
  

 

 

POLITECNICO DI TORINO 

 
Master of Science in Energy and Nuclear Engineering 

Joint M.Sc. Program in Nuclear Engineering with Politecnico di Milano 

 

 

Master Thesis 

 

 

 

 

  

 

 

  

An Efficient Metamodel-based Exploration 

Framework for Characterizing the Critical Failure 

Regions of a Nuclear Passive Safety System 

Supervisors:  

Prof. Pedroni Nicola 

Prof. Bertani Cristina 

Dr. Bersano Andrea 

Prof. Di Maio Francesco (PoliMi) 

Prof. Zio Enrico (PoliMi) 

 

 

Candidate:  

Lorenzo Puppo 

 



  

 

 

 

 



 Abstract 

I 

 

Abstract  

Passive Safety Systems (PSSs) are increasingly employed in advanced Nuclear Power 

Plants (NPPs) since they are considered, in general, more reliable than active systems. Their 

safety performance is evaluated through computationally expensive Thermal-Hydraulic (T-

H) simulations models and the identification of the operational conditions which lead to 

unsafe conditions (the so-called Critical failure Regions, CRs) may be challenging.  

In this view, the computationally expensive T-H models simulating the PSSs behavior 

can be replaced by fast-running surrogate models (also called metamodels), coupled with 

adaptive sampling techniques for speeding up the exploration and efficiently focusing the 

analysis on the most interesting regions of the domain, i.e., the CRs boundary (limit 

surface). However, when the PSS state-space also shows a non-smooth and/or multimodal 

nature, even the previously mentioned metamodel-based approaches may not suffice. In 

such cases, suitable techniques, like Finite Mixture Models (FMMs) or clustering methods, 

should be sought and effectively combined to tackle these issues. 

In the present thesis, a passive Decay Heat Removal (DHR) system of a NPP is considered 

and its CRs are characterized with respect to two safety-critical variables of interest (used 

to evaluate the success of the PSS operation): the amount of energy exchanged by the PSS 

and the maximum pressure value reached inside the pressure vessel. A time-demanding 

Best-Estimate Thermal-Hydraulic (BE-TH) code is employed to simulate the PSS operation.  

In the analysis of the energy exchanged, which shows a smooth trend, the well-known 

Adaptive Kriging Monte Carlo Sampling (AK-MCS) is employed. This methodology is based 

on a fast-running Kriging regression model, iteratively constructed and progressively 

refined in proximity of the PSS CR boundary by means of an adaptive sampling technique. 
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To the best of the author’s knowledge this is the first time that the AK-MCS technique is 

implemented for the identification of the CRs of a PSS of an NPP. The results show that a 

satisfactory level of accuracy (estimation error around 2%) can be reached with less than 

200 BE-TH simulations. Thus, the Kriging metamodel can be exploited to accurately predict 

the outcomes of many new PSS configurations (several thousands) in few minutes, with the 

aim of finding the critical ones for the CRs characterization, instead of directly using the BE-

TH which takes some hours for each simulation.  

On the other side, in the analysis of the maximum vessel pressure, which shows a non-

smooth and multimodal behavior, a novel methodological framework is proposed, 

combining Finite Mixture Models (FMMs) and AK-MCS. In particular, 1) FMMs are 

employed to reduce the dimensionality of the non-smooth and multimodal PSS state-space, 

while identifying “prototypical clusters” of PSS functional failure configurations; 2) a 

metamodel (namely, AK-MCS) is adaptively trained on the reduced space to mimic the time-

demanding T-H model; and, eventually, 3) the trained metamodel is used to evaluate new 

PSS configurations and retrieve information about CRs. Finally, a comparison with an 

alternative approach of literature based on the use of a classifier to cluster the output 

domain is presented to support the framework as a valid approach in challenging CRs 

characterization. The results show that the FMM-based framework allows overcoming the 

issue of PSS state-space non-smoothness and multimodality, indeed, a satisfactory 

metamodel accuracy (estimation error < 0.5%) is reached with only 300 BE-TH 

simulations. Moreover, the proposed framework always outperforms the alternative 

technique with the classifier if an equal number of BE-TH simulations is used. In the end, 

the Kriging metamodel predictions, which take few seconds, are adopted, again, to speed 

up the calculation for the CRs characterization.  
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1 Introduction  

The objective of the present Master Thesis is to effectively address the problem of 

identifying and characterizing the Critical failure Regions (CRs) of Passive Safety Systems 

(PSSs) designed for advanced Nuclear Power Plants (NPPs). The work has been carried out 

within a cooperation between Polytechnic of Turin and Polytechnic of Milan (namely, 

Poly2Nuc), involving Professors Nicola Pedroni and Cristina Bertani (Turin), Dr. Andrea 

Bersano (Turin) and Professors Francesco di Maio and Enrico Zio (Milan).  

The remainder of the Introduction is organized as follows: in Section 1.1, an exhaustive 

description of nuclear PSSs is offered together with their strengths and weaknesses; in 

Section 1.2, the issues related to PSS CRs characterization are discussed in detail; Section 

1.3 presents several advanced computational methods available in literature for CRs 

exploration; finally, Section 1.4 explains how some of these innovative techniques are 

implemented, modified and originally combined in this work for the efficient CR 

characterization of a generic PSS of a NPP designed for Decay Heat Removal (DHR). 

1.1 Nuclear Passive Safety Systems 

In recent years, important efforts have been made by industries, research organizations 

and utilities for the design and development of PSSs to increase the safety level of NPPs. 
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The use of PSSs within the nuclear field was addressed in 1991 at the International Atomic 

Energy Agency (IAEA) Conference on “The Safety of Nuclear Power: Strategy for the Future” 

[1]. Innovative PSSs are implemented in new advanced reactors to cover the main safety 

functions, e.g., decay heat removal, reactivity control and fission product containment; 

moreover, they also eliminate the costs associated with the installation, maintenance and 

operation of active systems that typically require multiple pumps with independent and 

redundant electric power supplies. According to IAEA definition [2] the term “passive 

system” represents a system entirely composed of passive elements and structures or a 

system that uses active components in a very limited way, e.g., just to initiate subsequent 

passive actions [3]. Passive components do not rely on external inputs (e.g., signal, human 

action, forces or power) to work; indeed, they just exploit natural physical laws (e.g., 

gravity, heat conduction, natural convection etc.) and/or inherent characteristics of such 

systems (e.g., internally stored energy, properties of materials etc.) and/or energy 

inherently available in such systems (e.g., decay heat, chemical energy etc.) [4]. When 

deliberating over the differences between active and passive systems, it was realized that, 

within these two general categories, a spectrum of possibilities exists. Indeed, in [1] four 

categories are established to distinguish the different degrees of passivity, which are 

reported in what follows.  

Category A: 

➢ no signal inputs of “intelligence”, 

➢ no external power sources or forces, 

➢ no moving mechanical parts and 

➢ no moving working fluid. 

 

Physical barriers against the release of fission products (e.g., nuclear fuel cladding), 

hardened building structures for the protection against seismic or external events and 

static components of safety related PSSs (e.g., tubes, accumulators, surge tanks) all belong 

to this category.  
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Category B: 

➢ no signal inputs of “intelligence”, 

➢ no external power sources or forces, 

➢ no moving mechanical parts, but 

➢ moving working fluid. 

Examples of safety features included in this category are reactor emergency cooling 

systems based on the natural circulation of air or water in heat exchangers immersed in 

water pools to which the decay heat is discharged or containment cooling systems based 

on natural circulation of air flowing around the containment walls.  

Category C: 

➢ no signal inputs of “intelligence”, 

➢ no external power sources or forces, but 

➢ moving mechanical parts, whether or not moving working fluids are also present.  

Example of safety features belonging to this category are emergency injection systems 

consisting of accumulators or storage tanks and discharge lines equipped with check 

valves; overpressure protection and/or emergency cooling devices of pressure boundary 

systems based on release of fluid through safety relief valves; filtered venting systems of 

containment building triggered by rupture disks.  

Category D: 

➢ signal inputs of “intelligence” to initiate the passive process;  

➢ energy to initiate the process must be provided by stored sources (e.g., batteries 

or elevated fluids);  

➢ active components are limited to controls, instrumentation and valves to initiate 

the passive system;  

➢ manual initiation is excluded.  
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Examples of safety features included in this category are emergency core cooling and 

injection systems based on gravity that are initiated by battery-powered electric or electro-

pneumatic valves; emergency reactor shutdown systems based on gravity driven control 

rods. This last category addresses the intermediate zone between active and passive 

systems, indeed the safety function is executed through passive methods, but, since internal 

energy is not available to initiate the process, the triggering is provided by an external 

signal. To sum up, the spectrum of possibilities from passive to active systems may have 

even more categories, but the essential point is that the more self-contained and self-

supported a system, the higher its degree of passivity.  

PSSs are generally considered as more reliable than active systems due to the simplified 

architecture (fewer pieces of equipment, less dependence on external power sources, lower 

need for human intervention). Moreover, the determination of the failure conditions of 

PSSs (which are mainly composed of static components) may seem less complex than for 

active systems (which instead typically comprise a higher number of components) [5]. 

However, other relevant issues arise when adopting PSSs. For example, there is the need to 

demonstrate the understanding of the key Thermal-Hydraulic (T-H) phenomena at the 

basis of the PSSs operation: this implies the identification of physical parameter ranges, the 

availability of proper experimental programs and the demonstration of predictive 

capabilities for the computational tools. Within this framework, some research activities 

comprehensive of experiments and code development have been carried out in the last 

decades, mainly addressed to existing nuclear reactors; however, they appear to be limited 

and in general lacking of operational experience and structured procedures. A more 

systematic effort seems necessary for assessing the level of understanding of the T-H 

phenomena and the connected code capabilities for PSSs future applications [2]. Moreover, 

PSSs rely on natural forces (e.g., natural circulation) and some deviation from the design 

conditions may impair the performance of the system itself. This is especially remarkable 

for PSSs involving moving working fluids due to small engaged driving forces. The 

magnitude of these natural forces is, in general, relatively small and counterforces (e.g., 

friction) can be of comparable magnitude; thus, they may have a greater impact with 

respect to the case of active systems (using, e.g., electric pumps). This represents an issue 
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if we also consider that there are several uncertainties affecting the magnitude of these 

forces and counterforces (e.g., heat transfer coefficients values and pressure losses). 

Additionally, the dependence of the magnitude of natural driving forces on the specific 

plant conditions and configurations existing when the PSS is called to intervene is complex 

to be assessed [5], [6]. There is, thus, the need for a proper treatment of all these 

uncertainties, even under scarce operational data, because they strongly affect the T-H 

performance of PSSs. In particular, such uncertainties must be propagated through the PSS 

models, which typically requires a large number of calculations conducted with Best-

Estimate Thermal-hydraulic (BE-TH) codes: this procedure may become prohibitive from 

the point of view of the computational cost. For all these reasons, the determination of the 

conditions leading a PSS to fail its function is a challenging task.  

A pioneering activity aimed at the evaluation of the reliability of PSSs was proposed in 

the mid-1990s within the framework of bilateral contacts between CEA and ENEA (French 

and Italian research bodies). Later on, a cooperation between ENEA, University of Pisa and 

Polytechnic of Milan led to the proposal of a methodology called Reliability Evaluation of 

Passive Safety Systems (REPAS) [7], [8]. REPAS represents a structured methodology for 

conducting a T-H reliability assessment (i.e., the reliability concerning the occurrence of T-

H phenomena, like natural circulation) of PSSs accounting for uncertainties. For example, 

one question that may arise dealing with a system based on natural circulation regards the 

possible disruption of natural circulation when the system, or the thermal-hydraulic circuit, 

and the corresponding geometric and material configurations do not vary. However, in its 

original formulation REPAS does not explicitly include the detailed characterization of the 

PSS CRs. This is necessary to define the configurations of critical operation for the system, 

i.e., those combination of values of PSS design and/or operational parameters which lead 

the PSS to fail providing its safety function.  
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1.2 The Problem: Nuclear Passive Safety 

System Critical Failure Regions 

Characterization 

In mathematical terms, given the Input/Output (I/O) representation, 𝑌 = 𝑓(𝑿), of the 

PSS behaviour, a specific combination of input parameters values 𝒙 is critical, if the 

resulting output value (e.g., the decay heat removed by the PSS or the maximum of pressure 

inside the pressure vessel) is lower (higher) than a predefined threshold, 𝑦 = 𝑓(𝒙) ≤ (≥

)𝑌𝑡ℎ𝑟𝑒𝑠 , representing the limit value for the system operation. These combinations define 

the PSS CRs, whose identification and characterization can be addressed with 

computational methods: see, e.g., [9], [10], [11], [12]. In these methods, BE-TH models are 

not directly adopted to numerically compute the PSS response in the several accidental 

conditions that need to be explored due to: i) the high computational cost often related to 

BE-TH models (e.g., hours or even days for a single simulation), and ii) the high number of 

code runs typically needed for a deep exploration of the PSS state-space that could require 

excessive computational resources. For this reason, advanced intelligent methods should 

be sought and combined to address these computational issues. On one side, fast-running 

surrogate models may be adopted to mimic the behaviour of the computationally 

demanding original T-H simulator and replace it in the analysis [13]. On the other side, 

intelligent adaptive sampling strategies may be implemented to efficiently trace the CR 

boundary (i.e., the PSS limit surface), with minimum waste of computational time for 

samples far from the CR [14]. 

Beside the significant computational cost that may be associated to the CRs 

characterization, another relevant issue that could be faced is the possible non-smoothness 

and/or multimodality of the output function that must be approximated by the metamodel. 

In the general setting, when dealing with metamodel approximations, the computational 

model function that is approximated is frequently assumed to have “accommodating 

properties” of regularity, such as continuity and smoothness. However, several engineering 

problems showing non-smooth and/or multimodal functional behavior can be found, e.g., 
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in structural and mechanical engineering phenomena like snap-through, buckling or others 

[15] [16] [17], challenging traditional smooth metamodels, like Kriging, that might lead to 

large errors [18].  

In view of the relevant issues mentioned above, advanced computational strategies must 

be sought for an efficient characterization of the CRs of PSSs. 

1.3 Advanced Computational Methods for 

Efficient Critical Regions Identification  

1.3.1 Methods for the Reduction of the Computational Cost  

In the following subsections we provide an exhaustive description of the two most 

widespread techniques for reducing the computational cost related to PSS CRs 

identification in the presence of time-demanding BE-TH models: advanced sampling 

strategies (1.3.1.1) (e.g., adaptive sampling) to efficiently select random input 

configurations close to the CR limit surface; and metamodel techniques (e.g., Kriging) to 

replace the original long-running models (1.3.1.2).  

1.3.1.1 Advanced Sampling Strategies  

Sampling strategies have gained much popularity with the advent of modern Design of 

Experiments (DoE), which substituted monetarily expensive and time-demanding physical 

experiments with cheaper and faster computer simulations. They are historically divided 

into two categories, namely static and adaptive. Static sampling represents the earliest kind 

of designs. It ignores the system under study and focuses only on the spatial distribution of 

samples in the domain (space-filling). Such techniques are also known as one-shot 

sampling since the number of samples is decided one time above all according to the 

information available before the first simulation and, then, the simulations are carried out 

through one single session. In this way, many simulations can be run in parallel on different 
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computer to save computational time [14]. The most famous among static sampling 

strategies is the Latin Hypercube Sampling (LHS) [19] which owes its popularity due to its 

capability of dealing with high-dimensional problems.  

Over the time, researchers began incorporating the system knowledge to tailor the DoE 

for the specific system under analysis, coming to the more flexible and dynamic approaches 

called adaptive sampling or active learning. The idea of adaptive sampling rises from the 

need of reducing the number of simulations with respect to the alternative sampling 

methods, i.e., static sampling. Because the simulator is usually considered a black box (in 

the present work the BE-TH model of the PSS), it is infeasible in practice to a priori predict 

the correct number of samples to achieve a desired accuracy; for this reason, in static 

sampling the number of samples is often far bigger than what is really necessary 

(oversampling) inducing useless computational efforts. Active learning solves this problem 

by selecting the samples iteratively, while, at the same time, updating the model they refer 

to and re-assessing the overall quality. If the target accuracy is reached, the procedure is 

stopped and no more samples are selected [20]. Thus, the great novelty is represented by 

the exploitation of the information gathered from previous samples to determine the 

location of new points [21]. The goal of adaptive sampling strategies becomes to find the 

best DoE with the smallest number of samples [22]. In general terms, samples are selected 

iteratively to fill the search domain (in this case, the PSS input parameters space) in such a 

way that any discontinuity or key features are not missed (namely, good exploration), and, 

at the same time, the search is focused on regions that have been identified as potentially 

interesting because close to the CR (namely, good exploitation). A good trade-off between 

exploration and exploitation is necessary, indeed, if exploitation is stressed too much the 

choice of the initial DoE becomes too influential on the quality of the results (e.g., the initial 

DoE needs to be large enough to catch all the regions of interest from the beginning, 

otherwise they are missed). On the other hand, if exploration searching strategy is 

prevalent, then the purpose of adaptive sampling is a bit lost because the responses of the 

already simulated samples are less relevant in the decision making process; hence, it could 

result oversampling in simple/linear regions and under-sampling in complex/nonlinear 

regions. One illustrative example is provided in Fig. 1 which shows an unknown function 
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that needs to be approximated with some samples initially extracted (see Fig. 1(a)); only 

one of these initial samples suggests that the real trend is not linear as it could seem from 

the others. Exploration technique in Fig. 1(b) allows to discover the other non-linearities, 

but without properly focusing on them; on the other side, in Fig. 1(c), thanks to the 

exploitation technique, more attention is put where the non-linearity is individuated from 

the initial samples, but the other function key features are missed.   

 

Figure 1: examples of searching techniques for adaptive sampling [20] 
 

When speaking about adaptive sampling it is also meaningful to dwell on the role of the 

so-called “learning functions”, representing the criterion according to which the different 

searching techniques (exploration or exploitation) are put in practice. There are several 

examples of learning functions in literature, as described in [23]. One example is 

represented by the Expected Feasibility Function (EFF) [24], introduced within an efficient 

global reliability analysis with the aim of searching new points (i.e., system input 

combination) in proximity of the limit state over the entire variable space. Other learning 

functions have been introduced coupled with metamodel approximations, e.g., the 𝑈-

function [25] or the 𝐻-function proposed by [26] (see details below).  

One last element that plays an important role in determining the performance of 

adaptive sampling is the concept of Granularity, i.e., the number of new samples added at 

each iteration. A fine-grained method (few points added) is preferable if we want to avoid 

oversampling; indeed, in case of coarse granularity it might occur that too many samples 

are simulated at the last iteration, while instead only a few of them are really necessary to 

reach the desired accuracy level [20]. On the other hand, sometimes adding many samples 
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is favorable because of computational efficiency. For example, in case of iterative 

techniques based on adaptive sampling, if very few points are sampled at each iteration, 

small improvements typically result between one iteration and the successive one: hence, 

many iterations could be required, with a significant impact on the computational cost of 

the whole procedure [27].  

1.3.1.2 Metamodeling  

Beside the use of smart sampling strategies to face time-demanding computer 

simulations, another interesting and widespread approach is represented by the so-called 

surrogate models or metamodels approximations. The general idea consists in finding an 

approximation function that is constructed on multiple simulations (e.g., time-demanding 

T-H simulations) at key points of the design space (training set or DoE) and on the analysis 

of the outcomes of such simulations [20]. This function manages not only to mimic the 

results of the samples in the DoE, but also to approximately predict the (true) model output 

𝑌 (e.g., the amount of heat removed by the PSS) in correspondence of other input values of 

the domain, depending on the quality of the training dataset. 

From a mathematical perspective, the simulator function (in the present thesis, the T-H 

model of the PSS), which is unknown, can be defined as 𝑓 ∶ ℝ𝑀 → ℝ (where 𝑀 is the 

dimensionality of the problem), mapping a set (vector) of real inputs into a real output (that 

can be a vector likewise). 𝑓 is evaluated at certain input combinations, numbered 𝑁𝑡𝑟𝑎𝑖𝑛, 

grouped as 𝒳𝑡𝑟𝑎𝑖𝑛 = {𝒙1, … , 𝒙𝑁𝑡𝑟𝑎𝑖𝑛
} and the corresponding output values  are 𝒴𝑡𝑟𝑎𝑖𝑛 =

{𝑓(𝒙1), … , 𝑓(𝒙𝑁𝑡𝑟𝑎𝑖𝑛
)} = {𝑦1, … , 𝑦𝑁𝑡𝑟𝑎𝑖𝑛

}. {𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛} constitutes the training set 

according to which a suitable approximation function 𝑓 is chosen from a set of candidates 

𝑭 (functions space), representing the different metamodeling techniques, with the scope of 

closely resembling the original 𝑓 [20], [21], [28].   
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Figure 2: a set of data points (DoE) evaluated by the simulator with the corresponding outputs; a 
metamodel will be fitted to this DoE [20] 

 

The quality of the approximation depends on 𝑭 (ideally the simulator function would be 

contained in 𝑭 and, hence, it could be theoretically achieved an exact approximation), but 

mostly on the choice of {𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛}. The training samples should be spread over the 

input space to provide the maximum amount of information about 𝑓, but, at the same time, 

have a density proportional to the local level of complexity/non-linearity of 𝑓. This is also 

the reason why metamodel approximations are often coupled with adaptive sampling to 

ensure such a smart distribution of training points in the domain. In this case, the choice of 

the initial training set, i.e., {𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛}𝑖𝑛, becomes fundamental; indeed, if a poor 

metamodel prediction is obtained at the beginning, then, this may lead to focus the adaptive 

sampling in inappropriate regions. Moreover, {𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛}𝑖𝑛 size should not be too large, 

otherwise a significant amount of computational time is wasted simulating just space-filling 

samples rather than being spent more effectively on the interesting locations identified by 

the adaptive sampling strategy. To sum up, the choice of the most suitable training set size 

is challenging as it depends on many factors: the available computational budget (i.e., the 

maximum number of long-running model simulations initially foreseen), the complexity 

and dimensionality of the target function 𝑓, the features of the metamodel selected and, 

potentially, the coupling between metamodeling and adaptive sampling [27]. 

Several metamodeling techniques have been developed through the years, as described 

in [13]. The first historical examples regard classical DoE theory with polynomial functions; 
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then, from [29] onward, stochastic models gained a lot of popularity in the field of 

deterministic computer responses, especially one category of them, i.e., the Gaussian 

Processes (GPs); also Artificial Neural Networks (ANN) have become rapidly famous for 

many applications, as explained in [30] and [31]. Other promising statistical techniques 

developed during the time are: Radial Basis Functions (RBF) approximations [32], 

Multivariate Adaptive Regression Splines (MARS) [33], Support Vector Regression (SVR) 

[34] and Polynomial Neural Network (PNN) [35]. In general, it is not possible to claim that 

one metamodel always outperforms the others in all the applications; the choice of the best 

metamodel is still strongly problem-dependent and usually not a priori-known.  

GPs, which belong to the huge field of stochastic processes, have been extensively used 

in the machine learning community for problems of regression, especially when dealing 

with time-demanding model regressions (like the BE-TH models typically used for PSS 

applications) due to their interesting properties: they have been shown capable of 

reproducing numerous system responses, even in case of non-linearity and without adding 

further complexity to the problem; furthermore, they are exact interpolators, i.e., the 

prediction at training input combinations is exactly the observed output with zero 

prediction error [36]. However, despite all these remarkable qualities, standard GPs show 

some drawbacks. First, inference on the GPs scales poorly with the number of training 

samples (𝑁𝑡𝑟𝑎𝑖𝑛), typically requiring computing time in 𝑂(𝑁𝑡𝑟𝑎𝑖𝑛
3) for calculating the 

inverses of 𝑁 × 𝑁 covariance matrixes. Second, GPs are usually stationary, i.e., same 

estimation confidence in the whole domain. Indeed, it is not possible to be more accurate 

in some regions of the output space, which are potentially more interesting than others 

[37].  

One specific category of GPs, called Kriging metamodels, allows to overcome the issue of 

stationarity typically associated to standard GPs. They have been originally developed in 

Geostatistics, indeed geology and soil science (like basically any other discipline working 

with data collected at different locations) need a model to indicate when there is 

interdependence among the measurements and to efficiently exploit such measurements 

for spatial prediction [38]. In practical terms, the metamodel prediction is based on a 

weighted combination of all the outputs already observed. These weights are defined 
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according to the distance (in the input space) between the new location to predict and the 

locations of the previous observations in a way that, the closer the input data are, the more 

correlated the corresponding prediction errors [39]. Later, beyond the applications in the 

geology field, Kriging metamodels became really widespread in many kinds of 

deterministic problems. Moreover, Kriging metamodels (like all the GPs in general) return 

the estimation confidence together with the response prediction at any site and this, 

coupled with the previously described non-stationarity, makes them particularly suitable 

to be implemented with adaptive sampling. On the other hand, Kriging metamodels still 

scale poorly with the number of training samples like all the GPs and they may also become 

very time-demanding in case their training has to be repeated many times.  

1.3.2 Methods for Tackling the Output Non-smoothness and 

Multimodality 

Besides the high cost of computation associated to the BE-TH models reproducing the 

PSSs responses, another relevant issue that may be faced when characterizing the CRs of a 

PSS is the possible non-smooth and/or multimodal behaviour of the system output 

considered. Indeed, this could lead to large approximation errors if not properly treated. In 

the following subsections two of the most innovative techniques to deal with non-

smoothness and multimodality of a specific approximated output are presented: on one 

side, clustering of the output domain through a classifier with the aim of separating the 

different output behaviours in different “prototypical groups” (1.3.2.1). On the other side, 

the reduction of the problem dimensionality by Sensitivity Analysis (SA) methods to focus 

separately on the different output clusters and restrict the analysis only to those input 

parameters significantly affecting the clusters of interest (e.g., in this work, the clusters 

connected with the failure of the PSS function) (1.3.2.2).  

1.3.2.1 Clustering the Output Space 

One possible approach developed in the recent years to tackle non-smoothness and 

multimodality suggests a clustering of the output domain: this allows separating the 
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regions (also called partitions) of different behaviours and/or discontinuities in different 

output clusters and isolating them for a successive analysis [40]. Then, multiple 

metamodels, possibly coupled with adaptive sampling, can be fitted to these different 

domain regions to obtain a better approximation (rather than constructing a unique 

metamodel for the whole output space).  

For this purpose, a classifier (namely, state-selecting model) represents a viable solution 

to identify the output states and cluster the output domain. One of the most common type 

of classifier is the Support Vector Classifier (SVC) [41]. It owes its popularity to the 

capability to identify disjoint regions and bring to an optimal decomposition through a 

maximization of the margins between them, thanks to an optimal separating function, even 

in case of multidimensional space. The SVC requires the construction of a training set (or 

DoE) constituted by samples properly spread over the input space to catch all the 

corresponding output behaviours on the PSS state-space (e.g., they can be generated with 

LHS). In particular, the training data allow identifying the hyperplanes separating the 

different regions: the training data directly belonging to these hyperplanes are called 

support vectors. The classification of training samples can be obtained by expert judgement 

or by some data clustering techniques, e.g., K-means or Hierarchical clustering. A label is 

assigned to each training sample according to the corresponding region. In general, the 

classification of an input combination can be binary or probabilistic: binary classification is 

the most widespread method and it implies a hard classifier according to which the sample 

may belong to one single class; on the other side, the use of a fuzzy classifier leads to 

probabilistic classification which implies that a sample contemporary belongs to all the 

classes with a certain degree of membership (weight).  

One recent and interesting solution exploiting a SVC for clustering the output domain 

against the problem of non-smoothness and multimodality is represented by the so-called 

“two stage-surrogate modelling”, introduced in [18] (see Fig. 3). After identifying the 

different domain partitions and constructing an SVC, a metamodel is trained for each 

partition considered interesting to explore, i.e., in our case only for those partitions that are 

related to the failure of the PSS function. Then, a new system configuration (𝒙) (whose 

output needs to be predicted and identified if it is critical or not) is, first, classified by the 



Chapter 1 / Introduction 

15 

 

SVC (1st stage); then, it is evaluated by the metamodel (2nd stage) specifically constructed 

for the region 𝒙 belongs to (prediction phase).  

 

Figure 3: Two-stage surrogate modelling technique [18] 
 

1.3.2.2 Dimensionality Reduction  

 A different approach to deal with a metamodel performing poorly due to the output 

non-smoothness and/or multimodality consists in circumventing the problem by means of 

feature selection [42] in order to reduce the dimensionality of the problem. Indeed, any 

metamodel, in general, greatly benefits from a dimensionality reduction; moreover, if the 

analysis is restricted only to those parameters significantly affecting the output clusters of 

interest (e.g., the clusters connected with failure behavior), also the specific issue of output 

multimodality can be overcome. Feature selection techniques for dimensionality reduction 

usually rely on many I/O relations, which might become an issue when the system model 

is time-demanding. Alternatively, SA methods can be employed to achieve the same goal of 

feature selection by ranking the inputs in terms of their contribution to the model output 

[43], [44]. Several SA techniques are available in literature and they can be subdivided into 

Local and Global methods [45], with the latter that are more suitable for feature selection 

since they quantify the contribution of each input to the variability of the output over the 

entire range of both the input and the output [46]. Global SA can be also divided into 

Regression-Based Sensitivity Analysis (RBSA) methods, also known as non-parametric 

techniques [47], such as Standardized Regression Coefficients (SRC) or Partial Correlation 
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Coefficients (PCC) [48], Variance-Based Sensitivity Analysis (VBSA) methods, such as Sobol’ 

method [49], [50], [51], and Distribution-Based Sensitivity Analysis (DBSA) methods, also 

known as moment-independent methods [44], such as 𝛿 indicator [52], input saliency [53], 

Hellinger distance [54] and Kullback-Liebler divergence [54]. However, both the RBSA and 

VBSA methods, in general, suffer from the output non-smoothness and/or multimodality 

(as explained in detail in Section 4.1). On the other hand, DBSA methods become suitable 

to overcome this issue [55], e.g., when they are based on Finite Mixture Models (FMM), 

which provide a natural “clustering” of the output (e.g., subdividing the data in groups of 

large safety margin, low safety margin, failure) that can be used to calculate the sensitivity 

indexes [56], [57]. 

Table 1: Comparison between different SA methods to tackle the state-space non-smoothness 
and/or multimodality 

 

Method Low cost Non-smoothness  Multimodality 

RBSA YES NO NO 

VBSA NO YES NO 

DBSA NO YES YES 

 

In particular, FMMs are a flexible and powerful modeling tool for univariate and 

multivariate data, providing a formal approach to unsupervised learning for statistical 

pattern recognition. Indeed, FMM analyze a set of output variables (training set), each one 

assumed to be generated by a certain random model, i.e. a certain distribution of the 

mixture (also called component). Then, it infers the distributions parameters and identifies 

the distribution that has originated each training output, leading to the clustering of the 

training output variables. Moreover, FMM can be used in support of DBSA methods, aiming 

at identifying the most relevant input variables affecting the output clusters and hence to 

perform a feature selection [57]. The choice of the most appropriate model space (i.e., the 

space generated by a linear combination of known distributions of a specific kind) and the 

extraction of the right number of components to approximate the output multimodal 

distribution are challenging. Different metrics, based on Maximum Likelihood (ML) 

estimation, have been developed in the past to guide the model space selection: Minimum 
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Message Length (MML) [58], Akaike Information Criterion (AIC) [59] and Bayes 

Information Criterion (BIC) [60].  

1.4 Methodological and Applicative 

Contribution of the Present Thesis 

In the present thesis, a CRs characterization has been carried out for a generic PSS of a 

NPP, based on an Emergency Heat eXchanger (E-HX) and designed for DHR after the reactor 

shut down due to an accident initiation (e.g., Station Black-Out (SBO)). The PSS operation 

during the accidental transient is modelled though a time-demanding BE-TH code (more 

specifically, RELAP5-3D code). A single code run takes about 4.30h of computation. In 

particular, the PSS operation is analysed with respect to two outputs representative of the 

system response during the transient: 1) the amount of energy exchanged by the PSS (𝐸𝑒𝑥); 

2) the maximum value reached by the pressure evolution inside the Pressure Vessel (PV) 

(𝑝𝑚𝑎𝑥). The two system outputs are analysed separately to obtain a better accuracy in the 

metamodel-based approximation. Moreover, diversified approaches are required because 

of the different nature of the two outputs (see Section 2.3 for details): in particular, 𝐸𝑒𝑥  

shows a generally smooth trend, whereas 𝑝𝑚𝑎𝑥 is characterized by a non-smooth and 

multimodal behaviour.  

As far as the analysis of the exchanged energy output (𝐸𝑒𝑥) is concerned, an integration 

of adaptive sampling and Kriging metamodeling, known as Adaptive Kriging Monte Carlo 

Sampling (AK-MCS) [25], is here adopted and tailored to efficiently identify the CRs of the 

PSS. The objective of the analysis is, thus, to present the computational framework and 

show its feasibility and advantages for the PSS CRs exploration task. On the contrary, the 

aim is not to carry out the complete reliability analysis of a specific PSS. To the best of the 

author’s knowledge, this is the first time that AK-MCS technique is implemented for the 

identification of the CRs of a PSS of an NPP.  
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In the case of 𝑝𝑚𝑎𝑥, the direct application of the metamodel-based AK-MCS procedure 

leads to poor results in terms of approximation, because a traditional smooth Kriging 

metamodel is not suitable to tackle its non-smoothness and multimodality. To address this 

problem, a novel method is proposed, inspired by the framework introduced in [11], which 

comprises three steps: i) “dimensionality reduction” is first carried out through a DBSA 

method supported by FMM, to tackle the output non-smoothness and multimodality; ii) an 

“iterative metamodel training” based on AK-MCS, is then implemented to substitute the 

computationally expensive I/O BE-TH model relationships on the reduced space by means 

of an accurate Kriging metamodel; iii) “CRs representation and information retrieval”: the 

Kriging obtained at the previous step is finally exploited to evaluate a large number of new 

input combinations used to visualize the CRs and retrieve useful information about them.    

The remainder of the thesis is organized as follows. In Chapter 2 the case study of the 

PSS for DHR is presented with a detailed description of the two output variables selected 

to monitor the system response. In Chapter 3 the metamodel-based AK-MCS methodology, 

introduced for the first time in [25], is presented in the form tailored by [11] for the CRs 

exploration and, then, applied to the case study with respect to the analysis of the 

exchanged energy output (𝐸𝑒𝑥). Chapter 4 offers an exhaustive description of the innovative 

framework based on a DBSA method and supported by FMM to carry out the CRs 

characterization in presence of non-smoothness and multimodality. The framework is then 

applied for the analysis of the PSS pressure output (𝑝𝑚𝑎𝑥). In the last part, a comparison is 

carried out (in terms of accuracy and computational cost) with an alternative approach of 

literature [18], based on the combination of a SVC, to identify the different output clusters, 

and adaptive Kriging metamodeling (AK-MCS), applied to those clusters connected with the 

PSS functional failure. Finally, in Chapter 5 the main achievements of the present work are 

summarized, and some conclusions are drawn.  
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2 Case Study  

The PSS under study can be adopted for removing the decay heat from the core after the 

reactor shut down due to an accident initiation (e.g., SBO) through a natural circulation 

closed loop, including a shell and tube E-HX immersed in a large liquid pool elevated above 

the core. Several examples are available in literature about PSSs for DHR, with different 

degrees of passivity, implemented in advanced nuclear reactors: elevated tanks natural 

circulation loops (core make-up tanks), gravity drain tanks, passively cooled steam 

generator natural circulation, passive residual heat removal heat exchangers, passively 

cooled core isolation condensers and sump natural circulation. Among these PSSs, two of 

them are based on the idea of exploiting a heat exchanger immersed in an elevated pool to 

remove the decay heat, like in the case under study: the Passive Residual Heat Removal 

(PRHR) heat exchanger adopted in several advanced Pressurized Water Reactors (PWRs) 

and the passively cooled Isolation Condenser (IC) designed for advanced Boiling Water 

Reactors (BWRs) [6].   

In particular, PRHR heat exchanger (also called emergency heat exchanger) is 

constituted by a single-phase liquid natural circulation loop (Fig. 4) designed to provide 

DHR to the reactor core for extended periods of time (at least few hours) [2]. The PRHR 

heat exchanger loop is normally pressurized at the same pressure level of the primary 

coolant and ready for service. The operation is triggered by the opening of an isolation valve 

typically located at the bottom of the heat exchanger. When the isolation valve opens the 

natural circulation starts thanks to the relative elevation between the vessel (heat source) 
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and the heat exchanger (heat sink) which generates a buoyancy force eliminating the need 

of a pump. The natural circulation loop consists in the following elements: at first, the decay 

heat is removed from the fuel in the core and transferred to the single-phase liquid flowing 

in the vessel. Then, the heat stored in the liquid is carried from the core to the elevated heat 

exchanger thanks to the buoyancy force and, successively, it is transferred to the heat 

exchanger tubes. Finally, the cooled liquid returns back to the vessel bottom, ready to 

remove further decay heat. The crucial point of this phenomenology is represented by the 

heat transfer inside the emergency heat exchanger that is constituted by three different 

mechanisms: single-phase convective heat transfer at the inner surface of the heat 

exchanger tubes, conduction through the tube walls, and nucleate boiling at the tubes outer 

surface [6]. This PSS belongs to the category D of passivity.  

 

Figure 4: PRHR heat exchanger system based on a natural circulation loop and designed for 
advanced PWRs [2] 

 

On the other side, the IC is used to provide cooling to some advanced BWRs when the 

reactor is shut down and isolated from the primary heat sink (i.e., the turbine/condenser 

set). The operation is triggered by two valves located on the IC lines that are normally 

closed. At accident initiation, the valves open and the steam is diverted to the IC heat 

exchanger where it is condensed in its vertical tubes [2]. The driving mechanism for the 

steam flow inside the IC lines is represented by the steam condensation process; indeed, 

the steam condensing inside the IC heat exchanger creates a low-pressure region which 
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draws additional steam in. The heat transfer through the IC heat exchanger tubes into the 

water pool is based on three different mechanisms: two-phase steam condensation (phase 

change) at the tubes inner surface, heat conduction through the tubes walls, and convective 

heat transfer or nucleate boiling at the tubes outer surface [6]. The efficiency of the 

condensation process can be negatively affected by the deterioration of the heat transfer 

coefficient due to the possible presence of non-condensable gases inside the IC lines. After 

condensation, the steam has turned into single-phase liquid and leaves the IC heat 

exchanger to return to the vessel by gravity draining. The IC belongs to the category D of 

passivity, as the PRHR system of the PWR.  

 

Figure 5: IC heat exchanger system based on a condensation-driven loop designed for advanced 
BWRs [2] 

 

The work done in the present thesis aims at showing the effectiveness of the approaches 

proposed for the CRs exploration of a generic PSS for advanced nuclear reactors, without 

addressing any specific case of modern PSS. Some PSSs relying on natural circulation can 

be taken as a reference, but the methodologies developed here can be theoretically 

implemented for many examples of PSSs.  
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2.1 Description of the Passive Safety System 

and its Failure Criteria  

The PSS under analysis is a generic DHR system which draws inspiration from the IC 

heat exchanger system used in advanced BWRs. It relies on a natural circulation closed loop 

including a heat exchanger immersed in a large water pool. In particular, this specific PSS 

function is to remove the decay heat after an SBO accident when the steam is prevented 

from going to the steam turbine, but diverted into the PSS lines. The PSS consists of (see 

Fig. 1):  

➢ an E-HX condensing the steam, composed by two cylindrical horizontal headers 

and many vertical straight pipes, immerged in a large pool elevated with respect 

to the PV;   

➢ a steam line bringing the steam from the PV to the E-HX;  

➢ a condensate line bringing the liquid back to the PV after condensation in the E-

HX tubes, with an Activation Valve (AV) that opens to trigger the PSS operation;  

➢ a Main Steam Isolation Valve (MSIV) located on the primary circuit, closing at the 

accident initiation to isolate the PV from the turbine.  

A PSS based on water natural circulation in a heat exchanger immersed in a pool is 

classified according to [1] as belonging to the category B of passivity, i.e., no signal input of 

“intelligence” and no external power source, no moving mechanical paters, but moving 

working fluid. However, due to the opening of the AV on the condensate line necessary to 

start the PSS operation, the system under analysis should be classified in the category D of 

passivity, which addresses the intermediate zone between active and passive behaviour 

(category D is also called “passive execution – active initiation”) [3].   
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Figure 6: Simplified sketch of the PSS under study  
 

The E-HX function is to remove the decay heat during an SBO accident after reactor shut 

down. This should prevent the energy increase within the PV, which may lead to over-

pressurization and over-heating of the various components. The reactor is supposed to 

normally operate in steady state conditions at a pressure of about 70 bar and the E-HX is 

completely submerged in the pool. The PSS steam line is initially filled with saturated steam 

at 70 bar, with possible presence of a certain amount of non-condensable gases. The 

condensate line initially contains subcooled liquid assumed at 40°C and 70 bar. The AV is 

initially closed, preventing the connection of the PSS condensate line with the PV. The pool 

is filled with water initially assumed at 40°C.  

We consider that an SBO accident occurs. The reactor is, then, shut down and the MSIV 

closes simultaneously with the opening of the AV, so that the vapor from the PV is not sent 

to the steam turbine, but it is directed into the PSS. Vapor condenses inside the E-HX due to 

the heat transferred to the pool and flows back, as liquid, to the PV through the condensate 

line.  

Five input parameters 𝒙 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) have been identified as most relevant for 

the response of the PSS during the SBO accident. They are mainly associated to the 
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unreliability of components (e.g., mechanical malfunctions), but also to the uncertainty of 

some parameters (e.g., the amount of non-condensable gases that may be present in the 

PSS lines).  

1. AV flow area (𝐴𝐴𝑉): the opening of the AV triggers the PSS operation when the 

accident occurs.  

2. AV opening delay (𝐷𝐸𝐿𝐴𝑉): the AV may open with a certain delay with respect to the 

beginning of the accidental sequence. 

3. MSIV residual flow area (𝐴𝑀𝑆𝐼𝑉 ): the MSIV should close completely when the 

accident occurs, but some leakage may be present (i.e., normalized flow area > 0%).  

4. MSIV closure delay (𝐷𝐸𝐿𝑀𝑆𝐼𝑉): the MSIV may close with a certain delay with respect 

to the beginning of the accidental sequence. 

5. Percentage of non-condensable gases (𝑁𝐶%): in the PSS lines a certain amount of 

non-condensable gases may build up during the system operation. These gases tend 

to accumulate in the coldest regions of the system where the vapor partial pressure 

is the lowest. Therefore, they could be present in the steam line of the PSS before the 

activation of the PSS. The presence of non-condensable gases leads to a deterioration 

of the heat transfer mechanism, indeed their build up near the condensate film in the 

E-HX tubes inhibits the diffusion of vapor from the bulk mixture to the liquid film. 

The net effect is a reduction of the driving force for heat and mass transfer [6]. Their 

quantity is expressed in terms of percentage of volume occupied by the non-

condensable gases with respect to the total volume of the steam line. 

To generate different combination of values of the five parameters, 𝑥𝑚 (𝑚 = 1, . .5), 

uniform probability distributions have been considered to span their ranges of variation, 

with equal sampling probability of any value and, thus, explore their possible combination 

of values in the search for CRs. The range of each input has been properly adjusted through 

a preliminary analysis not to sample too far from the limit surface. For example, if it has 

been discovered that 𝑁𝐶% > 30% leads to failure, also considering the possible 

interactions with the other input parameters, and knowing that the scope is to focus the 
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analysis nearby the 𝑌𝑡ℎ𝑟𝑒𝑠 , it is not worth it to simulate also  𝑁𝐶% values much higher than 

30%. Table 1 lists the range of variations of the input parameters.  

Table 2: Range of variation of the inputs 
 

Input   Symbol Range of variation  

AV flow area (%) 𝐴𝐴𝑉 0 ÷ 100 

AV opening delay  (sec) 𝐷𝐸𝐿𝐴𝑉  0 ÷ 720 

MSIV residual flow area  (%) 𝐴𝑀𝑆𝐼𝑉  0 ÷ 0.15 

MSIV closure delay  (sec) 𝐷𝐸𝐿𝑀𝑆𝐼𝑉  0 ÷ 7200 

Non-condensable gases percentage (%) 𝑁𝐶% 0 ÷ 40 
 

The DHR system successful response to the accident is measured in terms of its heat 

removal function and, specifically, in relation to the amount of heat removed during the 

accidental transient (which has been simulated for a duration of about 8h). If the heat is not 

removed adequately, the temperature and pressure may dangerously rise inside the PV and 

if pressure increases beyond the Safety Relief Valve (SRV) set-point assumed at 75.5 bar, 

the valve opens to discharge the vapor inside the containment building (not simulated in 

the model). An output vector with two output parameters, i.e., 𝑌 = (𝑌1, 𝑌2), namely 

Transient Performance Indicators (TPIs) [8], is considered to evaluate the PSS functional 

response: 

1. Energy exchanged (𝐸𝑒𝑥): the total amount of energy removed by the DHR during the 

transient;  

2. Maximum of PV pressure (𝑝𝑚𝑎𝑥): maximum value reached by the pressure evolution 

inside the PV during the transient. 

Table 3 lists the values of the input and output parameters for the reference transient, 

i.e., the “reference conditions” of nominal functioning of the DHR system. The energy 

exchanged output is measured calculating the percentage (𝐸𝑒𝑥,%) with respect to the value 

obtained in the reference conditions. 

Table 3: I/O reference conditions 
 

Variable symbol  𝐴𝐴𝑉 𝐷𝐸𝐿𝐴𝑉 𝐴𝑀𝑆𝐼𝑉  𝐷𝐸𝐿𝑀𝑆𝐼𝑉  𝑁𝐶% 𝐸𝑒𝑥,% 𝑝𝑚𝑎𝑥 

Reference Value   100% 0 sec 0.00 % 0 sec 0 % 100% 70.0 bar 
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Reference conditions allow to define the Target Missions (TMs) the system needs to 

accomplish during its operation: 1) to ensure 𝐸𝑒𝑥,% > 90%, and 2) to keep 𝑝𝑚𝑎𝑥 below 75.5 

bar. In the present thesis, safe operation of the system is assumed when the TM under 

analysis is accomplished; on the contrary, if the TM is not met the system is said to fail its 

function. Therefore, two Failure Criteria (FC) are identified:  

1. Low heat removal: if 𝐸𝑒𝑥,% < 90% [8]. 

2. Steam release in the containment: if 𝑝𝑚𝑎𝑥 > 75.5 𝑏𝑎𝑟 (i.e., pressure rise in the PV 

causes the SRV to open, which leads to vapor release in the containment of the NPP) 

In particular, in Chapter 3 the metamodel-based AK-MCS procedure is applied for the 

characterization of the CRs related with 𝐸𝑒𝑥,% output with respect to the FC “Low heat 

removal”. Whereas, in Chapter 4, a novel exploration framework is proposed for the 

analysis of the CRs related with 𝑝𝑚𝑎𝑥 with respect to the FC “Steam release in the 

containment”, due to the non-smooth and multimodal nature of such output.  

2.2 Synthetic Description of the PSS T-H model 

A RELAP5-3D model of the generic PSS connected to a simplified reactor PV has been 

adopted. The model has been developed in cooperation by University of Pisa and 

Polytechnic of Turin [61]. The RELAP5-3D model that simulates the behaviour of the 

generic PSS described in Section 2.1 is composed by two hydrodynamic regions: the 

primary side (with the PV, the E-HX and the pipe connections) and the pool side.  

The PV is modelled using pipe and branch components, whereas its connections to the 

feedwater line and steam supply line are represented by two time-dependent volumes. On 

the steam supply line, the MSIV is located and modelled as a servo-valve, while the SRV at 

on the top of the PV is modelled as a trip valve. The E-HX is constituted by two headers 

represented by branch components and a pipe component for the heat exchanger tubes. 

PSS steam and condensate lines are represented by a series of pipe components. On the 

condensate line, the AV is located and modelled as a motor valve. For what concerns the 
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pool side, branch and pipe components laterally connected through crossflow junctions 

have been adopted.  

A more detailed description of the RELAP5 model ca be found in [61]. Some closure 

equations, relevant for the operation of the PSS (e.g., condensation heat transfer within the 

HX tubes), have been revised and correction factors have been applied to properly simulate 

the occurring phenomena [62].  

RELAP5-3D constitutes the tool adopted to evaluate I/O representations of system 

behaviour, also named I/O observations, in terms of 𝑌 = 𝑓(𝑿), where 𝑿 𝜖 𝐷𝑿  ⊂ ℝ𝑀 

represents the input vector of dimension 𝑀 related to a given system configuration and 

whose output 𝑌 ∈ 𝐷𝒀 ⊂ ℝ expresses the system state/condition. Each transient simulation 

with the RELAP5-3D code takes about 4.30h on a PC with CPU Intel Core i7-7500U CPU @ 

2.70GHz dual core (Simulations carried out at the Energy Department of Polytechnic of 

Turin by faculty members.). The RELAP5-3D simulations are used as the training 

simulations (i.e., relations known with absolute certainty) for the here developed modelling 

techniques like Kriging, FMM and SVC.   

2.3 Description of the Two Outputs Behavior  

To analyse the behaviour of the two outputs identified to describe the PSS response in 

case of SBO is fundamental for the choice of the most appropriate approximating method 

which is exploited for the CRs exploration. Indeed, as explained in Section 1.2, common 

metamodels used to replace time-demanding model simulations usually requires the 

underlying model function to show accommodating properties of regularity (e.g., 

smoothness and continuity). For this reason, in case the approximated output exhibits an 

irregular trend, as 𝑝𝑚𝑎𝑥 that is non-smooth and multimodal, an alternative approach is 

necessary to avoid large errors.  
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2.3.1 Energy Output Behavior  

The trend of 𝐸𝑒𝑥,% is illustrated in Fig. 7 which collects the outcomes of 100 RELAP5-3D 

simulations generated with LHS. In general, all the five input parameters negatively impact 

on the amount of energy exchanged by the PSS when they deviate from their nominal 

conditions causing 𝐸𝑒𝑥,% to decrease. Nevertheless, 𝐸𝑒𝑥,% shows a regular trend (i.e., no 

discontinuities, no sharp changes, etc.) with a higher concentration of output values around 

𝐸𝑒𝑥,% = 70 ÷ 80 %. This is the reason why a smooth Kriging metamodel, within a properly 

developed AK-MCS methodology, is suitable for approximating such behaviour.  

 

Figure 7: 𝑬𝒆𝒙,% regular distribution 

2.3.2 Pressure Output Behavior  

The irregular trend of 𝑝𝑚𝑎𝑥 is illustrated in Fig. 8 which collects the outcomes of 200 

RELAP5-3D simulations.  
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Figure 8: 𝒑𝒎𝒂𝒙 non-smooth and multimodal distribution 
 

At least two modes can be identified and hence two corresponding clusters are defined: 

a first cluster with low pressure values (70.0 bar), which is associated to the majority of the 

simulations collected; if the decay heat is correctly removed the pressure should never 

increase during the accidental transient and hence 𝑝𝑚𝑎𝑥 coincides with the pressure value 

at the beginning of the transient, i.e., 𝑝𝑚𝑎𝑥 = 70.0 𝑏𝑎𝑟. A second cluster is concentrated 

around 𝑌𝑡ℎ𝑟𝑒𝑠 = 75.5 𝑏𝑎𝑟; if the MSIV closes before the AV opening, the decay heat cannot 

be removed through the E-HX and the vapor builds up in the PV, causing the pressure to 

rise. In this case, a quite short time interval is sufficient, in which the PV remains without 

outlets for vapor discharge, to cause a sharp pressure increase towards 𝑌𝑡ℎ𝑟𝑒𝑠 with 

consequent SRV opening. Finally, very few points fall in the middle region showing 

intermediate values of pressure.  

To conclude, to use a traditional smooth metamodel without an appropriate approach 

to tackle 𝑝𝑚𝑎𝑥 non-smoothness and multimodality leads to large errors, like in the case of 

the direct application of AK-MCS technique.  
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2.4 Other Possible Relevant Parameters  

There are some input and output parameters associated to the PSS that, in the first place, 

it has been decided not to include in the analysis of the present thesis because they are 

thought not to give a significant contribution to the accidental scenario or not have a 

primary role in terms of their capability to describe the PSS response. Anyway, some of 

them could be taken into account for future works and ranked through a SA, especially for 

a deeper analysis on the facility.  

The input parameters that have not been considered in the present thesis are mainly 

associated to uncertain quantities, e.g., forward and reverse energy loss coefficients 

accounting for pressure losses in the components, but also to some malfunctions that have 

been rejected because they are considered too unlikely (e.g. unexpected closure of the AV 

during the transient). The most suitable for future analysis are:  

➢ PSS steam line pipes inclination: the design foresees that pipes are perfectly 

horizontal or vertical. A pipe inclination could provoke water accumulation in 

the angles where the direction changes with “syphon effect”, hindering the 

vapour flux.  

➢ Component rupture: a rupture may occur in many locations of the plant, like in 

the pool container or along the PSS lines. Such event is, in general, more likely in 

a pipe rather than a pool and, particularly, if the pressure value rapidly changes 

(e.g. in case of a strong pressure wave). In the case study, the PSS lines before 

accident initiation are pressurized at the same pressure level of the PV, thus, no 

pressure wave is generated when the AV opens. 
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3 Metamodel-based AK-MCS 

Framework for the CRs 

Exploration of a PSS  

The amount of energy exchanged (𝐸𝑒𝑥) by the E-HX has been identified as relevant for 

the analysis of the PSS response to accidental conditions. In particular, the energy 

exchanged is measured in terms of percentage (𝐸𝑒𝑥,%) of respect to the energy exchanged 

in reference conditions (see Section 2.1) and its failure threshold has been fixed to 𝐸𝑒𝑥,% =

90% [8]. In Section 2.3, it has been demonstrated how the energy output shows a general 

smooth trend in the state-space. For this reason, metamodel-based AK-MCS technique [25] 

combining a fast-running Kriging metamodel and adaptive sampling has seemed suitable 

for the characterization of the CRs with respect to the FC “Low heat removal”, according to 

the exploration framework proposed in[11].  

In particular, Section 3.1 offers an exhaustive description of the framework applied: at 

first, it is presented the Kriging formalism together with the advantages of its use (3.1.1); 

then, the steps concerning AK-MCS procedure are presented in detail according to (3.1.2); 

finally, it is explained how the Kriging metamodel obtained at the end of AK-MCS iterations 

can be exploited to retrieve useful information about the CRs and, thus, how to graphically 

represent them (3.1.3).  



Chapter 3 / Metamodel-based AK-MCS framework for the CRs exploration of a PSS 

32 

 

On the other side, in Section 3.2, the framework has been applied to the CRs exploration 

of the PSS under study with respect to the specific FC “Low heat removal”: a Kriging 

metamodel has been constructed according to the available RELAP5-3D simulations (3.2.1) 

and, then, the Kriging has been refined through the AK-MCS procedure properly tailored 

for the analysis of 𝐸𝑒𝑥,% (3.2.2). Finally, the results of the application are presented both in 

terms of the level of accuracy reached by the metamodel and graphical representation of 

the CRs (3.2.3).   

3.1 AK-MCS Framework Presentation  

3.1.1 Kriging Metamodel  

A fast-running surrogate metamodel is constructed to replace the time-demanding 

model simulations. Indeed, given that many input combinations need to be simulated to 

retrieve enough information about the system CRs, it is fundamental to speed up the 

calculation. Among the several options available in literature [63] (already discussed in 

1.3.1.2), we resort to GPs and, particularly, to one specific category of GPs, i.e., Kriging 

metamodels [64], since they present numerous interesting features, as described in 1.3.1.2. 

The most interesting property for this case study is that they can fit numerous response 

functions with a diversified level of accuracy throughout the domain (non-stationarity). 

Indeed, this makes them suitable for the specific aim of CRs characterization, since the 

metamodel can be refined in proximity of CRs limit surface to correctly discriminating 

between critical and safe system conditions. This can be achieved by training the Kriging 

with original model simulations whose outputs are concentrated nearby the limit surface, 

indeed, adaptive training strategies have been recently developed to this aim. In the present 

thesis, it is followed the metamodel-based AK-MCS framework developed in [25]. Before 

the application of the AK-MCS procedure, an initial Kriging is built using a small number of 

RELAP5-3D simulations whose input combinations can be generated with LHS, and the 

corresponding I/O values constitute the initial I/O training set {𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛}𝑖𝑛. Then, the 
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following training simulations for the metamodel refinement are iteratively added 

according to the AK-MCS procedure.  

From a mathematical perspective, Kriging is defined as a stochastic interpolation 

algorithm, which assumes that the model output 𝑦 = 𝑓(𝑿) is the realization of a Gaussian 

process indexed by 𝑿 ∈ 𝐷𝑋 ⊂ ℝ𝑀 , where 𝐷𝑿 is the metamodel domain of validity and 𝑀 is 

the dimensionality of the problem [11], [65]:   

𝑦 = 𝑓(𝑿) = 𝒩(𝒉(𝑿)𝑇𝜷, 𝜎2𝑍(𝑿)), (1) 

where the first term, 𝒉(𝑿)𝑇𝜷, is the mean value of the Gaussian process, also known as 

trend, consisting of 𝑃 arbitrary functions {ℎ𝑗; 𝑗 = 1, … 𝑃} and the corresponding coefficients 

{𝛽𝑗; 𝑗 = 1, … 𝑃}; the second term consists of the variance of the Gaussian process, i.e., 𝜎2, 

and a zero mean, unit variance stationary Gaussian process, i.e., 𝑍(𝑿). The correlation 

function underlying 𝑍(𝑿) is represented by ℛ(𝒙, 𝒙′; 𝜽), where ℛ is the correlation matrix 

(given a certain correlation function family) and 𝜽 represents its hyperparameters. In 

particular, ℛ(𝒙, 𝒙′; 𝜽), describes the correlation between two vectors 𝒙, 𝒙′: the closer they 

are the higher their correlation. The Gaussian process assumption states that every set of 

realizations of the model output can be described by a Gaussian vector, whose relation 

between a single realization 𝑦(𝒙) and the rest of the set 𝒴𝑡𝑟𝑎𝑖𝑛 ∈ ℝ𝑁𝑡𝑟𝑎𝑖𝑛  follows a Gaussian 

distribution defined by: 

[
𝑦(𝒙)

𝒴𝑡𝑟𝑎𝑖𝑛
] ~𝒩𝑁𝑡𝑟𝑎𝑖𝑛+1 ([

𝒉(𝒙)𝑇𝜷
𝐻𝜷

] ; 𝜎2 [
1 𝒓𝑻(𝒙)

𝒓(𝒙) ℛ
]). (2) 

In detail, 𝐻 is the information matrix of the Kriging metamodel trend and in each row 

there are the regressors related to the corresponding observation 𝒙𝑖 (i.e., 𝐻𝑖 = 𝒉(𝒙𝑖), 𝑖 =

1, … , 𝑁𝐾𝑟𝑖𝑔); ℛ is the correlation matrix with elements ℛ𝑖𝑗 = ℛ(𝒙𝑖, 𝒙𝑗; 𝜽), 𝑖, 𝑗 = 1, … , 𝑁𝑡𝑟𝑎𝑖𝑛, 

and 𝒓(𝒙) is the vector of cross correlations between 𝒙 and each of the other vectors, whose 

elements reads as 𝑟𝑖 = ℛ(𝒙, 𝒙𝑖; 𝜽), 𝑖 = 1, … , 𝑁𝑡𝑟𝑎𝑖𝑛). 

In the context of metamodeling, the interest is to predict a new point response, hence, 

given an experimental design or training set, i.e., {𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛}, with 𝒴𝑡𝑟𝑎𝑖𝑛 =

 (𝑦1, … , 𝑦𝑁𝑡𝑟𝑎𝑖𝑛
) and with an associated information matrix 𝐻 and correlation matrix 𝑅, the 

prediction of the output, i.e., �̂� for a given input configuration 𝒙 is given by: 
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�̂�(𝒙)|𝒴𝑡𝑟𝑎𝑖𝑛, 𝜎𝟐, 𝜽~𝒩(𝜇�̂�; 𝜎𝑦
2), (3) 

where 𝜇�̂�(𝒙) and 𝜎�̂�
2(𝒙) are respectively the mean value and the variance of the Gaussian 

random variate �̂�, defined by:  

𝜇�̂�(𝒙) = 𝒉(𝒙)𝑇𝜷 + 𝒓(𝒙)𝑇ℛ−1(𝒴𝑡𝑟𝑎𝑖𝑛 − 𝐻𝛃), (4) 

𝜎�̂�
2(𝒙) = 𝜎2(1 − 𝒓(𝒙)𝑇ℛ−1𝒓(𝒙)𝑇) + (𝒉(𝒙)𝑇 − 𝒓(𝒙)Tℛ−1𝐻) 

(𝐻Tℛ−1𝐻)−1(𝒉(𝒙)𝑇 − 𝒓(𝒙)Tℛ−1𝐻)𝑇  
(5) 

And the least square estimates of 𝜷:  

�̂� = (𝐻Tℛ−1𝐻)−1𝐻𝑇ℛ−1𝒴𝑡𝑟𝑎𝑖𝑛. (6) 

3.1.2 Metamodel-based AK-MCS framework for CRs exploration  

The Kriging metamodel initially constructed according to {𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛}𝑖𝑛 is, then, 

refined through the AK-MCS procedure, introduced in [25] and further developed by [11]. 

In particular, The AK-MCS framework here proposed it has been properly tailored to the 

specific aim of characterizing the CRs of a PSS for nuclear application and it consists in the 

following steps, for each 𝑛-th iteration:  

1. Construction: a Kriging metamodel is built with the available I/O training set 

{𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛} (see Section 3.1.1). The first I/O training set is {𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛}𝑖𝑛; then, 

the set is progressively updated and enriched in the successive iterations.  

2. Generation of random input configuration: a large number 𝑁𝑀𝐶𝑆  of new input 

configurations 𝒳 = (𝒙1, … , 𝒙𝑁𝑀𝐶𝑆
), is generated by means of LHS so as to efficiently 

span the input parameters space.   

3. Metamodel Evaluation: the Kriging metamodel is used to evaluate the outputs 

corresponding to the 𝒳 combinations: �̂� = (�̂�1, … , �̂�𝑁𝑀𝐶𝑆
).  

4. Convergence check: Convergence of the metamodel construction is verified through 

an a priori defined convergence (e.g., a certain error metric) or stopping criterion 
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(e.g., a limited computational budget expressed in the form of a maximum number 

of BE-TH simulations).  

5. Selection: if convergence criterion at step 4 is not satisfied, the best candidate subset 

𝒳∗ ⊂ 𝒳 of input combinations is added to the current training set by evaluating the 

corresponding outputs 𝒴∗ through the long-running BE-TH model. The 𝑁𝑐𝑎𝑛𝑑  best 

candidates are selected on the basis of their learning function values. Among the 

several examples of learning functions provided in literature [23], the 𝑈-function 

[11], [25] is adopted:  

𝑈(𝒙) =
|𝑌𝑡ℎ𝑟𝑒𝑠 − 𝜇�̂�(𝒙)|

𝜎�̂�(𝒙)
. (7) 

The 𝑈(𝒙) value represents the distance, expressed relative to the standard deviation, 

of the metamodel prediction (whose mean value is 𝜇�̂�(𝒙) and estimation error is 

𝜎�̂�(𝒙)) from the contour of the CR, defined by 𝑌𝑡ℎ𝑟𝑒𝑠 . The smaller is 𝑈(𝒙), the closer 

is the metamodel prediction to the failure threshold and the higher the interest in 

adding the observation corresponding to 𝒙 to the current training set, since the main 

scope is to focus on the limit state and to increase the metamodel accuracy in that 

area. However, notice that the choice of 𝒳∗ should not be made only among the 𝑁𝑐𝑎𝑛𝑑  

combinations with the lowest 𝑈-function values. In fact, in this way the 

corresponding inputs could result too close to each other in their domain due to a 

high correlation function, bringing a small amount of information to the Kriging 

training process; some techniques (e.g., clustering) are proposed in literature to face 

this issue by evenly “spreading” the candidates along the limit state surface [11].  

Once the new I/O observations {𝒳∗, 𝒴∗} have been simulated with the original model 

and added to the training set, steps 1 to 5 are repeated until step 4 is verified.  

3.1.3 Metamodel Accuracy Evaluation and CRs Characterization  

The Kriging metamodel obtained at the end of the AK-MCS iterations is expected to 

provide predictions of the output with a satisfactory level of accuracy, especially in 

proximity of the CRs limit surface. This can be verified in different ways, e.g., by exploiting 
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an external validation set: the metamodel is tested on validation input combinations which 

are selected separately with respect to the set of training input combinations and, then, the 

corresponding metamodel predictions are compared to the real outputs which have been 

obtained from the BE-TH simulations. Thus, the final Kriging metamodel is exploited to 

replace the time-demanding model for the characterization of the CRs.  

A large number of new input combinations 𝒙 (e.g., several thousands) can, then, be 

generated, again with LHS, and sent in input to the Kriging metamodel and the critical ones, 

i.e., �̂� = 𝑓(𝒙) ≤ 𝑌𝑡ℎ𝑟𝑒𝑠 , are retained for characterizing the shape and cardinality of the CRs. 

In mathematical terms, this corresponds to solving the inverse problem 𝒙 = 𝑓−1(�̂�), with 

�̂� ≤ 𝑌𝑡ℎ𝑟𝑒𝑠 .  Once this is done, a graphical representation of the CRs can be provided, with 

specific attention to their boundaries, by high dimensional data visualization techniques, 

e.g., scatter plots or Parallel Coordinates Plots (PCPs).  

In brief, scatter plots show the two-dimensional projections of the CRs over all the 

possible pairs of inputs (this is useful to visualize the shape of the CRs). Moreover, in case 

of many input parameters involved, multiple scatter plots can be collected together in the 

so-called Scatter PLOt Matrix (SPLOM) providing a more complete view [66].   

On the other hand, PCP [67] allows representing all the input combinations belonging to 

the CRs in a unique plot: all the 𝑀 input variables, normalized on their respective ranges, 

are reported on vertical axes and lined up horizontally; then, each input combination is 

represented by a line connecting in the horizontal direction the corresponding input 

variables values on the vertical axes. In this way, the analyst is provided with exemplary 

patterns of typical critical conditions for the system operation.  
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3.2 AK-MCS Framework Application for CRs 

characterization of the PSS considered – 

Energy Output  

3.2.1 I/O Training Set and Kriging Metamodel Construction 

A first rough Kriging metamodel has been constructed with a possibly small I/O training 

set in order to be sent in input to the AK-MCS procedure, which automatically refines it for 

CRs exploration. The training I/O combinations used for its construction have been initially 

generated by simulations with varying values of each input 𝑥𝑚 within its range (see Table 

2). Unfortunately, no definite recommendations exist about the choice of the most suitable 

size of the training set [27], [68]. The criterion proposed for Kriging metamodels in [69] 

suggests a number of training combinations equal to about 10𝑀, where 𝑀 is the 

dimensionality of the problem; hence, about 50 RELAP5-3D runs were necessary in this 

case (𝑀 = 5). Following this criterion, we built an initial I/O training set 

{𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛}𝑖𝑛 made by 64 RELAP5-3D simulations in correspondence of the input values 

combinations generated by LHS to evenly cover the input domain.  

The UQLab Software Framework for Uncertainty Quantification [70] has been used to fit 

the Kriging metamodel to the training set. UQLab provides straightforward 

parametrization of the Kriging (see Section 3.1.1): constant, linear, polynomial, or arbitrary 

trends, associated to elliptic and separable correlation kernels, based on many possible 

one-dimensional distribution families (e.g., Exponential, Gaussian, Matérn, or user-

defined). The metamodel hyperparameters can be estimated through Cross-Validation (CV) 

or Maximum-Likelihood (ML) methods, using different optimization techniques (local or 

global) [65].  

The best Kriging setting for the specific case study has been established by testing 

different options with the CV procedure. The initial I/O training set (64 RELAP5-3D 

simulations) has been split into 𝐾 partitions (with 𝐾 = 4) of the same size (16 simulations 
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each): a Kriging metamodel has been trained on 𝐾 − 1 partitions and the CV error (which 

is actually a Root-Mean-Square Error, RMSE) has been evaluated by comparing the 

metamodel predictions on the input combinations of the left out partition 𝑘 with the 

RELAP5-3D model outputs. The process has been repeated for 𝑘 = 1, 2, … 𝐾 and the CV 

error has been averaged among the trials. Then, the whole procedure has been repeated to 

calculate the average CV error with other Kriging options and, finally, the best option of a 

certain kind (e.g., the best trend option) has been selected according to the lowest average 

CV error. In particular, two Kriging features have been tested: the trend type and 

correlation function family (see Tables 4 and 5), while other features have been set to their 

default options defined in UQLab.  

Table 4: Average CV error in trend type estimation (energy output) 
 

Trend type Ordinary  Linear  Quadratic 

Average CV error [%] 8.82 5.13 9.53 

 

Table 5: Average CV error in correlation function family estimation (energy output) 
 

Corr. Function family Exponential Gaussian Matérn 3/2 Matérn 5/2 

Average CV error [%] 5.58 5.31 5.55 4.99 
 

Note that the average CV error used to rank the different options is expressed in 

percentage because it has the same unit of measure of the predicted output, i.e., the 

percentage of energy exchanged (𝐸𝑒𝑥,%). The best trend type has been evaluated with all 

the other Kriging features set to their default options defined in UQLab (the correlation 

function family set by default is Matérn 5/2). The same default options have been used for 

the estimation of the best correlation function family, with the trend type set to Linear 

(optimal setting found at the previous step). In the end, The Kriging best setting has 

resulted to be: 

➢ Trend type: Linear 

➢ Family of correlation functions: Matern-5_2  

➢ Type of correlation functions: Ellipsoidal (default) 

➢ Estimation method: CV (default) 
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➢ Optimization method: Genetic Algorithm (GA) (default) 

3.2.2 Metamodel-based AK-MCS Application  

The first rough Kriging metamodel constructed with {𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛}𝑖𝑛  is here adaptively 

refined within the metamodel-based AK-MCS framework introduced in Section 3.1.2. The 

steps concerning the framework application are illustrated in the way they have been 

applied to the PSS considered, in relation to the energy exchanged (𝐸𝑒𝑥) by the E-HX during 

an SBO accidental transient.  

1. Construction: a new Kriging metamodel is constructed at each 𝑛-th iteration using 

an I/O training set of increasing dimension, starting from the initial one 

{𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛}𝑖𝑛 made by 64 RELAP5-3D simulations. The Kriging features tailored 

on the initial training set (see Section 3.2.1), can be adjusted at each iteration of the 

adaptive procedure to improve the fit with the new training sets. The metamodel 

accuracy is improved specifically in proximity of the failure threshold (𝑌𝑡ℎ𝑟𝑒𝑠 = 90% 

of the energy exchanged during the reference transient). 

2. Generation of random input combinations: 𝑁𝑀𝐶𝑆 = 10.000 new combinations, 𝒳 =

(𝒙1, … , 𝒙𝑁𝑀𝐶𝑆
), are generated by LHS (see Table 2). The number of combinations 

𝑁𝑀𝐶𝑆  (= 10.000) gives a satisfactory trade-off between thoroughness of PSS state 

space exploration and computational cost.   

3. Metamodel evaluation: the sampled input combinations 𝒳 are run through the 

metamodel to predict the corresponding outputs of energy exchanged: �̂� =

(�̂�1, … , �̂�𝑁𝑀𝐶𝑆
).  

4. Convergence check: a double convergence criterion is defined. On the one hand, the 

level of accuracy of the metamodel should be increased as much as possible; on the 

other hand, the computational cost of the successive iterations (and corresponding 

RELAP5-3D simulations) should be kept to a feasible level.   

Accuracy is evaluated with respect to the 𝑁𝑣𝑎𝑙  combinations of the validation set 

(𝒳𝑣𝑎𝑙): �̂�𝑣𝑎𝑙 = (�̂�1, … , �̂�𝑁𝑣𝑎𝑙
) different from the training set. The predicted �̂�𝑣𝑎𝑙  
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values are compared to the corresponding RELAP5-3D outputs 𝒴𝑣𝑎𝑙  through the 

construction of Quality Indicators (QIs). No definitive guidelines are found in 

literature about the correct size 𝑁𝑣𝑎𝑙  of the validation set. [71] suggests 𝑁𝑣𝑎𝑙 ≫

𝑁𝑡𝑟𝑎𝑖𝑛, since a small 𝑁𝑣𝑎𝑙  can be misleading in case validation samples are taken, by 

chance, too close to training samples where the metamodel is clearly more refined 

[72]. However, this approach becomes extremely expensive in case of time-

demanding simulators. [73] proposes a “sequential validation design” to get to a 

meaningful validation while keeping 𝑁𝑣𝑎𝑙  small: validation is carried out gradually 

by adding validation samples in the unfilled regions of the input space to optimize 

the distance between the validation set and the training set. Here two validation sets 

are considered for the analysis of the energy output. The first one derived from 55 

simulated transients, with output 𝐸𝑒𝑥,% = 85 ÷ 95 %, and it is used to verify the 

metamodel accuracy around the limit surface. The second one includes 138 I/O 

simulated transients, with 𝐸𝑒𝑥,% values spreading all over the domain and it is 

employed to obtain an indication of the metamodel accuracy over the entire domain. 

The QIs used to quantify metamodel accuracy with respect to both validation sets 

are the well-known RMSE and two different predictivity indicators, 𝑄1, defined in 

[73], and 𝑄2 presented by [65]: 

𝑅𝑀𝑆𝐸 = √ ∑
(�̂�𝑖 − 𝑦𝑖)2

𝑁𝑣𝑎𝑙

𝑁𝑣𝑎𝑙

𝑖=1

 (8) 

𝑄1 = 1 −
∑ (�̂�𝑖 − 𝑦𝑖)

2 𝑁𝑣𝑎𝑙
𝑖=1

∑ (�̅�𝑣𝑎𝑙 − 𝑦𝑖)2𝑁𝑣𝑎𝑙
𝑖=1

 (9) 

𝑄2 =
𝑁𝑣𝑎𝑙 − 1

𝑁𝑣𝑎𝑙

(
∑ (�̂�𝑖 − 𝑦𝑖)

2 𝑁𝑣𝑎𝑙
𝑖=1

∑ (�̅�𝑣𝑎𝑙 − 𝑦𝑖)2𝑁𝑣𝑎𝑙
𝑖=1

), (10) 

 

where 𝑦𝑖 is the 𝑖-th output of {𝒳𝑣𝑎𝑙 , 𝒴𝑣𝑎𝑙}, �̂�𝑖  is the corresponding metamodel 

prediction and �̅�𝑣𝑎𝑙 is the mean value of all the real model outputs in the validation 

set. RMSE and 𝑄2 should be as low as possible, whereas 𝑄1 tends to 1 as the 
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prediction accuracy increases. Notice that the RMSE has the same unit of measure 

of the physical quantity of interest (𝐸𝑒𝑥,%) and, thus, it can be progressively 

compared to the exchanged energy output to understand whether the predictions 

are satisfactory. It can be also normalized (Normalized Root-Mean-Square Error, 

NRMSE) dividing it by �̅�𝑣𝑎𝑙 . 𝑄1 and 𝑄2 have similar expressions and, differently from 

RMSE, they take into account also the variability of the output in the validation set. 

The values of these QIs should be improved as much as possible through the 

successive iterations of the algorithm. In this work the convergence (stopping) 

criterion related to the metamodel accuracy is considered satisfied when the 

NRMSE evaluated on the “local” validation set constructed around 𝑌𝑡ℎ𝑟𝑒𝑠 becomes 

about 2%. On the other hand, if the metamodel quality is still unsatisfactory, the 

second convergence (stopping) criterion needs to be checked: further 

computational time is required to add a new algorithm iteration and to simulate 

new configurations by the BE-TH code in order to enrich the training set. The 

computational budget, i.e., the maximum number of simulations initially foreseen, 

has been here fixed to 100 RELAP5-3D simulations in addition to the initial ones  

(i.e., the 64 simulations belonging to {𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛}𝑖𝑛). When the computational 

budget is completely run out, even if Kriging accuracy is still not satisfactory, the 

procedure stops. 

5. Selection: if algorithm convergence has not been reached at step 4, new I/O 

simulations related to the so-called best candidates 𝒳∗ are run and the inputs and 

outputs added to the training set to refine the metamodel. The 𝑁𝑐𝑎𝑛𝑑  best candidates 

are selected among the 𝒳 generated at step 2 according to their 𝑈-function values. 

Combinations with 𝑈 < 1.96 are sorted in ascending order according to their 

predicted output value �̂� and, then, organized in 𝑁𝑐𝑎𝑛𝑑  equally-spaced bins. Then, one 

candidate is randomly picked from each bin. This procedure is implemented to avoid 

selecting candidates “clustered” in the same area of the input space (i.e., too similar 

to each other). Actually, combinations that are close in the input space share similar 

𝑈 values; hence, selecting the candidates only according to the 𝑁𝑐𝑎𝑛𝑑  lowest 𝑈 values 

would cause them to be restricted in the same area of the domain, instead of 
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spanning the whole input space. The selection procedure is illustrated in Fig. 2. 

𝑁𝑐𝑎𝑛𝑑 = 7 or 8  samples have been chosen as a satisfactory trade-off between 

computational cost, number of iterations of the algorithm and metamodel accuracy 

(see 1.3.1.1). Indeed, lower values of 𝑁𝑐𝑎𝑛𝑑  would require a larger number of 

algorithm iterations and training repetitions (i.e., higher computational cost) to 

obtain the same Kriging accuracy; also, an excessively small number of candidates 

implies a rougher exploration and “mapping” of the area close to the limit surface.  

On the other hand, limiting the number 𝑁𝑐𝑎𝑛𝑑  is useful in particular in the first 

iterations, when the metamodel is still inaccurate. Selecting many candidates 

according to its predictions may lead to a waste of computational time: actually, 

some candidates, simulated with the time-demanding BE-TH model, may later reveal 

to be not so useful for the scope of the analysis (e.g., they may lie far from the limit 

surface). In Fig. 2, the value 𝐸𝑒𝑥,% is reported on the 𝑥-axis, whereas 𝑦-axis displays 

the corresponding 𝑈-function values. It is clear from the dashed vertical lines how 

the bins are constructed by subdividing the 𝑥-axis in segments of the same length. 

𝒴∗ values are represented by diamonds, whereas all the samples with 𝑈 < 1.96 are 

shown as crosses. The shape of the graph shows that the closer is a point to 𝑌𝑡ℎ𝑟𝑒𝑠 =

90% , the lower its 𝑈 value is; this was easily foreseeable looking at equation (7). 

Once the best candidates 𝒳∗ have been selected and the corresponding I/O 

transients simulated with the BE-TH model to obtain the output 𝒴∗, the training set 

is enriched and steps 1 to 5 are repeated until convergence at step 4 is reached.  
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Figure 9: Identification of the best candidates (Step 5): random selection of input combinations 
with U < 1.96 divided in equally-spaced bins 

 

3.2.3 Metamodel Accuracy Evaluation and CR Characterization 

In the present section, the results of the application of the AK-MCS procedure are 

measured and, then, they are exploited to identify the CRs with respect to the FC “Low heat 

removal” concerning the energy exchanged output (𝐸𝑒𝑥). In particular, at first, the accuracy 

level reached by the Kriging metamodel at the end of the AK-MCS iterations is quantified 

by exploiting some indicators (e.g., standard deviations of metamodel predictions, RMSE, 

etc.) (3.2.3.1). Second, the Kriging metamodel is used to predict the outputs of a large 

number of new input combinations to find the critical ones and retrieve information about 

the shape of CRs. In the end, a graphical representation of the CR identified is provided 

(3.2.3.2). 
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3.2.3.1 Kriging Accuracy Evaluation 

The AK-MCS procedure has been stopped at iteration 𝑛𝑓𝑖𝑛 = 14, after enriching the 

initial training set {𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛}𝑖𝑛 with the inputs and outputs of 100 RELAP5-3D (i.e., 

maximum computational budget available). In Table 6 the salient aspects of each 𝑛-th 

iteration are reported.  

Table 6: results of the AK-MCS procedure applied to the energy output 
 

n  𝑵𝒕𝒓𝒂𝒊𝒏 �̅�𝟏  �̅�𝟐 𝝐𝑳𝑶𝑶𝒏𝒐𝒓𝒎 𝝐𝑳𝑶𝑶𝒂𝒃𝒔 

0 64 11.76 11.67 0.128 20.62 

1 71 11.09 10.99 0.130 19.39 

2 78 9.41 9.38 0.138 19.05 

3 85 8.83 8.80 0.148 18.76 

4 92 8.39 8.35 0.152 18.36 

5 99 7.10 7.06 0.159 18.24 

6 106 7.60 7.55 0.169 18.18 

7 113 7.50 7.46 0.169 17.36 

8 121 7.35 7.30 0.167 16.37 

9 129 7.41 7.36 0.166 15.61 

10 136 7.23 7.18 0.176 16.61 

11 143 7.01 6.96 0.175 15.98 

12 150 4.56 4.21 0.177 15.66 

13 157 4.61 4.10 0.126 10.81 

14 164 4.47 3.92 0.119 9.69 
 

In the 3rd and 4th columns, two average standard deviations (𝜎) are reported; they are 

calculated with respect to two different sets of metamodel outputs �̂�: 𝜎1 in column 3 is 

evaluated with respect to the outputs of all the combinations generated at step 2 of the AK-

MCS procedure, which are spread throughout the domain; instead, 𝜎2 in column 4 is 

calculated using only the outputs of those combinations for which 𝑈 < 1.96. Both the 

measures have been used in the successive iterations of the algorithm in order to check the 

Kriging gradual refinement, without resorting to the computationally expensive validation 

set. In particular, 𝜎1 allows following the improvement in the metamodel accuracy over the 

entire domain, whereas 𝜎2 is used to focus on the accuracy increase nearby the limit 

surface. As expected, the metamodel general improvement during the iterations makes 

both average standard deviations decrease. However, 𝜎2 diminishes more rapidly due to 
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the nature of the AK-MCS algorithm, which adds new I/O data with outputs close to 𝑌𝑡ℎ𝑟𝑒𝑠 

(where 𝑈 is lower), thus making the predictions more accurate in proximity of the limit 

surface than elsewhere in the domain (e.g., at iteration 𝑛𝑓𝑖𝑛 = 14, 𝜎1 is equal to 4.47, while 

𝜎2 is equal to 3.92). The Kriging settings (see Section 3.2.1) have been adjusted from 

iteration 12 onwards by changing the correlation function family from Matérn 5/2  to 

Exponential, in order to improve the fit with the new, expanded training set; indeed, looking 

at the evolution of the two average standard deviations up to that point, it can be noticed 

that the corresponding values were not decreasing anymore and the metamodel 

improvement seemed stuck. 

The last two columns of Table 6 report the Leave-One-Out (LOO) error evolution with 

iterations: column 5 shows the LOO error directly returned by the UQLab tool, also called 

normalized LOO error (𝜖𝐿𝑂𝑂𝑛𝑜𝑟𝑚), whereas column 6 reports its absolute version 

(𝜖𝐿𝑂𝑂𝑎𝑏𝑠):   

𝜖𝐿𝑂𝑂𝑛𝑜𝑟𝑚 =
1

𝑁𝑡𝑟𝑎𝑖𝑛
[

∑ (𝑦(𝒙𝒊)−�̂�(−𝑖)(𝒙𝒊))
𝑁𝑡𝑟𝑎𝑖𝑛
𝑖=1

2

𝑉𝑎𝑟[𝒴𝑡𝑟𝑎𝑖𝑛]
]            𝜖𝐿𝑂𝑂𝑎𝑏𝑠 = 𝜖𝐿𝑂𝑂𝑛𝑜𝑟𝑚 ∙ 𝑉𝑎𝑟[𝒴𝑡𝑟𝑎𝑖𝑛], (11) 

where �̂�(−𝑖)(𝒙𝑖) is the prediction made by the metamodel in correspondence of the 𝑖-th 

combination 𝒙𝒊  ∈  𝒳𝑡𝑟𝑎𝑖𝑛 and obtained using all the {𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛} pairs of values 

available, except {𝑥𝑖, 𝑦𝑖}, and 𝑉𝑎𝑟[𝒴𝑡𝑟𝑎𝑖𝑛] is the variance of the training outputs. The only 

difference is in the term 𝑉𝑎𝑟[𝒴𝑡𝑟𝑎𝑖𝑛] representing the output variability in the training set. 

The LOO error is generally used (as the 𝜎 values previously introduced) to assess model 

accuracy when there is no availability of an external validation set due to its high 

computational cost; thus, the evolution of these two quantities has been followed since it 

gives an idea about the Kriging progressive refinement. A gradual decrease was expected, 

but what occurs in reality is that 𝜖𝐿𝑂𝑂𝑛𝑜𝑟𝑚  initially rises and, then, sharply drops reaching 

its lowest value at 𝑛𝑓𝑖𝑛 = 14. This behaviour is justified by equation (11): the metamodel 

becomes progressively more refined, causing the numerator of 𝜖𝐿𝑂𝑂𝑛𝑜𝑟𝑚  to decrease; 

however, at the same time, also 𝑉𝑎𝑟[𝒴𝑡𝑟𝑎𝑖𝑛] at the denominator diminishes, because the I/O 

data are all selected with outputs close to 𝑌𝑡ℎ𝑟𝑒𝑠 and hence the variability of 𝒴𝑡𝑟𝑎𝑖𝑛  reduces. 

On the other hand, 𝜖𝐿𝑂𝑂𝑎𝑏𝑠 , not containing the 𝑉𝑎𝑟[𝒴𝑡𝑟𝑎𝑖𝑛] term, shows a more regular 

(decreasing) trend.   
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The best way to follow the Kriging accuracy improvement with iterations, if enough 

computational power is available, is to construct an external validation set and to evaluate 

the corresponding QIs by computing the Kriging predictions with respect to the validation 

data (as explained at step 4 of the AK-MCS procedure). For the analysis of the energy output, 

two validation sets have been constructed (see Section 3.2.2), one with output values close 

to the limit surface, named “local”, and the other with output values more spread over their 

domain, named “global”. Three QIs have been computed for each validation set: RMSE, 𝑄1 

and 𝑄2 (see equations (8), (9) and (10)). The QIs evolution is illustrated in Figs. 10 and 11. 

Note that the RMSE in Fig. 10 is expressed in percentage because it has the same unit of 

measure of the predicted output, i.e., the percentage energy exchanged (𝐸𝑒𝑥,%); but, it 

should not be confused with the NRMSE.   

The two curves in each plot (Fig. 10, and Fig. 11(a) and 11(b)) are referred to different 

validation sets (local and global), but they all show the same general trend: a decrease in 

RMSE and 𝑄2, and an increase towards 1 for 𝑄1, representing the improvement of the 

metamodel accuracy. The three curves with circles associated to the validation set whose 

outputs are near 𝑌𝑡ℎ𝑟𝑒𝑠 (local) display a faster improvement in accuracy because of the 

nature of the metamodel-based AK-MCS procedure, which gradually makes the metamodel 

more refined around the failure threshold. The diamond of different color in 

correspondence of the 12th iteration symbolizes the change of Kriging setting (as already 

explained the correlation function family has been changed from Matérn 5/2 to 

Exponential). The two curves in Figs. 11(a) and 11(b) cross because of 𝑄1 and 𝑄2 

mathematical expressions. For example, for what concerns 𝑄2, being the metamodel at the 

beginning still inaccurate, the numerator in equation (10) is small for both the local and 

global validation sets; on the contrary, the denominator is obviously larger for the global 

validation set, with data spread all over the domain than the local validation set. This is the 

reason why at the beginning the 𝑄2 value is lower (and hence better) when evaluated with 

respect to the most various validation set (curve with crosses in Fig. 11(b)) than with the 

local validation set (curve with circles in Fig. 11(b)), unlike what is observed at the end of 

the AK-MCS procedure. The same behavior with respect to the two validation sets is 

observed also for 𝑄1, but in the opposite way (see equation (9)). 
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Figure 10: RMSE evaluated with respect to two validation sets (energy output) 

 

 

Figure 11: 𝑸𝟏 (a) and 𝑸𝟐 (b) predictivity indicators evaluated with respect to the two validation 
sets (energy output) 

 

Table 7 reports all the QI values at the last iteration, with the 𝑅𝑀𝑆𝐸𝑠  computed in both 

the absolute and normalized forms:  

Table 7: QIs at the end of AK-MCS procedure - 14th iteration (energy output) 
 

Quality indicator (QI) RMSE [%] NRMSE [%]  Q1 Q2 

Validation EVERYWHERE 4.74 5.95% 0.728 0.270 
Validation NEAR 𝒀𝒕𝒉𝒓𝒆𝒔 1.94 2.24% 0.917 0.081 
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The final results are generally satisfying: a 𝑅𝑀𝑆𝐸 of 1.94 is acceptable if compared to 

𝐸𝑒𝑥,%, which usually varies from 70% to 100% in the simulated transients. A value of 2.24% 

for the 𝑁𝑅𝑀𝑆𝐸 is remarkable since it could be taken, at first instance, as a measure of the 

percentage error in prediction: an error around 2% near the limit surface is considered 

satisfactory.  

3.2.3.2 CRs Characterization with respect to the FC “Low Heat Removal” 

The Kriging metamodel obtained at the end of the AK-MCS iterations has been 

demonstrated capable of predicting the outputs in correspondence of new input 

combinations with a good accuracy level. Thus, the Kriging has been exploited to predict 

the outcomes of a large number (10.000) of new input combinations 𝑥 in order to: (i) find 

the critical ones, with reference to the PSS function, i.e. �̂� = 𝑓(𝑥) ≤ 𝑌𝑡ℎ𝑟𝑒𝑠; and (ii) retrieve 

information about the shape of the CRs of the PSS operation. Given that the input space 

dimensionality is 𝑀 = 5, a graphical representation of the unique CR identified is provided 

through a series of scatter plots with paired inputs representing the CR two-dimensional 

projections (Fig. 12): green diamonds are used to indicate combinations leading to a safe 

operation (i.e., 𝐸𝑒𝑥,% ≥ 90%), whereas red crosses represent critical inputs when the PSS 

fails its function. 
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Figure 12: Scatter plots of the PSS CR (energy output) 
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The subplots in Fig. 12 allow catching the influence of the five input parameters on the 

amount of energy exchanged (𝐸𝑒𝑥) by the PSS; in particular, each scatter plot provides 

information about the effect of the interaction between the two input parameters therein 

represented (whatever the values of the other parameters). The results show that only four 

of the five input parameters have significant influence on 𝐸𝑒𝑥 . Indeed, 𝐴𝐴𝑉  is not very 

relevant for driving the PSS response in terms of the energy exchanged: in fact, whatever 

its value, the DHR function may or may not be successfully accomplished (green diamonds 

or red crosses, indifferently). The interaction of 𝑁𝐶%  with the other input parameters 

(except 𝐴𝐴𝑉) is shown in Fig. 12(b), (c) and (d). In particular, in all the subplots the 

maximum 𝑁𝐶% value corresponding to a combination of functional success is around 30%, 

suggesting that PSS fails to provide its function whenever 𝑁𝐶% > 30%, independently of 

the values of the other parameters. This is coherent with the underlying physics: the 

presence of non-condensable gases leads to a reduction in the heat transfer coefficient 

during condensation in the E-HX (see Section 2.1) and, in fact, the higher 𝑁𝐶% , the worse 

the impact on 𝐸𝑒𝑥 . According to Fig. 12(b), (c) and (d), the upper limit for 𝑁𝐶% is generally 

reduced in case of interactions with other parameters that reduce the 𝐸𝑒𝑥  value, i.e., 

variations of 𝐷𝐸𝐿𝐴𝑉, 𝐷𝐸𝐿𝑀𝑆𝐼𝑉  and 𝐴𝑀𝑆𝐼𝑉  from the values in the reference conditions (see 

Table 3). The results are represented by triangle-shaped safe region (green diamonds). For 

example, a value 𝐴𝑀𝑆𝐼𝑉 = 0.035% represents  a leakage in the MSIV that reduces the 

amount of steam directed into the PSS, thus lowering 𝐸𝑒𝑥: in this situation, the maximum 

value of 𝑁𝐶%, for which the PSS function can still be successfully accomplished, is about 

𝑁𝐶% = 15%  (whatever the values taken by the other three parameters). Also, 𝐷𝐸𝐿𝐴𝑉 plays 

a central role in 𝐸𝑒𝑥  determination. Indeed, if AV opens with a certain delay, i.e., 𝐷𝐸𝐿𝐴𝑉 > 0, 

the whole heat transfer process is delayed and this impacts severely on 𝐸𝑒𝑥 , especially 

because the largest amount of energy is exchanged in the first part of the accidental 

transient. Moreover, if AV is not open, the PV pressure may rise, which causes the opening 

of the SRV and, hence, vapor discharging into the containment instead of condensing inside 

the PSS. Looking at subplots 12(b), (e), (h) and (i), the maximum 𝐷𝐸𝐿𝐴𝑉 for which the PSS 

function can still be accomplished is about 400 s: however, this upper limit is, in general, 

lowered in case of interactions with other parameters (as for input 𝑁𝐶%). For example, 

when varied together with 𝐴𝑀𝑆𝐼𝑉  (see subplot 12(h)), again a triangle-shaped region of safe 
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function is observed: e.g., if 𝐴𝑀𝑆𝐼𝑉 = 0.025%, the maximum 𝐷𝐸𝐿𝐴𝑉 value for successful 

function is about 200 sec. For what concerns 𝐷𝐸𝐿𝑀𝑆𝐼𝑉 , the observed upper limit is about 

4000 s. The MSIV closure is necessary to isolate the turbine side and start sending the vapor 

into the PSS for condensation; hence, if the closure is delayed, less vapor enters the PSS in 

the first part of the transient and 𝐸𝑒𝑥  is reduced. Whereas a priori the expected interaction 

of 𝐷𝐸𝐿𝑀𝑆𝐼𝑉  with other input parameters negatively affecting 𝐸𝑒𝑥  could have been a decrease 

in the value of 𝐷𝐸𝐿𝑀𝑆𝐼𝑉  leading to the PSS functional failure. Instead, what is observed from 

the simulations in case of interaction with, e.g., 𝐷𝐸𝐿𝐴𝑉 or 𝐴𝑀𝑆𝐼𝑉  is different (see subplots 

12(i) and (j)). In such cases, the safe region is square-shaped. For example, focusing on the 

interaction between 𝐷𝐸𝐿𝑀𝑆𝐼𝑉  and 𝐷𝐸𝐿𝐴𝑉 , the upper limit of  𝐷𝐸𝐿𝑀𝑆𝐼𝑉  should, in general, 

decrease if 𝐷𝐸𝐿𝐴𝑉 > 0 𝑠, independently of the values of the other three parameters; 

instead, the upper limit remains about 4000 s (except in the extreme case where 𝐷𝐸𝐿𝐴𝑉 

reaches its own upper limit causing PSS functional failure by itself). This behaviour (and 

the consequent square-shaped regions) is probably due to the influence of 𝐷𝐸𝐿𝑀𝑆𝐼𝑉  on 𝐸𝑒𝑥 , 

which is more significant than that of other input parameters. For example, considering the 

interaction between 𝐷𝐸𝐿𝑀𝑆𝐼𝑉  and 𝐴𝑀𝑆𝐼𝑉 , the possible presence of a certain leakage in the 

MSIV after its closure (i.e., 𝐴𝑀𝑆𝐼𝑉 > 0%) is less relevant in terms of contribution to the 

amount of energy exchanged, if it occurs in case of a significant delay in the MISV closure, 

which is much more influential.  

Other interesting conclusions about the CR can be inferred from the PCP (Fig. 13). PCP 

allows displaying in a unique plot all the five input values corresponding to each 

combination; each of the five vertical axes reports the values of one input parameter 

(normalized on its range) and, hence, one input combination is represented by a line 

connecting in the horizontal direction the corresponding input values on the different axes.  

In particular, Fig. 13 shows the quantile representation of all the predicted combinations 

together: the solid blue lines are representative of the PSS safe operation, whereas the 

dashed orange lines represent the input combinations leading the PSS to fail its function. In 

particular, in both cases (solid or dashed lines) the line in the middle stands for an “average” 

combination (average safe combination or average failure combination), whereas the other 

two external lines are its 0.25 upper and lower quantiles (also called quartiles).  
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Figure 13: PCP with 0.25 quantiles (energy output) 
 

The contribution of 𝐴𝐴𝑉  to safe function immediately stands out: the normalized value 

associated to the blue curve in the middle is about the same as the one observed for 

functional failure (orange curve in the middle). This confirms the scarce importance of 𝐴𝐴𝑉  

in the providing of the PSS function, as already seen from Fig. 12, but here in a more 

quantitative way. Moreover, the solid blue lines are mainly located in the lower part of the 

graph, close to the 10% of the range of variation of each input parameter (except for 𝐴𝐴𝑉 , 

as previously mentioned); on the contrary, the dashed orange lines occupy quite a large 

portion (in particular, the middle part) of these intervals, meaning that the majority of the 

input combinations leads to PSS functional failure. The same result can be deduced from 

Fig. 12, where the red crosses are far more abundant than the green diamonds. A word of 

caution is in order in this respect. This result does not mean that the PSS analysed is more 

prone to fail than to succeed, since this type of conclusion should be supported by a 

probabilistic analysis of the occurrence of the input combinations, which is not carried out 

in this work. Actually, the probability estimated for the event that the PSS fails its function 

strongly depends on: (i) the characteristics of the system itself, and (ii) the (data and/or 

expert-based) probability distributions of the PSS input parameters. In this application, as 

mentioned in the Introduction and Section 2.1, no realistic probability distributions are 
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assigned to the PSS parameters, since the objective is not to carry out a reliability analysis 

of the PSS, but to describe how the metamodel-based AK-MCS procedure can be exploited 

for critical regions characterization.  

To sum up, the metamodel-based AK-MCS has been demonstrated capable of 

approximating 𝐸𝑒𝑥  output with good accuracy, within the aim of exploring the PSS CRs 

relative to the FC “Low heat removal”, by resorting to an I/O training set of 164 RELAP5-

3D simulations. A unique CR has been identified and correctly visualized with multiple 

scatter plots which show how the PSS is more prone to failure in case of combined action of 

the input parameters varying together, rather than in case of one-at-a-time variations. 

Moreover, most of the input combinations predicted by the Kriging metamodel have been 

found to lead the PSS to failure, suggesting that, in a hypothetical design phase, the 

variations of such relevant inputs should be limited only on a small portion of the explored 

ranges. To conclude, these results could be even exploited within a more general reliability 

analysis for PSSs.  
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4 Novel Framework for System 

CRs Characterization in case of 

State-space Non-smoothness 

and Multimodality  

The exploration of a system state-space and the characterization of the conditions 

leading to failure (CRs) is a challenging problem, not only due to the need of replacing the 

computationally demanding system codes typically available with fast-running 

metamodels to speed up the calculation, but also due to the possible irregularity of the 

state-space. Indeed, in case of non-smoothness and/or multimodality of the state-space, 

traditional metamodeling techniques, like the Kriging metamodel developed within an AK-

MCS procedure (see Chapter 3), lead to large errors because they require the approximated 

function to show accommodating properties of regularity (e.g., continuity and smoothness) 

[18]. This is the case of the pressure output (𝑝𝑚𝑎𝑥) identified as relevant for the analysis of 

the PSS described in Chapter 2. The maximum value reached by the pressure inside the PV 

is calculated during the accidental transient (lasting about 8h) and it has shown a strong 

non-smooth and multimodal distribution (see Fig. 8), with at least two peaks of 

concentration: one in correspondence of  𝑝𝑚𝑎𝑥 = 70.0 𝑏𝑎𝑟 and the other around the failure 

threshold (75.5 bar).  
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In the first part of this chapter, a novel framework for exploring the state-space of a 

generic system, for which a time-demanding model is available and under the specific 

condition of non-smooth and multimodal output is proposed. The main goal is to iteratively 

run a (possibly low) number of time-demanding simulations to construct an accurate 

metamodel not suffering for the output non-smoothness and multimodality. Then, the 

metamodel is exploited to predict the outputs corresponding to a large number of input 

combinations, which are then used to retrieve information about the CRs characteristics.  

 

Figure 14: flow diagram of the exploration framework proposed for tackling the output non-
smoothness and multimodality 

 

The framework consists in three main steps, as reported in Fig. 14. In short, the first step, 

i.e., “dimensionality reduction”, aims at identifying the input parameters most affecting the 

output distribution, specifically those related to the output clusters in correspondence of 

the failure threshold, being the ones related to the CRs. We resort to a DBSA method 

supported by FMM technique. The second step, i.e., “iterative metamodel training”, aims at 

iteratively constructing an accurate and fast-running metamodel to replace the real model 

simulations on the reduced input space, with specific attention to the boundary of the CR 

(limit surface), to identify the critical input combinations providing a limit for the system 

safe operation. The metamodel accuracy is verified (e.g., exploiting a validation set) and, 

then, in the third step, i.e., “CR representation & information retrieval”, the metamodel is 

employed to evaluate the outcomes of a large number (several thousands) of new input 

combinations to retrieve information about the CRs, like their number and shape. Finally, 
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the CRs are graphically represented by exploiting high-dimensional data visualization 

techniques, like scatter plots or PCP.  

The details about this framework are provided in Section 4.1 which is organized in three 

subsections, one for each step of the framework: at first, dimensionality reduction step is 

presented with the details of the FMM construction (4.1.1); then, a brief recap of the AK-

MCS technique (described in detail in Section 3.1.2) is provided (4.1.2) and, finally, it is 

explained how the Kriging metamodel obtained at the end of AK-MCS iterations can be 

exploited for CRs characterization (4.1.3).  

In Section 4.2, this novel framework has been applied for the characterization of the PSS 

CRs with respect to the FC “Steam release in the containment”, defined according to 𝑝𝑚𝑎𝑥. 

In this case, the time-demanding system model to be replaced is a BE-TH model developed 

in RELAP5-3D (see Section 2.2); the DBSA method chosen for dimensionality reduction is 

the Hellinger distance method [46], [54] and the metamodel is iteratively trained, again, 

according to an AK-MCS procedure (see Chapter 3). Finally, scatter plot technique is 

exploited for the CR visualization. In detail, at first, the FMM approximation has been 

constructed and used in support of the Hellinger distance method to rank the five input 

parameters initially selected for the analysis of the PSS (see Section 2.1) (4.2.1). Then, after 

reducing the dimensionality of the problem, a Kriging metamodel has been constructed and 

refined through an AK-MCS procedure properly tailored for the analysis of 𝑝𝑚𝑎𝑥 (4.2.2). The 

results of the application are presented both in terms of the accuracy level reached by the 

metamodel and graphical representation of the CR (4.2.3). Finally, an alternative approach 

found in literature [18], based on the combination of a SVC and AK-MCS technique, is briefly 

presented and the results of its application compared to those of the framework previously 

introduced (FMM+AK-MCS), in terms of accuracy and computational cost (4.2.4).  
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4.1 Novel Framework Presentation 

4.1.1 Dimensionality Reduction  

The purpose of dimensionality reduction is to find a lower-dimensional subspace of 

variables, i.e., 𝑿𝑅  𝜖 𝐷𝑿𝑅  ⊂ ℝ𝑅 (where 𝑅 < 𝑀 is the reduced dimensionality of the problem), 

to build a reduced model still capable of correctly representing the system behavior [42]. 

From the point of view of exploring the state-space for CRs characterization, reducing the 

dimensionality means finding a more effective I/O training set to construct a more accurate 

metamodel. In case of non-smooth and/or multimodal output this is still valid, but with 

specific attention given to those variables contributing most to the output clusters 

corresponding to system failure conditions. The dimensionality reduction step of the 

proposed framework combines the use of a SA method to rank the input parameters 

according to some sensitivity indices, and the application of FMM technique to approximate 

the output non-smooth and multimodal distribution. For the sake of clarity, these two 

fundamental ingredients are treated separately in the following subsections (4.1.1.1 and 

4.1.1.2).  

4.1.1.1 Sensitivity Analysis  

Several examples are available in literature about how to carry out a dimensionality 

reduction and many of them rely on SA techniques. Among the SA techniques, it is possible 

to identify two families: Local and Global. The Local approach to SA considers small 

variations of each input parameter around its nominal value, whereas Global SA [45] allows 

to quantify the contribution of an input to the variability of the output, computed over the 

entire range of both the input and the output. Global SA offers higher capabilities, especially 

when model responses are not regular (e.g., non-linear and non-monotone), but at a higher 

computational cost [46].  

Global SA methods can be divided into three categories: 1) RBSA methods, 2) VBSA 

methods and 3) DBSA methods (See Table 1). RBSA or non-parametric methods [47] exploit 
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regression techniques to fit a regression model on a set of I/O relations and to use the 

regression coefficients as indices of sensitivity. RBSA methods are typically the simplest 

ones, also associated to the lowest computational cost, but their success strongly depends 

on the output form which is often required to be linear. Indeed, if the regression model does 

not fit the underlying I/O relationships (e.g., in case of non-smoothness), the SA performs 

really poorly. Examples of widespread RBSA methods are the SRC and PCC methods already 

introduced in 1.3.2.2. VBSA methods [74] quantify the contribution of each input parameter 

(first-order effect) and each possible two- or high-order interactions among multiple 

parameters to the total output variance; hence, the ratio of each contribution to the total 

variance is interpreted as a sensitivity coefficient [75]. VBSA methods are the most 

widespread, because they do not introduce any hypothesis on the model since they do not 

carry out any approximation of it. Anyway, VBSA methods are unable to distinguish 

between output structures (i.e., how the output values are organized in the state-space) 

having identical global variance, but different distributions and spatial organizations [75]. 

Thus, they may suffer for output multimodality since, by definition, the calculation of 

variance in case of a multimodal variable is not trivial. The most famous VBSA method is 

the Sobol’ method [49], [50], [51]. Finally, DBSA or moment-independent methods rank the 

input variables most affecting the entire output distribution and they may overcome the 

issue of non-smoothness and multimodality if the output distribution is properly 

approximated, despite its irregular form, by means of FMM technique [57]. FMM are 

classically implemented for pattern recognition to approximate the output distribution, 

even in case of multimodality, by identifying the output clusters (corresponding to the 

different output modes) and, hence, representing the output as a linear combination of 

known distributions, also called components (e.g., Gaussian, Exponential, etc.). Anyway, 

FMM can be also adopted as a support for SA: indeed, the output clustering is mapped to 

the input space and, in the end, the contribution of each input to the clustering of the output 

is ranked according to the different DBSA methods. Examples of DBSA methods are the 

already mentioned 𝛿 indicator [52], input saliency [53], Hellinger distance [54] and 

Kullback-Liebler divergence [54].  
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4.1.1.2 Finite Mixture Models Approximation  

FMM application for SA entails following at the beginning the same procedure adopted 

in case of the more general pattern recognition: the primary goal is to find the appropriate 

type and number of components (𝑘) to approximate the output distribution, given a set of 

I/O relations. The best 𝑘 is historically determined through the application of the 

Expectation Minimization (EM) algorithm [76].  

Here is provided a description of the FMM construction process through the EM 

algorithm according to [77]. Let assume a set of  𝑁𝑡𝑟𝑎𝑖𝑛output variables 𝒴𝑡𝑟𝑎𝑖𝑛
𝐹𝑀𝑀 =

{𝑦1, … , 𝑦𝑁𝑡𝑟𝑎𝑖𝑛
}, the generic 𝑦𝑖 is said to follow a 𝑘-component finite mixture distributions if 

its PDF can be written as: 

𝑝(𝑦𝑖|𝚯) = ∑ 𝜋𝑗𝑝𝑗(𝑦𝑖|Θ𝑗),

𝑘

𝑗=1

 (12) 

where {𝜋𝑗, 𝑗 = 1, . . , 𝑘} are the mixing parameters or weights, Θ𝑗  are the parameters of 

each 𝑗-th component and 𝚯 = {𝜋1, … 𝜋𝑘 , Θ1, … , Θ𝑘} is the complete set of mixture 

parameters; being probabilities, 𝜋𝑗  must satisfy:  

∑ 𝜋𝑗 = 1.

𝑘

𝑗=1

 (13) 

Considering the set of samples 𝒴𝑡𝑟𝑎𝑖𝑛, the log-likelihood corresponding to a 𝑘-

component mixture is:  

log 𝑝(𝒴𝑡𝑟𝑎𝑖𝑛
𝐹𝑀𝑀 |𝚯) = log ∏ 𝑝(𝑦𝑖|𝚯)

𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1

= ∑ log ∑ 𝜋𝑗𝑝(𝑦𝑖

𝑘

𝑗=1

𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1

|Θ𝑗), (14) 

and the related ML estimate reads: 

�̂� = arg max
𝚯

 { log 𝑝(𝒴𝑡𝑟𝑎𝑖𝑛
𝐹𝑀𝑀 |𝚯) }. (15) 

�̂� cannot be found analytically since it implies to solve a non-linear equations system. 

Hence, the solution is provided through the application of EM Algorithm which interprets 

𝒴𝑡𝑟𝑎𝑖𝑛
𝐹𝑀𝑀  as a set of incomplete data. The “missing part” is represented by a set of labels, i.e.,  
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𝒵 = {𝒛(1), … , 𝒛(𝑁𝑡𝑟𝑎𝑖𝑛)}, associated to the 𝑦𝑖 values numbered 𝑁𝑡𝑟𝑎𝑖𝑛, where each 𝑖-th label is 

a binary vector, i.e.,  𝒛(𝑖) = {𝑧1
(𝑖)

, … , 𝑧𝑘
(𝑖)

}, whose components are all zeros except for 𝑧𝑗
(𝑖)

=

1, i.e., the 𝒛(𝑖) component associated to the 𝑗-th distribution of the mixture that has 

generated 𝑦𝑖. Now, the complete log-likelihood for the estimation of �̂� can be written as: 

log 𝑝(𝒴𝑡𝑟𝑎𝑖𝑛
𝐹𝑀𝑀 , 𝒵|𝚯) = ∑ ∑ 𝑧𝑗

(𝑖)
log[ 𝜋𝑗𝑝(𝑦𝑖|Θ𝑗)]

𝑘

𝑗=1

𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1

. (16) 

The EM Algorithm provides a sequence of estimates {�̂�(𝑡) 𝑤𝑖𝑡ℎ 𝑡 = 0, 1, 2 … } through 

the alternate realization of two steps, until some convergence criterion is satisfied:  

➢ E-step: given the 𝒴𝑡𝑟𝑎𝑖𝑛
𝐹𝑀𝑀  estimate through the current �̂�(𝑡), and considering that 

log 𝑝(𝒴𝑡𝑟𝑎𝑖𝑛
𝐹𝑀𝑀 , 𝒵|𝚯) is linear with respect to 𝒵, the conditional expectation of the log-

likelihood is computed through the construction of the so-called 𝑄-function by 

simply evaluating the conditional expectation, i.e., 𝑊 ≡ 𝐸[ 𝒵 | 𝒴𝑡𝑟𝑎𝑖𝑛
𝐹𝑀𝑀 , �̂�(𝑡)], and 

plugging it into log 𝑝(𝒴𝑡𝑟𝑎𝑖𝑛
𝐹𝑀𝑀 , 𝒵|𝚯): 

𝑄 (Θ, �̂�(𝑡)) ≡  𝐸[ log 𝑝(𝒴𝑡𝑟𝑎𝑖𝑛
𝐹𝑀𝑀 , 𝒵|𝚯) | 𝒴𝑡𝑟𝑎𝑖𝑛

𝐹𝑀𝑀 , �̂�(𝑡)] = log 𝑝(𝒴𝑡𝑟𝑎𝑖𝑛
𝐹𝑀𝑀 , 𝑊|𝚯). (17) 

Knowing that 𝑧𝑗
(𝑖)

 coefficients are of binary kind, Bayes law can be expoited to calculate 

their conditional expectation:  

𝓌𝑗
(𝑖)

≡  𝐸[ 𝑧𝑗
(𝑖)

 | 𝒴𝑡𝑟𝑎𝑖𝑛
𝐹𝑀𝑀 , �̂�(𝑡)] = Pr[ 𝑧𝑗

(𝑖)
= 1 | 𝑦𝑖 , �̂�(𝑡)] =

�̂�𝑗(𝑡)𝑝 (𝑦𝑖|Θ̂𝑗(𝑡))

∑ �̂�𝑚(𝑡)𝑝 (𝑦𝑖|Θ̂𝑚(𝑡))𝑘
𝑚=1

, (18) 

where 𝜋𝑗  and 𝓌𝑗
(𝑖)

 are the respectivey the a priori probability and a posteriori 

probability, after observing 𝑦𝑖 , that 𝑧𝑗
(𝑖)

= 1.  

➢ M-step: the mixture parameters are updated, under the constraints introduced by 

equation (13), according to:  

�̂�(𝑡 + 1) = arg max
𝚯

 {𝑄 (Θ, �̂�(𝑡))} (19) 

Anyway, classical EM algorithm presents several drawbacks: it is a local method, thus, it 

is sensitive to initialization and, for certain kinds of mixtures, it may converge toward an 
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estimate at the boundary of parameter space where the likelihood is unbounded. One 

possible solution found in literature is represented by the so-called “merge and split” 

technique [78], which eliminates the necessity of a careful initialization of EM algorithm 

and avoids the problem of getting stuck in local minima. Searching for the best mixture of 

models, local minima may arise if there are too many components in one area and too few 

in another; indeed, points with lower likelihood are found when trying to move one 

component from the overpopulated region to the underpopulated region. Split and merge 

technique manages to tunnel through log-likelihood barriers by merging two components 

in the overpopulated region and simultaneously splitting a component in the 

underpopulated region. For the exploration framework presented in this thesis, it is 

proposed the SNOB algorithm, introduced for the first time in [58] and then updated 

through the years and implemented in MATLAB by [79]. This SNOB version is based on the 

EM algorithm supported by the merge and split technique and exploits the MML inference 

criterion to select the best number of components 𝑘:  

𝐼(𝜣|𝒴𝑡𝑟𝑎𝑖𝑛
𝐹𝑀𝑀 ) = 𝐼(𝑘) + 𝐼(𝝅) + ∑ 𝐼(𝛩𝑗) + 𝐼(𝒴𝑡𝑟𝑎𝑖𝑛

𝐹𝑀𝑀 |𝜣)

𝑘

𝑗=1

,  (20) 

where 𝒴𝑡𝑟𝑎𝑖𝑛
𝐹𝑀𝑀 = {𝑦1, … , 𝑦𝑛} are the output values of the transients simulated and 𝚯 =

{𝜋1, … , 𝜋𝑘 , Θ1, … , Θ𝑘} are the mixture parameters (𝜋𝑗  and 𝑝𝑗(𝑦|Θ𝑗) are respectively the 

weight and PDF of the 𝑗-th component). The output approximation is encoded in a message 

which comprises all its terms. The lower is the encoding of information, i.e., 𝐼(𝚯|𝒴𝑡𝑟𝑎𝑖𝑛
𝐹𝑀𝑀 ), the 

lower is the message length and, hence, the more accurate is the output distribution 

approximation with that mixture of components [80]. In particular, 𝐼(𝑘) represents the 

encoding of the number of components (𝑘), 𝐼(𝝅) is the encoding of the weights, ∑ 𝐼(Θ𝑗)𝑘
𝑗=1  

is the encoding of the component parameters (Θ𝑗) and 𝐼(𝒴𝑡𝑟𝑎𝑖𝑛
𝐹𝑀𝑀 |𝚯) is the encoding of the 

data. All these terms are logarithmic terms and in the most favorable situations they could 

be even negative. To sum up, the MML criterion is a trade-off between the complexity of the 

model and the goodness of fit [81]; indeed, when a new component is added the encoding 

of the new component parameters increases the message length, while 𝐼(𝒴𝑡𝑟𝑎𝑖𝑛
𝐹𝑀𝑀 |𝚯) term 

reduces it due to the improved fit quality.  
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The SNOB algorithm allows the user to choose among several types of distributions (i.e., 

model space), e.g., Gaussian, Weibull, Exponential etc. The algorithm automatically finds 

the best 𝑘 according to that type and provides in output the MML metric that can be used 

to justify the model space selection. The solution associated to the lowest MML value is the 

most accurate for the case study.  

Once the parameters of the mixture of models are known, the output distribution is 

completely characterized and the clusters obtained may be representative of safe 

conditions, whereas others of failure conditions. For Global SA, the focus is shifted to the 

input space and the output clustering is exploited to cluster also the inputs. The PDFs of 

each input variable (𝑥𝑚) with the conditioning on the different 𝑗-th clusters are constructed, 

i.e., 𝑝(𝑥𝑚| Θ𝑗𝑚), and, then, the difference between 𝑝(𝑥𝑚| Θ𝑗𝑚) and the input common 

distribution, i.e., 𝑝(𝑥𝑚) is measured according to one of the DBSA methods introduced 

before (e.g., Hellinger distance, Kullback-Liebler divergence etc.). These measures allow to 

rank the input variables contribution to the different output clusters, with special attention 

to the clusters of interest, e.g., those related to the failure of the system, and, finally, the 

most important inputs are selected. 

4.1.2 Iterative Metamodel Training (AK-MCS) 

After reducing the number of input parameters through dimensionality reduction, a 

surrogate metamodel is constructed to approximate the real model I/O relationships on 

the reduced input space, i.e., 𝑌 = 𝑓(𝑿𝑅), where 𝑿𝑅  𝜖 𝐷𝑿𝑅  ⊂ ℝ𝑅  (𝑅 < 𝑀 is the 

dimensionality of the reduced space). Among the several options available in literature 

[63], we resort, again, to Kriging metamodels (as in Chapter 3). Indeed, Kriging metamodel 

has already proved suitable for the problem of CRs characterization, being capable of 

approximating many response functions and non-stationary, which is really useful for the 

specific aim of making the metamodel more refined in proximity of the CR limit surface. The 

idea is that, even if Kriging metamodel usually requires the approximated functions to be 

smooth, in this case the metamodel should not suffer for the output non-smoothness and 



Chapter 4 / Novel framework for System CRs characterization in case of state-space non-

smoothness and multimodality 

63 

 

multimodality thanks to the more effective I/O training set that is constructed after 

dimensionality reduction (see Section 4.1.1).  

A Kriging metamodel is initially built according to a small I/O training set 

{𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛}𝑖𝑛, whose simulated inputs have been generated by LHS, but now varying 

only the input parameters selected at the previous step (Section 4.1.1), whereas the others 

are set to their nominal values. Then, the metamodel refinement is carried out through the 

AK-MCS iterative procedure, following the same steps described in Section 3.1.2, which 

now are just briefly summarized. For each 𝑛-th iteration:  

1. Construction: a Kriging metamodel is built with the available I/O training set 

{𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛}. 

2. Generation of random input configuration: a large number 𝑁𝑀𝐶𝑆  of new input 

configurations 𝒳 = (𝒙1, … , 𝒙𝑁𝑀𝐶𝑆
), is generated by means of LHS.  

3. Metamodel Evaluation: the Kriging metamodel is used to evaluate the outputs 

corresponding to the 𝒳 combinations: �̂� = (�̂�1, … , �̂�𝑁𝑀𝐶𝑆
).  

4. Convergence check: convergence of the metamodel construction is verified through 

an a priori defined convergence or stopping criterion.  

5. Selection: if convergence at the previous step is not satisfied, new input 

combinations are selected according to the 𝑈 learning function and, then, simulated 

with the time-demanding model. After that, they are added to the I/O training set for 

the metamodel refinement and the procedure goes back to step 1, until step 4 is 

verified.  

4.1.3 CRs Representation & Information Retrieval  

The Kriging metamodel obtained at the end of the AK-MCS iterations is expected to 

provide accurate predictions of new input combinations and, hence, it can be now exploited 

for the final objective of CRs exploration, instead of the far more computationally 

demanding original model. In particular, the level of accuracy reached by the metamodel 

can be quantified by exploiting an external validation set. Then, the Kriging metamodel is 
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used to predict the outcomes of many new input combinations to find the critical ones and 

characterize the CRs. Finally, the system CRs can be graphically represented by exploiting 

the high-dimensional data visualization techniques, like scatter plots and PCP, already 

introduced in Section 3.1.3.  

4.2 Novel Framework Application for the CRs 

Characterization of the PSS considered – 

Pressure Output  

The novel framework for the CRs characterization in presence of state-space non-

smoothness and multimodality, illustrated in Section 4.1, has been here implemented to 

identify and explore the CRs of the PSS introduced in Chapter 4, with respect to the FC 

“Steam release in the containment”. Indeed, this FC is defined according to the pressure 

output (𝑝𝑚𝑎𝑥) which has shown a strong non-smooth and multimodal distribution (see Fig. 

8). In the following subsections the relevant steps of this application are illustrated in detail, 

without loss of generality.  

4.2.1 Dimensionality Reduction  

With the aim of finding an effective I/O training set to construct an accurate metamodel 

for the approximation of the PSS response with respect to 𝑝𝑚𝑎𝑥 output, the input vector 

dimensionality has been reduced from 𝑀 to 𝑅 (𝑅 < 𝑀 = 5); hence, a reduced model dealing 

with the reduced input vector 𝑿𝑅  𝜖 𝐷𝑿𝑅  ⊂ ℝ𝑅  can be obtained. A DBSA method supported 

by FMM technique has been implemented to tackle 𝑝𝑚𝑎𝑥 non-smoothness and 

multimodality by catching the output different clusters and, finally, selecting the most 

relevant inputs contributing to the output distribution. In particular, the analysis has been 

restricted only to those input parameters significantly affecting the output cluster 

connected with the critical conditions, i.e., those with 𝑝𝑚𝑎𝑥 around 75.5 𝑏𝑎𝑟.  
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200 RELAP5-3D simulated transients have been used for the FMM implementation with 

the SNOB algorithm, introduced in 4.1.1.2. The SNOB algorithm is based on the EM 

algorithm to select the best number of components (𝑘), and this selection is guided by the 

MML criterion (see equation (20)). 

The final goal of this specific FMM application was not to approximate 𝑝𝑚𝑎𝑥  distribution 

in the best possible way, whatever the number of components, but to obtain a good fit while 

ensuring that the 𝑘 components still reproduced the underlying physics of the problem. 

The SNOB algorithm has reached the optimal fitting of the 𝑝𝑚𝑎𝑥 multimodal distribution 

with 𝑘 = 3 Gaussian distributions (whose characteristic parameters, i.e., mean value 𝜇 and 

standard deviation 𝜎, are reported in Table 8). Within the aim of ranking the most relevant 

inputs by means of one of the DBSA methods introduced in Section 4.1.1, firstly, it was 

necessary to assign each output variable in the set of 200 RELAP5-3D simulations to the 

cluster that was assumed to have generated it. In particular, it has been considered that the 

sample 𝑦𝑖 belongs to the 𝑗-th cluster if it returns the highest probability value when 

substituted into the PDF expression of that cluster.  

Table 8: FMM components parameters 
 

Cluster name   𝜇  [bar] 𝜎  [bar] 

Low-pressure (green) 70.0 1E-3  
Medium-pressure (orange) 72.6 2.48 
High-pressure (red) 75.9 0.04 

 

The three Gaussian distributions together with the related output clusters are reported 

in Fig. 15. A “low-pressure” cluster on the left associated with the system safe conditions 

(in green in Fig. 15) and is approximated by a Dirac’s delta distribution: it represents the 

𝑝𝑚𝑎𝑥 concentration around 70.0 bar, corresponding to all the transients in which the decay 

heat is correctly removed by the PSS and the pressure never increases (122 simulations out 

of 200). Thus, in these simulations, 𝑝𝑚𝑎𝑥 is always equal to the pressure value at the 

beginning of the transient, i.e., 70.0 bar. The remaining 78 outputs are almost equally split 

among the “medium-pressure” cluster in the middle (safe conditions, but with lower safety 

margin) and the “high-pressure cluster” on the right (critical conditions): they are 
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associated to two Gaussian distributions (respectively orange and red in Fig. 15), with the 

second that is more peaked. Both clusters include those transients in which the pressure 

initially increases beyond 70.0 bar, due to the AV delayed opening with respect to the MSIV 

closure, which causes the PV to remain without vapor outlets. The only difference is that 

𝑝𝑚𝑎𝑥 values in the “high-pressure” cluster reach 𝑌𝑡ℎ𝑟𝑒𝑠 = 75.5 𝑏𝑎𝑟, causing the SRV opening, 

while in most of the transients assigned to the “medium-pressure” cluster the pressure 

increases, but without reaching 𝑌𝑡ℎ𝑟𝑒𝑠 .  

 

Figure 15:  𝒑𝒎𝒂𝒙 clustering according to 𝒌 = 𝟑 Gaussian distributions 
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The output clustering has been exploited to rank the input variables most affecting the 

output clusters (DBSA) by constructing the PDF of each input 𝑥𝑚 conditioned on each 𝑗-th 

cluster, i.e., 𝑝(𝑥𝑚| Θ𝑗𝑚). In particular, these PDFs have been constructed by simply assigning 

the input variables belonging to the set of 200 RELAP5-3D simulations to the same cluster 

of the associated outputs and, then, the PDF 𝑝(𝑥𝑚| Θ𝑗𝑚) has been created using only the 𝑥𝑚 

inputs assigned to the 𝑗-th cluster. In this way, it is possible to measure the difference 

between 𝑝(𝑥𝑚| Θ𝑗𝑚) and the original input distribution of 𝑥𝑚, i.e., 𝑝(𝑥𝑚), and to use this 

difference to rank 𝑥𝑚. For the case study, the Hellinger distance method for SA [46], [54] 

has been adopted:  

𝐻𝑗𝑚 =  [ 
1

2
 ∫ (√𝑝(𝑥𝑚) − √𝑝(𝑥𝑚| Θ𝑗𝑚) )

2

𝑑𝑥𝑚 ]

1/2

, (21) 

with 𝐻𝑗𝑚 that needs to satisfy the inequality 0 ≤ 𝐻𝑚𝑗 ≤ 1. The quantity 𝐻𝑗𝑚 represents 

the importance of the 𝑚-th input in affecting the  𝑗-th cluster of the output distribution. The 

higher the 𝐻𝑗𝑚 value with respect to the one of the other input parameters, the greater the 

relative importance of 𝑥𝑚.  

For the analysis of 𝑝𝑚𝑎𝑥, special attention has been paid to the “high-pressure” cluster, 

since it is the one connected with the failure of the PSS function (critical conditions). Hence, 

for each input parameter, the corresponding 𝐻𝑚𝑗  value referred to this cluster (i.e. with 𝑗 =

3) has been exploited as a sensitivity index. Fig. 16 reports a comparison between the 

𝐻3𝑚 values calculated for each of the five input parameters.  

As it can be deduced from Fig. 16, the two valves delays, i.e., 𝐷𝐸𝐿𝐴𝑉 and 𝐷𝐸𝐿𝑀𝐼𝑆𝑉 , mostly 

affect 𝑝𝑚𝑎𝑥 “high-pressure” cluster and hence they are more likely to generate scenarios in 

which the pressure increases towards 𝑌𝑡ℎ𝑟𝑒𝑠 with the consequent SRV opening. Therefore, 

the problem dimensionality has been reduced from 𝑀 = 5 to 𝑅 = 2 and a reduced model 

dealing with a reduced input vector has been obtained, i.e., 𝑓(𝑿𝑹) = 𝑌, with  𝑿𝑅  𝜖 𝐷𝑿𝑅  ⊂

ℝ𝑅  and 𝑌 still equal to 𝑝𝑚𝑎𝑥.  
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Figure 16: Hellinger distance for each input parameter (𝒙𝒎) evaluated with respect to high-
pressure cluster 

4.2.2 Iterative Metamodel Training (AK-MCS)  

After the dimensionality reduction previously presented, the input parameters used to 

model the generic PSS behaviour with respect to 𝑝𝑚𝑎𝑥 are only 𝐷𝐸𝐿𝐴𝑉 and 𝐷𝐸𝐿𝑀𝑆𝐼𝑉; Thus, 

an accurate Kriging metamodel has been built to mimic the RELAP5-3D model I/O 

relationships on the reduced and more effective space of dimensionality 𝑅 = 2.  

For the purpose of CRs exploration, knowing that 𝑝𝑚𝑎𝑥 can approach 𝑌𝑡ℎ𝑟𝑒𝑠 =

75.5 𝑏𝑎𝑟 only if 𝐷𝐸𝐿𝐴𝑉 > 𝐷𝐸𝐿𝑀𝑆𝐼𝑉, with a quite significant interval of time between the two 

valves actions, has led to adjust the range of variation of 𝐷𝐸𝐿𝑀𝑆𝐼𝑉  from 𝐷𝐸𝐿𝑀𝑆𝐼𝑉 = 0 ÷

7200 𝑠 to 𝐷𝐸𝐿𝑀𝑆𝐼𝑉 = 0 ÷ 480 𝑠: this has allowed to be coherent with 𝐷𝐸𝐿𝐴𝑉 = 0 ÷ 720 𝑠 

(see Table 2) and to avoid sampling far from the limit surface.  

Following the criterion proposed in [69], which suggests a number of training 

simulations 𝑁𝑡𝑟𝑎𝑖𝑛 ≥ 10𝑅, a Kriging metamodel has been initially constructed with an I/O 

training set {𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛}𝑖𝑛 of 25 RELAP5-3D runs (obtained in correspondence of the 

input values generated by LHS). In particular, the construction has been performed by 

means of the UQLab Software Framework for Uncertainty Quantification [70], already 

introduced in Section 3.2.1. The best Kriging setting for the specific study of 𝑝𝑚𝑎𝑥 output 
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has been established, again, by testing different Kriging features with the CV procedure. As 

in the case of the PSS energy output (𝐸𝑒𝑥), only two features, i.e., the trend type and 

correlation function family, have been tested (See Tables 9, 10, 11 and 12), whereas the 

other features have been set to their default options defined in UQLab. At first, the best 

trend type with all the other Kriging features set to their default options (the correlation 

function family set by default is Matérn 5/2) has revealed to be Linear type (Table 9). Then, 

Linear trend has been used for the calculation of the best correlation function family which 

has resulted to be Exponential family (Table 10). For this reason, the calculation has come 

back looking for the best trend type, but now using the Exponential correlation function 

family instead of Matérn 5/2 one. The new best trend type has resulted to be Ordinary (see 

Table 11), for which the best correlation function family is still Exponential (Table 12) so 

the calculation has been stopped. In the end, the Kriging best setting for 𝑝𝑚𝑎𝑥 

approximation is:  

➢ Trend type: Ordinary  

➢ Family of correlation functions: Exponential   

➢ Type of correlation functions: Ellipsoidal (default) 

➢ Estimation method: CV (default) 

➢ Optimization method: Genetic Algorithm (GA) (default) 

 

Table 9: Average CV error in trend type estimation (with Matérn 5/2 corr. function family) 
 

Trend type Ordinary  Linear  Quadratic  

Average CV error [bar] 1.57 1.53 2.23 

 

Table 10: Average CV error in trend type estimation (with Exponential corr. function family) 
 

Corr. Function family Exponential Gaussian Matérn 3/2 Matérn 5/2 

Average CV error [bar] 1.50 2.27 1.56 1.56 
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Table 11: Average CV error in trend type estimation (with Exponential corr. function family) 
 

Trend type Ordinary  Linear  Quadratic  

Average CV error [bar] 1.17 1.48 1.98 

 

Table 12: Average CV error in correlation function family estimation (with Ordinary trend) 
 

Corr. Function family Exponential Gaussian Matérn 3/2 Matérn 5/2 

Average CV error [bar] 1.19 3.61 1.35 1.49 

 

Then, the Kriging metamodel has been adaptively refined, with a focus on the CR limit 

surface, by enriching {𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛} within the AK-MCS framework introduced in Section 

3.1.2, but here properly tailored to the specific case study of the PSS presented in Section 

2.1, in relation to 𝑝𝑚𝑎𝑥 output. Here are reported the details of the steps concerning the AK-

MCS application, for each 𝑛-th iteration:  

1. Construction: a Kriging metamodel is constructed with the available I/O training set 

{𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛} which increases its size with the iterations to better refine the 

metamodel. The metamodel accuracy is improved specifically nearby 𝑌𝑡ℎ𝑟𝑒𝑠 =

75.5 𝑏𝑎𝑟.  

2. Generation of random input configurations: 𝑁𝑀𝐶𝑆 = 10.000 new inputs 

combinations 𝒳 = (𝒙1, … , 𝒙𝑁𝑀𝐶𝑆
) (of reduced dimensionality 𝑅 = 2) are sampled 

with LHS (see the input ranges defined at the beginning of this Section).  

3. Metamodel evaluation: the sampled input combinations 𝒳 are run through the 

Kriging metamodel to predict the corresponding output values (i.e., maximum vessel 

pressure): �̂� = (�̂�1, … , �̂�𝑁𝑀𝐶𝑆
).  

4. Convergence check: a convergence or stopping criterion regarding the 

computational cost has been defined. The maximum number of simulations foreseen 

for the metamodel training has been set to 100, due to the significant computational 

cost associated to the dimensionality reduction procedure carried out before (200 

RELAP5-3D simulations required). Thus, considering that {𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛}𝑖𝑛 is 

constituted by 25 simulations, only 75 simulations can be iteratively added during 
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the AK-MCS procedure. When the size of {𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛} reaches its maximum value, 

the procedure stops. 

5. Selection: if the convergence criterion at step 4 is not verified, new I/O simulations 

related to the so-called best candidate subset, i.e., 𝒳∗ ⊂ 𝒳, are conducted and the 

corresponding inputs and outputs {𝒳∗, 𝒴∗} are added to {𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛} to refine the 

metamodel. The 𝑁𝑐𝑎𝑛𝑑  best candidates 𝒳∗ are selected among the 𝒳combinations 

according to their 𝑈-function values (see equation (7)), in order to choose them close 

to 𝑌𝑡ℎ𝑟𝑒𝑠 . The “bins selection technique”, introduced in Section 3.2.2 for the analysis 

of 𝐸𝑒𝑥  output, is here followed to avoid selecting 𝒳∗ from the same restricted portion 

of the input domain (i.e., candidates too similar to each other) due to the correlation 

function. 𝑁𝑐𝑎𝑛𝑑 = 7 or 8 candidates are selected at each 𝑛-th iteration, according to 

the same rationale presented in Section 3.2.2 (see Fig. 17). Once 𝒳∗combinations 

have been selected and the corresponding transients simulated with the RELAP5-3D 

code to obtain the output 𝒴∗,  {𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛} is enriched and steps 1 to 5 are 

repeated until convergence at step 4 is verified.  

 

Figure 17: Bins selection technique (see Section 3.2.2) applied also for the AK-MCS procedure 
referred to 𝒑𝒎𝒂𝒙 output  
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4.2.3 CRs Representation & Information Retrieval  

The present Section is organized as follows: at first, the accuracy of the metamodel 

obtained at the end of the AK-MCS procedure (previous section) has been quantified thanks 

to the introduction of a validation set and some QIs (4.2.3.1). Second, the Kriging 

metamodel has been exploited to predict the pressure output of a large number of new 

input combinations on the reduced space and to find the critical ones. In this way, the CR 

can be identified and, finally, graphically represented (4.2.3.2).  

4.2.3.1 Metamodel Accuracy Evaluation 

The AK-MCS procedure presented in Section 4.2.2 has been stopped at iteration 𝑛𝑓𝑖𝑛 =

10, when the maximum number (100) of RELAP5-3D simulations allowed for the 

construction of the training set {𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛} has been reached. The evolution of the 

metamodel accuracy with the iterations has been followed through the introduction of a 

validation set {𝒳𝑣𝑎𝑙 , 𝒴𝑣𝑎𝑙}, made by 𝑁𝑣𝑎𝑙  I/O relations. As explained in Chapter 3 in case of 

the introduction of a validation set for the quantification of the accuracy of the metamodel 

used to approximate 𝐸𝑒𝑥 , no definitive guidelines are available in literature about the most 

suitable size 𝑁𝑣𝑎𝑙 . In case of 𝑝𝑚𝑎𝑥 analysis, also considering the available computational 

budget, a validation set of 50 RELAP5-3D simulations with the outputs mainly distributed 

around 𝑌𝑡ℎ𝑟𝑒𝑠 has been constructed to measure the accuracy increase, especially in 

proximity of the limit surface. The metamodel has been used to predict the outcomes �̂�𝑣𝑎𝑙 =

(�̂�1, … , �̂�𝑁𝑣𝑎𝑙
) corresponding to the input combinations 𝒳𝑣𝑎𝑙; then, the accuracy has been 

quantified through QIs comparing �̂�𝑣𝑎𝑙  to the real outputs evaluated with the RELAP5-3D 

model. This comparison has been carried out with respect to the same three QIs introduced 

in Chapter 3, i.e., RMSE, 𝑄1 and 𝑄2 (see equations (8), (9) and (10)).  

The progressive increase of accuracy is shown by the trends of the three QIs illustrated 

in Fig. 18. All the QIs considered show a significant improvement at the beginning, then, in 

the successive iterations, the relative improvement becomes negligible. Also for this 

reason, stopping the AK-MCS procedure at iteration 𝑛𝑓𝑖𝑛 = 10 represents a reasonable 

choice.  
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Figure 18: QIs evaluated with respect to a given validation set (pressure output) 
 

The three QI values at the end of the AK-MCS procedure for the approximation of 𝑝𝑚𝑎𝑥 

output are reported in Table 13.  The RMSE at the last iteration is satisfactory, indeed 

𝑅𝑀𝑆𝐸 = 0.35 𝑏𝑎𝑟 is really low if compared to the 𝑝𝑚𝑎𝑥 values in the simulated transients 

(𝑝𝑚𝑎𝑥 = 70.0 ÷ 76.5 𝑏𝑎𝑟). Moreover, a final 𝑁𝑅𝑀𝑆𝐸 = 0.46% is remarkable, since it can be 

taken, in the first instance, as a measure of the percentage error of the Kriging predictions. 

For what concerns 𝑄1 and 𝑄2 , they show a significant improvement during the successive 

iterations, but their final values are not so satisfactory, especially for the final 𝑄1 which lies 

far from 1. This is probably due to the very low variability of the validation set chosen for 

the analysis: indeed, most of the 𝑝𝑚𝑎𝑥 values of 𝒴𝑣𝑎𝑙  are spread on a range of only 2 bar 

around 𝑌𝑡ℎ𝑟𝑒𝑠 = 75.5 𝑏𝑎𝑟.  

Table 13: QIs values at the end of AK-MCS procedure – 10th iteration (pressure output) 
 

Quality indicator RMSE [bar] NRMSE [%] Q1  Q2  

Final value 0.35 0.46% 0.56 0.43 
 

4.2.3.2 CR Characterization  

After demonstrating that the Kriging metamodel obtained at the end of the AK-MCS 

procedure presents a high accuracy, especially in proximity of 𝑌𝑡ℎ𝑟𝑒𝑠 , it can be used for CR 

exploration instead of the more time-demanding RELAP5-3D model. For this purpose, 

10.000 new input combinations have been generated by LHS and, then, predicted with the 

metamodel to: (i) find the critical ones, i.e., �̂� = 𝑓(𝒙) ≥ 𝑌𝑡ℎ𝑟𝑒𝑠; and (ii) retrieve useful 
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information about the CRs, like their number and shape (same procedure followed for the 

characterization of the CRs related with the energy output).   

One single CR has been identified (see Fig. 19); moreover, given that the analysis has 

been restricted only to two parameters after dimensionality reduction, no high-

dimensional data visualizations techniques, like SPLOM or PCP (see Section 3.1.3), were 

needed. The CR has been represented in the two-dimensional input space through a scatter 

plot, in which green diamonds indicate combinations leading to safe operation (𝑝𝑚𝑎𝑥 is kept 

< 75.5 𝑏𝑎𝑟), whereas red crosses represent the critical input combinations of PSS 

functional failure.  

 

Figure 19: CR for 𝒑𝒎𝒂𝒙 output 
 

A triangle-shaped CR has been identified, showing the direct influence of both 𝐷𝐸𝐿𝐴𝑉 

and 𝐷𝐸𝐿𝑀𝑆𝐼𝑉  on the FC “Steam release in the containment”; indeed, it is evident how 

𝑝𝑚𝑎𝑥 may exceed 75.5 bar only when the MSIV closes before the opening of the AV, i.e., when 

𝐷𝐸𝐿𝑀𝑆𝐼𝑉 < 𝐷𝐸𝐿𝐴𝑉 (as introduced in Section 2.3). This occurs because the PV remains 

without vapor discharge outlets and, hence, the vapor builds up causing the PV over-

pressurization. Also, Fig. 19 shows that not always 𝐷𝐸𝐿𝑀𝑆𝐼𝑉 < 𝐷𝐸𝐿𝐴𝑉 leads the PSS to fail 

its function: e.g., even if the MSIV is supposed in its reference conditions (i.e., 𝐷𝐸𝐿𝑀𝑆𝐼𝑉 =

0 𝑠𝑒𝑐), if 𝐷𝐸𝐿𝐴𝑉 < 50 𝑠𝑒𝑐, 𝑝𝑚𝑎𝑥 remains below 𝑌𝑡𝑟𝑒𝑠ℎ . In general, the higher 𝐷𝐸𝐿𝑀𝑆𝐼𝑉 , the 
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lower the chances to lead to functional failure: eventually, if 𝐷𝐸𝐿𝑀𝑆𝐼𝑉 > 380 𝑠𝑒𝑐 failure is 

never reached, whatever the value assumed by 𝐷𝐸𝐿𝐴𝑉.   

To sum up, the novel framework based on FMM and AK-MCS has been demonstrated 

capable of approximating 𝑝𝑚𝑎𝑥 output, despite its strong non-smooth and multimodal 

nature, within the aim of exploring the PSS CRs relative to the FC “Steam release in the 

containment”. 200 RELAP5-3D simulations have been exploited for the FMM 

approximation, according to which the output multimodal distribution has been divided 

into three clusters exploited for dimensionality reduction through the Hellinger distance 

SA method. Then, a Kriging metamodel has been adaptively trained on the reduced (two-

dimensional) input space, within an AK-MCS framework, by exploiting 100 additional 

RELAP5-3D simulations. A unique CR has been identified and characterized in terms of 

combined action of the two input parameters previously selected, i.e., 𝐷𝐸𝐿𝐴𝑉 and 𝐷𝐸𝐿𝑀𝑆𝐼𝑉 . 

The PSS has been demonstrated more prone to failure in case of large 𝐷𝐸𝐿𝐴𝑉, especially if 

𝐷𝐸𝐿𝐴𝑉 > 𝐷𝐸𝐿𝑀𝑆𝐼𝑉 . To conclude, as for the analysis of the energy output, these results could 

be used within a more general reliability assessment of the PSS considered; moreover, the 

novel framework proposed could be exploited for the CRs exploration of other systems for 

which a time-demanding model is available and characterized by a non-smooth and 

multimodal state-space.  

4.2.4 Comparison with the Results obtained with SVC + AK-MCS 

procedure  

An alternative approach to tackle the output non-smoothness and multimodality is 

represented by the use of a classifier, as explained in 1.3.2.1. After separating the regions 

with different output behaviours, a classifier can be trained and used to predict the 

partition a new input combination belongs to. In this way, only the outcomes of the input 

combinations belonging to the region of interest (i.e., the region connected with the system 

failure) are, then, predicted with a metamodel properly fitted to that specific region. In 

particular, in case of 𝑝𝑚𝑎𝑥 approximation, we have applied the “two-stage surrogate 

modelling” technique [18], already introduced in 1.3.2.1. A hard SVC (i.e., where one input 
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combination cannot contemporary belong to different domain partitions) has been initially 

trained according to the domain partitions previously identified. After that, a new input 

combination 𝒙 whose output needed to be predicted (and identified if critical or not) has 

been, first, classified with the hard SVC (1st stage); then, the corresponding output predicted 

with the metamodel specifically built for the partition (cluster) of 𝒙 (2nd stage) (see Fig. 3). 

Differently from the framework proposed in Section 4.1, the metamodel has been fitted to 

the original input space of dimensionality 𝑀: indeed, the idea was that the metamodel 

would have not suffered for the state-space non-smoothness and multimodality anymore, 

due to the separate analysis of the different output behavioural regions.  

At first, two output domain partitions have been identified according to expert 

judgement (see Fig. 8): a “low-pressure” region corresponding to 𝑝𝑚𝑎𝑥 = 70.0 𝑏𝑎𝑟 (which 

occurs in most of the transients simulated, see Section 2.3.2), and a “high-pressure” region 

with 𝑝𝑚𝑎𝑥 > 70.0 𝑏𝑎𝑟, representing those transients in which the pressure rises. Thus, a 

binary classification results: i.e., given a certain input combination 𝒙𝑖, the corresponding 

label assigned by the classifier is ℓ𝑖 = {−1, +1}, with the ℓ𝑖 = −1  that is associated to the 

“low-pressure” region and ℓ𝑖 = 1 that represents the “high-pressure” region.  

The SVC has been constructed according to the two output domain regions identified, 

thanks to 𝑁𝑡𝑟𝑎𝑖𝑛 I/O training simulations {𝒳𝑡𝑟𝑎𝑖𝑛
𝑆𝑉𝐶 , 𝒴𝑡𝑟𝑎𝑖𝑛

𝑆𝑉𝐶 }, where 𝒳𝑡𝑟𝑎𝑖𝑛
𝑆𝑉𝐶 =  {𝒙𝑖  𝜖 ℝ𝑀 , 𝑖 =

1, … 𝑁𝑡𝑟𝑎𝑖𝑛} are the training input combinations and 𝒴𝑡𝑟𝑎𝑖𝑛
𝑆𝑉𝐶 =  {𝑦𝑖

𝑆𝑉𝐶 = ℓ𝑖 = {−1, +1}, 𝑖 =

1, … 𝑁𝑡𝑟𝑎𝑖𝑛} are the corresponding labels. Here is provided a description of SVC 

construction process in case of binary classification, i.e., when only two classes have been 

identified [82]. The SVC classification is carried out according to the separating hyperplane 

that maximizes its distance (also known as margin) from the closest training combinations. 

The separating hyperplane can be defined as: 

{𝒙 𝜖 ℝ𝑀 ∶   𝒘𝑇𝒙 + 𝑏},  (22) 

where 𝒘 is the vector of hyperplane coefficients and 𝑏 is the bias. The perpendicular 

distance of any input combination from this hyperplane is:  

𝑑(𝒙𝑖) =
|𝒘𝑇𝒙𝑖 + 𝑏|

‖𝒘‖
 . (23) 
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It turns out that maximizing the margin corresponds to the minimization of the norm of  

𝒘 under some constraints. Therefore, determining the separating hyperplane reduces to 

the following optimization problem: 

min
𝑤

  
1

2
 ‖𝑤‖2,      subject to       𝑦𝑖

𝑆𝑉𝐶(𝒘𝑇𝒙𝑖 + 𝑏) − 1 ≥ 0,      𝑖 = {1, … 𝑁𝑡𝑟𝑎𝑖𝑛}, (24) 

where the constraints ensure that no samples can lie inside the area covered by the 

margin. The optimization problem is convex and it can be solved by introducing the 

Lagrange multipliers. After some algebra, the final optimization problem becomes:  

min
𝛼

   −
1

2
 ∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖

𝑆𝑉𝐶𝑦𝑗
𝑆𝑉𝐶𝒙𝑖

𝑇𝒙𝑗 +

𝑁𝑡𝑟𝑎𝑖𝑛

𝑗=1

𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1

∑ 𝛼𝑖

𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1

 , 

subject to     ∑ 𝛼𝑖𝑦𝑖
𝑆𝑉𝐶 = 0,    

𝑁𝑡𝑟𝑎𝑖𝑛
𝑖=1 𝛼𝑖 ≥ 0,       𝑖 = {1, … 𝑁𝑡𝑟𝑎𝑖𝑛}. 

(25) 

After finding the Lagrange multipliers {𝛼𝑖 , 𝑖 = 1, … 𝑁𝑡𝑟𝑎𝑖𝑛} and the bias 𝑏, the SVC 

classification of a new configuration can be expressed in terms of training input 

combinations:  

�̂�𝑆𝑉𝐶(𝒙𝑖) =  ℓ(𝒙𝑖) = 𝑠𝑖𝑔𝑛 ( ∑ 𝛼𝑖𝑦𝑖
𝑆𝑉𝐶𝒙𝑖

𝑇

𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1

𝒙 + 𝑏). (26) 

In some situations, the optimization problem becomes unfeasible. A new solution is 

provided by allowing misclassifications, i.e. by relaxing the inequality constraints through 

the introduction of the so-called slack terms 𝜉𝑖 , which measures the distance of the 

misclassified sample from its actual class. A penalized objective function is obtained in 

which the slack terms are minimized. Two final expressions are obtained according to the 

type of penalization:  

➢ Linear penalization 

min
𝛼

   −
1

2
 ‖𝒘‖2 + 𝐶 ∑ 𝜉𝑖

𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1

         subject to          𝑦𝑖
𝑆𝑉𝐶(𝒘𝑇𝒙𝑖 + 𝑏) ≥ 1 − 𝜉𝑖  (27) 

➢ Quadratic penalization  
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min
𝛼

   −
1

2
 ‖𝒘‖2 +

𝐶

2
∑ 𝜉𝑖

2𝑁𝑡𝑟𝑎𝑖𝑛
𝑖=1      subject to      𝑦𝑖

𝑆𝑉𝐶(𝒘𝑇𝒙𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 . (28) 

In the case where the data are not linearly separable, the training combinations are 

mapped into a higher dimensional space referred to as feature space and, therefore, the 

construction of the optimal separating hyperplane is shifted to this new space. A new 

classification formula is given by the sign of the following expression:  

𝒘𝑇Φ(𝒙) + 𝑏 =  ∑ 𝛼𝑖𝑦𝑖
𝑆𝑉𝐶Φ(𝒙𝒊)

𝑇Φ(𝒙) + 𝑏

𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1

,  (29) 

where Φ(•) is the mapping function and hence the components of 𝒙 in the feature space 

are (Φ1(𝒙), … Φ𝑀(𝒙)). The expression in equation (29) shows how, if one is able to calculate 

the inner product of the two vector images in the feature space, i.e., Φ(𝒙𝒊)
𝑇Φ(𝒙), no further 

cumbersome operations need to be carried out in that space. This operation is named 

“kernel trick” since it is conducted thanks to kernel functions. Several examples of kernel 

functions are available in literature (e.g., Polynomial, Gaussian, Exponential etc.). Once the 

kernel function 𝑘𝑒𝑟 has been chosen, the final classification reads:  

�̂�𝑆𝑉𝐶(𝒙𝑖) =  ℓ(𝒙𝑖) = 𝑠𝑖𝑔𝑛 ( ∑ 𝛼𝑖𝑦𝑖
𝑆𝑉𝐶 𝑘𝑒𝑟(𝒙𝒊, 𝒙) + 𝑏

𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1

).  (30) 

In the case study, the training set {𝒳𝑡𝑟𝑎𝑖𝑛
𝑆𝑉𝐶 , 𝒴𝑡𝑟𝑎𝑖𝑛

𝑆𝑉𝐶 } is constituted by the same 200 RELAP5-

3D simulations exploited for the FMM-based approach (see Section 4.2.1). The only 

difference is that 𝒴𝑡𝑟𝑎𝑖𝑛
𝑆𝑉𝐶  is a set of labels associated to the training input combinations 

𝒳𝑡𝑟𝑎𝑖𝑛
𝑆𝑉𝐶 , instead of the corresponding pressure output values used for the FMM 

approximation because the aim here is to classify the combinations (122 combinations are 

labelled ℓ𝑖 = −1  and 78 are labelled ℓ𝑖 = +1). This choice is justified by the criterion 

introduced in [40], which proposes convergence points instead of a far more expensive 

validation set to quantify the accuracy of the SVC. This criterion has proven that at least 180 

simulations were necessary to construct an initial, but sufficiently accurate SVC for the case 

study.  
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After the SVC training, a Kriging metamodel has been built to predict  𝑝𝑚𝑎𝑥  in the “high-

pressure” region, because it was not worth exploring also the “low-pressure” region where 

𝑝𝑚𝑎𝑥 is constant (70.0 bar). The metamodel training set {𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛} has been 

constructed the same I/O relations collected for the SVC training, but taking only those 

classified as belonging to the high-pressure region (78 simulations out of 200). In this case, 

no dimensionality reduction has been carried out and, hence, the metamodel has been used 

to mimic the RELAP5-3D model on the original input space of dimensionality 𝑀 = 5, i.e., 

𝑓(𝑿) = 𝑌, with 𝑿 𝜖 𝐷𝑿𝑀  ⊂ ℝ𝑀 . Thus, 𝒳𝑡𝑟𝑎𝑖𝑛 is a set of five-dimensional input combinations.  

The Kriging metamodel has been adaptively refined in proximity of 𝑌𝑡ℎ𝑟𝑒𝑠 = 75.5 𝑏𝑎𝑟 

with a sort of AK-MCS procedure (see Section 3.1.2), conveniently adjusted to be coupled 

with the SVC. At each 𝑛-th iteration, 𝑁𝑀𝐶𝑆 = 100.000 new input combinations 𝒳 =

(𝒙1, … , 𝒙𝑁𝑀𝐶𝑆
) have been generated by LHS and classified by the SVC according to the two 

regions identified (1st stage). Only the combinations classified as belonging to the high-

pressure region, i.e., 𝒳𝐾𝑟𝑖𝑔 ⊂  𝒳 have been, then, evaluated with the Kriging metamodel to 

find the corresponding outputs (2nd stage). The most interesting input combinations among 

𝒳𝐾𝑟𝑖𝑔 , in terms of learning function 𝑈 value (7/8 candidates at each iteration), have been 

selected to be simulated with the RELAP5-3D model and added to {𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛} for the 

metamodel refinement (the same “bins technique” introduced in Section 3.2.2 can be 

exploited for this selection). This procedure could be repeated until the level of accuracy of 

Kriging predictions became satisfactory. The I/O relations simulated at each iteration to 

enrich the metamodel training set {𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛} could be labelled and exploited to enrich 

also the classifier training set {𝒳𝑡𝑟𝑎𝑖𝑛
𝑆𝑉𝐶 , 𝒴𝑡𝑟𝑎𝑖𝑛

𝑆𝑉𝐶 }. This procedure has been called SVC+AK-MCS.  

The idea was to exploit the same number of RELAP5-3D simulations, i.e., the same 

computational budget, as the one used for the novel framework (FMM+AK-MCS) 

implemented in Sections 4.2.1, 4.2.2 and 4.2.3, to refine both the Kriging metamodel and 

the SVC within the SVC+AK-MCS framework, with the aim of fairly comparing the final 

Kriging accuracy reached. The initial metamodel training set {𝒳𝑡𝑟𝑎𝑖𝑛, 𝒴𝑡𝑟𝑎𝑖𝑛}𝑖𝑛 has been 

adaptively enriched together with {𝒳𝑡𝑟𝑎𝑖𝑛
𝑆𝑉𝐶 , 𝒴𝑡𝑟𝑎𝑖𝑛

𝑆𝑉𝐶 }, up to the limit of the 300 simulations 

(the same limit as FMM+AK-MCS). Thus, starting from {𝒳𝑡𝑟𝑎𝑖𝑛
𝑆𝑉𝐶 , 𝒴𝑡𝑟𝑎𝑖𝑛

𝑆𝑉𝐶 } made by 200 I/O 

samples (the same used for the FMM application), 100 simulations have been added (only 
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82 of them could be used for the Kriging training) and the Kriging training set size has been 

simultaneously increased from 78 to 160. The Kriging accuracy has been quantified with 

respect to a validation set of the same size of the one used in Section 4.2.3 (i.e., 50 I/O 

relations). Again, the validation set is constituted by samples mainly distributed around 

𝑌𝑡ℎ𝑟𝑒𝑠 , to verify the metamodel accuracy improvement with specific attention to the area 

close to the limit surface. Table 14 reports the values of three QIs (RMSE, 𝑄1 and 𝑄2) 

computed on this validation set according to the Kriging metamodel obtained at the end of 

SVC+AK-MCS procedure.    

Table 14: QIs at the end of SVC+AK-MCS iterative procedure (pressure output) 
 

Quality indicator  RMSE [bar] NRMSE [%]  Q1  Q2  

Final value  0.85 1.12% 0.16 0.82 
 

All the QIs values are worse than the ones calculated at the end of the FMM+AK-MCS 

framework application (see Table 13). For example, the RMSE and NRMSE are more than 

twice larger, and 𝑄1  is even 3.5 times lower, meaning that the accuracy of the Kriging 

metamodel at the end of the SVC+AK-MCS procedure is lower. Indeed, Fig. 20 shows how 

the novel framework previously proposed, based on FMM+AK-MCS, outperforms the 

SVC+AK-MCS procedure in terms of 𝑄1and 𝑄2, after six iterations (i.e., with 270 simulations 

rather than 300) and, for what concerns the RMSE, just after one iteration (i.e., with 233 

simulations rather than 300).  

 

Figure 20: QIs evolution in FMM+AK-MCS strategy compared with the QIs values at the end of 
SVC+AK-MCS (pressure output) 
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5 Conclusion  

The use of PSSs within the nuclear field was first addressed in 1991 in the IAEA 

Conference on “The Safety of Nuclear Power: Strategy for the Future” [1]. From that 

moment on, the adoption of PSSs has represented a promising way to increase the safety of 

advanced NPPs: indeed, they are generally considered as more reliable than active systems, 

since they present a simplified architecture and they do not rely on external energy inputs 

during the operation. However, i) the scarce operational experience of PSSs with respect to 

active systems and ii) the need to treat properly the uncertainties in their functioning and 

modeling have required a more thorough analysis of the possibly wide range of PSSs 

operating conditions and a detailed exploration of the critical combinations that may lead 

to PSSs functional failures.  

A structured procedure for the reliability assessment of PSSs (namely, REPAS) has been 

developed in the past [7], [8].  However, it does not explicitly include an important step, i.e., 

the detailed characterization of the PSS CRs, which is necessary to identify those system 

configurations leading the PSS to fail its function. The identification and exploration of the 

CRs is a challenging problem, which can be addressed by computational methods [9], [10], 

[11], [12]. All these methods require the repeated simulation of the PSSs behavior by means 

of (typically time-demanding) BE-TH models, which makes the computational cost often 

prohibitive. For this reason, new advanced computational methods are being sought and 

combined to reduce the cost of computation. For example, fast-running metamodels are 

employed to mimic the behaviour of the time-consuming original codes and replace it in 
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the analysis; also, adaptive sampling strategies are used to intelligently trace the CR limit 

surface with the minimum waste of computational time for samples far from the CR.  

In this framework, the main objective of this work has been to study and develop 

advanced computational methods for the efficient identification and exploration of the CRs 

of a nuclear PSS. Firstly, the metamodel-based AK-MCS, combining a fast-running Kriging 

metamodel and adaptive sampling [25], [11], has been adopted. The AK-MCS procedure 

automatically refines the Kriging in proximity of the PSS limit surface to predict – at an 

acceptable computational cost – those physical input combinations leading the PSS to 

functional failure (and hence to trace the boundary between safe and failed behavior). 

However, in case of the PSS state-space non-smoothness and/or multimodality, 

metamodel-based approaches (like Kriging-based) may not suffice. Indeed, they typically 

require accommodating properties of regularity of the underlying function to approximate, 

otherwise they might lead to large errors [18]. For this reason, we have also developed a 

novel adaptive exploration framework, based on FMM and AK-MCS, capable of tackling the 

state-space non-smoothness and multimodality, while searching for the system CRs.  

The novel framework consists of three steps: 1) “dimensionality reduction”, relying on 

a DBSA method (e.g., Hellinger distance in the present work) and supported by the FMM 

technique for output clustering, to approximate the non-smooth and multimodal output 

distribution [46], [57] and to restrict the analysis only to the input parameters affecting the 

output clusters connected with the PSS failure; 2) “Iterative metamodel training”, based on 

the AK-MCS technique for the construction of an accurate Kriging metamodel to replace the 

typically long-running system model codes and predict the system response on a space of 

reduced dimensionality. The metamodel is trained with a possibly small number of time-

demanding code runs; 3) “CR representation and information retrieval”, using the Kriging 

metamodel obtained at the previous step to predict a large number of new input 

combinations and retrieve useful information about the system CRs. The CRs can be, then, 

visualized by exploiting high-dimensional data visualization techniques (e.g. scatter plots 

in the present work).  

These innovative methodologies have been applied to the exploration of the CRs of a 

generic PSS of an NPP, designed for DHR in case of reactor shut down due to an SBO 
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accident (see Chapter 2). The PSS has been modelled through a time-demanding BE-TH 

code (RELAP5-3D model, see Section 2.2) and the success of its operation has been 

analyzed with respect to two outputs of interest, i.e., the amount of energy exchanged 

during the accidental transient (𝐸𝑒𝑥) and the maximum value of pressure reached inside 

the reactor PV (𝑝𝑚𝑎𝑥). Two FC have been identified: i) “Low heat removal”, when 𝐸𝑒𝑥,% <

90% and ii) “Steam release in the containment”, when 𝑝𝑚𝑎𝑥 > 75.5 𝑏𝑎𝑟. The analysis of the 

CRs relative to these two FC has been conducted separately, because the two outputs have 

shown different behaviors: a regular smooth trend for 𝐸𝑒𝑥,% (see Fig. 7) against the strong 

non-smooth and multimodal nature of 𝑝𝑚𝑎𝑥 (see Fig. 8); thus, different computational 

methods have been applied in the two cases.  

The metamodel-based AK-MCS has been applied in Chapter 3 for the characterization of 

the CRs relative to the FC “Low heat removal” and, hence, for 𝐸𝑒𝑥,% approximation. The 

Kriging metamodel obtained at the end of iterations, by resorting to a limited number (less 

than 200) of computationally expensive BE TH code runs, has shown a satisfactory accuracy 

level (estimation error around 2%). Thus, the AK-MCS procedure has been demonstrated 

capable of accurately identifying the combinations leading to functional failure with good 

accuracy and at feasible computational cost. The final Kriging obtained takes few minutes 

to predict the outcomes of several thousands of new input combinations to find the critical 

ones and identify the CRs: on the contrary, the BE-TH would take about four hours for each 

simulation. The CR and safe regions have been visualized by scatter plots and PCPs (see 

Figs. 12 and 13). Moreover, it has been shown that one of the five input variables initially 

chosen to describe the PSS response, 𝐴𝐴𝑉  (i.e., the flow area of the Activation Valve that 

opens to trigger the PSS operation), does not play a significant role in the determination of 

the PSS energy output. The other four parameters, as expected, affect the amount of energy 

exchanged by the PSS: for example, a certain percentage of non-condensable gases (𝑁𝐶%) 

inside the PSS steam line causes a deterioration of the heat transfer coefficient inside the 

E-HX (e.g., 𝑁𝐶% > 30% always leads to failure).  Moreover, a possible Main Steam Isolation 

Valve closure delay (i.e. 𝐷𝐸𝐿𝑀𝑆𝐼𝑉 > 0 𝑠) or leakage (i.e., 𝐴𝑀𝑆𝐼𝑉 > 0%), as Activation Valve 

opening delay (i.e., 𝐷𝐸𝐿𝐴𝑉 > 0 𝑠), negatively affect 𝐸𝑒𝑥,% (e.g., 𝐷𝐸𝐿𝑀𝑆𝐼𝑉 = 4000 𝑠, 𝐴𝑀𝑆𝐼𝑉 =

0.05% and 𝐷𝐸𝐿𝐴𝑉 = 400 𝑠 have been found to be critical values of such parameters).  
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On the other side, the novel framework for CRs characterization in presence of non-

smooth and multimodal system state-space has been applied in Chapter 4 for the analysis 

of the FC “Steam release in the containment”. The FMM technique has been shown capable 

of approximating the 𝑝𝑚𝑎𝑥 irregular distribution by identifying three different clusters 

(associated to three different kinds of responses with respect to the failure limit of 75.5 

bar). Also, the Hellinger distance method for SA has been exploited to select the input 

parameters mostly affecting the output clusters associated to critical conditions. By so 

doing, the analysis has been restricted to two relevant input parameters out of the five ones 

initially identified: 𝐷𝐸𝐿𝐴𝑉 and 𝐷𝐸𝐿𝑀𝑆𝐼𝑉 . Then, the AK-MCS technique has allowed the 

adaptive construction of an accurate Kriging metamodel (with increased accuracy nearby 

the threshold 𝑌𝑡ℎ𝑟𝑒𝑠 = 75.5 𝑏𝑎𝑟) to replace the time-demanding RELAP5-3D model on the 

reduced (two-dimensional) input space, by resorting to a limited number of simulations. 

Indeed, the procedure (FMM+AK-MCS) has required 300 RELAP5-3D simulations in total. 

Thanks to dimensionality reduction, the Kriging metamodel has managed to accurately 

predict the output 𝑝𝑚𝑎𝑥, despite its non-smoothness and multimodality (the estimation 

error has turned out to be less than 0.5% when evaluated with respect to a validation set 

constructed around 𝑌𝑡ℎ𝑟𝑒𝑠). Finally, the (output) pressure values corresponding to many 

new input combinations (several thousands) have been predicted by the metamodel and a 

unique CR has been identified and visualized with a scatter plot (see Fig. 19).  

A comparison with an alternative approach of literature, namely “two-stage surrogate 

modeling” [18], to tackle the non-smoothness and multimodality of a system response has 

been carried out in Section 4.2.4. In particular, different regions  characterized by different 

behaviors of 𝑝𝑚𝑎𝑥 have been identified and, then, both the output and input space have 

been partitioned. A SVC has been trained and coupled with the AK-MCS technique:  first, 

new input combinations have been classified and assigned to the correct domain partition 

and, then, the corresponding output has been predicted to identify if it was critical or not. 

The results, in terms of metamodel accuracy, have been compared with those obtained by 

the FMM-based exploration framework proposed in this thesis, considering the same 

computational budget (i.e., same number of RELAP5-3D simulations). The strategy 
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adopting an initial dimensionality reduction based on a DBSA method supported by FMM 

outperforms the one relying on a SVC (see Fig. 20).  

In conclusion, the two computational methods here adopted can be considered adequate 

for tackling the problem of CRs characterization of PSSs, but in different conditions (regular 

or not regular response). However, both the methods inherit the intrinsic limits of the 

techniques employed: on one side, the AK-MCS procedure exploiting traditional Kriging 

metamodels require accommodating properties like continuity and smoothness of the 

approximated function (otherwise large prediction error might result). This is the reason 

why, for the analysis of the non-smooth and multimodal  output 𝑝𝑚𝑎𝑥, the support of FMM 

has been necessary. On the other side, the novel framework proposed, even if capable of 

overcoming the problem of non-smoothness and multimodality, has some limitations: if the 

number of parameters identified after the dimensionality reduction is not sufficiently low 

to be managed by a Kriging metamodel, which suffers in the presence of high-

dimensionality and irregular output behavior, the success of the entire framework may be 

compromised.  

Many of the input combinations explored by Kriging metamodels have been found to 

lead to the PSS failure with respect to both the FC considered, especially in case of the   

analysis of 𝐸𝑒𝑥  (as well illustrated in Fig. 13). This suggests that, in a hypothetical design 

phase, the variations of such input parameters should be limited only to a small portion of 

the explored ranges. Moreover, there are some input and output parameters that have not 

been included in the analysis of the present thesis (e.g., pipes inclination, component 

ruptures etc., see Section 2.4). They can be included in future works if a more complete 

analysis of the PSS is of concern. In that case, a SA to rank their contribution would be 

mandatory. Finally, these results could be even exploited in the future within a more 

general reliability analysis for PSSs, by adding the information about probability 

distributions of the input parameters considered.  
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