shear failure, as can be found in Linde
et al, 2004. The values used are shown in table 4.2.

Magnitude Value N
mm

Gfib 10

Gmat 0.5

Table 4.2: Values used for the energy released rates

2. Celent

Parameter "CELENT" means to represent the characteristic length of the element.
In an ideal case the length used should be the one of the element which is
perpendicular to the fibre direction and to the stacking direction. However,
ABAQUS gives in a length by default that does not match with this one, but
instead, is the cubic root of the volume in a 3D element or the square root of
the surface in a 2D one.
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Obviously, best strategy for getting the correct CELENT from ABAQUS is to
mesh all the models with perfect cubic elements, where the cubic root is equal
to any side. However, this is generally not possible, since as will be discussed
later, there are parts of the model with very small thicknesses which need a
denser mesh, but have very large lengths, or are connected with other parts
that do have large lengths, and therefore they cannot be meshed with the
same element size in the two directions, because if so there would be a lot
of elements and computation time would increase drastically whereas the
precision would barely change.

As a brief summary, a small code was programmed in order to get a more
accurate CELENT that the one given by ABAQUS. To do so, CELENT was
calculated through a small algorithm with the coordinates of the nodes of the
element. The problem was that the only way found to give these lengths (one
per element) after to ABAQUS, was to write them in a .txt file, so that the
routine could after read them. However, for this to be possible, computations
should be run with just one core, otherwise the correct order was not kept,
as computation with several cores (parallel computation) divides the model
and calculates magnitudes at the same time, including the reading from this
.txt file. Therefore this algorithm was only used in the model prepared for the
study of the energy released rate, which will be described later, as this model
was faster to compute and computation with just one core was affordable in
terms of time. Further about CELENT calculus can be seen in appendix A.

So in case there was damage in all directions, and considering just the failure
damage, the damaged stiffness matrix CD would have the form:

(1−Df1)C11 (1−Df1)(1-Df2)C12 (1−Df1)C13 0 0 0
C21 (1−Df2)C22 (1−Df3)C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 (1−Df1)(1-Df2)(1-Df3)C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66
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4.4 Viscous regularization

Viscous regularization is a procedure used for stabilizing the numerical simulation
based on an artificial damping (Bak M., n.d.) [10]. Finite element analysis, like
any numerical procedure, can exhibit convergence difficulties when trying to solve
problems involving nonlinear effects. Often, the convergence issues in a structural
analysis come from a sudden change in stiffness, such as might occur when a
constitutive law has a sudden change in the slope of the stress-strain curve. This is
what is exactly happening in the case studied. There is a linear behavior, due to
the constant elements presented in the stiffness matrix, until the damage initiation
criteria is accomplished, and the damage starts, causing a change in the slope (a
change in the Jacobian matrix). In fact this happens twice, at the beginning of the
diffuse damage and of course at the beginning of the failure.

A particular example given by Bak of a sudden change in stiffness that causes
convergence difficulties is modeling delamination using the bilinear cohesive zone
material law. This kind of law is very similar to the one used in the routine for the
failure damage (and in fact it is the one used in one of the two models that will be
analyzed in the chapter were energy released rate is discussed) and can be used for
illustrate how is viscous regularization achieved. In this law, if it is represented
the interface traction with the interface separation, the initial slope represents the
linear elastic material behavior of the interface. When the peak traction is achieved
at a certain separation, damage is initiated, and the traction-separation response is
represented by a downward slope. The stress-strain curve of this behaviour can be
seen in figure 4.5.

Figure 4.5: Stress-strain curve in a cohesive zone material law [11]

29



Damage model

This softening can eventually lead to the maximum separation, at which point the
interface is failed and can open freely. The bilinear cohesive zone law uses a damage
parameter (d) to define the current state of the interface. At damage initiation ,
damage is zero, and as the separation increases, the damage will increase until it
reaches a maximum value of one at failure . At any point on the softening slope,
the reduced stiffness of the damaged interface is equal to (1 − d)K , where K is
the elastic undamaged stiffness of the interface. Although the bilinear cohesive
zone model can be a useful tool in modeling delamination behavior, the sudden
change of stiffness at the peak, and the subsequent negative softening slope of the
bilinear law, causes convergence problems.

It is at this point when according to Bak, viscous regularization appears to provide
stability to the numerical solution. In viscous regularization, the traction-separation
law allows stresses to be outside the limits set by the law. This causes the tangent
stiffness matrix of the softening material to be positive for sufficiently small time
increments.

The value of the viscous damage (dv) can be calculated from the current damage
(d), the viscosity parameter, and the time step used in the analysis (dt). The
viscous damage value is then substituted for the regular damage value to calculate
updated tractions, and is also used to update the tangent stiffness matrix. With
a small value of the viscosity parameter η , the rate of convergence is improved
without compromising the results. In addition, the viscous energy dissipation is
usually available as a result quantity so that the analyst can compare to the strain
energy to verify that this damping procedure is not adding artificial stiffness to the
system.

The larger values of viscosity over-estimate the positive tangent stiffness effect,
since it is expected that the bilinear interface law behavior will show a sharp peak
at damage initiation. Guidelines for verifying a valid solution would include further
reduction of the viscosity value until the change in response is insignificant, and
reviewing the viscous energy dissipation to determine if it is a negligible percentage
of the strain energy in the system. As with any numerical damping scheme, the
lower the viscosity value, the more accurate the results, the lower the viscous energy,
but the longer the analysis run time (Bak M., n.d.).

In our case the law implemented for the viscous regularization is the following:

dv
t+∆t = ∆t

η + ∆t
dt+∆t + η

η + ∆t
dt (4.10)
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This viscous is applied to both failure and diffuse damage.This viscous regularization
was implemented as in a previous version of the routine the damages were not well
defined and the Jacobian had not been calculated, but estimated, and therefore
models run with the routine present convergence problems. Although later the
Jacobian was analytically- calculated and implemented in the routine, and therefore
the convergence of the solution suffered a great improvement, it was decided to keep
the viscous regularization with very low values of η that maintain convergence
stability and do not barely change the response.
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4.5 Final damaged matrix and input properties
At this point it can be presented the final stiffness matrix CD if all the damages
where acting at the same time, the three of the diffuse damage and the three of
the failure one, after having been calculated with the viscous regularization.



(1 − Df1)(1 − Dd1)C11 (1 − Df1)(1 − Df2)(1 − Dd2)C12 (1 − Df1)(1 − Dd2)C13 0 0 0
C21 (1 − Df2)(1 − Dd2)C22 (1 − Df3)(1 − Dd2)C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 (1 − Df1)(1 − Df2)(1 − Df3)(1 − Dd3)C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66



It must also be explained how are the values involved in the calculus of the damaged
stiffness matrix (and its differentiated matrix, the Jacobian) given to ABAQUS
and which are the values that have been selected.

The values needed for the calculus of Cd and for its Jacobian, are all the three
stiffness, E1 , E2 and E3 , the three shear modulus G12 , G13 and G23 ,
and the three poisson modulus ν12 , ν13 and ν23. Their values can be found on
table 2.1. Values of the energy released rates for fibre and matrix are also necessary,
they can be found in this chapter in table 4.2. To continue, the values for the
strains at failure are also necessary ỖT 1 , ỖC1 , ỖT 2 , ỖC2 , γ̃ , the values
used are shown in table 4.3. These values have been selected as they are the ones
in which failure is given, what can be seen in figures 4.1, 4.3 and 4.2. Values for
compression have been estimated similar to the ones in traction, so the same value
is used. The final parameter is η , used for the viscous regularization and which
is used in implicit analysis. For this analysis the value used was η = 0.001.
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All these parameters are directly introduced into ABAQUS through the ABAQUS
model, in the definition of the material through the properties vector. Subroutines
UMAT and VUMAT are then given this vector by ABAQUS and read all the values
for the calculus of Cd and its Jacobian matrix. It must also be said that the
system of units is not the same in implicit and explicit analysis and therefore the
units of all these parameters must be adapted depending on the kind of simulation
and the subroutine that is being used.

Magnitude Value

ỖT 1 0.0145

ỖC1 0.0145

ỖT 2 0.0145

ỖC2 0.0145

γ̃ 0.06

Table 4.3: Values used for the strains at failure

To end this chapter, it must be said that the procedure followed to calculated the
jacobian matrix of this final damaged stiffness matrix Cd , has been exposed in
appendix B.
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Chapter 5

Static analysis

This chapter is intended to explain the static analysis carried out, necessary in
order to model the behaviour and damage when the flax fibre panels are submitted
to static loads.

To begin with, a summary of how does the UMAT routine works will be done. This
routine, together with VUMAT, are the two given by ABAQUS in order to run
simulations introducing the "User-defined mechanical material behaviour" concept.
UMAT is used for implicit analysis, while VUMAT is used for explicit analysis, and
it has been the one selected in order to simulate the damage in the bio composite
material.

To continue, the three point bending test will be introduced. This test was the
chosen one in order to compare the results between a real model and a model
prepared in ABAQUS for the static load case. The real experiment together with
the one carried out in ABAQUS will be explained. Finally, the results of the two
will be compared in order to evaluate the degree of reliability of the model.

Finally, the fibre energy released test will be explained too. This test was simulated
in ABAQUS, where several models where run. Real test was intended to be done
too, but it was not possible in the end. The purpose is to measure and characterise
the fibre energy released rate, a magnitude that plays an important role in the
failure damage model.
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5.1 UMAT routine
During the next section, it will be explained how does the subroutine UMAT works
through a brief explanation and scheme. It is important to explain who does the
routine works as a lot of time has been spent in its writing in order to obtain
simulations with results in compliance to those of the real tests. Some of the
following notes have been summarised from [12].

UMAT subroutine is one of the subroutines given by ABAQUS in order to enlarge
the capacities and allow the user to perform more precise and control simulations.
UMAT and VUMAT are the subroutines proportioned to use when none of the
existing material models included in the ABAQUS material library accurately
represents the behavior of the material to be modeled. As a summary, UMAT
allows the user to define the mechanical behaviour of the material, by defining the
stiffness matrix, together with its Jacobian matrix, in order to perform non linear
analysis. In general, UMAT and VUMAT interfaces make it possible to define any
(proprietary) constitutive model of arbitrary complexity.

The Abaqus routines can be written in Fortran, C and C++, although the most
used language is Fortran and that is why it has been the chosen one.

For static analysis, a step is normally defined for every load case. The step has
therefore associated a list of loads and boundary conditions. It has also associated
a time, although this time is not important in static analysis, as it does not have
any relationship with the real physical time. Each step is composed of a number of
increments. In each increment there is therefore an increment in the loads, and
inside each increment there will be an iteration in which the static equilibrium
will be tried to be achieved within the increments given. If equilibrium is not
achieved, then another iteration within the same increment will take place and a
new increments for the loads will be defined, these ones smaller than in the previous
iteration. Overwhelming the maximum number of iterations for each increment
is, for example, one of the cases of abortion of the analysis, as convergence is
considered not to be achieved.

In UMAT a series of variables are passed in to the routine by ABAQUS. In the
routine new variables are calculated, using some of these, and then are passed back
to ABAQUS in order to perform the calculus.

Between the variables passed in, the main one is the strain vector, which is passed
through an array that contains the total strains at the beginning of the increment,
and another array that contains the strain increments in the iteration.
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After this, a series of variables must be defined inside the routine in order to be
passed back. As it has been said the most important one is the array of stresses,
which is passed in as the stress tensor at the beginning of the increment and must
be updated in this routine to be the stress tensor at the end of the increment.

Both UMAT and VUMAT require a proper definition of the constitutive equation,
which requires the explicit definition of stress (Cauchy stress for large-strain
applications).

It is necessary to transform the constitutive rate equation into an incremental
equation, using a suitable integration procedure, in general:

• Forward Euler (explicit integration)

• Backward Euler (implicit integration)

The other important variable, in addition to the stress, that is necessary to calculate
in ABAQUS/Standard UMAT is the Jacobian. For small-deformation problems
(e.g., linear elasticity) or large-deformation problems with small volume changes
(e.g., metal plasticity), the consistent Jacobian is

J = ∂Ñσ

∂ÑÔ

where Ñσ is the increment in (Cauchy) stress and is the increment in strain. (In
finite-strain problems, is an approximation to the logarithmic strain.)

Furthermore, it is likely to require the solution-dependent state variables, which
are variables of interest associated to each point and from which is interesting to
have information at the end of the analysis; i.e. the value of each damage.

Solution-dependent state variables (SDVs) are values that can be defined to evolve
with the solution of an analysis. It is the user’s responsibility to calculate the
evolution of the SDVs within the subroutine; ABAQUS just stores the variables for
the user subroutine.

Space must be allocated to store each of the solution-dependent state variables
defined in a user subroutine.

Finally it can also be returned to ABAQUS the SSE, SPD, SCD, the specific elastic
strain energy, plastic dissipation, and creep dissipation, respectively. They have no
effect on the solution, except that they are used for energy output.
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As a summary:

The following quantities are available in UMAT:

• Stress, strain, and SDVs at the start of the increment

• Strain increment, rotation increment, and deformation gradient at the start
and end of the increment

• Total and incremental values of time, temperature, and user-defined field
variables

• Material constants, material point position, and a characteristic element length

• Element,integration point,and composite layer number(for shells and layered
solids)

• Current step and increment numbers

The following quantities must be defined:

• Stress

• SDVs

• Material Jacobian

The following variables may be defined:

• Strain energy, plastic dissipation, and “creep” dissipation

• Suggested new (reduced) time increment

It is important to say that ABAQUS runs the routine in order, first once for each
integration point (also called Gauss point) inside an element, and then for all the
elements.

In the next page, figure 5.1, a simple scheme of the functioning of the routine is
shown.
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Figure 5.1: UMAT Scheme
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Criteria for the stress and strain vector used in UMAT can be seen below. This
is important when coding and as will be seen later, criteria for these two vectors
differs from UMAT to VUMAT.

þÔ = [Ô11 Ô22 Ô33 γ12 γ13 γ23]

þσ = [σ11 σ22 σ33 τ12 τ13 τ23]

Finally in table 6.1 the system of units used for the implicit analysis is given.
It is important to remind that as almost all FEM programs, ABAQUS has not
built-in dimensions, and it must be ensured that work is done with all magnitudes
in consistent units. International system of units or multiples from this one are
strongly recommended. Obviously the parameters that must be read from ABAQUS
by UMAT, which were discussed at the end of chapter 4, must respect the chosen
system of units.

Quantity Unit

Length mm

Force N

Mass ton

Time s

Stress MPa

Energy N·mm (mJ)

Density ton/mm3

Table 5.1: System of units used for implicit analysis

39



Static analysis

5.2 Three Point Bending Test

5.2.1 Introduction

The three point bend test is a classical experiment in mechanics, for characterizing
the modulus of elasticity in bending Ef flexural stress σf flexural strain Ôf and the
flexural stress–strain response for a material in the shape of a beam. This test is
performed on a universal testing machine (tensile testing machine or tensile tester)
where the material is laid horizontally over two points of contact and with a force
that is applied to the top through one or two points (this would be a four point
bending test) of contact.Force is applied until the fail of the sample occurs (Zweben
et. al, 1979) [13].

The main advantage of a three-point flexural test is the ease of the specimen
preparation and testing, as it is more affordable than a tensile test. This is the
main reason why this was the chosen test for the static case. However, this method
has also some disadvantages: the results of the testing method are sensitive to
specimen and loading geometry and strain rate (Zweben et. al).

The ultimate goal of the three point bending test is the plot of the applied load
with the displacement. Assuming that the lower elements that support the sample
(in this test they are two cylinders) are fixed, then the load is the one that is
applied in the upper element (in this test this element has a rectangular shape),
and the displacement is the one of a point of this element (assuming that it can
be model as rigid, since its Young modulus is several times higher than the one
of the material tested). This plot has some similarities to the one of the uni-axial
stress-strain plot in any direction, slope will be linear until a point, where it will
begin to decrease (this will mean that diffuse damage has been initiated), and after
a maximum (which represents a global failure of the sample), slope will drop with
the shape of a sort of exponential function.

The three point bending test has been performed according to ASTM C393 / C393M-
16, Standard Test Method for Core Shear Properties of Sandwich Constructions by
Beam Flexure, [14]. A scheme of the three point bending test is shown in figure
5.2 . The main parameters taken in the test are shown in table 5.2.
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Load cell 10 kN

Displacement measurement LVDT

Velocity 6 mm/min

Sample dimension 75 x 200 x 12 mm

Contact 10 mm rigid barr

Table 5.2: Three point bending test parameters

Figure 5.2: Three point bending test scheme [15]

According to ASTM Standard, it’s possible to calculate the core shear ultimate
stress τultimate, core shear yield stress τyield, and the facing stress σfacing, through
the equations:

τultimate = Pmax

(d + c)b

τyield = Pyield

(d + c)b

σfacing = Pmax

(d + c)b
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Where:

• t = facing thickness

• c = core thickness

• d = sandwich thickness

• b = sandwich width

The model which has been tested for this experiment, can be seen in figure 5.3.
It consist on two skins with a corrugated section between them. It is of course
made of flax fibre and epoxy plies. More detailed geometric aspects of the model
will be shown in next chapter, where the FEM model will be introduced.

The results for this model test are shown below, in table 5.3.

Pmax [N] τultimate [MPa] σfacing [MPa] Bending Stiffness [N/mm].

2040 174 1.27 577

Table 5.3: Values for the test
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5.2.2 FEM model
This subsection is intended to present the model which was prepared in ABAQUS
in order to simulate the three point bending test carried out. Showing the FEM
model will also be a way to introduce the geometry and characteristics of the real
model and also some test parameters. The real model was built with some measure
specifications, regarding the length, width and the geometry and measures of the
cross section and those have been the pursued when creating the FEM model in
ABAQUS. This model has been meshed with C3D8R brick elements.

The model tested consist on a corrugated panel, with a cross-section "W " shape,
which can also be called omega panel, and which is between two flat skins. Some
images of the model can be seen in figures 5.3, 5.4 and 5.4. Figure 5.3 shows a
general view in order to have an idea of the configuration, while 5.4 shows again a
general view but without the upper skin, and figure 5.5 shown a lateral view in
order to see better the cross- section.

Figure 5.3: General view of the FEM model for the 3 point bending test
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Figure 5.4: View of FEM model without upper skin

Figure 5.5: View of the cross- section of the FEM model
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Main measures of the model are shown in table 6.4.

Measure] Value [mm]

Length 200

Width 80

Height 10.1

Skin thickness 0.5

Corrugated panel thickness 0.6

Table 5.4: Main measures of the three point bending test model

Figure 5.6 shows the distance between the elements (two cylinders and a rectangle)
that are used to create the bending during the test. Dimensions of these elements
are also shown. In the upper element (the rectangle) there were introduced 1 mm
fillet radius in order to smooth the stresses that can appear in the contact when
there are not round corners. As told before, this rectangle and the cylinders were
meshed as rigid since their stiffness is several times the one of the panel.

Figure 5.6: Main measures of the three point bending test
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Meshing

Meshing is one of the most critical parts of the pre-processing of the design. The
mesh is the degree of approximation that the model has with reality. The denser
the mesh, the closer it is to reality. However, a very dense mesh will also need a
more powerful computer to be able to run the analysis. In addition, putting a very
large number of elements, this is, making a very dense mesh, does not necessarily
mean that this mesh is good, and can become a useless way of consuming resources.
It is possible to obtain very truthful results with a not very dense but well done
mesh, and that is exactly what it is intended (Dueñas, 2014) [16].

In order for a mesh to be considered as good, basically three things should be tried
to be achieved.

1. Have a structured mesh. Structured meshes are those formed by a set of nodes
(or control volumes) that can be uniquely identified by a group of ordered
indexes (i, j, k) in 3D or (i, j) in 2D.

2. Elements with good characteristics. In order to do so, two aptitudes will be
remarked.

• First, a good relationship between the proportions of the sides of the
elements should be achieved. The less disproportionate they are the better.
To measure this disproportion, there exists in all FEM programs what
is called the "Aspect Ratio". The exact definition of the aspect ratio is
defined for a four-sided element as the ratio between the maximum semi-
sum of two opposite sides and the semi-sum of the other two opposite sides.
This parameter should be tried be kept under 5, which in a rectangular
element means that one side cannot be 5 times larger than the other.
Elements must be therefore made as square as possible.

• The other factor to watch out is related to the angles between the sides
of the elements, and that is distortion. An undistorted element will be
a square or a perfect rectangle with all 4 angles at 90 degrees, while
a very distorted element will have irregular angles. To do this FEM
programs normally present some sort of "Jacobian" tool, which analyzes
the distortion of the elements by measuring their Jacobian, and colors
them with a color scale according to that value. If the distortion of the
elements in an area is large, poor quality results can be produced locally.

Is important to be careful since if the excessively disproportionate or
distorted elements are in a non-critical area, the false results can stop
instead of spreading, but if these elements are located in a critical area,
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the results can affect the whole model and a good approximation to reality
would not be achieved.

3. At the edge of a joint between two surfaces, the nodes of one and the other
must coincide, that is, the side of an element that is on the edge must belong
entirely to the element on the surface on the other side of the edge, and only
to that element. For this to happen, it is essential to have broken the surfaces
in a correct way.

As a summary, a mesh will be good if it is fine enough, is structured and its elements
are not too distorted or disproportionate, but rather compact and square.

Model was meshed with brick elements, in particular C3D8R elements, while
reduced integration was not activated. Mesh can be seen in figures 5.7 and 5.8.

Figure 5.7: General view of the mesh in the three point bending test model

47



Static analysis

Figure 5.8: Detailed cross-section view of the mesh in the three point bending
test model

Figure 5.8 is important as it shows something that was discussed when celent
was introduced. In order to get good results at least two elements have to be
put in the thickness of the corrugated panel and the skin. As the skin has the
smallest thickness (0.5 mm) this means that elements are going to have a minimum
dimension of 0.25 mm. If perfect cubic elements are wanted, this would mean,
and taking into account that one skin measures 200 x 80 x 0.5 mm3, that just
one skin would have 512000 elements. To have so many elements would increase a
lot computation time without reporting barely any improvement in the degree of
compliance with reality of the results. For this reason, elements which need to have
small thickness (all of the model, since the thickness dimension of the skins is 0.5
mm and the one of the corrugated panel is 0.6 mm) have lengths of five times their
thickness. Five is chosen since as told before, a value above 5 would compromise
the quality of the elements, while low values would imply more elements and higher
computation times.
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5.2.3 Results and results comparison
The following section will present the results for the introduced corrugated panel.
Al it has been already told, main result from a three point bending test is the plot
of the applied load (or the reaction load from the sample) with the displacement of
the element that applies the load.

A total of 5 samples were tested under the three point bending test. Two of
them failed after with a "lower skin tensile failure" mode, while three did under a
compressive mode involving buckling of the upper skin. Results for the plot load-
displacement of all the cases are shown in figure A.2, and are compared with the
results extracted from ABAQUS.

Figure 5.9: Load vs displacement, three point bending test

Curves from ABAQUS tests are red and green ones. Green curve has been produced
with the values of the failure strains at table 4.3, while red curve was done with
values ỖT 1 = ỖC1 = ỖT 2 = ỖC2 = 0.0112 and some value for γ̃. In both cases, curve
develops through the same path, but the value of these terms affects the point in
which failure presents, being this last one a better approximation to real curves.
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Overall, results can be rated as good. Slope is near the one that have shown
experimental tests. This slope smoothes due to the effect of the diffuse damage
following a very similar shape and tendency. Failure is given at the around the
same value of displacement, and the exponential function achieves a good modeling
regarding the drop of the curve after the failure.

Slope is however slightly lower than in the real tests, and this seems to be related
with the fact that there is a very small in time (but in a way remarkable in terms
of load) drop of the slope at the beginning of the curve. When revising the model
it is seen that it appears in some element (in contact with the element on which
is applied the load) diffuse damage straight from the beginning. This indicates
that there may be some contact problem that is producing some stress in these
elements from the initial instant, what could explain this small drop in the curve
at the beginning.

As in two of the real tests, the mechanism of failure in the simulation carried out in
ABAQUS has been the buckling of the upper skin. Figure 5.10 shows the situation
of the upper skin after failure. Buckling of this skin can be seen.

Figure 5.10: View of the buckling of the upper skin
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Images from results have been left below. Figures 5.11 to 5.18 show the value of
the different damages at the final time. In figures 5.14 and 5.18 the upper skin has
been removed to show the internal cross section as it is greatly damaged by the
shear stress. Table 5.5 shows the code for the different damages. For identifying a
damage through an SDV, only image’s caption should be payed attention, but not
each image’s legend.

SDV Magnitude

SDV 1 Failure fibre damage, 11 direction

SDV 2 Failure fibre damage, 22 direction

SDV 3 Failure matrix damage, 12 direction

SDV 4 Diffuse fibre damage, 11 direction

SDV 5 Diffuse fibre damage, 22 direction

SDV 6 Diffuse matrix damage, 12 direction

Table 5.5: SDV association

Figure 5.11: Three point bending test, SDV 1
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Figure 5.12: Three point bending test, SDV 2

Figure 5.13: Three point bending test, SDV 3

Figure 5.14: Three point bending test, SDV 3, upper skin removed
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Figure 5.15: Three point bending test, SDV 4

Figure 5.16: Three point bending test, SDV 5

Figure 5.17: Three point bending test, SDV 6
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Figure 5.18: Three point bending test, SDV 6, upper skin removed
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5.3 Fibre energy released rate

5.3.1 Introduction mathematical background
The fracture energy rate is the energy released per-unit-area as the material
undergoes a fracture with the propagation of a crack. The fracture energy can be
understood as the decrement in total potential energy necessary for the creation of
new surface in the fracture, divided by this increment in the fracture surface area.

The fibre fracture energy rate is the energy released per-unit-area when the fracture
is having place in a plane perpendicular to the fibre direction, as the tensile strengths
have the direction of the fibre. Do not confuse the fracture energy rate with the
critic energy rate (which has been called through all this thesis "energy released
rate", as they are not exactly the same, difference will be explained later).

The reason why the characterization of the fibre and matrix energy released rates
is important is due to the fact that they are important magnitudes for the creation
of damage models in the case of bio composites as they develop an important role
in the fracture models developed, and they appear in the calculus of the damage
for the fracture damage. Their correct characterization and evaluation is therefore
important for the overall robustness of the model.

For the all simulations carried out, and as the real value of this fibre energy released
rate was still not characterised, a value of Gcfib = 10 N

mm
= 0.001 J

mm2 was used.

For the matrix energy released rate the value used was Gcmat = 0.5 N
mm

= 0.0005 J
mm2 .

For fibre this value was estimated from a carbon fibre and epoxy ply. Previous
tests (identically to the one that will be explained here) show that the this value
for carbon is around Gcfib = 100000 J

mm2 = 100 N
mm

. Taking as hypothesis that this
value is proportional to the stiffness or Young’s modulus in the fibre direction,
and taking into account that the stiffness of carbon is around 135000 N

mm2 and the
one of the flax fibre is around ten times less, around 15000 N

mm2 , Gcfib can be
estimated to be Gcfib = 10 N

mm
= 0.001 J

mm2 .

The value for the matrix Gcmat is known as previous test had been conducted in
shear with epoxies very similar to the one used for the ply here.
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5.3.2 Mathematical Background
The study of fracture generally involves the characterization of the released or
dissipated energy when there is propagation of a crack (Médeau V. 2019) [17].
This quantification of the energy is support by the Griffith analysis, thought the
introduction of the rate of energy released G. This rate has been introduced by
Griffith (Griffith, 1921) [18], and is used as support for mechanics of fracture.

This theory is valid for a big variety of materials. It is made the hypothesis that
the the behaviour of the material remains linear elastic - fragile in all the structure,
except in a infinitesimal zone in the point of fracture. This infinitesimal point in
the crack is the only source of dissipation (Médeau V., 2019).

Theoretically, the mechanics of fracture affirms that the influence of this small zone
in the global behaviour is negligible. The criteria for the propagation of a crack is
supported by an energetic balance between the structural properties dependent of
the loads and the material parameters (Chaboche, 2001) [19] :

- For each crack it is associated a rate of released energy G (fracture energy rate),
that is the elastic energy released by the structure per infinitesimal transversal
growth of the crack, proportional to the area.

- Crack advances if G is able to compensate the necessary surface energy for
the advance of the crack (rate of restitution of the critic energy Gc, the magnitude
intended to characterise and that has been called until this point as energy released
rate).

On the contrary, if the released elastic energy is not sufficient for creating a new
fracture surface the crack does not advance.

Considering an structure of thickness ep, that has a fissure placed in a, of an
infinitesimal lenght δa, figure 5.19 the energetic balance can be written in a quasi-
static state as:

G ep δa = δW − δU (5.1)

δW is the work done by the exterior forces during the propagation of the crack
and δU is the variation of elastic energy stored in the structure. For a given
displacement u, the exterior work is written as δW = P (u, a)δu. Equation 5.1 is
therefore transformed into:

G ep δa = P (u, a)δu − ( ∂U(u, a)
∂u

-----
a

δu + ∂U(u, a)
∂a

-----
a

δa) (5.2)
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If a system without propagation of fracture or quasi-static is considered, it is had
P (u, a) − ∂U(u,a)

∂u
a = 0 and therefore the G can be expressed as

G = − 1
ep

∂U(u, a)
∂a

(5.3)

Figure 5.19: Scheme of the crack propagation in the theory of Griffith [17]

So as a summary:
• If G < Gc : crack does not advance.

• If G = Gc : crack advance in a quasi-static way, all the released energy is
consumed in the propagation and creation of new surface.

• If G > Gc : the crack propagates in a dynamic way, the excess of released
energy not used for creating surface is transformed into kinetic energy K, and
this term will appear in the energetic balance of previous equation.

As it can be seen, the experimental objective is to determine the value Gc, one
of the most important ones when trying to understand the fracture mechanics.
This parameter, correctly named "Critic released energy rate" is considered to be a
material parameter independent of the studied structure, the propagation history,
the applied loads and the size and form of the present mechanic fields. Through this
dissertation is has been named as "fibre energy relased rate" (since it is intended to
characterise this value in that direction).

57



Static analysis

5.3.3 Method of the Areas for determination of Gc
To continue, the method used for the determination of Gc will be explained. The
method of areas is the most directed method for the estimation of the critic released
energy rate. It estimates the Gc taking differences in the equation 5.3, calculated
between two instants of propagation 1 and 2 , 5.20. The variation of elastic energy
is divided by the new surface created when the crack has advanced a distance Ña.
(Médeau V., 2019) [17].

Gc can be interpreted as the difference of areas below the curve Force - Displacement
between two points.This method is not supported by solid hypothesis and is valid
in order to give a good estimation, in any context. It has not, however, an
unconditional reliability and it can show some errors when the variation of the
crack longitude is very small.

Figure 5.20: Graphic interpretation of the method of areas [20]

This method has been the used for calculating Gc with the results of the analysis
given by ABAQUAS and it is the planned one for extracting the magnitude in the
real tests.
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5.3.4 Characterization and experimental test

The energy released rate test is conducted according to ASTM D5528-13 [21] "Stan-
dard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional
Fiber-Reinforced Polymer Matrix Composites", and is performed with a traction
machine.

The objective of the test will be to evaluate the fibre fracture energy of a sample
made of the stacking of several plies of flax fibre which has been weaved and later
impregnated in epoxy and which has been cured in the oven. A picture of the
sample is shown in figure 5.21.

In the test the sample has a precrack made and the tensile stress is applied through
a traction machine. The tension is practised through two cylinders that cross the
sample by two drilled holes. Tension is applied pulling from these two cylinders
from each side with the pull machine, and propagating therefore the precrack which
starts to advance through a plane perpendicular to the fibre. An scheme can be
seen in figure 5.22.

Figure 5.21: Sample for the characterization of the critic energy released rate
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Figure 5.22: Scheme of the test

The initial sample was prepared by the group of operators of DMSM department.
The execution of the drilled holes can be seen in figure 5.23.

Figure 5.23: Execution of through holes in the sample
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In order to perform the precrack in the middle a diamond- edge cutter is used,
in order to let the crack start by that point. Process can be seen in figure 5.24
and the sample with the precrack done in figure 5.25. As explained, the crack will
develop through a fracture plane which will be perpendicular to the fibre direction.

Figure 5.24: Execution of the precrack with the diamond- edge cutter

Figure 5.25: Sample with the precrack in the middle

The main characteristics of the sample can be seen in table 5.6. The rest of measures
can be found in figure 5.22.
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Characteristic Value [mm]

Length 65

Width 60

Thickness 4

Drilled holes diameter 8

Hole separation at the beginning 28

Precrack thickness 0.3

Precrack length 6

Table 5.6: Main measures of the sample

After that, the strain gauge, commercialy branded as KRAK-GAGE is placed.
The following has been directly reproduced from the FRACTOMAT manual of
instructions, [22]. The KRAK-GAGE is essentially a thin film electrical cracklength
transducer bonded on a component or specimen. It provides an infinite resolution
DC voltage output proportional to the cracklenght. It consists of a thin metal foil
and of a flexible backing which provides a convenient bonding and insulating to
a test specimen. The photo-etched shape of the KRAK GAGE gives a strongly
linear relationship between gauges- output and cracklength. The crack growth has
to start at a known point for correct locating of the KRAK GAGE.

As a general rule, the installation of a KRAK-GAGE to a specimen is identical
to the well established methods used for foil-type strain gauges. A successful test
needs a proper, high quality gauge installation. A correct cleaning and degreasing
is necessary to remove all surface contaminates, such as oils, greases, chemical
residues, etc. Common degreasing methods include hot vapor, ultrasonic bath,
aerosol spraying of chloroethene NU or Freon. It is recommended to degrease the
entire test specimen, or a surface area somewhat larger in size than needed for the
given KRAK-GAGE size.

Each KRAK-GAGE is provided with a suitable triangular alignment marks or
notches to aid in precisely mounting the gauge onto the specimen. It is recommended
to lay out a pair of cross reference marks onto the sample. The gauge can be seen
in figures 5.26 and 5.27
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Figure 5.26: Manufacturer of the strain gauge

Figure 5.27: Strain gauge

Finally, the system is complete with the measuring system. The cracklength
measuring system is commercially called FRACTOMAT, an image can be seen in
figure 5.28.

The FRACTOMAT is a complete, self-contained, two channel cracklenth measuring
system designed specifically for use with all the KRACK-GAGES. It is essential
that the crack grows simultaneosluly in the test piece and the KRAK-GAGE. A
digital panel meter shows the measuring values of cracklength.
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The KRAK-GAGES are connected with a four wire cable to the FRACTOMAT
intrument. The both constant sources excitate the KRACK-GAGES. The gauge
outputs are processed in a two stage differential amplifiers. The output instrument
is 10 V for 100 % nominal cracklentght. A "hold" circuit is provided to avoid
possible reading errors because of crack closure effects during dynamic testing. This
circuit stores the max. value of cracklenght.

Figure 5.28: FRACTOMAT measuring system [23]

For the calculus of the energy during this test the load-displacement evolution must
be plotted. For this test the displacement is actually the separation of the two
metallic cylinders minus their separation at the beginning, this is, the displacement
of one of them multiplied by two.

The energy used by the machine for breaking the sample, or this is, the energy
released by the sample, is the area below the curve. As it is intended to calculate
the rate with the area of this energy, this is, the energy per-unit-area, the idea
is to know the amount of this energy that has been released when the crack has
advanced a certain amount and a new surface has been created. The method used
is therefore the method of the area previously explained.

Unfortunately, due to the COVID-19 virus which was declared as a pandemic by
the OMS the 11th of march of 2020, all universities and research facilities were
ordered to shutdown in France from the 13th of march onwards and the experiment
could not be conducted.

Results for the Gcfib were expected to be around 0.01 J
mm2 , which in fact, as

explained, is the value that has been used in all the simulations as is considered to
be a good approach. However the samples are prepared and the experiment is well
described here for anyone to continue it.

Next subsection will show the different models that were created in ABAQUS and
the objective pursued with them.
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5.3.5 ABAQUS models and results
Although the test was not conducted, two models were prepared in ABAQUS, in
order to test the validity of the damage model by comparing results between them.
To continue, it will be explained why this has been done.

Two ideas are pursued. First one is to input a desired value for Gfib in the two
models and then calculated it with the results by the method of the area to see
if the desired input value has been achieved. Second is to compare the results of
the two models between them, as one of the methods (the one implemented in
ABAQUS) is a proven method for this kind of analysis and it is useful to compare
it with the results of the model in which the UMAT subroutine is used.

One of these models has been modelled with a cohesive contact property which
includes cohesive behaviour and damage in the place through which the crack is
going to propagate. Cohesive behaviour and this sort of failure damage modelling
inside ABAQUS itself will be explained later but are typical and reliable forms of
modeling these kind of fractures. In fact what is intended with the damage model
of the UMAT subroutine is to include this kind of damage modeling, among others.
For having a contact in the location of the crack, what has been done is creating
first one half of the model and then making a mirror to have two different parts
that can be put together through this contact. For understanding this, the first
half of the model, and the whole model can be seen in figure 5.29. This model is
run therefore without any subroutine.

Figure 5.29: Model after perform-
ing a mirror in the crack zone

Figure 5.30: Original model real-
ized
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The second model will be a regular model which will be run together with the
subroutine. However, as the only effects presented in the previous model are
this sort of failure damage modelled inside ABAQUS together with a cohesive
behaviour, the diffuse damage of the subroutine was deactivated for this second
model. Actually, a model run with diffuse damage also would present very few
diffuse damage through all the model and this would only be non deniable in the
zone of the crack propagation, but it was deactivated i in order to have the most
similar results between the two.

After extracting results for both models, it is possible to have through the method
of the areas previously explained, the fibre energy released rates Gf and compare it
with the ones used as an input. In case of coincidence for the subroutine’s failure
damage model, this will obviously mean that the damage model implemented is
working correctly.

The first model is also used for compare results with this second one and see if the
global behaviour is overall similar, which strengthens the reliability of our second
model and therefore of the damage model implemented.

Although for this comparison between the two, the real value of fibre fibre energy
rate Gf was not characterized yet, what is pursued here is yo have a first proof
that the failure damage model implemented is working well.

Next step would have been the realization of the test in order to characterize Gf

and a simulation of the ABAQUS model with the subroutine but this time with
the diffuse damage activated too, as this damage is acting in the real life test.
After that comparing results between the two in order to improve and implement
the output- test value Gf would have been done. However, as explained, it was
impossible to perform the test.
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Cohesive contact and damage modelling inside ABAQUS

Cohesive contact is one of the capabilities offered by ABAQUS which can be used to
model a bonded interface, with or without the possibility of damage and failure of
the bond. The following has been extracted directly from ABAQUS reference guide,
[11]. This capability has similarities to other features that could be considered
for a bonded interface, including cohesive elements. Cohesive contact behaviour is
typically easier to define than modeling the interface using cohesive elements and is
primarily intended for situations in which the interface thickness is negligibly small.
If the interface adhesive layer has a finite thickness and macroscopic properties
of the adhesive material are available, it may be more appropriate to model the
response using conventional cohesive elements.

In ABAQUS/Explicit the surface-based cohesive behaviour framework can also be
used to model crack propagation in initially partially bonded surfaces via linear
elastic fracture mechanics principles (LEFM).

In general contact cohesive behavior:

• Is defined as surface interaction property.

• Allows specification of cohesive data such as the fracture energy as a function
of the ratio of normal to shear displacements (mode mix) at the interface;

• Assumes a linear elastic traction-separation law prior to damage;

• Assumes that failure of the cohesive bond is characterized by progressive
degradation of the cohesive stiffness, which is driven by a damage process.

The available traction-separation model in ABAQUS assumes initially linear elastic
behavior followed by the initiation and evolution of damage. The elastic behavior
is written in terms of an elastic constitutive matrix that relates the normal and
shear stresses to the normal and shear separations across the interface.

The nominal traction stress vector, t consists of three components (two components
in two-dimensional problems): tn,ts, and (in three-dimensional problems) tt, which
represent the normal (along the local 3-direction in three dimensions and along
the local 2-direction in two dimensions) and the two shear tractions (along the
local 1- and 2-directions in three dimensions and along the local 1-direction in two
dimensions), respectively. The corresponding separations are denoted by δn, δs,
and δt. The elastic behavior can then be written as:
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t =

tn

ts

tt

 =

knn kns knt

kns kss kst

knt kst ktt


δn

δs

δt

 = kδ

Uncoupled traction-separation behavior is marked.The simplest specification of
cohesive behavior generates contact penalties that enforce the cohesive constraint
in both normal and tangential directions. By default, the normal and tangential
stiffness components will not be coupled: pure normal separation by itself does not
give rise to cohesive forces in the shear directions, and pure shear slip with zero
normal separation does not give rise to any cohesive forces in the normal direction.
For uncoupled traction-separation behavior, the terms Knn, Kss and Ktt must be
defined. The table with the values used can be seen in table 5.7. A typical traction-
separation behaviour can be seen in figure 4.5.

Knn
N

mm3 Kss
N

mm3 Ktt
N

mm3

100000 100000 100000

Table 5.7: Values for the cohesive property

These values have been selected according to (Turon et al., 2007) [24], which
proposed them as default values for the interface stiffness. In any case, as the only
Gf intended to know is the one of the fibre (perpendicular to the surface of the
crack), the only value of interest is Knn.

Finally, damage modeling has also been implemented. Damage modeling allows
you to simulate the degradation and eventual failure of the bond between two
cohesive surfaces. The failure mechanism consists of two ingredients: a damage
initiation criterion and a damage evolution law. The initial response is assumed to
be linear as discussed above. However, once a damage initiation criterion is met,
damage can occur according to a user-defined damage evolution law. This evolution
can be select as linear, figure 5.31 (the one selected here), or exponential, which
can be seen in figure 5.32. Although the model of the subroutine is exponential
results do not vary barely. If the damage initiation criterion is specified without a
corresponding damage evolution model, ABAQUS evaluates the damage initiation
criterion for output purposes only; there is no effect on the response of the cohesive
surfaces (i.e., no damage will occur). Table 5.8 below shows the values of initiation
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criteria introduced. Once again the important one is the "normal only" as this
is the direction in which it is desired to calculate the Gf . For writing this value,
the stress strain of an element of the crack was plotted in the model run with the
subroutine, in order to try to adjust this model to that one.

Normal only MPa Shear-1 only MPa Shear-2 only MPa

150 50 50

Table 5.8: Values for the damage law

Figure 5.31: Traction separation with linear drop of the curve [11]

Figure 5.32: Traction separation with exponential drop of the curve [11]
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Results

Results are presented in this section, for the model made up with cohesive elements
and the one run with the routine jsut with failure model. It must be recalled that
the first objective is that the Gf calculated in the second one is equal to the one
input through the properties, this is Gf = 0.01 J

mm2 , and the second one is to obtain
a similar general beheviour when comparing the two models.

To extract results, load is plotted with the separation between the two points
from which load is applied (separation between the center of the two drilled holes).
After that, the method of areas is applied. For applying this method, first thing
done is to locate the maximum load. After locating this maximum load, and
through the damage parameter, the amount of separation needed for the failure
of one element can be known. Two lines are drawn from origin to the instant 1
(when damage arrives the element, figure 5.33) and instant two (where the whole
element is damaged, figure 5.34) and the area between the two points in the plot is
calculated. After that, it is divided by the new surface created (which will be the
element length multiplied by the thickness of the sample).

Figure 5.33: Instant one, damage ar-
rives to the element.

Figure 5.34: Instant two, the whole
element is damaged

Finally, results are given below. In figure 5.35 the results for the model run with
the subroutine UMAT without the diffuse damage can be seen, and below, in table
5.9 main values of the results are shown. In figure 5.36 and table 5.11 same results
but for the model run with cohesive property are shown. Remark that the straight
lines in figures 5.35 and 5.36 are not representing anything, but just joining the
origin with the points in which the first, second and third elements are failing
(after the maximum laod). They have been drawn in order to let clear that Gf is
calculated with the area between the first and the second, and the second and the
third, dividing by the surface created as told. Results for this energy can be shown
in tables 5.10 and 5.12.
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Figure 5.35: Load- separation plot for the model run with the UMAT subroutine

Instant Load [kN] Separation [mm]

Max. load 1.015 0.87

Failure of 1st element 1.010 0.90

Failure of 2nd element 0.9993 0.93

Failure of 3rd element 0.9834 0.96

Table 5.9: Main values for the model run with UMAT routine

In table 5.10 the values obtained for Gf through area’s method are shown. As the
input value was 10 J

mm2 results are considered coherent.
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Instant Gf [ N
mm

]

From 1st to 2nd element 9.978

From 2nd to 3rd element 11.143

Table 5.10: Gf values obtained for the model run with UMAT routine

Figure 5.36: Load separation plot for the model run with the cohesive property

Instant Load [kN] Separation [mm]

Max load 1.061 0.88

Failure of 1st element 1.038 0.90

Failure of 2nd element 1.007 0.92

Failure of 3rd element 0.979 0.94

Table 5.11: Main values for the model run with cohesive property
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In table 5.12 the values obtained through area’s method for this model are
shown. Once again, as the input for Gf value was 10 J

mm2 results are considered
coherent.

Instant Gf [ N
mm

]

From 1st to 2nd element 12.264

From 2nd to 3rd element 11.138

Table 5.12: Gf values obtained for the model run with cohesive property

To conclude, a comparison of the results of the two models can be seen in figure
5.37.

Figure 5.37: Comparison of results

It can be seen how the two follow exactly the same path during the loading phase.
After that, the model with cohesive property presents a higher maximum in load,
and finally they differ in the second part of the curve. The one run with UMAT
presents an smoother slope even though it has an exponential modeling, while the
one with cohesive property has a more pronounced slope. To conclude it can be
said that the results of the UMAT routine are excellent as the two objectives have
been achieved:
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• To extract from the load- separation plot the same fibre released energy rate
than the one used as input.

• To have a very similar behaviour under the same conditions than a common
way to model this kind of experiments in ABAQUS such as it is the modeling
with cohesive property.

Next step in order to characterize the Gf would be to conduct the real test. With
the Gf obtained now an ABAQUS simulation can be run including also diffuse
damage and behavior can be compared with the one in the test in order to improve
the model.
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Dynamic analysis

This chapter is intended to explain the dynamic analysis carried out, necessary in
order to model the behaviour and damage when the flax fibre panels are submitted
to dynamic loads.

To begin with, a brief explanation about the functioning of the VUMAT subroutine,
the subroutine proportioned by ABAQUS to perform explicit analysis, will be
given.

To continue, the impact test will be introduced. It is clear that in order to perform
a dynamic test with the bio composite there are not a lot of options apart from an
impact test, so this is why it was the chosen for comparing results between real
model and the model prepared in ABAQUS. The real experiment together with
the one carried out in ABAQUS will be explained. Finally, once again the results
of the two will be compared in order to evaluate the degree of compliance with
reality of the model.
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6.1 VUMAT routine
VUMAT is the equivalent to the subroutine UMAT used when the simulation
has an explicit step. Explicit simulation is used as it is the most appropriate for
a dynamic test such as the impact test developed. As UMAT, VUMAT allows
the user to define the mechanical behavior of the material for materials whose
properties can not be accurately represented by the ABAQUS material library, by
allowing to define the stiffness matrix in each iteration, in order to perform non
linear analysis. As UMAT, it has been written in FORTRAN.

There are, however, some differences with UMAT that come from the fact that
an explicit analysis is being performed, this is, with an explicit solver, normally a
forward Euler.

Explicit methods differ from implicit methods in the fact that they do not need to
calculate an extra equation in each iteration. In the case of an static load analysis
this equation would be the equilibrium of loads. For explicit methods it is verified
that:

Y (t + Ñt) = F (Y (t))

But as it has been seen, all explicit methods are not unconditionally stable but
have a stability limit.

|ÑÔ| < ÑÔstab

In the equation above, ÑÔstab is usually less than the elastic strain magnitude.
This means that for explicit integration the time increment must be controlled. To
do this, system of units is changed respect to the one used for the implicit analysis.
This is because some magnitudes like the density are involved in the calculus
of the time step in explicit analysis, and using the same system of units as in
implicit forces to run the simulation in double precision, bringing some undesirable
numerical effects. In general the system of units used here is more recommended
for explicit analysis. Remind once again that the parameters that must be read
from VUMAT from ABAQUS, which were discussed at the end of chapter 4, must
respect the chosen system of units. In table 6.1 the system of units used for the
explicit analysis is shown.

As a positive aspect, the Jacobian has not to be programmed since the equilibrium
equation is not solved as in the case of UMAT, so the coding of VUMAT is in
general much more easy.
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Two additional new characteristics with respect to UMAT should be introduced.
The first one is that diffuse and failure damage are introduced in explicit analysis
for out-ply shear directions 13 and 23. The reason for doing this is that in the
first tests it was observed that stresses in these directions were at the same level
than the ones in the in-ply direction 12 (τ12). Failure and diffuse damage are
identically reproduced to the ones in the other directions. For diffuse damage the
strain threshold of activation used is exactly the same value than the used for in-ply
diffuse damage. Mean while, the strain limit (from which no more diffuse damage
is applied and failure damage starts) has been chosen as 3 times bigger than the
one used for in-ply failure, this is, around γ̃13 = γ̃23 = 0.18 , as experience shows
that this value is around 2-3 times bigger in this direction when compared with
in-ply shear direction for composite elements form by the stacking of plies. The
logarithmic function is done to have therefore the same shape but with a different
upper limit.

FDi = 1
2γjk2Gjk > FD0i

Ddi = c4 + c5 ln(
ñ

FDi)

For the failure damage criteria is the same as in-ply failure damage, changing the
corresponding elements associated with each direction.

FFi = γjk

γ̃jk

> 1

Dfi = 1 − e
(1−F Fi)

Gjk ˜γjk
2CELENT

Gmat

FFi

It must be remembered that now there is damage in all directions except in the
stacking direction (Ô33 & σ33). After starting to consider damage in this shear
directions, elements Cd55 and Cd66 result affected and damaged stiffness matrix is
now:


(1 − Df1)(1 − Dd1)C11 · · · 0 0

... . . . ... ...
0 · · · C55(1 − Df1)(1 − Df1)(1 − Df4)(1 − Dd4) 0
0 · · · 0 C66(1 − Df1)(1 − Df2)(1 − Df5)(1 − Dd5)
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The other thing to talk about is the deletion of elements. ABAQUS offers an extra
SDV (solution dependent state variable) in order to manually control the deletion
of elements. In dynamic analysis it is common that when there is an impact some
elements undergo what is called "excessive distortion". Basically in real life what is
happening is that there is being necking and fracture (in any case normal materials
suffer from deformations of several times their original length). This is not a
matter in static analysis since as told before, in a static analysis equilibrium is
calculated after each iteration, so computation will stop way sooner some element
is undergoing excessive distortion, plus the appearance of elements under this
situation is much more harder, probably due to a bad posed problem. Dynamic
computation do also stop due to the presence of excessive distorted elements but
since equilibrium is not calculated it is easy to reach this situation. In order to
control the appearance of excessive distortion, element deletion is included. It is
possible to define a condition which, if accomplished, changes the value of the SDV
associated to deletion. This causes that the element is deleted. For this case the
deletion variable is activated if any of the following conditions is given:

|Ô11| > 2 |Ô22| > 2 |Ô33| > 2 |Ô12| > 2 |Ô13| > 2 |Ô23| > 2

This will delete any element before it can undergo a situation of excessive distortion,
and at the same time it is ensured that no element which is still offering some
resistance is deleted, since any element which is above an strain of 2 in some
direction has passed way long ago fracture in that direction.

The criteria for the stress and strain vector is changed from UMAT to VUMAT.
Stress and strain vector are left below. This must be kept in mind when coding, as
stiffness matrix changes and criteria for damage shall also be changed. Keep in
mind that γij=2Ôij

. See also in the stress vector that here τ13 and τ23 have flipped
with respect to the convention in UMAT routine.

þÔ = [Ô11 Ô22 Ô33 Ô12 Ô13 Ô23]

þσ = [σ11 σ22 σ33 τ12 τ23 τ13]
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In general, the some variables are available from ABAQUS (their units should be
changed as another system of units is used here), and once again is necessary to
code to define the stress through the stiffness matrix and to define the solution-
dependent strain variables, or SDVs.

Finally the scheme shown in figure 5.1 is also useful in order to understand the
behaviour of the VUMAT routine.

Quantity Unit

Length mm

Force kN

Mass Kg

Time ms

Stress GPa

Energy kN·mm (J)

Density Kg/mm3

Table 6.1: System of units used for implicit analysis
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6.2 Impact test

6.2.1 Introduction

An impact test is conducted to analysed the mechanic behaviour that a material
shows when it suffers a collision loading that causes an instant deformation or
rupture of the sample. Sample must be fixed with a particular orientation and
geometrical features, that will depend on the type of test. After that, an established
weight is released from a specific height. As a result it collides with the sample
with a shock load. During the collision between the weight and sample occurs an
energy transfer that provides the fracture mechanics of the tested material. In
general, the collision causes the destruction of the sample.

An impact test objective is to measure the capacity of a material to absorb the
energy transfer from the weight to the sample occurred in the crash. These tests
are useful to select materials for applications in which they may have to suffer a
very quick loading, like a collision, and they need to present impacts capacities. A
good example of this is any motorized vehicle.

Impact testing may be useful for almost all kinds of materials, but is it more common
for plastics, composites, metals, ceramics and woods, which are generally configured
with several plies of different thicknesses. It has been chosen for comparing the
compliance of the damage model implemented in VUMAT with the results, due to
its relative simplicity and generality among other dynamic tests.

6.2.2 Impact Test

Impact test was conducted according to STM D7136 / D7136M-15, Standard
Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer
Matrix Composite to a Drop-Weight Impact Event, [25]. To perform this test a
drop tower machine was used. This tower can be seen in figure 6.1. As a weight
for the impact a cylinder with an 16 mm hemispherical head is used. The weight
drops guided as it runs over two guiding rails. Above the cylinder a mass is placed.
Varying between several masses and heights allows to have different potential
energies and so happens with the kinetic energy at impact. A piezoelectric load cell
acts as accelerometer and its placed inside the cylindrical head in order to record
data. Most important characteristics can bee seen in table 6.2.
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Figure 6.1: Drop tower used for the impact test

Sensitivity 224.8 (mV/kN)

Measurement Range (Comprex) 22.24 [kN]

Maximum static Force (Comprex) 44.48 [kN]

Upper frequency limit 25 kHz

Full scale output 5 [V]

Table 6.2: Main parameters of the accelerometer

There are two lasers (which can be seen in the figure as red rectangles) which
are positioned a few centimeters above the plate at a known height. These lasers
have a double mission, as they are in charge of recording the slide speed, but they
also activate the recording system when the signal between the two is interrupted.
There is another laser under the plate which is used for recording the deep dent of
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the sample, whether there is fracture or a elastic deformation. There is a blocking
system that avoids the mass to go down after the impact bouncing. Through this
way a second crash is avoided, avoiding additional damage, and moreover, with
the difference between kinetic and potential energy is possible to know the amount
of energy that has been absorbed by the sample. The sampling frequency was
set to 40 kHz for a 2 seconds period, and an amplifier was used to increase the
piezoelectric tension signal.

The tests performed can be considered as low energy impact due to the low speed
of the weight at the moment of the impact. Parameters can be seen in table 6.3

Drop Height [m] Impact velocity [m
s

] Impact energy [J]

0.215 2.054 5

0.322 2.516 7.5

0.43 2.906 10

Table 6.3: Parameters of the tests

Although geometry will be presented next, it is important to observe figures 6.6
and 6.5 that show the cross-section to understand that results are not the same if
impact occurs in one side, rather than in the other, as in figure 6.6 the cross-section
provides an extra thickness that increases resistance to impact. This is why the
panel was tested in the two sides.

The corrugated panel in which the impact occurs in the side with just one skin
(figure 6.5) is going to called from now on BC-1, and the upside down one, where
there is skin and corrugated cross- section in the impact zone will be called BC-2
(figure 6.6).

The BC-1 panel was tested only with 5 J, while the BC-2 was tested with 5, 7.5
and 10 J. The reason is that configuration BC-1 show less resistance and suffers
from a full penetration just with 5J. The configuration BC-2 can withstand more
and this is the reason why it was tested with highers speeds. Results for the panel
tested at 5, 7.5 and 10 jules will be given, but just plots for the 5 jules will be given
as the simulations were just run with this value.
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6.2.3 FEM model

This subsection aim is to present the model prepared in ABAQUS in order to
simulate the impact test carried out. By showing the FEM model geometry and
configuration the characteristics of the real model will also be presented. As with
the three point bending test model, the real model here is similar and was built
with some similar measure specifications, regarding the length, width and the
geometry and measures of the cross section and those have been the pattern to
follow when creating the FEM model. This model has been meshed with C3D8R
brick elements.

The model consists on a corrugated panel, with a cross-section "W " shape, which
can also be called omega panel. Here the sample of the test has a four omega cross-
section (one more than in the case of the three point bending test), between two
flat plates or skins of 0.5 mm, and is made off with the composite that has been
used through all this dissertation, compound of flax fibre and epoxy resin with the
seen properties.

Some images of the model can be seen in figures 5.3, 5.4 and 5.4. Figure 5.3 shows
a general view in order to have and idea of the configuration, while 5.4 shows again
a general view but without the upper skin, and figure 5.5 shown a lateral view
in order to see better the cross- section. Real model cross section can be seen in
figure 6.7.

Main measures of the model are shown in table 6.4.

Measure Value [mm]

Length 100

Width 100

Height 10

Skin thickness 0.5

Corrugated panel thickness 0.6

Table 6.4: Main measures of the three point bending test model
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Figure 6.2: General view of the whole test setup FEM model for impact test,
panel BC-2

Figure 6.2 can be used to see also the setup of the experiment. The omega panel
(which can be seen alone in figure 6.3, in this case the BC-2 case) is placed on a
base which acts as support, but which at the same time has all the interior hollow,
in order not to interfere with the impact and allow the displacement of the inferior
surface of the panel. All the panels test are mounted on this "base", which can be
seen in figure 6.4. Image shows also the head of the weight used as an impactor.
In the real test a mass is placed over this head in order to give it the total weight
of 2.368 Kg, in ABAQUS it is possible to just mesh this head and give it the total
mass. These too elements, the base and the impactor, are model as rigid since they
are metallic and their stiffness is several times the one of the panel.
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Figure 6.3: View of FEM panel for impact test ,panel BC-2

Figure 6.4: View of the FEM model of the base for the impact test
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Figure 6.5: View of the cross- section
of the whole test setup FEM model for
impact test, panel BC-1

Figure 6.6: View of the cross- section
of the whole test setup FEM model for
impact test, panel BC-2

Figure 6.7: View of the cross section in real panel

The previous images, figures 6.6 and 6.5, serve to clear up what has been said before.
Model BC-2, due to the configuration of the omega cross section, is provided with
an extra thickness section that increases resistance to impact. This will be useful to
explain the different results between the two configurations that will be presented
in the next chapter.
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6.2.4 Results
This section goal will be to present the different results for the 5 joules impact case
with the panel with single-skin in the impact zone (BC-1) and the panel with double
skin in the impact zone (BC-2). All results, both from the real tests and from
ABAQUS simulations will be presented here. First, the ones from the real tests,
then a series of plots comparing the results from real tests and ABAQUS (these
plots will be the total reaction force in the impact weight and the displacement
of the inferior face of the panel), and finally some images from the results from
ABAQUS models will be shown.

In order to present the results, a classification is going to be set , depending on the
degree of penetration of the lower skin. An image representing the four cases can
be seen in figure 6.8
• Grade A: complete rupture and perforation
• Grade B: partial perforation, large crack (> 10 mm)
• Grade C: no perforation, small cracks (< 10 mm)
• Grade D: no perforation, no visible cracks

Figure 6.8: Damage classification
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A table with the configurations, the kinetic energy at the impact, the residual
energy based on the height achieved by the mass after the impact, and the absorbed
one (the difference) and the degree of damage (based on the previous classification)
of the real tests is shown below.

Experiment Impact velocity [m
s

] Impact energy [J] Residual energy Absorbed energy Damage

BC-1 5J 2.05 4.93 0 4.93 B

BC-2 5J 2.02 4.80 0.53 4.27 D

BC-2 7.5J 2.50 7.38 0.28 7.1 D

BC-2 10J 2.91 10 0.11 9.89 B

Table 6.5: Results of the tests

It can be seen how due to the fact that panel BC-1 is perforated by the mass, the
residual energy is null, and all of it is transferred to the panel, meaning that the
impact mass does not recover any energy and does not come back up. In panels
BC-2 there is some residual energy. As it can be seen it is necessary to raise the
energy of the impact until 10 jules for having again some perforation in the panel
BC-2. In this case residual energy is very low but there is still some recover.

Al told before, the results which are going to be given are of two kinds. First one is
the reaction force in the impactor (or in the panel, it is the same) as a function of
time. In both cases, real test and ABAQUS, this reaction force is calculated as the
acceleration of the impact weight multiplied by its mass. The other result plotted
will be the displacement of the inferior skin of the panel. This combination gives a
lot of information and is easily measured in the real test so data can be compared
with the ABAQUS model to know if the rest of information given by ABAQUS is
reliable.

Figures 6.9 and 6.10 show the results for the panel configuration BC-2. In all
cases the blue curve represents the results given by ABAQUS while the green one
represents the results from the test.
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Figure 6.9: Reaction load vs Time results, BC-2 case

Figure 6.10: Displacement of lower skin vs time results, BC-2 case

For this case of panel, results seem to be pretty good as behaviour is very similar
both for force and displacement and curves follow very well the ones of the real
test until the point in which perforation of the sample occurs, at around 1.6 ms
after impact.
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Is at this point where results from ABAQUS diverge sharply from those of real test.
Failure development seems to star at similar levels in both cases (around 900 N
in ABAQUS and around 1000 N in the real test) however the failure development
seems to be faster in the ABAQUS model.

As will be shown later, even though there were clear surface contact established
between all the surfaces, there is some penetration between the surfaces that form
the upper skin and the ones that form the cross section of the panel. Correcting this
will improve results and delay the appearance of the failure damage. A parametric
study seems to be a good option to improve results too. It obviously implies a lot
of time, since computation time for a single analysis is around 6-7 hours, but is a
reasonable way to achieve better results. Variables which may be studied are those
directly related with the fracture of the elements. Should generally be studied the
released fibre energy rate "Gfib" (a grater value would be search as a slower failure
is intended), the friction coefficient of the contact between the impactor and the
panel (increased value once again for the same reason). The strain at failure could
also be object of the study, but the value used seem to be a good approach to
reality. And finally the equation of deletion can also be modified.

Results for the VC-1 panel case are shown below, in figures 6.11 and 6.12.

Figure 6.11: Reaction load vs Time results, BC-1 case
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Figure 6.12: Displacement of lower skin vs time results, BC-1 case

For this case results are not as good as in the previous one. Force seem to reach
the same value, around 900 N (although as would be logic, this happens in a higher
time as the impact head does not find so soon the additional resistance that implies
the double skin from the previous case). However maximum load in the real test is
around 600 N so there is great difference. In this case it should only be taken as
important the first maximum, which appears because of the failure of the first ply.
The second maximum appears when the cylindrical part of the impactor arrives
(this part does not belong to the impact head and it is not considered in the FEM
model). The reason why this maximum appears here is that there is penetration in
the inferior panel, and there is not elastic comeback as in the previous case, where
the impactor "bounces" and recover some energy, so the part above the impactor
crashes with the panel.

Once again here a parametric study involving the different variables which are
directly related with the failure damage can help to improve the results. Variables
which can be object of the study are the same as in the previous case. The duration
of the time in the step of the ABAQUS tests should also be slightly increased, for
both cases, in order to represent the drop of the load curve after the maximum.
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To continue images from the real tests will be shown. Figures 6.13 and 6.14 show
the BC-2 panel case. In figure 6.13 it is seen how the impactor has perforated the
upper skin, but figure 6.14 show how the lower skin is almost intact. Meanwhile
figures 6.15 and 6.16 show the BC-1 panel case. For this case it can be seen in
this last figure how the impactor has perforated the lower skin. In both cases the
samples had undergone the 5 joules test.

Figure 6.13: View of the upper skin after impact, BC-2 panel

Figure 6.14: View of the lower skin after impact, BC-2 panel
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Figure 6.15: View of the upper skin after impact, BC-1 panel

Figure 6.16: View of the lower skin after impact, BC-1 panel

To conclude this chapter, images of the ABAQUS simulations will be shown.
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ABAQUS prints, BC-2 case

Figure 6.17 shows a general upper view of the impact, without the impactor. Figure
6.18 shows the final instant with the impactor (which appears in white due to
its rigid condition). Von misses stress is shown in some of the following images
although it is inappropriate to show this kind of criteria since the material is a
composite. Anyway with these images it is not intended to show results in stress
but just a general idea of the simulation.

Figure 6.17: General view of the impact, BC-2

Figure 6.18: Cut view of impact, final time, BC2-case
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Figures 6.19 to 6.21 show a cut view of the panel, just in the impact zone. In figures
6.19, 6.20 and 6.21 the impactor has been removed in order to show better the
impact zone. These images are from instants t = 0.6 ms, t = 2.1 ms and t = 6 ms
and they let to see the sinking of the panel as the impactor advances. It is seen in
6.21 how the omega cross section crosses the upper skin, even a contact condition
was defined between the two surfaces.

This cross of the two surfaces is important as it is from the penetration when results
are being affected. Had it not been so, panel would show a higher resistance and
failure would not be so fast, so results would be better. Model shall be improved in
the future to avoid this. Unfortunately the shutdown of research facilities caused
the author to run out of time to perform more simulations.

Figure 6.19: Cut view of impact, time =0.6 ms, BC-2 case
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Figure 6.20: Cut view of impact, time =2.1 ms, BC-2 case

Figure 6.21: Cut view of impact, time =6 ms, BC-2 case

Figure 6.20 shows penetration of the cross section into the upper skin. This
penetration begins around time = 1.7 ms, just when results start to diverge from
the ones from real test, so it seems very clear that this fact has affect the results.
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Figures 6.22 to 6.31 will show the SDV value associated to each one of the ten
existing damages (five for diffuse and five for failure). The images are once again
from the impact zone and model has been cut. Table 6.6 indicates the different
damages that have been associated with each SDV. For identifying damages through
the SDV, the images captions should be payed attention, but not the images legends.

SDV Magnitude

SDV 1 Failure fibre damage, 11 direction

SDV 2 Failure fibre damage, 22 direction

SDV 3 Failure matrix damage, 12 direction

SDV 4 Failure matrix damage, 23 direction

SDV 5 Failure matrix damage, 13 direction

SDV 6 Diffuse fibre damage, 11 direction

SDV 7 Diffuse fibre damage, 22 direction

SDV 8 Diffuse matrix damage, 12 direction

SDV 9 Diffuse matrix damage, 23 direction

SDV 10 Diffuse matrix damage, 13 direction

Table 6.6: SDV association

Figure 6.22: Cut view, SDV 1, BC-2 case
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Figure 6.23: Cut view, SDV 2, BC-2 case

Figure 6.24: Cut view, SDV 3, BC-2 case

Figure 6.25: Cut view, SDV 4, BC-2 case
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Figure 6.26: Cut view, SDV 5, BC-2 case

Figure 6.27: Cut view, SDV 6, BC-2 case

Figure 6.28: Cut view, SDV 7, BC-2 case
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Figure 6.29: Cut view, SDV 8, BC-2 case

Figure 6.30: Cut view, SDV 9, BC-2 case

Figure 6.31: Cut view, SDV 10, BC-2 case
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ABAQUS prints, BC-1 case

Printed images from ABAQUS will be now shown for the BC-1 panel case. Figure
6.32 shows a general upper view of the impact, with the impactor (which appears
in white due to its rigid condition). Figure 6.33 shows a cut view of the impact
zone at the final instant without the impactor.

Figure 6.32: General view of the impact, BC-1 case
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Figures 6.33 to 6.35 show cut views of the panel for different instants. As before,
impactor has been removed in order to show better the impact zone. These images
are from instants t = 1.2 ms, t = 3 ms and t = 6 ms and they let to see the
evolution of the bending and sinking of the panel. Here there is no the same
problem as before, sections crossing between them, as it is not possible due to the
geometric configuration. It is seen in figure 6.34 the first instant in which there
occurs deletion of elements, which coincides approximately in time with the real
penetration of the upper skin.

Figure 6.33: Cut view of impact, time =1.2 ms, BC1 case

Figure 6.34: Cut view of impact, time =3 ms, BC1 case
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Figure 6.35: Cut view of impact, time =6 ms, BC1 case

Figures 6.36 to 6.45 will show the SDV value associated to each one of the ten
existing damages (five for diffuse and five for failure). The images are once again
from the impact zone and model has been cut. The same table used in the previous
case, table 6.6, is valid for indicating the different damages that have been associated
with each SDV. For identifying damages through the SDV, the images captions
should be payed attention, but not the images legends.

Figure 6.36: Cut view, SDV 1, BC-1 case
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Figure 6.37: Cut view, SDV 2, BC-1 case

Figure 6.38: Cut view, SDV 3, BC-1 casek

Figure 6.39: Cut view, SDV 4, BC-1 case
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Figure 6.40: Cut view, SDV 5, BC-1 case

Figure 6.41: Cut view, SDV 6, BC-1 case

Figure 6.42: Cut view, SDV 7, BC-1 case

105



Dynamic analysis

Figure 6.43: Cut view, SDV 8, BC-1 case

Figure 6.44: Cut view, SDV 9, BC-1 case

Figure 6.45: Cut view, SDV 10, BC-1 case
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Chapter 7

Conclusions

The main objective of this thesis was the characterization of properties and the
creation and testing of damage models able to reproduce the behaviour and
mechanics exhibit by panels made from natural fibres, particularly the flax fibre.
Understanding the behaviour of these materials and being able to predict how
are they going to react under different types of loads is a key aspect in order to
delve into in their knowledge. This will allow an spread, commercialization and in
the end, an increased use with the time. In this sense the creation of models to
reproduce this behaviour has become even more logical with the popularisation
and improvement of current FEM programs. If a good model is used, simulations
run with these tools can predict very well the global behaviour and help in the
comprehension, saving a lot of time and resources, and ultimately, money.

Damage models created were tested through two real tests, one static (3PBT), and
one dynamic (impact test), that were compared with the simulations done with
ABAQUS. In addition, one property, the fibre energy released rate, was aimed
to characterize, due to its great importance for this damage model. Therefore
conclusion will deep into these three aspects.

Regarding the three points bending test, results are, overall, very positive. Real
results show a relatively big non linear response. The reason to these non linearities
has been explained in chapter three. A model was prepared in ABAQUS and the
subroutine UMAT, which was partially written at the beginning, was corrected
and finished, implementing the Jacobian, instead of an approximation. Model
implemented has proven to be able to replicate the non linear behaviour pretty
good. In addition, mechanism of failure has been the same in both the tests and
the simulation, the failure due to the buckling of the upper skin. Results could
improve if a better way to calculate the celent were implemented, something in
which a lot of time was spent but that could not be achieved in the end. Another
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way to have more accurate results would be to use more accurate values of the
main properties that affect the damage models and the stiffness matrix. These
parameters are those of table 2.1 and table 4.3. However it makes more sense to do
this for a real application where a simulation would be run beforehand and would
help to predict some results. In this stage of validating a model this does not seem
so necessary.

Regarding the impact test results are not that positive. The VUMAT routine
was written from zero. Having already a good version of UMAT is helpful, but
this is anyway a very time consuming task. A model was prepared in ABAQUS
too. Results have shown to be good until a degree of penetration of the impactor.
More was discussed on chapter 6, but failure seems to be faster in the simulations
than in reality. As told in there, model has some contact issues that need to be
solved. Regarding the damage model, a parametric study could help too in order
to try to approach both results. Unfortunately, once the model and the routine
were prepared, shutdown of universities and research facilities occurred due to the
spread of Covid-19. Two simulations were launch from home in order to have some
results but there was not time for more.

Regarding the characterization of the fibre energy released, results are positive but
Covid-19 emergency once again did not allow to complete all the work intended.
Simulations with ABAQUS show that the UMAT model did work and show results
according with the value for Gfib used. Moreover, comparisons between the UMAT
subroutine (with just failure damage model) and the ABAQUS implemented tool
"Cohesive property" show great similarity between the two ways of modeling the
failure, with very similar curves. Test would have helped to have a correct value of
Gfib and results could have been compared with an ABAQUS simulation using the
routine with both failure and diffuse damage activated. Unfortunately, as told, test
was left for mid- march and once again due to Covid-19 emergency it could not be
conducted.

7.1 Future perspectives
Now that all the models are done and the two subroutines UMAT and VUMAT
are fully written future perspectives are good. Work could focus on trying to
improve the models through the commented means. An internal subroutine in
order to correct the celent of each element is a good way of improving the model.
Parametric study will also help improving the results in both the static and dynamic
simulations. Conducting the released fibre energy rate will characterise this value,
something that will improve the failure model too and help to obtain better results.
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Subroutine Orient

This appendix is intended to explain the functioning of the small routine orient
created.

As explained in the main text, the objective is to get from ABAQUS what will
be called here FLENGTH , this is, the dimension of the element perpendicular to the
fibre and that is contained in the ply (or the dimension of the element that is
perpendicular to the fibre and perpendicular to the stacking direction). ABAQUS
routines UMAT and VUMAT give a magnitude that is called CELENT (stands for
characteristic element length). However this magnitude is not the one desired, as
this magnitude is calculated by ABAQUS as the cubic root of the volume for a
volumetric element, and as the square root of the area in a surface element. So
this would match with the desired length (FLENGTH) just in the case in which all
the model of ABAQUS were meshed with perfect cube elements. This is normally
impossible as it has been already told.

When looking of ways to calculated the desired length, through the means propor-
tioned by ABAQUS, the most clear one seems to get something from ABAQUS
that allows to compute this dimension, ideally the coordinates of the nodes of the
element. Unfortunately, coordinates of the nodes are not a magnitude use as an
input in the UMAT or VUMAT subroutine. However, it is a magnitude which
can be used as an input in the subroutine ORIENT, so this is the reason why this
subroutine has been the chosen one.

First thing to say is that if the ABAQUS .inp file is ran with this routine, with just
one core, this routine will be executed as many times as the number of existent
Gauss points of each element. This is, if there are three C3D8R elements, routine
will be executed first for Gauss point 1 of element 1, then Gauss point 2 of element
1, Gauss point 3 of element 1... when it has finished with element 1 it will pass
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to element 2, and later to element 3. In this case it will be executed a total of
24 times (3 elements and 8 Gauss points per element). Routine is executed in
this order, from Gauss point 1 to 8 and from the lowest numbered element to the
highest numbered one. Ideally, it would be desired that the routine were executed
just one time for each element, as the FLENGTH is associated to all the element,
there is not a different FLENGTH for each Gauss point inside the same element.
Anyway this will be controlled in the subroutine. However, passing the FLENGTH

value obtained in this subroutine to the main one, UMAT or VUMAT, has been
found to be troublesome. The method used here writes this value in a .txt file. In
this .txt file they are written in two columns the number of element and the value
for the FLENGTH . After this, the main routine (UMAT or VUMAT) would open the
.txt file to read it and pick the value for each element. Obviously the writing must
be done ordered so that the reading is done ordered too. This has been found to
be done correctly when the computation is just done with one core, but there have
appeared problems when computation is done with more than one. Basically what
is happening here is that the several computers are executing the subroutine and
routine at the same time (as each core has associated a series of elements, this is
basically what parallel computation does to be faster, dividing the problem). As
the subroutine is now execute several times at the same time, the same happens
with the writing of the file (so this writing is not anymore in order) and the same
happens when UMAT or VUMAT read this file with the FLENGTH values. All this
is very troublesome and could not be solved, so this subroutine was just used for
the released fibre energy rate model, as this model could be run with just one core
due to its greater simplicity and reduced computation time when compared with
the 3PBT and impact test models.

First thing to do is to define the matrix called T. T is defined in ABAQUS
documentation as "An array containing the direction cosines of the preferred
orientation in terms of the default basis directions. T(1,1), T(2,1), T(3,1) give the
(1, 2, 3) components of the first direction; T(1,2), T(2,2), T(3,2) give the second
direction; etc. For shell and membrane elements only the first and second directions
are used. The directions do not have to be normalized. If the second direction is
not orthogonal to the first direction, ABAQUS/Standard will orthogonalize and
normalize the second direction with respect to the first. The third direction is
then determined by taking the cross product of the first and second directions.
For planar elements the first two directions must lie in the plane of the element".
This basically means that if T is defined as a unit matrix, the fibre direction will
be the x direction of the global coordinates, the in-ply 90º direction will be the y
direction of the global coordinates and the stacking direction will be the one of z
in the global coordinates.
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In order to understand what has been done the routine will be explained together
with the model prepared for the released fibre energy rate, to understand the
limitations of the routine, which are several.

Figure A.1: Model used

As can be seen in the image, the model has been placed and oriented inside the
assembly so that the fibre warp direction points towards the global x global, the
fibre weft direction points towards the global y direction, and the stack direction
points towards the z global direction. Knowing this, in clear that for this specific
case the T matrix has to be defined as a unit matrix.

T =

1 0 0
0 1 0
0 0 1



Two variables are after given a value. These variables where called in the routine
"CAS" and "VAR". CAS represent the FLENGTH , while VAR is just used for control.
CAS is given an impossible random value (in this case a negative value, as it is a
length), while VAR is given a 0 value.
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Figure A.2: Code

After this, the routine has a loop that is going to calculate this FLENGTH distance.
An image above shows the code.

The loop goes from 2 to the number of nodal points of the element that contains
the Gauss point that is being executed in that moment. After it there is one "if"
for checking if the value of "VAR" is equal to zero. If it is not zero this basically
means that loop has already been gone across and a value for "CAS" has already
been given.

Taking into account that if a coordinate system is rotated (that would be the one
pointing warp, weft and stacking directions) around another one (that would be
the general one), but keeping always the axis pointing towards the directions of
the axis of the general one (or the oppose direction), it can be proven that for
calculating FLENGTH there are just three cases, that can be separated according to
three different conditions for the T matrix, that are specified in each of the three
"IF" conditions. If any of these "IF" conditions is true the value "CAS" is calculated
(this "CAS" represents FLENGTH as told) and the value of "VAR" is changed so the
loop is interrupted and computation exits from it.
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The "IF" condition inside is just for ensuring that the FLENGTH calculated is the
correct one and is here where the loop for the number of nodes is used. This
condition and the calculus varies depending of the case among the three ones told.

Control of assignation could have been done with just one variable "CAS", instead
of including "VAR" too but inserting an external variable for this control allows
more flexibility in case of any change.

After this, "CAS" and "NOEL" are written in a .tex file that is later opened by
UMAT or VUMAT. If the element is not a cuboid (each of the faces is a rectangle
and each pair of adjacent faces meets in a right angle) and its edges are not
contained in the x, y and z global axes, then the loop is done without entering in
any "if" condition and "VAR" remains with value 0, while "CAS" remains with its
negative random value given at the beginning. If this happens, this random value
is written and read after by UMAT or VUMAT. UMAT or VUMAT have an "if"
condition by which they have to use the approximation given by CELENT if they
read this random negative (and therefore impossible) value for an element in the
.txt file.

As a summary, this subroutine cannot be used if elements are not a cuboid and
their edges are not contained in the x, y and z global axes. It is responsibility
of the user to define matrix T according to how has he placed the part in the
assembly. If there were more than two parts with different orientations, more than
one subroutine ORIENT should be used (procedure is similar to using more than
one UMAT or VUMAT when there are several different materials that required
it). Finally it also cannot be used if parallel computation is going to be used,
computation is restricted to one core.
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Jacobian

This appendix is intended to explain the mathematical background behind the
calculus of the Jacobian matrix.

As it has been seen the equation that relates the stresses and the strains is, as seen
in equation 2.1:

þσ = C : þÔ (B.1)

For the 3D case of stresses this can be developed as:

σ1
σ2
σ3
σ4
σ5
σ6


=



CD11 CD12 CD13 0 0 0
CD21 CD22 CD23 0 0 0
CD31 CD32 CD33 0 0 0

0 0 0 CD44 0 0
0 0 0 0 CD55 0
0 0 0 0 0 CD66





Ô1
Ô2
Ô3
Ô4
Ô5
Ô6


(B.2)

Stress and strain vector can be expressed with several notations.

þσ = {σ1 σ2 σ3 σ4 σ5 σ6}T = {σ11 σ22 σ33 τ12 τ13 τ23}T (B.3)

þÔ = {Ô1 Ô2 Ô3 Ô4 Ô5 Ô6}T = {Ô11 Ô22 Ô33 γ12 γ13 γ23}T (B.4)
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Below it is seen the variable dependence of each term with the different strains,
necessary in order to differentiate.

σ11 = CD11(Ô1) Ô1 + CD12(Ô1, Ô2) Ô2 + CD13(Ô1, Ô2) Ô3

σ12 = CD12(Ô1, Ô2) Ô1 + CD22(Ô2) Ô2 + CD23(Ô2, Ô4) Ô3

σ33 = CD13(Ô1, Ô2) Ô1 + CD23(Ô2, Ô4) Ô2 + CD33(Ô1) Ô3

σ44 = CD44(Ô1, Ô2, Ô4) Ô4

σ55 = CD55 Ô5

σ66 = CD66 Ô6

(B.5)

And each term of the matrix is:

CD11 = (1 − Df1)(1 − Dd1)C11

CD12 = (1 − Df1)(1 − Df2)(1 − Dd2)C12

CD13 = (1 − Df1)(1 − Dd2)C13

CD21 = C21

CD22 = (1 − Df2)(1 − Dd2)C22

CD23 = (1 − Df3)(1 − Dd2)C23

CD31 = C31

CD32 = C32

CD33 = C33

CD44 = (1 − Df1)(1 − Df2)(1 − Df3)(1 − Dd3)C44

CD55 = C55

CD66 = C66

(B.6)
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By definition, the Jacobian matrix is:

J = ∂σ

∂Ô
=



∂σ1
∂Ô1

∂σ1
∂Ô2

∂σ1
∂Ô3

0 0 0
∂σ2
∂Ô1

∂σ2
∂Ô2

∂σ2
∂Ô3

∂σ2
∂Ô4

0 0
∂σ3
∂Ô1

∂σ3
∂Ô2

∂σ3
∂Ô3

∂σ3
∂Ô4

0 0
∂σ4
∂Ô1

∂σ4
∂Ô2

0 ∂σ4
∂Ô4

0 0
0 0 0 0 ∂σ5

∂Ô5
0

0 0 0 0 0 ∂σ6
∂Ô6


(B.7)

So what is left now is differentiating each term one by one. As an example, the
derivative ∂σ2

∂Ô2
has been done:

∂σ2

∂Ô2
= Ô1

∂CD12

∂Ô2
+ CD22 + Ô2

∂CD22

∂Ô2
+ Ô3

∂CD23

∂Ô2

And each of the terms is expanded below:

Ô1
∂CD12

∂Ô2
= −Ô1(1 − Df1)(1 − Dd2)C12(∂Df2

∂Ô2
+ ∂Dd2

∂Ô2
)

CD22 = (1 − Df2)(1 − Dd2)C22

Ô2
∂CD22

∂Ô2
= −Ô2(1 − Df2)C22(∂Dd2

∂Ô2
+ ∂Df2

∂Ô2
)

Ô3
∂CD23

∂Ô2
= −Ô3(1 − Df3)C23

∂Dd2

∂Ô2
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The final derivatives are ∂Df1
∂Ô1

, ∂Df2
∂Ô2

, ∂Df3
∂Ô4

, ∂Dd1
∂Ô1

, ∂Dd2
∂Ô2

, ∂Dd3
∂Ô4

. Their calculus has
to be done according to the expressions of damage 4.7 and 4.9, seen in chapter two.
Derivatives are shown below:

For failure damage in warp direction:

∂Df1

∂Ô1
= 1

2e(1−F F1)a
A

1 + a FF1

FF 3
1

B32Ô1 + ỖT 1 − ỖT 1

ỖC1ỖT 1

4

FF1 =
ó

Ô2
1

ỖT 1ỖC1
+ Ô1(ỖC1 − ỖT 1)

ỖT 1ỖC1

a = C11Ỗ
2
T 1CELENT

Gfib

(B.8)

For failure damage in waft direction:

∂Df2

∂Ô2
= 1

2e(1−F F2)b
A

1 + b FF2

FF 3
2

B32Ô2 + ỖT 2 − ỖT 2

ỖC2ỖT 2

4

FF2 =
ó

Ô2
2

ỖT 2ỖC2
+ Ô2(ỖC2 − ỖT 2)

ỖT 2ỖC2

b = C22Ỗ
2
T 2CELENT

Gfib

(B.9)

For failure damage in in-ply shear direction:

∂Df3

∂Ô4
= ∂Df3

∂γ12
= e(1−F F3)c

A
1 + c FF3

FF 2
3

B
1
γ̃

FF3 = γ

γ̃

c = C44γ̃
2CELENT

Gmat

(B.10)
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For diffuse damage in warp direction:

Dd1 = c0 + c1 ln
ó

1
2Ô2

1C11

∂Dd1

∂Ô1
= c1

Ô1

(B.11)

For diffuse damage in weft direction

Dd2 = c2 + c3 ln
ó

1
2Ô2

2C22

∂Dd2

∂Ô2
= c3

Ô2

(B.12)

For diffuse damage in in-ply shear direction:

Dd3 = c4 + c5 ln
ó

1
2Ô2

4C33

∂Dd3

∂Ô4
= c5

Ô4

(B.13)

If derivatives of the damages are being calculated after the viscous regularization,
calculus is very simple, as previous expressions just have to be multiplied by the
factor:

Ñt

η + Ñt
(B.14)

It can be seen how for η = 0 the value of this factor is one, so derivatives would
be exactly as if not viscous regularization would have been considered.
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B.0.1 2D Plane stress case
For a plane case of stresses, this is, for a shell element, Jacobian would seem easier
to calculate, but calculus is in fact harder, as resultant expressions are even longer.
If a matrix condensation is performed for having the equation B.1 or B.2, but in
this plane case, resultant system is:

σ1
σ2
τ12

 =


CD11 − C2

D13
CD33

CD22 − C2
D23

CD33
0

CD12 − CD13CD23
CD33

CD11 − C2
D13

CD33
0

0 0 CD44


 Ô1

Ô2
γ12

 (B.15)

It must be said that each term appeared through this development with the form
CDii or CDij is the exact as in the 3D case, and its definition is shown in B.6. In
addition, a Cii or Cij term comes from the original undamaged 3D stiffness matrix,
shown in equation 2.13. To continue the same equation in B.15 is shown but with
the stiffness matrix showing the functional dependence with the strains, necessary
for differentiating.

σ1
σ2
τ12

 =

 HD11(Ô1, Ô2) HD22(Ô1, Ô2, Ô3) 0
HD12(Ô1, Ô2, Ô3) HD22(Ô1, Ô2) 0

0 0 HD33(Ô1, Ô2, Ô3)


 Ô1

Ô2
γ12

 (B.16)

And the Jacobian matrix is the following:

J = ∂σ

∂Ô
=


∂σ1
∂Ô1

∂σ1
∂Ô2

∂σ1
∂Ô3

∂σ2
∂Ô1

∂σ2
∂Ô2

∂σ2
∂Ô3

∂σ3
∂Ô1

∂σ3
∂Ô2

∂σ3
∂Ô3

 (B.17)
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Once again, one of the derivatives is shown as example, in this case ∂σ2
∂Ô2

:

∂σ2

∂Ô2
= ∂HD12

∂Ô2
Ô1 + HD22 + ∂HD22

∂Ô2
Ô2

An each of the terms is expanded below:

∂HD12

∂Ô2
Ô1 = Ô1

I
(1 − Df1)C12

C
(−1)(1 − Dd2)∂Df2

∂Ô2
− ∂Dd2

∂Ô2

D
+

+ 2
C33

C13C23(1 − Df1)(1 − Df3)(1 − Dd2)∂Dd2

∂Ô2

J

HD22 = CD11 − C2
D13

CD33
= (1 − Df1)(1 − Dd1)C11 − ((1 − Df1)(1 − Dd2)C13)2

C33

∂HD22

∂Ô2
Ô2 = Ô2

I
C12

C
(−1)(1 − Df2)∂Dd2

∂Ô2
− (1 − Dd2)∂Df2

∂Ô2

D
+

+ 2
C33

C2
23(1 − Dd3)2(1 − Dd2)∂Dd2

∂Ô2

J

The final derivatives ∂Df1
∂Ô1

, ∂Df2
∂Ô2

, ∂Df3
∂Ô4

, ∂Dd1
∂Ô1

, ∂Dd2
∂Ô2

, ∂Dd3
∂Ô4

are exactly the same
than in the 3D case.

120



Bibliography

[1] A. Guemes Gordo, A. Fernandez Lopez, and J.M. Pintado Sanjuan Benito, eds.
Ciencia de materiales para ingenieros. Pearson, 2012. isbn: 97884883227190
(cit. on p. 1).

[2] Airbus. A350-XWB. url: https://www.airbus.com/newsroom/galleries/
photo-gallery.html. (accessed: 10.04.2020) (cit. on p. 2).

[3] Unknown. Warp and weft scheme. url: http : / / blog . stephens . edu /
arh101glossary/?glossary=warp. (accessed: 10.04.2020) (cit. on p. 6).

[4] Unknown. Linen (Flax). url: https://www.aestheticstories.com/linen-
flax/. (accessed: 10.04.2020) (cit. on p. 13).

[5] J. Mussig and C. Stevens, eds. Industrial Applications of Natural Fibres - Struc-
ture, Properties and Technical Applications. Wiley, 2010. isbn: 9780470695081.
doi: 10.1002/9780470660324 (cit. on pp. 14–16).

[6] A. Amiri, A. Yu, D. Webster, and C. Ulven. «Bio-Based Resin Reinforced
with Flax Fiber as Thermorheologically Complex Materials». In: Polymers
4 (Apr. 2016). issn: 2073-4360. doi: 10.3390/polym8040153. url: https:
//europepmc.org/articles/PMC6432415 (cit. on p. 14).

[7] P. Asokan, M. Firdoous, and W. Sonal. «PROPERTIES AND POTENTIAL
OF BIO FIBRES, BIO BINDERS, AND BIO COMPOSITES». In: Advance
Materials science 30.0 (Jan. 2012), pp. 254–262 (cit. on p. 15).

[8] P. Ladeveze and E. Le Dantec. «Damage modelling of the elementary ply for
laminated composites». In: Composites Science and Technology 43 (1992),
pp. 257–267 (cit. on p. 19).

[9] P. Linde, J. Pleitner, H.d. Boer, and C. Carmone. «Modelling and Simulation
of Fibre Metal Laminates». In: ABAQUS Users’ Conference. 2004, pp. 421–
439 (cit. on p. 26).

[10] M. Bak. Cohesive zone modeling and viscous regularization, Michael Bak Blog.
url: https://caeai.com/blog/cohesive-zone-modeling-and-viscous-
regularization. (accessed: 15.02.2020) (cit. on p. 29).

121

https://www.airbus.com/newsroom/galleries/photo-gallery.html
https://www.airbus.com/newsroom/galleries/photo-gallery.html
http://blog.stephens.edu/arh101glossary/?glossary=warp
http://blog.stephens.edu/arh101glossary/?glossary=warp
https://www.aestheticstories.com/linen-flax/
https://www.aestheticstories.com/linen-flax/
https://doi.org/10.1002/9780470660324
https://doi.org/10.3390/polym8040153
https://europepmc.org/articles/PMC6432415
https://europepmc.org/articles/PMC6432415
https://caeai.com/blog/cohesive-zone-modeling-and-viscous-regularization
https://caeai.com/blog/cohesive-zone-modeling-and-viscous-regularization


BIBLIOGRAPHY

[11] SIMULIA. Abaqus Analysis User’s Guide. url: http://dsk.ippt.pan.pl/
docs/abaqus/v6.13/books/usb/default.htm?startat=pt09ch37s01alm6
3.html. (accessed: 10.04.2020) (cit. on pp. 29, 67, 69).

[12] Unknown. Lecture 6 Writing a UMAT or VUMAT. url: https://imecha
nica.org/files/Writing%5C%20a%5C%20UMAT.pdf. (accessed: 10.04.2020)
(cit. on p. 35).

[13] C. Zweben, W. Smith, and M. Wardle. Test Methods for Fiber Tensile Strength,
Composite Flexural Modulus, and Properties of Fabric-Reinforced Laminates.
In STP674-EB Composite Materials: Testing and Design (Fifth Conference),
ed. S. Tsai, (pp. 228-262). West Conshohocken, PA: ASTM International,
1979. doi: https://doi.org/10.1520/STP36912S (cit. on p. 40).

[14] ASTM C393 / C393M-16, Standard Test Method for Core Shear Properties
of Sandwich Constructions by Beam Flexure. West Conshohocken, PA: ASTM
International, 1916. url: www.astm.org (cit. on p. 40).

[15] Adrian P. Mouritz, ed. Introduction to Aerospace Materials. Woodhead, 2012.
isbn: 9781855739468 (cit. on p. 41).

[16] J.I. Cardesa Dueñas. Notas sobre Dinámica de Fluidos computacional. 2014
(cit. on p. 46).

[17] V. Médeau. «Rupture des composites tissés 3D : de la caractérisation expéri-
mentale à la simulation robuste des effets d’échelle». PhD thesis. Toulouse,
France: Université de Toulouse, published by ISAE, Institut Supérieur de
l’Aéronautique et de l’Espace, 2019. url: https://depozit.isae.fr/
theses/2019/2019_Medeau_Victor_D.pdf (cit. on pp. 56–58).

[18] A.A. Griffith. The phenomena of rupture and flow in solids. The Royal Society
Pulishing, 1921, pp. 163–198. doi: 110.1098/rsta.1921.0006 (cit. on p. 56).

[19] J.-L. Chaboche and J. Lemaitre. Mécanique des matériaux solides. DUNOD,
2001. isbn: 9782100810901 (cit. on p. 56).

[20] M.J. Laffan, S.T. Pinho, P. Robinson, and L. Iannucci. «Measurement of the
in situ ply fracture toughness associated with mode I fibre tensile failure in
FRP. Part I : Data reduction». In: Composites Science and Technology 70.4
(May 2012), pp. 606–613 (cit. on p. 58).

[21] ASTM D5528-13, Standard Test Method for Mode I Interlaminar Fracture
Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites.
West Conshohocken, PA: ASTM International, 2013. url: www.astm.org
(cit. on p. 59).

[22] Operating- Instruction Cracklength Measuring System FRACTOMAT and
KRAK- GAGE. RUMUL (cit. on p. 62).

122

http://dsk.ippt.pan.pl/docs/abaqus/v6.13/books/usb/default.htm?startat=pt09ch37s01alm63.html
http://dsk.ippt.pan.pl/docs/abaqus/v6.13/books/usb/default.htm?startat=pt09ch37s01alm63.html
http://dsk.ippt.pan.pl/docs/abaqus/v6.13/books/usb/default.htm?startat=pt09ch37s01alm63.html
https://imechanica.org/files/Writing%5C%20a%5C%20UMAT.pdf
https://imechanica.org/files/Writing%5C%20a%5C%20UMAT.pdf
https://doi.org/https://doi.org/10.1520/STP36912S
www.astm.org
https://depozit.isae.fr/theses/2019/2019_Medeau_Victor_D.pdf
https://depozit.isae.fr/theses/2019/2019_Medeau_Victor_D.pdf
https://doi.org/110.1098/rsta.1921.0006
www.astm.org


BIBLIOGRAPHY

[23] Unknown. Fractomat measuring system. url: https://adhesivenetworks.
com / product / tti - fractomat - 1078 - crack - length - measuring - and -
control-system/ (cit. on p. 64).

[24] A. Turon, C.G. Dávila, P.P. Camanho, and J. Costa. «An Engineering Solution
for solving Mesh Size Effects in the Simulation of Delamination with Cohesive
Zone Models». In: Retrieved from NTRS, NASA Technical Report Server
(Jan. 2007). url: https://ntrs.nasa.gov/search.jsp?R=20070038334
(cit. on p. 68).

[25] ASTM D7136 / D7136M-15, Standard Test Method for Measuring the Damage
Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight
Impact Event. West Conshohocken, PA: ASTM International, 2015. url:
www.astm.org (cit. on p. 80).

123

https://adhesivenetworks.com/product/tti-fractomat-1078-crack-length-measuring-and-control-system/
https://adhesivenetworks.com/product/tti-fractomat-1078-crack-length-measuring-and-control-system/
https://adhesivenetworks.com/product/tti-fractomat-1078-crack-length-measuring-and-control-system/
https://ntrs.nasa.gov/search.jsp?R=20070038334
www.astm.org

	List of Tables
	List of Figures
	Introduction
	Problem approach
	Mathematical model
	2D Case


	Flax fibre non linearities
	Damage model
	Types of damages
	Diffuse damage
	Failure damage
	Viscous regularization
	Final damaged matrix and input properties

	Static analysis
	UMAT routine
	Three Point Bending Test
	Introduction
	FEM model
	Results and results comparison

	Fibre energy released rate
	Introduction mathematical background
	Mathematical Background
	Method of the Areas for determination of Gc 
	Characterization and experimental test
	ABAQUS models and results


	Dynamic analysis
	VUMAT routine
	Impact test
	Introduction
	Impact Test
	FEM model
	Results


	Conclusions
	Future perspectives

	Subroutine Orient
	Jacobian
	2D Plane stress case

	Bibliography

