POLITECNICO DI TORINO

Corso di Laurea Specialistica in Ingegneria della Protezione del Territorio

Tesi di Laurea Specialistica

Valutazione dei valori di fondo naturale di metalli mediante analisi XRF in aree minerarie dismesse in valle Anzasca

Relatore: Prof. ssa Mariachiara Zanetti Candidato: Mauro Spanò

INDICE

Int	rodı	uzione.		2
1		Norma	tiva di riferimento	4
2		Geolog	gia regionale	5
3		Inquad	ramento geologico e giacimentologico dell'area di studio	7
4		Caratte	eristiche geomorfologiche	9
5		Aree n	ninerarie dismesse	11
6		Analis	i XRF	. 13
		6.1	Interazioni dei raggi X con la materia	14
		6.2	La strumentazione	16
		6.3	Interferenze	. 17
		6.4	Procedura di misura.	17
		6.5	Limiti e vantaggi della tecnica	. 18
7		Descri	zione del piano di campionamento	. 21
8		Analis	i preliminare dei dati chimici relativi al fondo naturale	. 30
	8.1	Da	ti analitici relativi alla caratterizzazione delle aree contaminate	32
	8.2	2 Da	ti analitici relativi alla definizione del fondo naturale	. 34
9		Analis	i statistica dei dati chimici	. 37
	9.1	Ela	aborazioni statistiche inerenti ai dati delle aree contaminate	39
		9.1.1	Descrizione statistica delle popolazioni	39
		9.1.2	Set completo dei dati per le aree contaminate	. 39
	9.2	2 Ela	aborazioni statistiche inerenti ai dati del fondo naturale	. 42
		9.2.1	Definizione preliminare del tipo di distribuzioni	47
		9.2.2	Analisi delle anomalie	51
		9.2.3	Analisi del set di dati rappresentativo	57
		9.2.4	Confronto tra le popolazioni individuate per la definizione del fondo naturale	58
		9.2.5	Confronto tra le popolazioni di fondo naturale e delle aree contaminate	. 59
		9.2.6	Definizione del valore di fondo	60
10		Defini	zione dei valori di fondo naturale per il parametro Arsenico	62
11		Defini	zione dei valori di fondo naturale per gli elementi indagati	63
12		Conclu	ısioni	72
13		Bibliog	grafia	74
Al	lega	ito		

Introduzione

La tesi svolta per la Laurea in Ingegneria per la Protezione Idrogeologica presso l'Università di Pavia, ha avuto l'obbiettivo di valutare il contenuto naturale pedogenetico dei suoli all'interno del distretto minerario del Monte Rosa in Valle Anzasca.

In tale ambito si sono riscontrati valori molto elevati di Arsenico; circa il 97% dei campioni prelevati hanno mostrato dei superamenti dei limiti per destinazione d'uso industriali e residenziali rispetto ai valori limite della tabella n.1 colonne A e B, dell'allegato 5 parte IV del D. Lgs. 152/06.

Nel corso della caratterizzazione, tuttavia, si sono riscontrati alti livelli di contaminazione anche in corrispondenza di materiale privo di evidenze visive di contaminazione ed in particolare dello sterile derivante dalle operazioni di vagliatura.

Ancorché si ritenga che i materiali contaminati provenienti dalle lavorazioni non siano stati trasportati nelle circostanti aree di attività mineraria, risulta di fondamentale importanza delimitare con precisione le aree inquinate. Per effettuare questa operazione si è reso indispensabile definire "i valori di fondo naturale" (cioè la distribuzione delle concentrazioni di elementi la cui presenza nei terreni, non è riconducibile ad alcuna sorgente puntuale e/o specifica attiva sull'area di interesse) in quanto la presenza di Arsenopirite, e di conseguenza il contenuto di Arsenico, è decisamente più elevato, rispetto ai valori limite della tabella n.1 colonne A e B, dell'allegato 5 parte IV del D. Lgs. 152/06, in una parte delle litologie presenti.

Il termine "Valore di fondo naturale" è desunto dalla norma ISO 19258/2005 (Soil Quality – Guidance on the determination of background values), ripresa dal citato Protocollo Operativo per la determinazione dei valori di fondo di metalli/semimetalli nei suoli dei siti d'interesse nazionale, che lo definisce come le "Caratteristiche statistiche del contenuto naturale pedogeochimico di una sostanza nei suoli". Il contenuto naturale pedo-geochimico (Pedogeochemical background content) è invece definito come la "concentrazione di sostanze nei suoli, risultante da processi naturali geologici e pedologici, senza alcuna interferenza di origine antropica". Il Valore di fondo naturale è pertanto la derivazione, tramite elaborazione statistica, dei valori caratteristici del contenuto naturale pedogeochimico di una sostanza nel terreno.

Considerata l'ampiezza dell'area oggetto di estrazione e la complessità delle caratteristiche litologiche e geostrutturali dell'alta valle Anzasca, la definizione del fondo pedogenetico naturale non può basarsi su un semplice campionamento dei terreni nell'intorno delle aree contaminate; è necessario, uno specifico progetto di indagine.

Sebbene nell'area in esame la pedogenesi non fosse particolarmente sviluppata, la decisione di valutare il "contenuto naturale pedo-geochimico" e non le caratteristiche geochimiche delle rocce è stata giustificata in quanto si è presunto che questa matrice ambientale fosse più omogenea rispetto alla roccia da cui derivava

Questi elementi rendono piuttosto difficile una delimitazione precisa delle aree contaminate, in quanto manca un chiaro valore di riferimento del "contenuto naturale pedo-geochimico" (cioè la concentrazione di sostanze nei suoli risultante da processi naturali geologici e pedologici, senza alcuna interferenza di origine antropica).

La determinazione della concentrazione del fondo naturale di arsenico è stata quindi fondamentale sia per la delimitazione precisa dei siti contaminati, sia per la corretta definizione degli obiettivi di bonifica ambientale dei siti di lavorazione caratterizzati.

Il presente studio si prefigge un triplice obiettivo:

- di implementare la conoscenza dei valori di fondo nei suoli di altri metalli pesanti (Arsenico, Mercurio, Cromo, Zinco, Rubidio, Stronzio, Zirconio, Piombo, Manganese e Bario), usando rilievi e metodologie più speditive di caratterizzazione (XRF) ed analisi statistica;
- fornire alla comunità utili riferimenti sui nuovi limiti di bonifica dei metalli normati specifici, nel contesto naturale locale come richiesto dall'art. 240 punto b del D.Lgs. 152/06;
- di confrontare il valore di fondo dell'Arsenico nelle aree di studio con due diverse metodologie di campionamento e analisi.

I dati sono stati rilevati nel tempo su indagini conoscitive come ipotesi di lavoro svolte in ARPA, durante le fasi di training operativo dello strumento e di collaborazione con altri enti (ASL, Provincia, Comuni e Procura) anche in contesti non prettamente ambientali come Agricolo, Veterinario, Sanitario o Giudiziario.

Per tale attività, è stata svolta preventivamente una correlazione statistica tra tutti i valori dell'arsenico, rilevati con analisi canoniche di laboratorio, con quelli acquisiti mediante lo strumento XRF sui suoli d'interesse, per valutare la comparazione delle metodiche.

A completamento dell'indagine, con i soli dati acquisiti mediante XRF, si sono determinate a seguito di elaborazioni ed analisi statistiche, le concentrazioni del fondo naturale di altri metalli (Cromo, Zinco, Rubidio, Stronzio, Zirconio, Piombo, Manganese e Bario) pesanti nei suoli.

1 Normativa di riferimento

La normativa italiana sulla bonifica dei siti contaminati, ha nel codice ambientale (D. Lgs. 152/06) un nuovo riferimento rispetto al D.M. 471/99 che ha dettato in passato le norme attuative del Decreto Ronchi in materia di bonifiche.

La principale novità introdotta in materia di bonifica dei siti contaminati dal Decreto Legislativo 152/06, è costituita dalle modalità di applicazione dell'analisi di rischio sanitario ambientale, secondo i dettami indicati nell'allegato 1 parte quarta del decreto stesso.

La normativa precedente individuava il sito contaminato dalla semplice verifica del supero dei limiti tabellari degli inquinanti, mentre ora è richiesta la verifica dei potenziali effetti generati da tale condizione, in relazione al tipo di contaminante e alle condizioni di rischio associate alla presenza, sia nel terreno che nelle acque, in concentrazioni superiori a quella soglia.

Sono definite nel D.lgs.152/06 nell'Art. 240 due livelli di contaminazione:

- concentrazioni soglia di contaminazione (CSC): i livelli di contaminazione delle matrici ambientali che costituiscono valori al di sopra dei quali è necessaria la caratterizzazione del sito e l'analisi di rischio sito specifica, come individuati nell'allegato 5 parte quarta del presente decreto. Nel caso in cui il sito potenzialmente contaminato sia ubicato in un'area interessata da fenomeni antropici o naturali che abbiano determinato il superamento di una o più concentrazioni soglia di contaminazione, queste ultime si assumono pari al valore di fondo esistente per tutti i parametri superati;
- concentrazioni soglia di rischio (CSR): i livelli di contaminazione delle matrici ambientali, da determinare caso per caso con l'applicazione della procedura di analisi di rischio sito specifica secondo i principi illustrati nell'Allegato 1 alla parte quarta del presente decreto e sulla base dei risultati del piano di caratterizzazione, il cui superamento richiede la messa in sicurezza e la bonifica. I livelli di concentrazione così definiti costituiscono i livelli di accettabilità per il sito.

Si ritiene significativo evidenziare che nel determinare le concentrazioni del cosiddetto "Valore di Fondo" punto b dell'Art. 240, che è parte dell'obiettivo di questo lavoro, è pratica frequente che l'analisi statistica dei dati relativi alle concentrazioni misurate con analisi di laboratorio, sia riferita alla frazione granulometrica passante al vaglio 2 millimetri. In questo

caso il nuovo limite della CSC sarà determinato secondo una procedura (in questo caso meno cautelativa) differente rispetto a quella per determinare la concentrazione del terreno da caratterizzare (diluizione dovuta allo scheletro), la quale sarà confrontata con la nuova CSC pari al valore di fondo naturale o antropico. Il Protocollo Operativo per la determinazione di fondo di metalli/metalloidi nei suoli dei siti di interesse nazionale, realizzato da ISS e APAT del giugno 2006, nonché la linea guida per la determinazione dei valori di fondo dei suoli e per le acque sotterranee SNPA del Febbraio 2018, non forniscono indicazioni specifiche al riguardo.

Nella tabella sottostante sono indicate le concentrazioni soglia di contaminazione dei metalli nei terreni come individuati nell'allegato 5 parte quarta del D. Lgs.152/06. La colonna A si riferisce alle concentrazioni nei terreni in siti ad uso verde pubblico, privato residenziale, mentre la colonna B alle concentrazioni nei terreni in siti ad uso industriale e commerciale.

Sostanze	A	В
Antimonio	10	30
Arsenico	20	50
Berillio	2	10
Cadmio	2	15
Cobalto	20	250
Cromo totale	150	800
Cromo VI	2	15
Mercurio	1	5
Nichel	120	500
Piombo	100	1000
Rame	120	600
Selenio	3	15
Stagno	1	350
Tallio	1	10
Vanadio	90	250
Zinco	150	1500

Tabella 1. CSC dei metalli dell'allegato 5 parte quarta D. Lgs. 152/06

2 Geologia regionale

La zona interessata dal presente studio è posta nelle Alpi Nord Occidentali, in alta Valle Anzasca in provincia del Verbano Cusio Ossola, ed è compresa tra il gruppo montuoso del Monte Rosa, l'Alta Valsesia, la Valle Antrona e il cantone Vallese in Svizzera.

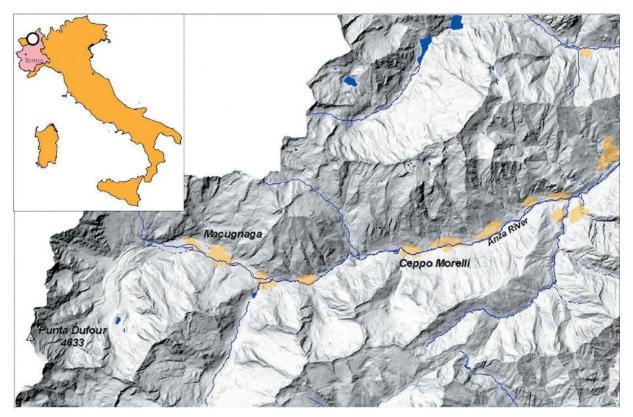


Figura 1. Inquadramento geografico dell'area di studio

Dal punto di vista geologico, le rocce e le architetture della catena alpina occidentale, consentono di ricostruire i principali processi geologici avvenuti in centinaia di milioni d'anni, dall'orogenesi paleozoica alla creazione delle Alpi, iniziatasi con l'apertura dell'oceano mesozoico (Tetide) ed evolutasi con la sua progressiva chiusura fino alla collisione, avvenuta circa 110 milioni d'anni fa ed ancora in atto, fra placca Adriatica ed Europea.

Gli elementi di entrambe le placche si sono impilati verso NW, formando i sistemi Austroalpino, Pennidico, Elvetico ed Ultraelvetico e la collisione ha anche prodotto una retroflessione meno pronunciata verso SE (dominio Sudalpino).

Nel complesso processi metamorfici e deformativi d'età, grado ed intensità diversi, si sono sovrapposti producendo una struttura tettonica-metamorfica polibasica, complessa alle diverse scale, che caratterizza sia le rocce dell'antico basamento paleozoico, sia quelle delle coperture sedimentarie permo-mesozoiche.

Il risultato di questi processi può essere schematizzato nella formazione di una catena a vergenza europea, o catena alpina in senso stretto, costituita da una sequenza di sistemi tettonici traslati, a partire dal Cretacico, verso l'avampaese europeo, e di un sistema tettonico meridionale, che dal Neogene assume vergenza africana (S) ed è noto come Alpi Meridionali o Sudalpino.

Una grossa linea tettonica, la linea insubrica, separa il sistema di falde Europa-vergenti dalle Alpi Meridionali. Essa è anche una linea di demarcazione di stili tettonici nettamente differenti: a NW di tale linea, infatti, si sviluppa uno stile tettonico a grandi coltri di ricoprimento (pieghe coricate dell'ordine di centinaia di chilometri) vergenti verso NW, a SW invece uno stile tettonico a pieghe e a sovrascorrimenti.

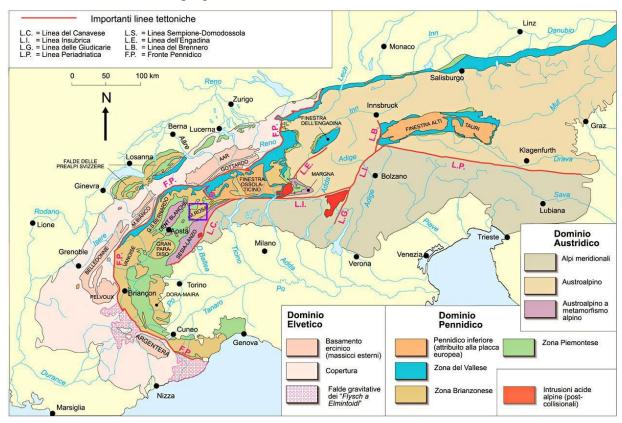


Figura 2. Schema tettonico delle Alpi.

Il Sudalpino è costituito da due formazioni litologiche: la formazione Ivrea Verbano, subito a ridosso della linea insubrica, e la formazione della Serie dei Laghi, con limiti transizionali comuni. L'Austroalpino è formato da due elementi strutturali: uno superiore, la II Zona Dioritico-Kingizitica, e l'altro inferiore corrispondente ai Complessi dei Micascisti Eclogitici e degli Gneiss Minuti.

Le Pennidi sono costituite dalle Seguenti unità: Pietre Verdi mesozoiche, M.te Rosa, Gran S. Bernardo, M.te Leone, Lebendum e Antigorio.

3 Inquadramento geologico e giacimentologico dell'area di studio

L'area oggetto di studio ricade all'interno dell'Unità del M.te Rosa che comprende le manifestazioni aurifere più importanti di tutto il distretto metallifero del M.te Rosa.

Si tratta di un frammento di costa continentale polimetamorfica composta da tre elementi principali: basamento cristallino intruso da graniti, serie permo-carbonifera e sedimenti permotriassici.

Gli ultimi due elementi non affiorano nella zona d'indagine e costituiscono l'originaria copertura del basamento cristallino, costituita da paragneiss, micascisti, anfiboliti, marmi, quarziti di età permo-carbonifera e da conglomerati, quarziti, marmi di età permo-triassica, in discordanza sulle serie precedenti.

Il basamento cristallino, che si ritiene formi il solo elemento di questa unità tettonica nell'area di ricerca, è costituito da micascisti e paragneiss a due miche, più o meno granatiferi e localmente fortemente ripiegati, che frequentemente appaiono in facies migmatitica. Tale elemento occupa principalmente il fondovalle nell'area di studio tra la fraz. Borca di Macugnaga fino alla media valle in comune di Vanzone con San Carlo.

In questo complesso di paraderivati sono compresi dei litotipi basici (anfiboliti) in forma di affioramenti abbastanza estesi (anfiboliti di Borca e di Corte di Sotto).

Con riferimento ai contesti geostrutturali e petrografici in cui sono ospitate ed alla loro giacitura e morfologia, le mineralizzazioni aurifere, si rilevano sia in "filoni-strato" o vene concordanti entro ai micascisti, paragneiss minuti o scisti anfibolici, sia in filoni discordanti entro agli gneiss occhialini. Nell'ambito di queste zone mineralizzate, la mineralogia dei metallici, è abbastanza ricca con la presenza di alcuni solfuri come la pirite e l'arsenopirite che in genere costituiscono il grosso della frazione metallifera, nonché pirrotina, la galena, la blenda e la calcopirite.

La pirite è quasi sempre più abbondante dell'arsenopirite, tranne che nelle "miniere dei cani" nella media valle Anzasca nel Comune di Vanzone con San Carlo, dove l'arsenopirite è stata recuperata per l'estrazione dell'arsenico come sottoprodotto.

La pirite e l'arsenopirite, ricorrono per lo più in cristalli o in aggruppamenti di cristalli distribuiti irregolarmente nella matrice quarzosa-carbonatica.

L'abbondanza di arsenico nei giacimenti Anzaschini, è messa in evidenza tra l'altro dal carattere arsenicale delle acque che lo attraversano, che ha nel Crotto Rosso l'evidenza più marcata.

Questo Rio è caratterizzato nel greto, da un colore ocraceo provocato dai depositi dell'acqua fluente, che scorrendo in aria libera è motivo della colorazione ocra/rossastra. Le analisi delle acque svolte dal Politecnico di Torino nel 2010, evidenziano in sintesi una concentrazione di Arsenico di 24885 µg/L, 24640 µg/L di Zinco, 449860 µg/L e un Ph pari a 2,79.

4 Caratteristiche geomorfologiche

La Valle Anzasca ha una tipica morfologia fluvio-glaciale, che deriva dall'erosione glaciale del substrato roccioso a cui sono seguiti intensi fenomeni fluviali e gravitativi; le zone al piede dei versanti sono generalmente ricoperte da spessi ma discontinui depositi di conoide e di detrito di falda.

Le valli glaciali sono caratterizzate da tratti profondamente incisi ed altri relativamente più ampi e subpianeggianti, in corrispondenza delle soglie glaciali.

Figura 3. Macugnaga fraz. Fornarelli all'imbocco della Valle Quarazza.

I versanti sia sulla destra che sulla sinistra sono piuttosto acclivi e giungono fino a quote elevate; in particolare in sinistra si osservano i pendii rocciosi che arrivano dalla Cresta delle Lonze mentre in destra, passando per la zona di Lavanchetto, arrivano in corrispondenza del Pizzo Caccia. All'interno di questi versanti sono presenti impluvi che si trasformano, verso il fondovalle, in veri e propri rii a deflusso permanente o stagionale.

Nella frazione Campioli, poco a monte del centro abitato di Ceppo Morelli, il corso del torrente Anza subisce una deviazione in prossimità del gradino roccioso del Morghen, che delimita la piana di Macugnaga.

Alla base del versante scorre il torrente Anza, appena fuoriuscito dalla stretta di Morghen, un profondo orrido di evidente natura tettonica e glaciale; appare evidente una tendenza erosiva alle spese del settore destro, costituito soprattutto da materiale di risulta.

A monte della località Campioli vi è la frazione Pestarena nel comune di Macugnaga, che si trova in una parte del fondovalle avente una pendenza relativamente modesta, ovvero una piana glaciale delimitata dalla sottostante soglia di Morghen. In questa zona sulle forme e depositi glaciali si sono impostati diversi terrazzi fluviali derivanti dall'attività del torrente Anza. Qui affiorano prevalentemente depositi fluvioglaciali, anche se si rinvengono alcuni affioramenti rocciosi, in parte derivanti da vecchie forme di modellamento glaciale.

Il torrente Anza ha in questo tratto un regime prettamente torrentizio ad alta energia; sia il fondo alveo che la sponda destra sono quasi completamente costituiti da affioramenti rocciosi.

Pertanto, l'eventuale attività erosiva non può che esplicarsi in sinistra dove sono presenti ancora depositi fluviali e fluvio-glaciali; questo risulta particolarmente evidente immediatamente a monte dell'area di indagine dove si osserva un'erosione laterale da parte del torrente effettuata alle spese dei terreni e dei materiali inerti di discarica.

In sponda sinistra, oltre che a rari affioramenti in roccia, si osservano sia depositi a grossi blocchi di probabile origine fluviale-torrentizia, che depositi ghiaioso-sabbiosi, di probabile origine fluvioglaciale.

Il sito minerario di Crocette in valle Quarazza invece, si trova, dal punto di vista geomorfologico, in corrispondenza dell'intersezione tra i ripidi coni detritici provenienti dalle soprastanti pareti del Pizzo Nero e il fondo valle alluvionale del torrente Quarazza.

I coni detritici prendono origine dalla disgregazione delle pareti rocciose, e sono frutto della sovrapposizione di processi ripetitivi quali crolli, valanghe, colate detritiche; vista la notevole energia e vicinanza dei versanti adiacenti, gli apparati sono piuttosto ripidi e formati da blocchi mediamente di notevoli dimensioni, anche metriche e decametriche.

Questi coni tendono a fondersi l'uno con l'altro formando un'unica fascia detritica alla base delle pareti; solo in taluni casi sono chiaramente distinguibili.

La vegetazione pioniera ha comportato la formazione di sedimenti più fini, sabbiosi limosi, che vanno a occupare gli interstizi dei blocchi almeno nelle porzioni superficiali. Siccome dalle soprastanti pareti si dipartono numerosi canali detritici, a fondo valle i coni finiscono per intersecarsi l'un l'altro perdendo, di fatto, la loro singolarità.

Avvicinandosi al corso d'acqua invece i terreni si originano soprattutto dall'attività torrentizia, che ha depositato sia blocchi e ciottoli di pezzatura medio - grossolana che sedimenti a granulometria fine, il tutto a ricoprire un fondovalle roccioso di origine glaciale.

5 Aree minerarie dismesse

Campioli

Il sito di Campioli è l'unico inserito all'interno del territorio comunale di Ceppo Morelli, anche se è prossimo al confine comunale con Macugnaga ed a esso fisicamente collegato, attraverso una rete di tunnel sotterranei utilizzati per la coltivazione mineraria, con Pestarena.

Il sito è inserito in un tessuto piuttosto antropizzato, con abitazioni prossime, aree coltivate a prato, attività artigianali (segheria) al suo interno. Inoltre, è stata l'ultima zona interessata da attività industriali, e al suo interno si trova il sarcofago contenenti i fanghi di lavorazione, più ampio di tutti.

Si è ritenuto di suddividere quest'area in due subaree. Nell'area settentrionale sono localizzati gli impianti industriali di lavorazione e il citato sarcofago; nella zona meridionale vi sono altri edifici "minori", e un vasto piazzale che verosimilmente ha ospitato a lungo i fanghi di lavorazione.

Come potenziale sorgente primaria di contaminazione è stata individuata la zona ad est degli impianti di lavorazione, attualmente occupata dal piazzale antistante il sarcofago, e la parte sommitale della zona prativa dove, in passato, venivano direttamente scaricati i fanghi derivanti dai processi di estrazione dell'oro. Come altra potenziale sorgente primaria di contaminazione, è stata individuata la galleria di ingresso della miniera presente nel settore orografico destro dalla quale fuoriesce l'acqua di drenaggio di tutte le gallerie sovrastanti che possiede concentrazioni elevate d'arsenico (519 µg/l) e che, dopo aver percorso parte della strada d'accesso al sito, va a confluire direttamente nel Torrente Anza. Come potenziale sorgente secondaria di contaminazione, invece, è possibile individuare la restante porzione dei terreni che costituiscono il sito ovvero il settore ad ovest degli impianti e i terreni che costituiscono il settore orografico destro.

Pestarena

Il sito di Pestarena è inserito tra il tessuto urbano della omonima frazione di Macugnaga e il torrente Anza; qui si trovano diversi edifici di lavorazione, l'accesso alle gallerie sotterranee dove venivano prelevate li minerali per la successiva raffinazione, numerosi impianti di lavorazione e di abitazione.

L'Area può essere suddivisa in due subaeree:

- quella occidentale, più prossima all'abitato, dove sono ubicati diversi edifici ancora in buono stato di conservazione; qui si trova una stradina in discesa che passa per due fabbricati principali per poi arrivare sull'ultimo terrazzo in fregio all'Anza, ove vi è una zona pianeggiante ove si concentrano molti contaminanti;
- l'area più a valle, orientale, dove invece si trovano altri due sarcofagi, in fregio all'Anza e attraversata solo da un sentiero pedonale, anche se vicina al depuratore comunale.

In particolare, l'area più orientale, compresa tra i due sarcofagi, dove le operazioni di stoccaggio dei fanghi degli anni '80 non furono certamente completate, e si sono osservati nelle trincee effettuate abbondanti evidenze di contaminazione, con terreni fortemente pigmentati

Nel sito di Pestarena come potenziali sorgenti primarie di contaminazione sono stati individuati:

- i due sarcofagi, dato che non si conoscono approfonditamente le loro caratteristiche costruttive (presenza o meno di una soletta in cls alla base) e soprattutto perché le loro condizioni risultano estremamente critiche data la presenza di alcune crepe che consentono la fuoriuscita di liquido estremamente ricco in elementi inquinanti.
- le zone che erano adibite prettamente allo stoccaggio dei fanghi di risulta delle lavorazioni (prima della costruzione dei sarcofagi) ovvero l'intera area ad ovest compresa tra i due sarcofagi e il settore orientale, morfologicamente più depresso, dell'area dove sorgevano gli impianti di lavorazione. Come potenziale sorgente secondaria di contaminazione, invece, è possibile individuare la restante porzione dei terreni che costituiscono il sito ovvero la zona dove avevano sede gli impianti di lavorazione ed estrazione.

Crocette

Il sito di Crocette, in alta val Quarazza, è quello a quota più alta; in questo sito si osservano degli impianti di lavorazione, una "sarcofago", dove negli anni "80 sono stati stoccati dei fanghi di lavorazione che erano sparsi nella zona, alcuni fabbricati, parzialmente danneggiati, tra i quali uno adibito a museo, ed una zona depressa che chiameremo "laghetto" in cui venivano fatti decantare i fanghi di lavorazione e ancora oggi funge parzialmente da collettore del ruscellamento locale.

L'area è in fregio al Torrente Quarazza, sulla testata di una strada che permette di raggiungere il sito.

Nel sito di Crocette come potenziali sorgenti primarie di contaminazione sono stati individuati:

- il sarcofago le cui condizioni strutturali risultano ormai precarie (numerose crepe con fuoriuscita di liquido) e di cui non si conosce la tecnica costruttiva (presenza o no di una soletta alla base);
- i terreni dove sorgono gli impianti nel cui intorno sono presenti numerosi piccoli cumuli di fanghi di colore azzurro;
- la zona depressa posta a Nord degli impianti dove, durante le precipitazioni, si forma, a causa della scarsa permeabilità dei fanghi, un invaso effimero e dove la colorazione del terreno superficiale presenta un colore grigio azzurro; non è da escludere che questa zona nel passato fosse utilizzata come zona di stoccaggio temporaneo dei fanghi.

Come potenziale sorgente secondaria di contaminazione, invece, è possibile individuare la restante porzione dei terreni che costituiscono il sito ovvero i terreni che circondano le zone descritte precedentemente; sia quelli posti a nord e ovest dell'invaso effimero che quelli lungo la strada d'accesso e nell' intorno dell'attuale rifugio.

6 Analisi XRF

L'analisi XRF (X Ray Fluorescence) è una tecnica che sfrutta la fluorescenza X indotta in un materiale per determinare la concentrazione degli elementi che lo compongono.

La fluorescenza X deriva dalla ionizzazione di un atomo, che tornando nella sua configurazione stabile emette fotoni caratteristici delle shell coinvolte, ossia una radiazione X con una lunghezza d'onda caratterizzata dalla differenza degli stati energetici iniziale e finale.

Nel caso di strumenti XRF portatili quale quello utilizzato, l'eccitazione degli atomi del campione avviene tramite i raggi X prodotti da un tubo di Coolidge. Vi sono strumenti analoghi che sfruttano la radiazione X prodotta da una sorgente radioattiva, che a differenza dei primi necessitano di una gestione molto più accorta, in quanto contengono dei radioisotopi che non sono disattivabili quando lo strumento non viene utilizzato.

La tecnica sfruttata è quella a dispersione di energia (ED-XRF - Energy Dispersive X-Ray Fluorescence) che può essere impiegata in strumentazione portatile da campo.

Questo tipo di analisi, oltre a non essere distruttivo, permette di conoscere la composizione qualitativa e quantitativa di un campione in modo simultaneo e veloce. Uno degli svantaggi è la limitazione degli elementi da analizzare, in generale con numero atomico maggiore di 11.

6.1 Interazioni dei raggi X con la materia

I fenomeni che avvengono quando un materiale viene irraggiato con un fascio di raggi X sono di scattering o di assorbimento da parte degli atomi che lo compongono.

Nel primo caso si hanno due possibilità: scattering Compton (deflessione anelastica con perdita di energia: il fotone X interagisce con gli elettroni debolmente legati all'atomo, cedendo una piccola parte di energia tale per cui viene emesso un elettrone e un fotone di energia più bassa di quello incidente) o scattering Rayleigh (deflessione elastica senza perdita di energia: il fotone X viene diffuso dagli elettroni più esterni senza che ci sia trasferimento di energia).

Nel caso dell'assorbimento l'energia del fotone viene ceduta ad un elettrone di una shell interna, il quale viene emesso per effetto fotoelettrico e l'atomo risulta quindi in uno stato eccitato instabile. Un elettrone di una shell più esterna va ad occupare il vuoto lasciato dal primo, cosicché l'atomo diseccitandosi emetterà quindi una radiazione X caratteristica di energia pari alla differenza dei livelli energetici tra cui avviene la transizione.

La strumentazione XRF acquisisce lo spettro caratteristico emesso dal campione nel quale si potranno notare le righe K, L o M corrispondenti alle shell coinvolte nella transizione per ciascun elemento. Ad esempio, nel caso di un elettrone che da una shell L o M andrà ad occupare la vacanza che si è creata nella shell K si avrà una riga spettrale $K\alpha$ o $K\beta$. Si osserverà una riga spettrale $L\alpha$ nel caso la vacanza sia della shell L e gli elettroni di transizione provengano dalla shell M.

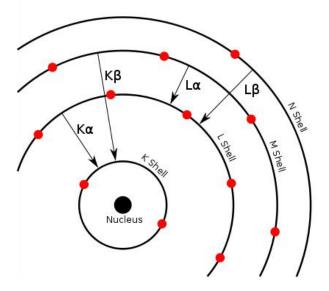


Figura 4. righe spettrali di transizioni tra shell atomiche

Normalmente vengono utilizzate per la definizione degli elementi le righe spettrali K, in particolare la riga $K\alpha$, perché questa transizione risulta 6 – 7 volte più probabile della $K\beta$. Le righe K hanno, infatti, hanno una fluorescence yeld ϖ (resa di fluorescenza = numero di fotoni X emessi su numero di vuoti creati) maggiore rispetto alle righe L. Tuttavia, per numeri atomici alti (Z>50 circa) vengono utilizzate le righe L, poiché l'energia dei fotoni X incidenti necessaria per eccitare gli elettroni delle shell K sarebbe troppo elevata per la strumentazione utilizzata.

Per numeri atomici bassi un fenomeno in competizione con l'assorbimento fotoelettrico e l'effetto Auger, che avviene quando il fotone X caratteristico emesso viene riassorbito da un elettrone di una shell esterna portando l'atomo ad autoionizzarsi. La probabilità di questo fenomeno aumenta al diminuire di Z da qui la difficoltà per l'analisi XRF di indagare elementi con numero atomico basso.

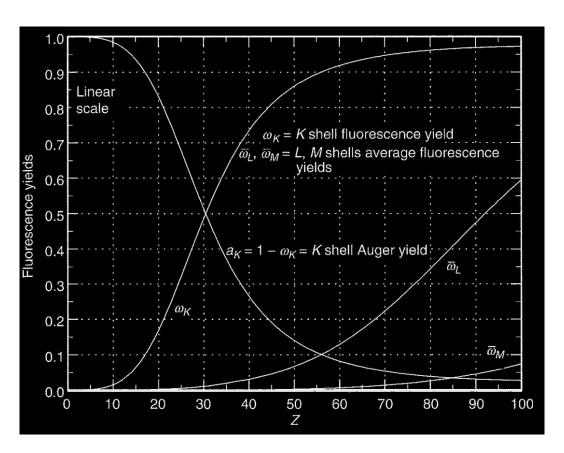
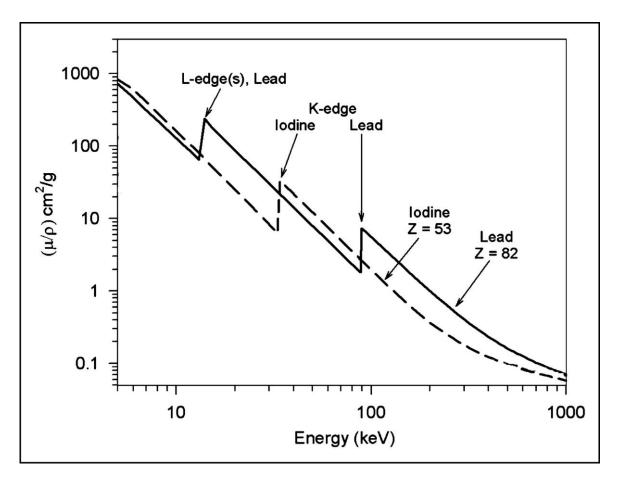



Figura 5. resa di fluorescenza in funzione del numero atomico

Per poter produrre dei raggi X caratteristici dell'elemento la sorgente (tubo di Coolidge) deve fornire dei fotoni con energia maggiore di quella del picco d'assorbimento (absorption edge) K, L o M di quell'elemento. La massima probabilità per l'effetto fotoelettrico si ha quando l'energia del fotone incidente è appena superiore all'energia critica del picco di assorbimento

(vedi figura 5). Per esempio, uno strumento XRF che utilizzi una sorgente che fornisce fotoni con energia di 22 KeV avrà una sensibilità maggiore per rilevare lo Zirconio che ha una riga K a 15,77 keV piuttosto che il Cromo che ha una riga K di 5,41 keV.

Figura 6. andamento della sezione d'urto dell'effetto fotoelettrico in funzione dell'energia dei fotoni incidenti con evidenziati le absorption edges L e K per Piombo e Iodio

6.2 La strumentazione

Lo strumento utilizzato è un analizzatore XRF portatile composto da un tubo di Coolidge che fornisce un fascio di fotoni X in grado di eccitare gli elementi presenti in un campione a partire da Z>14. Esso si basa sulla tecnica ED XRF ossia a dispersione di energia, pertanto la radiazione emessa dal materiale in analisi può essere rilevata in funzione della sua energia.

I raggi X emessi dal campione per effetto fotoelettrico e quelli che hanno subito bakscattering sono misurati da un rivelatore interno, che nel caso dello strumento utilizzato consiste in un SDD a grande area (Silicon Drift Detector) mantenuto a bassa temperatura con celle Peltier.

Dal rivelatore esce un segnale elettrico in tensione proporzionale all'energia del raggio in ingresso che entra, dopo uno stadio di conversione A/D, nell'analizzatore multicanale MCA. Quest'ultimo divide i segnali nei vari canali di cui è dotato e conta per ciascuno di questi il numero di segnali aventi stesso valore di tensione/energia. In questo modo viene costruito uno spettro che presenta dei picchi a varie lunghezze d'onda/energia, corrispondenti ad ogni elemento rivelato, la cui altezza è proporzionale al numero di conteggi ossia alla concentrazione dell'elemento.

Dallo spettro di fluorescenza acquisito si possono quindi identificare i picchi presenti (analisi qualitativa) corrispondenti ai vari elementi costituenti il campione e le relative concentrazioni (analisi quantitativa).

6.3 Interferenze

Nell'ambito della discriminazione degli elementi e della determinazione delle relative concentrazioni rientrano tutti i problemi legati a vari effetti secondari che possono portare a stime non corrette. Ad esempio, ad effetti di matrice fisica legati alla disomogeneità e non uniformità del campione, di matrice chimica dovuta alle interferenze tra righe spettrali di vari elementi che si sovrappongono o a fenomeni di assorbimento e potenziamento delle stesse, al posizionamento non corretto del sensore a diretto contatto con il materiale, al contenuto di acqua.

Nel caso delle interferenze di natura chimica è il costruttore dello strumento a provvedere alla definizione delle concentrazioni corrette, mentre nel caso degli altri effetti è utile adottare norme di buona pratica contenute nel metodo EPA 6200 (febbraio 2007).

6.4 Procedura di misura

Il primo passo nell'impiego di questo strumento è la sua calibrazione ad inizio e fine misura, tramite un campione contenente concentrazioni di metalli note.

Le misure possono essere eseguite in situ o su campioni di terreno prelevati in campo e trasportati in laboratorio.

Per quanto riguarda le prime, a cui ci si è affidati nel presente studio, è possibile ridurre le fonti di errore legate alla disomogeneità del campione attraverso l'eliminazione della

vegetazione (erba, foglie, radici, ecc.) e del materiale più grossolano (sassi, roccia, ecc.) presenti, nonché cercando di compattare e livellare il più possibile la superficie in analisi in modo da garantire il contatto diretto del sensore. Nelle misure in situ si deve aver cura, inoltre, di verificare il contenuto d'umidità del terreno che se superiore al 20% deve essere corretto.

Nel secondo caso si preleva un quantitativo di terreno che poi viene portato in laboratorio per essere analizzato dopo aver subito un procedimento di omogeneizzazione, essicazione e triturazione che dovrebbe fornire dei risultati molto simili alle analisi standardizzate (spettrometria con assorbimento atomico o con ICP-AES).

6.5 Limiti e vantaggi della tecnica

Le concentrazioni ottenute da misure in situ effettuate con strumentazione XRF portatile hanno un valore di screening, poiché notevolmente influenzate dall'eterogeneità del campione e dal contenuto di umidità. Hanno, tuttavia, il grande vantaggio di essere rapide (pochi minuti) e simultanee (forniscono immediatamente le concentrazioni di tutti gli elementi rivelabili), pertanto è possibile analizzare vaste aree in tempi brevi. Sono quindi utili nella mappatura di territori relativamente a possibili inquinanti presenti.

Figura 7. Campionamento nelle vicinanze di Crocette mediante strumento Xrf

Figura 8. Campionamento a Campioli mediante strumento Xrf

Figura 9. Campionamento nell'alveo dell'Anza mediante strumento Xrf

7 Descrizione del piano di campionamento

Sebbene nell'area in esame la pedogenesi non sia particolarmente sviluppata, la decisione di valutare il "contenuto naturale pedo-geochimico" e non le caratteristiche geochimiche delle litologie presenti è giustificata in quanto si presume che questa matrice ambientale sia più omogenea rispetto alla roccia da cui deriva per cui, verosimilmente, anche un numero non troppo elevato di campioni, ciò può essere quindi rappresentativo dei valori di fondo naturali.

Inoltre, la matrice suolo è quella più strettamente connessa con i rischi per la salute umana (esempio i percorsi diretti di esposizione) e può essere il mezzo attraverso il quale l'inquinamento si inserisce nella catena trofica (es: coltivazioni, prodotti naturali, ecc.).

In ogni caso le coltri eluvio-colluviali ed i suoli, peraltro poco evoluti, che sono stati campionati presentano presumibilmente concentrazioni degli elementi (As, Pb, Zn, Cr) e rapporti fra gli stessi strettamente correlati con la "roccia madre".

La situazione geologica locale, abbastanza complessa, ha suggerito, in prima battuta, di effettuare un campionamento per aree omogenee (Stratified random sampling) che prevede una suddivisione della zona da campionare in sottozone o strati che si ipotizza siano uniformi.

I dati geologici a disposizione consentono di definire aree omogenee, dal punto di vista litologico, all'interno delle quali prelevare un certo numero di campioni (Figura 13).

I rilevamenti geologico-strutturali a disposizione indicano, nell'ambito della zona di interesse, la presenza delle seguenti unità litologiche:

- depositi alluvionali;
- depositi morenici;
- anfiboliti e gneiss anfibolitici;
- ortogneiss ghiandoni e/o occhiadini;
- micascisti, paragneiss e migmatiti.

Nell'ottica di ridurre al minimo il numero di campioni prelevati, pur salvaguardando l'attendibilità e la significatività dello studio, è lecito effettuare alcune semplificazioni:

• i sedimenti morenici ed i sedimenti alluvionali, ancorché derivino da meccanismi deposizionali differenti, possono essere considerati come una stessa unità di

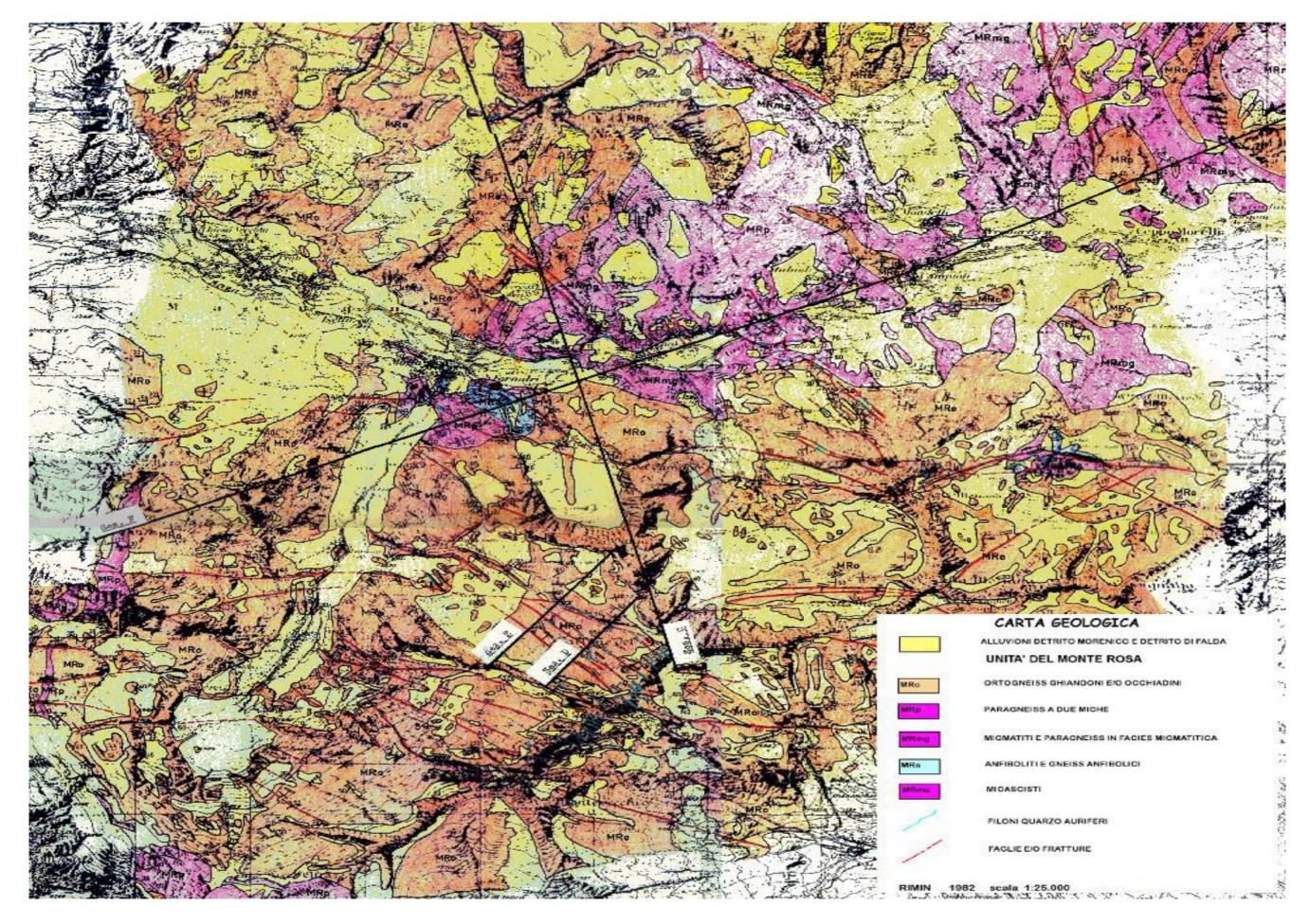


Figura 10. Carta geologica del tratto di Valle Anzasca oggetto dello studio Pag. 22 di 67

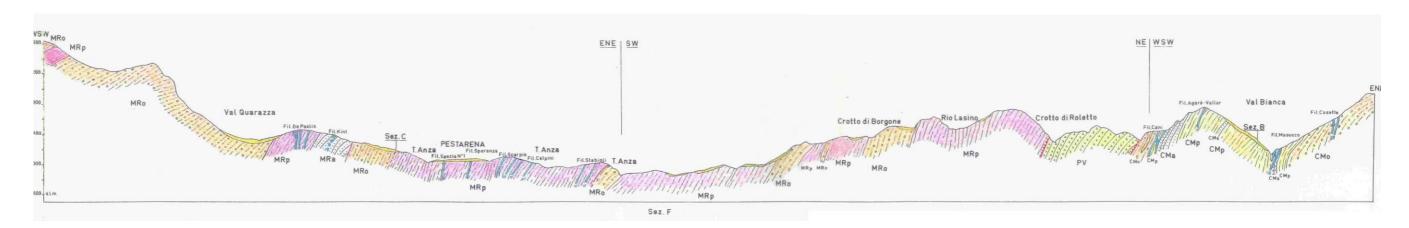


Figura 11. Sezione geologica F sul profilo longitudinale (RIMIN 1982)

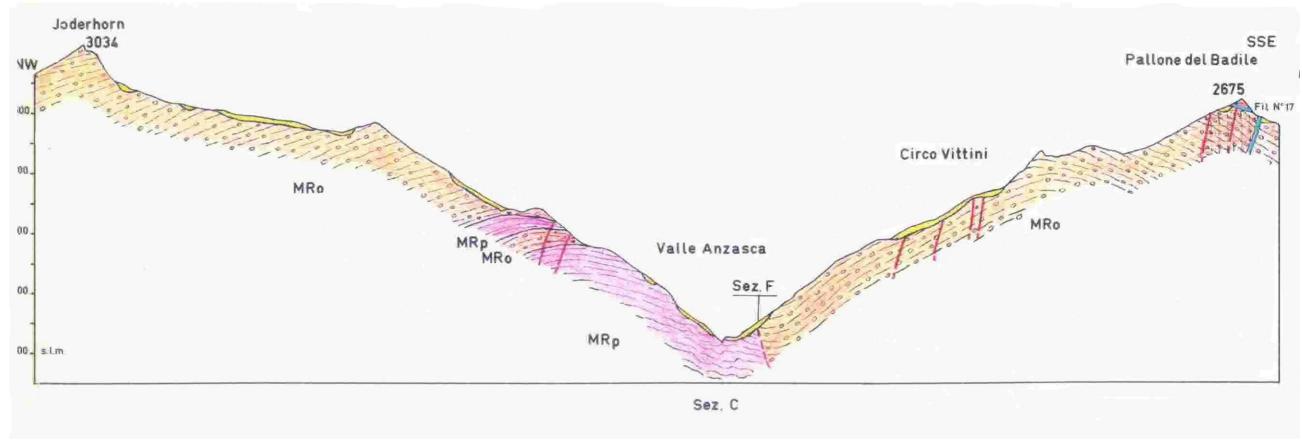


Figura 12. Sezione geologica C sul profilo trasversale (RIMIN 1982)

campionamento, in quanto i clasti che compongono questo tipo di rocce sciolte sono verosimilmente costituiti da elementi litologici simili;

 è difficile prevedere se ortogneiss e micascisti/paragneiss, che certamente alla mesoscala mostrano caratteri tessiturali e mineralogico-petrografici differenti, possano avere peculiarità tali da determinare caratteristiche geochimiche significativamente differenti.

Inoltre le concentrazioni naturali dei metalli, in particolare l'Arsenico, potrebbero dipendere sia dalle caratteristiche mineralogico-petrografiche dei vari tipi di roccia, sia dall'intensità con cui dette rocce hanno subito i processi idrotermali successivi alla loro formazione; detti processi hanno portato alla messa in posto dei corpi filoniani auriferi, i quali sono connessi con i lineamenti tettonici NW-SE ma, come indicano i dati di letteratura (F. Mastrangelo et. alii – Le mineralizzazioni aurifere filoniane delle Alpi Occidentali. Notiziario Ass. Mineraria Subalpina anno VII n.1), sono spesso indipendenti dalla natura delle rocce incassanti.

Nell'ambito dei depositi morenico/alluvionali di fondo valle, è verosimilmente possibile realizzare un campionamento di tipo statistico, "per profili", ubicando i punti di campionamento lungo i corsi d'acqua, separati da una distanza pressoché regolare di circa 200 - 300 m lungo il rio Quarazza, lungo il torrente Anza a monte della località Borca e lungo il torrente Anza a valle di Campioli (Figura 13). Questo tipo di campionamento è idoneo sia per determinare il contenuto naturale pedo-geochimico nell'ambito di questi depositi, sia per avere indicazioni circa eventuali "hot spot" della contaminazione antropica eventualmente presente, all'esterno delle aree indagate.

Nel tratto fra la località Borca e Campioli, il torrente Anza è estremamente inciso e per ampi tratti è limitato da versanti pressoché verticali; le aree di deposito (es: barre laterali vegetate) sono decisamente limitate e le rare barre presenti sono costituite da materiale prevalentemente grossolano. Per questo motivo, a seguito di un'accurata perlustrazione del fondovalle, sono stati prelevati pochi campioni in corrispondenza dei siti nei quali le caratteristiche morfologiche, idrauliche e deposizionali hanno consentito la formazione di terreni pedogenizzati o comunque di depositi a granulometria fine.

Le concentrazioni legate al "contenuto naturale pedo-geochimico" e le concentrazioni dovute ad un'eventuale contaminazione antropica sono state differenziate considerando la presenza di contaminanti specifici dell'attività di estrazione come mercurio ed eventualmente piombo, come ha successivamente evidenziato l'analisi dei dati.

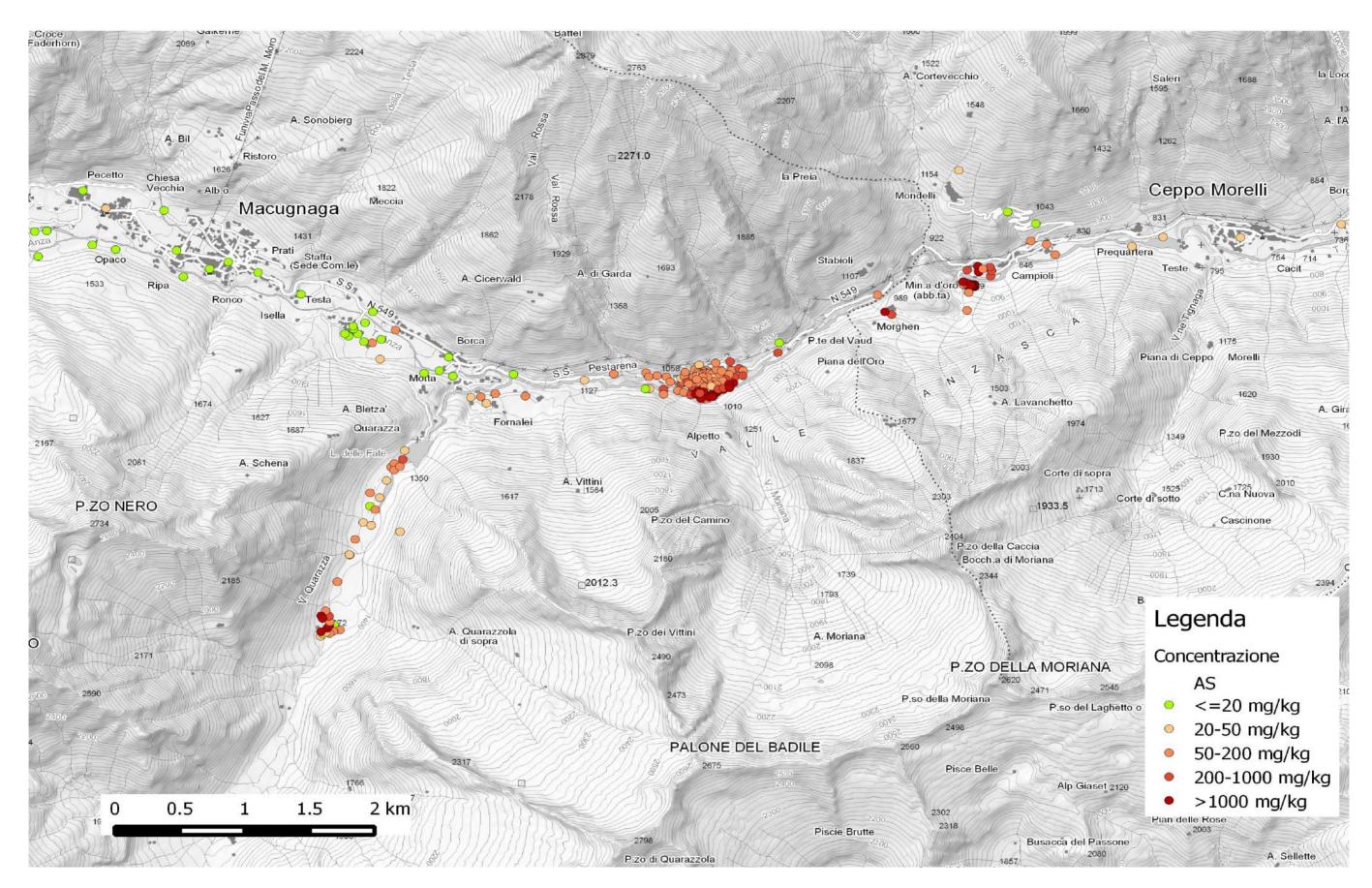


Figura 13. Distribuzione del campionamento con associato la concentrazione del parametro Arsenico

Relativamente agli ortogneiss, ai micascisti ed ai paragneiss è stato effettuato un campionamento con un'ubicazione dei punti di prelievo "quasi-casuale", nel senso che la scelta degli stessi è stata fortemente condizionata dall'accessibilità dei siti, dalla presenza o meno di un terreno pedogenizzato al di sopra delle rocce affioranti, oppure dalla presenza di materiali derivanti da processi gravitativi o di depositi morenici.

Risulta impossibile, relativamente alle anfiboliti, verificare se questa tipologia di roccia evidenzia determinate peculiarità geochimiche in quanto, nell'area in esame affiorano limitatamente e sono spesso ricoperte da depositi morenici.

L'ipotesi di effettuare un campionamento di tipo ragionato, all'interno delle varie aree omogenee identificate, al fine di identificare valori massimi di concentrazione, ancorché avrebbe forse consentito di individuare valori di riferimento più elevati, è stata scartata sia perché non si suppone di avere le conoscenze geologico/giacimentologiche sufficienti per realizzare una simile operazione, sia a causa della difficoltà di accedere ai punti di campionamento.

I dati raccolti consentono di evidenziare se le varie unità identificate costituiscono effettivamente popolazioni differenti in corrispondenza delle quali effettuare valutazioni ad hoc oppure tutto l'insieme dei dati possa essere trattato statisticamente come un'unica popolazione dal punto di vista geochimico.

Operativamente sono stati analizzati in loco i terreni superficiali ad una profondità variabile dai 5 ai 10 cm con il posizionamento stabile dello strumento in verticale mediante apposito supporto in dotazione e con tutte le accortezze di misura elencate nel capitolo precedente.

L'analisi è stata svolta con tre misure consecutive in automatico e mediante il display dello strumento è stato possibile verificarne l'esito in simultanea ed in un srcondo tempo, lo scarico dei dati in formato elettronico nel database.

Il campionamento è stato effettuato, per quanto possibile, in aree con morfologia pianeggiante o a debole pendio onde evitare gli effetti di ruscellamento superficiale che potrebbero produrre concentrazioni anomale degli elementi ricercati. Per ogni sito di prelievo sono state annotate tutte le caratteristiche peculiari (geomorfologiche, topografiche, deposizionali, presenza di elementi naturali e/o antropici circostanti, ecc...).

Complessivamente sono stati eseguiti 205 campioni Tabella 2.

ID	Coordinata X	Coordinata Y (N - UTM ED	ID	Coordinata X	Coordinata Y (N - UTM ED	ID	Coordinata X	Coordinata Y
	(E - UTM ED50)	50)		(E - UTM ED50)	50)		(E - UTM ED50)	(N - UTM ED 50)
1	420884	5088102	70	423763	5090191	13	425728	5091043
2	420930	5088058	71	423759	5090224	14	420785	5088179
3	420880	5088046	72	423722	5090225	14	420796	5088156
4	420850	5088027	73	423727	5090188	14	420784	5088042
5	420780	5088002	74	423721	5090157	14	420736	5088033
6	420798	5088024	75	423696	5090178	14	423803	5090061
7	420823 420831	5088038 5088071	76 77	423677 423855	5090205 5090246	14 14	423797 423819	5090055 5090084
9	420848	5088094	78	423828	5090291	14	425840	5091175
10	420853	5088126	79	423945	5090281	14	425848	5091125
11	420846	5088174	80	424002	5090298	14	425759	5091142
12	420819	5088221	81	424034	5090280	15	425940	5091090
13	420910	5088471	82	423969	5090225	15	425947	5091135
14	421005	5088700	83	423925	5090247	15	425934	5091167
15	421003	5088703	84	423899	5090207	15	425880	5091152
16	421047	5088834	85	423876	5090192	15	425787	5091013
17	421109	5088979	86	423823	5090345	15	418951	5091824
18	421170	5088954	87	423933	5090357	15	420070	5091212
19	421161	5089118	88	423831	5090161	15	419927	5091153
20	421202	5089090	89	423421	5090121	15	420968	5090596
21	421236	5089192	90	423422	5090077	15	421393	5088900
22 23	421162 421288	5089233 5089339	91 92	423531 423735	5090108 5090141	16 16	421358 421938	5090628 5090051
24	421324	5089454	93	423735	5090141	16	422015	5090051
25	421349	5089484	94	423705	5090107	16	422357	5090061
26	421346	5089428	95	423729	5090074	16	423607	5090183
27	421392	5089459	96	423769	5090058	16	423614	5090165
28	421413	5089520	97	423750	5090035	16	423869	5090276
29	421428	5089595	98	423797	5090064	16	421800	5090233
30	421178	5090518	99	423827	5090090	16	423314	5090125
31	421239	5090378	10	423843	5090105	16	423281	5090124
32	421115	5090529	10	423881	5090116	17	421578	5090257
33	421069	5090594	10	423959	5090173	17	421695	5090279
34	420996	5090575	10	424031	5090237	17	419725	5091085
35	421035 421031	5090636	10	423804 423728	5090089	17 17	419203	5091319
36 37	421123	5090661 5090690	10	423726	5090100 5090179	17	418606 419024	5091259 5091359
38	421247	5090548	10	424303	5090435	17	419129	5091671
39	423287	5090261	10	423576	5090093	17	419575	5091654
40	423307	5090228	10	423633	5090072	17	419673	5091309
41	423372	5090237	11	423668	5090078	17	420299	5091121
42	423443	5090227	11	423790	5090146	18	420630	5090935
43	423473	5090185	11	423843	5090121	18	421183	5090784
44	423559	5090167	11	423885	5090130	18	421767	5090395
45	423578	5090179	11	423925	5090164	18	422058	5090000
46	423645	5090122	11	423929	5090131	18	422125	5090082
47	423642	5090144	11	423773	5090051	18	422266	5090248
48	423658 423648	5090178 5090205	11	423711 423701	5090039 5090086	18 18	422813 423037	5090198 5090251
49 50	423651	5090205	11	425701	5091017	18	424312	5090251
51	423556	5090223	12	425818	5091017	18	425069	5090928
52	423581	5090229	12	425818	5090999	19	425695	5091998
53	423588	5090268	12	425806	5091002	19	426069	5091641
54	423662	5090294	12	425806	5091009	19	426287	5091540
55	423696	5090328	12	425806	5091016	19	426249	5091392
56	423749	5090285	12	425795	5091019	19	425177	5090761
57	423728	5090274	12	425795	5091010	19	425126	5090784
58	423701	5090266	12	425793	5091002	19	425758	5090796
59	423687	5090261	12	425779	5091002	19	425771	5090950
60 61	423676 423709	5090235 5090249	12 13	425777 425776	5091013 5091023	19 19	426370 426436	5091363 5091275
62	423709	5090249	13	425776	5091028	20	426436	5091275
63	423727	5090262	13	425752	5091028	20	427267	5091345
64	423762	5090257	13	425747	5091032	20	427863	5091421
65	423779	5090260	13	425768	5091007	20	428639	5091536
66	423795	5090251	13	425732	5091017	20	418580	5091472
67	423803	5090218	13	425740	5091015	20	418673	5091479
68	423804	5090187	13	425730	5091017			
69	423782	5090160	13	425757	5091022	1		

Tabella 2. Elenco dei punti di analisi e relativa georeferenziazione.

In corrispondenza di ogni campione indagato per la determinazione del fondo naturale sono stati ricercati i parametri

As; P; S; Cl; K; Ca; Ti; Cr; Mn; Fe; Co; Ni; Cu; Zn; Se; Rb; Sr; Zr; Mo; Ag; Cd; Sn; Sb; I; Ba; Hg; Pb

Le concentrazioni ottenute con analisi XRF non formalmente confrontabili in modo diretto con i valori riportati nella Tabella 1 dell'Allegato 5 della Parte Quarta del D.Lgs. 152/06, in quanto tra l'altro non viene eseguita la setacciatura a 2 mm né viene eseguito il rapporto allo scheletro come richiesto dalla norma. E' però prassi consolidata valutare a confronto i valori ottenuti con le diverse metodiche che anche il presente studio conforterà tale scelta.

In primo luogo, si è verificato se l'analisi fatta per il precedente lavoro di tesi su 51 campioni analizzati con metodica classica di laboratorio (gascromatografia – assorbimento atomico) è supportata anche dai dati ottenuti tramite l'indagine XRF. Pertanto, si è adottata la stessa metodica.

In corrispondenza di ogni campione prelevato per la determinazione del fondo naturale sono stati osservati i valori di concentrazione dei parametri Arsenico, Cromo, Mercurio, Zinco, Rubidio, Stronzio, Zirconio, Piombo, Manganese e Bario.

Nel seguito le motivazioni che hanno motivato la scelta di questi parametri:

- il Mercurio, elemento indicativo di una contaminazione antropica, in quanto utilizzato nelle operazioni di estrazione dell'oro, consente di individuare campioni non utilizzabili per la determinazione del fondo naturale in quanto direttamente o indirettamente connessi alle lavorazioni minerarie:
- il Piombo che nei siti contaminati del precedente lavoro, superava spesso le CSC della tabella A del D.lgs. 152/06 e raggiunge concentrazione considerevoli; viene ricercato anche nei campioni prelevati al di fuori dei siti ove si effettuava l'estrazione del minerale al fine di verificarne l'eventuale presenza naturale;
- Il Manganese è ricercato in quanto è presente nelle CSC delle acque ma non nelle terre, mentre il Bario non ha dei limiti nella tabella dei suoli ma è normato in alcuni stati europei;
- I minerali che sono associati con l'oro primario e che sono normati da limiti di legge.
- Il rapporto tra il numero di punti campionati e i dati validi confrontati con il limite di rilevabilità dello strumento per ogni singolo elemento.

	Cr	Mn	Zn	Rb	Sr	Zr	Ba	Pb	Cu	Hg
Percentuale dei dati validi	99%	100%	100%	100%	82%	100%	99%	98%	96%	66%
Limite di rilevabilità (ppm)	10	10	5	5	5	5	20	5	5	5
Percentuale dei dati rilevati	98%	100%	100%	100%	82%	100%	99%	98%	82%	4%

Tabella 3. Percentuali dei dati validi e rilevati per ogni elemento.

Per quanto concerne il mercurio si osserva che è un elemento con un limite di rivelabilità per lo strumento XRF coincidente con le CSC della tabella 1 colonna A Allegato 5 Parte IV del D.lgs. 152/06 (5 mg/kg) e pertanto i livelli di concentrazione ottenuti sono poco significativi e in aggiunta i dati rilevati disponibili hanno una percentuale molto bassa.

Il Tallio dallo strumento a disposizione non ha fornito dati validi.

8 Analisi preliminare dei dati chimici relativi al fondo naturale

Nello studio precedente, prima di effettuare l'analisi statistica, si erano esaminati i dati in funzione di una distribuzione areale al fine di individuare alcune evidenze che consentis sero di definire sub-aree caratterizzate da concentrazioni di As simili fra di loro e di definire, anche in funzione delle conoscenze geologiche dell'area esaminata, gli insiemi di dati che potessero individuare, secondo un criterio non statistico, popolazioni separate sulle quali realizzare alcuni test statistici che falsificassero, o meno, le ipotesi fatte.

Con questa finalità i dati della concentrazione di Arsenico, sono stati suddivisi in gruppi, con concentrazioni crescenti, considerando i seguenti intervalli di concentrazione:

- < 20 mg/kg ss (valori inferiori alla CSC prevista per i terreni residenziali dalla colonna
 A della tabella n.1 dell'allegato 5 parte IV del D. Lgs. 152/06)
- 20 50 mg/ kg ss
- 50 200 mg/ kg ss
- 200 1000 mg/ kg ss
- > 1000 mg/ kg ss

Allo stesso modo si è proceduto con i valori di As ottenuti tramite indagine XRF e si è osservato che quanto evidenziato con dati analitici era confermato anche con i nuovi dati acquisiti con la strumentazione speditiva.

Un primo esame dei dati evidenzia quanto segue:

- le concentrazioni di arsenico sono mediamente poco elevate nel fondovalle del torrente Anza nel tratto a monte della confluenza con il torrente Quarazza;
- concentrazioni mediamente elevate sono osservabili lungo il torrente Quarazza;
- concentrazioni abbastanza elevate sono presenti nel settore immediatamente a sud della confluenza fra torrente Quarazza e torrente Anza;

il settore nord dell'area esaminata, rispetto al torrente Quarazza ed il torrente Anza, mostra concentrazioni di arsenico inferiori rispetto ai campioni prelevati nei suoli sovrastanti i depositi fluvio-glaciali di fondovalle.

Le concentrazioni di arsenico non sembrano essere strettamente correlate alle differenti litologie presenti nell'area in esame; probabilmente le stesse sono connesse con i fenomeni idrotermali che hanno determinato la mineralizzazione aurifera, i quali hanno interessato

determinate aree a prescindere dalle litologie presenti. Dati di letteratura (A.Stella 1943) sembrano confermare che detti fenomeni di mineralizzazione siano stati più significativi nel settore sud dell'area indagata

8.1 Dati analitici relativi alla caratterizzazione delle aree contaminate

Nelle tabelle seguenti sono riportati i risultati analitici relativi ai parametri Arsenico, Zinco, Cromo, Rubidio, Stronzio, Zirconio, Piombo, Manganese e Bario riscontrati nei campioni di terreno prelevati nelle aree contaminate oggetto della Caratterizzazione.

Area di Campioli

Codice	As	Zn	Rb	Sr	Zr	Pb	Mn	Ва	Cr
Punto	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg.]	[mg/kg]	[mg/kg.]	[mg/kg.]
119	1883	828	58,4	82,6	38,6	316	1566	56	38
120	9095	49	108	105	75,2	323	225	113	86
121	1616	63	110,3	84,1	94,8	107	293	110	47
122	4178	97	105	90	111	231	355	106	85
123	3942	46	97,2	111	102,8	120	237	124	71
124	5376	59	96,9	94	95,3	95	420	77	64
125	1948	75	84,6	86	105	83	360	90	93
126	2360	38	84,7	116	123	77	263	113	78
127	3519	38	79	82	96,9	159	203	89	54
128	1591	79	107,7	90	92,7	81	235	88	40
129	8414	39	108,7	109	140	326	307	164	81
130	2366	43	98,7	106	118,2	65	245	117	56
131	2923	120	91,4	91	122	250	637	130	97
132	1941	110	90,1	109	88,3	112	267	99	55
133	3264	86	82,6	160	109	147	344	141	60
134	3387	243	94	112	116	173	557	128	74
135	403	165	171	173	168	81	521	202	90
136	2956	89	108,7	133	123	73	660	147	63
137	185	61	137,3	113	95,2	34	366	104	28
138	227	109	139,1	161	147	35	625	166	73
139	1235	505	152	169	117	298	961	200	99
154	2432	36	88,6	116	107	103	360	102	113

Tabella 4. Risultati analitici relativi ai parametri Arsenico, Cromo, Zinco, Rubidio, Stronzio, Zirconio, Piombo, Manganese e Bario, riscontrati nei campioni di terreno prelevati nell'area di Campioli

Area di Crocette

Codice	As	Zn	Rb	Sr	Zr	Pb	Mn	Ва	Cr
Punto	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg.]	[mg/kg]	[mg/kg.]	[mg/kg.]
8	13669	58	160	43,5	196	515	119	97	34
9	13988	17	124	42	63,8	123	167	72	40
140	9479	23	154	41,9	60,6	68	188	61	36
141	53676	19	167	25,8	104	137	63	92	36
142	2262	35	122	67	78,2	47	374	105	35
143	100704	ND	154	16,7	67	168	35	100	20

Tabella 5. Risultati analitici relativi ai parametri Arsenico, Cromo, Zinco, Rubidio, Stronzio, Zirconio, Piombo, Manganese e Bario, riscontrati nei campioni di terreno prelevati nell'area di Crocette

Area di Pestarena

Codice	As	Zn	Rb	Sr	Zr	Pb	Mn	Ва	Cr
Punto	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg.]	[mg/kg]	[mg/kg.]	[mg/kg.]
46	618	671	91,8	124	107,6	65	367	153	46
93	3022	280	90	69	84,3	232	347	99	38
94	406	339	113,8	112	78,6	178	871	146	61
95	1731	448	90,9	ND	96,3	404	612	102	37
96	5972	181	86,7	ND	72,3	262	386	89	38
98	12872	15	106	76	320	1168	224	206	87
99	62800	6	69	45	136	1475	111	197	99
100	48394	7	57	51	154	1910	101	199	65
101	19057	35	65,1	76	58,7	396	277	112	60
102	1685	104	62,6	ND	41,6	290	661	72	30
103	624	89	138,8	ND	91	ND	758	103	44
104	6353	35	212	ND	134	173	212	107	38
105	4266	553	57,7	ND	64,1	271	530	101	54
110	2070	83	80,5	108	93	127	592	133	88
114	1021	77	101,4	ND	108,3	65	507	88	51
115	3577	283	67,7	96	88,5	2032	302	113	47
116	1419	225	83,3	128	114	325	776	276	102
117	1037	106	41,9	ND	60,2	173	480	121	46
118	919	95	97,5	96	118	222	436	81	38
144	18133	16	97	72	127	1488	133	168	72
145	22804	7	91,3	69	152	897	90	219	81
146	145871	7	85	47	145	2680	86	251	142
147	35505	25	106	72	101	979	126	112	61
148	1531	240	123,1	86	85,4	217	1030	124	52

Tabella 6. Risultati analitici relativi ai parametri Arsenico, Cromo, Zinco, Rubidio, Stronzio, Zirconio, Piombo, Manganese e Bario, riscontrati nei campioni di terreno prelevati nell'area di Pestarena

8.2 Dati analitici relativi alla definizione del fondo naturale

Nelle tabelle seguenti sono riportati i risultati analitici relativi ai parametri Arsenico, Cromo, Zinco, Rubidio, Stronzio, Zirconio, Piombo, Manganese e Bario riscontrati nei campioni di terreno prelevati per la determinazione del fondo naturale esterni alle aree minerarie.

Codice	As	Zn	Rb	Sr	Zr	Pb	Mn	Ва	Cr
Punto	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg.]	[mg/kg]	[mg/kg.]	[mg/kg.]
1	4,9	23	23,4	18,5	22,3	61	44	ND	ND
2	90	29	94,9	38,2	68	40,7	128	45	21
3	95	35	129	60,6	54,3	57	228	63	33
4	68	19	101,1	73,1	79,4	27,4	147	74	25
5	47	27	81,9	48,2	64	56	160	43	26
6	11,4	22,6	37,7	29,9	39,3	29,7	81	24	8
7	36	35	123,1	114	123	24	321	91	51
10	98	19	66,6	44,7	42,6	35,9	148	42	10
11	219	62	101	56,6	58,8	60	263	56	27
12	106	43	157	31,5	46,9	27,9	511	39	18
13	67	23	112,6	87	153	21	209	87	18
14	144	44	196	37,4	95,2	16,5	281	36	9
15	37	35	100,3	32	43,4	27,6	142	29	9
16	77	18,1	93,6	29,8	54,1	29,3	179	25	17
17	27	13	149	37,2	71,4	34	139	31	6
18	33	35	108,2	90	271	38	235	84	21
19	18	26	99,9	53,4	96,6	31	151	51	18
20	100	46	129	120	121,1	29,1	304	71	26
21	38	28	121	118	114	27	320	74	23
22	51	65	124,8	48,9	88,8	51	547	50	14
23	45	42	118	87,7	131	33	226	70	18
24	54	80	189	72,1	120,2	51	1440	69	19
25	54	55	114,5	56,8	105,7	91	794	67	14
26	67	61	103,4	179	225	37	543	128	54
27	58	61	114,7	162	164	33	367	109	51
28 29	398	124	121	135	123	103	525	147	70
30	29 91	55 81	86,4 130,7	74 111	92,6	29 45	416 434	63	33 50
31	41	33	91,5	64,7	105,3 73,2	24,9	276	116 64	13
32	14	118	172	82,5	88,8	29,5	795	109	33
33	12	224	117,2	121	71,8	38,3	1118	84	27
34	12	161	166	80,4	78,5	37	796	98	42
35	4	151	108,1	99	87,2	33	432	98	40
36	6,8	85	99,9	78,7	76	29,2	374	87	38
37	9	47	122,7	94	142	64	347	98	39
38	7	341	56,1	46	38,1	62	161	27	10
39	88	146	116,1	115	104,5	49	859	105	35
40	85	112	95,3	ND	73,3	ND	483	62	23
41	157	216	100,9	ND	84	59	555	78	42
42	176	545	107,8	107	85,6	79	926	103	36
43	100	166	92,3	124	86,5	47	547	120	62
44	281	122	120	ND	87,9	54	448	102	43
45	136	265	89,7	ND	66,8	54	397	79	41
47	215	162	83,1	ND	51	67	533	65	42
48	134	114	94,2	ND	54,7	43	752	75	35
49	138	121	112,1	ND	76,5	55	643	118	41
50	118	143	101,5	91	82,4	83	1007	102	42

Codice	As	Zn	Rb	Sr	Zr	Pb	Mn	Ва	Cr
Punto	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg.]	[mg/kg]	[mg/kg.]	[mg/kg.]
51	27	112	118,8	130	95,9	33	390	103	47
52	157	241	154	123	97,4	135	673	115	50
53	185	113	106,3	ND	104,4	67	752	122	55
54	98	187	197	138	126	69	1485	157	73
55	29	203	97	ND	44,8	ND	908	60	22
56	84	375	177	131	87	46	1815	149	70
57	95	222	140	113	92,8	52	1158	133	53
58	209	140	168	115	100,1	61	1042	147	64
59	73	185	129,6	108	104,1	128	570	132	53
60	111	163	118,5	98	87,1	51	1189	109	61
61	37	90	111,1	ND	45,2	ND	329	36	14
62	115	71	123,6	117	97,1	31	785	152	56
63	152	118	129	112	118	46	1157	136	54
64	100	83	96,7	ND 400	99,2	34	501	126	51
65	181	166	109	123	114,2	89	1204	137	63
66 67	140	113	100,5	ND 124	99,9	49 22	643	133	45 67
	46 100	41 43	102	124	88 56.6	37	460	105 63	67 26
68 69	225	115	70,2 90,9	ND ND	56,6 76	66	208 656	89	26 35
70	96	73	90,9 89,8	82	76	46	290	99	48
71	89	122	142	76	58,9	38	1024	132	59
72	109	116	106,8	ND	101,8	45	847	100	43
73	160	123	93,4	ND	71	63	654	98	51
74	117	82	141,8	ND	85,8	50	333	125	49
75	126	110	92,7	80	66,1	62	493	112	47
76	146	341	130	138	90,6	76	983	132	46
77	98	57	105,8	0	85	33	465	104	58
78	97	174	138	81	79,3	51	1024	103	57
79	166	50	82	56	63,5	53	403	82	53
80	307	142	108,5	106	100,8	58	892	129	46
81	143	63	69,1	ND	45,4	27	531	65	34
82	164	142	161	ND	109,7	54	1743	121	46
83	242	97	144,3	102	132	48	1384	161	54
84	132	68	110,1	ND	91,8	0	658	122	54
85	137	98	106	80	86,3	35	556	122	74
91	55	36	109,3	ND	84,4	23	300	125	54
92	70	47	120,4	103	146	22	784	86	55
97	137	217	87,6	ND	65	70	391	69	25
106	246	82	103,2	77	105	38	622	84	47
107	197	103	95,4	105	95,1	38	437	85	42
108	351	456	36,6	162	38,6	60	691	76	91
109	2070	83	80,5	108	93	127	592	133	88
111	21	32 76	115	ND 70	74,8	26	231	82	46
112	554		67,4	70	74,7	120	397	103	47
113 149	496 470	56 58	78,6	ND 108	69,9 105	71 70	191 501	50 167	34 72
150	405	58 58	104,8 102,8	1108	1105	70 56	625	185	62
151	241	199	87,7	73	61,2	59	1229	91	32
152	105	163	159	86	91,2	60	1435	116	40
153	103	232	114	60	29,9	54	641	ND	ND
155	10	230	112,9	56,4	34,4	63	745	66	ND
156	13	262	115,4	59,5	41,7	68	826	59	21
157	20	147	159,7	70,1	62,9	37	764	65	23
158	25	439	155,3	138	52,8	39,6	1629	91	24
159	94	175	120	110	104,2	125	568	121	77
160	35	143	116	101,4	83,6	43	580	84	29
161	57	153	134,3	101	105,2	37,1	899	87	40
162	89	216	130,1	84,2	112,2	64	637	102	46
163	296	863	116	135	62,5	159	1471	133	52
					,-		·		-

Codice	As	Zn	Rb	Sr	Zr	Pb	Mn	Ва	Cr
Punto	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg.]	[mg/kg]	[mg/kg.]	[mg/kg.]
164	131	227	106,2	97	102,6	44	548	132	58
165	125	328	128	142	77,5	95	1193	127	53
166	6	69	160	106	137	17,7	822	129	54
167	23	52	105	110	117	21,3	482	90	22
168	18,4	48	74,4	67,7	75,1	26,9	212	65	29
169	9	67	110,2	128	143	28,2	452	114	44
170	11	61	106	102,3	110,4	22,5	448	106	37
171	6,6	48	97,2	59,9	57,6	22,9	318	66	31
172	3	33,9	30,3	29	28,7	43,2	100	26	8,2
173	5	48	174	102	74,3	28	305	79	29
174	4,7	47	88,6	101	112,7	18,5	408	50	19
175	26	119	64,5	88	70,9	101	422	71	97
176	19	42	119,6	71	85,4	33	228	71	40
177	10,3	71	119,3	73,7	78,1	23,5	357	77	33
178	13	180	124,5	104	83,6	88	707	137	90
179	10	161	126,4	110	93,4	37	388	119	47
180	18	56	109,6	73,2	60,6	44,1	413	41	19
181	16	161	95,4	148	104,6	42	396	97	62
182	42	66	94,2	62,6	86	27,9	287	81	41
183	141	93	98,2	115	115,2	37	595	91	43
184	2,5	79	50,9	52,3	39	35,1	361	30	21
185	26	701	92,4	71,9	63,4	75	240	59	31
186	77	54	132,5	74,8	96,1	29	421	93	40
187	13	91	57,1	91	63,8	46	525	72	106
188	67	70	52,4	57,7	52,5	38	263	48	22
189	26	176	94,4	92	105	196	490	72	32
190	12	96	128,6	103	90,7	27,8	341	87	46
191	17	90	94,2	129	138	42	414	122	69
192	101	110	116,8	196	107	40	554	144	104
193	464	68	116,7	109	135	110	297	128	52
194	1685	89	121,3	96	98,6	174	375	150	53
196	96	61	119,9	66,9	67,7	43	340	89	43
197	139	76	113,8	98	125,6	62	359	131	50
198	105	139	101,5	126	93,4	59	618	82	33
199	75	31	78,5	107	250	13	541	80	30
200	41	29,1	59,5	50,9	80,8	27,6	215	41	14
201	21	42	158	112	107,3	29	428	79	31
202	34	281	161,4	93,2	82,8	52	1545	112	34
203	25	106	131,8	90,6	86,1	56	626	72	32
204	6	50	108	145	146	22,9	402	108	32
205	4	36	113	107	128	23	535	135	43

Tabella 7. Risultati analitici relativi ai parametri Arsenico, Cromo, Zinco, Rubidio, Stronzio, Zirconio, Piombo, Rame e Bario, riscontrati nei campioni di terreno prelevati per la determinazione del fondo naturale (escluse aree minerarie)

1. le concentrazioni di mercurio sono molto variabili: in alcuni casi al di sopra della CSC prevista dalla Tabella 1 colonna A allegato 5 del titolo V del D.lgs. 152/06 (1 mg/kg ss), ma anche del livello di colonna B (5 mg/kg ss). In relazione a ciò si ribadisce la grande incertezza del dato XRF sul parametro mercurio, da considerare con molta cautela, perché si tratta di bassi valori di concentrazione molto vicini se non addirittura sotto il limite di rivelabilità dello strumento (5 mg/kg);

2. le concentrazioni degli altri elementi sono sempre al di sotto della CSC prevista dalla Tabella 1 colonna A allegato 5 del titolo V del D.lgs. 152/06.

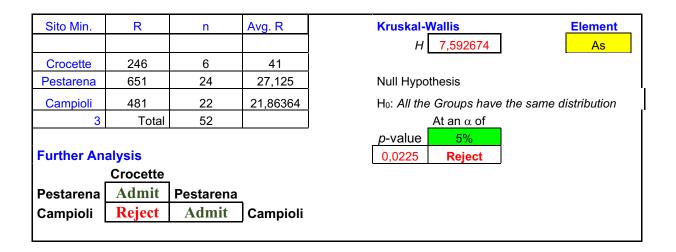
Nel caso dei campioni prelevati per la valutazione del fondo naturale, non esiste una correlazione significativa fra le concentrazioni di As e le concentrazioni di Pb, fra le concentrazioni di As e le concentrazioni di Hg, probabilmente a conferma del fatto che tale correlazione è presente solo in corrispondenza dei siti inquinati e quindi è connessa con le attività di estrazione e non con i fenomeni di mineralizzazione naturali;

Considerata la distribuzione spaziale delle concentrazioni rilevate, sopra descritta, si ritiene opportuno valutare due concentrazioni di fondo naturale; una relativa ai campioni prelevati lungo il fondovalle della valle Anzasca a monte della confluenza con il torrente Quarazza e nel settore a nord del torrente Anza; l'altra relativa ai campioni prelevati lungo il fondovalle del torrente Quarazza, lungo il fondovalle del torrente Anza a valle della confluenza con il torrente Quarazza e nel versante a sud di località Fornarelli. In altri termini si ipotizza l'esistenza di due sub-popolazioni derivanti dalle differenti caratteristiche giacimentologiche delle sub-aree sopra delineate. In particolare, la popolazione caratterizzata da concentrazioni 54 mg/Kg inferiori sarà d'ora in poi identificata come popolazione NM (Non Mineralizzata), la popolazione caratterizzata da concentrazioni superiori sarà d'ora in poi identificata come popolazione M (Mineralizzata). L'esistenza di tali popolazioni distinte sarà verificata di seguito tramite idonee analisi statistiche.

9 Analisi statistica dei dati chimici

L'analisi statistica dei dati a disposizione, propedeutica alla definizione del valore di fondo inerente all'elemento Arsenico, è stata effettuata utilizzando il software ProUCL v. 5.1 (¹) ed eseguendo una serie di determinazioni e di test che possono essere sintetizzati nello schema seguente:

- definizione preliminare del tipo di distribuzione delle popolazioni studiate al fine di poter definire i test statistici da utilizzare;
- individuazione degli outliers, cioè di quei valori di un data set che non sono rappresentativi dell'insieme di dati nel suo complesso e se necessario trattamento dei cosiddetti non detected al fine di individuare set di dati sui quali operare;
- definizione degli indicatori statistici;


⁽¹) E' stata riportata una sintesi degli *output* forniti dal *software* ProUCL v.5.1; non necessariamente tutti i parametri statistici espressi sono stati oggetto di specifica illustrazione e valutazione.

- valutazione della dipendenza reciproca di alcune variabili di interesse e dell'intensità della relazione fra le variabili stesse;
- confronto fra le popolazioni di dati inerenti ai siti contaminati e le popolazioni riguardanti i valori di fondo naturale;
- definizione del valore del fondo naturale.

I dati relativi ai campioni prelevati nell'abito dei siti contaminati sono stati trattati secondo lo schema sopra descritto e tutti i risultati sono riportati nelle Tabelle da 7 a 10 e Figure da 14 a 17. Nel caso dei dati inerenti ai siti contaminati, l'individuazione degli outliers di fatto non ha comunque portato a scartare nessun dato in quanto concentrazioni particolarmente elevate possono essere semplicemente sintomo di contaminazioni in corrispondenza di "hot spots", connessi con il tipo di attività di estrazione.

Specificatamente sono state affrontate le seguenti problematiche:

• Verifica della presenza di intensità di contaminazioni differenziate, effettuando un confronto fra le popolazioni dei tre siti caratterizzati Campioli, Pestarena e Crocette, prendendo in considerazione tutti i dati di concentrazione di As relativi ad ogni singolo sito. Esaminando i vari descrittori statistici Tabella 11 ed i risultati di detto confronto fra popolazioni, è possibile affermare che il livello di contaminazione è analogo in corrispondenza di tutte le aree studiate Tabelle 12,13 e Tabella 14.

Tabella 8. Risultati del confronto fra popolazioni utilizzando il test di Kruskal-Wallis (**Admit** indica che l'ipotesi nulla di compatibilità delle mediane, non è stata rifiutata per Aree Pestarena-Crocette e Pestarena-Campioli; **Reject** indica che l'ipotesi nulla è stata rifiutata Campioli-Crocette)

9.1 Elaborazioni statistiche inerenti ai dati delle aree contaminate

Nelle tabelle seguenti vengono riportate le elaborazioni statistiche effettuate tramite il software ProUCL 5.1 ad eccezione del test Kruskal-Wallis.

9.1.1 Descrizione statistica delle popolazioni

	Num					Skewnes		
Variable	Obs	Minimum	Maximum	Mean	SD	s	Kurtosis	CV
CROCETTE	6	2262	100704	32296	38057	1,515	1,567	1,178
PESTARENA	24	406	145871	16737	32042	3,228	11,8	1,914
CAMPIOLI	22	185	9095	2966	2277	1,491	2,441	0,768

Tabella 9. Riepilogo delle statistiche di base per tutte le popolazioni individuate di As

Dall'analisi della distribuzione delle popolazioni individuate, emergono i seguenti risultati:

Popolazione	Normale	Lognormale	Gamma	Nessuna distribuzione
CROCETTE	x	X	x	
PESTARENA		X		
CAMPIOLI	x		x	

Tabella 10. Riepilogo del tipo di distribuzione relativo alle aree contaminate individuate di As

9.1.2 Set completo dei dati per le aree contaminate

	CROCETTE	CAMPIOLI	PESTARENA
	As	As	As
Raw Statistics			
Number of Valid Observations	6	22	24
Number of Distinct Observations	6	22	24
Minimum	2262	185	406
Maximum	100704	9095	145871
Mean of Raw Data	32296	2966	16737
Standard Deviation of Raw Data	38057	2277	32042
Kstar	0,557	1,402	0,455
Mean of Log Transformed Data	9,727	7,648	8,419
Standard Deviation of Log Transformed Data	1,34	0,996	1,650
Normal Distribution Test Results			
Correlation Coefficient R	0.887	0,923	0,732
Shapiro Wilk Test Statistic	0,792	0,854	0,558
5% Shapiro Wilk Critical Value	0,788	0,911	0,916
Lilliefors Test Statistic	0,351	0,177	0,305

5% Lilliefors Critical Value	0,362	0,189	0,181
	Data appear Normal Distributed at 5% Significance Level	Data appear Normal Distributed at 5% Significance Level	Data not Normal at 5% Significance Level
Gamma Distribution Test Results			
Correlation Coefficient R	0,987	0,977	0,970
A-D Test Statistic	0,346	0,527	1,229
5% A-D Critical Value	0,718	0,758	0,809
K-S Test Statistic	0,292	0,151	0,199
5% K-S Critical Value	0,342	0,188	0,188
	Data appear Gamma Distributed at 5% Significance Level	Data appear Gamma Distributed at 5% Significance Level	Data not Gamma Distributed at 5% Significance Level
Lognormal Distribution Test Results			
Correlation Coefficient R	0.975	0,936	0,977
Shapiro Wilk Test Statistic	0,956	0,877	0,946
5% Shapiro Wilk Critical Value	0,788	0,911	0,916
Lilliefors Test Statistic	0,220	0,209	0,141
5% Lilliefors Critical Value	0,362	0,189	0,181
	Data appear Lognormal Distributed at 5% Significance Level	Data not Lognormal Distributed at 5% Significance Level	Data appear Lognormal Distributed at 5% Significance Level

Tabella 11. Analisi del tipo di distribuzione nelle aree di Crocette, Pestarena e Campioli di As

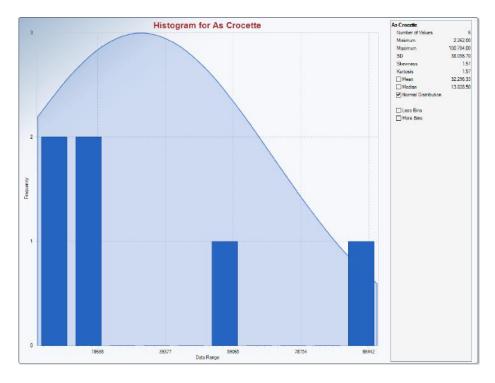


Figura 14. Istogramma relativo ai campioni prelevati nel sito di Crocette

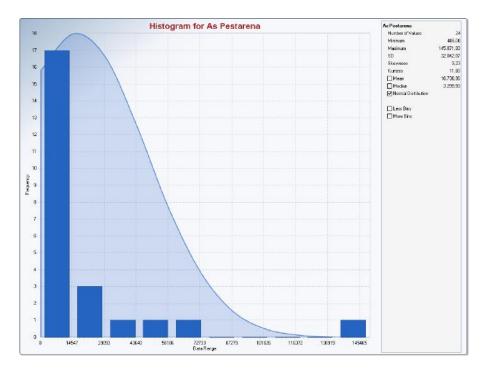


Figura 15. Istogramma relativo ai campioni prelevati nel sito di Pestarena

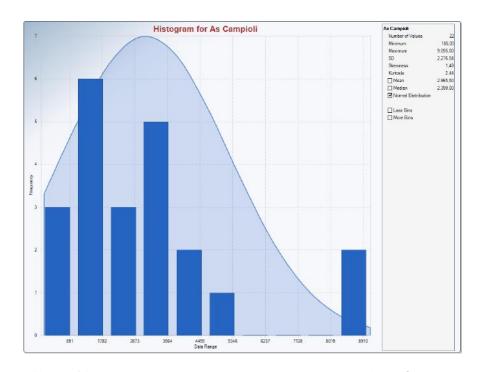


Figura 16. Istogramma relativo ai campioni prelevati nel sito di Campioli

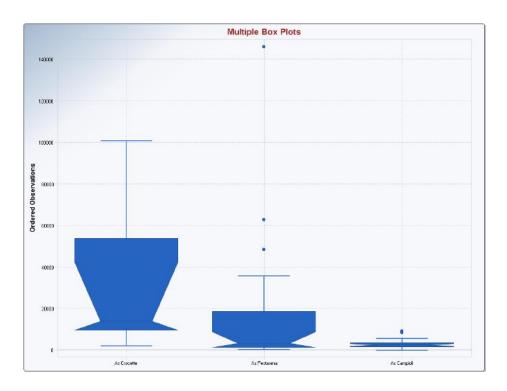


Figura 17. Box-Plot per le popolazioni totali delle aree contaminate

9.2 Elaborazioni statistiche inerenti ai dati del fondo naturale

Analogamente è stata realizzata un'analisi statistica delle concentrazioni di Arsenico inerenti ai campioni prelevati per la definizione del fondo naturale.

Come anticipato sono state ipotizzate due popolazioni distinte caratterizzate da concentrazioni palesemente differenziate, diversamente localizzate spazialmente (Figura 9) e più o meno impattate dall'evento che ha prodotto la mineralizzazione aurifera. Le due popolazioni, come citato, sono state indicate con NM (Non Mineralizzata) quella a più bassi tenori di As e M (Mineralizzata) quella a più elevati tenori di As. I test statistici sono stati effettuati considerando separatamente le popolazioni succitate M e NM. L'elenco dei campioni appartenenti a dette popolazioni è riportato in Tabella 12 e in Tabella 13.

Codice Punto	Concentrazione Arsenico NM
1	4,9
5	47
6	11,4
7	36
15	37
17	27
18	33
19	18
21	38

Codice Punto	Concentrazione Arsenico NM
159	25
161	35
167	6
168	23
169	18,4
170	9
171	11
172	6,6
173	3

51
45
54
54
29
41
14
12
12
4
6,8
9
7
27
29
37
46
21
10
10
13
20

174	5
175	4,7
176	26
177	19
178	10,3
179	13
180	10
181	18
182	16
183	42
185	2,5
186	26
188	13
190	26
191	12
192	17
200	41
201	21
202	34
203	25
204	6
205	4

Tabella 12. Campioni appartenenti alla popolazione NM (n. 62). Sono indicati i punti di campionamento e la rispettiva concentrazione di Arsenico.

Codice Punto	Concentrazione Arsenico M
2	90
3	95
4	68
10	98
11	219
12	106
13	67
14	144
16	77
20	100
26	67
27	58
28	398
30	91
39	88
40	85
41	157
42	176
43	100
44	281
45	136
47	215
48	134
49	138

Codice Punto	Concentrazione Arsenico M
76	146
77	98
78	97
79	166
80	307
81	143
82	441
83	164
84	242
85	132
86	110
87	265
88	156
89	234
90	60
91	137
92	55
94	406
97	70
106	137
107	246
108	197
109	351
112	554

50	118
52	157
53	185
54	98
56	84
57	95
58	209
59	73
60	111
62	115
63	152
64	100
65	181
66	140
68	100
69	225
70	96
71	89
72	109
73	160
74	117
75	126

<u></u>	
113	496
149	262
150	470
151	405
152	241
153	105
160	94
162	57
163	89
164	296
165	131
166	125
184	141
187	77
189	67
193	101
195	1685
194	464
196	96
197	139
198	105
199	75

Tabella 13. Campioni appartenenti alla popolazione M (n. 92). Sono indicati i punti di campionamento e la rispettiva concentrazione di Arsenico.

La definizione preliminare delle distribuzioni inerenti le due popolazioni succitate ha consentito di definire quali test utilizzare per la ricerca degli "outliers" (Tabelle 18, 19; Figure da 18 a 21). Tale ricerca ha individuato i seguenti dati anomali (Tabella 14)

Popolazione	Tipo della distribuzione di frequenza	Test utilizzato	Outlier individuati dal Test
		Huber (5%)	13
M	M Nessuna distribuzione	Huber (1%)	10
		Box Plot	2
	Distribuzione Gamma e	Huber (5%)	0
NM	NM Lognormale	Huber (1%)	0
3		Box Plot	0

Tabella 14. Outliers identificati mediante differenti test statistici. 5% e 1% indicano i livelli di significatività.

L'unico dato considerato realmente anomalo è stato quello relativo al campione 195 (1685 mg/kg, Popolazione M), interpretato come un'anomalia di tipo giacimentologico in quanto prelevato in un'area caratterizzata da un'intensa mineralizzazione, soggetta nel passato a sfruttamento per la presenza d'oro (Morghen). Esclusi errori nella determinazione delle concentrazioni, non è stato possibile individuare una motivazione legata alle caratteristiche geologiche, giacimentologiche, oppure alla presenza di contaminazione antropica, che consentisse di eliminare gli altri "outliers statistici" come dati non appartenenti al fondo pedogenetico naturale. In particolare il campione con valori elevati di As popolazione M - 554

mg/kg è stato prelevato in prossimità del versante a valle dell'abitato di Pestarena nell'ambito di depositi pedogenizzati o di terreni alluvionali di fondovalle, verosimilmente non connessi con presenze di fenomeni idrotermali mineralizzanti oppure con aree di lavorazione.

Una volta definito il set di dati rappresentativo sono state definite le distribuzioni di frequenza delle tre popolazioni riassunte in Tabella 21.

Popolazione	Normale	Lognormale	Gamma	Nessuna distribuzione
M				X
NM		X	Х	

Tabella 15. Distribuzione di frequenza delle due popolazioni inerenti il fondo pedogenetico naturale considerando il set significativo dei dati (²)

Popol.	Numero Osservaz.	Minimo	Massimo	Media	Mediana	Varianza	Dev. standard	Indice di Skewness	Coeff. di variazioni
NM	62	2,5	54	21,49	18,2	206,78	14,38	0,642	0,669
М	91	55	554	164,6	131	12232,36	110,6	1,754	0,672

Tabella 16. Principali descrittori delle popolazioni inerenti i dati di Arsenico del fondo naturale Sia gli indicatori di M ed NM (Tabella 22) che il test di confronto tra le popolazioni stesse (Wilcoxon-Mann-Whitney, Kruskal-Wallis, Tabella 17) evidenziano due Popolazioni differenti. Sia le medie che le mediane di M ed NM evidenziano una porzione di territorio con caratteristiche geochimiche differenziate a causa della mineralizzazione occorsa. La varianza di M è decisamente più elevata di NM palesa come il fenomeno idrotermale abbia impattato in modo differenziato il settore sud dell'area esaminata.

L'analisi dei descrittori statistici ed il confronto fra le popolazioni dei siti inquinati (Campioli suolo, Pestarena - suolo, Crocette - suolo) e la popolazione M inerente ai dati del fondo naturale a più elevato contenuto di As, effettuato tramite il test ha confermato che l'insieme dei dati campionati all'esterno delle aree contaminate dalle attività di estrazione mineraria sono idonei per la definizione di un valore di fondo pedogenetico naturale relativamente al parametro Arsenico. (3) Tabella 16.

Confronto popolazioni	Popolazione fondo naturale
Sito Campioli	Reject
Sito Crocette	Reject

^{2 ()} La popolazione depurata dagli outliers è stata indicata come M eliminando il campione 195

⁽³) E' utile ricordare che la concentrazione di Arsenico relative ai campioni di terreno prelevati in corrispondenza dei siti contaminati è stata determinata, secondo quanto prevede la normativa D.Lgs. 152/06, effettuando l'analisi chimica sulla frazione granulometrica passante al setaccio con maglia 2 mm e successivamente rapportando il dato analitico alla totalità del materiale secco con granulometrica compresa fra 2 mm e 2 cm. Nel caso dei campioni di terreno prelevati all'esterno delle aree contaminate per la definizione del fondo naturale non è stata necessaria la correzione del dato analitico in funzione della granulometria in quanto gli stessi sono costituiti da frazioni granulometriche inferiori ai 2 mm.

Sito Pestarena

Tabella 17. Risultati del confronto fra popolazioni utilizzando sia il test Wilcoxon-Mann-Whitneye che il test di Kruskal-Wallis (**Admit** indica che l'ipotesi nulla, di compatibilità delle mediane non è stata rifiutata; **Reject** indica che l'ipotesi nulla è stata rifiutata)

Nelle tabelle seguenti vengono riportate le elaborazioni statistiche effettuate tramite il software ProUCL 5.1 ad eccezione del test di Kruskal-Wallis e del test di Huber.

9.2.1 Definizione preliminare del tipo di distribuzioni

Popolazione	Normale	Gamma	Lognormale	Nessuna distribuzione
M				X
NM		X	X	

Tabella 18. Riepilogo del tipo di distribuzione per le popolazioni relative alla determinazione del fondo naturale

Nella tabella seguente vengono riassunti i risultati forniti dal software:

	M	NM
Raw Statistics		
Number of Valid Observations	92,00	62,00
Number of Distinct Observations	78,00	43,00
Minimum	55,00	2,500
Maximum	1685,0	54,00
Mean of Raw Data	181,1	21,49
Standard Deviation of Raw Data	192,9	14,38
Kstar	2,246	2,030
Mean of Log Transformed Data	4,960	2,802
Standard Deviation of Log Transformed Data	0,612	0,792
Normal Distribution Test Results		
Correlation Coefficient R	0,697	0,967
Shapiro Wilk Test Statistic	0,534	0,911
Shapiro Wilk Critical (0.95) Value	0	1,343E-4
Lilliefors Test Statistic	0,257	0,142
Lilliefors Critical (0.95) Value	0,0924	0,113
	Data not Normal at (0.05) Significance Level	Data not Normal at (0,05) Significance Level
Gamma Distribution Test Results		
Correlation Coefficient R	0,832	0,976
A-D Test Statistic	3,895	0,464
A-D Critical (0.95) Value	0,764	0,763
K-S Test Statistic	0,168	0,0810
K-S Critical(0.95) Value	0,0943	0,114
	Data not Gamma Distributed at (0.05) Significance Level	Data appear Gamma Distributed at (0.05) Significance Level
Lognormal Distribution Test Results		
Correlation Coefficient R	0,961	0,983
Shapiro Wilk Test Statistic	0,928	0,946
Shapiro Wilk Critical (0.95) Value	3,1853E-5	0,0166
Lilliefors Test Statistic	0,115	0,104
Lilliefors Critical (0.95) Value	0,0924	0,113
	Data not Lognormal at (0.05) Significance Level	Data appear Lognormal at (0.05) Significance Level

Tabella 19. Analisi del tipo di distribuzione per le popolazioni M ed NM

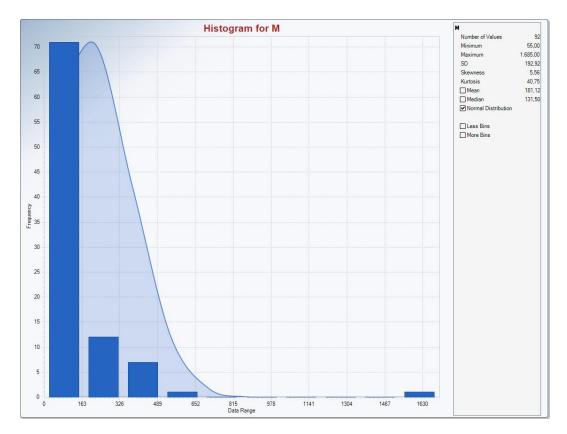


Figura 18. Istogramma per la popolazione M

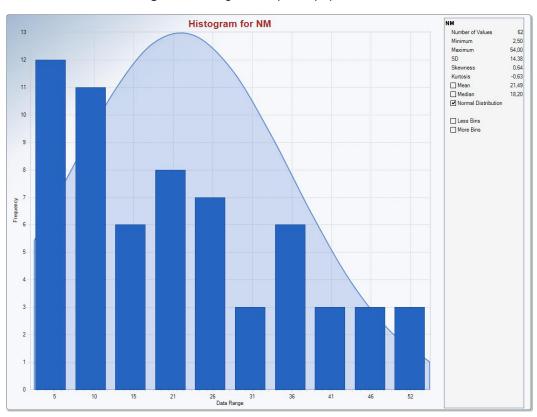


Figura 19. Istogramma per la popolazione NM

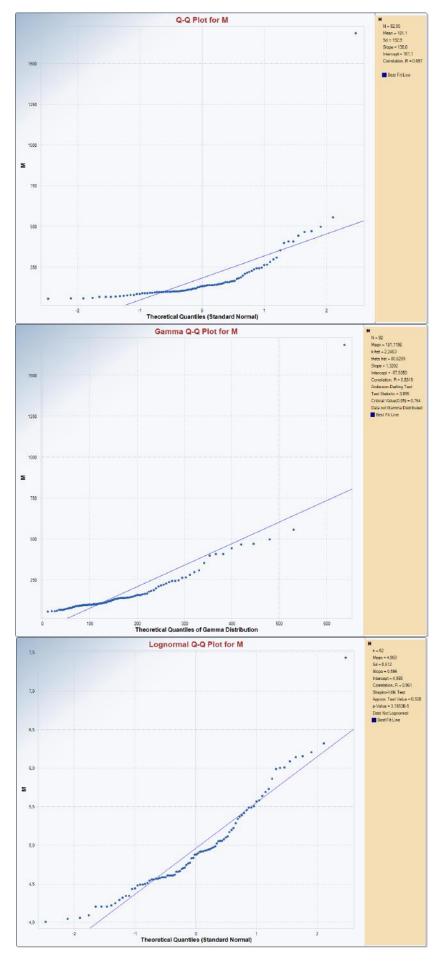


Figura 20. Q-Q Plot Normale, Gamma e Lognormale per la popolazione M

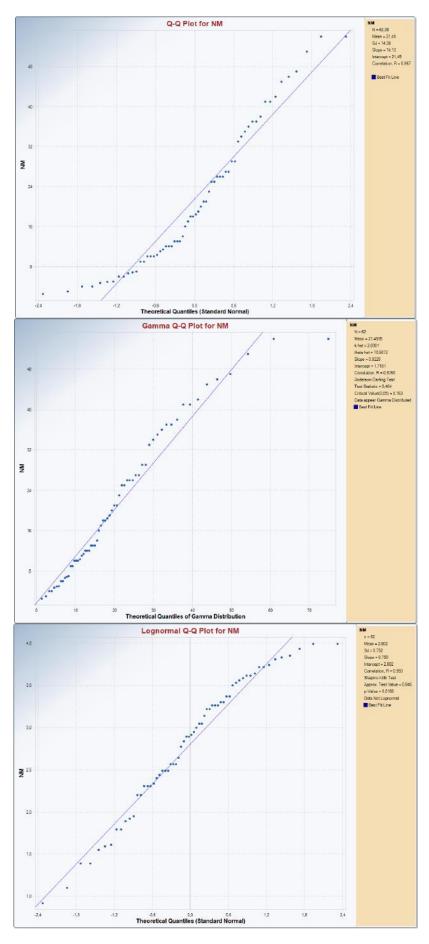


Figura 21. Q-Q Plot Normale, Gamma e Lognormale per la popolazione NM

9.2.2 Analisi delle anomalie

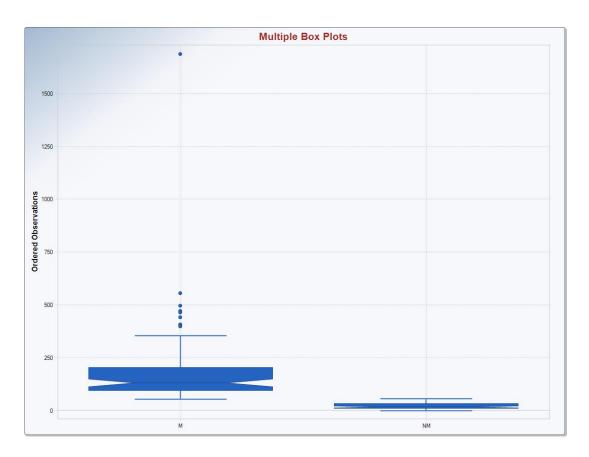


Figura 22. Box-Plot per le popolazioni M, NM

M	M		
Minimo	55		
Massimo	1685		
Mediana	131,5		
Q1	95,75		
Q3	200		
IQR	104,25		
1.5 * IQR	156,375		
Soglia sup estremi	356,375		
Soglia inf estremi	-60,625		
3 * IQR	312,75		
Soglia sup outliers	512,75		
Soglia inf outliers	-217		

Tabella 20. Soglie individuate dal Box-Plot per la popolazione M

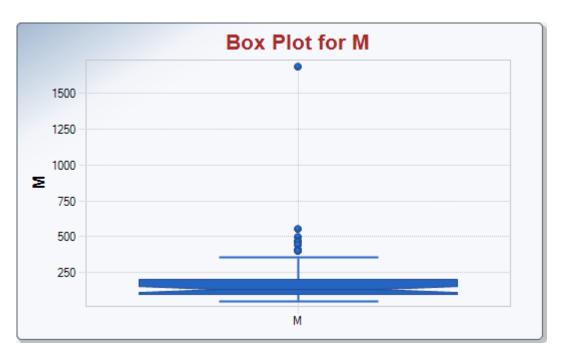


Figura 23. Box-Plot per la popolazione M

	Arsenico (mg/Kg)				
Dati	Scarti dalla mediana (Di)	Di /Dmed	Confronto del dato rispetto alle soglie del Box- Plot		
90	42,00	1,02	Dato compreso tra le soglie inf e sup degli estremi		
95	37,00	0,90	Dato compreso tra le soglie inf e sup degli estremi		
68	64,00	1,56	Dato compreso tra le soglie inf e sup degli estremi		
98	34,00	0,83	Dato compreso tra le soglie inf e sup degli estremi		
219	87,00	2,12	Dato compreso tra le soglie inf e sup degli estremi		
106	26,00	0,63	Dato compreso tra le soglie inf e sup degli estremi		
67	65,00	1,59	Dato compreso tra le soglie inf e sup degli estremi		
144	12,00	0,29	Dato compreso tra le soglie inf e sup degli estremi		
77	55,00	1,34	Dato compreso tra le soglie inf e sup degli estremi		
100	32,00	0,78	Dato compreso tra le soglie inf e sup degli estremi		
67	65,00	1,59	Dato compreso tra le soglie inf e sup degli estremi		
58	74,00	1,80	Dato compreso tra le soglie inf e sup degli estremi		
398	266,00	6,49	Dato> soglia superiore estremi		
91	41,00	1,00	Dato compreso tra le soglie inf e sup degli estremi		
88	44,00	1,07	Dato compreso tra le soglie inf e sup degli estremi		
85	47,00	1,15	Dato compreso tra le soglie inf e sup degli estremi		
157	25,00	0,61	Dato compreso tra le soglie inf e sup degli estremi		
176	44,00	1,07	Dato compreso tra le soglie inf e sup degli estremi		
100	32,00	0,78	Dato compreso tra le soglie inf e sup degli estremi		
281	149,00	3,63	Dato compreso tra le soglie inf e sup degli estremi		
136	4,00	0,10	Dato compreso tra le soglie inf e sup degli estremi		
215	83,00	2,02	Dato compreso tra le soglie inf e sup degli estremi		
134	2,00	0,05	Dato compreso tra le soglie inf e sup degli estremi		
138	6,00	0,15	Dato compreso tra le soglie inf e sup degli estremi		
118	14,00	0,34	Dato compreso tra le soglie inf e sup degli estremi		
157	25,00	0,61	Dato compreso tra le soglie inf e sup degli estremi		
185	53,00	1,29	Dato compreso tra le soglie inf e sup degli estremi		
98	34,00	0,83	Dato compreso tra le soglie inf e sup degli estremi		
84	48,00	1,17	Dato compreso tra le soglie inf e sup degli estremi		
95	37,00	0,90	Dato compreso tra le soglie inf e sup degli estremi		
209	77,00	1,88	Dato compreso tra le soglie inf e sup degli estremi		
73	59,00	1,44	Dato compreso tra le soglie inf e sup degli estremi		
111	21,00	0,51	Dato compreso tra le soglie inf e sup degli estremi		
115	17,00	0,41	Dato compreso tra le soglie inf e sup degli estremi		
152	20,00	0,49	Dato compreso tra le soglie inf e sup degli estremi		
100	32,00	0,78	Dato compreso tra le soglie inf e sup degli estremi		
181	49,00	1,20	Dato compreso tra le soglie inf e sup degli estremi		

140	8,00	0,20	Dato compreso tra le soglie inf e sup degli estremi
100	32,00	0,78	Dato compreso tra le soglie inf e sup degli estremi
225	93,00	2,27	Dato compreso tra le soglie inf e sup degli estremi
96	36,00	0,88	Dato compreso tra le soglie inf e sup degli estremi
89	43,00	1,05	Dato compreso tra le soglie inf e sup degli estremi
109	23,00	0,56	Dato compreso tra le soglie inf e sup degli estremi
160	28,00	0,68	Dato compreso tra le soglie inf e sup degli estremi
117	15,00	0,37	Dato compreso tra le soglie inf e sup degli estremi
126	6,00	0,15	Dato compreso tra le soglie inf e sup degli estremi
146	14,00	0,34	Dato compreso tra le soglie inf e sup degli estremi
98	34,00	0,83	Dato compreso tra le soglie inf e sup degli estremi
97	35,00	0,85	Dato compreso tra le soglie inf e sup degli estremi
166	34,00	0,83	Dato compreso tra le soglie inf e sup degli estremi
307	175,00	4,27	Dato compreso tra le soglie inf e sup degli estremi
143	11,00	0,27	Dato compreso tra le soglie inf e sup degli estremi
441	309,00	•	Dato soglia superiore estremi
	,	7,54	
164	32,00	0,78	Dato compreso tra le soglie inf e sup degli estremi
242	110,00	2,68	Dato compreso tra le soglie inf e sup degli estremi
132	0,00	0,00	Dato compreso tra le soglie inf e sup degli estremi
110	22,00	0,54	Dato compreso tra le soglie inf e sup degli estremi
265	133,00	3,24	Dato compreso tra le soglie inf e sup degli estremi
156	24,00	0,59	Dato compreso tra le soglie inf e sup degli estremi
234	102,00	2,49	Dato compreso tra le soglie inf e sup degli estremi
60	72,00	1,76	Dato compreso tra le soglie inf e sup degli estremi
137	5,00	0,12	Dato compreso tra le soglie inf e sup degli estremi
55	77,00	1,88	Dato compreso tra le soglie inf e sup degli estremi
406	274,00	6,68	Dato> soglia superiore estremi
70	62,00	1,51	Dato compreso tra le soglie inf e sup degli estremi
137	5,00	0,12	Dato compreso tra le soglie inf e sup degli estremi
246	114,00	2,78	Dato compreso tra le soglie inf e sup degli estremi
197	65,00	1,59	Dato compreso tra le soglie inf e sup degli estremi
351	219,00	5,34	Dato compreso tra le soglie inf e sup degli estremi
554	422,00	10,29	Dato> soglia superiore ouliers
496	364,00	8,88	Dato> soglia superiore estremi
262	130,00	3,17	Dato compreso tra le soglie inf e sup degli estremi
470	338,00	8,24	Dato> soglia superiore estremi
405	273,00	6,66	Dato> soglia superiore estremi
241	109,00	2,66	Dato compreso tra le soglie inf e sup degli estremi
105	27,00	0,66	Dato compreso tra le soglie inf e sup degli estremi
94	38,00	0,93	Dato compreso tra le soglie inf e sup degli estremi
57	75,00	1,83	Dato compreso tra le soglie inf e sup degli estremi
89	43,00	1,05	Dato compreso tra le soglie inf e sup degli estremi
296	164,00	4,00	Dato compreso tra le soglie inf e sup degli estremi
131	1,00	0,02	Dato compreso tra le soglie inf e sup degli estremi
125	7,00	0,02	Dato compreso tra le soglie inf e sup degli estremi
141	9,00	0,17	Dato compreso tra le soglie inf e sup degli estremi
	,	· · · · · · · · · · · · · · · · · · ·	
77	55,00	1,34	Dato compreso tra le soglie inf e sup degli estremi
67	65,00	1,59	Dato compreso tra le soglie inf e sup degli estremi
101	31,00	0,76	Dato compreso tra le soglie inf e sup degli estremi
464	332,00	8,10	Dato> soglia superiore estremi
1685	1553,00	37,88	Dato soglia superiore ouliers
96	36,00	0,88	Dato compreso tra le soglie inf e sup degli estremi
139	7,00	0,17	Dato compreso tra le soglie inf e sup degli estremi
105	27,00	0,66	Dato compreso tra le soglie inf e sup degli estremi
75	57,00	1,39	
132	41,00		
Mediana dei dati	Mediana delle		
	distanze		

Tabella 21. Test di anomalia per la popolazione M (Huber)

NM		
Minimo	2,5	
Massimo	54	
Mediana	18,2	
Q1	10	
Q3	32	
IQR	22	
1.5 * IQR	33	
Soglia sup estremi	65	
Soglia inf estremi	-23	
3 * IQR	66	
Soglia sup outliers	98	
Soglia inf outliers	-56	

Tabella 22. Soglie individuate dal Box-Plot per la popolazione NM

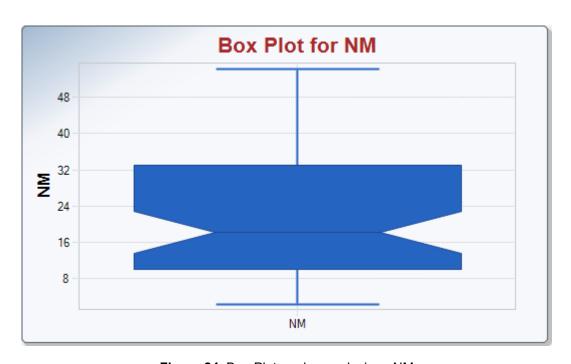


Figura 24. Box-Plot per la popolazione NM

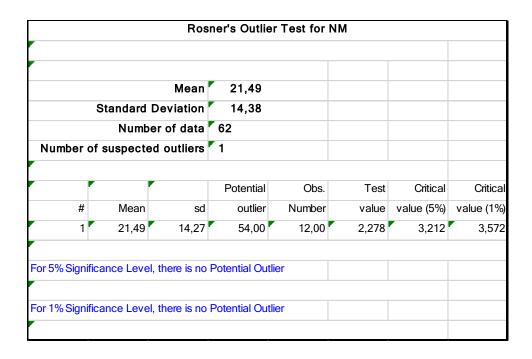


Tabella 23. Test di anomalia per la popolazione NM (Rosner)

		Arsenico (mg/Kg)
Dati	Scarti dalla mediana (Di)	Di /Dmed	Confronto del dato rispetto alle soglie del Box-Plo
4,9	13,30	1,45	Dato compreso tra le soglie inf e sup degli estremi
47	28,80	3,13	Dato compreso tra le soglie inf e sup degli estremi
11,4	6,80	0,74	Dato compreso tra le soglie inf e sup degli estremi
36	17,80	1,93	Dato compreso tra le soglie inf e sup degli estremi
37	18,80	2,04	Dato compreso tra le soglie inf e sup degli estremi
27	8,80	0,96	Dato compreso tra le soglie inf e sup degli estremi
33	14,80	1,61	Dato compreso tra le soglie inf e sup degli estremi
18	0,20	0,02	Dato compreso tra le soglie inf e sup degli estremi
38	19,80	2,15	Dato compreso tra le soglie inf e sup degli estremi
51	32,80	3,57	Dato compreso tra le soglie inf e sup degli estremi
45	26,80	2,91	Dato compreso tra le soglie inf e sup degli estremi
54	35,80	3,89	Dato compreso tra le soglie inf e sup degli estremi
54	35,80	3,89	Dato compreso tra le soglie inf e sup degli estremi
29	10,80	1,17	Dato compreso tra le soglie inf e sup degli estremi
41	22.80	2,48	Dato compreso tra le soglie inf e sup degli estremi
14	4,20	0,46	Dato compreso tra le soglie inf e sup degli estremi
12	6,20	0,67	Dato compreso tra le soglie inf e sup degli estremi
12	6,20	0,67	Dato compreso tra le soglie inf e sup degli estremi
4	14,20	1,54	Dato compreso tra le soglie inf e sup degli estremi
6,8	11,40	1,24	Dato compreso tra le soglie inf e sup degli estremi
9	9,20	1,00	Dato compreso tra le soglie inf e sup degli estremi
7	11,20	1,22	Dato compreso tra le soglie inf e sup degli estremi
27	8,80	0,96	Dato compreso tra le soglie inf e sup degli estremi
29	10,80	1,17	Dato compreso tra le soglie inf e sup degli estremi
37	18,80	2.04	Dato compreso tra le soglie inf e sup degli estremi
46	27,80	3,02	Dato compreso tra le soglie inf e sup degli estremi
21	2,80	0,30	Dato compreso tra le soglie inf e sup degli estremi
10	8,20	0,89	Dato compreso tra le soglie inf e sup degli estremi
10	8,20	0,89	Dato compreso tra le soglie inf e sup degli estremi
13	5,20	0,57	Dato compreso tra le soglie inf e sup degli estremi
20	1,80	0,20	Dato compreso tra le soglie inf e sup degli estremi
25	6,80	0,74	Dato compreso tra le soglie inf e sup degli estremi
35	16,80	1,83	Dato compreso tra le soglie inf e sup degli estremi
6	12,20	1,33	Dato compreso tra le soglie inf e sup degli estremi
23	4,80	0,52	Dato compreso tra le soglie inf e sup degli estremi
18,4	0.20	0,02	Dato compreso tra le soglie inf e sup degli estremi
9	9,20	1,00	Dato compreso tra le soglie inf e sup degli estremi
11	7,20	0,78	Dato compreso tra le soglie inf e sup degli estremi

3	15,20	1,65	Dato compreso tra le soglie inf e sup degli estremi
5	13,20	1,43	Dato compreso tra le soglie inf e sup degli estremi
4,7	13,50	1,47	Dato compreso tra le soglie inf e sup degli estremi
26	7,80	0,85	Dato compreso tra le soglie inf e sup degli estremi
19	0,80	0,09	Dato compreso tra le soglie inf e sup degli estremi
10,3	7,90	0,86	Dato compreso tra le soglie inf e sup degli estremi
13	5,20	0,57	Dato compreso tra le soglie inf e sup degli estremi
10	8,20	0,89	Dato compreso tra le soglie inf e sup degli estremi
18	0,20	0,02	Dato compreso tra le soglie inf e sup degli estremi
16	2,20	0,24	Dato compreso tra le soglie inf e sup degli estremi
42	23,80	2,59	Dato compreso tra le soglie inf e sup degli estremi
2,5	15,70	1,71	Dato compreso tra le soglie inf e sup degli estremi
26	7,80	0,85	Dato compreso tra le soglie inf e sup degli estremi
13	5,20	0,57	Dato compreso tra le soglie inf e sup degli estremi
26	7,80	0,85	Dato compreso tra le soglie inf e sup degli estremi
12	6,20	0,67	Dato compreso tra le soglie inf e sup degli estremi
17	1,20	0,13	Dato compreso tra le soglie inf e sup degli estremi
41	22,80	2,48	Dato compreso tra le soglie inf e sup degli estremi
21	2,80	0,30	Dato compreso tra le soglie inf e sup degli estremi
34	15,80	1,72	Dato compreso tra le soglie inf e sup degli estremi
25	6,80	0,74	Dato compreso tra le soglie inf e sup degli estremi
6	12,20	1,33	Dato compreso tra le soglie inf e sup degli estremi
4	14,20	1,54	Dato compreso tra le soglie inf e sup degli estremi
18,2	9,2		
Mediana dei dati	Mediana delle distanze		

Tabella 24. Test di anomalia per la popolazione NM (Huber)

9.2.3 Analisi del set di dati rappresentativo

	M	NM
Raw Statistics		
Number of Valid Observations	91,00	62,00
Number of Distinct Observations	77,00	43,00
Minimum	55,00	2,500
Maximum	554,0	54,00
Mean of Raw Data	164,6	21,49
Standard Deviation of Raw Data	110,6	14,38
Kstar	2,999	1,943
Mean of Log Transformed Data	4,933	2,802
Standard Deviation of Log Transformed Data	0,557	0,792
Normal Distribution Test Results		
Correlation Coefficient R	0,886	0,967
Shapiro Wilk Test Statistic	0,78	0,911
Shapiro Wilk Critical (0.95) Value	0	1,34E-4
Lilliefors Test Statistic	0,209	0,142
Lilliefors Critical (0.95) Value	0,0929	0,113
	Data not Normal at (0.05) Significance Level	Data not Normal at (0,05) Significance Level
Gamma Distribution Test Results		
Correlation Coefficient R	0,966	0,976
A-D Test Statistic	2,877	0,464
A-D Critical (0.95) Value	0,759	0,763
K-S Test Statistic	0,143	0,081
K-S Critical(0.95) Value	0,0944	0,114
	Data not Gamma Distributed at (0.05) Significance Level	Data appear Gamma Distributed at (0.05) Significance Level
Lognormal Distribution Test Results		
Correlation Coefficient R	0,976	0,983
Shapiro Wilk Test Statistic	0,934	0,946
Shapiro Wilk Critical (0.95) Value	1,71E-4	0,0166
Lilliefors Test Statistic	0,101	0,104
Lilliefors Critical (0.95) Value	0,0929	0,113
	Data not Lognormal Distributed at (0.05) Significance Level	Data appear Lognormal at (0.05) Significance Level

Tabella 25. Analisi della distribuzione della popolazione M e NM

9.2.4 Confronto tra le popolazioni individuate per la definizione del fondo naturale

Wilcoxon-Mann-Whitney Site vs Background	Comparison Test for Full Data	Sets without NDs
Full Precision	OFF	
Confidence Coefficient	95%	
Substantial Difference	0	
Selected Null Hypothesis	Site or AOC Mean/Median Mean/Median (Two Sided	Equal to Background Alternative)
Alternative Hypothesis	Site or AOC Mean/Median Mean/Median	Not Equal to Background
Area of Concern Data: NM		
Background Data: M		
Raw Statistics		
Number of Valid Observations	92,00	62,00
Number of Distinct Observations	77,00	43,00
Minimum	55,00	2,500
Maximum	554,0	54,00
Mean	164,6	21,49
Median	131,0	18,20
SD	110,6	14,38
SE of Mean	11,59	1,827
Wilcoxon-Mann-Whitney (WMW) Test		
H0: Mean/Median of Site or A	OC = Mean/Median of Backgrour	l nd T
Site Rank Sum W-Stat	9828	
WMW Test U-Stat	5642	
Lower Critical Value (0.025)	-1.96	
Upper Critical Value (0.975)	1.96	
	Conclusion w	ith Alpha = 0.05
Conclusione test Wilcoxon-Mann-Whitney	Reject H0, Conclud	e Site <> Background
Test di K	ruskal-Wallis	
	M	NM
Numero di Dati	92	62
Somma dei Ranghi	9982	1953
Parametro statistico H del Test		10,4
Descrittore statistico conclusivo). >	00001
Conclusione test Kruskal-Wallis	Reject H0, Conclud	e Site <> Background

Tabella 26. Test di confronto – NM/M

9.2.5 Confronto tra le popolazioni di fondo naturale e delle aree contaminate

Nelle tabelle seguenti sono riassunti i risultati delle elaborazioni effettuate tramite il software ProUCL 5.1

			Raw Statis	tics			
	M	Cam	pioli	Croc	cette	Pest	arena
Number of Valid Observations	91,00	22,	,00	6	3	2	24
Number of Distinct Observations	77,00	22,	,00	6	3	2	24
Minimum	55,00	18	5,0	2262		4	06
Maximum	554,0	90	95	100	704	145	871
Mean	164,6	29	66	322	296	16	737
Median	110,6	23	99	138	329	33	300
SD	2,999	22	77	380)57	32	042
SE of Mean	4,933	48	5,4	155	537	65	541
		Wileeven	Mana White	(\A/NA\A/\ Ta			
	IO: Moon			ey (WMW) Te Mean/Median		nd.	
Area of Concern Data:	io. ivieai						arena
		Campioli M		Crocette M		M	
Site Rank Sum W-Stat	Background Data:		35	41	•		vi 192
WMW Test U-Stat		48		71			5,5
Lower Critical Value (0.025	5)	-1.	•	-1.			.96
Upper Critical Value (0.975				1.9	~ ~	1.96	
Upper Critical Value (0.975) 1.96 1.96 1.96 Conclusion with Alpha = 0.05 1.96 1.96 1.96							
Conclusione test Wilcox Mann-Whitney	on-	Reject H0, Conclude Site <> Background		Reject H0, Site <> Ba			Conclude Site kground
		Te	st di Kruska	I-Wallis			
		Campioli	M	Crocette	М	Pestarena	М
Somma dei Ranghi		2222	4332	4278	573	2494	5836
Parametro statistico H del	Test	47,	27	16,72		55,18	
Descrittore statistico conclu	usivo	< .00	0001	0.00	004	< .0	0001
Conclusione test Kruska Wallis	ıl-	Reject H0, Site <> Ba		Reject H0, Conclude Site <> Background		Reject H0, Conclude Site <> Background	

Tabella 27. Test di confronto tra la popolazione relativa al fondo naturale (M) e le popolazioni dei siti contaminati

9.2.6 Definizione del valore di fondo

Nelle tabelle seguenti sono riportati i risultati delle elaborazioni effettuate tramite il software ProUCL 5.1

NM			
General Statistics			
Total Number of Observations	62	Number of Distinct Observations	43
Raw Statistics		Log-Transformed Statistics	
Minimum	2,5	Minimum	0,916
Maximum	54	Maximum	3,989
Second Largest	54		3.783
First Quartile	10	-	2,303
Median	18,2	Median	2,901
Third Quartile	32	Third Quartile	3,464
Mean	21.49	Mean	2,802
SD	14,,38	SD	0,792
Coefficient of Variation	0,669		,
Skewness	0,642		
Background Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0,911		0,946
5% Shapiro Wilk P Value		5% Shapiro Wilk P Value	0,0166
Data not Normal at 5% Significance Level	.,	Data appear Lognormal at 5% Significance Level	0,0.00
2010 11011101110111011010100		Data appear Logiconnai at 070 orginioanio 2010.	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% UTL with 95% Coverage	50,4	95% UTL with 95% Coverage	80,86
95% UPL (t)	45,71	95% UPL (t)	62,46
90% Percentile (z)	39,93	90% Percentile (z)	45,43
95% Percentile (z)	45,15	95% Percentile (z)	60,57
99% Percentile (z)	54,95	99% Percentile (z)	103,9
(2)		(2)	
Gamma Distribution Test		Data Distribution Test	
		Data appear Gamma Distributed at	
k star	1,943	5% Significance Level	
Theta Star	11,06		
nu star	240,9		
	2 121		
A-D Test Statistic	0,464	Nonparametric Statistics	
5% A-D Critical Value	0,763	90% Percentile	41,90
K-S Test Statistic	0,0810	95% Percentile	46,95
5% K-S Critical Value	0,114	99% Percentile	54,00
Data appear Gamma Distributed at 5% Sig	nificance	Level	
Assuming Gamma Distribution		95% UTL with 95% Coverage	54,00
90% Percentile	42,09	95% Percentile Bootstrap UTL with 95% Coverage	54,00
95% Percentile	51,45	95% BCA Bootstrap UTL with 95% Coverage	53,85
99% Percentile	72,26	95% UPL	50,4
		95% Chebyshev UPL	84,69

Tabella 28. Definizione del valore di fondo per la popolazione NM

М			
General Statistics			
Total Number of Observations	91	Number of Distinct Observations	77
Raw Statistics		Log-Transformed Statistics	
Minimum	55	Minimum	4,007
Maximum	554		6,317
Second Largest	496	Second Largest	5.862
First Quartile	95,5	First Quartile	4,559
Median	131	Median	4,875
Third Quartile	191	Third Quartile	5,252
Mean	164,6	Mean	4,933
SD	110,6	SD	0,557
Coefficient of Variation	0,672		·
Skewness	1,754		
	,		
Background Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0,780	Shapiro Wilk Test Statistic	0,943
Shapiro Wilk Critical Value		Shapiro Wilk Critical Value	1,71E-4
Data not Normal at 5% Significance Level		Data not appear Lognormal at 5% Significance Level	,
<u> </u>			
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% UTL with 95% Coverage	378,9		409,1
95% UPL (t)	349,4		352,4
90% Percentile (z)	•	90% Percentile (z)	283,6
95% Percentile (z)		95% Percentile (z)	347,3
99% Percentile (z)	421,8	` '	507,8
(2)	,.	(2)	
Gamma Distribution Test		Data Distribution Test	
		Data do not follow a discernable distribution at	
k star	2,999	5% Significance Level	
Theta Star	54,89		
nu star	545,8		
A-D Test Statistic		Nonparametric Statistics	
5% A-D Critical Value		90% Percentile	307
K-S Test Statistic		95% Percentile	423,5
5% K-S Critical Value		99% Percentile	501,8
Data not appear Gamma Distributed at 5%	Signific	cance Level	
Assuming Gamma Distribution		95% UTL with 95% Coverage	470
90% Percentile	292,0	95% Percentile Bootstrap UTL with 95% Coverage	480
95% Percentile	345,5	95% BCA Bootstrap UTL with 95% Coverage	470
99% Percentile	461,3	95% UPL	450,2
		95% Chebyshev UPL	649,2

Tabella 29. Definizione del valore di fondo per la popolazione M (senza outliers)

10 Definizione dei valori di fondo naturale per il parametro Arsenico

Mentre nel lavoro di tesi precedente, si era ottenuta una distribuzione gamma sia per le aree mineralizzate che non mineralizzate e di conseguenza si erano considerati l'UTL95% per tale distribuzione come parametro indicante il fondo pedogenetico naturale per le due aree, ora si è riscontrata una distribuzione gamma per le aree NM mentre per quelle mineralizzate, pur epurate dell'outlier, non si è ottenuta alcuna distribuzione (nota: anche scartando tutti gli outliers non la si otteneva!). In tal caso consideriamo allora il valore fornito da una distribuzione non parametrica per M e gamma per NM ed in particolare l'UTL95% definito nel lavoro precedente come il valore migliore perché più elevato e in grado di garantire un range di variazione dei valori di fondo più consono a comprendere gli effettivi valori delle popolazioni individuate.

.

Popolazione	mg/Kg 95%UTL – 95% copertura (Rif. distribuz. Non parametrica per M e gamma per NM)
M	470
NM	54

Tabella 30. Valori del fondo pedogenetico naturale dell'elemento As mg/kg, relativamente alle popolazioni M ed NM, definendo il Limite superiore di Tolleranza (UTL) con indagini speditive mediante XRF

Popolazione	mg/Kg 95%UTL – 95% copertura (Rif. distribuz. gamma)
M	477
NM	54

Tabella 31. Valori del fondo pedogenetico naturale dell'elemento As mg/kg, relativamente alle popolazioni M ed NM, definendo il Limite superiore di Tolleranza (UTL) dello studio precedente con analisi di laboratorio.

Come si può osservare i valori sono identici nel caso della popolazione NM e pressoché identici per la popolazione M.

Questo dato conferma la validità del campionamento, della metodica sperimentale e della strumentazione impiegata nell'indagine di campo.

Una volta definita la validità del metodo XRF almeno per NM proseguiamo per altri elementi considerando i valori rilevati in corrispondenza degli stessi punti.

11 Definizione dei valori di fondo naturale per gli elementi indagati

La completa corrispondenza tra risultati ottenuti con le diverse metodiche di indagine analitica per l'Arsenico che conferma la validità del metodo, ci consente di adottare per il restante lavoro l'informazione ottenuta con lo strumento Xrf per la definizione del fondo naturale degli elementi campione individuati : Cromo, Zinco, Rubidio, Stronzio, Zirconio, Piombo, Manganese e Bario. Le Figure dal n. 25 al 33 presenti nell'Allegato, mettono in evidenza per i singoli elementi la distribuzione areale e la concentrazione espressa in mg/Kg.

Nelle tabelle allegate al documento dal n. 34 al n. 41 sono prodotte le risultanze delle eleborazioni statistiche mediante i grafici box plot e i test di anomalia con ProUcl (Rossner test) di tutti gli elementi campione sia campionati nelle aree minerarie che nelle aree esterne.

I test statistici da soli non permettono di stabilire se comprendere o escludere il dato dall'insieme considerato. Gli approfondimenti di analisi e di geolocalizzazione dei dati anomali evidenziati per alcuni elementi quali Pb, Zn e Zr, hanno escluso la necessità di sottrarre tali valori dal data set. (Figure 28, 30 e 32 dell'Allegato)

Sono state elaborate le distribuzioni relative agli elementi indagati nelle aree esterne e vengono esposte in forma sintetica nella Tabella sottostante.

Popolazione	Normale	Lognormale	Gamma	Nessuna distribuzione
Zn Aree esterne		X		
Zr Aree esterne		X		
Pb Aree esterne		X		
Sr Aree esterne	X			
Cr Aree esterne				X
Rb Aree esterne	X			X
Mn Aree esterne		X		
Ba Aree esterne	X			

Tabella 42. Riepilogo del tipo di distribuzione relativo agli elementi indagati nelle aree esterne

Un nodo importante per la definizione degli indicatori del fondo naturale è quello di comprendere se il set delle osservazioni in esame, afferisca a una o più popolazioni.

A tale riguardo sono stati confrontati gli elementi indagati quali Cromo, Zinco, Rubidio, Stronzio, Zirconio, Piombo, Manganese e Bario campionati nelle aree minerarie con quelli nelle aree esterne con il software proUcl 5.1.

Le evidenze di tale confronto sono esposte nella Tabella n. 43 (riportate in forma completa nell'allegato dalla Tabella n. 33 alla n. 40) dove si riscontra la stessa popolazione per i soli elementi Zn Sr e Rb.

Popolazione	Sample 1 vs Sample 2 Two-Sample t-Test	Test of Equality of Variances
	Student t (Pooled): Do Not Reject H0, Conclude Sample 1 = Sample 2	
Zn	Welch-Satterthwaite: Do Not Reject H0, Conclude Sample 1 = Sample 2	Two variances are not equal
Zr	Student t (Pooled): Reject H0, Conclude Sample 1 <> Sample 2	
	Welch-Satterthwaite: Reject H0, Conclude Sample 1 <> Sample 2	Two variances are not equal
Pb	Student t (Pooled): Reject H0, Conclude Sample 1 <> Sample 2	
	Welch-Satterthwaite: Reject H0, Conclude Sample 1 <> Sample 2	Two variances are not equal
Sr	Student t (Pooled): Do Not Reject H0, Conclude Sample 1 = Sample 2	
	Welch-Satterthwaite: Do Not Reject H0, Conclude Sample 1 = Sample 2	Two variances appear to be equal
Cr	Student t (Pooled): Reject H0, Conclude Sample 1 <> Sample 2	
	Welch-Satterthwaite: Reject H0, Conclude Sample 1 <> Sample 2	Two variances are not equal
Rb	Student t (Pooled): Do Not Reject H0, Conclude Sample 1 = Sample 2	
	Welch-Satterthwaite: Do Not Reject H0, Conclude Sample 1 = Sample 2	Two variances appear to be equal
Mn	Student t (Pooled): Reject H0, Conclude Sample 1 <> Sample 2	
	Welch-Satterthwaite: Reject H0, Conclude Sample 1 <> Sample 2	Two variances appear to be equal
Ва	Student t (Pooled): Reject H0, Conclude Sample 1 <> Sample 2	
	Welch-Satterthwaite: Reject H0, Conclude Sample 1 <> Sample 2	Two variances are not equal

Tabella 43. Riepilogo del confronto tra le popolazioni rilevate nelle aree esterne e quelle minerarie per i singoli elementi indagati

Per gli elementi le cui analisi evidenziano l'appartenenza alla stessa popolazione (area minerarie e area esterna) è stato considerato nelle elaborazioni successive l'intero dataset. Negli altri casi sono stati considerati utili solamente le informazioni provenienti dalle Aree esterne.

I parametri statistici utilizzati per definire i valori di fondo non sono gli indicatori della tendenza centrale (es. media, mediana, moda) ma degli indicatori di tendenza della "coda" destra (in quanto questi indicatori devono comprendere la massima parte della popolazione escludendo le code estreme)

I parametri più comunemente utilizzati sono:

- Percentili (orientativamente compresi fra il 90° e 99° percentile).
- UTL (Upper tolerance limit): è il termine che definisce superiormente l'intervallo di tolleranza.

L'intervallo di tolleranza definisce l'intervallo entro cui, con una certa confidenza, ricade una percentuale specificata della popolazione campionata. All'intervallo di tolleranza vengono quindi associati i due parametri:

1. livello di confidenza con il quale l'intervallo raggiunge la specifica copertura.

- 2. la copertura, ovvero la proporzione del campione che l'intervallo presumibilmente contiene.
- UPL (Upper Prediction Limit) è il termine che definisce superiormente l'intervallo di "previsione" ("prediction interval", PI inferiormente delimitato dal LPL). Il PI rappresenta l'intervallo entro cui, con una data confidenza, ci si attende che cada una singola osservazione (k=1) o più osservazioni simultaneamente (k=2, 3, ...n), campionate dalla stessa popolazione da cui è stato tratto il campione su cui è stato computato il PI.
- UCL (es. 95%) di una media è definito come un valore che, quando calcolato ripetutamente per un sottoinsieme di dati scelti a caso, eguaglia o supera il valore vero della media (il 95% delle volte).

Con il Software ProUcl 5.1 sono stati individuati i parametri statistici utili per definire i valori di fondo dei metalli indagati. I valori dei parametri Rb, Sr e Zn per i valori di fondo, sono stati elaborati senza distinzione areale di campionamento in quanto riconducibili alla stessa popolazione.

Per gli elementi Zr, Pb, Cr, Mn, e Ba il data set dei dati ha riguardato i campioni prelevati nelle aree esterne rispetto alle aree minerarie. Nelle Tabelle sottostanti sono esposti i reports delle elaborazioni compiute.

Zn Aree esterne ed Aree minerarie			
General Statistics			
Total Number of Observations	198,0	Number of Distinct Observations	138,0
Minimum	6,000	First Quartile	47,00
Second Largest	828,0	Median	83,00
Maximum	863,0	Third Quartile	159,0
Mean	127,0	SD	136,7
Coefficient of Variation	1,076	Skewness	2,844
Mean of logged Data	4,433	SD of logged Data	0,917
Critical Values 1	for Backgr	ound Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	1,837	d2max (for USL)	3,429
	Lognorr	mal GOF Test	
Shapiro Wilk Test Statistic	0,982	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value	0,450	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0,0381	Lilliefors Lognormal GOF Test	

5% Lilliefors Critical Value	0,0634	Data appear Lognormal at 5% Significance Level		
Data appear Lognormal at 5% Significance Level				
Background St	atistics as	suming Lognormal Distribution		
95% UTL with 95% Coverage	453,9	90% Percentile (z)	272,7	
95% UPL (t)	384,8	95% Percentile (z)	380,6	
95% USL	1956	99% Percentile (z)	711,2	
95% H-UCL	147,1	90% Chebyshev (MVUE) UCL	157,3	
95% Chebyshev (MVUE) UCL	170,7	97,5% Chebyshev (MVUE) UCL	189,3	
99% Chebyshev (MVUE) UCL	225,7			

Tabella 44. Valori del fondo pedogenetico naturale dell'elemento Zn mg/kg, definendo il Limite superiore di Tolleranza (UTL) e il limite superiore di confidenza (UCL)

Zr Aree esterne			
General Statistics			
Total Number of Observations	147,0	Number of Distinct Observations	139,0
Minimum	22,30	First Quartile	67,85
Second Largest	250,0	Median	87,00
Maximum	271,0	Third Quartile	105,0
Mean	90,04	SD	36,24
Coefficient of Variation	0,403	Skewness	1,720
Mean of logged Data	4,425	SD of logged Data	0,395
Critical Values	for Backgr	ound Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	1,870	d2max (for USL)	3,336
	Lognorr	nal GOF Test	
Shapiro Wilk Test Statistic	0,972	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value	0,0814	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0,0857	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0,0735	Data Not Lognormal at 5% Significance Level	
Data appear Appro	oximate Lo	gnormal at 5% Significance Level	
Background St	atistics as	suming Lognormal Distribution	
95% UTL with 95% Coverage	174,9	90% Percentile (z)	100.0
95% UPL (t)	161,0	95% Percentile (z)	138,6
``		· ,	160,0
95% USL	312,2	99% Percentile (z)	209,5

Tabella 45. Valori del fondo pedogenetico naturale dell'elemento Zr mg/kg, definendo il Limite superiore di Tolleranza (UTL)

Pb Aree Esterne			
General Statistics			
	140.0	Number of Distinct Observations	01.00
Total Number of Observations	143,0	Number of Distinct Observations	91,00
Minimum	13,00	First Quartile	30,35
Second Largest	174,0	Median	44,00
Maximum	196,0	Third Quartile	60,50
Mean	51,33	SD	30,43
Coefficient of Variation	0,593	Skewness	2,113
Mean of logged Data	3,804	SD of logged Data	0,501
Critical Values f	or Backgro	ound Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	1,874	d2max (for USL)	3,328
	Lognorm	nal GOF Test	
Shapiro Wilk Test Statistic	0,975	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value	0,199	Data appear Lognormal at 5% Significance Leve	el
Lilliefors Test Statistic	0,0579	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0,0745	Data appear Lognormal at 5% Significance Leve	el
Data appear	Lognorma	al at 5% Significance Level	
Background Sta	atistics ass	suming Lognormal Distribution	
95% UTL with 95% Coverage	114,9	90% Percentile (z)	85,37
95% UPL (t)	103,3	95% Percentile (z)	102,4
95% USL	238,2	99% Percentile (z)	144,2
95% H-UCL	54,99	90% Chebyshev (MVUE) UCL	57,63
95% Chebyshev (MVUE) UCL	60,69	97,5% Chebyshev (MVUE) UCL	64,94
• • • • • • • • • • • • • • • • • • • •		97,3% Chebyshev (MVOE) OCL	04,34
99% Chebyshev (MVUE) UCL	73,30		

Tabella 46. Valori del fondo pedogenetico naturale dell'elemento Pb mg/kg, definendo il Limite superiore di Tolleranza (UTL) e il limite superiore di confidenza (UCL)

Sr Aree esterne ed Aree minerarie			
General Statistics			
Total Number of Observations	165,0	Number of Distinct Observations	117,0
Minimum	16,70	First Quartile	71,00
Second Largest	179,0	Median	94,00
Maximum	196,0	Third Quartile	112,0
Mean	92,40	SD	34,02
Coefficient of Variation	0,368	Skewness	0,167
Mean of logged Data	4,444	SD of logged Data	0,437
Critical Values t	or Backgro	ound Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	1,857	d2max (for USL)	3,373

	Norma	I GOF Test	
Shapiro Wilk Test Statistic	0,979	Normal GOF Test	
5% Shapiro Wilk P Value	0,324	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0,0500	Lilliefors GOF Test	
5% Lilliefors Critical Value	0,0694	Data appear Normal at 5% Significance Level	
Data appe	ar Normal	at 5% Significance Level	
Background S	Statistics A	ssuming Normal Distribution	
95% UTL with 95% Coverage	155,6	90% Percentile (z)	136,0
95% UPL (t)	148,9	95% Percentile (z)	148,4
95% USL	207,2	99% Percentile (z)	171,5

Tabella 47. Valori del fondo pedogenetico naturale dell'elemento Sr mg/kg, definendo il Limite superiore di Tolleranza (UTL)

Cr Aree Esterne			
General Statistics			
Total Number of Observations	144,0	Number of Distinct Observations	65,00
Minimum	6,000	First Quartile	26,75
Second Largest	104,0	Median	41,50
Maximum	106,0	Third Quartile	53,00
Mean	41,47	SD	19,80
Coefficient of Variation	0,477	Skewness	0,704
Mean of logged Data	3,593	SD of logged Data	0,554
Critical Values for	or Backgr	ound Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	1.070	d2max (for USL)	0.000
	1,873		3,330
Nonparametric	Distribution	on Free Background Statistics	
·		scernible Distribution (0.05)	
		. ,	
Nonparametric Upp	er Limits	for Background Threshold Values	
Order of Statistic, r	140,0	95% UTL with 95% Coverage	90,00
Approx, f used to compute achieved CC	1,474	Approximate Actual Confidence Coefficient achieved y	0,851
		l UTI	0,851
		Approximate Sample Size needed to achieve specified CC	181,0
95% Percentile Bootstrap UTL with 95%	90,85	Approximate Sample Size needed to achieve specified	
95% Percentile Bootstrap UTL with 95% Coverage 95% UPL	90,85	Approximate Sample Size needed to achieve specified CC	181,0
Coverage	,	Approximate Sample Size needed to achieve specified CC 95% BCA Bootstrap UTL with 95% Coverage	181,0
Coverage 95% UPL	76,25	Approximate Sample Size needed to achieve specified CC 95% BCA Bootstrap UTL with 95% Coverage 90% Percentile	181,0 90,00 63,70

Tabella 48. Valori del fondo pedogenetico naturale dell'elemento Cr mg/kg, definendo il Limite superiore di Tolleranza (UTL)

Rb Aree esterne ed Aree minerarie			
General Statistics			
Total Number of Observations	198,0	Number of Distinct Observations	172,0
Minimum	23,40	First Quartile	91,43
Second Largest	196,0	Median	106,6
Maximum	197,0	Third Quartile	123,1
Mean	108,4	SD	30,79
Coefficient of Variation	0,284	Skewness	0,223
Mean of logged Data	4,640	SD of logged Data	0,321
Would of logged Bala	1,010	CD of logged Data	0,021
Critical Values f	or Backgro	ound Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	1.837	d2max (for USL)	
Tolerance Factor IX (For OTE)	1,007	uzmax (ioi ost)	3,429
	Norma	GOF Test	
Shapiro Wilk Test Statistic	0,973	Normal GOF Test	
5% Shapiro Wilk P Value	0,0537	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0,0704	Lilliefors GOF Test	
5% Lilliefors Critical Value	0,0634	Data Not Normal at 5% Significance Level	
Data appear App	roximate N	lormal at 5% Significance Level	
Background S	Statistics As	ssuming Normal Distribution	
95% UTL with 95% Coverage	165,0	90% Percentile (z)	
95% UPL (t)	159,4	95% Percentile (z)	147,9
.,	,	` ,	159,1
95% USL	214,0	99% Percentile (z)	180,1

Tabella 49. Valori del fondo pedogenetico naturale dell'elemento Rb mg/kg, definendo il Limite superiore di Tolleranza (UTL)

Mn Aree Esterne			
General Statistics			
Total Number of Observations	147,0	Number of Distinct Observations	137,0
Minimum	44,00	First Quartile	331,0
Second Largest	1743	Median	493,0
Maximum	1815	Third Quartile	748,5
Mean	578,9	SD	364,4
Coefficient of Variation	0,629	Skewness	1,272
Mean of logged Data	6,166	SD of logged Data	0,654
			•
Critical Values 1	for Backgı	round Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	1.870	d2max (for USL)	3,336
	,	mal GOF Test	3,330
Shapiro Wilk Test Statistic	0,978	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value	0,299	Data appear Lognormal at 5% Significance Level	

Lilliefors Test Statistic	0,0572	Lilliefors Lognormal GOF Test		
5% Lilliefors Critical Value	0,0735	Data appear Lognormal at 5% Significance Level		
Data appea	Data appear Lognormal at 5% Significance Level			
Background St	Background Statistics assuming Lognormal Distribution			
95% UTL with 95% Coverage	1620	90% Percentile (z)	1102	
95% UPL (t)	1412	95% Percentile (z)		
		` '	1397	

Tabella 50. Valori del fondo pedogenetico naturale dell'elemento Mn mg/kg, definendo il Limite superiore di Tolleranza (UTL)

Ba Aree Esterne			
General Statistics			
Total Number of Observations	145,0	Number of Distinct Observations	86,00
Minimum	24,00	First Quartile	69,00
Second Largest	167,0	Median	91,00
Maximum	185,0	Third Quartile	121,0
Mean	92,63	SD	34,18
Coefficient of Variation	0,369	Skewness	0,048
Mean of logged Data	4,447	SD of logged Data	0,433
Critical Values	for Backgr	ound Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	1,872	d2max (for USL)	3,332
	.,		-,
	Norma	al GOF Test	
Shapiro Wilk Test Statistic	0,974	Normal GOF Test	
5% Shapiro Wilk P Value	0,132	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0,0519	Lilliefors GOF Test	
5% Lilliefors Critical Value	0,0740	Data appear Normal at 5% Significance Level	
Data appe	ear Normal	at 5% Significance Level	
Background	Statistics A	ssuming Normal Distribution	
95% UTL with 95% Coverage	156,6	90% Percentile (z)	136,
95% UPL (t)	149,4	95% Percentile (z)	148,
95% USL	206,5	99% Percentile (z)	172,

Tabella 51. Valori del fondo pedogenetico naturale dell'elemento Ba mg/kg, definendo il Limite superiore di Tolleranza (UTL)

Come già evidenziato precedentemente, per i seguenti elementi Ba, Sr, Zr, Sb e Mn il valore di fondo individuato ci consente di fornire informazioni utili sull'area indagata per un

approfondimento del quadro ambientale, in quanto per questi elementi la normativa italiana non prevede limiti di concentrazione nei suoli.

Per i parametri Cr, Pb e Zn, il confronto tra i valori di fondo individuati e le concentrazioni soglia di contaminazione dei metalli nei terreni come individuati nell'allegato 5 parte quarta del D. Lgs.152/06 ha evidenziato alcune situazioni che necessitano un approfondimento.

Il valore UTL 95% con la copertura del 95% del parametro Cr individuato è di 90 mg/kg, inferiore ai 150 mg/kg per le aree ad uso residenziale ed agli 800 mg/kg per le aree ad uso industriale riferiti allo stesso elemento.

Certamente con affinità con il precedente elemento, è il dato del Pb che riferito ai limiti tabellari di 100 mg/kg per le aree ad uso verde pubblico ed agli 1000 mg/kg per le aree ad uso industriale, risulta come UTL 95% con la copertura del 95% pari a 114,9 mg/Kg ,UPL 95% pari a 103,3 mg/kg , UCL 95% uguale a 54,99 mg/Kg e come 95esimo percentile pari a 102,4 mg/Kg. La situazione della concentrazione del Piombo riscontrata come fondo naturale è di poco superiore alle CSC delle are ad uso residenziale e verde pubblico.

L'elaborazione del valore di fondo dello Zinco ha fornito una concentrazione UTL 95% pari a 453,9 mg/kg che si inserisce in un contesto normativo complesso, dove la concentrazione soglia di contaminazione prevista per i siti ad uso verde pubblico, privato e residenziale (colonna A) dal D.Lgs 152/2006 (e s.m.i.), è di 150 mg/kg, per i siti ad uso commerciale/industriale (colonna B) è di 1500 mg/kg mentre lo spandimento di fanghi di depurazione è consentito sui suoli agricoli solo se questi contengono meno di 300 mg/kg (D.Lgs 99/1992).

Come emerge dalla distribuzione del dato rappresentato nella Figura n. 30 dell'allegato, non ci sono evidenze per correlare la giacimentologia o l'attività mineraria alla distribuzione dell'elemento. Le concentrazioni inferiori a 453 mg/kg sono uniformemente distribuite senza possibilità di discrimine. Da evidenziare, inoltre, che nell'area mineraria di Crocette e nel fondovalle della Valle Quarazza i valori dello Zinco, non superano la soglia delle CSC di 150 mg/kg a riprova che il valore di fondo è svincolato dal potenziale surplus antropico minerario o legato alla mineralizzazione locale.

12 Conclusioni

In funzione di quanto esposto è possibile concludere quanto segue:

Il campionamento effettuato per determinare il fondo pedogenetico naturale può essere considerato idoneo allo scopo in quanto i campioni sono stati prelevati con uniformità sia nelle aree minerarie che nelle aree esterne.

La disponibilità dei valori di arsenico campionati ed analizzati con strumentazione canonica di laboratorio (gascromatografia – assorbimento atomico) per la redazione della tesi triennale, ha consentito di avere una solida base di confronto sulla stessa area di studio.

La campagna di misure con oltre 200 punti di indagine usando rilievi e metodologie più speditive di caratterizzazione (Xrf) ed analisi, confrontati con i valori acquisiti con metodiche di campionamento ed analisi di laboratorio classiche, ha fornito risultati identici sui valori di fondo pedogenetico per il parametro Arsenico.

.

Popolazione	mg/Kg 95%UTL – 95% copertura (Rif. distribuz. Non parametrica per M e gamma per NM)
M	470
NM	54

Tabella n. 30 Valori del fondo pedogenetico naturale dell'elemento As mg/kg, relativamente alle popolazioni M ed NM, definendo il Limite superiore di Tolleranza (UTL) con indagini speditive mediante XRF

Popolazione	mg/Kg 95%UTL – 95% copertura (Rif. distribuz. gamma)
М	477
NM	54

Tabella n.31 Valori del fondo pedogenetico naturale dell'elemento As mg/kg, relativamente alle popolazioni M ed NM, definendo il Limite superiore di Tolleranza (UTL) dello studio precedente con analisi di laboratorio.

L'XRF si conferma affidabile e ripetibile per l'indagine del valore di fondo naturale dell'arsenico e con tale evidenza si è implementata la conoscenza dei valori di fondo nei suoli di altri metalli pesanti (Cromo, Zinco, Rubidio, Stronzio, Zirconio, Piombo, Manganese e Bario), usando la stessa stumentazione e l'analisi statistica.

L'elaborazioni descritte nei paragrafi precedenti hanno fornito le risultanze dei valori di fondo esposte sinteticamente nella seguente tabella

Elementi	Valore di Fondo	CSC Verde Pubblico	CSC Aree Industriali	Fanghi in agricoltura
Zn	453,9 mg/Kg	150 mg/Kg	1500 mg/Kg	300 mg/Kg
Zr	174,9 mg/Kg			
Pb	114,9 mg/Kg	100 mg/Kg	1000 mg/KG	
Sr	155,6 mg/Kg			

Cr	90 mg/Kg	150 mg/Kg	800 mg/Kg	
Rb	165 mg/Kg			
Mn	1620 mg/Kg			
Ba	156,6 mg/Kg			

Come si può osservare dalla precedente tabella, emerge che per lo Zinco il Piombo e il Cromo il valore di fondo naturale sono confrontabili con le concentrazioni soglia definite dal DLgs. N° 152 del 2006, per i Siti ad uso Verde pubblico, privato e residenziale, e Siti ad uso Commerciale e Industriale.

Il valore di fondo del Cromo risulta inferiore alla Csc del valore delle aree ad uso verde pubblico. Per il Piombo il valore di fondo può essere assimilato alle CSC anche se di poco superiore alla soglia di concentrazione del verde pubblico.

Per lo Zinco il valore di fondo è pari 3 volte le CSC per le aree residenziali e verde pubblico e ad una volta e mezza superiore alle concentrazioni dell'ammissibilità dei fanghi di depurazioni impegati in agricoltura nello spargimento sui suoli. Il valore di Fondo è comunque inferiore alle CSC per le aree ad uso industriale.

Quindi, in un sito potenzialmente contaminato all'interno delle aree investigate, per lo Zinco, il superamento della soglia di contaminazione, sarà da assumersi pari al valore di fondo individuato pari a 453,9 mg/kg.

Valutazioni analoghe potranno essere effettuate anche per Zr, Sr, Rb, Mn, Ba, ancorché per questi elementi, nel D.Lgs. citato non siano stati individuati valori soglia di contaminazione.

Anche relativamente allo spargimento di fanghi in agricoltura potrà essere utile, in determinate fattispecie, tener conto dei valori elevati di zinco, naturalmente presenti nei suoli.

Gli enti istituzionali delegati al controllo ambientale, saranno eruditi in merito alle nuove risultanze ambientali emerse dal presente studio.

13 Bibliografia

Legge Regione Piemonte 7 aprile 2000, n. 42

Bonifica e ripristino ambientale dei siti inquinati (articolo 17 del decreto legislativo 5 febbraio 1997, n° 22, da ultimo modificato dalla legge 9 dicembre 1998, n° 426).

Approvazione del Piano regionale di bonifica delle aree inquinate. Abrogazione della legge regionale 28 agosto 1995. n. 71.

Bollettino Ufficiale della Regione Piemonte. Anno XXXI. Supplemento al n. 15. 12 aprile 2000.

Decreto legislativo 3 aprile 2006, n. 152

Norme in materia ambientale.

Supplemento ordinario alla Gazzetta Ufficiale n. 88 del 14 aprile 2006. Serie generale.

Decreto legislativo 16 gennaio 2008, n. 4.

Ulteriori disposizioni correttive ed integrative del decreto legislativo 3 aprile 2006, n. 152, recante norme in materia ambientale.

Supplemento ordinario alla Gazzetta Ufficiale n. 24 del 29 gennaio 2008. Serie generale.

A.Stella (1943) I Giacimenti auriferi delle Alpi Italiane. Memorie descrittive della Carta Geologica d'Italia. Volume XXVII

AA.VV. (2003) – Linee guida per la determinazione dei valori del fondo naturale nell'ambito della bonifica dei siti contaminati.

Provincia di Milano, Università degli Studi di Milano - Dipartimento di Scienze della Terra "A. Desio".

AA.VV. (2006) – Protocollo operativo per la determinazione dei valori di fondo di metalli/metalloidi nei suoli dei siti d'interesse nazionale.

Agenzia per la Protezione per i Servizi Tecnici, Istituto Superiore di Sanità, Giugno 2006 (Revisione 0).

Buratto S. (2006) – Esplorazione statistica dei dati.

Torino. ARPA Piemonte. Corso di formazione del 18 – 20 ottobre 2006.

Sistema Nazionale per la Protezione dell'Ambiente 8.2018 – Linee guida per la determinazione dei valori di fondo per i suoli e per le acque sotterranee.

Mauro Spanò (2010) Tesi di Laurea Triennale Università di Pavia. Indagine sul contenuto pedo-geochimico di arsenico nei suoli all'interno del distretto minerario del Monte Rosa in Valle Anzasca.

SAMIM - Ricerca di base per minerali auriferi nell'area del Monte Rosa 1982.

ISO (2005) - *Soil* quality – Guiadance on determination of background values. ISO 19258 – ISO TC190/SC7.

USEPA (2002) – Guidance for comparing background and chemical concentration in soil for CERCLA sites.

EPA 540-R-01-003-OSWER 9285.7-41, September 2002.

ARPA Piemonte (2006) Indagini geognostiche finalizzate alla caratterizzazione di aree minerarie dismesse delle Valli Anzasca e Strona

Notiziario dell'Associazione Mineraria Subalpina anno VII n.1 Marzo Dicembre 1981.

ARPAV Veneto. Metalli e metalloidi nei suoli del Veneto. Giugno 2015

ALLEGATO

Rosner's	Outlier Test	for Rb Aree	Minerarie ec	l Esterne			
Trooner o		10111071100	Timilorano oc	Lotomo			
Mean			108,4				
	rd Deviation		30,79				
	nber of data		198				
Numb	er of suspec	cted outliers	1				
			Potential	Obs.	Test	Critical	
#	Mean		outlier	Number	value		value (1%)
1	108,4	30,71	197,0	51,00	2,884	3,606	3,976
For 5% Sign	nificance Lev	vel, there is r	o Potential (Outlier			
For 1% Sign	nificance Lev	vel, there is r	no Potential (Outlier			
Rosner's	Outlier Test	for Zn Aree	Minerarie ed	I Esterne			
110011010		101 21174100		Lotomo			
14			107.0				
Mean			127,0				
	rd Deviation		136,7				
	nber of data		198				
Numb	er of suspe	cted outliers	1				
			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value	value (5%)	value (1%)
1	127,0	136,4	863,0	106,0	5,395	3,606	3,976
For 5% Sigr	nificance Lev	vel, there is 1	Potential O	utlier			
Potential ou	tliers is:						
863,0							
E 40/ O:							
-OF 70/ C'	:c: •	1 41	D-4 - 11 - 1 - 2				
_		vel, there is 1	Potential O	utlier			
Potential ou		/el, there is 1	Potential O	utlier			
_		/el, there is 1	Potential O	utlier			
Potential ou		/el, there is 1	Potential O	utlier			
Potential ou 863,0	tliers is:	vel, there is 1					
Potential ou 863,0	tliers is:						
Potential ou 863,0	tliers is:						
Potential ou 863,0	tliers is: Outlier Test		Minerarie ed				
Potential ou 863,0 Rosner's	Outlier Test	t for Sr Aree	Minerarie ed 92,40				
Potential ou 863,0 Rosner's Mean Standar	Outlier Test	for Sr Aree	92,40 34,02				
Rosner's Mean Standar	Outlier Test rd Deviation nber of data	t for Sr Aree	92,40 34,02 165				
Rosner's Mean Standar	Outlier Test	t for Sr Aree	92,40 34,02				
Rosner's Mean Standar	Outlier Test rd Deviation nber of data	t for Sr Aree	92,40 34,02 165	Esterne			
Rosner's Mean Standar	Outlier Test Outlier Test rd Deviation nber of data per of suspec	t for Sr Aree	92,40 34,02 165		Test	Critical value (5%)	

1	92,40	33,92	196,0	109,0	3,054	3,547	3,917
For F% Sign	nificance Lev	val there is n	o Potential (Outlion			
F0I 5% Sigi	illicance Lev	/ei, there is i	lo Potential C	Juliei			
For 1% Sign	l nificance Lev	vel, there is n	o Potential C	Outlier			
Danada	S Outlier Tes	t for On Area	Fatama				
Rosners	S Outlier Tes	t for Cr Aree	Esterne				
Mean			41,47				
	rd Deviation		19,80				
	nber of data		144				
Numi	per of suspec	ctea outliers	1				
			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value	value (5%)	value (1%)
1	41,47	19,73	106,0	127,0	3,270	3,503	3,873
For 5% Sign	nificance Lev	(el there is n	o Potential C	Outlier			
1 01 3 % Sigi	illicarice Lev	vei, there is i	lo Foteritiai C	Juliei			
For 1% Sign	l nificance Lev	vel, there is n	o Potential C	Outlier			
Rosners	Outlier Test	tor Mn Aree	Esterne				
Mean			578,9				
	rd Deviation		364,4				
	nber of data		147				
Numb	per of suspec	cted outliers	1				
			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value	value (5%)	value (1%)
1	578,9	363,1	1815	53,00	3,404	3,512	3,882
Eor E0/ O:	aifiogras !	ol there :-	o Dotouti-1	Outlier			
rui 5% Sigi	nificance Lev	rei, iriere is n	io Potentiai C	Julilel			
For 1% Sign	 nificance Lev	vel, there is n	o Potential C	Outlier			
Rosner's	Outlier Test	t tor Ba Aree	∟sterne				
Mean			92,63				
	rd Deviation		34,18				
	mber of data		145				
Numb	per of suspec	cted outliers	1				
			Potential	Obs.	Test	Critical	Critical
			· Storitial	J JJ.	1031	Ornical	Citical

#	Mean	sd	outlier	Number	value	value (5%)	value (1%)
1	92,63	34,06	185,0	93,00	2,712	3,506	3,876
For 5% Sign	nificance Lev	el, there is r	o Potential (Outlier			
For 1% Sign	nificance Lev	el, there is n	o Potential (Outlier			
Rosner's	Outlier Test	for Pb Aree	Esterne				
Mean			51,33				
	rd Deviation		30,43				
	nber of data		143				
Numb	er of suspec	cted outliers	1				
	.,		Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value	(/	` ′
1	51,33	30,33	196,0	128,0	4,770	3,500	3,870
E 50/ O:	·c		D 1 11 10				
	nificance Lev	ei, there is i	Potential O	utiler			
Potential ou 196,0	tilers is:						
_	nificance Lev	el, there is 1	Potential O	utlier			
Potential ou 196,0	tliers is:						
130,0							
Rosner's	Outlier Tes	t for Zr Aree	Esterne				
Mean			90,04				
Standa	rd Deviation		36,24				
Nun	nber of data		147				
Numb	per of suspec	ted outliers	1				
			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value	value (5%)	value (1%)
1	90,04	36,12	271,0	16,00	5,010	3,512	3,882
	nificance Lev	el, there is 1	Potential O	utlier			
Potential ou 271,0	tliers is:						
Ear 10/ C:	nificance Le	vol there is 1	Potential C	utlior			
_	nificance Lev	ei, there is 1	Potential O	utiler			
Potential ou 271,0	uiers is:						

Tabella 32. Rosner's Outlier per i parametri Cr, Ba, Pb, Sr, Zr, Zn, Mn, Rb

Sample 2 Data: Zn Aree Minerarie					
	Raw Statistics		1		
		Sample 1	Sample 2		
Numb	er of Valid Observations	147,0	51,00		
Number	of Distinct Observations	108,0	45,00		
	Minimum	13,00	6,000		
	Maximum	863,0	828,0		
	Mean	123,1	138,4		
	Median	89,00	77,00		
	SD	119,8	177,8		
SE of Mean 9,878 24,90					
			•		
Sample 1	vs Sample 2 Two-Sample	e t-Test			
H0: Mean of Sample 1 = Mean of Sample 2					
		t-Test	Lower C.Val	Upper C.Val	
Method	DF	Value	t (0,0250)	t (0,975)	P-Value
Pooled (Equal Variance)	196	-0,686	-1,972	1,972	0,494
	196 66,4	-0,686 -0,570	-1,972 -1,997	1,972 1,997	0,494 0,571
Welch-Satterthwaite (Unequal Variance)			·	·	
Welch-Satterthwaite (Unequal Variance) Pooled SD: 136,933			·	·	
Pooled (Equal Variance) Welch-Satterthwaite (Unequal Variance) Pooled SD: 136,933 Conclusion with Alpha = 0,050 Student t (Pooled): Do Not Reject H0, Conc	66,4	-0,570	·	·	
Welch-Satterthwaite (Unequal Variance) Pooled SD: 136,933 Conclusion with Alpha = 0,050	66,4 Clude Sample 1 = Sample	-0,570	·	·	
Welch-Satterthwaite (Unequal Variance) Pooled SD: 136,933 Conclusion with Alpha = 0,050 Student t (Pooled): Do Not Reject H0, Conc	66,4 Clude Sample 1 = Sample	-0,570	·	·	
Welch-Satterthwaite (Unequal Variance) Pooled SD: 136,933 Conclusion with Alpha = 0,050 Student t (Pooled): Do Not Reject H0, Conc Welch-Satterthwaite: Do Not Reject H0, Conc	66,4 Clude Sample 1 = Sample	-0,570 2 le 2	·	·	
Welch-Satterthwaite (Unequal Variance) Pooled SD: 136,933 Conclusion with Alpha = 0,050 Student t (Pooled): Do Not Reject H0, Conc Welch-Satterthwaite: Do Not Reject H0, Conc	66,4 clude Sample 1 = Sample include Sample 1 = Samp	-0,570 2 le 2	·	·	
Welch-Satterthwaite (Unequal Variance) Pooled SD: 136,933 Conclusion with Alpha = 0,050 Student t (Pooled): Do Not Reject H0, Conc Welch-Satterthwaite: Do Not Reject H0, Conc	66,4 clude Sample 1 = Sample include Sample 1 = Samp	-0,570 2 lle 2	·	·	
Welch-Satterthwaite (Unequal Variance) Pooled SD: 136,933 Conclusion with Alpha = 0,050 Student t (Pooled): Do Not Reject H0, Conc Welch-Satterthwaite: Do Not Reject H0, Conc	66,4 Clude Sample 1 = Sample Include Sample 1 = Sample St of Equality of Variances	-0,570 2 le 2	·	·	
Welch-Satterthwaite (Unequal Variance) Pooled SD: 136,933 Conclusion with Alpha = 0,050 Student t (Pooled): Do Not Reject H0, Conc Welch-Satterthwaite: Do Not Reject H0, Conc	clude Sample 1 = Sample Include Sample 1 = Sample St of Equality of Variances	-0,570 2 le 2	·	·	
Welch-Satterthwaite (Unequal Variance) Pooled SD: 136,933 Conclusion with Alpha = 0,050 Student t (Pooled): Do Not Reject H0, Conc Welch-Satterthwaite: Do Not Reject H0, Conc	clude Sample 1 = Sample Include Sample 1 = Sample St of Equality of Variances	-0,570 2 le 2 14343 31622	·	·	
Welch-Satterthwaite (Unequal Variance) Pooled SD: 136,933 Conclusion with Alpha = 0,050 Student t (Pooled): Do Not Reject H0, Conc Welch-Satterthwaite: Do Not Reject H0, Co	66,4 Clude Sample 1 = Sample Include Sample 1 = Sample Strong Figure 1 = Sample 1 Variance of Sample 1 Variance of Sample 2	-0,570 2 le 2 14343 31622 F-Te	-1,997	1,997	

Tabella 33. Confronto tra le popolazioni in aree esterne e minerarie per il parametro Zn

Sample 1 Data: Ba Aree Esterne						
Sample 2 Data: Ba Saree Minerarie						
	Raw Statistics		lo , o			
Niverte		Sample 1	Sample 2			
	er of Valid Observations	145,0	52,00			
Number o	of Distinct Observations	86,00	43,00			
	Minimum	24,00	56,00			
	Maximum	185,0	276,0			
	Mean	92,63	126,3			
	Median	91,00	112,0			
SD 34,18 47,93						
	SE of Mean	2,838	6,647			
Sample 1 v	s Sample 2 Two-Sampl	e t-Test				
H0: Mean of Sample 1 = Mean of Sample 2						
		t-Test	Lower C.Val	Upper C.Val		
Method	DF	Value	t (0,0250)	t (0,975)	P-Value	
Pooled (Equal Variance)	195	-5,437	-1,972	1,972	0,000	
Welch-Satterthwaite (Unequal Variance)	70,5	-4,651	-1,994	1,994	0,000	
Pooled SD: 38,253						
Conclusion with Alpha = 0,050						
Student t (Pooled): Reject H0, Conclude San	nple 1 <> Sample 2					
Welch-Satterthwaite: Reject H0, Conclude Sa	ample 1 <> Sample 2					
Test	of Equality of Variance	S				
	Variance of Sample 1	1168				
	Variance of Sample 2	2297				
				<u> </u>		
Numerator DF	Denominator DF	F-Te	est Value	P-Value		
51	144		1,967	0,002		
Conclusion with Alpha = 0,05	1			<u> </u>		

Tabella 35. Confronto tra le popolazioni in aree esterne e minerarie per il parametro Ba

Sample 1 Data: Cr Aree Esterne					
Sample 2 Data: Cr Aree Minerarie					
	Raw Stat				
		Sample 1	Sample 2		
	alid Observations	·	52,00		
Number of Disti	nct Observations	,	39,00		
	Minimum	,	20,00		
	Maximum	106,0	142,0		
	Mean	41,47	61,98		
	Median	41,50	58,00		
	SD	19,80	25,50		
	SE of Mean	1,650	3,536		
Samp	le 1 vs Sample 2	Two-Sample t-	-Test		
H0: Mean of Sample 1 = Mean of Sample	e 2				
		t-Test	Lower C.Val	Upper C.Val	
Method	DF	Value	t (0,0250)	t (0,975)	P-Value
Pooled (Equal Variance)	194	-5,910	-1,972	1,972	0,000
Welch-Satterthwaite (Unequal Variance)	74,4	-5,255	-1,993	1,993	0,000
Pooled SD: 21,448		•			
Conclusion with Alpha = 0,050					
Student t (Pooled): Reject H0, Conclude	e Sample 1 <> Sa	ample 2			
Welch-Satterthwaite: Reject H0, Conclu	ide Sample 1 <>	Sample 2			
	Test of Equality	of Variances			
Varia	ance of Sample 1	392,2			
Varia	ance of Sample 2	650,3			
	Denominator DF		est Value	P-Value	
51	143		1,658	0,021	
Conclusion with Alpha = 0,05					
Two variances are not equal					

Tabella 34. Confronto tra le popolazioni in aree esterne e minerarie per il parametro Cr

Sample 1 Data: Mn Aree Esterne						
Sample 2 Data: Mn Aree Minerarie						
	Raw Statistics	la	<u> </u>			
		Sample 1	Sample 2			
	of Valid Observations	147,0	52,00 51,00			
Number of	Distinct Observations	,	·			
	Minimum	,	35,00			
	Maximum		1566			
	Mean	578,9	403,2			
	Median	493,0	351,0			
SD 364,4 287,3						
	SE of Mean	30,05	39,84			
Sample 1 vs	s Sample 2 Two-Samp	le t-Test				
Campio 1 ve	- Cample 2 Two-Camp					
H0: Mean of Sample 1 = Mean of Sample 2						
		t-Test	Lower C.Val	Upper C.Val		
Method	DF	Value	t (0,0250)	t (0,975)	P-Value	
Pooled (Equal Variance)	197	3,146	-1,972	1,972	0,002	
Welch-Satterthwaite (Unequal Variance)	112,8	3,519	-1,981	1,981	0,001	
Pooled SD: 346,061						
Conclusion with Alpha = 0,050						
Student t (Pooled): Reject H0, Conclude Sa	mple 1 <> Sample 2					
Welch-Satterthwaite: Reject H0, Conclude S	Sample 1 <> Sample 2	!				
Test	of Equality of Variance	es				
	Variance of Sample 1	132755				
	Variance of Sample 2					
Numerator DF	Denominator DF	F-Te	est Value	P-Value		
146	51		1,608	0,052		
Conclusion with Alpha = 0,05						
Two variances appear to be equal						

Tabella 36. Confronto tra le popolazioni in aree esterne e minerarie per il parametro Mn

Sample 1 Data: Pb Aree Esterne					
Sample 2 Data: PB Aree Minerarie					
	Dow Stat	Notice			
_	Raw Stat		Sample 2		
Number of Va	alid Observations	Sample 1 143,0	51,00	1	
	nct Observations		46,00		
Number of Distri					
	Minimum	·	34,00		
	Maximum	·	2680		
	Mean	,	399,5 173,0		
	Median SD	·	570,5		
	SE of Mean		79,89		
	SE OI IVIEAII	2,545	79,09		
Comp	le 1 vs Sample 2	Two Complet	Toot		
Sampi	le i vs Sample Z	i wo-Sample t-	- rest		
10. Many of Complete Many of Comple	. 0				
H0: Mean of Sample 1 = Mean of Sample	.	t-Test	Lower C.Val	Upper C.Val	
Method	DF	Value		t (0,975)	P-Value
	192	-7,303	t (0,0250) -1,972	1,972	0,000
Pooled (Equal Variance) Welch-Satterthwaite (Unequal Variance)	50,1	-7,303 -4,356	-2,009	2,009	0,000
Pooled SD: 292,328	50,1	-4,330	-2,009	2,009	0,000
Conclusion with Alpha = 0,050					
	Comple 1 <> Co	ample 2			
Student t (Pooled): Reject H0, Conclude Welch-Satterthwaite: Reject H0, Conclu					
weich-Satterthwaite: Reject Ho, Conclu	de Sample 1 <>	Sample 2			
	Test of Equality	of \/orionooo			
	rest of Equality	OI Vallalices			
Voris	ance of Sample 1	926,1			
	ance of Sample 1				
Valla	moc or oample 2	020010			
Numerator DF	Denominator DF	F-T	est Value	P-Value	
	Denominator DF		est Value 51.476	P-Value 0.000	
Numerator DF 50 Conclusion with Alpha = 0,05	Denominator DF 142		est Value 51,476	P-Value 0,000	

Tabella 37. Confronto tra le popolazioni in aree esterne e minerarie per il parametro Pb

Sample 1 Data: Rb Aree Esterne					
Sample 2 Data: Rb Aree Minerarie					
	Raw Sta	atistics			
	S	Sample 1	Sample 2		
Number of Valid Observations		147,0	52,00		
Number of Distinct Observations		136,0	49,00		
Minimum		23,40	41,90		
Maximum		197,0	212,0		
	110,8	103,7			
Median SD		109,3	97,10		
		30,85	33,30		
	SE of Mean	2,544	4,617		
	ample 1 ve Cample (2 Two Sample	a t Toot		
5	ample 1 vs Sample 2	2 I wo-Sample	e t- i est		
H0: Mean of Sample 1 = Mean of Sa	mnle 2				
. Italian of Campio 1		t-Test	Lower C.Val	Upper C.Val	
Method	DF	Value	t (0,0250)	t (0,975)	P-Value
Pooled (Equal Variance)	197	1,407	-1,972	1,972	0,161
Welch-Satterthwaite (Unequal	84,0	1,356	-1,989	1,989	0,179
Variance) Pooled SD: 31,500					
Conclusion with Alpha = 0,050					
Student t (Pooled): Do Not Reject H	H0, Conclude Sampl	e 1 = Sample	2		
Welch-Satterthwaite: Do Not Rejec	t H0, Conclude Sam	ple 1 = Samp	le 2		
	Test of Equality	y of Variances			
V	ariance of Sample 1	951,6			
Variance of Sample					
			•	P-Value	
	Numerator DF Denominator DF				
51	146	1,165		0,480	
Conclusion with Alpha = 0,05					1
Two variances appear to be equal		<u> </u>	Г		1

Tabella 38. Confronto tra le popolazioni in aree esterne e minerarie per il parametro Rb

Sample 2 Data: Sr Aree Minerarie					
	Raw Stat	tistics			
	- Tidiii Olai	Sample 1	Sample 2		
Number of Va	llid Observations	-	44,00		
Number of Distir			35,00		
Minimum			16,70		
	196,0	173,0			
		92,20			
Median SD			90,50		
		·	36,25		
	SE of Mean		5,466		
		,			
Sampl	e 1 vs Sample 2	Two-Sample t	t-Test		
H0: Mean of Sample 1 = Mean of Sample	2				
i io. Mean di Sample I – Mean di Sample	<i>,</i> _				
To. Weat of Sample 1 – Weat of Sample		t-Test	Lower C.Val	Upper C.Val	
	DF	t-Test Value	Lower C.Val t (0,0250)	Upper C.Val t (0,975)	P-Value
Method					P-Value 0,962
Method Pooled (Equal Variance)	DF	Value	t (0,0250)	t (0,975)	
Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Variance)	DF 163	Value 0,048	t (0,0250) -1,975	t (0,975) 1,975	0,962
Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Variance) Pooled SD: 34,124	DF 163	Value 0,048	t (0,0250) -1,975	t (0,975) 1,975	0,962
Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Variance) Pooled SD: 34,124	DF 163 71,1	Value 0,048 0,046	t (0,0250) -1,975 -1,994	t (0,975) 1,975	0,962
Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Variance) Pooled SD: 34,124 Conclusion with Alpha = 0,050	DF 163 71,1 onclude Sample	Value 0,048 0,046 1 = Sample 2	t (0,0250) -1,975 -1,994	t (0,975) 1,975	0,962
Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Variance) Pooled SD: 34,124 Conclusion with Alpha = 0,050 Student t (Pooled): Do Not Reject H0, C	DF 163 71,1 onclude Sample	Value 0,048 0,046 1 = Sample 2	t (0,0250) -1,975 -1,994	t (0,975) 1,975	
Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Variance) Pooled SD: 34,124 Conclusion with Alpha = 0,050 Student t (Pooled): Do Not Reject H0, C Welch-Satterthwaite: Do Not Reject H0,	DF 163 71,1 onclude Sample	Value 0,048 0,046 1 = Sample 2 le 1 = Sample	t (0,0250) -1,975 -1,994	t (0,975) 1,975	0,962
Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Variance) Pooled SD: 34,124 Conclusion with Alpha = 0,050 Student t (Pooled): Do Not Reject H0, C Welch-Satterthwaite: Do Not Reject H0,	DF 163 71,1 onclude Sample Conclude Samp	Value 0,048 0,046 1 = Sample 2 le 1 = Sample	t (0,0250) -1,975 -1,994	t (0,975) 1,975	0,962
Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Variance) Pooled SD: 34,124 Conclusion with Alpha = 0,050 Student t (Pooled): Do Not Reject H0, C Welch-Satterthwaite: Do Not Reject H0,	DF 163 71,1 onclude Sample Conclude Samp	Value 0,048 0,046 1 = Sample 2 le 1 = Sample	t (0,0250) -1,975 -1,994	t (0,975) 1,975	0,962
Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Variance) Pooled SD: 34,124 Conclusion with Alpha = 0,050 Student t (Pooled): Do Not Reject H0, C Welch-Satterthwaite: Do Not Reject H0,	DF 163 71,1 onclude Sample Conclude Samp	Value 0,048 0,046 1 = Sample 2 le 1 = Sample of Variances	t (0,0250) -1,975 -1,994	t (0,975) 1,975	0,962
Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Variance) Pooled SD: 34,124 Conclusion with Alpha = 0,050 Student t (Pooled): Do Not Reject H0, C Welch-Satterthwaite: Do Not Reject H0,	DF 163 71,1 onclude Sample Conclude Samp Test of Equality	Value 0,048 0,046 1 = Sample 2 le 1 = Sample of Variances	t (0,0250) -1,975 -1,994	t (0,975) 1,975	0,962
Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Variance) Pooled SD: 34,124 Conclusion with Alpha = 0,050 Student t (Pooled): Do Not Reject H0, C Welch-Satterthwaite: Do Not Reject H0, Varia	DF 163 71,1 onclude Sample Conclude Samp Test of Equality	Value 0,048 0,046 1 = Sample 2 le 1 = Sample of Variances 1111 1314	t (0,0250) -1,975 -1,994	t (0,975) 1,975	0,962
Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Variance) Pooled SD: 34,124 Conclusion with Alpha = 0,050 Student t (Pooled): Do Not Reject H0, C Welch-Satterthwaite: Do Not Reject H0, Varia	DF 163 71,1 onclude Sample Conclude Samp Test of Equality Ince of Sample 1 Ince of Sample 2	Value 0,048 0,046 1 = Sample 2 le 1 = Sample of Variances 1111 1314	t (0,0250) -1,975 -1,994	t (0,975) 1,975 1,994	0,962

Tabella 39. Confronto tra le popolazioni in aree esterne e minerarie per il parametro Sr

2 l . O D . l . 7 . 1 . 1					
Sample 2 Data: Zr Aree Minerarie					
	Raw Statistics				
		Sample 1	Sample 2		
Number o	-	53,00			
Number of Valid Observations Number of Distinct Observations			52,00		
Number of Distinct Observations Minimum			38,6		
Maximum			320		
	·	106,4			
	Mean Median		102,80		
	SD		43,72		
	SE of Mean		6,006		
		,	1,111		
Sample 1 vs S	Sample 2 Two-Sampl	le t-Test			
·	<u> </u>				
H0: Mean of Sample 1 = Mean of Sample 2					
· · · · · · · · · · · · · · · · · · ·		t-Test	Lower C.Val	Upper C.Val	
Method	DF	Value	t (0,0250)	t (0,975)	P-Value
Pooled (Equal Variance)	198	-2,660	-1,972	1,972	0,008
Welch-Satterthwaite (Unequal Variance)	79,2	-2,436	-1,990	1,990	0,017
Pooled SD: 38,35					
Conclusion with Alpha = 0,050					
Student t (Pooled): Reject H0, Conclude Sample	e 1 <> Sample 2				
Welch-Satterthwaite: Reject H0, Conclude Sar	nple 1 <> Sample 2				
Test of	Equality of Variance	s			
V	ariance of Sample 1	1314			
V	ariance of Sample 2	1912			
	Denominator DF	F-Test Value P-		P-Value	-
Numerator DF					
Numerator DF 52	146		1,455	0,085	

Tabella 40. Confronto tra le popolazioni in aree esterne e minerarie per il parametro Zr

Figura n. 25
Ubicazione dei punti di campionamento per la determinazione dei valori di fondo naturale relativamente al parametro Manganese

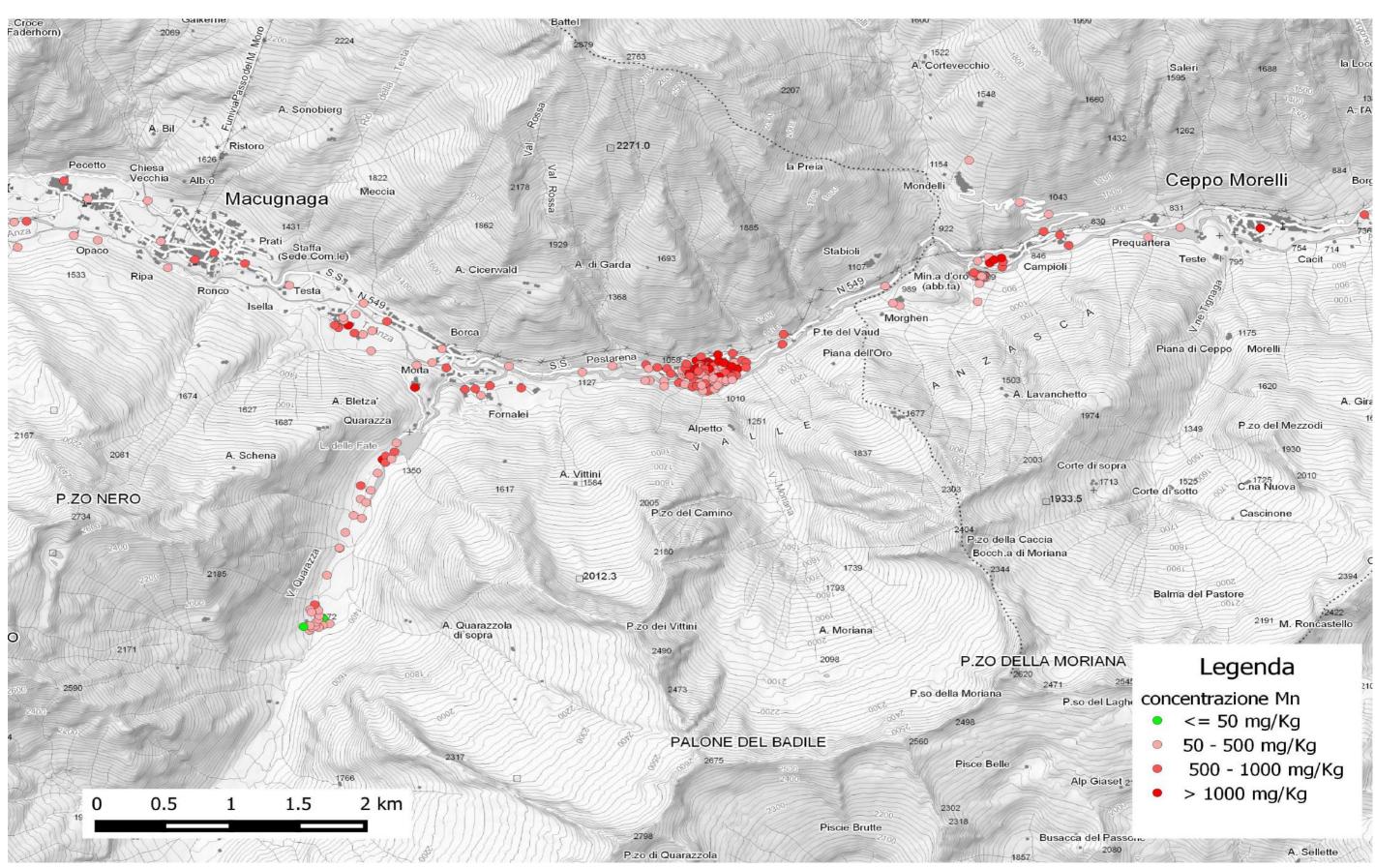


Figura n. 26
Ubicazione dei punti di campionamento per la determinazione dei valori di fondo naturale relativamente al parametro Bario

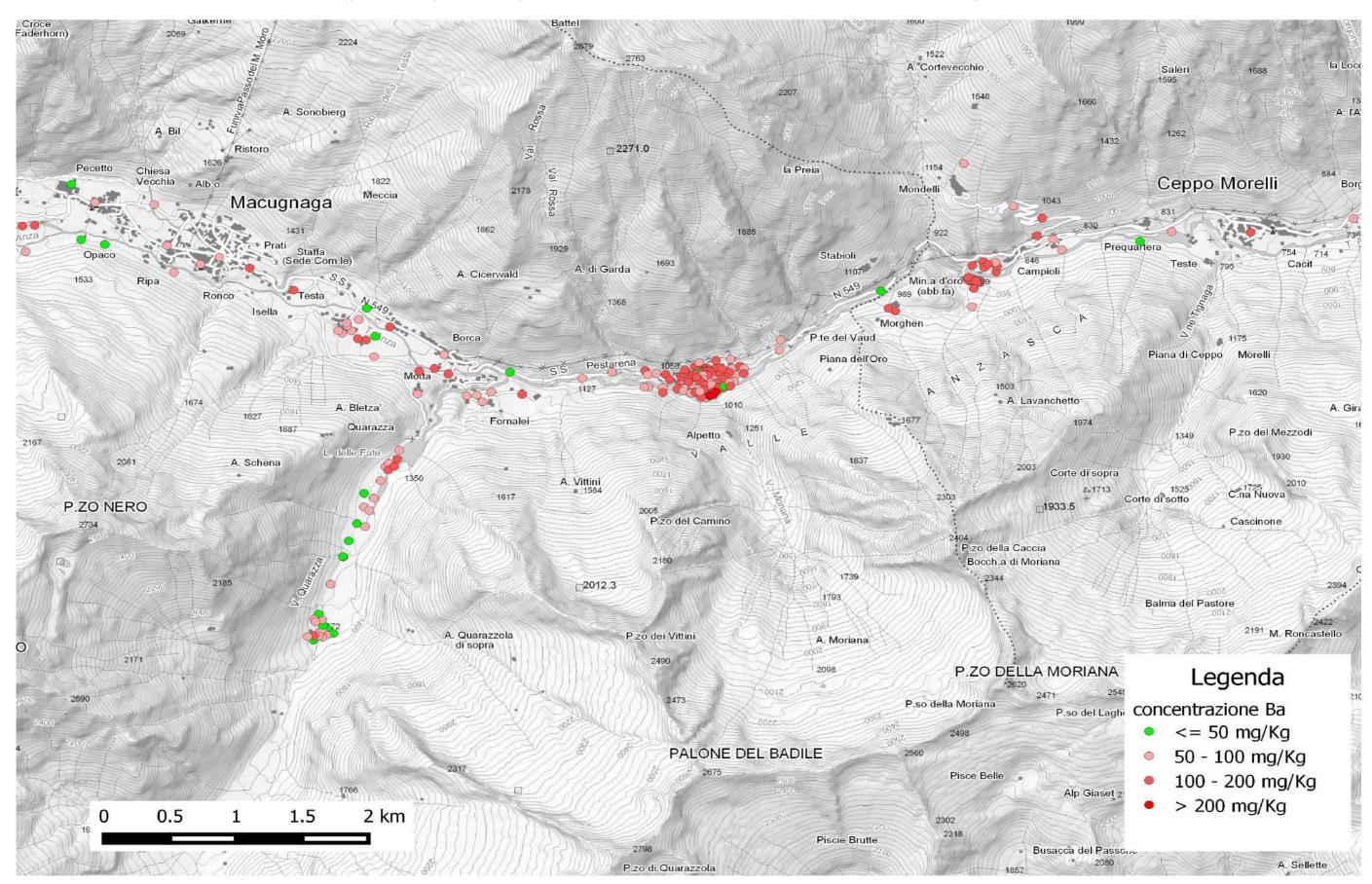


Figura n. 27
Ubicazione dei punti di campionamento per la determinazione dei valori di fondo naturale relativamente al parametro Cromo

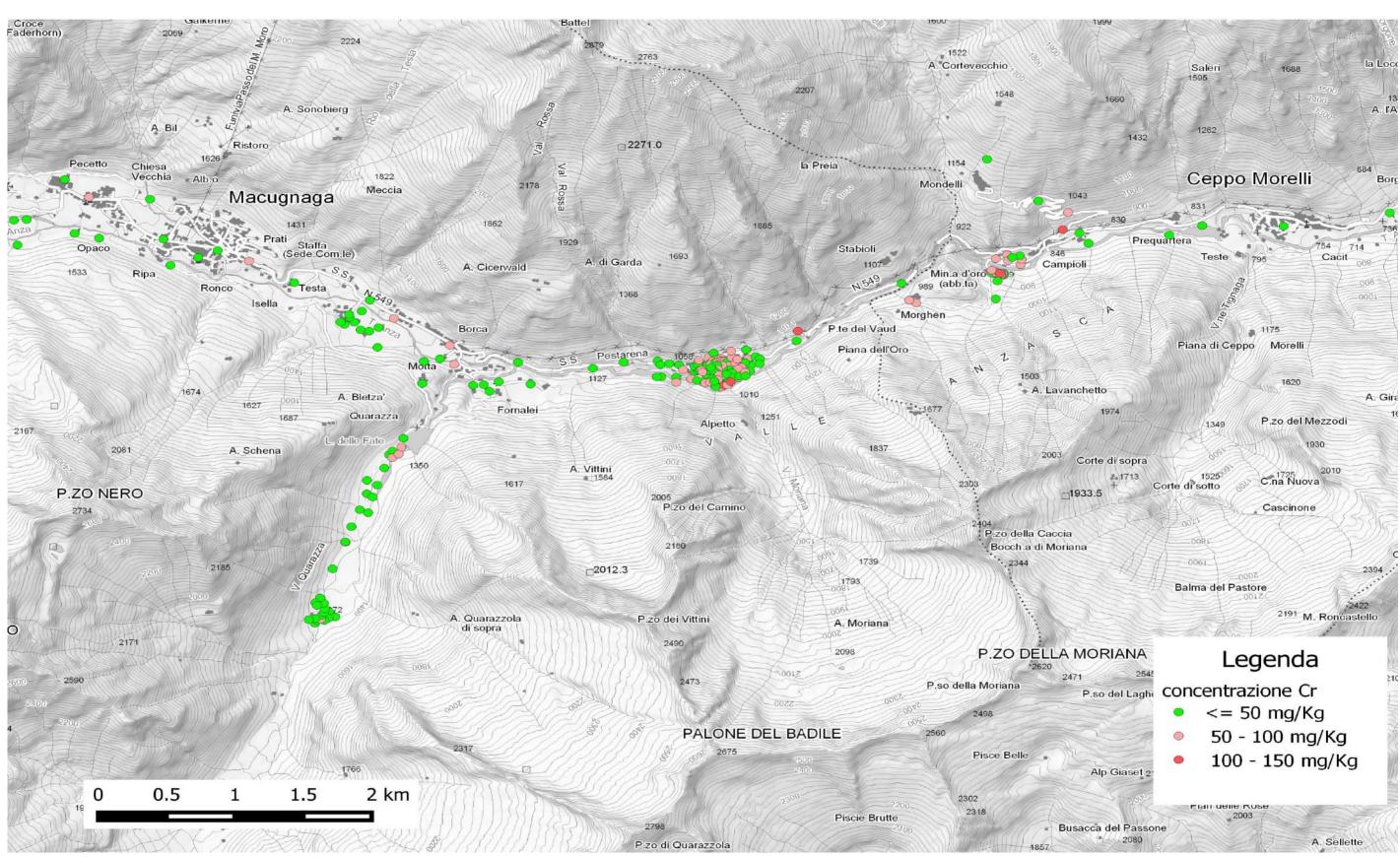


Figura n. 28
Ubicazione dei punti di campionamento per la determinazione dei valori di fondo naturale relativamente al parametro Piombo

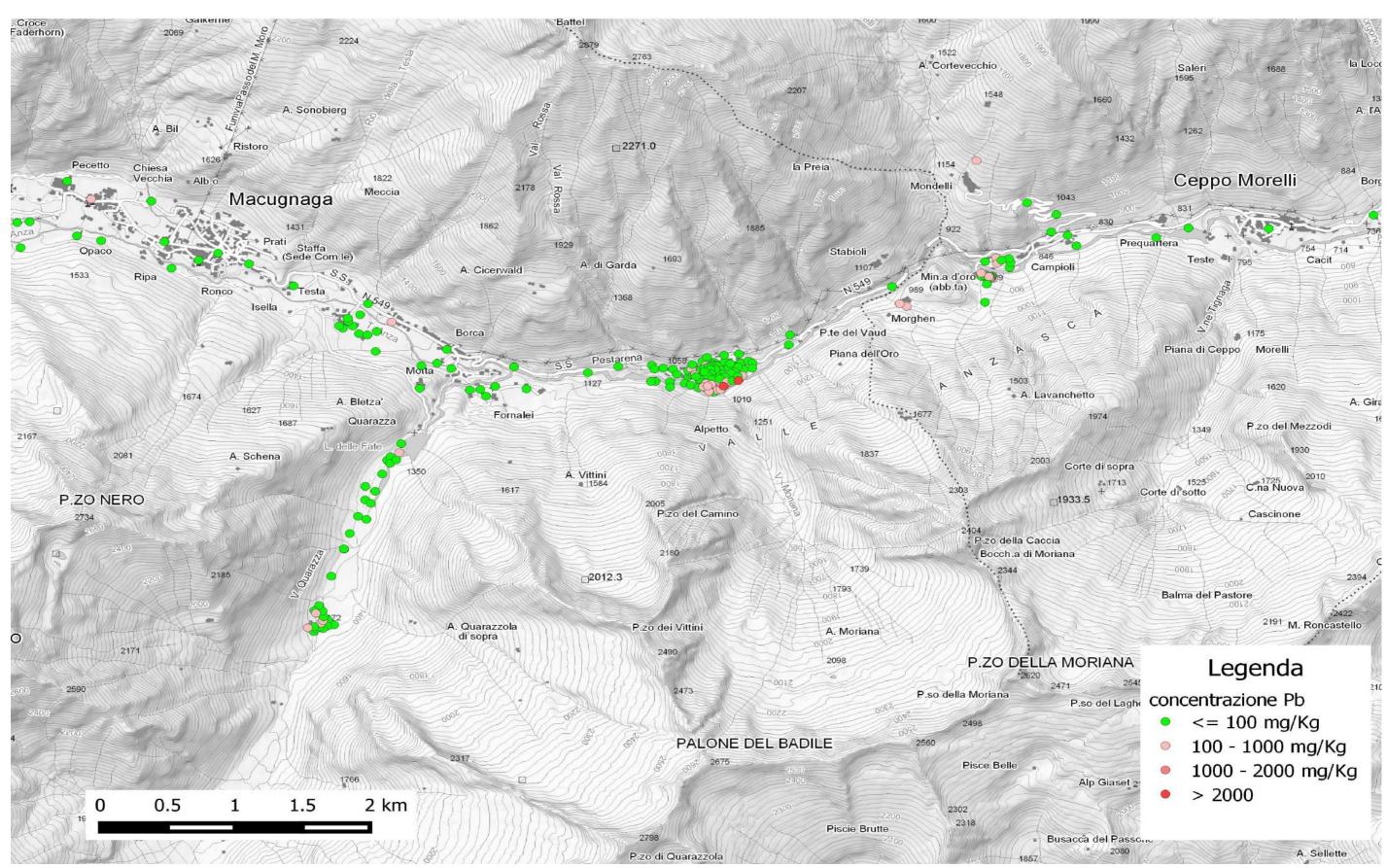


Figura n. 29
Ubicazione dei punti di campionamento per la determinazione dei valori di fondo naturale relativamente al parametro Rubidio

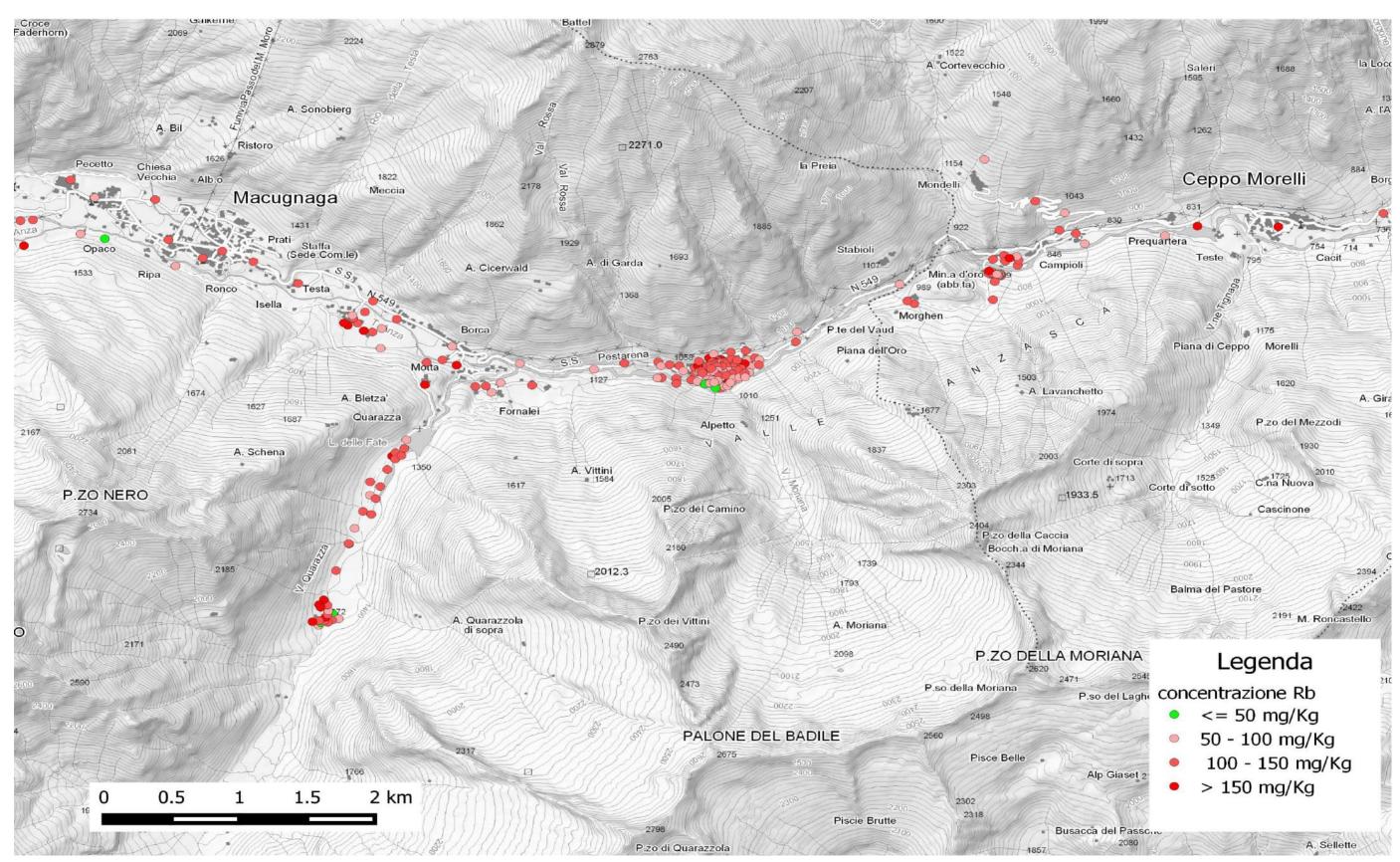


Figura n. 30
Ubicazione dei punti di campionamento per la determinazione dei valori di fondo naturale relativamente al parametro Zinco

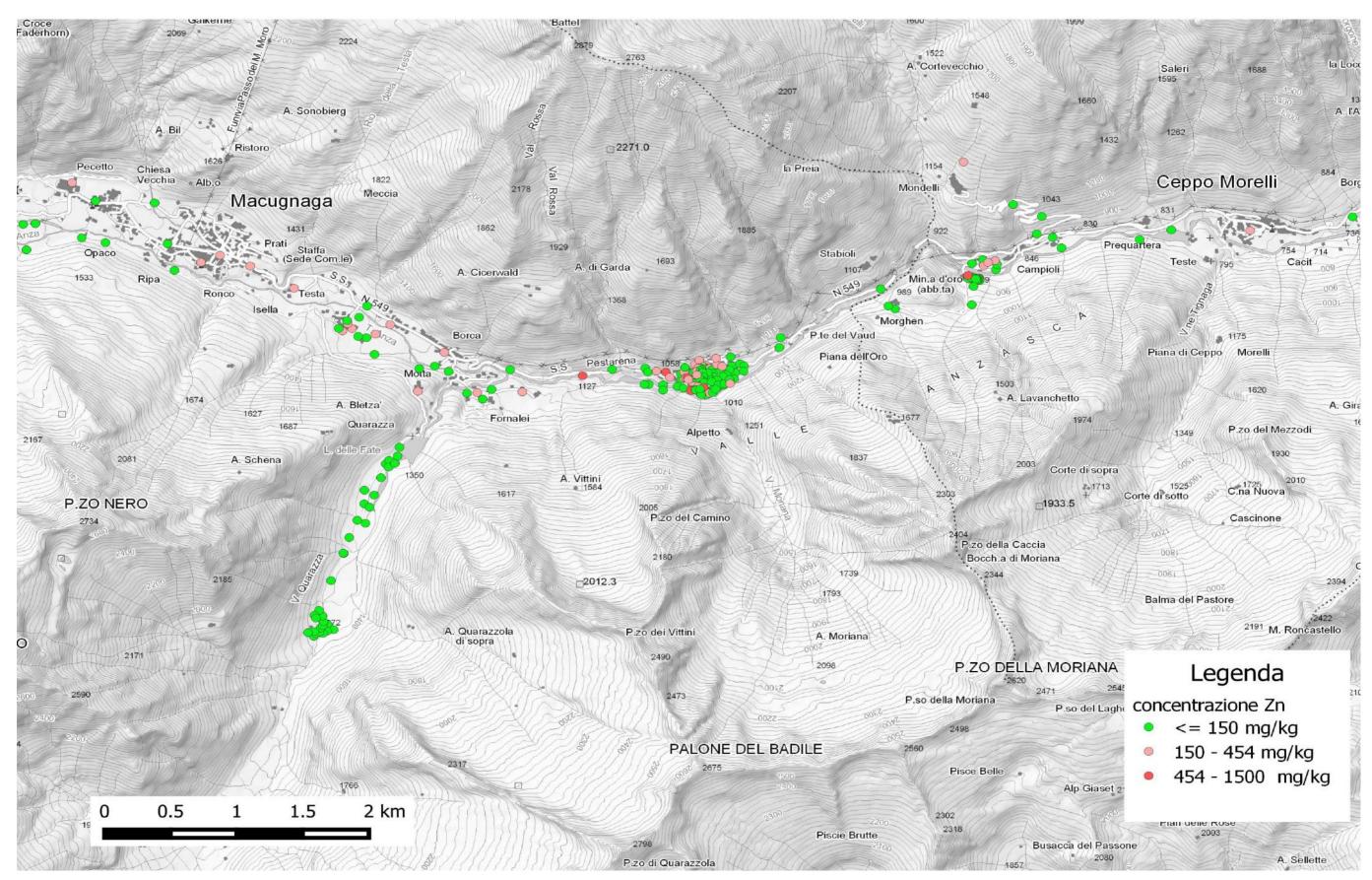


Figura n. 31
Ubicazione dei punti di campionamento per la determinazione dei valori di fondo naturale relativamente al parametro Stronzio

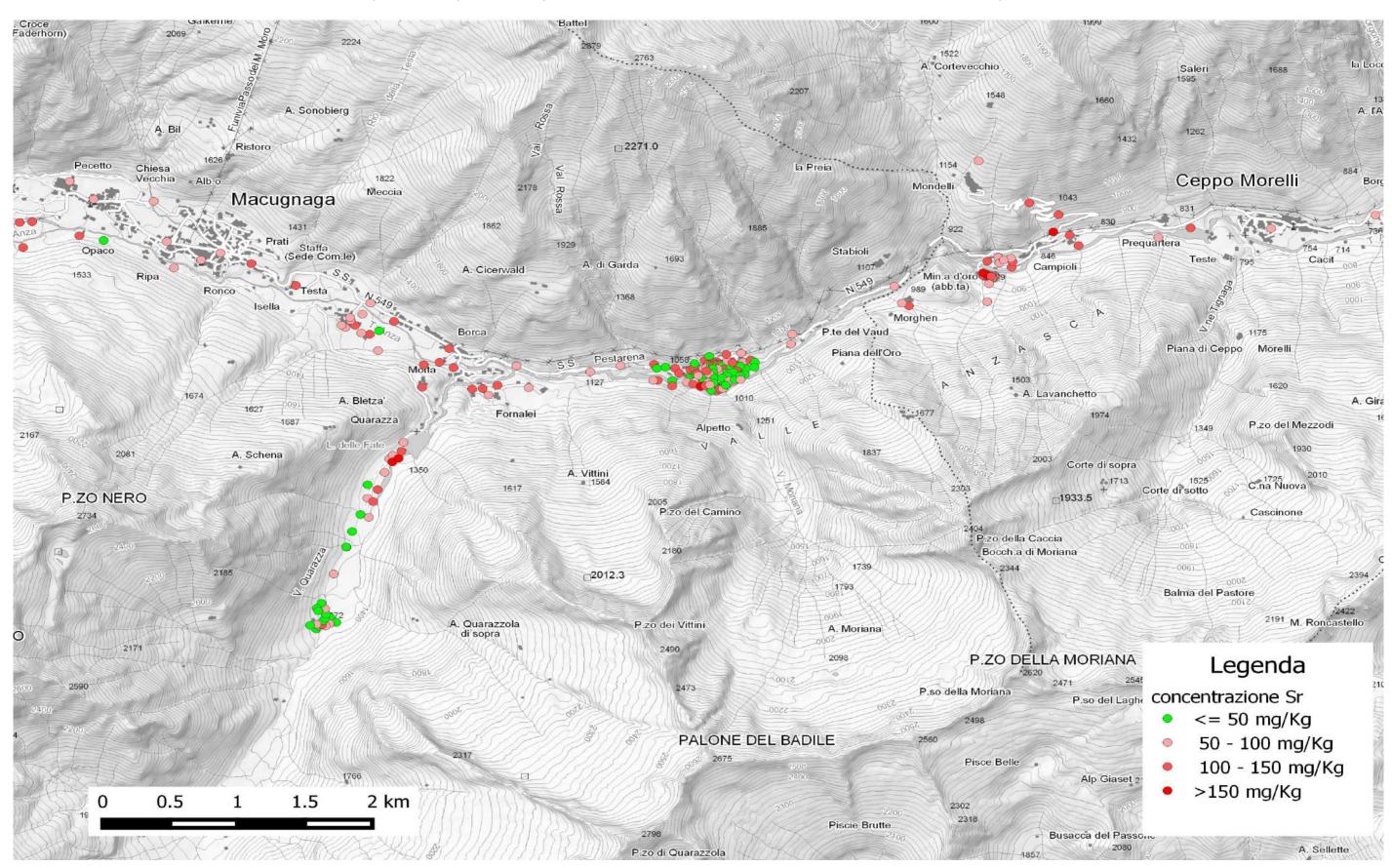
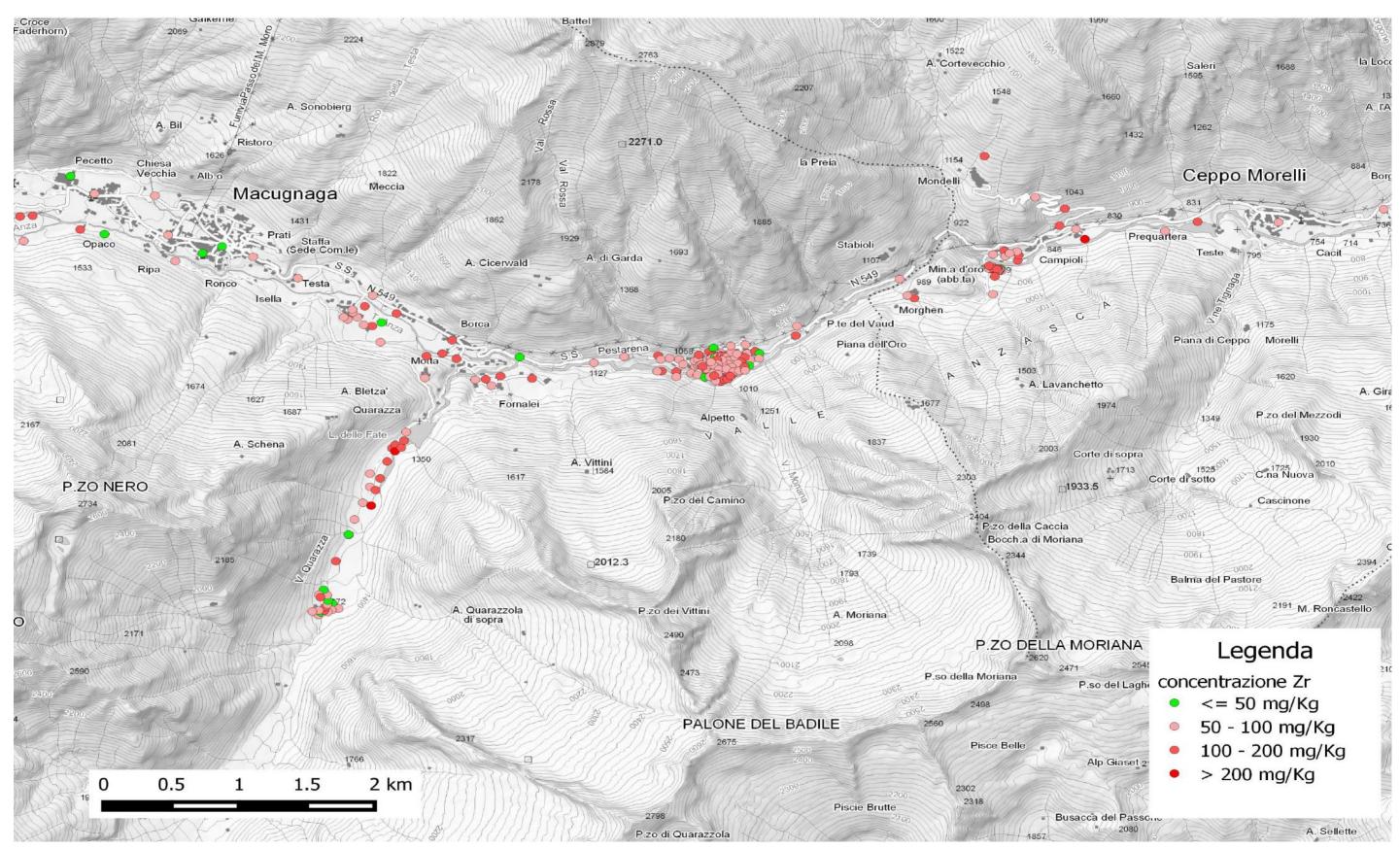



Figura n. 32
Ubicazione dei punti di campionamento per la determinazione dei valori di fondo naturale relativamente al parametro Zirconio

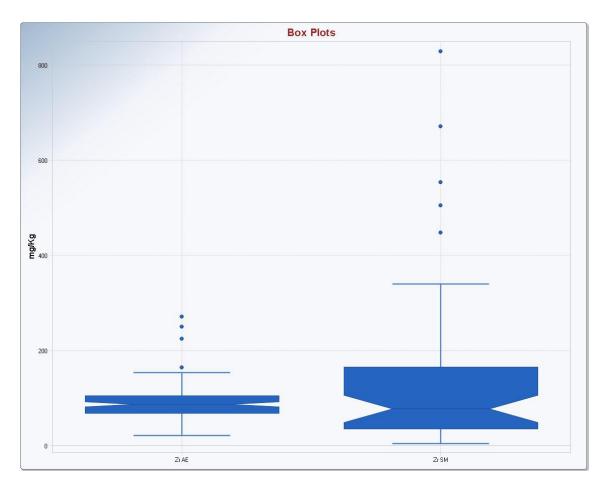


Figura 34. Box-Plot delle popolazioni Aree Esterne e Minerarie parametro Zr

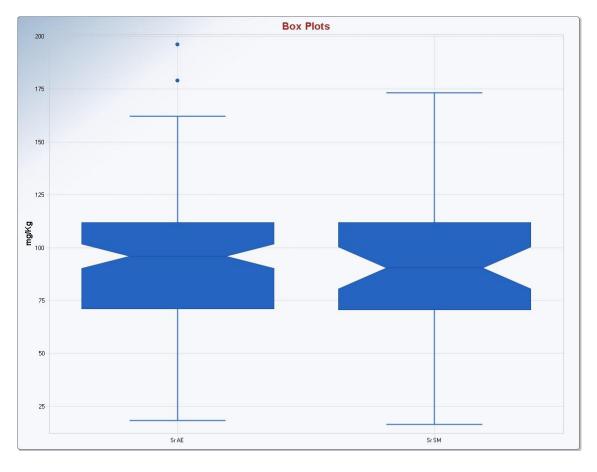


Figura 35. Box-Plot delle popolazioni Aree Esterne e Minerarie parametro Sr

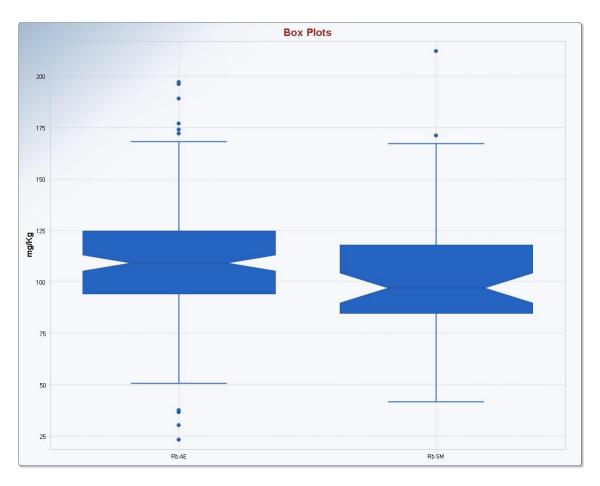


Figura 36. Box-Plot delle popolazioni Aree Esterne e Minerarie parametro Rb

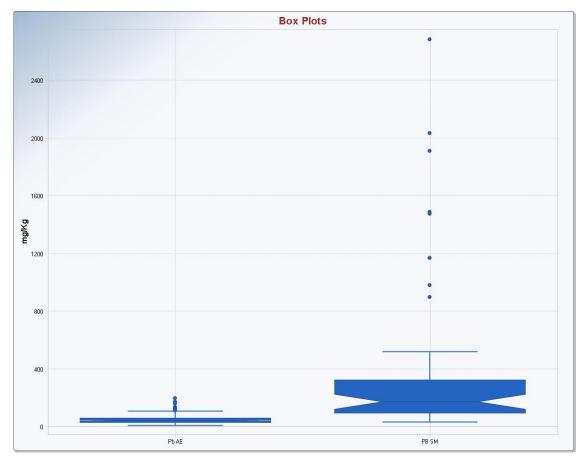


Figura 37. Box-Plot delle popolazioni Aree Esterne e Minerarie parametro Pb

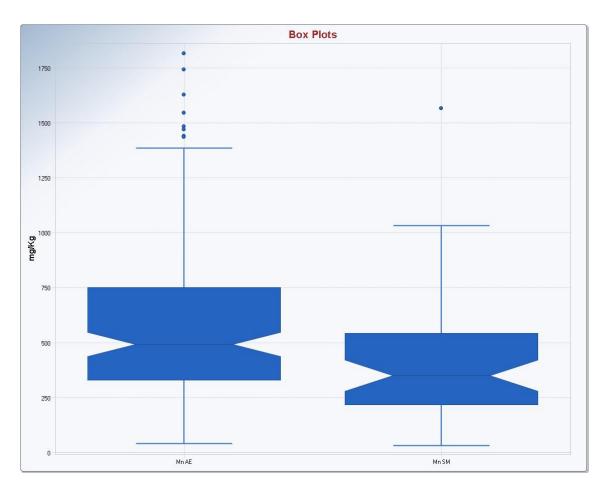


Figura 38. Box-Plot delle popolazioni Aree Esterne e Minerarie parametro Mn

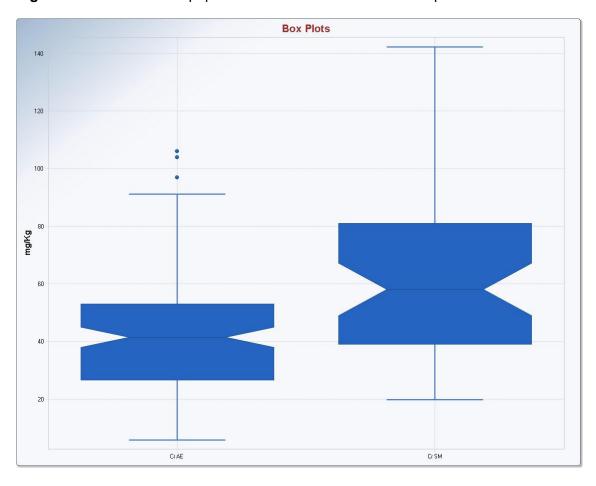


Figura 39. Box-Plot delle popolazioni Aree Esterne e Minerarie parametro Cr

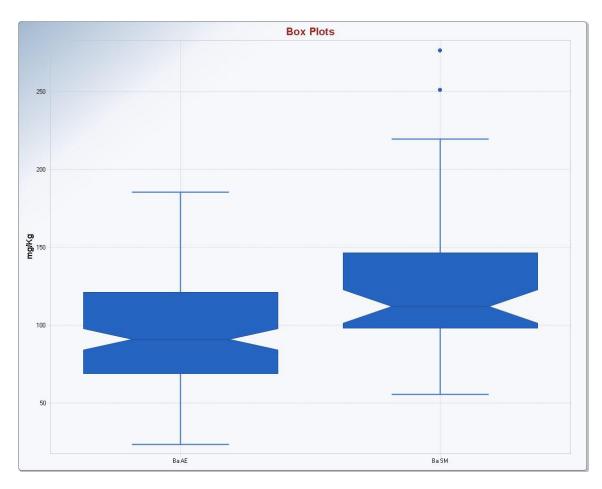


Figura 40. Box-Plot delle popolazioni Aree Esterne e Minerarie parametro Ba

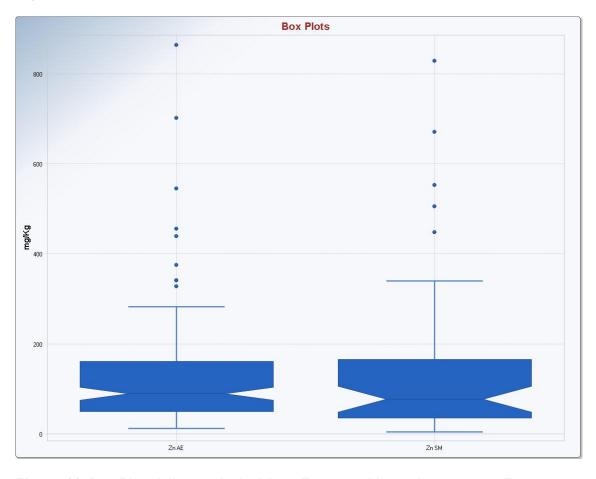


Figura 41. Box-Plot delle popolazioni Aree Esterne e Minerarie parametro Zn