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Abstract

Gesture recognition is a research topic that is gaining more and more popularity,
especially in recent years, thanks to technological advances in embedded devices
and sensors. Today, especially in the clinical field, the most widely used method for
the control of an active upper limb prosthesis is based on the ElectroMyoGraphic
(EMG) Pattern Recognition, which allows to identify the type of movement that
the subject intends to perform. In particular, the recognition of hand movements
based on surface EMG (sEMG) signals is a promising approach for the development
of Human-Machine Interfaces (HMI), such as robotic interfaces or poly-articulated
prostheses, resulting in a more intuitive control and a quick tasks selection.

The goal of this thesis is to use some widespread machine learning techniques
to create a system able to recognize and classify hand gestures in real-time, start-
ing from the sEMG signals produced by the forearm muscles. The innovative
event-driven approach of the Average Threshold Crossing (ATC) technique is im-
plemented to drastically reduce the power consumption due to the minimal amount
of data to be processed. This technique computes the ATC parameter by averaging
the number of sEMG Threshold Crossing (TC) events in a pre-defined time win-
dow, obtaining a proper index for muscle activation monitoring.

The proposed system is composed by three acquisition channels, each one ac-
quiring the sEMG signal and providing the related quasi-digital TC signal, and
an Apollo3 Blue MicroController Unit (MCU), which feeds the embedded machine
learning algorithms and classifies the performed gesture. The thesis work focuses on
the comparison among Artificial Neural Network (ANN), Support Vector Machines
(SVM) and K-Means ML tecniques, exploring different capabilities during online
prediction. Exploiting the ARM libraries features, a firmware optimization analisys
has been carried out in order to reduce power consumption as much as possible and
to achieve a latency suitable for real-time applications. In particular, with SVM
algorithm an average classification accuracy of 94.49%, a latency of 109.85 ms and
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an average power consumption of 1.67 mW were obtained. K-means has gotten
an average classification accuracy of 95.14%, a latency of 62.6 µs and an average
power consumption of 0.82 mW . Finally, the NN achieved an average classification
accuracy of 97.59%, a latency of 2.58 ms and an average power consumption of 0.83
mW . Based on the obtained results, K-Means is the best algorithm analyzed for
this study.
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Summary

In this thesis work a system able to recognize and classify hand gestures in real-time,
starting from the sEMG signals produced by the forearm muscles, is proposed.
In order to reduce the power consumption, the event-driven approach of the Average
Threshold Crossing (ATC) technique is used. The proposed system is composed by
three acquisition channels, each one acquiring the sEMG signal and providing the
related quasi-digital TC signal, and a MicroController Unit (MCU), which feeds
the embedded machine learning algorithm and classifies the performed gesture.
This document is composed by six chapters:

1. Background Information: In the first chapter the topics dealt during the
thesis work are reported. This started with a brief introduction to the physiol-
ogy of the skeletal muscular system, dealing in particular with the mechanism
of contraction of the muscle fibers and the sEMG signal acquisition tecniques.
Subsequently, examples of applications that exploit the sEMG signal have been
reported, both in medical and in other fields of study.
Finally, the machine learning algorithms used in this thesis work for the recog-
nition of movements have been described.

2. State of Art: This chapter analyzes the state of the art of modern gestures
recognition techniques, which use some machine learning algorithms. The
innovative ATC technique has been described, and finally the main works in
which it has been used have been reported.

3. Data Acquisition: The first part of this chapter describes the acquisition
channels implemented for the sEMG signal pick-up. The electronic compo-
nents that make up the boards and the techniques implemented to solve prob-
lems such as power-line interference have been reported.
A description of the Apollo3 Microcontroller was then made, including the
main steps of the firmware that implements the three machine learning algo-
rithms discussed in Chapter 1.
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Finally, the entire process required to acquire the data is described. Partic-
ular attention was given to the acquisition protocol, describing in detail the
electrode positioning procedure and the steps necessary for the training and
testing phase.

4. Gesture Recognition Algorithms: This chapter describes the software that
has been used to implement the classifier both offline and online.
The Offline Training has been performed on a Matlab ®platform, using ANN,
SVM and K-Means algorithms in order to obtain the desired parameters.
Online Prediction has been made directly on the Apollo3 board, exploiting the
ARM libraries features.

5. Experimental Results: This part of the thesis reports the results obtained
from the experimental tests of the three classifiers. An overview of the per-
formances in terms of accuracy in the classification of the movements, latency
and power consumption of the Apollo3 MCU is made.

6. Conclusion: This final chapter summarizes all the steps taken in the thesis
to show the work done, and introduces some possible future works.
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Chapter 1

Background Information

1.1 Basis of Muscular System
The Muscular System is composed by several muscles fundamental for human body
movement. They also stabilize and maintain posture, protect underlying organs,
produce heat and permit the transport of organic substances like blood and food [2].
All these functions are controlled by the Nervous System through electrical stimuli,
called Action Potential (AP). After receiving it, the muscle contracts, and the force
of contraction determines the movement that can be involuntary or voluntary. This
connection between the muscular system and the nervous system has led to the
creation, in physiology, of the Neuromuscular System.
It is possible to make an initial categorization of the muscular system based on the
type of muscle tissue that composes it.
There are three different types of muscle tissue in the body [3]:

• Skeletal (or Voluntary) Tissue
The skeletal muscles are voluntary muscles controlled by the peripheral part
of the Central Nervous System (CNS). In Figure 1.1A, it is possible to see
that this tissue type appears as striated with multi-nuclei. They are the only
multinuclear cells in the human body. These muscles are responsible of the
body’s mobility. In fact, the main functions are to allow the movement of
the bones, maintain body posture and move the lymph and blood. The ends
of skeletal muscles are usually connected to bone, skin or other muscles. In
subsection 1.1.1 there are more details about this type of muscle.

• Smooth (or Involuntary) Tissue
The smooth tissues are called involuntary, because they are controlled by the
autonomous nervous system. The cells of this type of muscle are not striated
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and have a spindles shape (Figure 1.1B). Each cell has a single nucleus. This
type of muscle has a slow but sustained contraction, in fact their main func-
tions are to move organic substances through the digestive and urinary tract.
Smooth tissue is found in the walls of the body’s visceral organs, except in the
heart.

• Cardiac Tissue
The cardiac muscle (or myocardium) works independently and rhythmically.
This muscle is characterized by a self-exciting and rhythmic repetition that de-
fines his rhythmic contraction. This muscle is composed of networked striated
cells (Figure 1.1C). This particular structure allows the stimulation of one area
to be transfered to another area of the heart muscle. This event is responsible
of the rhythmic movement introduced above. As its name suggests, this type
of muscle is only present in the walls of the heart.

Figure 1.1: Type of muscle fibers:(A) skeletal, (B) smooth, and (C) cardiac [4].

1.1.1 The Skeletal Muscle
For this study it is very important to clearly understand the main characteris-
tics of skeletal muscle, because these are related to body movement and therefore
to the EMG signal. In fact, the EMG signal represents the electrical activity of
skeletal muscles. The skeletal muscle accounts for about 40% of the body weight,
while another 10% of the weight is made up of smooth and cardiac tissue. So,
in a healthy body, half the total weight is muscle. These are composed of water
(about 70%), protein (25%) and other organic and inorganic components such as
salt, carbohydrates, fats, glycogen (5%). In this chapter, the different functions of
skeletal muscles will be analyzed from two different points of view: Metabolic and
Mechanical.
From a metabolic point of view, skeletal muscles play an important role in basal en-
ergy metabolism. In fact, this type of muscle works as a deposit for substances such
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as amino acids and carbohydrates, but also as a consumer of nutrients and oxygen
during contraction or to maintain the internal temperature. From a mechanical
prospective the main objective of skeletal muscles is to convert chemical energy
into mechanical energy to generate strength and power during physical activity.

Physiology of Skeletal Muscles

Figure 1.2: Skeletal muscle overview [4].

The skeletal muscles consist of numerous muscle fibres of various diameters (10
to 100 µm), held together by fibrous connective tissue. The external structure is
called muscular fascia, which on the inside is composed of smaller elements. The
Epimysium is a capsule of connective tissue that wraps around the Perimysium.
The latter in turn groups the muscle fibres into Fasciculi. The single muscle fiber
is covered by Sarcolemma (a plasma membrane). At the ends of the fibres, the
sacolemma and tendon fibres merge to form inelastic parts (Tendons) that connect
the muscle to the bone.

Each muscle fibre consists of Myofibril, which in turn is composed of about
3000 actin and 1500 myosin filaments [5]. Among myofibril there is Sarcoplasm,
an intracellular liquid rich in phosphate, magnesium and numerous mitochondria
that provide energy in the form of ATP during contraction. These filaments are
responsible of the muscle contraction as a result of their sliding movement. A
longitudinal section of myofibril shows that the internal structure is organized in
different areas:
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Figure 1.3: Physiology of the contractile mechanism of muscle fibers [4].

• I bands are composed of actin filaments. These bands are bright because they
are isotropic to polarized light.

• A bands are dark bands made up of myosin filaments that are isotropic to
polarized light.

• Z disks are mostly composed of alpha-actinine. This protein fixes the actin
filaments. The portion of myofibril between two Z-disks is called sarcomere.

• H zone is the central part of the sarcomere. It is composed by thick filament.

• M line is a thickened area within the H zone that consists of proteins that
hold the filament in place.

The position of the actin and myosin filaments is fixed by the Titin Protein,
which has an elastic filamentous structure. These filaments are positioned between
the Z disc and the M line and function as a spring during contraction.

Contraction Mechanism

Muscle contraction begins when the CNS sends an electrical stimulus through a
motor nerve. The AP spreads through the Motor Neuron to the muscle fibres.
Each end the nerve terminates the free acetylcholine. This neurotransmitter opens
the cationic channels in the muscular membrane. This means that an important
amount of sodium ions (Na+) enter the interior causing local depolarization of the
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membrane. For this reason there is a generation of AP within the membrane that
reaches the centre of the muscle fibre where the sarcoplasmic reticulum releases
calcium ions (Ca+). These ions give rise to an attractive force between the actin
and myosin filaments, which cause each other to slip. Another essential feature
of myosin for contraction is the enzymatic property of obtaining energy from the
phosphate bond with high energy content of ATP (which has become ADP). The
contraction ends with the rebalancing of Ca++ within the sarcoplasmic reticulum.
Figure 1.4 shows what happens to actin and myosin during contraction.

Figure 1.4: Mechanism of muscular contraction [3].

Type of Muscular Fiber

Each skeletal muscle consists of different types of fibres, classified into 3 types,
based on their strength and contraction speed. Another difference between these
types of fibres is the amount of myosin that causes a change in the colour of the
fibre.

• Type I or Red fibers
They are suitable for slow and long lasting work, because they have a good
tolerance to fatigue and have the ability to stay contracted. This type of fiber
involved in long and intensive efforts. They are the first type of fiber to be
recruited during muscle contraction and are able to produce a small force. Red
fibres have aerobic metabolism.

• Type IIa or Intermediate fibers
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Intermediate fibres are capable of rapid contraction. They are remarkably
strong. This type of fiber has an anaerobic metabolism.

• Type IIb or White fibers
White fibers are the most powerful muscle fibers. They are suitable for strong,
short-term efforts. They are characterised by greater conduction speed and for
this reason they have a quick response but a little resistance to tiredness. IIb
fibres are useful for maximum contractions. This type of fibre, like IIa fibre,
also has an anaerobic metabolism.

Muscle Movement

During movement each muscle does not work alone, but each movement is the result
of the action of muscle synergy. It is possible to classify each group of muscles ac-
cording to their function. The muscles that are activated mainly during movement
are called agonists or primitives. The muscles that oppose movement are called
antagonists. The role of muscles is not always the same, but the same group can
be agonist or antagonist depending on the type of movement.
There are muscles that stabilize the origin (they hold a bone) and these muscles are
called the fixator. Synergistic muscles help the agonist to perform the same move-
ment. The two main types of muscle contraction are static, also called Isometric
Contraction, and dynamic, defined as Isotonic Contraction. In the first type of con-
traction, the length of the muscles does not change. When a muscle contracts in
isometric way, a tension is generated without shortening or lengthening the muscle
fibers even if its sarcomers have shortened. Instead, the isometric contractions are
those in which there is a change in the length of the muscles. These can be Eccen-
tric or Concentric. Eccentric occurs when the muscles stretch and develop tension.
In contrast to concentric where the muscles shorten to move the attachment closer.

Figure 1.5: Type of muscle actions [3].
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1.2 ElectroMyoGraphy (EMG)
The Electromyographic (EMG) signal provides bioelectric information related to
muscle contraction, representing neuronal and muscular activities. The EMG sig-
nal is the result of the electrical potentials generated by the depolarization/ repo-
larization of the external membrane of muscle fibers.
The amplitude of these potentials depends not only on the anatomical characteris-
tics of the muscles but also on the position and properties of the electrodes used for
the collection. The resulting signal at the detection point is the spatial-temporal
sum of the individual action potentials produced by the depolarizations of the mus-
cle fibers of a motor unit and is called MUAP (Motor Unit Action Potential).
Generally, in the electrode detection zone, there are contributions from other motor
units, so a series of MUAPs are detected. Depending on the electrode used, there
are variations in the shape, phase, and duration of MUAPs. The amplitude and
shape of an observed MUAP are, therefore, a function of the geometric arrangement
of the UM, muscle tissue and electrode properties used. The MUAPs generate a
contribution so much greater the closer they are to the area of withdrawal giving
rise to the electromyographic signal [2, 6].

Figure 1.6: MUAP waveform main parameters: t = turn; amp = amplitude; p = phase;
BL = baseline; dur = duration [6].
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There are two different types of EMG signal:

• Intramuscolar ElectroMyoGraphy (iEMG)
This is the classic technique for recording and evaluating the EMG signal.
The electrodes used are small needles inserted directly into the muscle. This
technique has a high selectivity and it is possible to study the single MUAP.
The extracted signal allows to distinguish the contributions of the individual
units (Fig. 1.7).
For this reason, it can be used to study both the morphology of the signal and
the temporal activation. Another advantage of this technique is the absence of
any type of artifact caused by the tissue, as the electrode is placed directly into
the muscle. The disadvantages of this technique are certainly the invasiveness
of the electrodes and the need to sterilize the needles. Furthermore, this type of
sampling cannot be performed during dynamic motor activity. Nowadays, this
technique is widely used in neurophysiology for the diagnosis of myopathies.

Figure 1.7: Intramuscolar ElectroMyoGraphy (iEMG) [7].

• Surface ElectroMyoGraphy (sEMG)
Unlike the previous technique, this is a non-invasive methodology that consists
of recording the EMG by placing the electrodes on the surface of the skin. The
bio-signal recorded in this way is a signal given by all the motor units recruited
in the movement. The signal obtained is influenced by the filtration of the
tissues between the muscle and the electrodes. This technique is not good for
studying the morphology of the SEMG signal, as the signal is composed of
multiple sources that give a noisy appearance.
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This technique is suitable for dynamic analysis, but to obtain good signals it
is important to position the electrodes correctly.
When a signal is taken from surface electrodes, the total potential generated
by a set of motor units is recorded, and this is called interference potential.
Generally, surface electrodes can know the activity of about ten motor units
simultaneously. The interference EMG signal can be traced back to those
generated by the individual motor units and the time when they are activated.
This procedure is carried out in order to know the recruitment method of
the motor units and therefore the specific operation of the analysed muscle.
sEMG is widely used in rehabilitation because it allows both to easily have
information about the moment of activation of the muscle during a movement
and the degree of contraction.

Figure 1.8: Surface ElectroMyoGraphy (sEMG) [8]

1.3 sEMG Technique
When an sEMG signal is acquired it is necessary to define the recording mode
(monopolar or bipolar), the electrodes configuration (single or double differential),
the type of electrodes to be used and especially their position.

1.3.1 Electrodes
The most used electrodes are made of silver/silver chloride (Ag / AgCl), silver
chloride (AgCl), silver (Ag) or gold (Au). The Ag/AgCl electrodes are the most
used and have the ability not to be polarized. In addition, thanks to the use of a
conductive gel layer, it is possible to reduce the sensitivity to the movement artifacts
caused by the sliding between electrode and skin. So these electrodes have good
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stability at the electrode-skin interface. Low-cost disposable electrodes exist with
the built-in gel state to simplify and lessen the timing of electrode positioning. As
for the size of the surface electrodes, they vary from millimeters to a few centimeters
in diameter or length. Each electrode has its particular field of application, and
the size depends on both the area of acquisition and the distance between two
electrodes. So the size of the electrodes determines the spatial resolution [2].

Figure 1.9: Example of Gelled sEMG Eletrode.

An alternative to classic gel electrodes is the use of Dry Electrodes. These elec-
trodes, which have been widely used in recent years for the acquisition of biopoten-
tials, make it possible to avoid the problems caused by conductive gel on the skin,
especially in long-term analysis.
The most common problems with wet electrodes are skin irritation, and the con-
stant reapplication of the gel after several hours of use.
Dry electrodes allow to solve these problems, but not having any electrolyte medium
between metal and skin, it is necessary to implement a good signal conditioning
circuit to reduce the skin-electrode contact impedance.

Figure 1.10: Dry bar electrode.
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1.3.2 Recording Mode
For the sEMG, there are two recording modes: monopolar and bipolar.

Monopolar configuration The monopolar mode consists of placing an active
electrode at the muscle to be examined and a reference one at a neutral point.

Figure 1.11: Monopolar configuration.

Bipolar configuration The bipolar mode instead requires the use of two active
electrodes placed both on the examined muscle. The bipolar recording provides
better immunity to disturbances but is characterized by less selectivity than the
monopolar mode. In addition, more complex positioning is necessary for small
muscles [2].

Figure 1.12: Bipolar configuration.

1.3.3 Electrodes Configuration
There are two electrode configurations: single or double differential.
In Single differential, the sEMG signal is equal to the output voltage of an Opera-
tional Amplifier that makes the difference between its inputs.
In the Double Differential, three amplifiers are used: this mode allows to create a
spatial filter and therefore allows to detect the signal more on the surface.
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Single differential sampling has a smaller size and is less noisy but less selective.
The double differential requires an extra electrode and this increases the space but
is more selective.

Figure 1.13: Electrodes positions[9]

1.3.4 Electrical Noise in sEMG Signal

During the acquisition of the sEMG signal the sources of noise that afflict the
quality of the signal are multiple [10]:

• Inherent Noise (electronic Components): All electronic components gen-
erate noise throughout the band (white noise). It is not possible to completely
eliminate this type of noise, but can be reduced with high-quality components
and by properly designing a circuit;

• Environmental Noise: This noise is caused by interference between the ac-
quisition device and the external environment (antennas, power supply, etc.).
One of the most interesting interferences of the sEMG signal is network inter-
ference (50Hz in the EU, 60Hz in the USA);

• Motion Artefact: This noise can be generated either by the electrode sliding
on the skin or by the movement of the cables connecting the electrodes to the
amplification circuits. This noise is low frequency (below 15Hz);
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• Muscle Cross-Talk: The simultaneous activation of several muscle fibres
during the same movement creates cross-talk problems. So during the record-
ing of the sEMG signal of one muscle, the electrodes detect also the activation
of another muscle. This causes a wrong interpretation of the recorded sEMG
signal. The factors that most influence this phenomenon are the inter-electrode
distance and their size;

• Electrocardiographic (ECG) Artefacts: The activity of the heart is a
strong source of the noise. There is no way to eliminate, completely, this
noise. This can be reduced using a high CMRR acquisition channel with
bipolar recording.

1.3.5 sEMG Acquisition Properties
The SEMG signal is a stochastic signal, which can be reasonably represented with
a Gaussian distribution. The amplitude of the signal varies between 0 mVpp and
10 mVpp (Vpp: peak-to-peak amplitude), or from 0 to 1.5mV in rms. The spectral
components are generally between 0 Hz and 500 Hz, but those with a higher power
are in the 0 Hz - 150 Hz band. A typical example of a sEMG signal is shown in
Fig. 1.14.

Figure 1.14: Example of the frequency spectrum of the sEMG signal [9]

A biopotential acquisition chain is typically used to acquire the sEMG signal:
it consisting of a series of filtering and amplification blocks. The filtering blocks
are used to record only the sEMG signal in the band of interest (usually 15 Hz -
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400 Hz) and to attenuate the noise and artifacts that are been discussed earlier.
Amplification is necessary to adapt the sEMG signal (usually below 10 mVpp) to
the ADC dynamics useful for digitizing the signal. Therefore the typical acquisi-
tion channel consists of 4 main phases: detection, amplification, conditioning and
digitization [2].

1.4 sEMG Applications
The EMG signal can be used in various research fields and in biomedical applica-
tions. In the last years research groups have been implemented many diagnostic
tools for neuromuscular diseases, which exploit the electrical signal produced by
muscles.

1.4.1 sEMG for clinical/biomedical applications
Rehabilitation and Prosthetic Hand Control

In the field of prosthetics and rehabilitation the EMG signal can be used for the
development of modern Prosthetic Hands [11].

Figure 1.15: Use of the sEMG signal for prosthetic hand control. [11]

Many studies have led to a new type of games-based rehabilitation for the con-
trol of myoelectric prostheses [12]. At the beginning, the control of a myoelectric
prosthesis can be a frustrating experience, especially after the already traumatic
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event of limb loss. Due to the non-intuitive interface, which manages a complex
mechatronic system, the cognitive demand for control of the prosthesis is high and
further delays the actual use of the device in daily life [13]. Despite the progress the
industry has made, especially during the 20th century, complete hand replacement
is still a difficult challenge from both an engineering and clinical point of view. The
first mechanical arm, called the Ballif arm, was invented in 1812, and was controlled
by other upper arm movements [14].
The first myo-electric prosthesis was developed in Munich, and initially it was not
a portable system, but was connected to a building power supply. This arm used
vacuum tubes for the control system and had basic open and close functionality.
Later progress incorporated the batteries into the prosthesis. The first clinically
myo-electric prosthesis was developed by Russian experts in the 1960s and since
then, innovations in prosthetic control schemes, especially in the upper limbs, have
grown exponentially. There is still much to be improved in prosthetic control and,
as a result, much attention in the academic community has focused on improving
prosthetic control systems using motion recognition algorithms. At least 50% of
upper limb amputees report problems with prosthetic control and function [15],
which can be attributed to the need for more training in prosthetic handle. Virtual
training systems in the form of videogames, as shown in Fig. 1.16, provide patients
with a fun and intuitive way to improve muscle coordination and general control.

Figure 1.16: Virtual Training System for rehabilitation. [12]

Electrical Wheelchair

The standard way to drive an electric wheelchair involves the use of a hand to oper-
ate a kind of two-dimensional joystick. The use of the computer in communication
with the muscles during contraction allow you to perform any type of action using
EMG. Muscle contraction can be used to control an Electrical Wheelchair which
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can be of great help for people with disabilities. [16].

Figure 1.17: Overview of the continuous control scheme for electric-powered wheelchair
system [16].

Unvoiced Speech Recognition

Figure 1.18: Unvoiced Speech Recognition - arrangement of electrodes. [17]

Another very important application is the use of the muscles associated with
speech to recognize words. This type of technique is not based on any sound
information, but only uses the EMG signal for communication.
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1.4.2 Other applications

The use of the EMG signal can be a source of inspiration for even the most modern
gaming techniques. In fact, it is possible to replace the joysticks commonly used to
control video game characters with sensors that directly detect muscle activity, for
a more intuitive type of entertainment. Joysticks are very cheap, but sometimes
it’s very difficult to memorise the sequence of keys to press to perform a certain
action.
A man-machine interface device designed for a combat action game, Muscleman,
has been developed. This device acquires the sEMG signal of the superficial flexor
muscle of the forearm and the acceleration signal of the forearm movement. The
device is able to classify hook and straight fist movements by analyzing forearm
acceleration data [18].

Figure 1.19: Flight simulator at NASA using sEMG signal. [11]

At NASA’s Research Center in California, researchers used the sEMG signal in
their research program on Flight Systems.
NASA researchers are studying a lot of applications that exploit the muscle signal.
Inside the NASA hangars, control stations have been created for aircraft that use
the muscle signal to fly. Simulations have been carried out for the control of aircraft
that carry fuel and, in addition, many studies are also involving the creation of
uniforms that contain sensors for the EMG signal.
Charles Jorgense, master of NASA’s Neuroengineering Laboratory, says that this
type of communication with robots and airplanes, using biological signals directly,
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will be fundamental in the future. Fig. 1.19 shows a control system for aircraft of
the latest generation that exploits sEMG technology. The joestick is not used, but
is replaced by an armband with eight pairs of dry electrodes that take the muscle
signal. These signals have been used for simple landing maneuvers of airplanes.
[19].

1.4.3 Recognition Control Methods

A conventional myoelectric pattern recognition control system consists of several
steps responsible for taking the raw sEMG data and transforming it into a valid
control signal for a peripheral device, such as wheelchairs [16], rehabilitation robots,
prosthetic arms.
The sEMG signals are first amplified, filtered and digitized for use with a pro-
grammable microprocessor-based system. The modified signal data is then seg-
mented, and the necessary characteristics can then be extracted from the segmented
signal using a variety of time domain, frequency domain, time-frequency domain,
and feature projection techniques.
Based on these extracted characteristics, a classifier is then trained to recognize
patterns in signals and assign them to predetermined classes [20]. Based on the
label outputs generated by the classifier, the controller generates output commands
for external systems, such as a prosthetic limb. These algorithms are still limited in
the performance they provide, as each of their possible control outputs, or classes,
must be provided with the relevant training data. Pattern recognition algorithms
have been the focus of prosthetic control research for decades. Most forms if the
statistical and learning classifiers have been applied to myocentric control.
Techniques such as Feed Forward Multi-layer Perceptrons, Convolution Neural Net-
works (CNN), Fuzzy Logic, Linear Discriminant Analysis (LDA), Support Vector
Machines (SVM), Hidden Markov Model (HMM) and K-Nearest Neighbours (KNN)
have all been applied to classify sEMG signals for gesture recognition applications.
Three of the main machine learning algorithms used for movement prediction will
be presented in the next section. These algorithms will be the ones that I will be
used in my thesis work.

1.5 Machine Learning Algorithms
In this section three of the most popular ML algorithms are presented: Artificial
Neural Networks (ANN), Support Vector Machines (SVM) and K-means. The the-
ory behind these algorithms and their advantages and disadvantages will be briefly
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Figure 1.20: Closed loop for prosthetic myoelectric control.

described.
Before talking about these algorithms, however, it is important to analyze the dif-
ference between supervised and unsupervised learning algorithms.

Supervised Learning
In supervised learning, is given a dataset of which the correct output class is al-
ready known. The types of supervised algorithms are divided into Classification
and Regression algorithms. In a classification algorithm, a result is predicted within
a discrete output, while in a regression problem the output is continuous.
Since these types of algorithms work on an already "catalogued" dataset, it is easy
at the end to define the performance of the classifier, in terms of process accuracy.

When a supervised learning algorithm is implemented, it is important to consider
the compromise between Bias and Variance. Both are related to each other.
The balance between Bias and Variance also refers to the generalization of the
model. In any model, there is a compromise between Bias, which is the tendency
to deviate from the expected value, and Variance, which is the amount of the error
in the label prediction between different data-sets. Bias and Variance behave in
the opposite way: an increase in variance is generally linked to a reduction in Bias,
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and vice versa.

Figure 1.21: Supervised Learning.

Unsupervised Learning
In unsupervised learning, unlike supervised learning, there are unlabelled or un-
structured data. With these techniques it is possible to observe the structure of
the data and to extrapolate meaningful information. In these techniques, however,
you cannot rely on a known result variable, such as an output class.
There are two techniques that help us in dealing with unsupervised learning prob-
lems: Clustering and Data Dimensionality Reduction.

Clustering is an exploratory technique that allows the aggregation within groups
(called clusters) of data that have no previous knowledge of belonging to groups.
There will therefore be large datasets where the data within them have similar
elements. Within each single group (or cluster) you will therefore find those data
that have many similar characteristics. Clustering is an excellent technique that
allows us to find relationships between the data.

Dimensionality reduction is a widely used approach in the pre-processing of fea-
tures, with the aim of eliminating "noise" from the data. This reduction can also
cause a lower predictive performance, but can also make the dimensional space
more compact in order to keep the most relevant information.
Large amounts of data generate a problem in storage space and a considerable de-
crease in computational performance.
The reduction in dimensionality can also be useful for data representation, such as
within a high dimensional feature space, which can be projected onto 1D, 2D and
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3D space.

Figure 1.22: Unsupervised Learning.

1.5.1 Artificial Neural Network (ANN)
Neural networks are automatic learning models that try to imitate the structure
and functioning of the brain. In this structure every neuron is connected with many
others, and the connection can be of a strengthening or inhibiting type towards the
activation of the units to which it is connected.
Each neuron contains a function used to combine among them the values of all
its inputs and a function, called Activation Function, which returns the output
of the neuron. The general form of the overall function contained in a neuron is
represented by the following formula:

y = f(
∑︂

i

wixi + b) (1.1)

In this, wi are the Weights assigned to each input in the combination phase and
b is a Bias Term. The set of Weights and Bias represents the information that
the neuron learns in the training phase and that it keeps afterwards. The function
f represents the Activation Function, which normally consists of a threshold or
limit function that makes sure that only signals with values compatible with the
imposed threshold or limit can propagate to the next neuron or neurons. Typically
the activation function is a non-linear function, usually a step function, a sigmoid
or a logistic function.
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Figure 1.23: Example of Feed-forward ANN.

Neural networks are typically structured in three parts, containing distinct
amounts of neurons:

• An input level;

• A more or less numerous set of hidden internal layers;

• An output level.

The input signals cross the entire network from the input layer to the output
layer, as shown in the Figure 1.23. This ANN, called a Feed-Forward ANN, only
allows data to travel from input layer to output layer.

Advantages and Disadvantages
Neural networks have a high speed in data analysis, and an ability to learn the
solution from a given set of examples. However, the main disadvantages arise: (a)
from the need to choose an adequate set of examples; (b) when you have to respond
to inputs substantially different from those of the set of examples.[21].
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1.5.2 Support Vector Machine (SVM)

A classification technique based on support vector machine (SVM) allows you to
classify both linear and non-linear data collections. An SVM represents all instances
of the training data collection on a plane formed by a number of axes (dimensions)
equal to the number of attributes that constitute the instances. For example, if an
instance consists of three attributes, then the training data will be represented on
a three-dimensional plane. The three main characteristics of an SVM classifier are:

• Lines or Hyperplanes, depending on whether the classifier presents, respec-
tively, two-dimensional or n-dimensional graph;

• Margins;

• Support Vectors.

A line or hyperplane constitutes a "boundary" that allows instances belonging
to different classes to be classified by dividing them among themselves.
A margin is a distance between the two instances of different classes closer together.
On the other hand, support vectors correspond to the instances that are the most
difficult to classify for an SVM, since they are the ones within the margins of a
hyperplane.

Figure 1.24: Creating the hyperplane thanks to the use of SVM.
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An SVM applies differently depending on the type of instances of a data col-
lection to be classified, linearly separable and not. In the presence of instances
separable in a linear way, it is necessary to find among all the lines or among all the
hyperplanes that separate them between the different classes those that maximize
the value of the margin. In fact, it is selected the straight line or the hyperplane
with maximum margin value, since it allows to minimize the classification error. In
order to find maximum margin hyperplanes, SVM aims to maximize function 1.2
in relation to w̄ and b:

LP = 1
2 ||w̄|| −

t∑︂
i=1

αiγi(w̄xī + b) +
t∑︂

i=1
αi (1.2)

Here, t represents training point quantity, αi stands for Lagrangian multipliers
and LP exemplifies the Lagrangian. Vector w̄ and constant b characterize the hy-
perplane.

Advantages and Disadvantages
A SVM algorithm has the advantages to solve difficult and non-linear classification
problems and to guarantee a high level of classification accuracy. Among the dis-
advantages are the high model creation time, which is shorter than that used by a
neural network, and the non-interpretability of the model.

1.5.3 K-means

K-Means is a clustering algorithm that divides elements into K groups according to
specific features. The characteristic element of each cluster is the Centroid, which
corresponds to the average of the elements belonging to the cluster.
The main objective of the algorithm is to minimize the intra-cluster variance. Dif-
ferent K-means algorithms are available. The one used in this thesis work is the
Hartigan-Wong Algorithm (1979), which defines the total intra-cluster variance as
the sum of the squares of distances (Euclidean distance) between the elements of a
cluster and its centroid.
This algorithm goal is to minimize an objective function:

J =
k∑︂

j=1

n∑︂
i=1

||xj
i − cj||2 (1.3)

where
||xj

i − cj||2
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is a distance between the cluster centre cj and a data value xj
i . Its value must be

as small as possible.

Figure 1.25: K-means example.

The main steps of the algorithm are now summarized: as a first step of the
algorithm, the number of clusters needed to divide the analyzed dataset is indicated.
The objects are selected in a random way from the dataset to be used as first
centroids. Then, each of the remaining objects is assigned to the nearest centroid,
according to the Euclidean metric (Cluster Assignment Phase).
After this phase, the algorithm calculates the new centroids of the total cluster
(Update Phase of the centroids). Once all the centers have been recalculated, each
assignment is re-trolled to see if it could be closer to a different centroid. All objects
are then reassigned using the recalculated centroids.
The two phases of cluster assignment and centroid update are repeated iteratively
until either convergence is reached (the clusters obtained in the current iteration
are the same as those obtained in the previous iteration) or the maximum number
of iterations chosen is reached.
The Hartigan-Wong algorithm can therefore be summarized as follows:

1. Define the number of clusters to generate;

2. select a number of values equal to the number of clusters chosen from the
data-set, as centroids of the initial clusters;

3. Assign each data to the nearest centroid, according to the Euclidean distance;

4. Update the centroids by calculating the new average values of all the elements
belonging to the cluster;

5. Minimize the total intra-cluster variance during a iteratively loop.
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Advantages and Disadvantages
The main advantage of the K-means algorithm is undoubtedly the ease of imple-
mentation. The main problem instead is that the performance depends strongly
on the initial conditions, i.e. the number of clusters chosen and the initialization
of the centroids.

1.6 Feature Extraction

Despite the progress of machine learning, it is still not possible for amputees to
initiate simultaneous control of individual fingers of the prosthesis, and instead
control individual or combinations of finger movements based on predetermined
gesture classes.
Feature Extraction should be used to increase information density of the EMG
signals, retaining information that allows a classifier to identify different contraction
patterns, while eliminating irrelevant data.

Figure 1.26: Feature Extraction example.

There are three major categories of features: time domain, frequency domain
and time-frequency domain. The last domain is not considered in this introduction,
due to its high complexity that make it not suitable for the training of a classifier.
Only the features of the first two domains are then reported below.
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1.6.1 Features in the Time Domain
This type of features extraction is largely use in literature, thanks to their straight-
forward calculation, without needing any transform. Mayor disadvantage is that
they assume no variations in the signal frequency.

• Root Mean Square (RMS): is related to the constant force and non fatigu-
ing contraction.

RMS =

⌜⃓⃓⎷ 1
N

N∑︂
n=1

x2
n (1.4)

• Mean Absolute Value (MAV):it is calculated by averaging the absolute
values of the EMG data.

MAV = 1
N

N∑︂
n=1

|xn| (1.5)

• Mean Absolute Value Slope (MAVSLP): is calculated as the difference
between consecutive MAV values.

MAV SLPi = MAVi+1 − MAVi (1.6)

• Integrated EMG (IEMG): is defined by the summation of the absolute
values of the sEMG signal.

IEMG =
N∑︂

n=1
|xn| (1.7)

All of these features above (RMS, MAV, MAVSLP, IEMG) are computed based
on sEMG signal amplitude.

1.6.2 Features in the Frequency Domain
• Median Frequency (MDF): is the frequency value that divides signal power

spectrum in two equal areas.
MDF∑︂
j=1

Pj =
M∑︂

j=MDF

Pj = 1
2

M∑︂
j=1

Pj (1.8)

• Mean Frequency (MNF): is calculated as the sum of product of the sEMG
psd and the frequency values, divided by the total sum of psd.

MNF =

M∑︁
j=1

fjPj

M∑︁
j=1

Pj

(1.9)
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Chapter 2

State of Art

2.1 Gesture Recognition
The recognition of gestures is not a new area for Information Technology (IT). In
fact, in scientific literature this subject has been dealt with since the 1990s, and
some of the techniques used to solve the problem of classification of gestures had
already been developed in the 1980s for other purposes, such as voice or handwrit-
ing recognition, and were subsequently adapted.
However, in recent years, this topic is increasingly capturing the attention of the
IT market, probably also due to technological developments in the electronic field.
Initially, the issue of gesture recognition was brought to the public through film
(mainly through fantasy films, including the well-known "Minority Report" and
"Iron Man"), but it was the gaming market that gave the industry a real boost.
Later it became clear that gesture recognition technologies had potential outside of
gaming, particularly in the clinical field. As a result, new devices were developed,
both from large manufacturers and research groups around the world.
In the clinical field, there are several applications for the recognition of gestures,
especially for the implantation of prosthetic limbs of the latest generation. The bot-
tleneck of all these applications is represented by the time taken to acquire sEMG
signals and pattern recognition (correct movement), which must not exceed 300 ms
[22].

In [23] a system that allows the recognition of six different hand movements has
been proposed. The scheme consists of 4 acquisition channels that allow to drive
an exoskeleton.
The system has been validated offline and online on eight subjects with partial limb
paresis. The accuracy of the classification was evaluated using the Random Cross
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Validation (RCV). The total latency of the system is approximately 250 ms [23].

In [24] the research team proposed a real-time system for the classification of
the movements of the fingers of the hand, using the sEMG signals of the forearm.
Seven acquisition channels have been implemented with off-the-shelf components.
The classification of the signal pattern was evaluated in real-time using Linear Dis-
criminant Analysis (LDA) approach. The percentage of accuracy in classification
reached 95.8% with a latency of 192 ms.

In [25], a research team has reduced the dimensions of the features vector, by
using only the RMS, but to obtain a good result they had to assign a predefined
set of movements. Features extraction has been performed on a windows made of
128 samples, with a sampling frequency of 2048 Hz. The acquisition window is
slightly wider than 60 ms, being really suitable for a robot control in real time.
This work has also introduced a SVM classifier, different from the one used in the
previous work. This new classifier is able to disclaim between classes using complex
non linear functions. Using a cross validation method this classifier can reach an
accuracy of 90%.

Finally, in [26] an embedded system for real-time control of poliarticulated hand
has been carry out. The online performance of the wearable node in terms of end-
to-end recognition ratio are evaluated. Also in this work the SVM Algorithm has
been used for the implementation of the classifier.

2.2 Commercial Solutions for sEMG-based ges-
ture recognition

Myo Armband by Thalmic Lab

From a technical point of view, the Myo armband ( Figure 2.1 ) is equipped with a
9-axis Inertial Measurement Unit (IMU), which allows it to detect the absolute ori-
entation of the device and track its movements. However, the real evolution of the
Myo armband is the possibility to detect hand and forearm movements without the
use of video cameras or similar systems. For this purpose, the device is equipped
with 8 sEMG sensors, which, in the same way of similar devices for medical use,
measure the electrical signals produced by muscular activity; the Myo is an elastic
band placed on the forearm, which is wrapped circularly by the 8 sensors. During
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the execution of a gesture (e.g., a fist), the contraction of the forearm muscles al-
low to measure the intensity of the muscular electrical signal coming from different
fibers with the possibility to identify the gesture performed.
The maximum sampling frequency for muscular signal acquisition is 200 Hz.

Figure 2.1: The Myo gesture control armband. [27]

Oymotion gForce-Pro

Figure 2.2: The Oymotion gForce-Pro gesture control armband. [28]

GForce 100 Armband is a smart wearable device very similar to the Myo product
discussed above. The substantial change among the two products is the sampling
frequency, to allow a higher accuracy in signal acquiring: it goes from 200 Hz of
the Myo armband to 1000 Hz of this product. [28]
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2.3 Average Threshold Crossing (ATC)
The Average Threshold Crossing (ATC) is a technique in which an event is gen-
erated each time that an input signal crosses a fixed threshold. Many papers in
literature show the advantages of using this approach for sEMG signal [29] [30] [31].
A comparison between the classic way of transmitting data and the innovative ATC
technique is shown in figure 2.3. The classic method involves the acquisition and
the generation of TX Packets each fixed time (T s) with a sampling frequency of
1/Ts. Meanwhile, with the TC approach, only when the signal crosses the threshold
(Vth), the TX events are created [2].

Figure 2.3: Comparison between classic sEMG transmission way and ATC technique
[31].

On electronic point of view, this technique (applied to sEMG) is very easy to
implement, in fact, in addition to the classic acquisition channel only an operational
amplifier comparator is required. This type of components are able to compare two
analog voltage or current inputs. The sEMG signal and a voltage reference are
the inputs of this component, so in this way, every time that the signal is higher
than the reference (threshold) the output take the value of the voltage supply. The
output maintain this level until the signal falls below the threshold.
Therefore, the outputs signals of the comparator has the same shape of a digital sig-
nal like the one in Figure 2.4. It’s more correct to define this signal a Quasi-Digital
Signal, because the information is contained in the time between two consecutive
events. The TC signal can be given directly as input to a micro-controller or a wire-
less transmission module, without using an Analog-to-Digital Converter (ADC).
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This allow to reduce the number of component, and hence the space occupied by
electronic components, in the device [2].

Figure 2.4: Example of output signal of the comparator.

The quasi digital signal allows to decrease the amount of data to be sent or in
general, that has to be saved. Furthermore the ATC technique permits to obtain a
low power consumption on transmitter perspective, compared to the standard way
to process data. The consumptions of the ATC technique are very dependent on
the choice of the threshold, because a threshold level too low would cause many
events to be sent, but a too high level would be the cause of few information. For
this reason, the correct selection of the threshold is a critical point of this technique.
To obtain a good compromise between power consumption and amount of data, it
could be useful to use a Dynamic Threshold, obtaining also a more efficient number
of events. [2].

2.4 ATC in sEMG Application
Some studies have combined ATC technology with EMG acquisition devices. In
particular, the Istituto Italiano di Tecnologia (IIT) has shown that by combining
ATC technology with Impulse Radio - Ultra Wide Band (IR-UWB) communication
technology it is possible to obtain and transmit information on the muscle strength
developed [2].

In a first study [32], a portable wireless device for biomedical applications was
built. This system is based on the wireless protocol IR-UWB. This technology
consists of the transmission of short pulses to minimize transmission consumption.
The system consists of an sEMG acquisition channel and allows to obtain in hard-
ware the ATC parameter. In particular, this work demonstrated the correlation
between system performance in terms of TC events (digital pulses) and system
performance by looking at the ARV values calculated on the raw sEMG signal in
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Figure 2.5: ATC wireless system prototype. In this example subsequent muscle con-
tractions have been applied and force wirelessy transmitted [32].

the recognition of force levels. These values have been validated using also the signal
of force recorded with a dynamometer during a maximum voluntary contraction [2].

An improvement of this system was developed by the same research team [33].
This second work concerns the extension of the previous ATC wireless system to a
more complex version of multichannel acquisition. Data are transmitted using the
AER (Address-Event Representation) approach which uses an encoder to form a
packet of data that identifies the input channel and wireless transmitter. The pat-
tern of this prototype is the same as the previous one: starting from the raw signal
sEMG is obtained the signal almost-digital (TC) generating pulses for the IR-UWB
transmitter that sends data accordingly. The work has determined a confirmation
in the reduction of power consumption and in the dimensions of the board. This
work also aims to evaluate the robustness of the ATC signal by varying the SNR,
amplifier distortion, saturation and number of lost events. A tolerance of 5-6dB for
SNR and 70% for lost events has been demonstrated [2].

In further work [34], a prototype of the multi-channel ATC/sEMG card was
validated to define the parameters of the ATC (time window, threshold value).
In this work, a threshold is fixed to 100mV above the noise on the baseline of
the signal. The width of the time window must be sufficiently large to modulate
the muscle activity, but not too large to not compromise the temporal resolution [2].

33



2 – State of Art

Another work [36] used the acquisition cards designed in [35] in order to control
in real-time a functional electrical stimulation (FES), a therapy used in neuromus-
cular rehabilitation [2].

One of the latest works [37], a project conceived in collaboration between the
Politecnico di Torino, the Massachusetts Institute of Technology (MIT) and Har-
vard Medical School had the objective of creating a wearable device to acquire and
process sEMG data. The data obtained were then used to characterize muscle ac-
tivity patterns in rehabilitative medicine. The innovative event-driven approach of
ATC technique is implemented to drastically reduce energy consumption thanks to
the minimum amount of data to be processed.

Finally, in work [38] a system that combines modern gesture recognition tech-
niques and ATC technology has been developed. A low power system, able to
recognize hand gestures through a built-in classifier acquiring sEMG signals from
the forearm, has been designed. The ATC technique was used to pre-process the
data and a fully-connected Neural Network (NN) has been chosen as classifier archi-
tecture. The final results of the implementation are suitable for real-time wearable
applications due to low latency and low power consumption.

Figure 2.6: Structure of the system in [38] and wearability.
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Chapter 3

Data Acquisition

This thesis work studies a possible implementation of hand gesture recognition, us-
ing a system based on the ATC event-driven feature of the forearm sEMG signals.
The proposed system is composed of three acquisition boards (which acquire sEMG
signals and process them to obtain the ATC values) and an Apollo3 Blue Micro-
Controller Unit (MCU) with an ARM Cortex M4F DMA microProcessor (µP).
The thesis work focuses on firmware optimization on the ARM µP as well as soft-
ware on Matlab® environment, in order to obtain the lowest power consumption
possible, with a latency suitable for real-time applications (< 300 ms) [39].
The thesis goal is to compare the performance of three machine learning algo-
rithms in terms of consumption, latency and accuracy in predicting movements.
The dataset used involved 25 healthy people, each of whom performed five move-
ments in five repeated sessions.

3.1 System Configuration
The system analyzed in this thesis work is based on a previous work [38].
The Analog Front-End (AFE) is the part of an analog circuit that has the role of
making the input signal suitable to be processed by the microprocessor. The AFE
provide raw signal amplification (i.e., op-amp or INA) and filtering (i.e. Sallen-Key
filter). In our case, AFE is responsible for both the conditioning of sEMG signal
and the generation of TC events. The system is composed by two parts, as shown
in Fig. 3.1:

• Three acquisition channels, which filter and amplify the sEMG signals acquired
from the surface electrodes, also extracting the TC signals;

• The ultra low power AmbiqMicro Apollo3 board [40], equipped with an ARM
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Cortex-M4F DMA processor, which manages the sEMG signal acquisition and
computes the online gesture prediction.

Figure 3.1: Block Diagram that shows the various steps of the sEMG signal acquisition,
conditioning and analysis, for the correct prediction of the gesture.

3.1.1 Acquisition Channel

The acquisition of sEMG signals is performed applying standard pre-gelled sur-
face electrodes on the skin of the forearm. The channel itself is a custom Printed
Circuit Board (PCB) made with off-the-shelf components, obtained improving an
older version [38]. The sEMG’s conditioning has three input from three electrodes.
As represented in Fig. 3.2, the AFE has three inputs beacuse the sEMG signal is
acquired using a differential approach. Therefore, in this configuration, two explor-
ing electrodes are placed on the muscle belly to detect the muscular activity, and
an additional one acting as reference electrode is located in an electrical-neutral
area (i.e., bone prominance).

Overvoltage Protection
The overvoltage protection allow us to preserve the circuit from excessive out-range
voltage inputs. In fact, the high or negative voltage could damage all the board
because the components have a limited input voltages range.
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Voltage Follower
Now, the signals can pass through a Voltage Follower to decouple the rest of the cir-
cuit. A voltage follower is a configuration of the Operational Amplifier (Op-Amp)
featuring a negative feedback obtained by connecting the inverting input with the
output. The features of this configuration are a unity gain and a very high input
impedance (hundreds of MW) that allow isolation of the output from the signal
source.

Differential High Pass Filter - 30 Hz
The 2 signals are filtered by means of a second order differential high pass filter to
attenuate the movement artifact noise. The term ’passive’ implies that no active
component (an op-amp), but only resistors and capacitors are used to implement
the filter.

Instrumentation Amplifier
Instrumentation Amplifier is a particular type of op-amp suited for amplifying bio-
logical signals, since it has a stable gain (typically adjusted via one or more resistor
outside the chip), very high common-mode, differential mode impedance and low
output impedance. This stage has a fixed gain of about 500 V/V, which will be
further increased by next stage.

Gain Selector
The gain selector allows to set an adjustable gain on the board. In fact, it is possi-
ble to have an amplification of the input signal of a factor x1 (500 V/V) , x2 (1000
V/V), x3 (1500 V/V), x5 (2500 V/V) or x6 (3000 V/V).

Low Pass Filter - 70 Hz
This filter is used to provide negative feedback to reference voltage of the INA and
allow us to remove the low-frequency component introduced by the INA. In addi-
tion, compared to the previous version of the board [38], the cut-off frequency has
been shifted from 10 Hz to 70 Hz, to solve the problem of power-line interference
that will be analyzed in section 3.1.2.
This type of filter is defined as "active" because it is composed not only by resistor
and capacitor (passive component) but also by an op-amp.

DRL Circuit
A Driven Right Leg (DRL) circuit is a circuit that is added to sEMG signal ampli-
fiers to reduce common-mode interference. The middle dynamic voltage generated
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in the INA loopback filter by the voltage divider feeds also the reference electrode
through a DRL.

Low Pass Filter - 400 Hz
A second order Sallen-Key low pass filter is placed to eliminate the frequency over
than 400Hz which are not part of the EMG signal.

Voltage Comparator
A voltage comparator is used to obtain the Threshold Crossing (TC) signal. It
compares the pre-processed sEMG signal with an adjustable threshold that is usu-
ally set an hysteresis of 30 mV ensures a stable commutation between the digital
high and the digital low state. This allows us to obtain a quasi-digital signal.

Figure 3.2: Structure of the acquisition board.

3.1.2 Power-lines Interference Issue
In this section the problem of power-line interference is presented and analyzed.
Two analog solutions have been implemented in PCBs.

Overview
Modern biomedical amplifiers have a very high common mode rejection ratio. Nev-
ertheless, recordings are often contaminated by residual power-line interference. In
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order to better study this problem, at this stage sEMG signals were taken from
many people and various forearm muscles.
A DAQ (model 6259) from National Instruments was used for signal acquisition.
In Fig. 3.3 is possible to observe an example of sEMG signal corrupted by a very
high presence of power-line interference noise.

Figure 3.3: Example of sEMG signal extracted from Extensor Carpi Ulnaris corrupted
by power-line interference.

Once the sEMG signals have been acquired, the entire processing phase has been
carried out thanks to Matlab software. It was also possible to evaluate the Power
Spectral Density (PSD) of the signal, as shown in Fig. 3.4.

Figure 3.4: Normalized PSD.
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It is clearly visible that almost all the signal power is concentrated at a frequency
of 50 Hz, i.e. power-line frequency (in Europe and most of Asia). The problem has
been greatly solved thanks to two innovations on the new acquisition boards:

• The use of the DRL circuit;

• The deviation of the Low Pass Filter cut-off frequency from 10 Hz to 70 Hz.

Solution 1: DRL Circuit
The DRL circuit is often used to reduce the problem ofElectromagnetic Interference
(EMI) in biopotential acquisition systems [1].

Figure 3.5: Model to illustrate displacement currents produced by electric field coupling
[1].

Fig. 3.5 illustrates a power-line interference situation, where coupling has been
represented with capacitors CP and CB: CP identifies the parasitic capacitance
that connects the subject to the network line; CB identifies the one that connects
the subject to the protection earth [1].
The displacement currents flowing through coupling capacitances, impose on the
patient a nonzero potential VP O (ground referenced) which can be decomposed into
two voltages: an isolation mode voltage VIM between ground and the amplifier’s
common, and a common mode voltage VCM between patient and amplifier’s com-
mon. By connecting the patient with a third electrode, it is possible to reduce the
common mode voltage VCM when there is a low impedance between the skin and
the reference electrode. In order to overcome this constraint, the DRL circuit is
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used, which allows the reduction of the common mode voltage through a negative
feedback loop. The signal is amplified, reversed and injected back to the patient
via the third electrode as shown in Fig. 3.6, reducing the impedance by a value
dependent on the gain factor of the amplifier. [1].

Figure 3.6: DRL Schematic circuit. The solder points have been inserted into the circuit
to allow the user to choose whether or not to use the DRL circuit.

Solution 2: New LPF cut-off frequency

The Low Pass Filter, shown in Fig. 3.7, provides negative feedback to reference
voltage of the INA and allow us to remove the low-frequency component introduced
by the INA.
In this revised version of the channels, the filter cut-off frequency has been changed
from 10 Hz (from the boards of the previous work [38]) to about 70 Hz.
This important change has allowed us to solve the problem of power-line interference
whose characteristic frequency, as mentioned above, is 60 Hz (North America) or
50 Hz (Europe and most of Asia). It was decided to eliminate frequencies below
70 Hz, as the higher information content of the SEMG signal is concentrated for
frequencies up to 150 Hz.
Moreover, thanks to the use of the ATC technique, it is not necessary to take all
the information content of the signal. This advantage makes the filtering operation
less critical.
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Figure 3.7: Active low pass filter circuit for the reference-output INA feedback.

The cut of the frequency of this filter is calculated as:

fcut = 1
2π

√
R16R13C10C11

(3.1)

where R16 = 150 KW, R13 = 150 KW, C10 = 6.8 nF, C11 = 33 nF.

3.1.3 Apollo3 Blue Board
The main core of the whole system is certainly the AmbiqMicro Apollo3 Blue EVB
(Fig. 3.8), which supplies power to the three AFEs and to the external DAC.
The processor embedded in the Apollo3 Blue EVB is an ARM Cortex-M4F DMA,
which is a 32-bit microprocessor (µP) ”designed to enable developers to create cost-
sensitive and power-constrained solutions” [41].
The Apollo3 has been chosen for its technical characteristic, especially regarding
low power consumption.

In Table 3.1 main features are reported. For this application a frequencies of 48
and 24 MHz have been chosen for the main clock, while the low frequency, more
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Figure 3.8: The AmbiqMicro Apollo3 Blue Evaluation Board.

Table 3.1: Apollo3 Blue technical sheet.

Max operating frequency 48 MHz - TurboSpot 96 MHz
MCU 32-bit ARM Cortex-M4F DMA

MCU min power 6 µA MHz-1

Flash/SRAM 1 MB/384 kB
VDD 1.8 - 3.6 V
I/O I2C/SPI (6x) - UARTS (2x)

precise, 32.768 kHz crystal has been used for the time window implementation
needed by the ATC. The buck converters have been enabled to guarantee a really
low power consumption by the µP.

3.1.4 Firmware

The firmware for the MCU was written using Keil µVision IDE v5.30, as suggested
by the AmbiqMicro developers, due to its high compatibility with the ARM prod-
uct family. In fact, many specific ARM libraries are available directly in Keil Pack
Installer, making it possible to add or delete any library package. The Digital
Signal Processing (DSP) library was chosen for this application, based on its low
calculation cost and ease of use; this library is a native ARM part of the CM-
SIS package and provides very useful support for matrix calculations. In addition,
many support packages for the board are provided by AmbiqMicro itself, allowing
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the developer to use high-level functions to interact with every single small compo-
nent of the system, even performing complex tasks [39].

The program is divided in three main parts: firstly, all the needed constants and
variables are defined, then useful routines are implemented and last the main func-
tion executes the desired commands. Here there is a brief list of the implemented
routines useful for running the program in real-time:

• Parameter Initialization: The first part of the firmware is entirely dedicated
to the initialization of useful parameters during real-time data computation.

• Prediction Algorithm: Immediately after the initialization and definition
of the necessary variables and constants, its possible to make a choice on the
type of algorithm to be used for the classification of movements in real-time.
Through a simple control it is possible to use a supervised type classifier (ANN
or SVM), or a non-supervised learning method (clustering through K-Means).
All the data required by the algorithms have been written in dedicated sections
within the program.

• Timer Configuration: a timer is set according to ATC requirements. The
best trade-off to generate time window under 300 ms without dissipating to
much energy it is to use the external high precision low frequency clock (F =
32.768 kHz). An interrupt is then set to a compare value, obtaining a specific
time window, and corresponding service function is registered. REPEAT mode
is activated, so the timer restarts from the beginning after the interrupt occurs.
If a time measurement is required for performance reasons, another timer
would be activated, with a frequency a quarter of the selected Hard Clock
(HCLK), tipically 6 MHz [39].

• LEDs Configuration: LEDs are configured according to library functions,
they are made controllable from the µP and then switched off.

• GPIO Configuration: the three pins required to collect data from the three
AFEs are activated as input, with interrupt on the rising edge. For each
of them an appropriate function is registered in the interrupt service table.
No hazards occur in case of multiple concurrent interrupt are received. The
interrupts are then cleared for security reasons and the GPIO master is enabled
[39].

• Interrupt Routines: Each interrupt routine allows you to define specific
actions that must be taken whenever a certain event occurs.
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In particular, a routine that is called when a signal is detected at the input of
a defined GPIO has been implemented .
Another routine is called each time the ATC window ends, to evaluate the
number of detected TC events.

• Initial Configuration: some basic function are called depending on the value
of environmental constants; if high frequency is required, the MCU would be
set to 48MHz instead of 24 is enabled if needed, low power mode is entered,
activating the buck converters and the debug interface is configured, if the
mode is needed.

• Running Loop: The program enters a while loop for all the acquisitions
set by the user. Inside the loop, if no interrupt is generated, the board is
set to Deep Sleep mode. Up to the number of acquisitions set by the user,
the program will execute all the operations useful for signal acquisition and
movement classification.

The board could be powered via USB cable or with an external supply, like a
battery or a voltage generator, to be connected directly on the power pin on the
power header of the board.

3.2 Performed Movements
The list of gestures to be executed from the volunteers has been selected according
to some recent literature works [25, 42] and without requiring an excessive effort
from the subject. The final list of movements is the following:

1. Wrist Extension;

2. Wrist Flexion;

3. Wrist Radial Deviation;

4. Wrist Ulnar Deviation;

5. Hand Grasp

6. Idle State/Rest Position of the hand, necessary to consider as a class when no
movements are done as well.
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Figure 3.9: Superficial muscle on medial section of the forearm.

The muscles necessary to perform the desired movements are hand extrinsic
muscles (called extrinsic because they are in the forearm, out of the hand area),
generally originated in the elbow area and terminating in the metacarpal area.
They are divided in superficial and deep ones; the seconds are not mentioned be-
cause they are useless for this work because their position in the forearm is not
suitable for using surface electrodes. Only the superficial muscles have been then
taken into account ( Fig. 3.9 ). All the below match movement-muscles have been
deduced from the Eaton Hand online book [43, 39].

Wrist Extension
The wrist extension is the act of move the back of the hand towards the distal
forearm. The mainly used muscles are the extensor carpi radialis longus, the ex-
tensor carpi radialis brevis and the extensor carpi ulnaris, together with some deep
muscles [39].

Figure 3.10: Wrist extension.
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Wrist Flexion

Figure 3.11: Wrist flexion.

The wrist flexion is the movement of the hand palm, towards the inner arm. The
involved muscles are flexor carpi radialis, palmaris longus and flexor carpi ulnaris,
as well as flexor digitorum superficialis and profundus [39].

Wrist Radial Deviation
The hand is moved up, following the thumb direction, in order to perform the
radial deviation. Muscles involved are abductor pollicis longus, flexor carpi radialis,
extensor carpi radialis longus and brevis [39].

Figure 3.12: Wrist Radial Deviation.

Wrist Ulnar Deviation
The hand is moved down, in the little finger direction, to perform ulnar deviation.
The useful muscles are extensor carpi ulnaris and flexor carpi ulnaris.
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Figure 3.13: Wrist Ulnar Deviation.

Hand Grasp
Hand grasp is the action of closing all the finger towards the hand palm. Flexor
digitorum and palmaris longus are the most used, together with many intrinsic
muscles of the hand.

Figure 3.14: Grasp.

Idle State/Rest Position
The idle state is performed trying to relax all the above described muscles.
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Figure 3.15: Idle.

3.3 Acquisition Protocol
In this section it will briefly describe the protocol used in the previous work for
the collection of the sEMG signals from the 25 volunteers. The dataset acquired
through this protocol will be the starting point of my thesis work, for the imple-
mentation of machine learning algorithms and the comparison of performance with
the previous work [38].

3.3.1 Electrodes Placement
The collection of the sEMG signals presented many critical issues, due to many
factors already discussed in 1.3.4. The electrode placement is one of the critical
aspects. In fact, even using relatively small electrodes, the muscles are to close
one to the other to not have crosstalk between them. Moreover, some muscles are
so thin to be even smaller than the 24mm electrodes. Thus, an initial study on
the optimal placement has been done, to adapt to the different morphology of the
forearm [39].
This study considered the number of channels to be used, according to the five
active movements determined in section 3.2. Tests realized resulted in a good
discernment between classes: the final configuration of the electrodes placement is
shown in Figure 3.16. In particular:

• First couple of electrodes is placed on the palmaris longus, which originates
from the medial epicondyle and has its insertion on the proximal superficial
palmar fascia. The electrodes should be positioned on the lower area of the
palmaris, near to the flexor carpi ulnaris, in order to take into account some
good cross action from it. The main contribution is to the Flexion movement,
but some useful value are recorded also during Ulnar Deviation and Grasp.
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• Second pair is placed on the superficial area of the abductor pollicis longus,
which has its origin in the radioulnar interosseous membrane and terminates
on the radial dorsal base of the thumb metacarpal. Placement of the elec-
trodes should be made near the wrist, where the muscle become superficial.
These electrodes are mainly used in Radial Deviation, but have nice effects on
Extension and Grasp.

• The third and last pair has to be placed on the extensor carpi ulnaris, which
has the origin in the lateral border of the distal humerus and the insertion
on the dorsal base of the small metacarpal. Main effects are obviously on the
Extension movement, but they are also necessary for Ulnar Deviation.

• Last, the reference electrode has been placed on the hand back, near the
wrist, in a bony electrical neutral area, in a way that does not prevent correct
execution of the movements [39].

Figure 3.16: Electrode placement on both sides of the forearm [38].

As it is possible to see, the channels are used combined with others to obtain a
possible movement, allowing to reduce the number of electrodes used, while keeping
high the number of movements that are classified.

3.3.2 Training and Test Protocol
After the initial test phase, which it has been discussed in the previous section, an
in vivo experimentation has been launched [38], in order to collect from different
people enough data for the classifier to be trained and tested.
In this part 25 people have been involved, 16 males and 9 females (with an age
between 23 and 37 years old). The participants have been divided in two different
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groups: 20 people have been involved to the classifier training, while the remaining
5 have been enrolled in the online testing phase. The two sessions have been per-
formed subsequently, in different days, without in any way replicating environment
conditions, in order to guarantee that training data and testing ones were not de-
pendent one to the other [39].
For both groups the initial calibration phase is in common: each subject has to sit,
in a way that the right arm could stay above the table, in an horizontal position,
and that the hand is free to move.
After the explanation about the study, the subject has the electrodes placed on the
forearm. This placement is really critical, as written in Sec. 3.3.1 , because of the
narrowness of the muscles and their small cross section. A bad positioning could
bring to a very bad quality of the acquired data, with an accuracy degradation up
to 30% [44, 39].
To prevent this issue, a preliminary calibration is performed, acquiring sEMG sig-
nals for a small time period and visualizing the results:

• The volunteer execute one movement at a time, starting from the rest position
and keeping the gestures once reached. The acquisition lasts 6.5 s, during
which 50 values are acquired over the 130 ms time window.

• The hand returns in the rest position and a pause of 5 s is performed to avoid
muscular fatigue.

• A different movement is acquired on the available 6.5 s period. The routine is
repeated until all the five active movements are performed.

• Obtained data are then saved to a file and moved to Matlab environment.
Here are 3D plotted and some visual observation takes place.

• If necessary, some electrodes could be placed in a slightly different way, to
enhance classifier performances.

Once the calibration phase has been completed, the training and prediction
phases have begun.

Training Protocol

During training each individual had to perform only the five active movements,
always in the same order. The acquisition period is doubled with respect to the
calibration phase, to ensure enough data is collected and to allow the subject to
perform the movement in a clean way, without being too fast so no more noise is
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introduced.
Data acquisition was made with the previous version of Apollo3 Blue EVB used in
my thesis work. In fact, in [38] the Apollo2 EVB was used.
In Table 3.2 main features are reported.

Table 3.2: Apollo2 technical sheet.

Max operating frequency 48 MHz
MCU 32-bit ARM Cortex-M4F

MCU min power 10 µA MHz-1

Flash/SRAM 1 MB/256 kB
VDD 1.8 - 3.6 V
I/O I2C/SPI (6x) - UARTS (2x)

The substantial difference between the two models mainly concerns consumption.
The debug mode of the Apollo2 has been used to stop and restart the flow when
necessary. No skin treatment is performed at the begin, to ensure robustness of the
system even with not optimal condition on the forearm.

1. The supervisor remembers to the subject which is the movement to be per-
formed.

2. A Start command is given to the volunteer and the debug is told to continue
the program.

3. The person reaches the desired gesture, then comes back to the rest position
and executes the movement again.

4. When the 13 s period is finished and all the 100 sets of data are acquired, a
Stop command is given to the subject.

5. A rest of 5 s is observed. If there are still movements to be execute, the flow
goes back to point 1.

6. If all the movements are done, a pause of 1 min is performed, letting the person
to lay the arm on the table.

7. Data is saved on the computer. Flow restarts from 1, unless five session have
already been finished.
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Test Protocol

After the classifier is trained, the remaining 5 people performed the same move-
ments plus Idle state for the test phase. The acquisition period has been set to 5.2
s (40 windows of 130 ms), in order to keep the execution low and not let the subject
arm become tired, as well as to have 1000 acquisition packet for each subject. The
debug mode is used like in training protocol.

1. The supervisor remembers to the subject which is the movement to be per-
formed.

2. A Start command is given to the volunteer.

3. As soon as the person reaches the desired gesture, the debug is told to continue.

4. The gesture has to be kept steady for the 5.2 s period.

5. When the 40 sets of data are acquired, a Stop command is given to the subject.

6. A rest of 5 s is observed. If there are still movements to be execute, the flow
goes back to point 1.

7. If all the movements are done, a pause of 1 min is performed, letting the person
to lay the arm on the table.

8. Data is saved on the computer. Flow restarts from 1, unless five session have
already been finished.
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Gestures Recognition
Algorithms

The data used for the training phase of the three implemented ML algorithms were
acquired in a previous work [38].
Once they are saved in the computer, the output label is added, depending on
the movement that was performed, to communicate the classifier which the desired
value is. For this thesis work ANN, SVM and K-means algorithms were chosen for
three main reasons:

• To make a performance comparison between supervised and unsupervised
learning algorithms;

• To make an easily implementation on the microcontroller chosen for online
prediction. The CMSIS-DSP libraries of ARM Microcontroller, which has
already been discussed previously, reduce computational cost significantly;

• To make a performance comparison with studies from other research groups.
These algorithms are the most used by the scientific community for the recog-
nition of hand movements.

The training of the algorithms has been performed offline on the Matlab ®environment.
This implementation allows us to make a relatively fast and repeatable training
routine and provides the usual powerful tools of the software. The techniques used
to implement the classifiers have been studied in [45]. The prediction has been
implemented online on the Apollo3 Blue MCU.
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4.1 Offline Training
The input datasets (e.g., the one in Fig. 4.1) are loaded separately, guaranteeing
no correlation among data between them. Data matrices are divided into training
set and validation set.

Figure 4.1: Dataset from one subject [38]

4.1.1 SVM Training
The main objective of the training phase for the SVM algorithm was to obtain the
model to be imported into Apollo3 for online prediction. The implementation of
the SVM algorithm required numerous steps and variations, given the problems
related to its computational cost already discussed in Chapter 1.

In a first phase, exploiting the notions learned in [45], a script has been imple-
mented to obtain the model. The main problem, however, is that the output model
of the algorithm was too "heavy" for its online implementation on microcontroller.

Therefore I decided to use the LIBSVM library. It is an open source ML library,
developed by National Taiwan University, for classification, regression and distri-
bution problems [46].
The objective of the tool is to allow an easy use of SVMs. The package includes
three functions: svmtrain, svmpredict and svm-scale. The first function trains the
SVM through the training set, the second one tests the SVM through a test set
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and the last is used to normalize the data in the proper range, usually [0,1]. The
package can be used in a command line or exported to other languages like Java
or, as in the case of my thesis work, Matlab.
The principal steps in using the tool are:

1. Data conversion into input in the format of the tool you intend to use;

2. Data normalization in the appropriate range;

3. Choice of the type of kernel function to use;

4. Choice of the C parameters and kernel parameters;

5. SVM training.

The tool provides several training options. First of all it allows you to choose
the type of SVM problem to solve, through the -s option. You can choose among:

• C-SVC (multi-class classification) default parameter;

• v-SVC (multi-class classification);

• One-class SVM;

• SVR (regression);

• v-SVR (regression);

Through the -t option you can choose among 5 different kernel types:

• Linear;

• Polynomial;

• Radial Basis Function (RBF);

• Sigmoid;

• Precompiled Kernel;

Linked to kernels there are a number of options that allow you to set the desired
parameters, such as:

• -d: to set the polynomial kernel degree;

• -g: to set the gamma in kernel functions;
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• -r : to set r in the polynomial kernel;

• -c: to set the C parameter in multiclass classification problems.

The function to be used in Matlab is:

model = svmtrain(training-label, training-matrix ,’libsvm-options’);

where training-label is an L×1 size vector containing the labels of the training
examples; training-matrix is an L×n matrix containing the feature vectors, and n
is their size; libsvm-options is a string containing the options with which you want
to train the SVM.

In the case of my study, the SVM Multiclass Classification type and the RBF
Kernel type has been used, having a number of output labels equal to 6. This
function returns the file.model, containing the following model parameters:

• Parameters: the parameters;

• nr-class: number of classes;

• totalSV : the cardinality of the set of support vectors (SV);

• rho: variable b (bias) of the decision function;

• Label: class labels;

• nSV :the number of support vectors for each class

• sv-coef : is the value of α associated with SVs;

• SVs: the support vectors.

Due to the small memory size of the microcontroller, one of main design goals
was the minimization of SVs number.
In order to obtain the best classification performance from the algorithm , it was
decide to implement the Cross-Validation Method. This method consists in the
subdivision of the dataset in a fixed percentage of data for training and validation
set: a for loop has been created with a Repetition Number equal to 50 that allowed
me to vary at each iteration the matrices within the training and validation set.
This process improve considerably the level of accuracy of the classification, reach-
ing a percentage of 95.3%, using less than 3000 SVs. Finally, the model that
obtained the maximum accuracy value was saved and imported into the microcon-
troller memory for online movement prediction.
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4.1.2 K-Means Training
The objective of K-means training is to find the value of the centroids that allow
to reach the highest accuracy in classification. As discussed in Chapter 1, one of
the main problems of the K-means algorithm is to often fall in a local optima: this
depends strongly on the centroids initialization and the number of iteration.
To solve this problem, the Cross-Validation method has also been used in this
algorithm. Many tests have been made to find the right compromise among the
number of iterations, the number of repetitions and the right computational cost.
The final parameters used are:

• Iteration Number = 50. This value corresponds to the number of times the
algorithm iterates to search for centroids.

• Repetition Number = 100. This value indicates how many times the matrices
are re-initialized for the division of the training and validation set.

• Matrices Number = 20. It has been chosen to use the whole dataset because,
since K-Means is an unsupervised learning algorithm, adding more data can
improve performance in data separation.

The maximum accuracy reached at this stage is 83.35 %. The centroids that
achieved this result were saved and transferred to the Apollo3 MCU.

4.1.3 ANN Training
As regards the implementation of the code for the NN algorithm some consider-
ations and trials have been made in a previous work [38], looking for the best
implementation possible.
With fewer data than the final ones, a preliminary study on the NN has been per-
formed. 63 different NN have been trained and tested, each one considering 10
different regularization values (λ), starting from 1 hidden layer made of only 10
nodes and ending with 3 hidden layers with 30 nodes each.
Considering the performance achieved in these tests, the final NN architecture was
configured as reported in Table 4.1

Table 4.1: Neural Network Architecture.

Layers Nodes Regularize(λ) Val. Error Accuracy(%) Training Time(s)
2 26 0.010 0.630 92.31 2110
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As in the case of the two algorithms previously analyzed, the main parameters
of the neural network have been saved into the microcontroller memory, to allow
the online prediction of the gestures.

4.2 Online Prediction
The characteristic parameters obtained offline from the three analyzed algorithms
have been transferred to the Apollo3 MCU.
Every time the ATC window ends, the timer interrupt arises and the board exits
the deep sleep mode. The service routine takes the TC values counted by the GPIO
interrupts transforming them into the inputs for prediction algorithm.
Three routines have been implemented, one for each ML algorithm, giving to the
user the possibility to select the desired algorithm for real-time gesture recognition.

• SVM routine, as in the training phase, uses the LIBSVM library. In this
case, however, the library was suitably modified, in order to fit the hardware
constraints of the microcontroller.
The prediction function receives the TC values in inputs and computes the
output class according to the model specifications.

• K-Means routine allows to calculate the euclidean distances between the
ATC values and the optimized centroids. The centroids are saved as an MxN
matrix, where M corresponds to the number of classes and N corresponds to
the number of TC channels. Once the euclidean distances are calculated, the
result of the predicted class corresponds to the value of the lowest distance.

• NN routine NN routine computes the forward propagation, using the trained
weights, and employing the sigmoid as activation function in order to avoid
divergence.
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Chapter 5

Experimental Results

This chapter presents the measurements carried out in order to evaluate the system
performance in terms of accuracy, latency and power consumption. Power and
Latency measurements were made using two different frequencies of the Apollo3
High Frequency RC oscillator (HFRC). It has a nominal frequency of 48 MHz but
in the tests, I chose to use also the second available frequency (24 MHz) in order
to assess performance at different working frequencies.

5.1 Classifier Accuracy
The accuracy of the classifier has been measured directly on the Apollo3 Blue MCU,
implementing specific routines able to take count of the prediction and to under-
stand if it has been correct or not.
One Confusion Matrix for each algorithm and movement has been created, con-
sidering the whole test set of 2401 elements. If all the movements were performed
correctly, this value should be on the main diagonal.
The following parameters have been chosen as statistical assessment:

• Accuracy: measures the percentage of the exact predicted value in the total
number of instances. It is the inverse of the error rate and varies from 0%
(worst) to 100% (best).

• Precision: is the percentage of the corrected positive values out of the total
positive model values (right or wrong). It varies from 0% (worst) to 100%
(best).

• Recall: or sensitivity, is the percentage of the corrected positive values out of
the total positive instances. It varies from 0% (worst) to 100% (best).
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• F1 score: is the harmonic average of the Precision and Recall metrics. It
varies from 0% (worst) to 100% (best).

5.1.1 Support Vector Machine
As already discussed in the previous chapter, the SVM algorithm has considerable
critical issues from a computational cost point of view. Investigating the algorithm,
it emerged that the most critical point is the calculation of the exponential function
in the output class prediction operation.
To try to solve this problem, the exponential function has been replaced with
Taylor-Mc Laurin’s Series of the Exponential Function. This new solution has
brought considerable advantages on the computational cost of the algorithm, greatly
reducing the time in the prediction. On the other hand, however, the performance
of the classifier has suffered some small deterioration. Below statistical parameters
are analyzed using both solutions.

Prediction with Exponential Function

The statistics obtained are reported in Table 5.1. The average accuracy is 97.98%.
It is possible to observe that Ulnar Deviation is the worst performing movements,
but it is well compensated by the performance obtained by the other gestures.

Table 5.1: Statistical Result SVM (Exp.Func).

Accuracy(%) Precision(%) Recall(%) F1-score(%)
Ext 96.79 78.84 79.34 79.13
Flex 97.50 78.92 88.16 83.24
Rad 98.86 99.38 86.09 92.26
Uln 96.83 66.66 68.97 67.80
Grasp 98.08 80 81.36 80.67
Idle 99.83 99.94 99.82 99.87
Avg 97.98 83.95 83.05 83.87

Prediction with Taylor - Mc Laurin’s Series Exponential Function

The statistics obtained for this algorithm are reported in Table 5.2. The average
accuracy is 94.49%. Again, the Ulnar Deviation was the movement that achieved
the worst performance. The percentages of accuracy and recall of the Grasp are
low if compared to the other movements, which instead have excellent performance.
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Table 5.2: Statistical Result SVM (Taylor Series).

Accuracy(%) Precision(%) Recall(%) F1-score(%)
Ext 94.67 98.28 30.98 47.10
Flex 95.79 97.22 41.42 58.09
Rad 98.08 94.34 80.21 86.70
Uln 94.46 44.21 56.03 49.43
Grasp 96.31 63.06 59.32 61.13
Idle 87.63 84.56 100 91.63
Avg 94.49 80.27 61.32 65.68

5.1.2 K-Means

The statistics for K-means algorithm are reported in Table 5.3. The average accu-
racy is 95.14%. This algorithm has some criticality in the classification of move-
ments such Ulnar Deviation, Wrist Extension and Grasp.

Table 5.3: Statistical Result k-Means.

Accuracy(%) Precision(%) Recall(%) F1-score(%)
Ext 95 97.06 35.87 52.38
Flex 93.71 52.65 100 68.98
Rad 99.62 98.90 96.25 97.56
Uln 92.79 40 98.28 56.85
Grasp 93.46 62.14 35.16 44.91
Idle 96.25 99.74 94.72 97.16
Avg 95.14 75.08 76.71 69.64

5.1.3 Artificial Neural Network

The statistics obtained are reported in Table 5.4. The average accuracy is 97.14%.
It is possible to observe that Ulnar Deviation and Wrist Extension are the worst
performing movements. On the other hand, the classification of the other move-
ments has achieved excellent results.
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Table 5.4: Statistical Result ANN.

Accuracy(%) Precision(%) Recall(%) F1-score(%)
Ext 95.13 92.40 39.67 55.51
Flex 98.25 88.02 86.98 87.51
Rad 99.20 100 89.84 94.64
Uln 94.63 47.23 95.69 63.25
Grasp 98.37 81.10 87.28 84.08
Idle 99.92 100 99.87 99.94
Avg 97.59 84.79 83.29 80.82

5.2 System Latency
Latency has been measured on the Apollo3 Blue board, implementing a timer with
a frequency of 6 or 12 MHz (dependent on clock frequency). The timer is started
when the end of the ATC window occurs, it continues running through all the
computations and it is stopped after the output class is defined. In this way it
takes into account the whole computational phase, without neglecting anything.
As already explained at the beginning of the Chapter 5, the latency has been
analyzed considering the two different frequencies of the HFRC oscillator.
In the case of 48 MHz clock, the average values obtained from the measurements
are:

• 141.90 ms, for SVM algorithm with the use of the exponential function;

• 109.85 ms, for SVM algorithm with the use of Taylor - Mc Laurin’s series
exponential function;

• 62.6 µs, for K-Means algorithm;

• 2.58 ms, for ANN algorithm;

Instead, in the case of a HFRC frequency of 24 MHz:

• 283.75 ms, for SVM algorithm with the use of the exponential function;

• 219.71 ms, for SVM algorithm with the use of Taylor - Mc Laurin’s series
exponential function;

• 124 µs, for K-Means algorithm;

• 5.15 ms, for ANN algorithm;
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Important considerations can be made thanks to the results obtained. The K-
means and ANN algorithms can be used for real-time applications, because the total
latency given by the sum of latency obtained and the time of the ATC windows is
lower than the usual limit of 300 ms. As regard the SVM algorithm, the use of the
Taylor exponential has allowed to decrease the total latency, but the margin is too
small to use the algorithm implemented for real-time studies.

5.3 MCU Power Consumption
MCU power consumption analysis has been performed using DMM7510 by Tek-
tronix. The measurement has been made removing a small jumper on the board,
usually inserted between board power and MCU VDD, and applying an high-
resolution digital multimeter on its extremities. It has been downloaded the appro-
priate software that allowed to make the measurements and save the data directly
on the PC.
Below are the power consumption results of the three algorithms. They are ana-
lyzed separately and, for each of them, a comparison in the use of the maximum
HFRC clock frequency (48 MHz) and a frequency equal to half (24 MHz) is made.
Obtained deep-sleep power consumption is very similar for the algorithms and is
equal to 0.04 mW .

5.3.1 SVM Absorbed Current
In Figure 5.1 a comparison between the consumption of the two possible solutions
for SVM algorithm is made. As it is possible to see, current absorption follows
exactly the behavior of the µP, being low during the acquisition window and having
a higher step during the calculation.
The computational cost of the algorithm is clearly visible in these figures: the
microprocessor works on the class prediction calculation for almost all the ATC
window, returning to deep-sleep mode for a few ms. The difference between the
two solutions adopted affects power consumption. The average power consumption
differs depending on the algorithm and the clock frequency used.
In the case of 48 MHz:

• 1.78 mW , for SVM algorithm with the use of the exponential function;

• 1.67 mW , for SVM algorithm with the use of Taylor - Mc Laurin’s series
exponential function;

Instead, in the case of 24 MHz HFRC:
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• 1.28 mW , for SVM algorithm with the use of the exponential function;

• 0.93 mW , for SVM algorithm with the use of Taylor - Mc Laurin’s series
exponential function;
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Figure 5.1: SVM current consumption, measured with the DMM7510 digital multime-
ter.
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5.3.2 K-Means Absorbed Current
Figure 5.2 shows the current consumption related to the K-means algorithm. In
this case the working period is less than 125 µs, and this also affects the result of
average power consumption. In particular:

• 0.82 mW , for K-Means algorithm with a HFRC clock frequency of 48 MHz;

• 0.61 mW , for K-Means algorithm with a HFRC clock frequency of 24 MHz;
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Figure 5.2: k-Means current consumption, measured with the DMM7510 digital multi-
meter.

5.3.3 ANN Absorbed Current
Figure 5.3 shows the current consumption of the ANN algorithm. In general ANN
algorithm has a lower consumption than the K-Means, but totally the average
consumption is comparable. In particular:

• 0.83 mW , for ANN algorithm with a HFRC clock frequency of 48 MHz;

• 0.53 mW , for ANN algorithm with a HFRC clock frequency of 24 MHz;

For a complete understanding, the average and the maximum power consump-
tion of the 3 algorithms are shown in Table 5.5 and Table 5.6.
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Figure 5.3: ANN current consumption, measured with the DMM7510 digital multime-
ter.

Table 5.5: Comparison of the power consumption of the algorithms with an HFRC clock
frequency of 48 MHz.

Avg Power Cons(mW ) Max Power Cons(mW )
SVM (Exp Func) 1.78 2.18

SVM (Taylor Exp) 1.67 2.04
K-Means 0.82 1.09

ANN 0.83 2.51

Table 5.6: Comparison of the power consumption of the algorithms with an HFRC clock
frequency of 24 MHz.

Avg Power Cons(mW ) Max Power Cons(mW )
SVM (Exp Func) 1.28 1.52

SVM (Taylor Exp) 0.93 1.39
K-Means 0.61 0.89

ANN 0.53 1.64
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Chapter 6

Conclusion

In this thesis work a system able to recognize and classify hand gestures in real-time,
starting from the sEMG signals produced by the forearm muscles, is proposed.
In order to reduce the power consumption, the event-driven approach of the Aver-
age Threshold Crossing (ATC) technique is used. The final implementation results
suitable for real-time applications, thanks to low latency and power consumption.

Three acquisition channels have been implemented, each one acquiring the sEMG
signal and providing the related quasi-digital TC signals that are taken directly to
three GPIO of the Apollo3 EVB. The TC events are counted with a simple inter-
rupt routine and then averaged over a time window computing the ATC parameter.
The values obtained were used for the training phase of three implemented ML al-
gorithms. In particular SVM, K-Means and ANN were used for offline training and
online prediction. The characteristic parameters obtained from this first phase,
have been loaded into the memory of the Apollo3 MCU in order to perform a real-
time movement prediction directly from the board.

The three algorithms were subsequently implemented on the microcontroller, in
order to be able to make an online gesture recognition. Their performance in terms
of accuracy in the classification of the movements, latency and power consumption
of the Apollo3 MCU have been evaluated. Accuracy and latency measurements
were carried out with specific firmware routines, while power consumption was
calculated by an high-precision digital multimeter.
In particular with SVM algorithm an average classification accuracy of 94.49%, a
latency of 109.85 ms and an average power consumption of 1.67 mW were obtained.
K-Means has gotten an average classification accuracy of 95.14%, a latency of 62.6
µs and an average power consumption of 0.82 mW . Finally, the NN achieved an
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average classification accuracy of 97.59%, a latency of 2.58 ms and an average power
consumption of 0.83 mW .

6.1 Future Works
There are several possible future developments concerning this thesis work.
Next works could be focused on the improvement of ML algorithms in order to
optimize the performance that has been analyzed. A possible improvement could
concern the SVM algorithm, trying to optimize the offline training phase in order
to reduce the number of support vectors needed for online gesture recognition. Re-
garding the K-Means algorithm, an alternative techniques to the euclidean distance
for the clustering of data can be investigated: in this way it will be possible to ob-
tain an improvement in the separation of these data during the training phase, in
order to classify new data in a more consistent way in real-time mode. In addition,
the use of unsupervised learning algorithms such as K-means could promote the
addition of new output labels, in order to be able to recognise more hand move-
ments.

Instead, from the hardware point of view, the increase of electrodes number and
acquisition channels could achieve a better quality of the sEMG signal taken paying
more attention to muscle synergies. Finally, the creation of wearable device with
dry electrodes might be useful in order to carry out long-term monitoring of the
myo-electric activity of the muscles, reducing a number of disadvantages related to
the use of traditional electrodes.
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Appendix A

Confusion Matrix

Table A.1: SVM Confusion Matrix (Exp.Func)

Predicted
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l Ext 146 39

Other 38 2178

Predicted
Flex Other

A
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l Flex 149 40

Other 20 2192

Predicted
Rad Other
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l Rad 161 1

Other 26 2213

Predicted
Uln Other

A
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l Uln 80 40

Other 36 2245

Predicted
Grasp Other
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l Grasp 96 24

Other 22 2259

Predicted
Idle Other
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l Idle 1624 1

Other 3 773

Table A.2: SVM Confusion Matrix (Taylor Series)
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Table A.3: K-Means Confusion Matrix.
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Table A.4: ANN Confusion Matrix.
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