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Abstract

The cells’ life cycle is strictly related to the DNA replication and DNA tran-
scription. Under certain conditions the DNA may break and create aberrant
products known as gene fusions. A gene fusion is made up of two genes,
usually coming from different chromosomes and called gene pairs. After the
breaking event, a portion of both genes can be lost, and the point in which
each gene breaks is known as breakpoint.

Gene fusions have been proven to be related to certain types of cancers,
and in this case they are defined as driver gene fusions. Gene fusion detection
tools are commonly used to identify gene fusions in a biological sample. How-
ever, these tools detect a high number of putative fusions in tumor samples
and sometimes do not confidently label them as oncogenic. This suggests the
need to gain more insights into the role of gene fusions in cancer.

This thesis examines three elements associated with the gene pairs and
their role in the evaluation of gene fusions’ oncogenic potential: transcription
factors (TFs), gene ontologies (GOs) and micro-RNAs (miRNAs). Under the
assumption that these elements, along with the information deduced from the
gene names and the breakpoints, can characterize a gene fusion, two machine
learning methods were used to discern the driver fusions from the passenger
events (e.g. gene fusions not related to cancer): the support vector machines
(SVMs) and the multilayer perceptron (MLP).

The classifiers were trained on 1765 thoroughly validated gene fusions and
tested on 5246 samples. The training samples and the oncogenic test samples
come from an ensemble of databases that were analyzed by DEEPrior [1],
while the healthy test samples were extracted from Babiceanu’s paper[2].

The developed method first exploits the information related to the gene
names and the breakpoints to extract the following features for both the
genes: the percentage of retained gene after the fusion event, the putative
role assigned by the Cancermine[3] database and whether the two genes
are transcribed in the same direction or not. The training and the cross-
validation were performed on the training set using these features returning
a cross-validation AUC higher than 88% for both the linear SVM and the
MLP.

Then the relationship between the transcription factors and the genes [4]
was examined. The complete set of 181 transcription factors was used to
train and cross-validate the training set. The combination of the previously



defined features and the 181 transcription factors led to an improvement in
the performance metrics of both classifiers.

An analogous process was carried out to integrate the information coming
from the gene ontologies. The GOs were obtained using the Biomart tool[5]
gathering a total of 5125 features.

Finally, the association between miRNAs and genes was retrieved from
Targetscan [6] as a list of probabilities defining the strength of the relationship
between miRNAs and genes. A total of 333 miRNAs were identified as
features.

The final developed method is a MLP with 4 layers trained using the initial
features, TFs, GOs and miRNAs. The cross-validation performance metrics
were 90%, 86%, 99%, 0.88 respectively for accuracy, precision, recall, AUC.
The same metrics computed on the test set were: 81%, 78%, 86%, 0.81.

The complete pipeline proved to be able to integrate the different sources
of data and discriminate, with adequate reliability, the driver from the pas-
senger gene fusions. The tool returned higher performances compared to the
results obtained by Oncofuse[7], a similar tool found in the literature.
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Chapter 1

Introduction

Under particular conditions the DNA may be subjected to alterations and
rearrangements. As a consequence, the DNA may break and two genes be-
longing to different parts of the DNA may be joined. This abnormal juxtapo-
sition of different genes, which usually belong to two different chromosomes,
is defined as gene fusion or chimera.

Many studies have focused on the possible correlation between gene fusions
and cancer. In particular, according to the paper written by Mitelman F. et
al.[8], gene fusions are accountable for about 20% of human cancer morbidity.
The authors stated that there is evidence that events like translocations, and
the corresponding gene fusions, not only occur in various malignancies but
may also be responsible for oncogenesis.

Some gene fusions have been linked to particular types of cancers, for ex-
ample, several studies concerning the implication of BCR-ABL gene fusion in
leukemia[9] have highlighted the necessity of investigating more in-depth this
phenomenon. Analogously other studies correlate the TMPRSS2-ERG gene
fusion to prostate cancer[10] and the BCAM-AKT2 to ovarian cancer[11].
Nevertheless, there is a vast number of gene fusions that seem to never en-
gage in any harmful behavior. One of the possible reasons for this may be
found by considering the breaking event.

As already mentioned, a gene fusion obtained consequently to the break
of the DNA involves two genes: the one closer to the promoter region of the
fusion is defined as 5’ gene whilst the gene closer to the end of the fusion
is defined as 3’ gene. If a gene at the 5’ position that is characterized by a
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Introduction

promoter with low “transcription power” fuses with a potentially oncogenic
gene the behavior of the latter would be mitigated by the new promoter
region. On the other hand, if the gene at the 5’ position were to carry a
powerful promoter region that gene fusion would likely cause some damage
to the cells. In the paper written by Stenman G. et al. [12] the authors
investigated the effect of MYB-NFIB fusion on MYB gene. As a matter of
fact he stated that the truncation of the MYB gene, following the breaking
event of the DNA, resulted in the loss of important binding sites. These
binding sites were specifically related to microRNAs that are responsible for
the deregulation of the gene, thus their loss may negatively impact the re-
pression of MYB by miRNAs, for instance MYB-NFIB transcripts may be
overexpressed as a consequence of this loss.

A confident and direct correlation between a given gene fusion and cancer
would be of benefit for scientists and would allow physicians to make faster
and definite diagnoses. However, each gene fusion requires thorough testing
and inspection to be considered a driver for a tumor.

As a matter of fact, to assess the presence of a particular gene fusion in
a sample an experimental validation must be performed. The validation of
gene fusions may be achieved with PCR or through a functional validation.
The latter in particular requires a significant amount of resources and is
more expensive than PCR. Since the validation of a gene fusion can be both
time consuming and expensive over the last 20 years a lot of effort has been
put into detecting and prioritizing gene fusions, for this purpose, tools like
RNA-Seq[13], Pegasus[14], DEEPrior[1] and Oncofuse[7] have proven to be
valuable resources.

The aim of this thesis is to contribute to this research with a helpful tool
able to classify gene fusions into oncogenic or non-oncogenic. This analysis
aims to be of support to physicians that may need guidance when they come
across a potentially harmful chimeric gene.
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Chapter 2

Background

2.1 Gene fusion
A gene fusion is the result of two different genes joining after a breaking
event at the DNA level (2.1). The fusion event can be subsequent to struc-
tural DNA rearrangements, transcription read-through, or trans/cis-splicing
of pre-mRNA [15].

A fusion involves a gene at the 5’ position which would be closer to the pro-
moter region and a gene at the 3’ position namely the gene at the other end
of the fusion, and it is characterized by two breakpoints, one for each gene.
Also known as chimeric genes, these genomic aberrations can be identified
using the RNA-seq, a next-generation sequencing technique that investigates
reads that span the fusion breakpoints. Unfortunately, there is a low consen-
sus among different sequencing tools that results in a source of uncertainty,
which is difficult to handle in the subsequent gene fusion analysis [16].

Figure 2.1. Representation of the gene fusion event

Gene fusions are often associated to tumors and are defined as driver mu-
tations in many different types of cancer[17][18][19], however not all gene
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Background

fusions result in damaging effects on the organism[20][21], from the afore-
mentioned considerations arises the need for a tool able to discern between
this two occurrences.

This thesis focuses on analyzing some of the elements that partake in the
normal activities of chimeric genes and how they can be linked to oncogenic
behaviors. In particular, this study took into consideration transcription
factors and microRNAs along with inherent characteristics of each gene in-
volved in the fusion such as gene ontologies, breakpoints, strands, definition
of a gene (e.g. oncogene, tumor suppressor, driver, other).

2.2 Transcription factors
The transcription of genes requires proteins named transcription factors that
bind to specific sequences of DNA and convert or transcribe it into RNA [22].
Since transcription factors are responsible for the expression of a gene, their
role in gene fusions has been studied extensively. Their action as enhancer
or silencer has been linked by several studies [7] to the expression of chimeric
genes making them more or less risky for the human organism. As stated by
Rainer Renkawitz [23] “Transcription factors can be defined by their location
relative to the transcriptional start site of a particular gene”, for this reason
this thesis investigated only correlations between transcription factors and
the gene at the 5’ position of the gene fusions. The table used in the study of
this thesis (2.2) was provided by the ENCODE project. It gathers data from
1651393 gene-transcription factor associations, this association is defined “by
binding of transcription factor near transcription start site of gene”[4]. The
table includes 181 different transcription factors and 22819 genes.

Figure 2.2. Matrix obtained by ENCODE
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2.3 – micro-RNA

2.3 micro-RNA
The production of proteins is strictly dependent on the information contained
in mRNAs. In this process small non-coding RNAs, defined as microRNAs,
can exert the function of regulating the amount of produced protein by bind-
ing to mRNAs.[6][24] Incorrect functioning of miRNAs has been linked to
a large number of cancers by many studies [25][26][27]. Furthermore, miR-
NAs that regulate the post-transcriptional gene expressions of chimeras may
increase the production of erroneous proteins possibly leading to critical sit-
uations for the human organism.

The aim of this thesis is to find a correlation between genes and miRNAs
able to characterize the gene fusion for the classification process under the
assumption that they may retain information indicative of tumor develop-
ment. For this purpose, the table provided by Targetscan [6] has been used
(2.3). Unlike the case of the transcription factors analysis, both genes have
been taken into consideration when assigning the values to the features, and
in case of ambiguity, only the greatest value of probability was retained.

Figure 2.3. Matrix obtained by Targetscan

2.4 Gene ontology
Gene ontologies provide a collection of semantic descriptions of the functions
of genes and gene products, they may be useful when looking for common
behaviors and patterns among different genes. In particular, the Ensembl[5]
has gathered this information along with other specific details concerning
the evaluated gene. The biomart tool has been used in this phase to query
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Background

information related to each gene belonging to the dataset and annotate the
associations between a given gene and a certain number of gene ontologies
(2.4). For this purpose the algorithm makes use of the gene ontology terms
in the form GO:xxxx. For instance, the research uncovered that ERG is
involved in DNA binding, protein binding, cell differentiation, regulation of
transcription, etc according to the gene terms assigned by the biomart tool.
The hypothesis is that genes with similar functions may exhibit the same
oncogenic potential [28][29].

Figure 2.4. Table obtained by Ensembl

2.5 Initial features
The first five features that I obtained are deducible from the gene name and
the breakpoints, they are displayed in figure 2.5:

• percentage of retained 5’ gene

• percentage of retained 3’ gene

• definition of 5’ gene

• definition of 3’ gene

• whether the two genes transcribe in the same strand

The decision to include the percentage of the retained gene after to the
gene fusion event is related to the assumption that if genes remain whole they
may not engage in harmful behaviors but instead keep the same function they
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2.6 – Feature selection

had in the unbroken version. This feature is deduced from the breakpoints
and the start and end coordinates of the gene according to the associated
genome version.

Moreover, another detail is deduced from the genome version: the strand
which the genes transcribe on, namely either the positive one or the negative
one. The occurrence of two genes transcribing on different strands is rare but
possible, therefore it has been assumed useful to investigate this potential
circumstance to gain insight on the possible oncogenic behavior.

Finally, a crucial characteristic has been deduced from the database pro-
vided by Cancermine[3] that is the collocation of the genes in either one of
these categories: driver, tumor suppressor, oncogene, other. The idea is to
examine the occurrence of potentially threatening genes in gene fusions in
order to classify correctly the dangerous chimeras.

Figure 2.5. The five features deducible from the gene name and the breakpoints

2.6 Feature selection
Before proceeding with the classification it is advisable to reduce the feature
set in order to lower the computational cost and improve the reliability of
the classifier. Feature selection aims at reducing the number of features by
choosing the best subset of features for the specific classification task.[30]

Many algorithms have been designed to perform the feature selection, the
one that has been used in this thesis is the random forest[31]. A random
forest is an ensemble of decision trees in which each decision tree obtains a
classification starting from the training sample at the root level and making

19



Background

a series of decisions, namely branches. Each decision is related to the value
returned by a specific feature, according to the value being greater or smaller
than the default value the branch divides into sub-branches, in the end after
a certain number of decisions the final label, called leaf, is reached.[32]

In particular, a random forest gathers a defined number of decision trees,
it is trained on the training set and can be subsequently pruned to return
the most useful features. Pruning refers to reducing the number of branches
to the ones closest to the root, in other words, it takes into account a smaller
number of features by reducing the decision process to the very first branches.
The threshold value can be varied to obtain a larger or smaller subset of
features, where the smallest set is made up of the features that have been
categorized as most “important” by the algorithm.[33]

2.7 Machine learning
To achieve a reliable classification it is mandatory to choose a suitable ma-
chine learning tool. Machine learning (ML) is an implementation of artificial
intelligence theories.[34] ML algorithms aim at learning from input data, im-
proving with experience and make decisions [35]. Classifiers in general take
in input a set of sample and features to perform decision-related tasks de-
pending on the chosen algorithm and return a label in output.[36] Various
kinds of algorithms have been conceived by the scientific community, in this
thesis in particular the chosen tools are the support vector machine and the
multilayer perceptron.

2.7.1 Support Vector Machine
The support vector machine (SVM) is a non-probabilistic binary classifier, it
constructs a hyperplane to divide the set of samples according to the classi-
fication into one of the two possible labels.[37] If the classification task is not
linear then one of the characteristics of the SVM can be changed, namely the
kernel. In fact, some types of kernels can be used to map the samples into
a higher-dimensional space.[38] An SVM is characterized by several parame-
ters that need to be tuned according to the specific classification task, these
parameters are: kernel, gamma, C (or coefficient) and degree.

The kernel is responsible for the mapping of the samples into the dimen-
sional space, in particular, there are many types of kernels, the most famous
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are: linear, rbf, sigmoid and polynomial.[39] A linear kernel works well with
linearly separable problems, it divides the bidimensional feature space in two
with an imaginary line. The SVM classifier can solve more difficult tasks by
using the other kernels that are able to upgrade the dimensional space.[40]

2.7.2 Neural Networks
Neural networks or NN are powerful machine learning tools inspired by the
way in which the brain addresses a learning task. NNs are characterized by
components named neurons or nodes, which are organized in layers, there
are three types of layers:

• input

• output

• hidden

The neuron is composed of a set of connecting links where each link is
characterized by:

• a numeric weight

• a function which computes the weighted sum of the inputs

• an activation function which returns the predicted outcome

Typical activation functions are for example step, sign and sigmoid, their
goal is to emulate the response of a biological neuron.

During the training phase, each neuron gains knowledge by updating the
weights. Supervised learning requires labeled training samples, unlike un-
supervised learning. In this thesis, supervised learning was chosen and the
classifier is a multilayer perceptron. This kind of neural network is charac-
terized by a feed-forward learning approach meaning that the target label
specifies the desired output for a given input, the weights are randomly ini-
tialized and iteratively updated in proportion to the error between the desired
output and the calculated output.[41][42]
The calculation is made using the following formula:

wj,i(t+ 1) = wi,j(t) + ∆wi,j (2.1)
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∆wi,j = η ∗ [tj − yj] ∗ φ(netj) ∗ xi (2.2)

In equation 2.2 η is the learning rate, tj − yj is the error term, netj is the
weighted sum of the inputs, φ is the activation function and xj is the i-th
input component.[43]

The number of layers and nodes is central to the issue of classification, for
instance, a single-layer network is able to perform linearly separable tasks,
whereas more layers allow the classifier to address non-linear problems.

Optimizer

An additional important characteristic of the network is the optimization
rule, in other words the way that the total error in the output is minimized.

A typical optimizer is the gradient descent (sgd). This optimization model
mimics a downhill movement along a curve that presents local minima and
global minima. A local minimum is a portion of the curve that reaches a low
point and then ascends whereas the global minimum is the lowest portion of
the curve.[44]

The sgd optimizer updates the weights of the neurons iteratively and the
extent of each update depends on the learning rate. For a high value of
learning rate the weights are updated of a considerable amount, this would
allow the classifier to overcome a local minimum and hopefully reach the
global minimum hence the best performances.

A similar optimizer often used in machine learning applications is Adam
but in this case the value of learning rate is variable during the training.[45]

For this thesis the chosen optimizer was Adam.

Overfit

A possible issue that may arise when training a neural network is overfit-
ting. Overfit happens when the classifier learns to perfectly fit the training
data obtaining an outcome of 0 misclassifications, this eventuality reduces
the generalization ability of the classifier meaning that when presented with
unseen data the classifier may perform poorly.[46]

When building a neural network it may be beneficial to drop some of the
information learned during the training phase in order to improve the gener-
alization ability of the classifier. To do so the dropout is a useful option, the
value is a probability and may be set between 0 (not losing any information)

22



2.7 – Machine learning

and 1 (dropping all of the information), in other words, it pushes the model
to ignore a portion of the neurons during the training phase. A suitable value
of dropout helps in preventing the phenomenon of overfitting.[47]

The training phase of the neural network may include the validation, if
this is the case then a set of samples is used to test the performances of the
classifier at each epoch and some action may be performed according to the
obtained results. The validation set may be either a subset of the training
set or a separate set of samples. It is crucial to perform the following testing
phase on a set of samples different from the validation set to obtain reliable
results. When introducing validation in the model it may be beneficial to
implement an early stopping step. Early stopping is designed to prevent
overfitting of the model, this method considers either the loss or the accuracy
of the validation data and stops the training when the value ceases to decrease
or increase respectively.[48]

Cross Validation

Cross validation is a method commonly used to test if the training perfor-
mances of a classifier are robust.

In this thesis a k-fold cross-validation was implemented. It consists of
dividing the samples belonging to the training set into k subsets, k-1 subsets
are used for the training while the last fold is used to perform testing. The
training and testing processes are repeated for each possible subset (e.g. k
times).[49]

K-fold cross-validation returns k sets of performance metrics. In the fol-
lowing sections of this thesis the k values of each metric are averaged and
the result is returned as the final cross-validation performance.

Performance evaluation criteria

Once the classifier has completed the training phase, the model is tested on
the testing set and the performances may be evaluated using a few different
methods.[50]

The most important indicator is the confusion matrix, a table with as
many columns and rows as the number of different labels. For a binary
classification for instance, the confusion matrix would be a 2 by 2 table
displaying the real classes on the top and the predicted classes on the left as
shown in figure 2.6
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Figure 2.6. Confusion matrix

A few metrics can be deduced from the confusion matrix to help in the
evaluation of the performances, they all vary between 0 and 1 where 0 rep-
resents the worst classification possible and 1 an ideal classification.

• Accuracy = the most widely used to rapidly assess the efficacy of the
classification, the higher the accuracy the higher the number of correctly
classified samples

Accuracy = TP + TN

TP + TN + FP + FN
(2.3)

• Precision = gives an idea of how many real positive samples were de-
tected by the classifier out of all the samples that the classifier labeled
as positive. With a high number of false-positive the precision will result
poor.

Precision = TP

TP + FP
(2.4)

• Recall = evaluates how many real positive samples were detected by the
classifier with respect to all of the samples that were actually positive.
With a high number of misclassified negatives the recall, will result in a
low value.

Recall = TP

TP + FN
(2.5)

• f1 score = is a weighted average of precision and recall, convenient in
case of unbalanced classes
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f1 = 2 ∗ recall ∗ precision
recall + precision

= 2 ∗ TP

2TP + FP + FN
(2.6)

• False-positive rate = defined as the number of false positives divided by
the number of real negative cases

FPR = FP

FP + TN
(2.7)

• AUC = is defined as the area under the ROC curve. The ROC curve
can be obtained by simply plotting the false positive rate vs the recall,
the AUC would be the area below the ROC curve. The higher the AUC
the better the classification results.

Legend:
TP = true positive, FP = false positive, FN = false negative, TN = true
negative
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Chapter 3

Methods

To classify gene fusions in either oncogenic or non oncogenic gene fusions two
machine learning methods were explored in this thesis: SVM and MLP. The
classifiers were trained on a thoroughly validated set of 1765 gene fusions that
had previously been used for the training of the DEEPrior tool [1]. Of those
1765 samples, 1059 were labeled as oncogenic gene fusions and the remaining
706 as non-oncogenic. Among the positive training samples, some notorious
driver gene fusions can be found such as the aforementioned TMPRSS2-ERG
and BCR-ABL1 gene pairs.

Both test set 1 and test set 2 used by DEEPrior[1] were included in the
validation and testing of the classifiers. In particular test set 2 included 2622
positive samples and 0 negative samples, this set was integrated with Babi-
cenau’s database [2] of chimeric gene fusions found in healthy cells to create
a balanced testing set. The final testing set, including the 2624 negative
samples for a total of 5246 gene fusions, was used to test the performances
of the MLP and the SVM. Concerning test set 1 which contains 156 samples
(122 positive and 34 negative samples) it was used in combination with 200
samples of the training set as a validation set for the MLP training phase.

The general pipeline is displayed in figure 3.1 complete of each section
explained in the following paragraphs.

3.1 Pipeline
The pipeline that leads to the classification process follows the object-oriented
principles.

A separate script calculates the five features integrating data coming from
different databases.
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Figure 3.1. Complete pipeline.
Legend: DP=DEEPrior, CM=CancerMine, g37=grch37, g38=grch38,
ENC=ENCODE, Ens=Ensembl, TS=TargetScan

To obtain the rest of the features the pipeline exploits the information
contained in the other databases including the list of samples analyzed by
DEEPrior.

Each of the feature sets is then assembled by the Data integration class
that returns the complete feature set. Later the set is filtered by the feature
selection step.

Finally the SVM and the MLP perform the classification using the input
features returned previously by the feature selection.

In the following sections each object reported in figure 3.1 is explained in
more detail.

3.1.1 Data integration
The data integration method collects the four feature dataframes that are
created by different coding blocks or scripts, specifically:

• the five initial features (percentage of retained genes, belonging strands,
the definition given by Cancermine)
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• the transcription factor matrix

• the gene ontology matrix

• the micro RNA matrix

and returns a set complete of all of the defined features for each gene pair
and the label vector. The training, testing and validation sets are character-
ized by 5644 features at this point. The total set of features includes: five
initial features, 181 transcription factors, 332 miRNA families and 5125 gene
ontologies.

3.1.2 The five initial features
A separate script computes the five initial features. Concerning the feature
related to the belonging strand it was defined as 1 when both genes affected
by the fusion event belonged to the same DNA strand and 0 otherwise. The
information about the belonging strand was already disclosed by DEEPrior
in the original datasets.

For the retained percentage of the two genes involved in the gene fu-
sion, the algorithm exploits the information contained in the corresponding
genome version to calculate the value.

• If the gene is at the 5’ position and transcribes in the positive direction
then the percentage is calculated as: the breakpoint coordinate (bp)
minus the start coordinate (s) of the gene divided by the length (L) of
the gene

%retained = bp− s

L
(3.1)

• If the gene is at the 5’ position and transcribes in the negative direction
then the percentage is calculated as: the end coordinate (e) of the gene
minus the breakpoint coordinate (bp) divided by the length (L) of the
gene

%retained = e− bp

L
(3.2)
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• If the gene is at the 3’ position and transcribes in the positive direction
then the percentage is calculated as: the end coordinate (e) of the gene
minus the breakpoint coordinate (bp) divided by the length (L) of the
gene

%retained = e− bp

L
(3.3)

• If the gene is at the 3’ position and transcribes in the negative direction
then the percentage is calculated as: the breakpoint coordinate (bp)
minus the start coordinate (s) of the gene divided by the length (L) of
the gene

%retained = bp− s

L
(3.4)

A few cases have led to an inconsistent result (either smaller than 0 or
greater than 100) due to possible mistakes in the data, possibly correlated
to reporting of the wrong strand of the DNA. Those outliers were therefore
automatically dropped to avoid obtaining uncertain results with the classifi-
cation of these gene fusion pairs.

Finally, the definition given by Cancermine[3] (either driver, tumor sup-
pressor, oncogene or other) was simply assigned to each gene belonging to
the gene pair and reported in two separate features. This information was
extracted using a text-mining tool, as stated by Jake Lever et al. [3] “this
machine learning system is then applied to all abstracts in PubMed and all
full-text papers in the Pubmed Central Open Access subset”. The table is
updated regularly to keep track of any new publication.

3.1.3 Feature selection
A random forest algorithm was used to reduce the number of features ac-
cording to the given threshold value, whilst the number of decision trees was
set to 50. The threshold value refers to the importance of the features, this
measure of informativeness is returned by the random forest classifier. A
threshold equal to 0 would return the features identified as the most useful
to make a confident prediction, which would already be a subset of the entire
feature set. A higher threshold is related to a smaller number of highly in-
formative features, while a smaller threshold value returned a bigger feature
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set. The randomity of the algorithm prevents the definition of a fixed num-
ber of obtained features for each threshold value but table 3.1 provides an
approximate range of values. From the starting 5644 possible features (com-
prising of 5125 GOs, 181 TFs, 333 miRNAs and 5 initial features) a number
of features ranging from a few thousands to a few dozens can be obtained by
varying the threshold value.

The feature selection step was introduced to obtain a number of features
that would ensure an acceptable computational time for the training phase
and hopefully higher performances in the testing.

Threshold value Number of selected features
0 2070 - 2090

0.0001 930 - 940
0.001 160 - 170
0.01 15 - 20

Table 3.1. Approximate number of features obtained with the random forest
feature selection by using different values of threshold

Two additional options were introduced in this tool to narrow down the
features to particular sets and assess the performances of the classifier when
using the specified sets of features. The user can choose to use one or more
specific sets, for instance the 181 transcription factor features, to perform
the classification. Moreover the user can select one or more specific sets
and obtain the most informative features among the selected ones using the
random forest selection method. For example a combination of sets like the
five initial features along with the miRNAs would be reduced to a number
of features smaller than 338 according to the selected threshold value.

3.1.4 Transcription factor features
To obtain the features related to the transcription factors the tool first col-
lects the complete set of genes contained in the three analyzed datasets (e.g.
the training, testing and validation set). This list is used to obtain a reduced
version of the “gene attribute matrix” provided by ENCODE [4] from 22819
to 5058 rows. Moreover, it preserves the rows corresponding to the genes at
the 5’ position and transfers them in a new feature matrix placing them in
correspondence to the gene pair of belonging. The result is a new matrix
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(3.2) with as many rows as the samples of the corresponding set and 181
columns.

Figure 3.2. Obtaining the TF features for the training set from the
gene attribute matrix

3.1.5 Gene ontology features
The first step to retrieve the gene ontology features is uploading the list of
the genes included in the “gene attribute matrix”, previously used to obtain
the transcription factors, on the biomart tool[5]. A query was executed to
obtain the gene ontology terms which were then noted in a text file. Three
GO matrices were obtained from this file, one for each dataset: train, test,
validation.

At this point, the GO matrices vary in length according to the gene on-
tologies associated with each gene belonging to the analyzed dataset. Then
for each set, a new matrix is built with the gene pairs on the rows and all of
the gene ontologies occurring in the training set on the columns, when there
is a correlation between either one of the genes involved in the gene fusion
and one of the gene ontologies then the corresponding cell is marked with a
1.

Finally, the 3 gene ontologies matrices were obtained, each one with 5125
gene ontology features and a number of rows equal to the number of gene
fusions in the dataset (3.3).

3.1.6 miRNA features
With a separate algorithm a matrix, similar to the gene attribute matrix for
the transcription factors, has been obtained for the miRNA – gene associa-
tions using the "predicted targets" file provided by Targetscan[6]. Each row
of the file contained, amongst other information, a miRNA, a gene name and
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Figure 3.3. Obtaining the GO features from the ensembl table

the associated probability of conserved targeting (Pct) for the considered
gene - miRNA pair. In general Pct is an indicator of the probability of the
involvement of a particular miRNA in the transcription process of a given
gene. The Pct ranges between 0 and 1 and it is described by Friedman R.
[51] as a Bayesian estimate of the probability that a site is conserved fol-
lowing miRNA targeting rather than any other reason unrelated to miRNA
targeting.

The algorithm that I developed identified the greatest Pct for each gene
in the file and saved the gene – probability associations in a separate file.

Analogously to what was done to obtain the transcription factor features
the final matrices were characterized by the gene fusion samples on the rows
and the miRNA families belonging to the training set on the columns (3.4).
The cell corresponding to a given miRNA family that was characterized by
a probability value for any of the genes belonging to the gene pair was filled
with that value. In case both genes involved in the gene fusion were correlated
to the same miRNA family with different probability values then only the
greatest probability was retained.

3.2 SVM
The parameters of the SVM algorithm were meticulously tuned, four of the
most famous kernels were implemented: linear, rbf, sigmoid and polynomial.
For each kernel the coefficient was varied in the range: 0.001, 0.01, 0.1,
10 and the values were subsequently narrowed down to the best ones after
accurate evaluation of the performances on the testing set. The tuning of the
gamma value for the rbf, sigmoid and polynomial kernels, followed the same
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Figure 3.4. Obtaining the miRNA features from the matrix of targetscan

pattern. In particular, gamma was varied in the range: 0.0001, 0.001, 0.01
and the range of values were narrowed down until the optimal combination
of coefficient and gamma value was reached. Moreover for the polynomial
kernel, one value of degree was used: 2.

3.2.1 MLP
The designed multilayer perceptron model is characterized by 4 layers, for
each layer the number of nodes was respectively: 512, 256, 128, 64, and the
order of these values was varied to obtain different kinds of architectures and
test the performances of the network with each of them. In particular, four
architectures were used, the number of nodes for each layer is reported below
in the form x-x-x-x. The first number refers to the layer closest to the input
layer while the last is the number of nodes that characterizes the layer closest
to the output layer.

• 512-256-128-64

• 512-512-256-128

• 512-512-512-512

• 256-512-512-256

The activation functions were varied as well to check which configura-
tion would return the highest performances. Different combinations of the
following functions were used:

• Sigmoid
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• Tanh

• Relu

Other parameters that have been varied were the learning rate, the dropout
and the number of epochs.

• Learning rate: 0.0001, 0.001, 0.01

• Dropout: 0.1, 0.2, 0.3, 0.4

• Number of epochs: 50 or 1000

The chosen optimizer was Adam with decay value equal to 1 ∗ 10−6.

The MLP can run on two different modalities: by using the validation
set and implementing the early stopping or by executing a fixed number of
epochs. As already stated, the validation set used by the MLP is a combi-
nation of test set 1 and 200 samples belonging to the training set, the goal
was to validate on a set that included information coming from a different
source with respect to the training set. In this case, the 200 samples used
for validation were not considered in the training phase.

The early stopping class is characterized by 50 epochs of patience and
considers the validation accuracy to decide at which epoch the model needs to
be stopped. In other words when the validation accuracy does not improve for
50 consecutive epochs the training process stops and the model corresponding
to the stopping epoch is loaded to perform the subsequent evaluations.

3.3 Oncofuse
To test the robustness of the method it was decided to apply the same model
and features to the datasets used by Oncofuse[7]. The samples provided by
Oncofuse, namely the supplementary material, lacked the information related
to the breakpoint, for this reason, the retained percentages of the genes could
not be calculated but the rest of the features were obtained with no further
complication.

The MLP was trained on 524 samples and tested on 21799 samples, as
stated by Mikhail Shugay et al[7] the datasets were labeled according to the
database they belonged to, in particular for the training:

• 268 positive samples from TICDB
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• 56 healthy samples from NORM

• 200 healthy samples from RTH

and for the testing:

• 198 positive samples from NGS1

• 419 positive samples from NGS2

• 1135 positive samples from CHIMERDB2A (higher confidence)

• 2212 positive samples from CHIMERDB2B

• 1366 positive samples from CHIMERDB2C (lower confidence)

• 391 healthy samples from CGC (unbroken genes)

• 16078 healthy samples from REFSEQ (unbroken genes)

The entire set of objects composing the algorithm that trains and tests on
the Oncofuse data were analogous to the ones previously described, except
for a few adaptations.

The validation set option was adapted for these datasets in the following
way: the training set remained unchanged, the validation set included the
samples coming from the NGS and the CGC databases and the remaining
samples were used for testing.

The number of nodes was reduced to accommodate the fewer number of
samples present in this training set, the new values were 128, 64, 32 and 16
respectively for the first, second, third and fourth layer.

An additional method was designed to compare the results obtained by
the MLP to the results of figure 2 of the paper written by Shugay M. et al.
The obtained bar diagram shows the percentage of driver gene fusions de-
tected by the classifiers (Oncofuse’s Bayes Network and the MLP proposed
by this thesis). The percentage is calculated for each source of data (e.g.
TICDB, CHIMERDB, NGS etc...). For each database i that was analyzed,
the percentage of driver gene fusions was calculated as: the number of de-
tected driver gene fusions divided by the total number of samples belonging
to database i multiplied by 100.

driver%i = TPi + FPi

samplesi
∗ 100 (3.5)
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3.4 Additional information
The software was implemented in Python 3.7, the neural network was de-
veloped in Keras 2.3.1 and Tensorflow 2.0.0. Computational resources were
provided by HPC@POLITO (http://www.hpc.polito.it)[52].
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Chapter 4

Results

In this chapter I present the results obtained with the classifiers illustrated
previously. For both classifiers k-fold cross-validation was performed on 10
folds. Next, I carried out a tuning phase of the hyper-parameters to identify
the best model. In the final testing phase the model that returned the highest
performances was determined. The results of the comparison of the best
classifier with Oncofuse are illustrated at the end of this chapter.

4.1 SVM cross validation
Firstly, to assess the contribution of each set of features for the classification
task a series of training experiments were carried out. Below there is a
diagram that summarises the performances of the classifier for each set and
for every possible combination of feature sets.

The parameters were not tuned during this estimate of the performances.
Therefore it was decided to keep a fixed value for gamma and C equal to
respectively 0.001 and 0.4. Although the values were not optimal for the
task, the goal of this assessment is to determine which feature set or combi-
nation of feature sets classifies better. Gene ontologies were excluded from
this evaluation because of the high number of features and will be analyzed
subsequently in combination with the random forest technique. Therefore in
figure 4.1 the mean of the f1 score over the 10 folds is displayed, each of the
7 bars represents one of the following combinations of feature sets:

• 5 features

• 181 TFs
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• 5 features and 181 TFs

• 333 miRNAs

• 5 features and 333 miRNAs

• 181 TFs and 333 miRNAs

• 5 features, 181 TFs and 333 miRNAs

Moreover the bar diagram is divided into 4 sections, in fact the cross
validation was performed for each of the following kernels:

• linear

• rbf

• sigmoid

• polynomial

Figure 4.1. Comparison of the performances obtained using different kernels
and different subsets of features

The results obtained with the cross-validations (4.1) highlighted that the
sigmoid kernel is characterized by the lowest performances with different com-
binations of features sets. The combination of the three datasets resulted in
the highest performances with a mean of f1 score of 0.93 over the 10 folds
for the linear SVM and 0.95 for the polynomial kernel.
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Once the utility of each feature set had been evaluated it was considered
useful to examine the cross-validation results for different number of features
by using the random forest selection method.

In the following evaluation, the feature selection technique was a cascade
of selection by subset of feature and random forest where the threshold value
was fixed and equal to 0.0005. The values for gamma and C are the same as
the previous diagram. In the bar diagrams below the cross-validation results
are displayed for each of the kernels, respectively:

• linear kernel figure 4.2

• gaussian kernel figure 4.3

• sigmoid kernel figure 4.4

• polynomial kernel figure 4.5

The number of features used for each combination of feature sets was
determined by the random forest feature selection method. The diagrams of
figure 4.2, 4.3, 4.4 and 4.5 explore the cross-validation performances obtained
for each of the following combinations:

• 271 GOs

• 172 TFs

• 252 miRNAs

• 5 features + 171 TFs

• 5 features + 231 GOs

• 5 features + 236 miRNAs

• 178 GOs + 109 TFs

• 204 miRNAs + 157 TFs

• 102 miRNAs + 193 GOs

• 5 features + 175 GOs + 112 TF

• 5 features + 146 TFs + 191 miRNAs

• 5 features + 172 GOs + 109 miRNAs
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Figure 4.2. Comparison of the performances obtained using the linear kernel
and different subsets of features. The number of features was reduced using
the random forest feature selection

Figure 4.3. Comparison of the performances obtained using the gaussian
kernel and different subsets of features. The number of features was reduced
using the random forest feature selection

• 5 features + 128 GOs + 78 TFs + 100 miRNAs

Overall the highest performances were reached when using the complete
set of features, with a maximum of 0.96 mean of f1 with the polynomial
kernel and 0.95 with the linear coefficient. The sigmoid kernel appears to be
again the one that reaches the lowest results.

The random forest feature selection greatly reduced the number of gene
ontologies from 5025 to 271, this number lowers furtherly when the GOs are
combined with other features. Nevertheless, the GO seems to be the set of
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Figure 4.4. Comparison of the performances obtained using the sigmoid ker-
nel and different subsets of features. The number of features was reduced
using the random forest feature selection

Figure 4.5. Comparison of the performances obtained using the polynomial
kernel and different subsets of features. The number of features was reduced
using the random forest feature selection

features that returns the highest results when evaluating its performances on
the training set with 0.95 as mean of f1 with the linear kernel, 0.94 with the
gaussian, 0.94 with the sigmoid and 0.74 with the polynomial.

The performances of the linear kernel are generally high, between 0.81 and
0.95 along with the results obtained with the polynomial kernel, between 0.74
and 0.96.
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Once the utility of the complete set of features had been settled the param-
eters were finely tuned to obtain the best possible results. For the following
evaluations of the performances the entire set of features was used with the
random forest feature selection method. The threshold value for the ran-
dom forest was equal to 0.0005, once the set of features was defined it was
preserved and used for the rest of the evaluations for consistency of results.

Figure 4.6 shows the mean of accuracy for the linear kernel and the fol-
lowing coefficient values:

• 0.001

• 0.01

• 0.1

• 10

Figure 4.6. Cross validation results for linear kernel with coeff =
[0.001, 0.01, 0.1, 10]

Figure 4.7 shows the mean of accuracy for the gaussian kernel, the same
coefficient values used previously and the following gamma values:

• 0.001

• 0.01

• 0.1

• 10
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Figure 4.7. Cross validation results for rbf kernel with coeff = [0.001, 0.01,
0.1, 10] and gamma = [0.001, 0.01, 0.1, 10]

Figure 4.8 displays the mean of accuracy for the same gamma and coeffi-
cient values used for the rbf kernel.

Figure 4.8. Cross validation results for sigmoid kernel with coeff = [0.001,
0.01, 0.1, 10] and gamma = [0.001, 0.01, 0.1, 10]

Figure 4.9 displays the mean of accuracy for the same gamma and coeffi-
cient values used previously and for degree equal to 2.

Since the sigmoid kernel (4.8) was the one that confirmed to have the
lowest performances with a 0.6 mean of accuracy it was excluded from the
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Figure 4.9. Cross validation results for polynomial kernel with coeff = [0.001,
0.01, 0.1, 10], gamma = [0.001, 0.01, 0.1, 10] and degree = 2

following step of testing. Moreover, to each of the configurations with sig-
moid kernel characterized by a 0.6 value of mean of accuracy the confusion
matrix of figure 4.10 was associated.

Figure 4.10. Confusion matrix of the training set obtained with the SVM
model characterized by sigmoid kernel, coeff = 0.001 and gamma = 0.001

Furthermore, the rbf kernel configurations (4.7) characterized by a low
value of coefficient and high value of gamma consistently performed worse
than other combinations of values of lambda and gamma with about 0.6
mean of accuracy. Therefore, the ranges of values of lambda and coefficient
were reduced respectively to: [0.01, 0.1, 10] and [0.001, 0.01, 0.1] for the
following testing phase.
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The polynomial kernel (4.9) seems to fit well the training data with a
prevalence of high results for high values of coefficient and low values of
gamma with a 0.95 mean of accuracy, consistently with the previous obser-
vation. The same can be said for the configurations obtained with the linear
kernel (4.6).

4.2 SVM testing
The different possible configurations for the SVM classifier were tested on the
previously defined test set and the feature selection method was the random
forest with threshold value equal to 0.0005. For this test 288 features were
selected among which:

• The percentage of retained gene at the 5’ and at the 3’ position along
with the definition given by Cancermine for both genes

• 121 gene ontologies

• 93 miRNAs

• 70 transcription factors

The performances of the classifiers on the train set and on the test set
are shown in figure 4.11 and 4.12. Figure 4.11 illustrates the obtained AUC
values for linear, gaussian and polynomial kernel with the following ranges
of parameters:

• range of values for gamma = [0.001, 0.01, 0.1]

• range of values for coefficient = [0.01, 0.1, 10]

On the other hand figure 4.12 displays the corresponding accuracy values for
the same parameters.

The performances obtained with the model characterized by the rbf kernel,
coefficient 0.1 and gamma 0.001 were the highest. The AUC for this model
was 0.86 on the training set and 0.73 on the test set. The corresponding
accuracy values are equal to 0.86 on the training set and 0.75 on the testing
set. The polynomial kernel returns similar results with gamma 0.001 and
coefficient 0.01.

The second testing phase was characterized by the same threshold value
for the random forest. This time 275 features were retained of which:
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Figure 4.11. AUC values for the train and test sets obtained with different
SVM models. The kernels were: linear, rbf and polynomial while the range
of coefficient values was: [0.01, 0.1, 10] and the range of gamma values was:
[0.001, 0.01, 0.1]. The degree for the polynomial kernel was equal to 2.

Figure 4.12. Accuracy values for the train and test sets obtained with dif-
ferent SVM models. The kernels were: linear, rbf and polynomial while the
range of coefficient values was: [0.01, 0.1, 10] and the range of gamma values
was: [0.001, 0.01, 0.1]. The degree for the polynomial kernel was equal to 2.

• 5 initial features

• 123 gene ontologies

• 86 miRNAs

• 61 transcription factors
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Figure 4.13 illustrates the AUC values obtained for the same ranges of
parameters used previously whilst figure 4.12 displays the corresponding ac-
curacy values.

Figure 4.13. AUC values for the train and test sets obtained with different
SVM models. The kernels were: linear, rbf and polynomial while the range
of coefficient values was: [0.1, 10, 100] and the range of gamma values was:
[0.001, 0.01]. The degree for the polynomial kernel was equal to 2.

Figure 4.14. Accuracy values for the train and test sets obtained with dif-
ferent SVM models. The kernels were: linear, rbf and polynomial while the
range of coefficient values was: [0.1, 10, 100] and the range of gamma values
was: [0.001, 0.01]. The degree for the polynomial kernel was equal to 2.

Concerning the SVM configuration that reached the highest results on the
testing set, using the new set of 275 features, it was characterized by the

49



Results

following parameters:

• kernel = rbf

• gamma = 0.01

• coeff = 0.1

The performance metrics obtained for this configuration of parameters are
displayed in figure 4.15.

Figure 4.15. Performance metrics for the model characterized by the follow-
ing parameters: rbf, gamma = 0.01, coeff = 0.1

Furthermore the corresponding confusion matrices are displayed in figure
4.16.

Figure 4.16. Confusion matrices for train and test set. The parameters of
the SVM model were: rbf, gamma = 0.01, coeff = 0.1
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If the threshold value for the random forest feature selection method in-
creases then the number of features lowers. In particular, with a threshold
equal to 0.001, the number of selected features was 176 of which:

• 5 initial features

• 71 gene ontologies

• 44 miRNAs

• 56 transcription factors

And the obtained performances for training and testing using this smaller
set of 176 features are plotted in figure 4.17 and 4.18. The range of values
for gamma and coefficient used to obtained the AUC and accuracy values
displayed respectively in figure 4.17 and 4.18 were:

• range of values for gamma = [0.001, 0.01]

• range of values for coefficient = [0.1, 10, 100]

Similarly to what was reported previously, both the train and test set per-
formances were showed in the bar diagrams.

Figure 4.17. AUC values for the train and test sets obtained with different
SVM models. The kernels were: linear, rbf and polynomial while the range
of coefficient values was: [0.1, 10, 100] and the range of gamma values was:
[0.001, 0.01]. The degree for the polynomial kernel was equal to 2.

It was found that when reducing the number of features the results were
analogous. In fact, the best configuration was the same as the previous one,
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Figure 4.18. Accuracy values for the train and test sets obtained with dif-
ferent SVM models. The kernels were: linear, rbf and polynomial while the
range of coefficient values was: [0.1, 10, 100] and the range of gamma values
was: [0.001, 0.01]. The degree for the polynomial kernel was equal to 2.

with the following parameters: kernel = rbf, gamma = 0.01, coeff = 0.1. The
confusion matrix of this model and the metrics are reported respectively in
figure 4.19 and figure 4.20. The results for the training set were illustrated
as well as the results for the testing set.

Figure 4.19. Confusion matrices for train and test set. The parameters of
the SVM model were: rbf, gamma = 0.01, coeff = 0.1

Subsequently a phase of fine-tuning of the parameters was performed.
The results obtained for the gaussian kernel are displayed below for the AUC
values returned by the cross-validation phase and the AUC values returned
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Figure 4.20. Performance metrics for the model characterized by the follow-
ing parameters: rbf, gamma = 0.01, coeff = 0.1

when testing on the test set. The selected features were the same for each of
the following evaluations, namely 178 of which:

• 5 initial features

• 76 gene ontologies

• 38 miRNAs

• 54 transcription factors

Firstly the two parameters were varied in a range of values close to the
best solution obtained previously:

• range of values for gamma = [0.001, 0.005, 0.01, 0.05, 0.1]

• range of values for coefficient = [0.01, 0.05 ,0.1, 5, 10]

Figure 4.21 shows the AUC values obtained during the first tuning phase.
The highest test AUC reached was equal to 0.77 and was obtained for gamma
= 0.05 and coefficient = 5.

For the second tuning phase, the highest test AUC was equal to 0.77 and
was obtained for gamma = 0.05 and coeff = 2. Figure 4.22 reports the
obtained AUC values for the cross-validation phase and the testing phase.
In this second tuning phase the possible values for the parameters were the
following:

• range of values for gamma = [0.005, 0.01, 0.05]
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Figure 4.21. AUC values for gamma = [0.001, 0.005, 0.01, 0.05, 0.1],
coeff = [0.01, 0.05 ,0.1, 5, 10]

Figure 4.22. AUC values for gamma = [0.005, 0.01, 0.05], coeff = [0.1, 2, 5]

• range of values for coefficient = [0.1, 2, 5]

Figure 4.23 illustrates the AUC values obtained for the third tuning phase.
In this case the possible values for the parameters were the following:

• range of values for gamma = [0.04,0.05,0.06]

• range of values for coefficient = [0.1, 2, 5]

The highest test AUC value was equal to 0.79 and it was obtained for
gamma = 0.04 and coeff = 0.5.
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Figure 4.23. AUC values for gamma = [0.04,0.05,0.06], coeff = [0.5,1.5,2]

Figure 4.24. AUC values for gamma = [0.02,0.03,0.04], coeff = [0.4,0.5,0.6]

In the fourth tuning phase the highest test accuracy was reached, namely
0.794. The corresponding AUC values are displayed in figure 4.24 and the
possible values for the parameters were:

• range of values for gamma = [0.02,0.03,0.04]

• range of values for coefficient = [0.4,0.5,0.6]
In this case, the highest test accuracy value was returned by two different

combinations of parameters.
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• gamma = 0.02, C = 0.5, precision = 0.788, recall = 0.797, AUC = 0.780

• gamma = 0.04, C = 0.6, precision = 0.756, recall = 0.860, AUC = 0.795

Since the latter configuration was characterized by the highest recall and
AUC value the parameters were varied around those values for the last tun-
ing phase.

Figure 4.25. AUC values for gamma = [0.035,0.04,0.045], coeff =[0.55,0.6,0.65]

In the fifth and final tuning phase the highest performances for the SVM
were reached. Figure 4.25 displays the cross-validation train AUC and the
test AUC obtained for the following ranges of parameters:

• range of values for gamma = [0.035,0.04,0.045]

• range of values for coefficient = [0.55,0.6,0.65]

In particular, the accuracy values are summarised in the diagram of figure
4.26.

Finally the highest performances were reached.

To sum up, in the beginning different SVM models were tested and the
results highlighted that the SVM characterized by the gaussian kernel was
the one that returned the highest performances.

When testing on the test set with different sets of features the chosen best
rbf model resulted in a AUC value higher than 0.73 each time (figures 4.11,
4.13, 4.17).
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Figure 4.26. Accuracy values for train and test set in the final tuning phase

Furthermore the fine-tuning of the parameters led to the best possible
SVM model, increasing the obtained test AUC at each step of the tuning
phase from a starting value of 0.77 (figures 4.21, 4.22) up to 0.79 (figures
4.23, 4.24, 4.25).

After these evaluations the best SVM model was identified and the op-
timal configuration of parameters to obtain the highest performances is the
following:

• Kernel = rbf

• Gamma = 0.04

• Coeff = 0.6

This model returned the highest accuracy, equal to 79,45% . Furthermore
this configuration of parameters returned a recall equal to 0.8604 and preci-
sion equal to 0.7568. The AUC value was high as well and equal to 0.7952.
The confusion matrices for the chosen SVM model are displayed in figure
4.27 and 4.28

4.3 MLP cross validation
An analogous evaluation was performed for the multilayer perceptron classi-
fier. The parameters for the cross-validation phase were:
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Figure 4.27. Confusion matrix for the best SVM model: kernel = rbf,
gamma = 0.04 and coeff = 0.6

Figure 4.28. Performances of the best SVM model: kernel = rbf,
gamma = 0.04 and coeff = 0.6

• 4 layers with number of nodes = 512-256-128-64

• Activation functions = four sigmoids

• Learning rate = 0.001

• Number of training epoch = 30

• Dropout = 0.2 at each layer

The accuracy for the cross validation on each feature set is displayed in
figure 4.29

Similarly to what has been done to assess the training performances of the
SVM, the gene ontologies were excluded from the previous evaluation because
of the high number of features and are analyzed below in combination with
the random forest technique (figure 4.30).
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Figure 4.29. Comparison of the performances obtained using differ-
ent subsets of features

With the same threshold as before for the random forest feature selection
method (e.g. 0.0005) different feature sets were chosen and the training
performances of the MLP classifier were calculated. Other parameters of the
MLP such as learning rate and dropout were kept equal.

Figure 4.30. Comparison of the performances obtained using different
subsets of features. The number of features was reduced using the
random forest feature selection

Analogously to what has been observed for the SVM, the complete set of
features reaches the highest performances in the cross-validation phase. In
particular, the mean of the f1 score over the 10 folds resulted equal to 0.99
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when the selected set of features involved each of the available elements.

4.4 MLP testing
The tuning of the parameters has been performed for each configuration of
the model. Firstly, the number of epochs was fixed and equal to 50 for
consistency of the results. The number of features was fixed as well and
equal to 309 of which:

• 5 initial features

• 136 gene ontologies

• 95 miRNAs

• 73 transcription factors

The chosen configuration for the following evaluation (figure 4.31) was
characterized by 4 equal layers with number of nodes equal to 512 for each
layer. The activation functions for each layer were respectively: relu, sigmoid,
relu and sigmoid.

Figure 4.31. Accuracy values for the train and test sets obtained with differ-
ent MLP models. The range of the learning rate was = [0.0001, 0.001, 0.01]
and the range for the dropout value was = [0, 0.1, 0.2, 0.3, 0.4, 0.5]

For learning rate equal to 0.001 and dropout 0.4 the testing accuracy was
equal to 0.8. The following evaluation (figure 4.32) tuned more finely by
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varying the values in the range of minimum 0.002, and maximum 0.008 for
the learning rate and either 0.3 or 0.4 for the dropout. The validation set
was used as a combination of 200 fixed samples from the training set and 151
samples from test set 1, the early stopping was implemented with patience
equal to 50.

Figure 4.32. Accuracy values for the train and test sets obtained with differ-
ent MLP models. The range of the learning rate was = [0.002, 0.004, 0.008]
and the range for the dropout value was = [0.3, 0.4]

The configuration characterized by learning rate equal to 0.002 and dropout
equal to 0.3 returned a 0.79 accuracy on the test set, therefore this configu-
ration was chosen to perform the last evaluation. The performances of the
MLP were obtained for different number of nodes and activation functions
as described below.

• Number of nodes:

– 512-512-512-512
– 256-512-512-256
– 516-256-128-64
– 512-512-256-128

• Activation functions:

– 4 sigmoids
– 4 tanhs
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– 4 relus
– tanh-sigmoid-tanh-sigmoid
– relu-sigmoid-relu-sigmoid
– sigmoid-relu-sigmoid-relu
– sigmoid-tanh-sigmoid-tanh
– relu-tanh-relu-tanh
– tanh-relu-tanh-relu

The accuracy results for the cross-validation phase and the test phase are
displayed in figure 4.33 and 4.34.

Figure 4.33. Accuracy values for the train and test sets obtained with dif-
ferent MLP models. The learning rate was equal to 0.002 and the dropout
value was equal to 0.3. Legend: 0 = 512, 1 = 256, 2 = 128, 3= 64, s =
sigmoid, t = tanh, r = relu.

To sum up, the first tuning phase was characterized by a fixed number of
epochs equal to 50 and led to obtaining a value of accuracy on the test set
equal to 80%.

The second tuning phase involved an early stopping step and tuned more
finely the values of learning rate and dropout reaching a maximum of 79%
accuracy on the test set.
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Figure 4.34. Accuracy values for the train and test sets obtained with dif-
ferent MLP models. The learning rate was equal to 0.002 and the dropout
value was equal to 0.3. Legend: 0 = 512, 1 = 256, 2 = 128, 3= 64, s =
sigmoid, t = tanh, r = relu.

Finally the number of nodes for each layer and the type of activation
functions were varied while the best learning rate and dropout identified
earlier were maintained equal to the previous values.

The highest accuracy was finally reached, the corresponding values were
90% accuracy in the cross-validation phase and 81% accuracy on the test set.
The parameters that characterize the MLP model that reached the highest
performances are the following:

• activation functions = relu-sigmoid-relu-sigmoid

• number of nodes per layer = 256-512-512-256

• Learning rate = 0.002

• Dropout = 0.3

The best MLP model defined earlier returned the confusion matrices dis-
played in figure 4.35 and the metrics of figure 4.36.
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Figure 4.35. Confusion matrices for train and test set of the best MLP
model. The parameters were: learning rate = 0.002, dropout = 0.3, layers =
256-512-512-256, activation functions = relu-sigmoid-relu-sigmoid

Figure 4.36. Performance metrics for the best MLP model. The parame-
ters were: learning rate = 0.002, dropout = 0.3, layers = 256-512-512-256,
activation functions = relu-sigmoid-relu-sigmoid

4.5 Oncofuse
Shugay M. et al. introduced with their paper a valuable tool to predict
the oncogenic potential of gene fusions. The comparison with the results
obtained by the authors with this tool represents an opportunity to assess
the performances of the method that I present in this thesis. As already
stated the authors trained and tested their tool on a total of 9 databases.
The results obtained by Oncofuse on each of the analyzed databases are
displayed in Fig. 2 of the paper reported here in figure 4.37.

The sets of features used by Oncofuse included some of the elements cov-
ered in this thesis (e.g. transcription factors and gene ontologies) but the
breakpoints of the gene fusions were not considered and were therefore not
available. Therefore the two correlated features identified in this thesis had
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to be excluded from the training and testing phases.

Figure 4.37. Figure 2 of Oncofuse

The results reported by Oncofuse were compared to the performances
obtained using the best MLP model found in the previous phase. The selected
features for this evaluation were 281 of which:

• The 3 available initial features

• 93 transcription factors

• 155 micro RNAs

• 30 Gene ontologies

The maximum number of epochs was set to 30 and the number of nodes
per layer were respectively 64, 128, 128, 64. For lack of precise values for the
following examinations, the performances of Oncofuse are approximated as
displayed in the diagram of figure 4.38.

The confusion matrices and the performances obtained with this model
are displayed below respectively in figure 4.39 and figure 4.40.

A second performance evaluation included a MLP with the following pa-
rameters:

• Learning rate = 0.03
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Figure 4.38. Comparison of the assumed performances of Oncofuse with
respect to the performances obtained by the best MLP model

Figure 4.39. Confusion matrices for the train and test set obtained
after training and testing the best MLP model found earlier on the
data provided by Oncofuse

• Number of epochs = 50

• Number of nodes = 256-128-64-32

• Activation functions = relu-sigm-relu-sigm

• Dropout = 0.4

These parameters were chosen after a tuning phase that took into consid-
eration the results obtained with the new training data.

For this test, the number of features was decreased to 44 using the random
forest selection method with a threshold equal to 0.004. The selected features
were:
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Figure 4.40. Metrics for the train and test set obtained after training and
testing the best MLP model found earlier on the data provided by Oncofuse

• The 3 available initial features

• 3 transcription factors

• 31 micro RNAs

• 7 Gene ontologies

The comparison of the performances of the model proposed by Shugay M.
et al. with respect to the results obtained by the model defined previously
are displayed in figure 4.41.

Figure 4.41. Comparison of the assumed performances of Oncofuse with
respect to the performances obtained by the optimal MLP model

The confusion matrices and the performances are displayed in figure 4.42
and 4.43.
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Figure 4.42. Confusion matrices for the train and test set obtained after
training and testing the optimal MLP model

Figure 4.43. Metrics for the train and test set obtained after training and
testing the optimal MLP model
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Chapter 5

Discussion

5.1 SVM
The first cross-validation results obtained with different configurations of
SVMs and different sets of features highlighted the benefit of exploiting in-
formation coming from two of the three analyzed elements (e.g. transcription
factors and micro-RNAs) as well as the information deduced from the gene
names and the breakpoints.

5.1.1 The importance of the five initial features
Concerning the performances of the linear kernel during the first cross-
validation experiment, it was found interesting that a feature set composed
only by the five initial features seemed to perform well in the training phase.
The information deduced from the breakpoints, the definition of the genes
and the belonging strand resulted in a very high value of accuracy on their
own. Furthermore, when these five features were added to the features set
of either one of the other two elements the accuracy consistently improved
with respect to the results obtained using the transcription factors or the
microRNAs only. This improvement is evident in the results of the cross
validation of figure 4.6 that displays the obtained mean of f1 of the SVM
with the linear kernel. The fact that the random forest selection method
almost always retained those five features confirms their significance in the
classification of gene fusions.

As already stated, a likely oncogenic chimera may be obtained when one
or both genes are identified as known oncogenes, this notion, along with
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the extent of the retained oncogene, may be crucial for the classification.
For instance, the training set contains the SS18-SSX4 gene pair labeled as
an oncogenic gene fusion. In this case, SS18 is defined as "oncogene" and
78,84% is retained after the gene fusion event. On the other hand, SSX4 is
defined as "other" and 40,28% is retained. Since a good portion of the gene
closer to the promoter is retained it is reasonable to assume that the final
gene fusion will express some oncogenic behavior.

Certainly, it is clear from the subsequent observation on the testing set
that these five features alone are not sufficient to confidently make a correct
prediction, nevertheless, the information they provide is valuable.

5.1.2 The complete feature set
The second cross-validation evaluation resulted in a maximum of 0.95 mean
of f1 score for the linear kernel and 0.96 for the polynomial kernel. The
results obtained with the remaining two kernels tended to be generally low
but this behavior, at least for the gaussian kernel, was imputable to the
use of non-optimal parameters, namely the values for gamma and for the
coefficient.

The subsequent evaluation took into consideration the 3 main elements
(e.g. transcription factors, micro-RNAs and gene ontologies). The number
of features was reduced with the random forest feature selection method. The
first observation is that the number of gene ontologies was greatly reduced,
from 5025 to 271, indicating that the number of useful gene ontologies for
the classification task is very small compared to the entire set of GOs. The
mean of the accuracy for the cross-validation phase tended to be generally
higher for the 271 gene ontologies when compared to the mean of accuracy
values obtained with the other two sets (173 TF and 252 miRNA).

In particular, the use of miRNAs in the classification of gene fusions distin-
guishes this thesis work from other works like Oncofuse that did not consider
them. It should be noted that the MLP cross validation results obtained
using the information related to 333 microRNAs outperform the results ob-
tained using the five features or the ones returned by the model trained on
the 181 TF. This outcome highlights the importance of the role that miRNAs
may have in oncogenic gene fusions.

The combination of gene ontologies and micro-RNAs returned a compa-
rable or slightly higher mean of accuracy than the other two combinations of
feature set implying the importance of including miRNA in the final feature
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set.

However, the results obtained when including features from each of the
three sets were the highest, this justifies the final decision to use the complete
feature set in further evaluations.

The random forest feature selection method picked a comparable amount
of features from each set implying that it is fundamental to extract infor-
mation from each of these different sets to perform well in the classification
task.

5.1.3 Tuning of the parameters
In the cross-validation phase, the accuracy values obtained with the gaussian
and the sigmoid kernel still tended to be lower than the ones obtained with
the linear and polynomial kernel suggesting the need for further tuning of
the parameters.

When trying different values of coefficient for the linear kernel no substan-
tial difference emerged. The mean of the accuracy was slightly higher with
a lower coefficient value.

The gaussian kernel showed an interesting pattern of increased accuracy
for high values of coefficient and low values of gamma. These configurations
reached the values obtained with the linear kernel implying that a higher
result could be obtained with further tuning of these parameters. The highest
result obtained with the gaussian kernel was equal to the higher result reached
by the linear kernel.

The sigmoid kernel on the other hand showed no improvement with the
tuning of parameters, the cross-validation confirmed that this model is unable
to perform this classification task with adequate reliability. Moreover the
classifier built using the sigmoid kernel was often characterized by a 60%
mean of accuracy on the training set pointing out to a classification of the
entire set in either one of the two classes.

The polynomial kernel returned consistently high results with each combi-
nation of the parameters. The maximum mean of accuracy was comparable
to the maximum results obtained with the gaussian kernel and the linear
kernel.

During the testing phase, the highest accuracy results were returned by
the rbf kernel and the polynomial kernel. The accuracy value of the test
set reached 75% for these two kernels when using a fairly high number of
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features (e.g. 288) that in this case excluded one of the initial features (e.g.
‘same strand’). When running the experiment once again with the same
threshold value the feature ‘same strand’ was retained and the results were
again high for the rbf. On the other hand, the performances of the polynomial
kernel were slightly lower than the ones achieved by the gaussian kernel.
Since in the majority of the experiments each of the five initial features was
retained by the random forest feature selection method the results of the
second experiments were preferred to apply the subsequent decisions.

When reducing the number of features, in fact, the results were equivalent,
the gaussian kernel performed consistently throughout these 3 experiments
and was therefore chosen for the final tuning of the parameters.

Starting from a larger range of gamma and coefficient values the best
possible parameters were identified. The high performances reached by the
non-linear kernel imply that the problem itself may not be linearly separable.

The last small range of coefficient and gamma values returned consistently
high results (figure 4.25) with respect to the accuracy value on the test set. In
the end, the configuration that ensured the highest recall possible on the test
set, or in other words minimized the false-negative samples, was preferred.

5.2 MLP
The cross-validation phase with the MLP classifier returned the highest re-
sults when using a combination of the three main sets of features, in agree-
ment with what was found with the SVM classifier.

Even with the best MLP model a few hundred negative samples were
classified as positive and vice versa. When comparing the samples that were
misclassified by the MLP and the ones misclassified by the SVM it was found
that:

• about 4/10 of samples that were classified as oncogenic by the SVM but
were actually non-oncogenic were also classified as false positives by the
MLP

• about 4/10 of samples that were classified as non-oncogenic by the SVM
but were actually oncogenic were also classified as false negatives by the
MLP

This comparison took into consideration two models that reached a com-
parable accuracy value (about 75%) and demonstrates that both models have
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a certain degree of agreement when it comes to misclassified samples.
The final MLP model returned the highest performances in both the cross

validation phase and the testing phase. This outcome led to the conclusion
that MLP models should be preferred with respect to the SVM models when
approaching the classification of oncogenic gene fusions.

5.3 Comparison with Oncofuse
The results of the MLP model when trained and tested on the samples pro-
vided by Oncofuse, although not optimal, were able to outperform the ones
illustrated by the paper.

When using an MLP model with the same parameters reported as optimal
in the study of this thesis (with the exception of the number of nodes for
each layer that were reduced) the model seemed to overfit but still managed
to detect a slightly higher percentage of positive test samples and obtain
comparable results with the negative test samples.

When tuning the MLP model to suit better the new data the results on
the two provided sets for the training were high, outperforming the ones
obtained by Oncofuse:

• 95% of TICDB samples were correctly classified as driver gene fusions
as opposed to the assumed 90% reported by Oncofuse

• 2% of the Normal samples were incorrectly classified as driver gene fu-
sions as opposed to the assumed 10% reported by Oncofuse

The obtained accuracy on the test set was somewhat high (e.g. 74%) but
it must be noted that the recall value was considerably low. Concerning the
positive test samples, the paper clarifies that they are definable as ‘putative’
since these gene pairs were obtained by detection tools and not experimen-
tally validated. It should be also noted that the content of the used databases
could be nowadays defined as outdated when compared to the data used in
the earlier phases of this thesis.

Nevertheless, even without the notion of the retained percentage of genes,
the optimal MLP model was able to minimize the number of detected driver
fusions of the ‘unbroken genes’ (negative testing samples) and obtained com-
parable or slightly higher results than the paper.

The MLP classifier performed similarly in each of the three sets of samples
belonging to CHIMERDB correctly classifying as oncogenic about 1/3 of
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the samples regardless of the high-confidence/low-confidence differentiation
illustrated by Oncofuse.
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Chapter 6

Conclusion

The results demonstrated that both classifier models (e.g. SVM and MLP)
are able to discern between driver and passenger gene fusions.

The performances on both the train set and the test set are satisfactory,
the results seem even more reliable when observing that the models were
trained on thoroughly validated samples and then tested on a considerable
amount of different gene fusions.

The gene fusions belonging to the test set consisted of different genes (the
vast majority of them was never seen by the classifier) and that led to robust
performances.

The selected features are therefore thought to be able to extract valu-
able knowledge to perform the classification task. The unique combination
obtained by the random forest selection method using transcription factors,
gene ontologies and micro-RNAs along with the five features identified at the
beginning of this study led to about 80% accuracy on the test set with both
classifiers.

The high accuracy values were associated to a high recall on the test set as
well equal to 86% for both the best SVM model and the chosen MLP model.
This result highlights the efficiency of the classifiers that not only correctly
classify the majority of the samples but are also able to keep the rate of false
negatives relatively low.

Eventually the MLP was the final model proposed by this study, since this
classifier was able to reach sligthly higher accuracy and AUC values on the
test set compared to the best SVM model.
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Moreover, the comparison with the literature demonstrated that the MLP
model was able to reach comparable or slightly higher results than the ones
illustrated by Oncofuse[7].

This comparison confirmed the quality of the performances obtained in
this thesis suggesting that the proposed model can be a valuable tool to clas-
sify gene fusions in oncogenic or not oncogenic.

In conclusion, in this thesis, I presented a robust classifier model that, in
combination with the features extracted and selected during this study, may
represent a suitable tool for the classification of gene fusions.
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