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Abstract

The analysis of collisions of water droplets in a turbulent field is important from many
points of view, with academic and industrial applications. It is a multidisciplinary prob-
lem, from the turbulent fluid dynamics to the particles growth model. In this thesis, with
the help of numerical simulations, we want to investigate how water droplets collide with
themselves in a turbulent cloud-clear air environment.
Of course clouds are not the only application of this multi-phase problem, indeed there are
still many industrial applications in which multi-phase flows are treated or used.
In this work will be shown the numerical measurements of collision kernels in homoge-
neous, isotropic, cloud turbulent environment but also in very anisotropic environments as
the turbulent mixing between cloud and clear air, where are distributed multi and mono
disperse population of particles. A collision kernel is substantially a measure of collision
probability between two classes of particles, characterized by volume (radius). These re-
sults will also be compared with the analytical model available in scientific literature. In
the end of this work there is also an analysis of the tendency of droplet to group in clusters
in low enstrophy portions of the domain.
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Chapter 1

Problem’s equations

Introduction
In this job are reported the results of several CFD simulations of water droplets in atmo-
spheric turbulent environments, focusing in particular on the collisions probability between
droplets (direct measure of the geometric collision kernel) and on cluster mechanism that
affects droplets in a turbulent environment. The problem of studying the dynamics of liquid
water particles in a cloud/air turbulent system is based on a wide set of equations, some of
them directly linked to the fluid dynamics (like the Navier-Stokes equations), others useful
to solve thermodynamics processes (like condensation). Still others are strictly necessary
to determine the dynamics of the particles. All these equations are implemented in code
DNS_TurIsMI_v141 [7], that is the processing code adopted to run all the simulations,
that will allow us to investigate the phenomenon.

1.1 Navier-Stokes equations in Boussinesq approxi-
mation

The foundations on which the problem is built are the Navier-Stokes equations, in particular
the incompressible ones. They describe the conservation of mass and momentum of the
fluid. This set of equations has been modified in order to be adapt to describe a multiphase
flow. In particular a term of buoyancy appears in the momentum balance, it is based on
Boussinesq approximation: the density of the flow is considered as constant, apart for the
bouyancy term. The flow that will be simulated is that of a turbulent shearless mixing,
it is characterized by a null mean velocity field, which is why the Navier-Stokes equations
reported refer to the fluctuations of the velocity field.

∇ · u = 0
∂u

∂t
+ u · ∇u = −∇p

ρ
+ ν∇2u − Bg

(1.1)

where:

• u is the velocity fluctuations vector (3D)

7



Problem’s equations

• ρ is the flow density, it is constant in the equations except for the buoyancy term
(Boussinesq approximation)

• p is the fluid dynamic pressure

• ν is the kinematic viscosity of air

• B is the buoyancy term, it includes also weight force and it will be treated in detail
in section 1.3.

• g is the gravity acceleration vector

As seen, in the equation of momentum does not appear any kind of feedback of the droplets,
this is reasonable because the order of magnitude of particles radius is ∼ 10 µm, much
smaller than the Kolmogorov length scale η, therefore the effects on the fluid can be
neglected. A preliminary evaluation of the turbulence micro scale can be done using the
order of magnitude of Reynolds number and the macro scale l of the vortexes (the choice
of this value will be exposed later).

Re ∼ 1 · 103

l ∼ 0.1 m

J
⇒ η = l · Re− 3

4 Ä 0.5 mm (1.2)

It leads to millimeters sized Kolmogorov length scale. This configuration of the problem
has been used yet, see Franklin et al, 2004 [3]. Major details about Reynolds number and
macro scale will be provided in chapter 2.

Of course this set of equation is not complete in order to solve the problem, so others
equations are added.

1.2 Temperature and Froude number
The temperature is treated as a passive scalar, it means that it is evolving transported by
the fluid, following the law:

∂T Í

∂t
+ u · ∇T Í = Ka∇2T Í + L

cp
C (1.3)

Where

• T Í is the fluctuation of temperature, its meaning is explained in the next section

• Ka is the thermal diffusivity of air

• L is the latent heat of evaporation of water

• cp is the air specific heat at constant pressure

• C is the condensation rate per unit volume
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1.2 – Temperature and Froude number

The temperature is decomposed into a constant term and a fluctuating one:

T (x, t) = Tmin + Gzü ûú ý
background temperature

+T Í (x, t) (1.4)

Where G is the mean temperature gradient along z direction (L is the length of the domain
in that direction) and it’s constant, not affected by the time evolution. In the code this
will act as a source term into the momentum dynamics.

G = T (L) − T (0)
L

= ∆T

L

Conversely T Í(x, t) is the fluctuating temperature term, and it is the only one allowed to
change with DNS evolution. In the computational domain the initial fluctuating temper-
ature term T Í depends only by z coordinate, with an hyperbolic tangent development:

T Í(z,0) = ∆T ·
5
tanh

3
55
3

z

L
− 1

2

44
− 2z

L
+ 1

6
(1.5)

The influence of temperature in non-dimensional momentum equation is included in the
bouyancy term:

Dũ

Dt
= ... + 1

Fr2

è
G̃z̃ + T̃ Í

é
(1.6)

The stability or instability of the simulation depends on the sign of ∆T and therefore of
G. We have stable condition if G > 0, neutral condition if G = 0 and unstable condition
for G < 0. It is common, instead of using G, to refer to the squared Froude number in
order to describe the stability of stratified flow. It is defined with the root mean square
value of velocity fluctuations uÍ

rms, a length scale l (we selected the initial one associated
to macro scale vortexes, although in literature the mixing zone length is often used) and
the Brunt-Vaisala frequency N .

Fr = uÍ
rms

lN
(1.7)

Where the Brunt-Vaisala frequency indicates the oscillating frequency of a fluid particle
that is slightly moved from its equilibrium condition in a stable stratification environment.
It defines as

N =
ó

gG

Tmean
(1.8)

It is clear that since for unstable simulation G < 0, N will be an imaginary number, it
means that it will be an amplification factor instead of an oscillation frequency. In this
work we will have

N 2 = 9.81 · (±1.95)
281 Ä ±0.068

è
s−2

é
(1.9)

In a further section we will see that uÍ
rms Ä 0.15 m/s and that the initial macro scale of

the turbulence vortexes is l Ä 0.085 m. Substituting we get

Fr2 = 0.152

0.0852 · (±0.068) = ±45.4 ⇒ |Fr| = 6.7 (1.10)
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Problem’s equations

Figure 1.1. Initial temperature profile, respectively in stable and unstable condition.
The code works in a way that only the red function evolves in DNS, the mean gradient
is kept constant in time. This is because pseudo spectral numerical methods require
periodic continuous functions.

1.3 Buoyancy

The buoyancy effect appears in the momentum equation, in particular it acts along the
vertical direction. This dynamic contribution is due to the different composition of the
fluid, in fact every point of the domain is characterized by a concentration of air, vapor
and a temperature value. In particular the term B, that appears in the equation 1.1,
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1.3 – Buoyancy

represents the dynamic effect due to density fluctuations. It is expressed as the ratio of
the fluctuations ∆ρ and a constant density value ρ0.

B = ρ − ρ0

ρ0
= ∆ρ

ρ0
(1.11)

Now one can evaluate the term ρ in 1.11. Assuming small perturbations, using a first order
Taylor’s approximation around the average value ρ0, it is possible to write:

ρ(ρa, ρv, T ) = ρ0 + ∂ρ

∂T
∆T + ∂ρ

∂ρv
∆ρv + ∂ρ

∂ρa
∆ρa (1.12)

Where ∆ denotes small variation from the mean value.
Since 1.11 it is

∂ρ

∂ρa
= 1

∂ρ

∂ρv
= 1

(1.13)

The derivative ∂ρ/∂T is evaluated through the introduction of a thermal expansion coef-
ficient α, that is inversely proportional to the average temperature T0:

∂ρ

∂T
∼ ρ0α = − ρ0

T0
(1.14)

Therefore relation 1.12 reduces to

ρ = ρ0 + ρ0
∆T

T0
+ ∆ρa + ∆ρv (1.15)

The last two terms in 1.15 represent the bouyancy due to gas mixture. These are studied
using the theory of incompressible gas, ignoring the volume occupied by the droplets of
liquid water. Starting from the total and partial volumes, respectively vtot, vi:

• vtot = const

• vi = RT
p

mi

Mi

Since vtot =
q

vi it is possible to write
q

vi = RT
p

q mi

Mi
= const, dividing by vtot you get

RT

p

Ø mi

vtotMi
= const ⇒

Ø ρi
Mi

= const

Adapting this result to the air-vapor mixture
ρa

Ma
+ ρv

Mv
= ρa0

Ma
+ ρv0

Mvü ûú ý
constant average values

Recalling that the general variation express as ∆ρi = ρi − ρi0, it is possible to rewrite

∆ρa = −Ma

Mv
∆ρv (1.16)
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Problem’s equations

This relation can be substituted in 1.15, thus eliminating the dependence on the density
of the air, obtaining a simple equation for the global density.

ρ = ρ0 + ρ0
∆T

T0
+
3

1 − Ma

Mv

4
∆ρv (1.17)

At this point one can obtain the buoyancy term B isolating the density ratio of 1.11 from
the previous equation.

B = ∆T

T0
+
3

1 − Ma

Mv

4 ∆ρv
ρ0

(1.18)

1.4 Vapor dynamics
The vapor dynamics is essential to determine a more realistic description of droplets evo-
lution and of the thermodynamics situation.

The domain is composed of two cubic regions: one representing a cloud and the other
an air environment. The cloud region is characterized by an initial homogeneous supersat-
urating condition:

ρv
ρsv

= 1.02 (1.19)

While out of the cloud there is a condition of
ρv
ρsv

= 0.70 (1.20)

That leads to have a non-zero growing factor, mandatory condition for a size of the droplets
evolution. Of course the relative humidity will evolve in an inhomogeneous field over time.
The vapor balance is regulated by a mass transport law

Dρv
Dt

= Dv∇2ρv − C (1.21)

The first term of the right hand side represent the spatial diffusion (Dv is the diffusivity
of water vapor), while the second term accounts for the water condensation/vaporative
cooling. Note that the coupling with the turbulent field is hidden into the lagrangian
derivative term, in particular in the convective component. The condensation term appears
also in the temperature balance, it is a source element which takes into account the energy
that is released/absorbed due to a droplet growth/decay. The relative humidity field
(defined as the ratio between vapor pressure and saturated vapor pressure)

φ(x, t) = pv
psv

(x, t) (1.22)

is determined by solving the vapor balance equation already introduced.
The condensation factor is simply evaluated for every computational volume V with the

sum of the growing ratio of the droplets: since the total amount of water must be constant,
if the mass of the drops is growing the vapor mass is decreasing and vice versa.

C = 1
V

Ø
k

dmk

dt
(1.23)
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1.5 – Condensation growth model

Figure 1.2. Supersaturation initial condition in the domain. Notice that this con-
dition, in addiction to the periodic boundary conditions of the flow, generates two
interfaces, at z = 0 = 4π and z = 2π.

1.5 Condensation growth model
The mass of a droplet is the product of the density of water for its volume, so taking into
account that the density of the water is constant but the size of the particle varies in an
environment like the one we want to study, is possible to introduce the growing ratio: the
variation of particles radius in time.

dm

dt
= d

dt
(ρw

4
3πr3) ⇒ dm

dt
= ρw

4
3πr2 dr

dt

This variation consists of three contributes (Ghan et al. (2011) [5]): the first due to
supersaturation S, the second due to the drop curvature

!
∝ r−1" and the last one linked

to the solute around which vapor condenses, originating water drops.

dr

dt
= CR

r

A
S − A

r
+ kr3

d

r3

B
(1.24)

Where

• Cr is the growing factor, it is set as a constant in this numerical analysis. To be
honest this factor depends from pressure and temperature, but if the fluxes of heat
due to latent heat of evaporation (related to a small variation in droplet tempera-
ture) and due to thermal conduction (related to the same temperature variation) are
comparable, like in these analysis, its dependence from temperature is negligible [18].

• S is the supersaturation
S = φ − 1 (1.25)
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Problem’s equations

• A is a coefficient coming from the Kelvin equation, calculated with the droplets surface
tension σ

è
N
m

é
, it accounts for curvature effects.

A = 2Mwσ

RTρw
[m] (1.26)

• k is the hygroscopicity parameter of the solid nuclei around which drops born, it is
set according to the job of Saito, Gotoh and Watanabe (2019) [14].

• rd is the dry radius [m], the radius of solute nuclei around which vapor condenses,
originating water drops. Its value is set according to Ovadnevaite et al., 2017 [12]

Parameter Value Physical units
Mw 18.02 [g mol−1]
cp 1005 [J kg−1K−1]
Dν 2.52 · 10−5 [m2s−1]
Ka 2.50 · 10−2 [W m−1K−1]
k 0.7
L 2.48 · 106 [J kg−1]
A 1.15 · 10−9 [m]
R 287 [J kg−1K−1]
σ 71.97 · 10−3 [N m−1]
ρa 1.11 [kg m−3]
ρw 1000 [kg m−3]
rd 1 · 10−8 [m]

1.6 Particle dynamics
The particle is a droplet of water studied as a rigid, spherical body on which two forces
act: the bouyancy and the aerodynamic drag. So the particle dynamics is described by
the following equation

mẍ = D + b (1.27)
It is important to underline that in our dynamics are missing some contributions, in order
to have a more detailed model one can consult Maxey and Riley (1982)[10].

Aerodynamic drag
We chose to adopt the Stokes drag law for the dynamic of the particles, but one has to
satisfy two hypothesis, one on the Reynolds number and the other concerning the laminarity
of the flow. The Reynolds number associated to the particle is calculated with the relative
velocity between air and drop (here simply called q) and should be less than 1.

Re = q · 2r

ν
∼ q · 10−6

1.5 · 10−5 < 1 ⇔ q < 15 [m/s]

if this is verified we have that Re < 1. Figures 1.3 shows that during all the time evolution
of the simulation the Reynolds number respects the Stokes hypothesis.
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1.6 – Particle dynamics

Figure 1.3. Distribution of drops Reynolds numbers in the beginning (t∗ = 0)
and in the end (t∗ = 9) of the simulation. It is always Re < 1 and the portions
of particles close to Re Ä 1 have a very low contribution in the distribution: the
plot is semi logarithmic in y axis.

In addition one can notice that the Stokes law is valid for laminar flows only, in our
simulations the flow is fully turbulent, but the Kolmogorov’s length scale is about two
order of magnitude bigger than the drops diameter (this will be shown in details in the
next chapter). So, since we assume particles as points, the flow around them can be
considered laminar. Under these assumptions we adopted the Stokes law as drag model.

D = 6πµr(ẋ − u) (1.28)

Where

• µ is the air dynamic viscosity [ kgms ]

• r is the droplet radius [m]

• (ẋ − u) is the relative velocity of the particle with respect to the fluid [m/s]

Particle buoyancy
This contribute is given by the different density of the droplet and the fluid in which is
surrounded

b = (ρp − ρf )g (1.29)

Law of motion
Substituting 1.28 and 1.29 into the dynamics law, recalling that m = ρp · 4

3πr3 and setting
ρf Ä ρa the law implemented in the code can be obtained.

ẍ = 9
2

ρa
ρp

νa
r2 (u − ẋ) +

A
1 − ρa

ρp

B
g (1.30)
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Problem’s equations

The drag term of this equation hides the relaxation time of the particle τp

τp = 2
9

ρp
ρa

r2

νa
[s] (1.31)

This time combined with a reference velocity of the turbulent flow U and with the diameter
of the particle dp gives the local Stokes number, that estimates the inertial effect on the
drop motion.

St = τpU

dp
= τp

τflow
(1.32)

For this kind of problems it is usually taken as Stokes number the ratio between parti-
cles relaxation time τp and Kolmogorov’s time scale as the time associated to the flow3

τflow = τη =
ñ

ν
η

4
. This time is characteristic of the smallest eddies in the flow, it means

that if is bigger or smaller than τp the particles trajectory will be respectively fluid or
inertia driven.

St = τp
τη

(1.33)

The interpretation of St number is summed up in the following table

St description

«1 The relaxation time of the droplet is much smaller than the fluid’s one,
so the inertial effects can be neglected and the velocity of the particle
will be the same as the fluid one

∼ 1 The inertial effects are about the same as those of fluid dynamics

»1 The high inertia of the particle makes it slightly influenced by the fluid
dynamics

The diagrams 1.5 show the distributions of Stokes number at the beginning and at the end
of simulations in an unstable atmosphere environment. The local St has values much higher
than unity, but these are very rare, because they are represented in a semi logarithmic plot.
The PDFs of Stokes number computed with τη shows that all drops are not inertial driven,
this is increasingly true as the simulation progresses and Kolmogorov’s time increases. In
these picture one can see that there is a jump in the distribution: this is due to the new
born by collision particles, that are bigger, but in small number, with respect to the ones
injected in the initial distribution.
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1.6 – Particle dynamics

Figure 1.4. PDFs of Stokes numbers computed with the local value of flow velocity. The
values St > 1 are very unlikely, especially with the evolution of the simulation (t∗ is a non
dimensional time unit, it will be introduced in a later section).

Figure 1.5. PDFs of Stokes numbers computed with the Kolmogorov’s time scale, values
of St obtained in this way usually are the meaningful ones in droplets dynamics. The jump
in the distribution highlights drops born by collision.
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Chapter 2

Numerical model

2.1 Discrete approach to the fluid-dynamic problem
The chosen numerical method in DNS code, DNS_TurIsMI_v141 [7], is pseudo-spectral.
A pseudo-spectral method is essentially a numerical decomposition of the Navier-Stokes
(incompressible) PDEs rewritten in the Fourier space. The term "pseudo" comes from the
fact that the convective term of the equations is solved numerically in the physical space and
then re-transformed into the wavenumbers dimensions to proceed in calculations. Instead
all the equations describing the particles dynamics and growth are computed in physical
space. The time evolution relies on a fourth order explicit Runge-Kutta scheme. The
domain is the union of two cubes, usually one representing a portion of cloud and the
other representing a region of clear air (however it is possible to change to all cloud or all
clear air). Of course the two regions are connected by an interface.
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Numerical model

Figure 2.1. Computational domain: is the union of two cubes, one representing the cloudy
environment, other the clear air

2.2 Initial conditions

2.2.1 Flow

The initial condition of the flow field is set in order to satisfy the incompressible hypothesis
and the shape of a typical turbulent energy spectrum. So the initial flow field is defined as

u = ∇ × A ⇒ ∇ · u = 0 (2.1)

The Fourier transform of the field A
#
m2/s

$
at the initial time is

A (x, t = 0) F.T.==⇒ Â (k) = α (k) eikξ (2.2)

In this last equation we have that ξ is the phase of the harmonic, and it is randomly
chosen in [0,1] (uniform pdf), while α is a three dimensional vector, each component has
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2.2 – Initial conditions

a magnitude of

αi =
ó

E(ki)
ki

i = {x, y, z}
(2.3)

Where E(k) is the energy spectral density function
#
m/s2$. The 2.3 derives from the

definition of the energy of a signal:

Ô (k) =
Ú

E (k) dk = ||û (k)||2
C

m2

s2

D
(2.4)

Since
Ô (k) Ä

Ø
j

E (kj) ∆k (2.5)

We have
||û (k)||2 Ä

Ø
j

E (kj) ∆k (2.6)

Recalling the definition of 2.1 it is possible to write

||û (k)||2 = ki
2αi

2 (2.7)

In the end merging the last two relations (with 2.7 written in discrete formulation) we get
the 2.3.

The energy density spectrum is computed as an artificial (synthetic) spectrum, in fact it
is possible to compute only a portion of a cloud turbulent spectrum (this is due to the lack
of computational resources in our actual technological level), in particular we are focused
on the last part of the inertial cascade and the dissipation range [4] as represented in 2.2
It is important to notice that the simulation range can not be extended (we can cover 2
or 3 decades in range of wavenumbers, in order to simulate a complete cloud we need 8
decades 2.2) but can be left-shifted in x-direction; doing this one has to be careful that
the dissipation will not be included in the simulation and so there will be an accumulation
of energy at the highest wave numbers (a slight shift out of the dissipation range can
be done without too many consequences, due to the slight numerical dissipation). Back
to the artificial energy spectrum, it replies the cloud turbulent one from k0

2π = 6 until
kmax

2π = 169 Ä 512/3 with the −5/3 power law1. It follows a power 2.2 law from kmin

2π = 1
to k0, for k > kmax the spectrum is exponentially decreasing towards k = 0, as pointed in
figure 2.3.

The flow is characterized by a Reynolds number, it derives from two parameters, one
is the dissipation Ô, that is chosen from known values in literature, the other one is the
turbulent macro-scale l, that identifies the typical dimensions of big vortices in turbulence.
As already said and showed in fig. 2.2, one can not simulate all the length scales of a
cloud, because of lack of computational resources, so knowing the value of Kolmogorov

1In order to avoid aliasing issue due to the production of waves with wavelength smaller than the grid
resolution, the wave numbers bigger than 1/3 of the biggest possible ( k

2π = 512) are strongly damped
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Numerical model

Figure 2.2. Energy density function based on experimental measurements taken from
Gallana, 2014 compared with our job spectrum.

length scale and the number of grid points that can be simulated we can computed the
physical length of simulation domain. At this point if we set the wavenumber associated
to the macro-scale vortices k0 we will know the value of l. Once known the value of the
dissipation of this kind of cumulus cloud (see Siebert et al., 2006 [15]) and the macro scale,
the mean square value of the speed fluctuations can be calculated. With the latter value,
the initial Reynolds number associated with the fluctuations can finally be obtained. In
our simulations we have initially

Ô Ä 600
#
cm2/s3$

ν = 1.57 · 10−5 #m2/s
$J ⇒ η =

A
ν3

Ô

B1/4

Ä 5 · 10−4 [m]

Since the turbulence is decaying η will increase in time, and so a good trade between
computational resources and physical accuracy is to set a grid of 1024 × 512 × 512 points,
with a spacing of ∆x = 1 mm. So we have

L = 512 · ∆x = 0.512 [m]

In the end we can compute the velocity root mean square fluctuation and the Reynolds
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2.2 – Initial conditions

number
Ô Ä 600

#
cm2/s3$

l ∼ L
k0

= 0.512
6 Ä 8.53 · 10−2 [m]

J
⇒ uÍ

rms = 3
√

lÔ Ä 1.5 · 10−1 [m/s]

Rel = uÍ
rmsl

ν
Ä 820

For completeness we also report the Reynolds number calculated with the Taylor micro
scale λ

λ =
ò

15ν

Ô
· uÍ

rms Ä 1.15 · 10−2 [m]

Reλ = λuÍ
rms

ν
Ä 110

Figure 2.3. Initial energy spectrum associated to one velocity component uÍ2

2.2.2 Particles
The liquid phase is distributed in the cloud region, in the form of drops of different size,
with the constraint that the total liquid water content is fixed to 8 · 10−4[g/m3], a common
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value found in cumulus clouds (Siebert et al.,2006 [15]). The initial population of droplets
is set in a way that every class of volume (or radius) has the same fraction of liquid water.
As will be shown later turbulence dramatically affects the kernel statistics, providing a
widely non uniform number of collisions with respect to the radius classes.

2.3 Boundary conditions
Along all three spatial direction are set periodic conditions at the boundaries of the domain:
this is mandatory in order to apply a pseudo-spectral discrete method that describe a flow.
The droplets are also subject to periodic boundary conditions, except for the lower wall of
the domain: particles crossing it are removed, in order to simulate a sedimentation effect.
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Chapter 3

Droplet collisions

The collision term is fundamental to describe the life of a population of particles, in par-
ticular the purpose of this work is to describe collisions of droplets population in cloud. In
order to do so it is fundamental to introduce the collision kernel Γ. This element, multi-
plied by the numerical volumic density of two family of particles, provides the collision rate
(collision per seconds) between the two species. Usually the population balance equa-
tion (PBE) is the partial differential equation that aim to model the life of a particles
population. In this differential equation the collision term is the core of the aggregation
term, that acts in the equation as a source element. Introducing Ni ≡ N(ri), the total
number of droplets of the population with radius ri, and ni ≡ Ni/∆V , the volumic density
of particle of radius ri in the population, one can write a PBE where the growth of N is
due only to collisions, this is the Smoluchowski equation [16], which applies to collisions
in which the mass is kept (as for colliding droplets in clouds).

dni
dt

= 1
2

i−1Ø
j=1

Γi,i−jnjni−j − ni

∞Ø
j=1

Γi,jnj (3.1)

Where the first right hand side term describe the increase of particles by collision, the
second one accounts for the particles that colliding disappear from their population classes
(they merge to create a new drop which belongs to a class different from the two starting
ones).

In literature there is a wide list of possible models, each one based on different hypoth-
esis, to describe the kernel. A milestone model is the Saffman and Turner collision kernel
[13]. It is now briefly reported, the detailed discussion is given in the appendix. They
assume the droplet momentum equation as:

ċ = 9
2

ρa
ρp

νa
r2 (u − c)ü ûú ý

Stokes drag

+
A

1 − ρa
ρp

B
gü ûú ý

Gravity

+ ρa
ρp

u̇üûúý
Added mass effect

(3.2)

Where c is the absolute velocity vector of the droplet and u is the local flow field velocity
vector. Hence they derived the following expression for the collision kernel in homogeneous,
isotropic and statistically steady turbulence (their model is valid only for colliding particles
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Droplet collisions

that have radii ratio lower than 2).

Γ = 2
√

2πR2

A1 − ρa
ρp

B2

(τ2 − τ1)2
3

Du
Dt

42
+ 1

3

A
1 − ρa

ρp

B2

(τ2 − τ1)2g2 + R2 Ô

9ν

 1
2

(3.3)
Where

• τ = 2
9
ρp

ρa

r2

ν is the relaxation time of the drop.

• R = r1 + r2 is the sum of the radii of colliding drops.

• Ô = ∂E/∂t is the dissipation of turbulent kinetic energy, and it is set as a constant
parameter.

Figure 3.1. Saffman and Turner collision kernel, the limits on radius ratio does not allow
to have information about some areas of the kernel. From this picture is evident that the
collision involving the biggest particles are the most likely to happen. One can also notice
the low rate of collision between equal droplets, this happens because they have same
inertia and as a consequence they will evolve following in the same way the streamlines.
Since streamlines do not cross, drops will tend to not cross their trajectories.

The model adopted in the simulations is not fitting the hypothesis of sta-
tistically steady turbulence, so this analytical formulation is not suitable to
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Droplet collisions

predict our results. However it will be interesting to compare it with our kernels, as if
they were a sequence of steady states, in order to see where are the main differences. So,
recalling that we do not implement the added mass effect, the 3.3 reduces to:

Γ = 2
√

2π

3 R2

3
A

1 − ρa
ρp

B2

(τ2 − τ1)2g2 + R2 Ô

ν

 1
2

(3.4)

Figure 3.2. Collision kernel for the reduced model (3.4). In this picture the analyt-
ical equation has been extended outside the radii ratio limit (highlighted from the
two white lines). This extension is done because it has been noticed, that for some
analyzes, the pattern emerged was close the one described by Saffman and Turner,
even outside this radii ratio limit.

27



Droplet collisions

Figure 3.3. Dissipation time evolution in our simulations: the initial value in the
cloud is set according to the measurements provided by Siebert et al. [15]. The
red line is the dissipation Ô(t∗), measured into the simulation. the blue columns are
dissipation integral mean values, they will be used for computing the reduced model
kernels that will be compared with the numerical results. It has been verified that
the curve is fitting the (t∗)−2 time evolution, as usual for decaying turbulence. The
details about the time unit t∗, that represents the time referring to the initial eddy
turnover time, are given in section 3.1.1.
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Droplet collisions

Figure 3.4. Decaying of enstrophy field: the picture shows the enstrophy after
0.3,3,6 time scales all over the domain. It is clear that we are not in a forced
turbulent environment. The regions of cloud (more energetic, on the left hand side)
and clear air are clearly distinguishable.
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Droplet collisions

3.1 Kernel discrete evaluation
The collision mechanism is based on the idea that if two objects lie below a certain distance,
they merge (every collision is detected when the distance between centers of droplets is
less or equal than the sum of their radii, the collision efficiency is equal to 1): this way to
compute it let us define our kernel as a turbulent geometric collision kernel.

Water drops in our simulations have initially characteristic dimension of 0.6÷30 µm, so
they are represented as rigid spheres in good approximation. In each time step an algorithm
looks for every collision, merges the two colliding droplets into a new one and interpolates
its data (position,velocity,..) from its ’parents’ data. The information about every collision
are stored, so it is possible to compute some statistics, like the collision kernel. The kernel is
essentially a matrix that given as an input (multiplied) two population densities gives back
as result the collision rate between them, or, from another point of view, it highlights the
probability of a collision between two particles of a given radius class. The discrete kernel
is computed as the number of collision between two radius classes (∆r1, ∆r2) occurred
between time t and t + ∆t divided by the two mean classes population in ∆t. This ratio
is multiplied by the volume in which the particles are enclosed and divided by the time in
which collision are counted.

< Γ(∆r1, ∆r2) >t,t+∆t=
[Ncoll(∆r1, ∆r2)]t,t+∆t

< N1 >t,t+∆t< N2 >t,t+∆t
· ∆V

∆t

C
m3

s

D
(3.5)

In the previous equation the symbol < . >t,t+∆t represents temporal bins. Note that it is
necessary to introduce the ∆V factor because N is a dimensionless counter [#], while ṅ, n
are defined as numbers per unit of volume

#
#/m3$.5

ṅ = Ncoll

∆V ∆t
; ni = Ni

∆V

6
⇒ Γ = ṅ12

n1n2
= Ncoll

N1N2
· ∆V

∆t
(3.6)

It can be noticed that the analytical kernel is not a function of a time interval, but it
is continuous in time; the same thing is observed in the radius dependence. The ideal
numerical experiment is is such that ∆t, ∆r → 0.

Γ(r1, r2, t) = lim
∆t,∆r→0

< Γ(∆r1, ∆r2) >t,t+∆t (3.7)

3.1.1 Time measurement
In this kind of analysis it is common to refer at a dimensionless time unit, the eddy
turnover time (ETT). An ETT physically represents the reference time of turbulent macro
scale vortexes. Since turbulence is decaying ETT changes in time, so we will refer to the
initial one (τ0). This ETT can be computed as the ratio between turbulence macro scale l
and velocity fluctuations in root mean square uÍ

rms. In these simulation we have

τ0 =
3

l

uÍ
rms

4
0

Ä 0.5 [s] (3.8)

So we define the dimensionless time as

t∗ = t

τ0
(3.9)
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3.1 – Kernel discrete evaluation

3.1.2 Time averaging
It is very important to underline that the temporal mean value must not be con-
sidered instead of the ensemble averages, because the flow is in transient condition
and mediating in time means to remove all information about the evolution. The matter
is that since we are in a discrete problem we can not provide a continuous solution, in
addition making ensemble averages is very expensive from a computational resources point
of view, because it requires to do the same simulation many times changing the initial
condition. So we decided to calculate kernels over time, taking collisions that happen in a
∆t as small as possible, but which still provide statistically acceptable results. The optimal
trade between a reasonable computational resources consumption and physical accuracy
led to set ∆t∗ = 3 ⇒ ∆t Ä 1.5 s, but for some analyzes we have lowered this threshold to
∆t∗ = 0.8 ⇒ ∆t Ä 0.4 s.

3.1.3 ∆r adopted
Select ∆r is equivalent to set the number of classes in which the collision kernel will be
computed, so the choose of ∆r is a trade off between the accuracy of the results that
one has to provide and their completeness. As stated in section 3.1, the ideal results
are those for ∆t, ∆r → 0, but since we are running a numerical analysis is impossible
to provide such a result. One can notice that the number of classes is influencing the
result, that is not converging to an asymptotic one changing the number of bins. The
following pictures report the collision kernels computed for the same simulation using
different number of bins, highlighting how an higher resolution kernel (large number of
bins adopted) inevitably invalidates the completeness of the pattern, while a low resolution
kernel leads to low detailed, coarse results. In order to have complete and detailed collision
kernels one should have large computational resources and run several more simulation to
compute the ensemble averages. The data here provided comes from an ensemble average
made of three simulations. One can see that increasing ∆r the magnitude of kernel cells
is increasing too; this happens because in this way there is a restriction in the population
number (ni, nj) used to compute the collision kernel. Simply looking at the way in which
we compute the kernel (3.6) one can notice that a decrease of ni, nj leads to an increase of
Γij .
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Droplet collisions

Figure 3.5. These are the measured collision kernel in mixing environment (first
row) and homogeneous cloud (second row) for the three ensemble averages of the
polydisperse, unstable simulation. All the details and the meaning of this pictures
will be explained in the dedicated section (figure 5.3). At the moment the important
thing is to notice how the results are changing with the number of bins. This picture
is made with 16 bins, that is ∆r = 2µm.

Figure 3.6. This picture is made with 32 bins, that is ∆r = 1µm.
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3.1 – Kernel discrete evaluation

Figure 3.7. This picture is made with 64 bins, that is ∆r = 0.5µm.

Figure 3.8. This picture is made with 128 bins, that is ∆r = 0.25µm. It is important ot
notice how different it appears with respect to the figure with ∆r Ä 2µm, in particular
one can observe an overall increase in magnitude.
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Chapter 4

Analysis of collision kernel in
HIT cloud portion

Before studying an anisotropic environment as a cloud/clear-air mixing it is better to
understand what happens in a simple environment: an homogeneous isotropic turbulent
(HIT) flow representing the core of a cloud. This is the closest model to the supposed
one by Saffman and Turner, so it will be important as a benchmark for the analytical
formulation but also to have a sample to be compared with more complex simulations, in
order to be able to distinguish the effects related to anisotropy.

4.1 Homogeneous cloud
In this section are provided the results of a simulation in full cloudy environment: 20
millions of water droplets, with initial diameter in the range of 0.6 ÷ 30 µm are dispersed
homogeneously in a domain of 1.024 m × 0.512 m × 0.512 m. The DNS is computed for a
decaying turbulent flow with a grid resolution of 1 point every mm. The environment is
saturated (100% RH) and there is not a temperature gradient, so it is set T0 = 281 K. This
is our reference simulation for the collision kernel in a cloudy environment. The richness
of drops in this simulation generates a large number of collision, that provides a good
statistics and shows in a very clear way the time evolution of the collision kernel.
Figures 4.1 and 4.2 report the numerical results. It can be seen that the most probable

collisions regard medium/big size particles (high magnitude), while small particles tend to
not collide with other small particles, in fact the cells referring to these collisions (down left
corner) are four order of magnitude weaker than the ones referring to big drops collisions.
The fact that rarely were recorded collisions between equals droplet can be explained
recalling that when particles have same inertia they follow in the same way the streamlines,
so since streamlines do not cross each others, drops will not too. Time history shows that
the unsteady conditions slightly affects the structure and magnitude of the kernel. Looking
at the comparison with Saffman and Turner model, that is not intended for this kind of
simulations, there are two main differences:

• The analytical model overestimates the magnitude of kernel.
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Analysis of collision kernel in HIT cloud portion

Figure 4.1. Measured states of collision kernel
#
m3/s

$
with a bin spacing ∆r Ä 0.25µm,

corresponding to 128 bins for both kernel x, y coordinates. The dissipation of turbulent
kinetic energy decays from an initial value Ô ∼ 800 cm2/s3 with a (t∗)−2 time depen-
dence. The values associated to every kernel are respectively the mean ones in the ∆t∗,
so Ô ∼ 300,50,15 cm2/s3 as reported in fig.4.4. The value #c is the number of detected
collisions in the period of time in which kernel is evaluated.

Figure 4.2. Measured states of collision kernel
#
m3/s

$
with a coarser bin spacing

∆r = 1µm, corresponding to 32 bins for both kernel x, y coordinates. The dissipation
of turbulent kinetic energy and the values associated to every kernel are respectively the
same as the previous representation.

• There is a spreading in the non-colliding diagonal terms.
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4.1 – Homogeneous cloud

Figure 4.3. Analytical time evolution of collision kernel
#
m3/s

$
from Saffman and Turner

formulation, one has to notice that the "lobes" pattern appears also in the numerical
measurements, even if Saffman and Turner model is not intended for this kind of
simulations. Notice also that the decrease of kinetic energy is not affecting the wideness
of the diagonal but only its magnitude.

Figure 4.4. Dissipation of turbulent kinetic energy associated to this simulation.
The blue columns are mean integral values adopted to compute the associated
Saffman and Turner kernels.

The difference between Saffman and Turner model (Γa) and the numerical results (Γs)

37



Analysis of collision kernel in HIT cloud portion

has been computed as the following

e (r1, r2) = Γs (r1, r2) − Γa (r1, r2)
Γs (r1, r2) (4.1)

In this way we will obtain

e = 0 ⇔ Γs (r1, r2) = Γa (r1, r2)
e = 1 ⇔ Γs (r1, r2) >> Γa (r1, r2)
e = −1 ⇔ Γa (r1, r2) = 2 · Γs (r1, r2)
e < −1 ⇔ Γa (r1, r2) >> Γs (r1, r2)

The results are shown in fig.4.5 and it is clear that the Saffman and Turner reduced model
is not adapt to describe our system, it overestimates the collision rate almost uniformly
(mostly true for 32 bins result). The uniformity of the error is consistent with the fact that
the analytical pattern (but not the magnitude) looks similar to the one found in numerical
measurements. As already said this fact is increasingly true for the 32 bins analysis.
But one should be aware that the Saffman and Turner model is not intended for
this kind of simulations.
Table resumes the average relative error in time for both the 32 and 128 bins.

t∗ 0 ÷ 3 3 ÷ 6 6 ÷ 9
32 bins error −75% −100% −100%
128 bins error −75% −75% −75%
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4.1 – Homogeneous cloud

Figure 4.5. Relative error between the results obtained with Saffman and Turner
reduced model and numerical results, limited between e = ±1. The first row refers
to 32 bins results, the second one to 128 bins. Again one has to remember that
Saffman and Turner model is not intended for this kind of simulations and
this comparison helps to spot the main differences with the numerical results. The
areas where the error is uniform highlights where the numerical results follow the
pattern described by Saffman and Turner.
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Chapter 5

Analysis of collision kernel in
cloud/clear-air environment

In this chapter are provided the results of the simulation for a stable, unstable and neutral
stratified flow, where a cloud interfaces in the upper part with clear air. Initially there
are ∼ 10 millions of water droplets, with diameters in the range of 0.6 ÷ 30 µm, that are
dispersed homogeneously in the cloud region, that has a volume of 0.5123 m3. The DNS is
computed with a grid resolution of 1 point every mm. The environment is over saturated
(102% RH) in the cloud and under saturated (70% RH) in the remaining domain (0.5123 m3

of clear air). The stability is due to the temperature initial condition (see fig. 1.1). The two
portion of the domain are characterized by different kinetic energy associated to velocity
fluctuations: cloud has ∼ 6.6 times the kinetic energy associated to the fluctuations than
clear air. All the simulations ran for the equivalent of nine initial eddy turnover time and
the reason why we choose this time length is mainly due to energy decay, but also to the
limits imposed by the high computational resources request for this kind of simulations.

Turbulent shearless mixing
A turbulent shearless1 mixing area is formed at the interface between cloud and clear air,
this region is widening in time, as already described by Tordella and Iovieno (2011) [8].
We are interested in measuring collisions there and compare them with measured ones in
the homogeneous environment, in the cloud portion. It is important to notice that because
of the periodic boundary conditions there is a mixing layer also under the cloud. It can be
treated as an artificial mixing condition because there is a temperature jump (discontinuity
due to periodic boundary) of ±2 K, and it will be less physical and statistical accurate
because particles crossing the lower boundary of the domain are removed. It is important
to know how it is defined a turbulent mixing region and how it evolves in time, in order
to analyze the collision kernel in this area. Referring to Tordella and Iovieno (2011) [8],
since the anisotropic direction is only one (precisely the z coordinate), mixing wideness

1The two portions of the domain have null mean velocity, there is not relative motion between them.

41



Analysis of collision kernel in cloud/clear-air environment

Figure 5.1. Cloud and clear air represented by relative humidity (or saturation level),
white is for RH = 1.02, while blue stays for RH = 0.7. In particular this image refers to
t∗ = 4, where the kinetic energy associated to fluctuations is (uÍ

rms)2 = 0.0075
#
m2/s2$.

is characterized by only one length. Calling E1,2 the turbulent kinetic energy in the two
fields (1,2) the mixing length ∆ satisfies:

∆ : 0.25 <
E2 − E (z)
E2 − E1

< 0.75 (5.1)

Some of the values that we measured has been reported in tab. 5.1 and compared with the
power law found by Tordella and Iovieno for a non stratified flow. Globally we found that

t∗ Power law ∆/∆0 Measured ∆/∆0

3 1.66 1.67
6 2.28 2.00
9 2.75 2.47

Table 5.1. The table reports samples of the wideness of mixing region referred to
the initial one. Left column contains the predictions of power law, the right one the
unstable simulation measurements.

the mixing, in these conditions of unstable stratification, grows coherently with the power
law. For all the following analysis (for neutral and stable stratification) the procedure in
order to find the mixing region has been direct measurement.
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5.1 – Unstable

Figure 5.2. Beginning from the left we have: (i) lower mixing, (ii) homogeneous cloud,
(iii) mixing, (iv) clear air. The regions are dynamically chosen in time, using both super-
saturation level and velocity fluctuations as criteria. On has to know that also the upper
boundary of the domain is characterized by a turbulent mixing, but since there are not
particles it will not be studied. The spots in the image represent droplets, their color
identifies their size according to the color bar.

5.1 Unstable
The numerical results that are reported in fig. 5.3, it represent both cloud and mixing
region time evolution as result of three ensemble averages. We collect and mediate the
results for three unstable simulations with different flow initial condition, in order to have
a richer statistics. The first row is related to the mixing collisions kernel, while the second
shows cloud one.

As regards the region of homogeneous cloud there is not much to add to what has already
been said in the previous chapter, apart from the fact that in the last time interval the
low turbulent energy plus the effect of gravitational shifting have depleted the population
of the biggest particles, that are fallen out of the domain, resulting in a poor number of
collisions.
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Analysis of collision kernel in cloud/clear-air environment

Figure 5.3. The first row describes the evolution of the collision kernel
#
m3/s

$
measured

in the mixing, the second row is related to the cloud region (homogeneous isotropic),
both computed with ∆r = 1µm, that leads to 32 bins. The dissipation of turbulent kinetic
energy decays from an initial value of Ô ∼ 600 cm2/s3 for HIT region and Ô ∼ 400 cm2/s3

for mixing region, with a (t∗)−2 time dependence. The values associated to every kernel
are respectively the mean ones in the ∆t∗, so in HIT they are Ô ∼ 270,50,20 cm2/s3 and in
mixing they are Ô ∼ 200,40,15 cm2/s3, as already reported in fig.3.3 in chapter regarding
droplet collisions. The value #c is the number of detected collisions in the period of time
in which kernel is evaluated. The increasing lack of data related to the first two classes
is due to the very low number of droplets in that bins: in the cloud they are growing in
volume since Φ > 1 and so less and less particles will result in the smaller classes. This
effect is dumped in mixing since there, somewhere, it is Φ < 1 and so bigger particles
will decrease to smaller sizes.
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5.1 – Unstable

Figure 5.4. This picture represents the collisions kernels in the same conditions as the
previous picture (first row is mixing region, second one is homogeneous region), but
here the results are plotted for 128 bins (∆r Ä 0.25µm). It is evident that changing the
number of bins affects the magnitude of the results (∆r directly acts on the population
associated to each cell, changing the kernel value), in particular here is found an overall
increase in magnitude and the "lobes" pattern of the cloud portion is not so evident as
in the 32 bins representation.
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Analysis of collision kernel in cloud/clear-air environment

It is more interesting the result in mixing region: it appears clearly that the magnitude
is much higher with respect to the cloud region. This can be explained looking at the way
kernel is evaluated:

Γij = ṅij
ninj

= Ṅij

NiNj
· ∆V

∆t
(5.2)

Looking at 5.2 we can see that the magnitude of a computational collision kernel depends
on the volume in which is evaluated:

∆V ↑↓ ⇒ Γij ↑↓ (5.3)

We can notice now that in the mixing region the volume in which collisions effectively
happen is smaller than ∆V that include the whole mixing region (see fig. 5.5,5.6), in fact
collision between two drops happens mostly in branches of cloud, this is a sort of clustering
of particles in the mixing. On another point of view we are showing that the density of
drops n

#
#/m3$ is lower in the mixing than in the homogeneous region.

ni, nj ↓ ⇒ Γij ↑ (5.4)

So this is the reason why it is more intense, if we had chosen the real volume occupied by
particles, and not the whole mixing volume, we will not have seen this increase in mag-
nitude. This will be proven in chapter 6 where will be shown that the kernel in a mixing
environment between two clouds is slightly changing respect to the homogeneous one. We
can also underline that in mixing region we did not observe collisions between equals and
nearly equals particles. The pattern also looks more striped, a part of course from nearly
equal droplets; they seems very unlikely to collide because of lack of detected collisions.
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5.1 – Unstable

Figure 5.5. The picture shows a mixing region, the red rectangle represents the ∆V . The
right hand side figure is the distribution of drops at t∗ = 3 in mixing, the figure on the
left is the saturation level in same region at same time. It can seen that particles are
distributed mostly in over saturated branches (bright white areas).

Figure 5.6. The picture shows the same mixing region at t∗ = 9. At this time the
gradient of saturation across mixing is not as sharp as in the previous figure, the
environment is moving to an homogeneous point, and so particles lie in both over and
under saturated zones (light blue plumes).

There is also an evidence of particles fall due to gravity, one can see that in the up right
corner of the kernel (the one corresponding to the biggest particles) there is an emptying
over time, it is because since the turbulence is less and less energetic heavier droplets leave
the mixing region driven by gravity. This has been observed and clearly shown in fig. 5.7
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Figure 5.7. The panel reports two different classes of drops in subsequent instants; the
first row describes the population in longitudinal plane of 5 µm radius droplets. The second
row describes, in the same plane, the population of 30 µm radius droplets. It appears
clearly that the larger ones are more affected by gravity (left shifting in the picture).

5.1.1 Mixing region: finer ∆t∗ analysis
In this subsection is briefly reported an analysis made on the three ensemble averages using
∆t∗ Ä 0.8. Since there are data from three simulations one should be able to provide a
more continuous solution, reducing the time interval but maintaining a significant number
of collisions. As one can see in the next pages the number of ensemble averages done is still
not large enough to provide data for every possible collision that the kernel could describe.
So this lead to state that in order to have results regarding the full kernel one should run
several more simulations and take the ensemble average.
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5.1 – Unstable

Figure 5.8. Time evolution of numerical collision kernel
#
m3/s

$
in mixing region for 32

bins. One can notice that there are not significant changes in pattern, but there is a
decrease of detected collisions over time between high inertia droplets. The mean number
of collision in ∆t∗ Ä 0.8 is about 300 and the bins are ∆r = 1µm spaced.
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Analysis of collision kernel in cloud/clear-air environment

Figure 5.9. Time evolution of numerical collision kernel
#
m3/s

$
in mixing region for 128

bins. Once again the magnitude of the kernel has changed with ∆r, this is a bias of our
measurements. This picture can be a detailed visualization of which particles mostly collide
in a short time interval. The regions that show a bigger number of collisions (clusters of
point in the kernel) are the ones coupling medium/big size (r > 10µm) particles with very
small ones (r < 5µm). This fact is reasonable if one considers that they have different
inertia and so the dynamic action of the environment on them will act differently: they
will not follow same trajectories and will tend to collide more frequently.
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5.2 – Lower cloud-clear air mixing region

5.2 Lower cloud-clear air mixing region
The lower part of the cloud is interfacing with a clear air environment, because of the
nature of pseudo spectral numerical methods, that requires periodic boundary conditions.
So we use this bias as a benchmark for collision kernel in a mixing of different kind. In
particular we have a positive temperature step from the bottom to the top, that means a
stable stratification. The results are shown in 5.10 and 5.11. It can be seen that the mean
magnitude is slightly greater than the corresponding one for the cloud, but is much smaller
that the one relative to the other mixing region. This is because here the fraction of volume
occupied by drops tend to be the full region, as can be clearly seen in fig. 5.2. This greater
filling is due both to the initial condition, which foresees particles up to the lower end of
the cloud (and therefore to the calculation domain), and to the effect of gravity combined
with the energetic decay of the turbulence, which precipitates the particles. The stripes
pattern that we spot in the other mixing collision kernel is no more evident, in time the
pattern looks more similar to the one found in HIT cloud portion.

Figure 5.10. First row describes the collision kernel
#
m3/s

$
in the lower mixing region

of the unstable simulations, the second row is the time evolution of homogeneous isotropic
cloud collision kernel. The adopted bins are 32 with ∆r = 1 µm. The value #c is the
number of detected collisions in the period of time in which kernel is evaluated.
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Analysis of collision kernel in cloud/clear-air environment

Figure 5.11. This plot reports the results obtained with the 128 bins computation. As
before first row describes the collision kernel in the lower mixing region, the second
row is the time evolution of homogeneous isotropic cloud collision kernel. It is adopted
∆r = 0.25 µm. The value #c is the number of detected collisions in the period of time
in which kernel is evaluated. Here, as in the previous picture, the pattern of the mixing
region is quite close to the one found in HIT cloud portion.

5.3 Stable and neutral
The stable stratification is imposed swapping the maximum temperature from the cloud
to the clear-air in the initial temperature profile. The neutral condition is imposed with a
constant T = 281K initial profile. This section comprehends two configurations because,
as will be shown, the stratification slightly affects the behavior of the kernels.
Given the wide demand for computational resources for each of these simulations, in this
case no ensemble averages were made, the results shown are relative to a single simulation.
The figs. 5.12 and 5.14 show the results for both these configuration, by looking at them
is pretty clear that there are not significant differences in cloud and mixing (respectively
between the two configurations) collision kernels. In both simulations we can see already
known patterns both in the cloud and in the mixing. In particular in the mixing it is more
evident the effect of the gravitational fall: kernels are increasingly empty over time in the
cells related to high radius particles (upper right corner), the action of gravity is shifting
droplets out of mixing area.
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5.3 – Stable and neutral

Figure 5.12. Stable stratification. The first row describes the evolution of the collision
kernel

#
m3/s

$
measured in the cloud (homogeneous isotropic), the second row is related

to the mixing region. The third row contains the relative errors time history for both
cloud (upper triangular matrix) and mixing (lower triangular matrix) with respect to
Saffman and Turner model (again it is important to remember that their model is not
able to describe our system, but it is interesting to compare with, in order to highlight
the main differences). The uniform error of the homogeneous region means, once again,
accordance with Saffman and Turner pattern. The adopted bins are ∆r = 1µm wide. The
dissipation of turbulent kinetic energy decays from an initial value of Ô ∼ 600 cm2/s3 for
HIT region and Ô ∼ 400 cm2/s3 for mixing region, with a (t∗)−2 time dependence. The
values associated to every kernel are respectively the mean ones in the ∆t∗, so in HIT they
are Ô ∼ 250,40,15 cm2/s3 and in mixing they are Ô ∼ 170,35,15 cm2/s3. The value #c is
the number of detected collisions in the period of time in which kernel is evaluated.

53



Analysis of collision kernel in cloud/clear-air environment

Figure 5.13. Stable stratification. This picture is the equivalent of the previous one,
but the kernel is computed using 128 bins (∆r = 0.25µm wide) and this has changed the
results, with an overall magnitude increasing. The reason why this happens is reported in
section 3.1.3. The first row describes the evolution of the collision kernel

#
m3/s

$
measured

in the cloud (homogeneous isotropic), the second row is related to the mixing region.
The third row contains the relative errors time history for both cloud (upper triangular
matrix) and mixing (lower triangular matrix) with respect to Saffman and Turner model
(again it is important to remember that their model is not able to describe our system,
but it is interesting to compare with, in order to highlight the main differences). The
dissipation of turbulent kinetic energy decays from an initial value of Ô ∼ 600 cm2/s3 for
HIT region and Ô ∼ 400 cm2/s3 for mixing region, with a (t∗)−2 time dependence. The
values associated to every kernel are respectively the mean ones in the ∆t∗, so in HIT they
are Ô ∼ 250,40,15 cm2/s3 and in mixing they are Ô ∼ 170,35,15 cm2/s3. The value #c is
the number of detected collisions in the period of time in which kernel is evaluated.
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5.3 – Stable and neutral

Figure 5.14. Neutral stratification. The first row describes the evolution of the col-
lision kernel

#
m3/s

$
measured in the cloud (homogeneous isotropic), the second row is

related to the mixing region. The third row contains the relative errors time history for
both cloud (upper triangular matrix) and mixing (lower triangular matrix) with respect
to Saffman and Turner model (again it is important to remember that their model is not
able to describe our system, but it is interesting to compare with, in order to highlight
the main differences). The uniform error of the homogeneous region means, once again,
accordance with Saffman and Turner pattern. The adopted bins are ∆r = 1µm wide. The
dissipation of turbulent kinetic energy decays from an initial value of Ô ∼ 600 cm2/s3 for
HIT region and Ô ∼ 400 cm2/s3 for mixing region, with a (t∗)−2 time dependence. The
values associated to every kernel are respectively the mean ones in the ∆t∗, so in HIT they
are Ô ∼ 255,40,15 cm2/s3 and in mixing they are Ô ∼ 175,35,15 cm2/s3. The value #c is
the number of detected collisions in the period of time in which kernel is evaluated.
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Analysis of collision kernel in cloud/clear-air environment

Figure 5.15. Neutral stratification. This picture is the equivalent of the previous
one, but the kernel is computed using 128 bins (∆r = 0.25µm wide). The first row de-
scribes the evolution of the collision kernel

#
m3/s

$
measured in the cloud (homogeneous

isotropic), the second row is related to the mixing region. The third row contains the
relative errors time history for both cloud (upper triangular matrix) and mixing (lower
triangular matrix) with respect to Saffman and Turner model (again it is important to
remember that their model is not able to describe our system, but it is interesting to
compare with, in order to highlight the main differences). The dissipation of turbulent
kinetic energy decays as in fig 5.14. This picture, in particular the mixing row, shows
that the gravity is acting on the kernel, in a way that the collisions regarding bigger
particles are less and less in time, this is because they are shifting down, leaving the
mixing region. The changes of these kernels with respect to the 32 bins ones is as usual
due to the different ∆r, as explained in section 3.1.3.
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Chapter 6

Analysis of collision kernel in
anisotropic test cases

This chapter reports two simulations carried out in conditions different from those treated
so far. In particular, they were carried out to study the effects of anisotropy of turbulent
mixing, in the event that two portions of different environment come into contact, both
loaded with water particles. In both cases the two turbulent fields have a kinetic energy of
fluctuations ratio of ∼ 6.6 (as in all the previous simulations), but in one we set a condition
of relative humidity of 100% (RH = 1) all over the domain, in the other we set RH = 1.02
for the high energy turbulent field and RH = 0.70 for the remaining low energy turbulent
field. The initial conditions for temperature and flow are the same that we have for the
simulations in section 5.1.
From these simulations we can investigate a phenomenon that could happen in some in-
dustrial applications, but also we can test if the increase in magnitude that we observed
for the kernel in mixing in chapter 5.1 is associated to the volume occupied by particles.

6.1 Different relative humidity
This simulation was specifically designed to verify what would have happened to the kernel
in the mix between cloud and clear air (unstable stratification) if the particles had occupied
the entire volume in which the mixing evolves. Results are reported in fig. 6.1 and they
clearly show that both magnitude and pattern are not affected by the mixing condition.
The mixing kernel is a bit sparser because it is computed in fraction of volume smaller than
the clouds one, so there are less collisions. In this case also the nearly equal particles behave
in the same way regardless if they are in cloud or mixing region (both kernels diagonals
are empty). We can conclude remarking that in this configuration of mixing there are not
significant differences with an homogeneous turbulent environment.
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Analysis of collision kernel in anisotropic test cases

Figure 6.1. The first row describes the evolution of the collision kernel
#
m3/s

$
measured

in the cloud, the second row is related to the mixing region. The third row contains the
relative errors time history for both cloud (upper triangular matrix) and mixing (lower
triangular matrix) with respect to Saffman and Turner model (again it is important to
remember that their model is not able to describe our system, but it is interesting to
compare with, in order to highlight the main differences). In these numerical analysis
both mixing and HIT errors are uniform, so both regions are according the pattern of
Saffman and Turner model. The adopted bins are ∆r = 1µm wide. The dissipation of
turbulent kinetic energy decays from an initial value of Ô ∼ 600 cm2/s3 for HIT region and
Ô ∼ 400 cm2/s3 for mixing region, with a (t∗)−2 time dependence. The values associated
to every kernel are respectively the mean ones in the ∆t∗, so in HIT they are Ô ∼
270,50,20 cm2/s3 and in mixing they are Ô ∼ 200,40,15 cm2/s3, as already reported in
fig.3.3 in chapter regarding droplet collisions. The value #c is the number of detected
collisions in the period of time in which kernel is evaluated.
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6.1 – Different relative humidity

Figure 6.2. This picture is the analogue of the previous one, with kernels evalu-
ated with 128 bins and ∆r = 0.25µm. All the fluid dynamics details are reported
in the previous picture, see fig. 6.1, while the reason of the change in magnitude
is explained in section 3.1.3.
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Analysis of collision kernel in anisotropic test cases

6.2 Saturated environment
This simulation denies the effect of supersaturation: in this way, comparing with the
simulation of the previous section, we can investigate how much the under saturation level
was influencing the collision kernels, because with a homogeneous level of unity saturation,
droplets will not grow/decrease their volume. The only factor that can change their size
is the coalescence by collision. The results are reported in fig. 6.3 in the usual way.

Figure 6.3. The first row describes the evolution of the collision kernel
#
m3/s

$
measured

in the cloud, the second row is related to the mixing region. The third row contains the
relative errors time history for both cloud (upper triangular matrix) and mixing (lower
triangular matrix) with respect to Saffman and Turner model (again it is important to
remember that their model is not able to describe our system, but it is interesting to
compare with, in order to highlight the main differences). In this simulation, as in the
previous one, both mixing and HIT errors are uniform, so both regions are according
the pattern of Saffman and Turner model. The adopted bins are ∆r = 1µm wide. The
dissipation of turbulent kinetic energy decays from an initial value of Ô ∼ 600 cm2/s3 for
HIT region and Ô ∼ 400 cm2/s3 for mixing region, with a (t∗)−2 time dependence. The
values associated to every kernel are respectively the mean ones in the ∆t∗, so in HIT
they are Ô ∼ 270,50,20 cm2/s3 and in mixing they are Ô ∼ 200,40,15 cm2/s3, as already
reported in fig.3.3 in chapter regarding droplet collisions. The value #c is the number of
detected collisions in the period of time in which kernel is evaluated.
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6.2 – Saturated environment

Figure 6.4. This picture is the analogue of the previous one, here the kernels are
evaluated with 128 bins and ∆r = 0.25µm. Again one can find all the fluid dynamics
details in the previous picture, fig. 6.3 and the explanation of the differences between
32 and 128 bins results in section 3.1.3

In conclusion the kernels described in sections 6.1, 6.2 are very close to each other,
regardless of the supersaturation level; the HIT ones are very similar with themselves and
the same is true for the ones associated to mixing region (of course considering the same
∆r). They refer to the same fluid dynamics conditions, but the particles are initially
distributed randomly in the domain, for each simulation. Since we got this results we can
state that in 9 eddy turnover time the effects on collision kernels of the whole saturated
environment are quite the same as 1.02 ÷ 0.7 supersaturation distribution.

The main difference that one can notice is that in time, for the non uniform supersat-
uration level (section 6.1), the collisions involving smallest classes are disappearing in the
HIT kernel. This happens because since supersaturation Φ > 1 in the cloud, they all grow,
and since there is not fragmentation implemented, after some time scales all the smallest
drops will be grown and will be recorded in bigger radius classes.
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Chapter 7

Turbulent flow small scale
anisotropy effect in mixing
collision kernel

Now that one has the unstable simulation (exposed in 5.1) and the unstable one with
particles everywhere in the domain (in 6.1), it is very interesting to look at them and
compare their kernel in the mixing, using also some properties reflecting the anisotropy
of the flow. In particular one can notice that there is correlation between the anisotropy
properties of the turbulent flows studied and the associated collision kernels only for the
simulation that has particles in half of the domain (5.1), while the artificial one has not
any significant relationship with the turbulent shearless mixing anisotropy properties.

7.1 Skewness of velocity derivatives
The presence of small scale anisotropy in this kind of turbulent mixing has been proven
by Tordella and Iovieno (2011) [7], they showed that studying the skewness of the velocity
derivatives ∂u1/∂x1, ∂u2/∂x2, ∂u3/∂x3 in isotropic planes in a shearless mixing flow, it can
be seen that the one related to the anisotropic direction x3 behaves in a different way
from the others. This fact is also verified in our simulations, as shown in fig. 7.1. Before
proceeding it is better to introduce the concept of skewness in a statistical distribution.
The k-order statistical moment mk is defined as:

mk =
qN
i=1 (xÍ − x̄)k

N
(7.1)

The skewness defines as:
s = m3

(m2)
3
2

(7.2)

The skewness of a distribution is representative of its asymmetry:
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Turbulent flow small scale anisotropy effect in mixing collision kernel

s description

< 0 The most probable values of the distribution are bigger than the mean
value of the possible ones.

= 0 Symmetric distribution.

> 0 The most probable values of the distribution are smaller than the mean
value of the possible ones.

Figure 7.1. Ensemble average of the ∂ui/∂xi skewness for the unstable simulation 5.1.
The values are plotted for three time instants t∗ and represent the skewness of the deriva-
tives on the isotropic planes (x3 = const). It appears clearly that the derivatives related
to isotropic directions (x1, x2) behave in the same way, that is different from the one in
the anisotropic direction (x3).

What happen is that there is a compression of the flow that moves perpendicularly to the
mixing, while there is a relaxation for the fluid moving along isotropic directions (parallel
to the mixing). What we did is to keep track in time of the peak value of the skewness
in the mixing region, in order to compare it with the mean magnitude of the collision
kernel, referred to the initial one, in time. The results are reported in fig. 7.2, where with
the peak time history there are the mean collision kernels of both the simulations. It is
evident that the kernel coming from the artificial simulation is substantially on average
constant in time. A very different behavior is that of the kernel of the other simulation,
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7.1 – Skewness of velocity derivatives

the calculated values have been interpolated with the least squares method with a third
order polynomial. They show how the intensity of the kernel seems to be related to the
skewness of the derivatives, as both have the same trend and have a maximum at similar
time instants. So from this we can deduce that the magnitude evolution of the collision
kernel in mixing region is strictly linked to the anisotropy of the turbulent mixing.

Figure 7.2. Scattered data of kernel magnitude Γ (normalized with the initial one Γ0)
with particle in half of the domain (blue crosses), of kernel magnitude with particle
in all the domain (blue squares) and of the peak value of the skewness of ∂u3/∂x3
(red crosses). The same trends are found only in the case of mixing between cloud
and clear air. The other kernel, the one relative to the distribution of particles all
over the domain, keeps a constant mean value in time. The kernel adopted in this
plot are the ones evaluated in 32 bins.
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Turbulent flow small scale anisotropy effect in mixing collision kernel

Figure 7.3. This plot reports the same analysis on the 128 bins kernel. As before
there are scattered data of kernel magnitude Γ (normalized with the initial one Γ0)
with particle in half of the domain (blue crosses); data of kernel magnitude with
particle in all the domain (blue squares) and data of the peak value of the skewness
of ∂u3/∂x3 (red crosses). As for the 32 bins analysis same trend of skewness is found
only for kernel related to mixing region.

7.2 Kurtosis of supersaturation
Another correlation has been found between the mean collision kernel magnitude and the
kurtosis of supersaturation. This one can be easily explained recalling the meaning of
kurtosis: it is a measure of the intermittency phenomenon in turbulence, that in this case
is a jump from supersaturated regions to under saturated ones and vice versa. Recalling
that the k-order statistical moment mk is defined as:

mk =
qN
i=1 (xÍ − x̄)k

N
(7.3)

The kurtosis defines as:
K = m4

(m2)2 (7.4)

Kurtosis is computed as a fourth order statistical moment and highlights the influence
of far-from-mean events in a distribution, the ones represented by the queues of the dis-
tribution. This is because of course, since in a random phenomenon (as turbulence is),
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7.2 – Kurtosis of supersaturation

intermittent behaviors are characterized by values far from the mean one, they will be
represented by the queues of the distribution, and so by kurtosis.

As yet shown in section 5.1 particles tend to stay in supersaturated parts of mixing,
because they are brought in mixing region into cloud plumes, that are supersaturated.
So high kurtosis means high intermittency, that means high clustering of particles (they
occupy less space in the ∆V of the mixing) and so an increase in probability of collision,
that is the magnitude of the kernel. This strong correlation is reported in fig. 7.4, where
the kurtosis of supersaturation is not computed for the first two time scales because the
supersaturation initial condition is not physical as it has not fluctuations. From the figure
is evident that both the functions oscillates in the same way, while if we have particles
everywhere of course they will not be influenced by the kurtosis, because they already are
in all the mixing domain.

Figure 7.4. The figure above shows the strong correlation between kurtosis of supersat-
uration distribution K(S) in mixing region (red marks) and the mean magnitude of the
collision kernel, normalized with the initial one Γ/Γ0 (blue line). The dashed blue squared
marks reports the kernel mean magnitude in mixing with particle distributed in all the
volume ∆V in which mixing happens. This picture refers to 32 bins kernels.
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Turbulent flow small scale anisotropy effect in mixing collision kernel

Figure 7.5. The figure above refers to the 128 bins kernels. It shows that even for
this measurement there is correlation between kurtosis of supersaturation distribution
K(S) in mixing region and the mean magnitude of the normalized collision kernel.
The blue squared marks reports the kernel mean magnitude in mixing with particle
distributed in all the mixing volume ∆V .

68



Chapter 8

Collision kernel for
mono-disperse initial particles
distribution

An interesting application of the collision kernel is to monitor how a population of initially
identical drops evolves. In particular it is an index of population expansion, as it reveals,
through collisions, the presence of new particles compared to the initial distribution.
For this purpose we set a group of four simulations, all with a different initial condition, but
with the same amount of droplets (around ∼ 107) of radius 15 µm in an unstable cloud-clear
air stratification, as done for the ensemble averages of the multi disperse simulations. The
results are exposed in 8.2 for the cloud region, the upper mixing region and the lower one.
It appears clearly that in the cloud region droplets experience the same grow rate, because
they are immersed in an environment homogeneously super saturated. The frame relative
to the first three timescales shows that particles are growing, we can see that the collisions
happen between same size particles, but the size is moving towards bigger value than the
initial 15µm. The following two frames describe collisions only between same size particles,
growth by condensation, meaning that there are not collision with particles already born by
collision. Probably because since a collision between two equal particles is very unlikely (see
fig. 8.1), the new drops born are much less than those already present since the beginning
of the simulation. We did not observe collision with big particles because otherwise we
should have detected colliding drops with a radius of r Ä 3

√
2 · 15µm Ä 19µm.

In the mixing areas situation is completely different, we observe an enlargement of the
distribution towards smaller radii. This is due to the presence of under saturated branches,
which reduce the drops size. The decrease rate is not uniform, because in mixing the level
of super saturation is inhomogeneous, and so the distribution of radii is enlarging. At
this point we have droplets with different inertia, that are more likely to collide, and
that is what happens: we detect many collisions among different sizes particles. In the
upper mixing, in the last time interval, we also found a collision with a particle that was
already born by collision. In the end we can highlight that the lower mixing is the richer
in collisions events, probably because the effect of gravity, that precipitates particles into
this area, filling it continuously. This is a clear sedimentation effect. The pattern in the
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Collision kernel for mono-disperse initial particles distribution

mixing region is completely different from the one described by Saffman and Turner, but
the same is not true for the points in homogeneous region, we found, as shown in fig.8.3,
that the kernels have the same order of magnitude, but in the simulation there is a faster
decay with respect to the analytical model.

Figure 8.1. The picture shows the detected number of collisions in same turbulent areas,
respectively lower mixing, cloud and upper mixing of the monodisperse (left column)
and multidisperse (right column) unstable simulations. The most important thing that
has to be underlined is that with the same number of particles, in the same turbulent
environments, the number of collisions strongly depends on the drop sizes, in fact in
the multidisperse simulation one can notice that the number of collision is two order of
magnitude greater than the respective monodisperse one. These graphs confirm that, as
predicted from Saffman and Turner, the collision between similar or equal droplets are
very unlikely in homogeneous and isotropic turbulence. This tendency to not collide is
still verified for anisotropic environments as the turbulent shearless mixing.
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Collision kernel for mono-disperse initial particles distribution

Figure 8.2. The first row describes the evolution of the collision kernel
#
m3/s

$
measured

in the cloud, the second row is related to the upper mixing region between cloud and
clear air. The third row contains the lower mixing region between cloud and clear air.
The dissipation of turbulent kinetic energy decays from an initial value of Ô ∼ 600 cm2/s3

for HIT region and Ô ∼ 400 cm2/s3 for mixing region, with a (t∗)−2 time dependence. The
values associated to every kernel are respectively the mean ones in the ∆t∗, so in HIT they
are Ô ∼ 270,50,20 cm2/s3 and in upper mixing they are Ô ∼ 200,40,15 cm2/s3, as already
reported in fig.3.3 in chapter regarding droplet collisions. The results just presented are the
result of the ensemble average of four simulations. Note that here the radius bin adopted
is ∆r = 0.25µm, it is smaller than in the previous simulations, this in order to highlight
the growth of collision kernel. Since particles are very close in size they tend to not collide,
in fact the number of collision in ∆t∗ is about an order of magnitude smaller than in the
equivalent portions in multidisperse simulation.
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Collision kernel for mono-disperse initial particles distribution

Figure 8.3. Kernels magnitude for monodisperse initial distribution of particles of
r = 15 µm in HIT region. There is a good approximation of the Saffman and Turner
model, that, even if it not intended for this simulation, provides a comparable prevision
on the magnitude and time evolution. One can notice that globally the numerical analysis
(ensemble average of four monodisperse simulations) reports lower kernel magnitude.
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Chapter 9

Droplets clustering and
enstrophy

The clustering of droplets consists of a non uniform spatial distribution of the liquid phase
in a turbulent flow, in particular drops with greater inertia tend to move towards areas
with low vorticity. This effect has been verified yet in various numerical simulations (again
for example Franklin et al, 2005 [3]) and can be explained in a simple way studying the
buoyancy due to centrifugal force in a vortex. In radial direction every drop, of density
ρp is surrounded by fluid of density ρf , so it will be subjected to two opposed forces:
the centrifugal one, due to the vortex, and the "bouyancy" one (the acceleration in this
case is centrifugal, not gravitational), due to the different density between fluid and drop.
Defining the vortex tangential velocity vθ = v · t̂, the net radial force acting on the droplet
will be:

F = (ρp − ρf )V vθ
2

r
r̂ (9.1)

The radial unit vector r̂ points in the opposite direction to the center of the vortex. So
it is easy to see that since ρf << ρp the force will push away particles from the vortex
center. So that is the reason for which it is hard to find particles in high enstrophy1 regions.
In case of different sizes of droplets the smallest ones, so the lightest, are the closest to
the vortex center and vice versa. The way adopted to analyze this phenomenon uses the
calculation of the punctual correlation on homogeneous plans.

1It is the measure of kinetic energy associated to turbulent vortexes.

1
2 ||∇ × þv||2 (9.2)
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Droplets clustering and enstrophy

Figure 9.1. A frame of the enstrophy field at t∗ ∼ 1 on which drops are superimposed
(red spots). It can be seen that particles, that are plotted in proportion with their
radius (with a magnification factor of 106 with respect to the enstrophy field), tend
to cluster into low enstrophy areas. This occurs the greater the inertia (and therefore
the volume) of the particle.

Figure 9.2. This picture is a detail of the previous one, in which filaments of droplets
confined at the edges of high enstrophy vortexes are clearly visible. It appears immediately
that the particles with greater inertia are those most subject to centrifugal confinement.
Again it is important to remember that the size of the drops is kept proportional but
enlarged with a 106 magnification factor with respect to the enstrophy field.
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9.1 – Point to point correlation algorithm

9.1 Point to point correlation algorithm
Since from our simulations we can know the enstrophy field in 512×512×1024 grid points,
spaced of 1 mm, while the particles can be everywhere in the domain, we have to match
the data coordinates. In order to do so the droplets coordinates are set equal to the closest
grid point, then one can sum the mass of water drops that lies in same points and divide
it for the volume of a cell, in order to get the spatial density of liquid water. Since there
are now two matching 3D fields it is possible to compute the point to point correlation c
for each plane in the two homogeneous directions (x, y):

c = σωρ
σωσρ

=
q512
i=1
q512
j=1 (ωij − ω̄) (ρij − ρ̄)ñq512

i=1
q512
j=1 (ωij − ω̄)2

ñq512
i=1
q512
j=1 (ρij − ρ̄)2

(9.3)

Where ω is enstrophy and ρ is spatial density of water drops, bar symbol denotes in
plane average value. At this point there is a correlation index function of the anisotropic
coordinate c (z). If you isolate portions of domain with coherent physical characteristics
(the homogeneous cloud), you can calculate the average value of the correlation index, and
diagram it in its temporal evolution. Regarding the mixing region the spatial averaging
will not be always possible, will be shown that in some situations the correlation index is
not uniform in the mixing domain.

9.2 Correlation index
In this section will be presented the results about the correlation indexes for some peculiar
simulations. We will see that some aspects are common for all the simulations already
treated in this work, while others will not.

9.2.1 Unstable cloud-clear air interface
From the ensemble averages made from the three simulations regarding un unstable cloud-
clear air interface, applying the correlation algorithm before presented, we generated the
following figures (9.3,9.5).

The first consideration that one can make is about the homogeneity along anisotropic
direction: as expected the cloud region does not suffer of notable differences, the correlation
index floats around a constant value. This is not true for the mixing region, that shows
a bell profile along z direction. Since this situation we can study the time history of the
mean value of the correlation index in the cloud region. The result, reported in fig. 9.5,
shows a smooth time evolution. At the beginning the index is zero, meaning that there
is not a link between droplets position and vorticity, and this is true because the initial
distribution of velocity field and particle are chosen with independent random generators.
Then there is a decrease until a minimum value: this is because drops are now moving
towards low enstrophy, even the negative sign of the correlation is reasonable, in fact one
can expect that the majority of the drops will stay in low enstrophy areas, that means
inverse correlation and so a negative correlation function. Once reached the peak, it starts
to lose magnitude: this can be explained by the fact that turbulence is decaying, so there
is a loss in energy of the flow. The energetic vortexes that were confining particles are no
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Droplets clustering and enstrophy

Figure 9.3. Ensemble average of correlation index between liquid water position
and corresponding enstrophy level, along the anisotropic direction, at four different
times. Of course in the clear air portion there are not drops, so the correlation
index can not be computed.

more so strong, the enstrophy gradients are no more as sharp as in the beginning and all
these factors affects the correlation, reducing the absolute value of its index. In the end
we can notice that the magnitude of the correlation is weak, but since its time evolution is
confirmed in other simulations and the index is always negative, one can doubt that this
low intensity is not linked to the absence of correlation, but rather to the fact that the link
between the position of the particles and enstrophy is not linear.

In mixing the situation is the opposite, we found positive correlation indexes, but not
because particles are attracted towards high energy vortexes, but because this region has
energetic vortexes alternating to very weak ones (ten times weaker) that comes from the
clear air. But since particles come with the cloud, they mostly live in it, meaning that they
are in the areas of the mixing that have higher enstrophy. This happens because the time
interval studied is not sufficiently long to let them spread into the less energetic areas of
the mixing. So that is why in this region particles position is associated to high enstrophy
areas.
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9.2 – Correlation index

Figure 9.4. This picture represents a detail of the cloud region of fig. 9.3. It rep-
resents the ensemble average of correlation index in the cloud, along the anisotropic
direction, at four different times.

Figure 9.5. This picture is the time evolution of the correlation index mean value exposed
in the previous plot. One can appreciate the smoothness of the function, the inverse corre-
lation (highlighted by negative index throughout its evolution) and the weak magnitude of
this correlation. This last information should not be interpreted as absence of correlation
but but rather as an indication that the link between the position of the particles and the
intensity of the enstrophy is not linear.
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Since it seems that the behavior of the correlation index in time reflects the one of energy
(that will be shown later in fig. 9.9, see in particular label ’High energy’), one can plot the
correlation index of liquid water position and enstrophy with respect to urms

2. There is thus
an almost linear dependence. The results for the HIT cloud portion (unstable simulation)
are reported in fig. 9.6. Since in mixing the correlation index is not the adequate tool to
evaluate whether particles actually accumulate in areas with low enstrophy, as previously
mentioned, it is not presented in these analyzes.

Figure 9.6. Almost linear dependence between correlation index and turbulent kinetic
energy [J/kg], both computed in the homogeneous cloud portion. Since in the mixing
the correlation index is less significant it is not reported.

9.2.2 HIT cloud
In this section we briefly report the confirmation of the results before obtained into the
quasi homogeneous isotropic turbulence cloud portion, as the results obtained have the
same trend. The nature of this simulation involves the absence of anisotropic and mixing
zones, as there are no gradients of energy, temperature and supersaturation.

78



9.2 – Correlation index

Figure 9.7. Time evolution of correlation index between enstrophy and liquid water
position in a HIT cloud.

Figure 9.8. Even for this simulation is found an almost linear dependence be-
tween the correlation index and the turbulent kinetic energy [J/kg], this picture
refers to HIT cloud region.
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9.2.3 Different energy cloud portions interface
This simulation once again confirms the results already seen for other ones, a part from
the fact that here the mixing region shows the same kind of time evolution of the clouds,
because in this case it has particles distributed everywhere. From this last simulation we
can again see that the correlation index and the turbulent kinetic energy are decaying in
the same way. So one can plot the correlation index in function of the kinetic energy,
finding a linear dependence for post-peak values, as shown in picture 9.10.

Figure 9.9. In the first image there is the time evolution of correlation index in high
energy cloud, low energy cloud and the mixing region between them. The second figure
shows the energy decay in time in the three portion of the domain. For this simulation is
possible to plot also the result in mixing, as having particles throughout the region they
can line up with the minimum values of enstrophy, which belong to the least energetic
cloud. Of course the ones staying in the high energy portion of mixing are still reducing
the correlation index absolute value, because in this few time they can not reach the real
minimum values of enstrophy.
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9.2 – Correlation index

Figure 9.10. Linear dependence of correlation index with respect to the turbulent kinetic
energy, in mixing and both cloud regions.
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Appendix A

Saffman and Turner model

A.1 Droplets in motion with air
They described particles like spherical entities with a finite volume without inertia (zero
inertia)1 moving in an homogeneous and isotropic turbulent flow filed, in addiction they
state that the body of the drops does not affect the streamlines.

Considering two species of volumetric density respectively n1,n2 and radius r1, r2; re-
ferring to the center of a particle 1, a collision will happen whenever a drop passes over
the surface of a sphere of radius R, where R = r1 + r2. So it is natural to study collisions
as an inward flux of drops through the surface of a sphere of radius R.
Mathematically the statistically mean flux is

fin = −
=Ú

S,ur<0
urdS

>
(A.1)

Where ur is the relative radial speed and include just negative values, in order to evaluate
only the inward flux. The collision rate (per unit volume) is the flux multiplied for both
volumetric densities of populations.

Ṅ = −n1n2

=Ú
S,ur<0

urdS

>
[m−3s−1] (A.2)

Flow is incompressible, hence the stationary continuity equation can be written as

∇ · u = 0 ⇒ fin + fout = 0 (A.3)

In particular the null flux balance leads to state that the inward flux is the half of the total
flux through the sphere

fin = 1
2

=Ú
S
|ur|dS

>
(A.4)

1this last hypothesis is valid for St << 1, but allows to state that the trajectories of the particles are
the streamlines of the fluid, but the sedimentation due to gravity is therefore also absent in this model.
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Saffman and Turner model

Considering the radial direction along the x-axis

é|ur|ê ≡ é|ux|ê = R

= ---- ∂u

∂x

---- > (A.5)

Since the mean relative velocity is not a function of the position on surface it is possible
to integrate A.4 substituting A.5, obtaining

fin = 2πR2
= ---- ∂u

∂x

---- > (A.6)

The mean velocity gradient can be rewritten as state by Taylor[17]: a function of energy
dissipation Ô

è
m2

s3

é
and kinematic viscosity ν

è
m2

s

é
= ---- ∂u

∂x

---- > =
ò

2Ô

15ν
(A.7)

Finally it is possible to write the collision rate per unit of volume

ṅ12 = n1n2 (r1 + r2)3
ò

8πÔ

15νü ûú ý
Γ12

#
m−3s−1$ (A.8)

the term Γ12 is an element of the collision kernel: it describes the collision rate, known the
populations of the particles involved. In this case we have a bi-dispersed set of particles,
so the complete kernel is

Γij = ṅij
ninj

C
m3

s

D

Γ =
5Γ11 Γ12
Γ21 Γ22

6 (A.9)

The matrix is symmetric: collisions that 1 experiences with 2 are the same that 2 has with
1. The diagonal terms describes impacts between particles of the same kind.

A.2 Droplets in motion relative to air
This is the most accurate of the models presented, here the relative motion between air
and drop is not neglected (but are neglected the streamlines deviations due to the presence
of the droplet), so particles have a finite inertia. They assumed that the probability
distribution of relative velocity between two drops is function of their distance, and if it is
much smaller than the Kolmogorov’s length scale2 (d << η) it can be deduced from the
particle momentum balance equation. They assumed that collision between two particles

2Where η =
1

ν3

Ô

2 1
4 is a function only of dissipation and kinematic viscosity of the flow.
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A.2 – Droplets in motion relative to air

happens if the relative position of the second particle after a short time interval is included
in the volume of the sphere of radius R = r1 + r2 around the first particle.

ër2 + wδt − r1ë < R (A.10)

In doing this is assumed that3 δt << τη so that the relative velocity (w) times this small
time interval (δt) gives, in approximation, a straight line trajectory. Integrating over all
the probability distribution is possible to compute the collision rate for two populations:

Ṅ = πR2n1n2

Ú
ëwë P (w)dw (A.11)

This last equation can be written only if n is statistically independent from w.Now, instead
of look for P (w), they computed the variance of w. Recalling that w is simply the difference
of absolute velocities of the two drops c, where this one is the flow velocity u plus the
particle relative velocity respect to the flow q, and if they are statistically independent is

var(w) = var(c2 − c1) = var(q2 − q1) + var(u2 − u1) (A.12)

For isotropic turbulence is known that for small eddies

var(u2 − u1) = R2 Ô

3ν
(A.13)

They evaluated the variance of relative fluid/particle velocity from the droplet momentum
equation

ċ = 9
2

ρa
ρp

νa
r2 (u − c)ü ûú ý

Stokes drag

+
A

1 − ρa
ρp

B
gü ûú ý

Gravity

+ ρa
ρp

u̇üûúý
Added mass effect

(A.14)

Assuming that:

• The flow is characterized by homogeneous and isotropic turbulence (in our simulations
we have a decaying turbulent field, with a direction of anisotropy, therefore this model
would not be suitable to represent the collisions that occur in our simulations)

• The particles relaxation time is much smaller than the Kolmogorov time scale

τp = 9
2

r2

νa
<< τη ⇒ dq

dt
Ä 0 (A.15)

• Mediating over time, in addition to the first assumption3
du
dt

42
Ä 3

3
Du
Dt

42
(A.16)

• The undisturbed flow velocity for two colliding particles is the same

3τη is the Kolmogorov time scale, computed as τη =
ð

ν
Ô
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They obtained

var(q2 − q1) = (τ2 − τ1)2
A

1 − ρa
ρp

B2 C
3
3

Du
Dt

42
+ g2

D
(A.17)

That leads to

var(w) = (τ2 − τ1)2
A

1 − ρa
ρp

B2 C
3
3

Du
Dt

42
+ g2

D
+ R2 Ô

3ν
(A.18)

At this point they chose as a P (w) a gaussian function, characterized by having var(w) as
variance, in order to easily evaluate the integral of Ṅ . Hence their analytical formulation
of the kernel Γ = Ṅ

n1n2
is

Γ = 2
√

2πR2

A1 − ρa
ρp

B2

(τ2 − τ1)2
3

Du
Dt

42
+ 1

3

A
1 − ρa

ρp

B2

(τ2 − τ1)2g2 + R2 Ô

9ν

 1
2

(A.19)
It is very important to notice that (u, g) in the right hand side of the equations are
considered in their magnitude, their direction does not affect the kernel, they are scalar
quantities. The dependence from turbulence is linked to the dissipation Ô that in this model
is constant in time (steady state turbulence), and also to the mean derivative of flow field
velocity in time. This last term can be evaluated in module from dissipation, using the
Batchelor approximation (1951) [1]:

3
Du
Dt

42
Ä 1.3 Ô3/2

ν1/2 (A.20)

At this point, knowing the energy dissipation of the turbulent field, one can plot the
Saffman and Turner collision kernel for water droplets in a cloud, as reported in figure A.1.
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A.3 – Reduced model

Figure A.1. Saffman and Turner collision kernel (from A.19), the limits on radius
ratio does not allow to have information about some areas of the kernel that will
be computed in this job.

A.2.1 Collision efficiency

The limits of these two models are due to the collision efficiency: this number ranges from
0 to 1, and expresses the probability that two particles, that are supposed to collide, will
not because of the flow distortion around them. Saffman and Turner set this efficiency to
1, specifying that this is true only for ratios between the radii not bigger than 2.

A.3 Reduced model

Since we have a slightly different model to describe the particles momentum 1.30, we derived
an analytical kernel based on our momentum equation, tracing the work done by Saffman
and Turner. Our starting balance equation neglects the influence of fluid acceleration (the
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Saffman and Turner model

"added mass" term4), considering only Stokes drag and gravity effect:

ċ = (u − c)
τpü ûú ý

Stokes drag

+
A

1 − ρa
ρp

B
gü ûú ý

Gravity

(A.22)

Following the same steps as before we obtained

Γ = 2
√

2π

3 R2

3
A

1 − ρa
ρp

B2

(τ2 − τ1)2g2 + R2 Ô

ν

 1
2

(A.23)

Recalling that the analytical derivation is valid only for steady and homogeneous isotropic
turbulence, we can provide how different from the analytical previsions will be the measured
kernel. We adopt the analytical model of collision kernel in time dependent processes
considering the numerical kernels as they were in a sequence of steady state homogeneous
isotropic turbulent fields. The pattern of kernel A.23 is reported in fig. A.2.

We computed the difference between the reduced kernel formula and the Saffman and
Turner one, for different dissipation values, in order to see how different is the approxima-
tion adopted in this work.

The difference has been computed as a relative error from Saffman and Turner model
(ΓST ) for each couple of radius, and it shows that there is an underestimation that quickly
tends to zero as the dissipation decays.

ΓST − Γreduced
ΓST

(A.24)

The detailed results are reported in fig. A.3, briefly one can highlight that in the beginning
of our simulations we always have Ô ∼ 500 cm2/s3, that implies a 5% underestimation error.
In a bit more than one eddy turnover time the dissipation is halved and the error is reduced
to values close to 1%.

4The maximum du
dt measured is ∼ 15g, so the added mass acceleration term has a maximum order

of magnitude ∼ 0,15m/s2 since it is multiplied by the air to water density ratio. Compared to the
buoyant term, that has an order of magnitude of ∼ 10m/s2, it is negligible. This is reported in details
in fig. A.3 3

1− ρa

ρp

4
gü ûú ý

Ä10

>>
ρa

ρp
u̇maxü ûú ý

Ä0.15

(A.21)
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A.3 – Reduced model

Figure A.2. Collision kernel for the reduced model (A.23), the white lines represents the
boundaries of radii ratio less than 2.
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Figure A.3. The picture reports the underestimation percentage that is made adopting
the reduced model. Since in all our simulations the maximum value of dissipation is
∼ 500 cm2/s3 we can see that the error between the two formulation is at most 5%, but
since the dissipation decay as t−2 this error quickly tends to zero. Again the white lines
delimit the kernel in Saffman and Turner hypothesis.
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A.4 – Analysis of some kernel properties

A.4 Analysis of some kernel properties
This section concerns the physical properties of the Saffman and Turner model for inertial
particles immersed in a turbulent flow. As shown from the following formulation there are
two terms that determines the behavior of the kernel: the ones related to the fact that
drops are inertial objects and the other due to turbulent transport acting on droplets.

Γ = 2
√

2πR2


A

1 − ρa
ρp

B2

(τ2 − τ1)2
3

Du
Dt

42
+ 1

3

A
1 − ρa

ρp

B2

(τ2 − τ1)2g2

ü ûú ý
Partcle inertial effects

+ R2 Ô

9νü ûú ý
Passive transport


1
2

A.4.1 Inertial effects
This fluid dynamic effect is the one describing the contribution to the collisions of the
acceleration of the flow field (the so called "added mass") and the gravitational field. It is
natural now to look at which is their contribution to kernel magnitude.

It is clear from figs. A.4 A.5 that with an initial dissipation of Ô Ä 500 [cm2/s3],
both terms act in the same way, but the gravitational one is more influencing the collision
dynamics.

The inertial term is the responsible of the shape of the kernel: in other words the
dependence from the difference between the relaxation time of two particles is the reason
why collisions between equal droplets are very unlikely. In fact this can be explained
underlining that two particles which have same inertia (same radius) will follow in the
same way the streamlines, so since streamlines do not cross each other, the particles will
not too.
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Figure A.4. The figure reports the kernels if they were computed only using added mass
with two different values of dissipation.
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A.4 – Analysis of some kernel properties

Figure A.5. The figure reports the kernels if they were computed only using gravitational
field, with two different values of dissipation.
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A.4.2 Transport effect
The remaining term that has to be evaluated comes from the turbulent transport affecting
the particles. The dependence of the kernel is well described in the following formula:

Γ ∝ (r1 + r2)3
ò

Ô

ν
(A.25)

There is a clear square root dependence from the dissipation, that acts on the collision
probability of every couple of colliding particles, and a dependence on the sum of the radii
of the colliding particles. This last effects enhances the collision probability among large
drops, it will appear clearly from fig. A.6.

94



A.4 – Analysis of some kernel properties

Figure A.6. Collision kernel transport term computed at two significant dissipation levels.
The stripe-like pattern is due to the (r1 + r2)3 dependence.
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