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Abstract

Continuous Fiber Path Planning Algorithm for 3D Printed Op-
timal Mechanical Properties

Mechanical properties of parts produced with continuous filament fabrication are in-
fluenced by the print direction, especially if the material deposed is carbon fiber or
a fiber-reinforced polymer. This opens the development of new design strategies to
fully exploit the unidirectionality of composites, modeling the fibers’ trajectories ac-
cording to external loads and the part topology. This MSc thesis presents a complete
framework that calculates optimal fibers’ paths that achieve minimal compliance for
two-dimensional components. The framework is divided into two different sections. In
the first one, an algorithm solving a Continuous Fibre Angle Optimization (CFAO)
problem is described and solved using a gradient-based optimizer. In the second sec-
tion, the continuous trajectories are calculated as iso-lines of a level-set surface obtained
from the results of the first optimization and are then exported as G-Code. Special at-
tention is devoted to implementing manufacturing constraints, such as fiber continuity
and parallelism between the fibers. Various two-dimensional numerical examples are
provided to verify the improved mechanical proprieties of the part. The trajectories
are then printed using the G-code on a Fused Filament Fabrication (FFF) polymer
desktop printer to validate the framework from a manufacturing point of view.

Keywords: material optimization; additive manufacturing; composite 3D printing;
fused filament fabrication; continuous filament fabrication
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Introduction

Commercial aeronautic is a growing market. The number of air passengers is increasing
worldwide by a steady 5% a year, and global demand is doubling every 15 years. How-
ever, in recent years a value different from profit and sales emerged in the aeronautic
industry. The agenda of principal market players is set on environment goals and care
for the planet climate. The design of efficient engines and the reduction of weight are
the major fields in which R&D is focusing. Composite materials play a crucial role in
both the domains, allowing the creation of lighter structures with better mechanical
proprieties. Having high strength-to-weight and stiffness-to-weight ratios, they are the
natural candidate to revolutionize the traditional aircraft design.

The main idea of composite structures is to utilize the material in the best possible
way by tailoring it to the application. Being highly anisotropic, this class of material
allows one to exploit all the characteristics of a given topology. It is known from the
study of mechanics of materials that the maximum stress always occurs in a specific
direction. Therefore, having isotropic mechanical proprieties in all directions leads to
a natural over-sizing of the material in the non-maximum directions. This over-sizing
could be strongly reduced using composite structures as the material is designed to have
directional proprieties where needed. Besides stiffness and strength, a wide number of
properties are improved using composite materials as well (Jones, 1999):

• Fatigue life

• Temperature-dependent behavior

• Thermal insulation and conductivity

• Wear resistance

• Corrosion resistance

• Noise insulation

Composite materials are not exactly innovative, as first uses date back to 1500
B.C. when Egyptians and Mesopotamian pioneers used a mixture of mud and straw to
create stiff and durable buildings (Johnson, 2020). Neither Carbon Fiber Reinforced
Polymers (CFRPs) could be considered a new topic because carbon fiber was developed
around 1970, and they are recognized as a natural material by the aerospace industry
by now. On new planes as the Airbus A350 and the Boeing 787, more than 50% of the
structure mass is made of CFRPs. Even if the different components did not change
in the last years, the field is now revamped by the use of new thermoplastic matrices

1



2 Introduction

and especially the advent of new manufacturing techniques. Automated Tape Laying
(ATL) and Automated Fiber Placement (AFP) are the two leading technologies that
are employed today to manufacture advanced composite laminates from unidirectional
prepregs (Lukaszewicz et al., 2012). In general, they place composites prepreg heated
and compacted before on typically complex tooling mandrels. The material comes
in the form of what is referred to as "tows" and is essentially a plain unidirectional
prepreg that comes in different width. These two techniques already allow the designer
to achieve better directional performances by steering the tow to meet the maximum
stress directions. However, they cannot still manufacture small components and the
maneuverability of the fiber deposition on a micro-scale, which is something that even
a simple 3D consumer desktop printer could do. Those manufacturing constraints led
in recent years to the development of a modified 3D printer capable of extruding and
deposing single fiber prepreg. Companies such as Anisioprint in Russia, MOI compos-
ites in Italy, 9T labs in Switzerland, and Markforged and Continuous Composites in
the USA, have all specialized in printing single CFRP filaments. They all use a similar
process where a tiny bundle of fibers wrapped in thermoplastic is heated and extruded
through a print-head. These new companies are competing for their share of the mar-
ket and are focused on developing the fabrication technology rather than concentrating
on the deposition path planning, which could further unlock the process’s potential.

Allowing composite laminates to be manufactured with continuous spatial variation
of fiber angle generates considerably larger design freedom as compared to conventional
constant stiffness laminates. In the design of composite structures, optimization meth-
ods are often employed so that these advantages of composite materials and novel
manufacturing technologies can be fully exploited.

It is evident the need for new design rules to follow and new algorithms capable of
dealing with these new manufacturing techniques, to reduce the structure weight of a
component further and reduce fuel consumption.

Although the manufacturing technology based on AFP and 3D printing is still
undergoing developments, methods such as Filament Winding (FW) and selective ply
deposition are well established. The algorithms developed in this thesis would not only
be useful for AFP and 3D printing but also for these better-established methods.



Chapter 1

The printing process

This Chapter gives a brief description of the different techniques used to produce ad-
ditive manufacturing parts. Section 1.1 focuses on additive manufacturing processes
used to print components efficiently. The classic materials used for this technology
are essentially polymer, metal, and ceramic. Composite materials are not yet dis-
cussed. In Section 1.2, the novel techniques used to produce composite material parts
are presented. Manufacturing constraints and defects are discussed, as well. In the
last section, the two topics are merged, and the new 3D printers for continuous fiber
composite material are presented.

1.1 Additive Manufacturing

Additive Manufacturing (AM) has been described by the ASTM as: "the process of
joining materials to make objects from 3D model data, usually layer upon layer". It
is also known as rapid manufacturing or rapid prototyping (Huang et al., 2013), and,
unlike conventional manufacturing processes that produce pieces by machining material
from a larger stock or sheet, it creates the final shape by adding new material. The
main advantage is that AM makes efficient use of raw materials and produce limited
wastes while reaching satisfactory shape accuracy.

The development of AM technology started in the 1980s, and significant improve-
ments have been made since then. There is the expectation that this technology can
lead to a revolution of the manufacturing industry and provide various benefit to the
community (Huang et al., 2013), as:

• Reduced energy consumption due to better raw material usage, which is a key
contribution to environmental sustainability.

• On-demand manufacturing, which can reconfigure the manufacturing supply chain
and bring cheaper products to consumers while utilizing fewer resources.

• Healthcare products customized to the needs of individuals, as prothesis or valves,
which is expected to improve the population’s wellbeing.

3



4 The printing process

1.1.1 Different Types of AM Processes

Many different types of AM processes exist, but they all operate according to the same
principles. A digital drawing is first created using a Computer-Aided Design (CAD)
software. One of the main advantages of additive manufacturing is the possibility to
create a difficult design that cannot be produced using traditional machining. Because
no tooling is needed, complex surfaces and internal features can be produced directly
when making the part. Also, the complexity of a component has little effect on build
times, as opposed to other manufacturing processes. It is tho beneficial at this stage
the use of a topology optimizer. The CAD part is then exported and imported by a
slicer software. The aim of this program is the creation of the different layers according
to the topology of the part and the characteristics of the printer. Each form of CAD
software saves the geometric data describing the 3-D model in various ways. However,
the .stl format (initially developed for stereolithography) has become the standard file
format for additive methods. The .stl format renders the surfaces of the 3-D model as
a set of triangles, collecting the coordinates for the vertices and normal directions for
each triangle. The file that usually has a .stl extension is then exported and uploaded
on the controller of the machine. Nowadays, the .stl file extension is the standard
format for any AM machine.

The most popular AM processes available are Selective Laser Sintering (SLS), Lam-
inated Object Manufacturing (LOM), Stereolithography (SLA), Three Dimensional
Printing (3DP), Laser Engineered Net Shaping (LENS), and Fused Deposition Mod-
elling (FDM). All of these sifferent technique are briefly described in the next section.

Selective Laser Sintering (SLS)

SLS uses a high power laser to fuse small particles of the build material in an inert gas
environment. Usually, the powder bed is heated to minimize the thermal distortion
and maximize the adhesion of the layers. The laser then supplies the final amount
of heat to sinter the powder to form a solid part. The powder is not melted by the
laser, since sintering is the process of forming a solid mass of material by means of
heat, without liquefying the material first. With sintering, the porosity of the material
can be controlled. Selective Laser Melting (SLM), on the other hand, can do the same
as sintering and go further by using the laser to achieve a full melt. In this different
process, the powder is not simply fused together but is melted into a regular part. That
makes melting the way to go for a mono-material, as there’s just one melting point,
not the variety you’d find in an alloy (Simchi and Pohl, 2004). In any case, special
support structures are not needed because the excess powder in each layer acts as a
support to the part being built. One of the drawbacks of SLS or SLM processes is that
the parts created have limited mechanical properties and poor fatigue life due to the
irregular surface produced by the layer-per-layer approach.

A similar technique is Electron Beam Melting (EBM), where parts are produced by
melting metal powder, layer by layer, with an electron beam in a high vacuum, permit-
ting higher recyclability of powders, no contamination, and a more stable process. It
is characterized by high power (3 kW) beam that achieves less stress, less distortion, a
finer microstructure, and better material properties when compared to SLS and SLM.
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Figure 1.1: Schematic drawing of the SLS process. The material powder is being
sintered by the high power laser to form complex 3D objects. Courtesy of CustomPart
Net

Additionally, EBM generally has a higher build rate because of its higher scanning
speed and energy density, which directly influence the layer thickness. For this moti-
vation, the medium size of the grain of the powder for EBM is grosser (see fig. 1.2).
EBM works only on conductive materials. Currently commercial materials for EBM
include pure Titanium, Ti-6Al-4V, and Inconel.

Figure 1.2: Different size of powder ready for EBM (left) and SLM (right).

Laminated Object Manufacturing (LOM)

The first commercial LOM system was invented in 1991. The main elements of the
system are a feed device that drives a sheet over a build stand, a heated roller to apply
pressure to bond the sheet to the layer below, and a laser to cut the contour of the
part in each sheet layer. When manufacturing a metal component, the sheet is rolled
by passing a heated roller over the flat surface. The metal foil is coated with a heat-
sensitive adhesive, which is activated by the thermal energy released by the roller during
rolling and provides the appropriate adhesion with the next foil during subsequent
deposition. After rolling, a laser-cut is made to produce the section, following the model

http://www.custompartnet.com/wu/additive-fabrication
http://www.custompartnet.com/wu/additive-fabrication
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of the supplied CAD file. The power of the laser beam must be adjusted so as to obtain
a cutting depth limited to the thickness of the plane so that the cut does not also affect
the sections previously made. The laser removes from the tape a region of square shape
containing the laser, is then executed a second cut following the perimeter of the section
so as to make the desired shape. The excess material outside the perimeter is cut out by
the laser into squares (cubing) to facilitate its subsequent removal. Such waste material
acts as a support for the next plans during the manufacture of the object. As an
alternative to adhesive, traditional welding or laser techniques or mechanical fastening
using screws can be used to ensure a good bond strength between the surfaces. After all
the layers have been placed, the piece is removed from the material platform in excess
is removed (decubing). Only the decubing phase and the various finishing processes
require the intervention of an operator; otherwise, the process is fully automated.

Figure 1.3: Graphical drawing of the LOM process. The material is being added to
the 3D component sheet by sheet and is cutted by the high power laser. Courtesy of
CustomPart Net

Build speed is fast, but the surface finish is rough.

Stereolithography (SLA)

Stereolithography was introduced in the mid-1980s and later established, within the
following decade, as one of the basic techniques of additive manufacturing. Since then,
SLA’s ability to produce complex prototypes quickly and accurately has contributed
to a radical change in the design industry. SLS uses a UV laser beam to allow the
polymerization of thousands of individual layers until the complete piece is created.
As with other additive manufacturing processes, such as SLS and SLM, SLA is largely
dependent on the use of laser systems for parts manufacturing. The pieces are made
through the polymerization of very thin layers of thermosetting liquid resin with the
aid of an ultraviolet laser beam (UV), projected on the surface of the resin to allow the
passage to the solid-state. The process is repeated for each layer of unpolymerized resin

http://www.custompartnet.com/wu/additive-fabrication
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until the complete realization of the piece. The parts manufactured by stereolithog-
raphy have to undergo post-treatment, which includes a UV curing cycle to allow the
complete solidification of the external surface and to meet any additional finishing re-
quirements. Despite differences in material properties, stereolithography clearly wins

Figure 1.4: Graphical drawing of the SLA process. A UV-laser is used to trace the
cross-section of each layer into a liquid bath of photosensitive polymer to fabricate a
3D object. Courtesy of CustomPart Net.

over SLS on the front of precision and surface finish. Usually, the production of parts
with standard or high resolution, with layers of thickness between 0.1 and 0.025 mm,
and details of dimensions up to 0.05 mm. This means that stereolithography makes
possible the reproduction of extremely complex details and surfaces able to cope with
various aesthetic demands, with finishes almost completely devoid of the "scaling"
typical of processes such as casting modeling.

Three Dimensional Printing (3DP)

3DP functions placing powdered material on a substrate that is selectively joined using
a binder diffused through a nozzle. The material is first stabilized by misting with water
droplets to avoid unnecessary disturbance when it is hit by the binder. Following the
sequential application of layers, the unbound powder is removed. The part may be
further processed by subjecting it to firing at high temperatures to strengthen the
bonding further. This process may be applied to the production of metal, ceramic,
and metal/ceramic composite parts. 3DP offers the advantage of rapid fabrication,
and low materials cost (Huang et al., 2013). In fact, it is probably the fastest of all
AM processes. However, there are some limitations, such as rough surface finish, size
limitation, and high cost.

http://www.custompartnet.com/wu/additive-fabrication
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Figure 1.5: Graphical drawing of the 3DP process. An inkjet print head deposits a
liquid binder onto each layer of powder individually to build a 3D part. Courtesy of
CustomPart Net.

Laser Engineered Net Shaping (LENS)

The LENS process is an injected powder process that allows the fully automated manu-
facture of geometrically complex metal components from the CAD model. The dust jet
is usually coaxial with the laser beam and perpendicular to the plane of the substrate
towards which it is sprayed, however, the directions of the laser and the dust jet may
also have a certain inclination, usually between 0 and 45o.The powders are sprayed
onto a substrate by one or more nozzles and fused by a high-power laser beam.

Figure 1.6: Graphical representation of the nozzle of a LENS machine for additive
manufacturing (Gibou et al., 2018).

http://www.custompartnet.com/wu/additive-fabrication
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Fused Deposition Modelling (FDM)

FDM is a manufacturing process used for prototyping and small-scale production. FDM
uses an additive function, depositing the material in layers, to form the part. A plastic
or metal filament that is initially stored in rolls is inserted into a mouthpiece. The
nozzle is above the melting temperature of the material and can be moved on three
electronically controlled axes. The nozzle is usually moved by motors in steps or servo-
motors. The piece is constructed with fine material threads that solidify immediately
after leaving the mouthpiece.

Figure 1.7: Graphical drawing of the FDM process. The material is forced to melt
and to pass trough the nozzle to be deposited on the 3D piece. Courtesy of CustomPart
Net.

The FDM process begins with a software process, which starts from a stereolitho-
graphic file (.stl). The file is oriented so that it can be printed, divided into layers, and
the trajectories that the nozzle must follow to deposit the material, layer by layer, to
form the piece are calculated. If necessary, support structures can be generated and,
after the part is created, they are being removed. These support structures can even
be made with other materials if the printer allows, for example, the change of print-
head. The thermoplastic is melted and deposited by the nozzle in layers of the required
thickness (finer layers mean better quality in the final piece but longer printing time)
one by one. The layers are deposited from the bottom up.

Although FDM is a very flexible technology, and is capable of making very diverse
parts, there are some restrictions on the characteristics of what can be made with this
technique, especially as regards that you can not start printing in the air, without
supports below, and the maximum slope of the overhanging or hollow parts.

1.2 Composite Materials Manufacturing
In this Section, the most important technique to tape continuous composite materials
are presented. Only the manufacturing processes that are suitable to create large pieces

http://www.custompartnet.com/wu/additive-fabrication
http://www.custompartnet.com/wu/additive-fabrication
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for the aeronautical world are described, and therefore techniques such as vacuum
forming, pultrusion, bladder-assisted molding are not discussed.

Figure 1.8: Difference between convectional and tow-steered ply of composite (Brooks
and Martins, 2018).

1.2.1 Filament Winding (FW)

Filament Winding (FW) is a manufacturing technique for the production of composite
materials, usually in the form of cylindrical structures.

The process consists of winding filaments subjected to various stresses on a male
mold or mandrel. The mandrel rotates while a trolley moves horizontally, depositing
the fibers according to the desired pattern. The most common filaments are made of
carbon or glass and are embedded in synthetic resin while being deposited and wound.
Once the mandrel is completely covered with the desired thickness, the mandrel is
placed in an autoclave to solidify (cure) the resin. Once the resin has been cured, the
mandrel is removed, leaving the final product with its inner hole.

The filament winding process is very suitable for automating the filament winding
process, as this makes it possible to control the tension of the filaments precisely. If
the filaments are placed with high tension, then a final product with higher rigidity
and strength is achieved, while if the tension applied to the filaments is low, then more
flexible products are obtained. It is possible to control the orientation of the filaments
in such a way that successive layers are with different orientations from the previous.
The angle at which the fiber is placed determines the mechanical properties of the
finished product. Generally, high angles provide greater resistance against crushing,
while a low-angle pattern (so-called closed or helical) provides higher tensile strength.

1.2.2 Automated Tape Laying (ATL)

Automated Tape Laying (ATL) has been developed since the 1970s as an automated
version of manual tape laying and offers high productivity and reliability for simple
or low complexity components. It is, in particular, highly productive for large simple
flat components and able to handle high areal weight materials with few modifications.
ATL can be interpreted as a form of additive manufacturing or inverse machining
since the part is built up by adding material, as opposed to material removal during
machining. The ATL head handles the prepreg tape, which is typically 75, 150, or 300
mm wide and supplied on a cardboard core similar to the prepreg used for the manual
layup (Lukaszewicz et al., 2012). However, the prepreg can be modified for automated
layup by changing the backing paper or degree of impregnation. Several commercially
available systems store the prepreg material directly in the layup head. A picture of
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Figure 1.9: The head of a ATL machine (Lukaszewicz et al., 2012).

ATL head is shown in fig. 1.9. Due to the mass of both the head and material, as well
as the size of the parts typically manufactured, ATL machines are mounted on straight
gantries or a vertical column system. For most aerospace structures, courses consist of
ramps and gaps as well as ply terminations, resulting in complex surface topologies.
ATL’s are Computer Numerical Control (CNC) systems that follow predefined paths
accurately and reproducibly, allowing the elimination of layup errors that could occur
in the manual layup. Material tolerances are commonly sufficiently small to reduce
the impact of gaps on mechanical performance. At the end of the ply path, the print
head decelerates just before finishing and cuts the tape, using rotating or pinching
blades. The distance between the blade position and the roller contact point is called
the ”minimal course length", and it is used as a lower bound on the part sizes that
can be manufactured. After cutting the tape, the remaining or minimal course length
is delivered to finish the ply route. This process is replicated course by course until
the ply is completed, the system is stopped by the program, user intervention, or if an
automated fault detection system has recognized a layup error.

1.2.3 Automated Fiber Placement (AFP)

Automated Fiber Placement (AFP) systems were commercially introduced towards the
end of the 1980s and were described as a logical combination of ATL and FW. AFP
systems differ from ATL in the width of the material that is laid down with typical
material widths of 3.2 mm, 6.4 mm, and 12.7 mm. However, AFP generally delivers
several tows in a single sequence, termed tows. A band then forms a course, while a
sequence of courses is called ply. Presently, AFP can deliver up to 32 tows in parallel at
linear speeds of up to 1 ms-1 (Lukaszewicz et al., 2012). The systems also tend to have
higher acceleration in the linear axes with typical values around 2 ms. Rotational speeds
and accelerations are more varied by the company and, therefore, not quoted. However,
it is important to note that rotational speed and acceleration can have a great impact
on layup productivity for complicated parts, and are therefore more relevant to AFP
than ATL. The width and number of tows delivered depend strongly on the complexity
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Figure 1.10: The head of a AFP machine (Lukaszewicz et al., 2012). The main
difference with the ATL one is that it accepts multiple smaller tows.

and local geometry of the part that the course is to be laid over. Thus material width
and tow count affect productivity. Each tow is normally driven individually and can be
clamped, cut, and restarted during manufacture, enabling the production of complex
parts. This makes it possible to deliver each tow at distinct speeds, enabling layup
over complex geometries and tow steering, and is beneficial, for example, in structures
such as fuselage sections with window cut-outs, or wing skins with numerous pad-
ups and valleys (Lukaszewicz et al., 2012). While steering was initially conceived to
improve layup over surfaces with double-curvature, the individual tow payout may
improve productivity and reduced materials wastage rates, and mechanical properties,
too. An important consideration is the amount of gap between the tows, which is much
larger than for ATL and typically scales with the amount of steering. This may affect
mechanical performance detrimentally and is often countered by transversely offsetting
subsequent plies by half a tow-widths.

1.2.4 Manufacturing Constraints and Defects

The available degree of steering in AFP and ATL layup is often reported to be the
smallest possible radius fibers can be laid into without significant defect development,
such as detachment from the tool and ply wrinkling. There are, in principle, three main
tow steering defects: tow buckling, tow pull-up, and tow misalignment (see fig. 1.11)
(Lukaszewicz et al., 2012). Twisted tows can also occur but are less common. Tow
buckling occurs on the inner radius of a tow if pressing forces are too high. Similarly,
tow pull-up happens on the outside of a tow due to excessive tensile forces. Ultimately,
tow misalignment is the effect of variability in the layup system, layup control, or
prepreg material.

Hale et al. (2002) reported the successful layup of AFP tows into radii as small as
50.8 cm compared to 610 cm for ATL layup of 150 mm wide tape.

Typical manufacturing constraints of AFP components are:

• A maximum curvature to respect in order to mitigate tow buckling and tow pull
up.

• A minimum length of a tow must be deposed (fig 1.13).
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Figure 1.11: The three main defects that can occur when a tow is steered
(Lukaszewicz et al., 2012).

• The towpaths must be as parallel as possible to avoid excessive misalignment and
gaps.

1.3 Additive Manufacturing of Composite Materials

Continuous fiber-reinforced thermoplastic composites are becoming more significant
in industrial applications because of their inherent advantages, such as excellent me-
chanical and chemical performance, recycling, and potential light-weight structures.
For years, several fabrication methods for Carbon Fiber Reinforced Polymer (CFRP)
have been developed, such as vacuum forming, filament winding, pultrusion, bladder-
assisted molding, ATL, and AFP. Nevertheless, the limitations of these processes lie
in the high cost of molds, the manufacturing boundedness of the parts with complex
constructions, and the inability of particular fiber alignment, leading to the bottlenecks
for the full applications of CFRP in industrial production and people’s daily life. FDM,
as one of the most commonly used low-cost 3D printing technologies, has been a sig-
nificant method to realize the transformation from conceptualization to the products.
The parts can be manufactured rapidly and directly from CAD model without geom-
etry limitation and specific tooling and with high material utilization. However, the
mechanical properties of products fabricated by conventional FDM 3D printing are in-
trinsically weak because of the thermoplastic polymers used, although the optimization
of processing parameters, such as the printing direction and laminate thickness, has
been investigated to improve the mechanical properties of thermoplastic resin parts
(Matsuzaki et al., 2016). 3D printing has primarily been used for trial products or
toys, without application to the manufacture of structural components for aerospace
or automotive products. Expanding the applicability of 3D printing to obtain mechan-
ically robust components for aerospace and automotive structures is an essential goal
of industrial fabrication. In the FDM process, the polymeric fiber is continuously fed
into the outlet and heated to a semiliquid state, and then the thermoplastic material
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(a) Thickness build up due to overlaps (Brooks
and Martins, 2018).

(b) Tow puckering for curved fiber path (Tat-
ting and Gurdal, 2002).

Figure 1.12: Example of defects of an AFP piece due to excessive curvature of the
tow steer or to an incorrect planning of the trajectories: overlap (left) and puking
(right).

is extruded onto the previous layer along the cross-section contour and the filling tra-
jectory. At the same time, the extruded material rapidly solidifies and adheres with
the surrounding material to accumulate the plastic parts. Hence, in comparison with
the conventional fabrication process of composites characterized by impregnation and
crystallization of the matrix, FDM provides a possibility for manufacturing complex
functional and structural parts with CFRP.

Hybrid approaches between AFP and FDM are described by Rakhshbahar and
Sinapius (2018). The research is focused on the mitigation of gaps when using AFP.
The gaps are especially visible on complex and double-curved surfaces and reduce the
mechanical properties of the composite part. To cover the unavoidable weak area of
this effect, a plurality of fiber composite layers is laid on top of one another to improve
the mechanical properties of the component. This makes the elements heavier and
more expensive to manufacture. In this new method, the holes are detected by the
profile sensor after placement of the tape on the mold. The gaps are filled with the
aid of a 3D printer with carbon continuous-fiber reinforced plastics. By combining
the 3D printing and AFP technology, composite elements can be manufactured more
homogeneously. Subsequently, the components are produced faster, cheaper, and even
lighter because of the avoidance of the additional layers.
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Figure 1.13: Physical representation of the minimum length constrain for an ATL or
an AFP machine (Brooks and Martins, 2018).

Figure 1.14: The carbon fiber is combined with a thermoset matrix to produce the
prepreg then cured by the nozzle just before the deposition. Cretits to Anisioprint.

https://anisoprint.com/


16 The printing process

Figure 1.15: Graphical drawing of the printhead of the modified continuos fiber FDM
machine. Cretits to Anisioprint.

Figure 1.16: A continuous fiber composite printed in 3D. Cretits to Anisioprint.

https://anisoprint.com/
https://anisoprint.com/


Chapter 2

Optimization Algorithms

The scope of this Chapter is to present the problem of fiber trajectories optimization
from a mathematical point of view. In the first two sections (2.1 and 2.2), the general
optimization algorithms, and gradient-based optimization techniques are presented,
explaining why they are chosen among other types of optimizers. In section 2.3, the
concept of topology and fiber angle optimization is discussed, and the differences and
points in common are listed. In the last section (2.4), a brief state-of-the-art analysis
is carried out, presenting the most important discoveries in the field of optimization of
fiber trajectories and focusing on why there is the need to develop this topic further.

2.1 Numerical Optimization

Numerical optimization consists in the use of algorithms to minimize or maximize a
given function by varying several variables. The problem might or not be subject to
constraints.

Since many engineering design problems seek to minimize or maximize an objec-
tive function linked to some measure of performance, the application of these algo-
rithms became extremely useful. For example, a typical structural design optimization
problem is to minimize the thickness of some components subject to maximum stress
constraints achieving more lightweight parts. Multidisciplinary Design Optimization
(MDO) emerged following the success of the application of numerical optimization tech-
niques to structural design. Early aircraft design was one of the first applications of
MDO because there is much to be gained by the simultaneous consideration of the var-
ious disciplines involved (structures, aerodynamics, propulsion, stability and controls,
aeroelasticity, etc.), which are tightly coupled. Supposing that the algorithm saves a
unit of weight in the structure because of the coupled nature of all the aircraft weight
dependencies and the reduction in induced drag, the total reduction in the aircraft’s
gross weight is several times the structural weight reduction (about 5 for a typical
airliner) (Martins, 2012).

17
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2.1.1 Terminology and Problem Statement

The formulation of an optimization problem is an important step that permits to avoid
common conceptual errors, as confusing constraints with objective functions. If the
problem formulation is wrong, the solution could fail or simply return a mathematical
optimum that is not engineering-wise feasible.

Objective Function

In the convention of numerical optimization, the objective function f is the scalar that
we want to minimize. If one would instead maximize a function, it is simply inverted or
multiplied by −1. This new function measures the "badness" that one would minimize.
Common objective functions in the structural design are the weight or the structural
stiffness of a structure. The objective function can be modeled as an explicit function
or even be the result of a highly complex computational procedure. The choice of
the objective function is usually trivial, and an error could lead to a minimum that is
non-optimal from the engineering point of view, no matter how efficient or precise is
the optimization scheme used.

Optimization problems are classified in the literature with respect to the objective
function by determining how the function is linked to design variables (linear, quadratic,
or generally non-linear).

If one would optimize a part using multiple objective functions, it is possible, but
this results in a family of optimum designs with different emphasis on the various
objectives. Usually, it is far better to convert these different objectives into constraints.
In the end, it is possible to make only one thing best at a time.

Design Variables

The design variables x are the parameters that the optimizer algorithm can change to
minimize the objective function. Design variables could be continuous or discrete if
only some distinct values are allowed (for example, only a certain size for a hole in a
structural analysis). The optimization problem formulation allows for the lower and
upper boundary for each design variable.

Constraints

The constraints are function used to restrict in some way the design variables. They
are used to prevent the algorithm from finding a numerical minimum that it is not
feasible because of physical and engineering constraints. As in the case of the objective
function, the constraint functions can be linear, quadratic, or generally non-linear and
different algorithms must be used to take into account the differences.

The constraint functions can be further classified: if the design variables are re-
stricted to be equal to a fixed quantity, the function is called equality constraint. When
instead the design variables are enforced to be greater or equal to a certain quantity
the function is called inequality constraint.
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Optimization Problem Statement

Once that the major components of the problem are defined, it is now possible the
formulation of the optimization problem.

minimize : f(x)

by varying : x ∈ [l−, l+]

subject to : ce(x) = 0

ci(x) > 0

where

• f(x) is the objective function to minimize

• x is the vector of design variables bounded between l− and l+

• ce are the equality constraints and ci the inequality constraints.

2.2 Gradient-based Optimization
Gradient-based optimization or Gradient descent is a first-order iterative optimization
algorithm for finding the local minimum of a differentiable function. A step propor-
tional to the negative of the gradient (or approximate gradient) of the function at the
current point is taken to find a local minimum of a function using gradient descent.

A simple allegory can illustrate the basic intuition behind gradient descent. A
person is at the top of a hill and is trying to get down and trying to find the global
minimum. The visibility is extremely low, and therefore the path down the mountain
is not visible, so he must use local information to find the minimum. He can use the
method of gradient descent, which involves looking at the steepness of the hill at his
current position, then proceeding in the direction with the steepest descent. Using this
algorithm, he would find his way down the mountain or possibly get stuck in some hole
(local minima). Let us assume that the steepness of the hill is not natural to calculate,
but instead, it requires an instrument to measure that demands much time to use.
Thus, the person should minimize the use of the instrument if he wanted to get down
the mountain quickly (see img. 2.1).
The difficulty then is choosing the frequency at which he should measure the gradient
to not go off track. In this analogy, the person represents the algorithm, and the path
represents the sequence of steps that the algorithm will suggest. The steepness of the
hill represents the slope of the surface at that point. The instrument used to measure
steepness is differentiation using, for example, finite differences.

For large numbers of variables n, gradient-based methods are usually the most
efficient algorithms (Martins, 2012; Sigmund, 2011) .

For the sake of simplicity, only the optimization of smooth unconstrained problems
is described here. The vast majority of gradient-based algorithm uses two different
major steps. The first one uses the gradient of the objective function to determine the
most promising direction along which the minimum has to be searched. The second
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Figure 2.1: Graphical representation of the path followed by the person (current
iteration) on the top of a hill (function to minimize) that simulate the gradient descent
algorithm (Amini et al., 2018).

one uses a line search algorithm to find the best point in this direction in n-dimensional
space. The design variables are updated at each iteration k using

xk+1 = xk + αkpk

where pk is the search direction given by the gradient, and αk is the step length given
by the line search algorithm. Line search accounts for additional iterations that are
usually not taken into account in the major iteration count. By the way, this is an
important distinction that needs to be considered when comparing different approaches.
Even if line search algorithms greatly affect the quality of gradient-based schemes, in
the literature they are classified based on the method that is used for computing the
search direction.

Algorithm 1: General algorithm for smooth functions.
input : Vector of starting points x0 and tolerances
output: Vector of optimized design variables x∗
k → 0;
evaluate f(x0);
while tolerances not met do

compute search direction pk ;
find step length αk such that f(xk + αkpk) < f(xk);
update the vector of design variables xk+1 → xk + αkpk;
k → k + 1;

end
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2.2.1 Gradients and Hessian

In vector calculus, the gradient of a scalar-valued differentiable function f(x) of several
variables f : Rn → R is the vector field, or more simply a vector-valued function
∇f : Rn → Rn, whose value at a point p is the vector whose components are the
partial derivatives of f at p.

∇f(p) =


∂f
∂x1

(p)
...

∂f
∂xn

(p)

.
The gradient is closely related to the derivative, but it is not itself a derivative: the
value of the gradient at a point is a tangent vector: a vector at each point; while the
value of the derivative at a point is a cotangent vector: a function of vectors at each
point. They are related because the dot product of the gradient of f at a point p with
another tangent vector v equals the directional derivative of f at p of the function along
v. The gradient can be interpreted as the "direction and rate of fastest increase". If
at a point p, the gradient of a function of several variables is not the zero vector, the
direction of the gradient is the direction of the fastest increase of the function at p,
and its magnitude is the rate of increase in that direction. In the multivariate case,
the gradient vector is always perpendicular to the hyperplane tangent to the contour
surfaces of constant f .

Higher derivative of multi-variable function functions are needed by some particular
algorithm and can be defined as in the single-variable case. It is however important
to note that the size of the matrix increase by an order of n. Suppose f : Rn → R is
a function taking as input a vector x ∈ Rn and outputting a scalar f(x) ∈ R. If all
second partial derivatives of f exist and are continuous over the domain of the function,
then the Hessian matrix H of f is a square nxn matrix, usually defined and arranged
as follows:

H =



∂2f

∂x2
1

∂2f

∂x1 ∂x2

· · · ∂2f

∂x1 ∂xn

∂2f

∂x2 ∂x1

∂2f

∂x2
2

· · · ∂2f

∂x2 ∂xn
...

... . . . ...

∂2f

∂xn ∂x1

∂2f

∂xn ∂x2

· · · ∂2f

∂x2
n


.

or, by stating an equation for the coefficients using indices i and j:

Hi,j =
∂2f

∂xi∂xj
.
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2.2.2 Real algorithms

The classification of a method is based on how the best direction αk is evaluated. The
most common gradient-based algorithms are

Steepest Descent Method

: This technique uses the gradient vector at xk as the search direction for every major
iteration k. The gradient vector is always orthogonal to the plane tangent to the
isosurfaces of the function. Once being normalized, the direction pk is used to complete
the line search to achieve the step length αk finally. This rate of change is given by
the norm of the gradient ‖g(xk)‖. The steepest descent direction at each iteration is
orthogonal to the previous. Because of this characteristic of the search directions, the
steepest descent method "zigzags" in the design space and is ineffective. Although a
significant decrease may be observed in the first few iterations, the method is usually
very slow to meet at a local optimum. The rate of convergence is linear. To stop the
optimizer, three different convergence tolerances are used εa, εr and εg (respectively
absolute, relative and gradient tolerance).

|f(xk+1 − f(xk))| < εa + εr|f(xk)|

‖g(xk−1)‖ < εg

Here is the summary of the algorithm:

Algorithm 2: Steepest Descent algorithm
input : Vector of starting points x0 and tolerances εa, εr and εg
output: Vector of optimized design variables x∗
k → 0;
evaluate f(x0);
while tolerances not met do

compute the normalized search direction pk → −g(xk)/‖g(xk)‖;
find step length αk performing line search;
verify that f(xk + αkpk) < f(xk);
update the current point xk+1 → xk + αkpk;
k → k + 1;

end

Conjugate Gradient Method

The Conjugate Gradient method slightly modify the steepest descent taking into ac-
count the history of the gradient to move faster to the minimum. Usually, a restart
is performed every n iterations for computational stability, using a steepest descent
direction. The conjugate gradient method does not produce well-scaled search direc-
tions, so it is possible to use same strategy to choose the initial step size as for steepest
descent.
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Algorithm 3: Nonlinear conjugate gradient method
input : Vector of starting points x0 and tolerances εa, εr and εg
output: Vector of optimized design variables x∗
k → 0;
evaluate f(x0);
while tolerances not met do

if k=0 then
Compute the normalized steepest descent direction
pk → −g(xk)/‖g(xk)‖

else
compute βk →

gTk gk
gTk−1gk−1

;

compute the conjugate gradient direction pk = −g(xk)/‖g(xk)‖+ βkpk−1;
end
find step length αk performing line search;
verify that f(xk + αkpk) < f(xk);
update the current point xk+1 → xk + αkpk;
k → k + 1;

end

Newton’s Method

The steepest descent and conjugate gradient methods only use the first derivative term
in the Taylor series to obtain a local model of the function. Newton methods instead
use a second-order Taylor series expansion of the function about the current design
point.

Algorithm 4: Newton’s method
input : Vector of starting points x0 and tolerances εa, εr and εg
output: Vector of optimized design variables x∗
k → 0;
evaluate f(x0);
while tolerances not met do

compute the gradient of the objective function g(xk);
compute the Hessian of the objective function H(xk);
compute the search direction pk0−H−1gk find step length αk performing
line search;
verify that f(xk + αkpk) < f(xk);
update the current point xk+1 → xk + αkpk;
k → k + 1;

end

As in the singular variable case, problems and even failure may occur when the
quadratic model is a poor approximation of the function near the current point. An-
other disadvantage of Newton’s method is the need to compute not only the gradient
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but also the Hessian, which contains n(n+ 1)/2 second order derivatives.

Quasi-Newton Method

Quasi-Newton methods create second-order information using only first-order informa-
tion. An approximate Hessian based on the sequence of function values and gradients
of previous iterations is calculated and used to perform a Newton step. The difference
between the methods is in how they update the approximate Hessian.

Trust Region Method

Trust region methods are a different approach to resolving the weaknesses of Newton’s
method, arising from a Hessian that is not positive definite or a highly non-linear func-
tion. These problems arise when the quadratic approximation is no more reasonable.
Thus, a quadratic function within a region around xk is minimized instead. A ratio rk
will after evaluating the goodness of the actual reduction to the predicted one.

2.2.3 Sensitivity Analysis

Sensitivity analysis is the optimization branch that studies how the inputs of the model
control modifications in the outputs; it plays a key role in gradient-based optimization.
Usually, it is possible to classify the sensitivity analysis between local and global anal-
ysis. Local sensitivity analysis aims to evaluate the response for a fixed set of inputs or
everywhere where the uncertainties are pretty low. General sensitivity analysis quanti-
fies the response for inputs that tend to span over a wide range of values, and it is better
suited for models with high uncertainties, as non-physical models. Knowing the exact
analytical sensitivity permit to save a lot of processing time, avoiding the use of finite
differences in the gradient-based algorithm. The accuracy of the derivative computa-
tion affects the convergence behavior of the solver used in the algorithm. In the case of
gradient-based optimization, accurate derivatives are important to ensure robust and
efficient convergence, especially for problems with large numbers of constraints. The
precision of the gradients limits that of the optimum solution, and inaccurate gradi-
ents can cause the optimizer to stop prematurely or to take a less direct route to the
optimum.

2.3 Topology and Fiber angle Optimization
According to Bendsøe (1989): "Shape optimization in its most general setting should
consist of a determination for every point in space whether there is material in that
point or not.". Topology optimization is a mathematical method that optimizes the
material layout within a well-defined design space for a set of Boundary Conditions
(BCs), loads, and additional constraints given by the user (Sigmund and Maute, 2013).
The goal is set defining an objective function that usually translates in better me-
chanical properties (see fig. 2.2). Usually, a Finite Element Method (FEM) analysis
is carried out to evaluate the evolution of mechanical performance during the opti-
mization. Topology optimization permits to achieve any shape within the design space
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Figure 2.2: Graphical representation of the topology optimization of a MBB symmet-
ric beam using Solid Isotropic Material with Penalization method (SIMP) (Labanda,
2014).

instead of dealing with predefined configuration, and this is a clear advantage over
the more classical shape optimization and sizing optimization. The shape is optimized
using either gradient-based algorithms such as the ones described in Section 2.2, the
method of moving asymptotes (Svanberg, 1987) or non-gradient-based algorithms such
as genetic algorithms, even if each one has its drawback. The most common algorithm
used to perform topology optimization is SIMP.

From the studies of mechanics of materials, it is well known that the maximum
stresses occur in a particular specific direction. Thus, having uniform stiffness and
strength in all directions of a component leads to an over-sizing of the material in the
other directions. Topology optimization focuses on how to use the material to achieve
better performances macroscopically. A completely different approach is carried out
by Fiber Angle optimization that instead focuses on microscopic proprieties of the
material. The primary purpose of the algorithm is to exploit the intrinsic anisotropy
of composites materials to achieve better mechanical proprieties without changing the
macroscopic topology (see img. 2.3). This new approach opens new possibilities of how
to optimize different components. For example, there are plenty of pieces as the skin
of the fuselage of a plane that simply cannot be optimized using topology optimization
because their shape is highly linked to the function they need to perform. For such
pieces, 3D printing linked to Fiber Angle optimization could potentially revolutionize
the way they are conceived and manufactured.

However, one must not consider these two topics as totally unrelated. The two
algorithms are indeed linked when a composite piece that does not have substantial
shape constraints is conceived to be produced using AM. On these components, the
two algorithms work in synergy and produce pieces that are optimal from a micro and
a macro point of view. To sum up, Topology optimization works best when there are
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Figure 2.3: Result of a fiber angle optimization using Continuous Fibre Angle Opti-
mization (CFAO) (Kiyono et al., 2017).

not substantial shape constraints, and the material is isotropic. When instead the
material used is highly anisotropic, and the topology can’t be changed, Fiber Angle
optimization is the tool to use. Finally, the two algorithms can be used together if the
material used is anisotropic, and the topology could be optimized.

Exemple of the two algorithms used toghether can be found in Luo et al. (2020);
Jiang et al. (2019); Chandrasekhar et al. (2020) or in figs. 2.4 and 2.5.

(a) Optimized topology with fiber direction
angle for every element. (b) Representation of the topology in the pro-

gram used to slice the 3D object.

Figure 2.4: Results of the topology optimization linked with the fiber angle optimiza-
tion by Jiang et al. (2019).

(a) Fiber path of the proposed optimization. (b) Printed part ready to mechanical testing.

Figure 2.5: Printing process of the optimized topology by Jiang et al. (2019).

2.4 Precedent Works

The increasing availability of new materials and the accessibility to novel manufactur-
ing processes have increased the interest in the application of composite structural parts
in various engineering fields. AFP permits to print layer-by-layer composites compo-
nents laying down the fiber creating custom shapes. AFP is an automated composites
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manufacturing process of heating and compacting resin pre-impregnated non-metallic
fibers on typically complex tooling mandrels. The fiber usually comes in the form of
tow, a bundle of carbon fibers impregnated with epoxy resin. This process gets rid
of the typical manufacturing constraint of straight parallel fiber. The concept of op-
timization applied to composite materials allows finding the optimum use of material
(topology optimization) or/and the optimum fiber path for a given load. AFP permits
to lay down single fiber on a custom path, and it opens the possibility to manufacture
optimized composite parts.

In the literature, there is no unanimity on the best method to optimize the fiber
path. There are different approaches possible: optimization of angle and position in the
stack of different ply of composite material (Liu et al., 2004; Karakaya and Soykasap,
2009; Bohrer et al., 2015) or optimization of the fiber path on a single ply. In the first
category falls the work of (Liu et al., 2004) which discuss how unstiffened composite
panels are optimized by using flexural lamination parameters (Hahn and Tsai, 1980) as
continuous design variables for the case in which the amounts of 0◦, 45◦, and 90◦ plies
are given. Later works use genetic algorithms and generalized pattern search algorithm
for optimal stacking sequence of a composite panel (Karakaya and Soykasap, 2009). The
problem has several global optimum configurations in the vicinity of local optima since
it was decided to use fiber orientation angles as design variables instead of lamination
parameters. The linearized buckling problem is convex in the lamination parameters
space (Bohrer et al., 2015). Although techniques based on lamination parameters
can be successfully used in different applications, its use makes it difficult to impose
manufacturing constraints on the fiber angles, since they do not generate a sequence
of the stacking plies (Kiyono et al., 2017).

Figure 2.6: Graphical representation of the spacial filter used by Kiyono et al. (2017).

The allowable fiber angles of all of these studies have been restricted due to man-
ufacturing to a finite set of values. Thus, given the discrete nature of the problem,
the intensive use of the heuristic algorithm is found in the literature. However, Sig-
mund (2011) incites the scientific community to solve the optimization problem using
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only gradient-based algorithms. He demonstrates how genetic algorithms are inefficient
when numerous variables are involved. Gradient-based algorithms have been applied
to optimize the fiber angle of elements in a continuum domain on a single ply. Luo and
Gea (1998) introduced an energy-based method to determine the optimal orientation
of orthotropic materials under static loading. An implicit method was used to estimate
the effect of changing the fiber angle within an element on the stress and strain fields.
However, as fiber angle optimization is a non-convex problem, solutions are influenced
by the initial solutions.

Additionally, the solution tends to be hardly manufacturable due to an abrupt
change of angle between adjacent elements or non-parallel fiber direction. To achieve
fiber continuity and ensuring manufacturability, a spatial filter based on the projection
technique could be used (Kiyono et al., 2017). Besides the optimization variables,
another set of variables called design variables is defined for each element. The value
of the orientation variables is then calculated as the mean of the design variables around
the element (Fig. 2.6). Such a filter is advisable also to avoid stress concentration at
discontinuous paths, which makes it challenging to converge in stress minimization
problems.

Another approach found in the literature to solve the manufacturability problem
is Xia and Shi (2017). The essential idea is to construct a continuous global function
interpolating scattered design points to represent the fiber angle plan throughout the
design domain. The Shepard interpolation method is applied to construct the interpo-
lation function. The angles at discrete design points are taken as the design variables
to be optimized. The Shepard interpolation essentially ensures spatial continuity of
fiber angle.

To address the issue of high computation cost for the optimization, one could use
a patch approach for the design variables. A patch is a group of elements that share
the same set of design variables. This enables the engineers to use a fine mesh to
obtain a good approximation of the displacement field while keeping the number of
design variables low. In figure 2.7, a square plate is modeled with four patches where
each patch covers nine elements. In this example, each element contains one lamina

Figure 2.7: Graphical representation of a 2D mesh of 36 rectangular elements divided
into 4 patches (Sørensen and Kann, 2011).

where the fiber orientation is applied as a design variable. The patch model thus has
four design variables. If the patches were removed, the model would have 36 design
variables, which would increase the amount of time needed for convergence. Another
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benefit of applying a patch formulation is that the engineer may use less time on post-
processing the optimized design. This is because larger areas of the structure will have
the same value of the design variable, making it easier for the engineer to translate the
result into a manufacturable design. The problem using a patch formulation is that
each patch represents the average of the covering elements. Thus some of the elements
in the patch may be assigned a value of the design variable, which may differ from
what the optimum value is for that particular element. Thus the final design may not
represent the same optimum design that one would obtain without the use of patches.
It is thus up to the engineer to determine how small each patch has to be in order to
obtain a good result, while also keeping the patch big enough so as to use less time on
post-processing and waiting for the optimization to converge.

Aiming at addressing the issue of local optimal solution, Stegmann and Lund (2005)
proposed the Discrete Material Optimization (DMO) method. The fiber angle at any
element is a weighted sum of several discrete candidate angles. The weights are taken
as the design variables. It is required in the resulting optimal laminate that only
one of these weights is equal to one and the others zero, which means that only one
of the candidate angles is selected. This method has gained much popularity, and
several variants were proposed, for instance the Shape Functions with Penalization
(SFP) (Bruyneel, 2011) and the Bi-Value Coding Parameterization (BCP) (Gao et al.,
2013), which effectively reduced the number of design variables. However, the success
of these methods relies on the ability of optimizer to drive the weights to their bounds:
the intermediate value of weights or mixture of fiber angles has no physical meaning.
Another limitation of these methods is that continuous spatial variation of fiber angle
is not considered as of CFAO methods. Kiyono et al. (2017) proposes another DMO
algorithm based on the optimized selection of discrete angles. The method uses the
normal distribution function as the angle selection function, which requires only one
variable to select the optimized angle among any number of discrete candidate angles.

Figure 2.8: Level-set representation of a free boundary (blue solid line) in two spatial
dimensions, moving in its normal direction, and subsequent changes in topology that
are handled automatically. The level-set function is depicted in red (Gibou et al.,
2018).

Another promising technique that achieve fiber continuity is level-set method (Fig.
2.8), initially proposed by Osher and Sethian (1988). It has become popular in many
disciplines, such as image processing, computer graphics, computational geometry, op-
timization, computational fluid dynamics, and computational biophysics. The advan-
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tage of the level-set method is that one can perform numerical computations involving
curves and surfaces on a fixed Cartesian grid without having to parameterize these
objects (Sethian, 1999). Recently the level-set method was successfully applied to ad-
dress the fiber continuity (Brampton et al., 2015); however, the algorithm seems to be
extremely sensitive to the initial angle configuration. Brampton et al. (2015) proposes
to solve this problem by using the level set topology optimization solution for isotropic
material as the initial fiber configuration, and thus, additional work needs to be done to
achieve good fiber orientation solutions with the level set method. Liu and Yu (2017)
developed another level set algorithm that also performs topology optimization, simpli-
fying the sensitivity result by eliminating the domain integration term. The numerical
results have proved this simplification to be reasonable because structural topology
optimization produces thin rib-based design, and the majority of the level set contours
follow the longitudinal direction, which well reinforces the ribs of the structure. Similar
works can be found on Ranaivomiarana et al. (2019), Jantos et al. (2020), and Silva
et al. (2020).



Chapter 3

The FEM Simulation

This chapter gives a description of the script used by the optimizer to evaluate dis-
placements, strains, and the total elastic energy stored in the analyzed beam. In the
first section, a brief recap for orthotropic materials is carried out using classic and
new theories. Section 3.2 is instead dedicated to the numerical correlation between
the FEM code in MATLAB and the commercial code ABAQUS, to verify the effective
concordance of results. The numerical results are discussed in a separate chapter, in
Section 5.2.

3.1 FEM Linear Structural Analysis

Figure 3.1: Components of stress in two dimensions. Credit engAPPLETS by Vir-
giniaTech

The optimal orientation problem is solved for a two-dimensional linear elastic struc-
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ture. The mesh is made up by bi-linear rectangular elements. In a two-dimensional
orthotropic elastic material, according to image 3.1, it is possible to writeσx

σy
τxy

 =

Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

 εx
εy
γxy

 = Q̄

 εx
εy
γxy


where σ and ε represent respectively stress and strain components and Q̄ the rotated
orthotropic stiffness matrix of the element. The relationship between the rotated matrix
Q̄ and non-rotated matrix Q can be written using the standard rotational matrix T (θ)

Q̄ = T T (θ)QT (θ),

where

Q =

Q11 Q12 0
Q12 Q22 0
0 0 Q66

 =

 1/El −νlt/El 0
−νlt/El 1/Et 0

0 0 1/Glt

−1

T (θ) =

 cos2 θ sin2 θ cos θ sin θ
sin2 θ cos2 θ − cos θ sin θ

−2 cos θ sin θ 2 cos θ sin θ cos2 θ − sin2 θ


where El represent Young’s modulus for the main axis and Et for the perpendicular
one. νlt it is the Poisson’s ratio. This approach was discarded because the aim of the al-
gorithm is to be later extended to multi-ply composites and the lamination parameters
better describe this class of materials.

3.1.1 Lamination parameters

According to Hahn and Tsai (1980) it is possible to define the Directional Parame-
ters

U1 = (3Q11 + 3Q22 + 2Q12 + 4Q66)/8

U2 = (Q11 −Q22)/2

U3 = (Q11 +Q22 − 2Q12 − 4Q66)/8

U4 = (Q11 +Q22 + 6Q12 − 4Q66)/8

U5 = (Q11 +Q22 − 2Q12 + 4Q66)/8

and the Material Invariants as well

T0 =

U1 U4 0
U4 U1 0
0 0 U5

 , T1 =

U2 0 0
0 −U2 0
0 0 0
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T2 =

 0 0 U2/2
0 0 U2/2

U2/2 U2/2 0

 , T3 =

 U3 −U3 0
−U3 U3 0

0 0 0


T4 =

 0 0 U3

0 0 −U3

U3 −U3 0


The main characteristic of these parameters is that they are not dependent on the
angle of the plies. They only rely on the engineering moduli (E,G and ν), and they
are then a perfect candidate for the optimization problem. The matrix Q̄ could then
be written as

Q̄ = T0 + T1 cos 2θ + T2 sin 2θ + T3 cos 4θ + T4 sin 4θ (3.1)

Usually, to define the constitutive matrix, lamination parameters are used instead
of the rotation matrix T (θ) because they are scalable to multilayered problems and pro-
vide a convex formulation of the optimization problem, as discussed in section 3.1.4.
However, the use of lamination parameters makes it difficult to impose manufacturing
constraints on the design variables, since they do not directly generate a direct descrip-
tion of the plies or its order. It is, in fact, necessary to add a further step where a
Genetic Algorithm (GA) is used to generate the stack.

In case that all plies have the same material and thickness, for a membrane problem
they are defined as follow:

ξA[1,2,3,4] =
1

h

∫ h/2

−h/2
cos(2θ(z)), sin(2θ(z)), cos(4θ(z)), sin(4θ(z)) dz

3.1.2 The Stiffness Matrix

In this section, the global stiffness matrix is calculated using a hybrid formulation. In
fact, either the classic theory that uses the matrix 3.1 and lamination parameters have
its pros and cons. Since the actual goal of the algorithm is to optimize a single ply,
it was concluded that the use of the lamination parameters would have rendered the
framework too complex. Even if the optimization algorithm with lamination parame-
ters would have benefited from the convexity of the objective function (see subsection
3.1.4), the computational cost added by the use of a GA to generate the stacking ply
is not justified. Therefore, a hybrid formulation using the aforementioned Material
invariants and theta as a design variable is used. Even if it does not provide a substan-
tial improvement in performance over the classic theory, it permits to easily upgrade
the code to accept lamination parameters as design variables to optimize multiple plies
later.

The global stiffness matrix K depends on the material orientation because it is an
assembly of the local stiffness matrices of each element. The local stiffness matrix for
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small displacement problems is commonly defined in linear elasticity as follows:

Ke =

∫
Ωe

BT Q̄B dΩe (3.2)

where B is the shape function derivative matrix, and Q̄ is the local material constitutive
matrix.

Here, the matrices are obtained by analytical integration to reduce the computa-
tional cost caused by exact Gauss integration, typically used in conventional commercial
FEM codes.

Ke =

[
AQ̄11 +BQ̄33 + CQ̄13 + CT Q̄31 AQ̄13 +BQ̄32 + CQ̄12 + CT Q̄33

AQ̄31 +BQ̄23 + CQ̄33 + CT Q̄21 AQ̄33 +BQ̄22 + CQ̄32 + CT Q̄23

]
where A, B and C are 4x4 matrices defined as follows:

A =
1

12

∆y

∆x


4 −4 −2 2
−4 4 2 −2
−2 2 4 −4
2 −2 −4 4

 , B =
1

12

∆x

∆y


4 2 −2 4
2 4 −4 −2
−2 −4 4 2
−4 −2 2 4



C =
1

12


3 3 −3 −3
−3 −3 3 3
−3 −3 3 3
−3 −3 3 3


The global stiffness matrixK is obtained by constructing the local stiffness matrices

using the assembly operator (Akin, 1995)

K =
ne

A Ke.

3.1.3 Elastic Energy

The objective function of the optimizer to minimize is expressed as a function of the
discrete displacements and stiffness matrix as presented in equation

J =
1

2
qTK(θ)q (3.3)

, where q, represents the displacement field given solving the classic FEM equation

K(θ)q = f.

3.1.4 On the convexity of the lamination parameter in the op-
timization problem

Once that the elastic energy is defined in eq. 3.3, is now possible to better under-
stand why the choice of lamination parameters makes the optimization convex. As
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seen in section 3.1.2, the stiffness matrix can be expressed in terms of the lamination
parameters, and it is linear with respect to them.

J =
1

2
q(ξn)TK(ξ)q(ξn) (3.4)

where

X(ξ) indicates that X depends on ξ in first order.

X(ξn) indicates that X depends on ξ in some order n.

The elastic energy stored in the structure depends on lamination parameters in an
order of 2n+1. However, Svanberg (1994) showed that stiffness optimization problems
in a finite element context are convex if the stiffness matrix is linear with respect to
the design variables.

3.2 ABAQUS Comparison and Validation

In this section, a comparison between the Matlab code and a commercial FEM code
(Dassault Systemes ABAQUS) is carried out to validate the analysis.

3.2.1 ABAQUS

Abaqus/CAE R© is a powerful software tool for simulating various engineering problems
involving dynamic forces, vibrations, thermal effects, and impact loading. As other
FEM software, the program requires a few steps to be completed to simulate a model
successfully.

1. Draw or import the CAD file. The user is free to choose to create the parts
in ABAQUS itself or to import the CAD models from another 3D CAD software
package. If one would draw the component inside ABAQUS, he works in the Part
module of the software.

2. Create the material data. The material data could consist of elastic, plastic,
thermal, and failure data. For the stiffness optimization of a part, only the linear
elastic component is used. The module to use is Property.

3. Create an assembly. Even when the model only consists of one part, an assem-
bly of parts has to be created. In the assembly module, all the individual parts
of the model are combined. If the model consists of multiple parts, interactions
have to be implemented between these parts. These interactions are, e.g., contact
forces, welds, and fluid contacts.

4. Define the steps of the simulation. Besides the initial step, in which the
model initialization takes place, at least one additional step has to be created to
be able to perform a simulation. This can be achieved using the Step module of
the software.
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5. Define loads and boundary condition. The boundary conditions can apply
to the initial step; however, loads require to start at one of the additionally
defined steps. Additional multi-body constraints can be applied, as of friction
and magnetic interaction. The modules to use are Load and Interaction

6. Select a type of element and mesh the assembly. The defining of the mesh
is a crucial step since the mesh type, and its size determines the outcome and
the time to complete a simulation significantly. This is achieved using the Mesh
module of ABAQUS/CAE.

7. Create the job file. The creation of the job is straightforward, creating a file
for the ABAQUS environment to use to write results in the Job module. Which
results are written to the output file has to be defined manually. Possible outputs
are von Mises stresses, linear elastic strains, and energy stored in the element.

8. Run the analysis. The analysis can be run directly in Abaqus/CAE R© or using
the .inp file.

9. Post-processing. The visualization of the results and the creation of charts,
tables, and graphs can be achieved using the Visualization module.

Figure 3.2: Resume of the steps performed by ABAQUS to pre-process, simulate,
and post-process a model.

3.2.2 The choice of the type of element

In Abaqus/CAE R© each part can be meshed using a different element type, and each
type has its code. The most used element types are S4R, C3D8R, B31, M3D4R, and
C3D4. These codes stand for the family of the part, the number of nodes, and the
type of integration. For example, S4R is a Shell 4-nodes Reduced integration, and B31
stands for Beam 3-D 1st order interpolation. When creating a part, the user initially
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chooses between 2D and 3D elements, after which the choice is made between shell,
solid, wire, or point shapes.

Figure 3.3: Graphical representation of a 2D reduced integration element. Image
credits: ABAQUS Documentation.

Let us consider a 4 node quadrilateral shell element. In ABAQUS, this is called an
S4 element. It may have either 4 or one number of integration points (depending on if
full or reduced integration is chosen). Stresses and strains are captured by integrating
the values that the element has at these integration points. One must remember that
values are more accurate at the exact location of the integration points and not so
accurate as we move away from them. For the sake of lesser computational time, it is
possible to use the S4R element, in which R means Reduced Integration and where only
one integration point is used, and it is ideally at the center of the element. In the case
of these Reduced Integration elements, while post-processing results, it is possible to
observe a false or fake deformation mode (zig-zag lines). Such a thing is the Hourglass
phenomenon. The image 3.1 is an example of a single integration point shell element.
The values captured at the single integration point remain the same as the dotted lines
have not changed in magnitude or angle. However, the element as a whole has shown
a change in configuration. This is because elements with minor integration points are
less stiff as there is no stiffness in this deformation mode.

Figure 3.4: Graphical representation of the hourglass phenomenon over a mef of 2D
reduced integration elements. Image credits: LS-DYNA Documentation.

To mimic precisely the behavior of the code presented in Section 3.1, the shell S4
is chosen, a 4-node doubly curved thin or thick shell finite membrane strains. The
S4 was chosen instead of the more common S4R because, in such a simple problem,
there is not the need to reduce the computation time by introducing fictitious exter-
nal forces that could introduce some error in the energy computation. There is no
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(a) Element S4R. (b) Element S4.

Figure 3.5: Comparison between elements S4 and S4R for a simple 3 points bending
problem. Even if the element S4R have the Hourglass control, it still suffer from massive
deformation of the mesh. The S4 instead, using 4 different nodes for the analysis shows
better results.

need to use an element that achieves reduced integration and hourglass control. Even
the ABAQUS documentation suggests that in elastic bending problems with a coarse
mesh, the hourglass energy may be higher than the recommended limit. This does not
necessarily mean the results are adversely affected; however, one must use engineering
judgment to assess the validity of the results.

Since the MATLAB FEM simulation doesn’t allow the nodes to move out of the
plane, the same logic is implemented in ABAQUS changing the "Section Integration"
option of the 2D beam to "Before Analysis" and choosing "Membrane Only" to account
only for the membrane behavior of the model.

http://ivt-abaqusdoc.ivt.ntnu.no:2080/texis/search/?query=wetting&submit.x=0&submit.y=0&group=bk&CDB=v6.14


Chapter 4

Filtered Continuous Fiber Angle
Optimization

In this Chapter, the optimizer algorithm is presented and described. The first Section
4.1 describes the problem and the algorithm used to solve it. Section 4.2 focuses on
the gradient-based optimization and the interpretation of its results. A spatial filter
is used to enforce the continuity between near elements. The goal of Section 4.3 is
to present how to generate a Level-Set surface for the problem. Its iso-lines are the
fiber trajectories that approximate the angles found by the elemental optimization.
The main challenge is to generate trajectories as smooth as possible without moving
far away from the optimum. In the last section (4.4), manufacturing constraints - for
instance, the need for equispaced fibers - are implemented using an algorithm coming
from computer graphics called the Heat Method.

4.1 Problem definition
The objective of the optimization is to maximize the stiffness of a 2D plate printed with
a fiber that has a diameter h. This problem is equivalent to minimize the total elastic
energy resulting from the applied loads. Let G be a rectangular domain [0, a] × [0, b]
with equally spaced grid made by N ×M elements. A discrete field θ(x, y) that repre-
sents the direction of the fiber is defined for every element of the mesh.

The algorithm can be divided into three different independent sub-routine

• Gradient descent optimization: Optimization routine that uses a gradient
descent method to minimize the total elastic energy of a 2D plate. This is achieved
by modifying the angle of the fiber in every element of the mesh. A Gaussian
filter is used to promote fiber continuity.

• Creation of a level-set surface: Taking the discrete optimized angles as the
input, the algorithm generates a 3D surface that, once sliced with horizontal
planes, gives an approximation of fibers trajectories.

• Fiber propagation: Algorithm that takes the continuous trajectories as an
input, it propagates them and creates the points that the machine must follow

39
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to print the layer. Use of the computer graphics algorithm named Heat Method:
robust, linear, and easy to parallelize.

The following algorithm describes the step taken to optimize and generate the code
used to 3D print the component.
Algorithm 5: Fiber Continuous Fiber Angle Optimization
Result: Find the optimized fibers’ trajectories in a 2D plate under a specified

load.
initialization of the load case and the mesh;
initialization of the continuity filter;
optimization of the angle θ(x, y) for every element of the mesh;
creation of continuous trajectories over the entire domain;
select a number n of generating fiber;
for n = 1 : Nn,k do

propagate the fibers in every direction using the fiber diameter h;
perform FEM analysis;
compare elastic energy;

end
choose best i cases and write G-Code;

4.2 Gradient Descent Optimization
The algorithm aims at finding the optimal trajectories of the fibers of a composite
in-plane loaded plate. A gaussian spatial filter is used to achieve fiber continuity, and a
parallel multistart approach is implemented to reduce the influence of initial conditions.

4.2.1 Problem Definition

In fiber path optimization literature, two main methods are found. The former is known
as DMO and accepts only a discrete set of angles for every element of the structure. The
latter is CFAO, and it permits to describe the angle θ(x, y) of the fiber in the elements
continuously. On the other hand, increased sensibility to the initial conditions and
more local minima are to be taken into account. Both use FEM analysis applied to
structured grids with bi-linear shape functions. Static linear analysis is carried out to
find the discrete displacement field q. The problem to solve is

K(θ)q = f

where K is the global stiffness matrix, and f is the discrete applied force. The CFAO
approach is chosen because it can adequately describe the uninterrupted and uncon-
strained paths that a FDM machine can perform. Each element has a material direc-
tion, and a gradient descent method is used to reduce the total elastic energy iteratively.

4.2.2 Optimization procedure

Let us define the optimization procedure as follow
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minimize : J =
1

2
qTK(θ(x, y))q

subject to :

{
f = K(θ(x, y))q

−π/2 ≤ θ(x, y) ≤ π/2

The scalar field θ(x, y) is the design variable. A gradient descent method is used
to have the angles evolving towards minimal compliance iteratively. This optimization
procedure is implemented in MATLAB through the fmincon function in the optimiza-
tion toolbox. The algorithm used is interior point.

4.2.3 Gradient Calculation

The gradient of the optimization is calculated analytically, evaluating the derivative of
the objective function (J) with respect to the design variable (θ(x, y)).

∂J

∂θ
=

∂

∂θ

(
1

2
qtKq

)
=

1

2

∂qt

∂θ
Kq +

1

2
qt
∂K

∂θ
q +

1

2
qK

∂q

∂θ
(4.1)

where, remembering that q = K−1f and q = f tK−1
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Knowing that
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it is possible to write
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This leads to rewrite eq. 4.1 as follow
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2
qt
∂K
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Recalling the assembly operator and observing that the only local stiffness matrix
depending on θ(e) is Ke belonging to the same element e, the derivative is limited to
differentiating eq. 3.2 with respect to e.
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∂K

∂θ
=
∂Ke

∂θe

Differentiating eq. 3.2 with respect to θe gives

∂Ke

∂θe
=

∫
Ωe

BT ∂Q̄

∂θe
B dΩe (4.3)

where, recalling eq. 3.1 it is possible to write

∂Q̄

∂θe
= −2 sin (2θe)T1 + 2 cos (2θe)T2 − 4 sin (4θe)T3 + 4 cos (4θe)T4. (4.4)

The integral can be evaluated using the same method used to calculate Ke in eq.
3.2.

The gradient is therefore calculated assembling eqs. 4.2, 4.3 and 4.4

∂J

∂θ
= −1

2
qt

(∫
Ωe

BT
(
− 2 sin (2θe)T1 + 2 cos (2θe)T2−

−4 sin (4θe)T3 + 4 cos (4θe)T4

)
B dΩe

)
q.

(4.5)

4.2.4 Gaussian smoothing

Usually found in image processing, the Gaussian smoothing is the result of blurring a
scalar field using a Gaussian function. It is a widely used effect in graphics software,
typically to reduce image noise and reduce details. The effect of this blurring technique
is a smooth blur that helps to achieve fiber continuity at the cost of a slightly increased
computational cost and elastic energy. The filter is implemented in the code by building
a square matrix of a given odd dimension called χ. The Gaussian function for a 2D
domain is

f(x, y) =
1

σ
√

2π
e−

1
2( (x−µ)+(y−µ)

σ )
2

where the parameter µ represent the mean or expectation of the distribution (and also
its median) and σ is its standard deviation.

The Gaussian function is then normalized to avoid an unnecessary scaling of the
design variables. The peak of the function is found in the center of the kernel χ. Such
a filter is advisable also to avoid stress concentration at discontinuous paths, which
makes it difficult to converge in stress minimization problems. Here is one example of
a 11x11 kernel with σ = dim/7.
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Figure 4.1: Graphical representation of the Gaussian filter used to achieve fiber
continuity in CFAO algorithm. In this image, the dimension of the filter are 11x11
elements and σ = dim/7

Besides the design variables θ(x, y), another set of variables called optimization
variables (α(x, y)) is defined for each element. The value of the orientation variables
is then calculated convoluting the newly created scalar field α(x, y) with the kernel
χ. A 2D convolution is an operation concerning a kernel, which is simply a small
matrix of weights and an input matrix (χ and α(x, y)). This kernel "slides" over the
2D input data, performing an element-wise multiplication with the part of the input
it is currently on, and then summing up the results into a single output element.

Figure 4.2: Graphical representation of the Convolution operation over the height
and width of a matrix. Image credits: RiverTrail Github tutorial.

The kernel repeats this process for every location it slides over, converting a 2D
matrix of features into yet another 2D matrix of features (see img. 4.2). The output

http://intellabs.github.io/RiverTrail/tutorial
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features are essentially the weighted sums (with the weights being the values of the
kernel itself) of the input features located roughly in the same location of the output
element on the input layer. Whether or not an input feature falls within this "roughly
same location", gets determined directly by whether it’s in the area of the kernel that
produced the output or not. It means that the size of the kernel directly determines
how many input features are employed.

The matrix being convoluted is padded symmetrically before the 2D convolution to
take into account the shrinking of the resulting matrix (see img. 4.3),

Figure 4.3: Graphical representation of the Symmetrical Padding operation. Image
credits: Matlab Documentation

The algorithm that is based on CFAO but uses this convolution step is called
Filtered Continuous Fibre Angle Optimization (FCFAO).

Since the angle variable has 2π period, the main concern for the whole algo-
rithm is that the problem cannot be convex. The non-convex complexity can po-
tentially increase the solving time significantly, and one should be careful to avoid
over-constraining the design space.

4.2.5 Filtered Gradient Calculation

The filtered gradient is analytically calculated using the convolution operator, noticing
that every previous equation that depends on θ(x, y), now depends on α(x, y). Using
the chain rule and recalling eq. 4.5 it is possible to write

∂J

∂α
=
∂J

∂θe

∂θe
∂α

and it can be evaluated convoluting with the very same kernel χ the matrix ∂J/∂θe.
Once again the matrices are padded symmetrically to keep equal dimensions.

4.2.6 Multistart

The code is provided with the "multi-start" option to help to find global minimum.
It starts a local solver (such as fmincon) from multiple start points. The algorithm
uses multiple start points to sample multiple basins of attraction. This is done to

https://it.mathworks.com/help/vision/ref/imagepad.html
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demonstrate the robustness of the algorithm and to reduce the influence of the starting
point.

4.3 Level-Set Surface Calculation

The goal of this section is to generate a Level-Set surface for our problem. Its iso-lines
are the fiber trajectories that approximate the angles found by FCFAO. The main
challenge is tho generate trajectories as smooth as possible without moving far away
from the optimum found.

4.3.1 Problem description

Let G be a rectangular domain [0, a]× [0, b] with equally spaced grid made by N ×M
elements ((N + 1) × (M + 1) nodes). Looking at the gradient is possible to say that
the gradient vector is always orthogonal to the plane tangent to the iso-lines of a
function. The equation that links the angle of the fiber θ(x, y) in an element with the
corresponding Level-set surface φ, tho, is:

θ(x, y) =
π

2
+ arctan

(
∂φ(x, y)/∂y

∂φ(x, y)/∂x

)
(4.6)

The equation admits infinite solutions since there is just one relation for the two un-
knowns ∂φ/∂x and ∂φ/∂y. Finally, let us define

f =

(
fx
fy

)
=

(
∂φ/∂x
∂φ/∂y

)
= ~∇φ

4.3.2 Poisson Equation

To find φ,one would like to solve the Partial Differencial Equation (PDE)

~∇φ = f

using MATLAB PDE internal solver pdepe. To further simplify the problem, the di-
vergence of

~∇φ = f

is taken and the Poisson’s equation is obtained, since ~∇ · (~∇φ) = ~∇2φ = ∆φ. Poisson
equation is a quite well-covered topic in any numerical methods book and extensively
studied.

∆φ = ~∇ · f in G.

To make a well-possessed problem for Poisson’s equation, one needs to impose some
boundary conditions on ∂ G. The natural conditions for that would be Neumann type
conditions
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∂φ

∂n
= ~n~f on ∂G.

This approach works well for the problems in which the explicit equation for the gra-
dient ~f is known. It is challenging to find suitable BCs because eq. 4.6 alone doesn’t
allow to know the two components of ~f at the same time.

4.3.3 Direct integration approach

Another approach to solve the equation 4.6 would be the approximation of the potential
field φ by direct gradient approximation.
For every point (xi, yj) let us write

φi,j =

(
φi−1,j +

∫ xi

xi−1

fx dx

)
|xi − xi−1|, i = 1, · · · , M, j = 0, · · · , N

φi,j =

(
φi,j−1 +

∫ yj

yj−1

fy dy

)
|yj − yj−1|, i = 0, · · · , M, j = 1, · · · , N

where fx and fy must be at least continuous function.

That is direct gradient approximation applied to

∂φ

∂x
= fx (4.7)

∂φ

∂y
= fy (4.8)

on every segment of the mesh. There are too many equations (2NM + N + M) for
(N+1)(M+1) unknowns. That is because they are not independent and are consistent
only if some condition imposed on (fx , fy) is true. That condition is conservative
imposed on f , that in a simply connected domain like G became just ~∇ × f = 0.
Numerical integration over any path consisting of grid segments should now have the
same value. Extra equations could now be dropped and compute φi,j in following steps:

Since φ is defined up to an additive constant, it needs to be fixed at some point,
for example

φ0,0 = 0.

φ0,j are computed for j = 1, · · · , N using the first difference equation. For each j,
φi,j is now computed with i = 0, · · · ,M, j = 1, · · · , N using the second difference
equation. All the integrations are performed using trapezoidal rule that it is exact for
linear functions.

The only drawback of this method is that different values of φi,j would be obtained
if a different order of evaluation is chosen, and f isn’t conservative. But the calculation
time is indeed much faster than solving the PDE if the conservative field ~f is found.
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4.3.4 Calculate the conservative field of the gradient

A conservative vector field (also called a path-independent vector field) is a vector field
~F whose line integral

∫
c
~F d~s over any curve C depends only on the endpoints of C.

The integral is independent of the path that C takes going from its starting point
to its ending point. Directly checking to see if a line integral doesn’t depend on the
path is nearly impossible, as an infinite number of paths between any pair of points to
check is needed. If ~F is a two-dimensional vector field, F : R2 → R2, it is conservative
if and only if F = ~∇f for some potential function. The curl of a gradient is zero,
~∇× (~∇f) = 0, for any twice continuously differentiable f : R2 → R. Therefore, if ~F is
conservative, then its curl must be zero, as ~∇ · F = ~∇× (~∇f) = 0.

∂Fy
∂x
− ∂Fx

∂y
=

∂f 2

∂x∂y
− ∂f 2

∂y∂x
= 0.

It is correct to state that if ~F is conservative, then its curl must be zero. Without
additional conditions on the vector field, the opposite may not be exact, so it’s not
possible to conclude that ~F is conservative just from its curl being zero. The inverse
is valid only if the domain it’s simply connected.

To find the conservative field ~f this system of PDEs is then written using equations
4.6, 4.7, and 4.8. θ(x, y) = π

2
+ arctan

(
fy(x,y)

fx(x,y)

)
∂fy(x,y)

∂x
− ∂fx(x,y)

∂y
= 0

that translates into a first-order PDE. Unfortunately, once again the system is impos-
sible to solve because of BCs. Hence a numerical approach is used.

4.3.5 Optimization routine

The conservative field ~f is found using an optimization routine. Its calculation permits
to apply later either the PDE or the direct gradient approach.

The problem is now reformulated. The equation 4.6 is equivalent to

∂φ

∂x
cot(θ(x, y)) =

∂φ

∂y
(4.9)

To take into account the change of the domain of the equation, the scalar field
θ(x, y) that was bound between

[
− π

2
; π

2

]
it is now converted into [0; π]. This permits

to have a simply connected field as it is the case for f(θ(x, y)).

Since there is an infinite number of vector fields ~f that verify equation 4.9, one
must somehow constrain the field. Concerning the Level-set surface, the choice made
is:

• The surface must be monotonic descending respect to X → fx ≤ 0

• The sign of fy changes according to

{
fy(x, y) > 0 if θ(x, y) ∈ [0, π/2]

fy(x, y) ≤ 0 if θ(x, y) ∈ [π/2, π]
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Once these conditions are fixed, it is possible to calculate the angle of the gradient
written in polar coordinates.{

fx(x, y) = ρ(x, y) cos (Γ(x, y))

fy(x, y) = ρ(x, y) sin (Γ(x, y))

where Γ(x, y) = θ(x, y) + π/2, condition that respects the precedent conditions.
At this stage of the analysis the Γ found is the only important component: since in

equation 4.9 fx, fy appear only as a fraction, the ρ simplifies. But changing ρ influences
if the curl of the vector field is or not zero. To summarize, it is possible to fix the Γ
found using a constrain 4.9 that doesn’t set to zero everywhere the curl of the vector
field. Later, a minimization problem to find the ρ that set the curl to zero everywhere
is solved. Doing so, it is finally possible to find a vector field (~f) that is conservative,
that verify equation 4.9, and that could be integrated to find its potential (φ).

Here is the mathematical formulation of the minimization problem:

minimize :
N∑
j=0

M∑
i=0

(~∇× fi,j(ρ(i, j)))2

by varying : ρ(i, j) ∈
[
0,+∞

]
subject to : Γ(x, y) = const.

The conservative vector field is later integrated using the direct gradient approach
as it is considerably faster than the PDE approach.

Once the Level-set surface is generated, its contour is plotted and compared with
the original trajectory and the gradient f . The trajectories achieved give an adequate
estimation of the directions, but they are not yet ready to be converted into G-Code.

4.4 Fiber Propagation

The propagation of the fibers is an essential step in ensuring the manufacturability of
the ply. Having equispaced trajectories is needed to create an even distribution of the
fiber on the layer. This problem is known in the scientific community as the problem
of propagating surfaces and is extensively studied by the American professor James
Sethian (1999). In 1995 he created the numerical model called Fast Marching Method
(Sethian, 1995), an algorithm capable of dealing with boundary value problems of the
Eikonal equation:

|∇u(x)| = 1

f(x)
, x ∈ Ω (4.10)

where Ω is an open set in Rn with well-behaved boundary and f(x) is a function
with positive values, and it is an indication of the speed of the moving boundary. The
right-hand side f(x) is typically supplied as known input. Physically, the solution u(x)
is the shortest time needed to travel from the boundary ∂Ω to x inside Ω, with f(x)
being the speed at x. In the special case of f = 1 in all Ω, the equation tells us that the
distance u(x) must change at one unity per unity of length. In practice, the solution
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(a) 1a (b) 1b

Figure 4.4: Exemples of fiber propagation (see Sethian, 1999).

gives the signed distance from the boundary of the set. The signed distance plays a key
role in the fiber propagation problem because plotting the isoline at a specific value
allows to determine the fibers parallel to a starting one (see img. 4.4). The values
chosen range between 0 and the maximum distance with a step equal to the diameter
of the fiber h.

• If a great quantity of starting fibers are chosen and propagated, one obtains a
solution that perfectly corresponds to the optimized case. However, it would have
a lot of bad-behaved boundaries where the propagated fibers meet.

• If a single fiber is chosen among all the others, an optimal mathematical solution
is obtained, but it could be different from the optimized case.

• If two to three starting fibers are chosen among the bundle of the optimized fibers,
then the mathematical solution doesn’t misbehave. The optimality is conserved
if a criterion to choose among the generating fibers is fixed. The minimum elastic
energy is chosen.

The comparison between the different implementations can be observed in fig.4.5.

Here is presented the algorithm chosen to find the optimal solution of the propa-
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(a) Fiber propagation output
when a single fiber is used.

(b) Fiber propagation output
when a couple of fiber are used.

(c) Fiber propagation output
when a bunch of fiber is used.

Figure 4.5: Comparison of the different outputs that the Heat Method produces when
a different number of master fibers is chosen. It is clear that having too many fibers
tends to produce noisy results in the boundary and to have only one could lend to lose
the optimality.

gating fiber problem.
Algorithm 6: Fiber Propagation algorithm
Result: Find the best i solution based on FEM analysis
initialization;
set the fiber diameter h;
calculation of all the possible combination Nn,k of fibers;
for n = 1 : Nn,k do

propagate the fibers in every direction using the step h;
retrieve the scalar field θ(x, y) from the new propagated fibers;
perform FEM analysis;
compare elastic energy;

end
choose best i cases;
write G-Code for the selected i cases;

Since the order is not important, the calculation of the candidate fibers among
the initial trajectories is done using the combinatorial combination without repetition.
This can be achieved knowing that

Nn,k =

(
n

k

)
=

n!

n! (n− k)!

In the literature there are at least three different algorithm that could calculate the
signed distance for our problem:

• Dijkstra’s algorithm: invented by the Dutch computer scientist Edsger Dijk-
stra in 1956 and published in 1959, it is a graph-based searching algorithm that
solves the single-source shortest path problem. This algorithm is often used in
routing. Dijkstra’s algorithm is used for finding the shortest path with minimum
cost. However, this algorithm only evaluates the graph distance that overesti-
mates the straight-line Euclidean distance, no matter how fine the grid becomes
(see Dijkstra, 1959).

• Exact schemes: the formulation of "exact" algorithms represents an important
development, which leads to the evaluation of the distance on a continuous do-
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main, where paths can cut through the faces of a triangulation (see Chen and
Han, 1990). However these schemes are often O(n2).

• Fast Marching Method: The algorithm is somehow similar to Dijkstra’s algo-
rithm and uses the fact that the information only flows outward from the seeding
area. What makes it more interesting is that the value given to every node is
calculated differently, giving it a far better approximation of the true Geodesic
distance compared to Dijkstra’s algorithm. It is really fast and well studied (see
Sethian, 1995).

• The Heat Method: New algorithm for solving the single or multiple-source
shortest path problem. The distance computation - a non-linear and hyperbolic
problem - is solved by splitting it into two linear stages. The heat method is
robust, efficient, and simple to implement since it is based on solving two sparse
linear systems. Moreover, these systems can be factored once and then solved
for a set of different starting points. The Heat method is inspired by Varad-
han’s known result (Varadhan, 1967) in differential geometry, which relates heat
diffusion to geodesic distance (see Crane et al., 2017).

4.4.1 The Heat Method

The algorithm is based upon the idea that the geodesic distance can be calculated
by analyzing how the heat diffuses in a short period of time over a fixed domain Ω.
The first to bring forth such a hypothesis was the Indian American mathematician
S.R.S Varadhan who wrote the relation in a closed-form (Varadhan, 1967). Over time
heat spreads out over the domain and can be described by the function kt(x, y) called
heat kernel, which measures the heat transferred from a source to a destination in the
domain after time t. The distance φ(x, y) can be recovered via a simple point-wise
transformation of the heat kernel:

φ(x, y) = lim
t→0

√
−4t log kt(x, y) (4.11)

This relation, unfortunately, requires a precise numerical calculation of the heat
kernel, which is trivial to obtain even for a 2D domain as our plate. The Heat method
addresses this issue using the direction of the gradient of the scalar field that is parallel
to the exact geodesic distance one.

Relative to existing algorithms, the heat method offers two major advantages:

1. It can be applied to virtually any type of geometric discretization where the
laplacian (∆), the divergence (~∇·) and the gradient (~∇f) operators are well
defined.

2. It involves only the resolution of sparse linear systems that can be prefacturized
and solved for different starting points. The standard linear PDEs solved here
are widespread in scientific computing and can be easily parallelized to reduce
CPU’s time even more.

Since our problem is intrinsically parallel, the heat method is chosen over the others.
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The Heat Equation

The first step to implement the heat method and solve the fiber propagation problem
is to calculate the heat kernel kt over the domain Ω that in the presented research is a
2D plate. The heat equation is

∂ut
∂t

= α∆ut (4.12)

and is discretized using a single backwards Euler step for some fixed time t. The
equation 4.11 can be rewritten as the linear equation

(id− t∆)ut = u0 (4.13)

where id is the identity operator, t is the chosen time step and ut is the approximation
of the heat kernel. The vector of constant value is defined

u0 = δij on γ (4.14)

where γ represent the starting fibers and δij is the Kronecker delta.
Equation 4.13 can be solved remembering that ∆ represent the matrix of second

order central differencing. For the 1D case it is possible to write:

∆1D,d =


a1 b1

b1 a2 b2

b2
. . . . . .
. . . . . . bn−1

bn−1 an

 (4.15)

with a = 2 and b = −1. In a general situation the multidimensional discrete Laplacian
is the Kronecker sum of 1D discrete Laplacians. The 2D discrete Laplacian on a regular
grid with the homogeneous Dirichlet boundary condition is:

∆2D,d = ∆xx ⊕∆yy = ∆xxI + I∆yy

where ∆xx and ∆yy are the 1D discrete Laplacians in the X and Y directions, corre-
spondingly, and I is the identities matrix. Both ∆xx and ∆yy correspond to the case of
the homogeneous Dirichlet boundary condition at end points of the x- and y-intervals,
in order to generate the 2D discrete Laplacian ∆2D corresponding to the homogeneous
Dirichlet boundary condition everywhere on the boundary of the rectangular domain.

The choice of the time step is made taking into consideration the sensibility analysis
made by Crane et al. (2017) and is fixed at

t =
Dx+Dy

2
.

Once the heat kernel is calculated, it is possible to evaluate the geodesic distance
approximation φ(x, y) made by eq. 4.11.

It’s essential to note that solving eq. 4.13 is easy to parallelize when multiple
starting points are given: one can prefactor using the Cholesky decomposition the
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matrix (id− t∆) and solve it multiple times using backward substitution. Let us take
a linear system

Ax = b

where A is symmetric and positive definite. The Cholesky factorization of the matrix
A is:

A = LLt.

where L is a lower triangular matrix with real and positive diagonal entries, and Lt

denotes the conjugate transpose of L. Calling y = Ltx, the system Ax = b can be solved
first evaluating Ly = b for y by a forward substitution, and finally solving Ltx = y for
x by a backward substitution.

Normalizing the Gradient

Once that the scalar field φ(x, y) is evaluated, it is possible to calculate the gradient
vector field ~∇φ parallel to the one of the true geodesic distance. Eq. 4.10 tells that
the gradient of the geodesic distance function must be equal to one everywhere. The
gradient of φ(x, y) is then normalized and changed in sign in order to better reflect the
true distance behaviour.

~f = −
~∇φ
|~∇φ|

Poisson Equation

One possible choice to integrate the vector field ~f(x, y) is to conduce it to the form of
Poisson equation and to solve it with Neumann BCs. Applying the divergence vector
operator to

~∇φ = ~f in Ω

one would obtain
∆φ = ~∇ · ~f in Ω. (4.16)

To make a well-posed problem for Poisson’s equation, one needs to impose some
boundary conditions on ∂Ω. The natural conditions for that would be Neumann type
BCs

∂φ

∂n
= ~n~f on ∂Ω.

Once again, the matrix used to solve the Poisson equation is calculated as the Kronecker
sum of the 1D Laplacian with Neumann BCs.

∆1D,n =


2 −2
−1 2 −1

−1
. . . . . .
. . . . . . −1
−2 2

 (4.17)

A PDE with only Neumann BCs will always depend on an additive constant and
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so the method of Lagrange multipliers is used, enforcing that eq. 4.16 respects∑
φ(x, y) = 0 in Ω.

The trajectories of the fibers are finally found tracing the iso-lines of the scalar field
φ(x, y) with a step h given by the diameter of the selected fiber.

4.4.2 FEM analysis

A standard linear FEM analysis is carried out for every combination of fibers. The
mesh used to perform the analysis is the very same used in the first optimization
(CFAO), and the angle θ(x, y) for every element of the mesh is found using the eq.
4.6. This equation links the gradient of a surface with its iso-lines. The outlines of the
FEM algorithm are presented in Chapter 3.

4.4.3 G-code

G-code is the name for the most widely used Numerical Controlling (NC) programming
language. It is used mainly in Computer-Aided Manufacturing (CAM) environments
to control cutting and non-cutting CNC. G-code is a language used to command a
machine sequentially, telling it how and when making something. Code instructions
are provided to a machine controller that instructs motors where and how fast to
move, and what path to follow. For conventional machines, a cutting tool is controlled
according to the received instructions through a path, cutting away material from the
workpiece. Alternatively, the workpiece can be precisely positioned in any of the axes
that the machine has and, either or both can move relative to each other, creating more
difficult paths. The very same concept also extends to non-cutting tools such as forming
or burnishing tools, additive manufacturing methods such as FDM, and measuring
devices. While the G-code is standard in theory, many different manufacturers and
different milling machines adopt different nuances of the language to serve their desired
functionality.

The G-code used to print the plastic specimens was generated by a MATLAB code
developed by a team of students of ISAE-SUPAERO. The work of my algorithm was
to give them the coordinates to follow to print every optimal trajectory. Here is an
example of the output generated after the propagation of the fibers:

0.975, 1.4088, 1
0.825, 1.4124, 1
0.675, 1.4162, 1
0.525, 1.4183, 1
0.375, 1.4106, 1
0.225, 1.3747, 1
0.075, 1.3258, 0
0.075, 28.444, 1
0.225, 28.436, 1
0.375, 28.432, 1
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The first column represents the X-axis, the second column the Y-axis, and the third
column store a parameter used to tell at the machine if the next movement is an
extrusion of the fiber (Value 1) or just a movement of the print-head (Value 0).
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Chapter 5

Test Case and Results

In this Chapter, the optimization framework presented in Chapter 4 is applied to a 2D
beam having various loading cases and different dimensions. In Section 5.1, the different
load cases and the materials used for the optimization are presented. In the second
section (5.2), the results of the FEM comparison between MATLAB and ABAQUS are
presented to verify the accordance of the algorithm to commercial software. In Section
5.4, the first results from the unfiltered algorithm are analyzed and discussed. The
unsatisfying high percentage of noncontinuous fibers found during the optimization
leads to Section 5.3, where the very same beams are optimized using a spatial filter to
promote the continuity of the trajectories.

5.1 Load Cases and Materials
Here all the load cases used to validate the algorithm are presented. Where not speci-
fied, concentrated forces are equal to 10 N, and Distributed forces are chosen to verify
that

∑
f∈Ω fi = 10 N. The choice was made to find a compromise between the speed

of convergence of the optimization and the avoidance of non-linear behavior.

5.1.1 Load Cases

The load cases used to verify the optimization algorithm are presented here. Since
the amount of time available to develop the whole algorithm was limited and since
the difficulty to extend the capability of the FEM routine, the cases implemented
are all 2D rectangular beam. Nevertheless, it is important to note that 3D printing
usually works slicing the component on many horizontal planes and that, thus, makes
the simplification acceptable. The choice of the load cases was made to simulate as
different conditions as possible: concentrated and distributed loads and BCs, horizontal
and vertical symmetry, and cases studied in the literature are all implemented to verify
the algorithm.

Cantilever beam - Distributed Load - Top

The cantilever beam with the distributed load on the upper edge represents one of the
most studied cases in the state of the art of fiber angle optimization. In section 5.3.4,

57
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the results of the optimization algorithm are compared with the results found by the
literature, and its similarities are discussed. The beam is anchored at one end to a
support from which it protrudes. The concentrated load is smeared on the upper edge,
starting from the end for a length equal to L/2. The size of the beam is 90 mm x 30
mm, and the mesh is always made by square elements.

F

3L

L

Cantilever beam - Concentrated Load - Bottom

The cantilever beam with the concentrated load on the lower corner is a case used to
check the behavior of the optimizing algorithm with loads that are concentrated on a
single integration point of the mesh. The beam is once again anchored at one end to
a support from which it protrudes. The concentrated load is applied on the very last
point of the corner. The dimensions of the beam are 90 mm x 30 mm, and square
elements always make the mesh.

F3L

L

Cantilever beam - Concentrated Load - Half

The cantilever beam with the concentrated load on the lower corner is once again one
of the most studied cases in the state of the art of fiber angle optimization. It is used
to check the behavior of the optimizing algorithm with concentrated loads and is used
as well to verify the symmetries of the result. The beam is anchored at one end to a
support from which it protrudes. The concentrated load is applied to the half-length
of the right edge. The size of the beam is once again 90 mm x 30 mm, and the mesh
is always made by square elements.
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Cantilever beam - Distributed Load - Right

The cantilever beam with the distributed load on the right edge is used to test the
differences with the precedent case. In general, it has permitted to verify the behavior
of the symmetries of the result. The beam is anchored at one end to a support from
which it protrudes, and the distributed load is applied on the right edge. The size of
the beam is 90 mm x 30 mm, and the mesh is always made by square elements.

F
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Messerschmitt-Bölkow-Blohm Beam - Symmetric

The Messerschmitt-Bölkow-Blohm (MBB) beam case is implemented because it is one
of the most popular load cases used to validate topology optimization algorithms.
Since one of the objectives of the research was also the comparison between the two
approaches and since it is straightforward to find reliable results of the topology op-
timization in the literature, the MBB beam is one of the most studied cases in the
research (see Section 5.3). The beam is constrained on the right corner and on the left
edge to move only in the y-axis to mimic the vertical symmetry. The rotation as well
is locked down. The size of the beam is 90 mm x 30 mm, and the mesh is always made
by square elements.
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Messerschmitt-Bölkow-Blohm Beam - Full

The beam is constrained on the left and the right corner. It mimics the 3-points
bending test case. The size of the beam is 120 mm x 20 mm, and the mesh is always
made by square elements.

F
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5.1.2 Materials

The materials modeled for the optimization process are highly anisotropic compos-
ite materials, like the carbon-fiber-reinforced Onyx of Markforged (Markforged, 2019)
or ABS reinforced with carbon chopped fiber (Cantrell et al., 2016). The framework
doesn’t limit only to these materials and works for every anisotropic composite, re-
gardless of the fiber, the matrix, or the deposition method used.

The characterization of the continuous fiber material was already carried out when
I arrived at the research laboratory of ISAE-SUPAERO. The continuous carbon fiber
composite was tested on specimens printed using the semi-professional 3D printer Mark-
Forged Mark II. The mechanical properties were determined through micrographies and
traction tests. The printer is capable of depositing a variety of materials proposed by
the company itself. A combination of Nylon with shredded carbon fiber (Onyx) and
continuous carbon fiber pre-impregnated with thermoplastic was tested for the research
purpose. This revealed the fiber fraction and porosity of the composite, as well as the
diameter and stiffness of the fibers. All specimens were printed using the proprietary
eiger.io Markforged software.

The tests concluded that the fiber volume fraction is slightly above 50% in regions
filled with carbon fiber reinforced composite filament. There is a small increase in
porosity, depending on the deposition direction. A 50% fiber fraction is quite accept-
able, given that the process does not undergo high-pressure processing and does not
require additional absorbing material to manufacture. On the other hand, the porosity
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is high, which reduces the mechanical properties and creates additional locations prone
to crack initiation. In addition, the material quality might depend on the deposition
angle, but more data is required to validate this statement. The longitudinal tensile
modulus found through traction testing is lower than announced by Markforged in
their material data-sheet (Markforged, 2019). On the other hand, other papers have
also indicated lower results. Dickson et al. (2017) found a tensile modulus of 30 GPa.

Here are the values used to create all the results presented in this chapter:

Traction Test Results

Property Measured MarkForged
Longitudinal Modulus [GPa] 44.8 60
Transverse Modulus [GPa] 4.2 -
Shear Modulus [GPa] 1.9 -
Longitudinal-Transverse Poisson Ratio 0.49 -
Transverse-Longitudinal Poisson Ratio 0.09 -

Table 5.1: Mechanical properties evaluated in the ISAE-SUPAERO testing facilities
and given by Markforged (2019).

5.2 FEM comparison with ABAQUS

In this Section the steps followed to compare the MATLAB and the ABAQUS FEM
analysis are presented.

5.2.1 Creation of the model

The FEM model is created and analyzed using the ABAQUS/CAE software. Following
the procedure described in Section 3.2, the component is first drawn in the Part module
of the software. Its dimension varies according to the load case, and it is fixed to
120x20 mm for the full MBB beam and 90x30 mm for all the other cases (see img. (a)
of fig. 5.1). The mechanical proprieties used are whose of the carbon fiber described
in Section 5.1.2. They are modeled in the FEM program defining assigning to the part
an orthotropic material and by giving it an orientation angle (see img. (b) of fig. 5.1).
This is done to simulate all the different orientations used by the multistart approach
of the FCFAO optimization.

The next step is the set-up of the mesh: the element chosen is the S4, a bi-linear
first order quadrilateral element with 4 points of integration. The choice is discussed
in section 3.2.2. The number of elements is fixed to 120x20 for the MBB beam and
60x20 for all the other (see img. (a) of fig. 5.2). The last module of the program to
use is Load and is used to add the BCs that are implemented according to the load
cases mentioned above.

The test is conducted over all the load cases presented in Section 5.1.
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(a) Geometry modellation.

(b) Rotation of the reference system of the ma-
terial to simulate the different rotation angles
of the fiber.

Figure 5.1: In this image is presented the first steps of the ABAQUS analysis: the
geometry and the material set-up.

(a) Mesh of the part using S4 elements. (b) BCs and loads implementation.

Figure 5.2: In this image is presented the last steps of the ABAQUS analysis: the
definition of the mesh and the set-up of the load case.

5.2.2 Results

The ABAQUS analysis is carried out for all the load cases and 5 different orientations
of the fiber relative to the horizontal. The angle spans between +π/2 and −π/2.

Here the results are presented. The numerical values are all the evaluation of the
total elastic energy stored in the structure.

FCFAO- Elastic Energy evaluation

Angle [Deg] DistrTOP ConcHALF ConcLOW. DistrRIGHT SymmMBB ComplMBB
-45 0,775 1,005 1,026 0,995 0,409 0,268
-22,5 0,352 0,457 0,487 0,442 0,152 0,154
0 0,182 0,229 0,273 0,214 0,240 0,103

22,5 0,348 0,457 0,510 0,442 0,461 0,153
45 0,769 1,005 1,056 0,995 0,729 0,268

Table 5.2: The results of the FEM analysis performed using the proprietary MATLAB
code. The values in the tables refer to the sum of the elastic energy stored in all the
element of the beam.
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ABAQUS - Elastic Energy evaluation

Angle [Deg] DistrTOP ConcHALF ConcLOW. DistrRIGHT SymmMBB ComplMBB
-45 0,780 1,011 1,032 1,001 0,418 0,280
-22,5 0,351 0,456 0,486 0,441 0,159 0,160
0 0,180 0,225 0,268 0,211 0,237 0,110

22,5 0,347 0,456 0,515 0,441 0,453 0,160
45 0,774 1,011 1,072 1,001 0,720 0,280

Table 5.3: The results of the FEM analysis performed with the commercial code
ABAQUS. The values in the tables refer to the sum of the elastic energy stored in all
the element of the beam.

Percentage Differences Elastic Energy evaluation

Angle [Deg] DistrTOP ConcHALF ConcLOW. DistrRIGHT SymmMBB ComplMBB
-45 0,61% 0,57% 0,53% 0,57% 2,17% 4,21%
-22,5 0,27% 0,15% 0,20% 0,29% 4,65% 4,41%
0 1,15% 1,45% 1,66% 1,40% 1,51% 6,59%

22,5 0,18% 0,15% 1,08% 0,29% 1,73% 4,52%
45 0,64% 0,57% 1,54% 0,57% 1,18% 4,47%

Table 5.4: Percentage differences of the absolute value of the elastic energy between
the proprietary code and the commercial code ABAQUS.

As is possible to notice from the Table 5.4, the correlation between the MATLAB
model and the commercial software is good and pretty consistent, regardless of the fiber
angle, topology, and load case. The percentage difference is never higher than 10% and
hardly over 2%. The only outliers between the tested cases are the symmetric and the
complete MBB. Here the Matlab model consistently underestimates the energy, and
this is probably due to the excessive distortion of the mesh near the BCs (see img.
5.3). It is important to notice that the two are the only ones that have concentrated
BCs.

(a) Detail of the concentrated load application
point.

(b) Detail of the point where the structure is
constrained.

Figure 5.3: The percentage differences is higher in models presenting high distortion
of the mesh due to concentrated BCs or loads.
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5.3 Filtered CFAO

In this section, the results of the whole algorithm described in Chapter 4 are presented.
The full MBB beam test case is used to go into all the details and steps necessary to
achieve the optimized state. For all the other load cases, only the starting point and
the final optimized design are reported, together with a resuming table of numerical
results.

5.3.1 Overview of the algorithm

Messerschmitt-Bölkow-Blohm Beam - Full

As presented in Section 4.1, the optimizing algorithm is split onto 3 separate sub-
problems:

• Gradient descent optimization: Optimization routine that uses a gradient
descent method to minimize the total elastic energy of a 2D plate.

• Creation of a level-set surface: Taking the discrete optimized angles as the
input, it generates a 3D surface that, once sliced with horizontal planes, gives an
approximation of fibers trajectories.

• Fiber propagation: Algorithm that takes the continuous trajectories as an
input, it propagates them and creates the points that the machine must follow
to print the layer.

The load case used to present the algorithm is the complete MBB beam to simulate a
generic 3-points bending test. The beam is simply supported on the two lower corners,
and a concentrated force is applied on the half point of their lower edge (see img. 5.4).
The mesh is 120x20 elements, and the dimensions of the beam are 120x20 mm. The
thickness is set to 1 mm.

F

6L

L

Figure 5.4: Graphic representation of the MBB load case.

Once that the load case is defined, it is possible to set up the FCFAO algorithm.
The numerical parameters used for the fmincon optimizer and for the spatial filter are
discussed in Section 5.3.2. On the left side of fig. 5.5, one can observe one of the
starting points of the optimization with the evaluation of the objective function. The
multistart approach simulates multiple starting points, but here, for the sake of brevity,
only the one with the minimum compliance is shown. The fibers are all horizontally
orientated. On the right end side of the image, the results of the optimizing algorithm
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are presented. It is drawn a small trait that indicates the optimal direction for every
element or the analyzed mesh. The solution is entirely symmetric, even if no additional
constraints are imposed to force that.

(a) Starting point of the optimization. (b) Optimized fiber angles.

Figure 5.5: Starting point and optimized fiber angle directions calculated by the
FCFAO algorithm.

The optimization took 924 iterations and 4725 seconds (CPU time) using a Workstation
equipped with an Intel R© CoreTM i7-8700K and 32 Gb of RAM and Matlab distribution
r2018a. Intermediate results can be observed in img. 5.6 where three sub-figures are
presented:

• The convergence history of the objective function of the gradient-based optimizer.
It is a graphical representation of the evolution of the optimization as a function of
the number of individuals evaluated. The convergence history helps the designer
to know how the optimization problem is converging to the optimal solution. It
can also be used if the problem has converged quickly, and it is not optimizing
anymore.

• The optimization variables α(x, y) actually being processed by fmincon. These
are the variables directly modified by the optimizing algorithm, and they can
be checked to understand better how the optimization is going or why it is not
converging. Severe discontinuities are allowed at this stage. They are allowed
to sweep between an upper and a lower bound defined by the designer (usually
called ub and lb). It is possible to obtain faster and more reliable solutions by
explicitly including these bounds in the problem formulation.

• The design variables θ(x, y) obtained convoluting the optimization variables with
the Gaussian filter and used to evaluate the objective function. They are the
actual output of the optimizing algorithm. Due to the spatial Gaussian filter,
severe discontinuities are not accepted anymore.

The whole convergence history is presented in Appendix A for iteration number 1, 150,
550, and 924.
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Figure 5.6: The picture give intermediate information about the optimization using
3 different graphs: the convergence history, the optimization variables and the design
variables. The results are at the 150th iteration.

Once that the CFAO algorithm finished, it is possible to start post-processing the
results to make them as easy as possible to manufacture. The two following algorithms
all work with nodes and not with the center of the elements. The optimized discrete
field θ(x, y) is, therefore, linearly interpolated to calculate the value in the nodes of the
elements. The new continuous field is plotted in img. 5.7.

Figure 5.7: The discrete field θ(x, y) is linearly interpolated and then the contour
plot is obtained. The angles are all in radiants.

The next step is now the evaluation of the gradient of the level-set surface. It is possible
to say that the gradient vector is always orthogonal to the plane tangent to the iso-lines
of a function. The equation that links the angle of the fiber θ(x, y) to the corresponding
level-set surface φ is eq. 4.6. The gradient ~∇φ(x, y) vector field is obtained using the
θ(x, y) scalar field and eq. 4.6.
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Figure 5.8: The gradient ~∇φ(x, y) vector field is obtained and plotted.

Unfortunately, as extensively explained in Section 4.3.4, the vector field obtained is
not yet integrable (it is non-conservative) thanks to its curl not being zero everywhere.
But, since only the direction of the gradient is used by the eq. 4.6 to link to the angles
θ(x, y), one can freely modify the value of the moduli of the gradient to minimize the
curl. A minimization procedure is then set up, and the results are plotted in fig. 5.9.

Figure 5.9: The new gradient ~∇φ(x, y) vector field. Thanks to its curl being almost
zero everywhere, the field is from now on considered conservative.

Thanks to its curl being almost zero everywhere, the field is from now on considered
conservative, and it can be integrated to finally obtain the surface φ(x, y) (fig. 5.10).

Figure 5.10: The level set surface φ(x, y) with its iso-lines.
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Figure 5.11: The X component of the gradient of φ(x, y).

Figure 5.12: The Y component of the gradient of φ(x, y).

Once the surface φ(x, y) is generated, the approximation of the trajectories are calcu-
lated cutting with many equispaced horizontal planes the surface itself (see img. 5.13).
The result is perfectly symmetric.

Figure 5.13: The iso-level lines of the surface φ(x, y).
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To further check the results obtained by the level-set integration, the trajectories are
plotted against a vector plot of the gradient obtained from the optimization. The
vector field must be perpendicular to the iso-lines in every integration point.

Figure 5.14: The same trajectories found in img. 5.13 are plotted against the plot
of the gradient. The iso-lines of the surface φ(x, y) are always perpendicular to the
gradient.

Once that the approximation of the trajectories are obtained, it is now possible to
calculate the paths that the printer needs to follow to produce the part. The main
parameters to give to the algorithm are the diameter of the fiber h, the number of
total fibers to choose from k and the number of fibers to choose n (see Section 4.4).
The algorithm then tests all the possible combinations for the parameters given, and
the best candidate is chosen according to the minimum value of elastic energy. It is
now possible to plot the manufacturable trajectories, obtained with a fiber step h (fig.
5.15).

Figure 5.15: The optimized paths ready to be exported in G-code and printed.

In fig. 5.16 the mesh of the optimum case with the direction of the fiber for all the
elements is plotted, ready to perform the FEM analysis. The mesh is obtained using
once again eq. 4.6.
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Figure 5.16: The direction of the fibers of the optimum manufacturable case. The
elastic energy is calculated performing a FEM analysis over this mesh. Dimension and
number of elements are the very same used for the FCFAO optimization.

Once that the optimum case is chosen, it is possible to proceed to the exportation of
the coordinates as described in Section 4.4.3. The piece is then printed on a desktop
3D printer. The voids present represent a defect that can be easily solved, filling them
with the thermoplastic matrix used by the continuous fiber printer.

Figure 5.17: The trajectories found are validated trough the manufacture of the beam
using a desktop 3D printer. Here the print has been interrupted to reveal the inner
optimized layers.

The complete results of the MBB case are presented in table 5.5. Three different
meshes are used to be sure that consistent data is found. In the first column, the
elastic energy is evaluated for the starting points where all the fibers are horizontally
placed. In the second column, the written value is the objective function of the FCFAO
optimized component. For the MBB case, there is nearly a 60% improvement that
effectively confirms that the fiber angle optimization is a perfect tool to use when the
topology of the component is fixed. However, one must not forget that this is only
a theoretical value that can’t be reached using the actual manufacturing technique.
Once the manufacturing constraints are added, the elastic energy stored jumps to
around 30% less than the non-optimized case, asserting the usefulness of the algorithm
anyways.
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Messerschmitt-Bölkow-Blohm Beam - Full

Mesh size X0 Optimized Optimized with constr.
36x6 0,095 0,041 0,071
60x10 0,103 0,044 0,073
120x20 0,110 0,045 0,080

Table 5.5: Results of FCFAO algorithm for the MBB load case.

5.3.2 Setting of the optimizer and of the filter

The settings used to obtain the results here discussed are:

• The mesh is always made by square elements of different sizes. The loads are
chose to verify

∑
f∈Ω fi = 10 N.

• The algorithm used for the fmincon algorithm is interior-point. It is an algorithm
used for solving large nonlinear programming problems. It follows a barrier ap-
proach that employs Sequential Quadratic Programming (SQP) and trust regions
to solve the sub-problems occurring in the iteration.

• StepTolerance is set to 1e-8. StepTolerance is a lower bound on the size of
a step, meaning the norm of (xi − xi+1). If the solver attempts to take a step
that is smaller than StepTolerance, the iteration ends. StepTolerance is used
as a relative bound, meaning iterations end when |(xi− xi+1)| < StepTolerance
×(1 + |xi|).

• MaxFunEvals and MaxIter are set to inf. They represent the maximum number
of iterations (the big loop) of the optimizer and the maximum number of the
objective function evaluations, respectively.

• The chosen upper and lower bound for the design variables are [−π/2;π/2].

• There is not the need to use non-linear constraints that tend to slow down the
convergence rate of the optimizer.

• The filter dimension is always set to half of the shorter side of the component.
The size is measured as the number of elements of the square that perfectly
enclose the filter circle. The σ used is set to the number of elements of the filter
divided by a factor 7. σ = dim/7.



72 Test Case and Results

Figure 5.18: An example of the circular Gaussian filter used to achieve fiber continuity
in the FCFAO analysis.

5.3.3 Results

This Section is entirely dedicated to the presentation of the results obtained by the
optimizing algorithm against the load cases presented in Section 5.1.1.

A set of images representing the starting point, the discrete field θ(x, y) obtained
after the FCFAO optimization and the printing paths are presented for every load case.
To complete them, a table resuming the numerical results for different mesh dimensions
is added. The numerical values are compared with the unfiltered algorithm to complete
the results.

Cantilever beam - Distributed Load - Top

(a) Starting point of the optimization. (b) Optimized fiber angles.

Figure 5.19: Starting point and optimized fiber angle directions calculated by the
FCFAO algorithm.
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Figure 5.20: Optimized paths ready to be printed for the "Cantilever beam - Dis-
tributed Load - Top" case.

Cantilever beam - Distributed Load - Top

Mesh size X0 Optimized Optimized with constr.
15x5 0,180 0,111 0,131
30x10 0,181 0,112 0,136
60x20 0,182 0,114 0,135

CFAO 60x20 0,182 0,112 -

Table 5.6: Results of FCFAO algorithm for the Distributed Top load case and com-
parison with the unfiltered algorithm CFAO.
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Cantilever beam - Concentrated Load - Bottom

(a) Starting point of the optimization. (b) Optimized fiber angles.

Figure 5.21: Starting point and optimized fiber angle directions calculated by the
FCFAO algorithm.

Figure 5.22: Optimized paths ready to be printed for the "Cantilever beam - Con-
centrated Load - Bottom" case.
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Cantilever beam - Concentrated Load - Bottom

Mesh size X0 Optimized Opt. with constr.
15x5 0,244 0,148 0,175
30x10 0,258 0,149 0,181
60x20 0,273 0,151 0,200

CFAO 60x20 0,273 0,151 -

Table 5.7: Results of FCFAO algorithm for the Concentrated Bottom load case and
comparison with the unfiltered algorithm CFAO.

Cantilever beam - Concentrated Load - Half

(a) Starting point of the optimization. (b) Optimized fiber angles.

Figure 5.24: Optimized paths ready to be printed for the "Cantilever beam - Con-
centrated Load - Half" case.
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Cantilever beam - Concentrated Load - Half

Mesh size X0 Optimized Optimized with constr.
15x5 0,218 0,140 0,153
30x10 0,224 0,139 0,157
60x20 0,229 0,141 0,163

CFAO 60x20 0,229 0,140 -

Table 5.8: Results of FCFAO algorithm for the Concentrated Half load case and
comparison with the unfiltered algorithm CFAO.

Cantilever beam - Distributed Load - Right

(a) Starting point of the optimization. (b) Optimized fiber angles.

Figure 5.25: Starting point and optimized fiber angle directions calculated by the
FCFAO algorithm.
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Figure 5.26: Optimized paths ready to be printed for the "Cantilever beam - Dis-
tributed Load - Right" case.

Cantilever beam - Distributed Load - Right

Mesh size X0 Optimized Optimized with constr.
15x5 0,210 0,140 0,162
30x10 0,213 0,142 0,162
60x20 0,214 0,145 0,168

CFAO 60x20 0,214 0,140 -

Table 5.9: Results of FCFAO algorithm for the Distributed Right load case and
comparison with the unfiltered algorithm CFAO.
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Messerschmitt-Bölkow-Blohm Beam - Symmetric

(a) Starting point of the optimization. (b) Optimized fiber angles.

Figure 5.27: Starting point and optimized fiber angle directions calculated by the
FCFAO algorithm.

Figure 5.28: Optimized paths ready to be printed for the "Messerschmitt-Bölkow-
Blohm Beam - Symmetric" case.

The MBB beam case was chosen to see how similar the fiber angle algorithm performs
compared to the state of the art of topology optimization. The results in figures 5.5
and 5.29 confirm that the two algorithms are trying to reinforce the beam where the
stress is maximum, and the correlation between the two is indeed perfect.



5.3 Filtered CFAO 79

Messerschmitt-Bölkow-Blohm Beam - Symmetric

Mesh size X0 Optimized Optimized with constr.
15x5 0,207 0,084 0,152
30x10 0,224 0,089 0,142
60x20 0,242 0,101 0,136

CFAO 60x20 0,242 0,098 -

Table 5.10: Results of FCFAO algorithm for the MBB symmetric load case and
comparison with the unfiltered algorithm CFAO.

Figure 5.29: Graphical representation of the topological optimization of a MBB
symmetric beam using SIMP (Labanda, 2014).

5.3.4 Comparison with the State of the art

In this Section, a quick comparison with state of the art is carried out to validate the
FCFAO algorithm. Since the impossibility to obtain from all the publications the exact
value of the dimension of the piece, the forces applied, and the number of elements of
the mesh, the comparison is only qualitative. The articles are chosen among state of
the art according to two different requirements:

• They must be at maximum three years old.

• They all make use of mathematical formulations to promote continuous fibers.

The chosen load case is what is here called "Cantilever beam - Distributed Load
- Top". This case represents a perfect test for the optimizing algorithm because it
produces bad results when a filter is not used.

Figure 5.30: FCFAO result
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Figure 5.31: The result of the optimization on the cantilever beam by Silva et al.
(2020).

Figure 5.32: The result of the optimization on the cantilever beam by Demir et al.
(2019).

Figure 5.33: The result of the optimization on the cantilever beam by Kiyono et al.
(2017). This is the first article where a spatial filter is used to achieve fibers continuity.

Even if it is not possible to numerically compare the results, they look nearly identical.
Having already tested the FEM analysis with ABAQUS, it is now possible to validate
the FCFAO algorithm.

5.4 Unfiltered CFAO

In this section, all the cases mentioned above are tested using a different mathematical
formulation. The CFAO algorithm does not utilize a filter to achieve the continuity of
the fibers.
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5.4.1 Settings of the Optimizer

The settings used to obtain the results presented in the next section are the very same
in section 5.3.2. Obviously, the filter size and the σ parameter are not defined in this
case. The size of the mesh is 60 x 20 elements.

5.4.2 Results

The numerical results are presented in table 5.11. As one would expect, the unfiltered
algorithm produces better results from the objective function point of view. However,
the stiffness gain is low and never higher than 10 %.

Unfiltered CFAO

DistrTOP ConcHALF ConcRIGHT DistrRIGHT SymmMBB
x0 0,182 0,229 0,273 0,212 0,240

Unfiltered 0,112 0,140 0,151 0,140 0,098
Filtered 0,114 0,141 0,151 0,145 0,101

Table 5.11: Results of the Unfiltered CFAO algorithm for all the different load cases.
The mesh used is 60 x 20 elements.

As it is possible to note on img. 5.34, the little stiffness gain of the unfiltered
method is overcome by the elevate number of discontinuities produced. They tend to
make the piece impossible to manufacture, even if they are post-processed with the
level-set algorithm.

(a) Unfiltered Optimized fiber angles. (b) Filtered Optimized fiber angles.

Figure 5.34: A comparison between the unfiltered and the filtered analysis for the
"DistrTOP" load case.
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Conclusion and Future Works

In the present thesis, a complete framework to optimize and manufacture 3D printed
composite parts is presented. A hybrid approach using the mathematics of lamina-
tion parameters and the classic composite theory, together with a spatial filter and
a gradient-based optimizer was used to formulate the algorithm named FCFAO. The
results of the algorithm are post-processed to create the G-code used to 3D print the
specimens. In Chapter 4, the complete mathematical formulation is described, and it is
later applied in Chapter 5. The load cases tested, together with the printed specimens,
verify the full functionality of the framework. The mechanical testing of specimens is
not possible because, in the laboratory of ISAE-SUPAERO, the only printer capable
of dealing with CFRP is, at the date of writing of this document, a Markforged Mark
Two. This machine accepts commands only via the proprietary Eiger software that
does not permit to customize the continuous fiber paths.

The next logical steps to take to improve the optimizing algorithm are:

• Formulate the extension of the model to deal with composite materials with mul-
tiple layers and to optimize the stacking sequence using lamination parameters.
However, one should take into account the added computational time due to
the algorithm that converts the lamination parameters in the actual stacking
sequence.

• Even if the Matlab FEM routine was tested and verified using commercial soft-
ware, the use of ABAQUS to perform the FEM analysis can be beneficial. This
will be especially true when a sub-routine permitting to give a different orienta-
tion for every element of the mesh will be written. Even if this approach would
mean to cope with higher computational time, it will be useful for pieces with
higher complexity and when different test criteria - as buckling or stress perfor-
mances - are used.

• The algorithm needs to be extended with out-of-plane loads. This will permit
to test and verify even further the algorithm, using multiple loads that lead to
complex tension cases.

• The algorithm has only been applied to minimize the compliance of a 3D printed
part. Other relevant objective functions could be implemented in future versions
to extend the usefulness of the code. Other standard objective functions, such
as maximizing the lowest buckling load, are just as essential when dealing with
thin composite structures such as laminated plates and shells. Additionally, the
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maximization of the minimum buckling load according to Svanberg (1994) also
displays optimization convexity when formulated with lamination parameters as
design variables, and, thus, the performance of such a formulation can be expected
to be similar. For unidirectional fibrous composites, a common failure criterion
is the Tsai-Wu failure criterion from Tsai and Wu (1970).

• More sophisticated solution algorithms for the optimization - as SQP or Method
of Moving Asymptotes (MMA) - globalization techniques, and filtering techniques
- as gradient-based regularization, density filters, and morphological-based filters
- could be combined with the proposed material orientation optimization further
to improve the convergence and the overall quality of results.

• Further studies should focus on enhancing the quality of the mesh. An unstruc-
tured mesh may present some advantages. In this way, it will be possible to refine
the mesh in regions of interest, such as the interface or the zones where the curves
show high curvature or where thin walls are used.

• Mechanical testing with continuous fiber-reinforced polymer is mandatory to vali-
date the framework. Seen that at the moment of writing this document is difficult
to 3D print custom path with continuous carbon fibers, a first test using chopped
fiber-reinforced polymer can be performed.

It is the author’s hope that this thesis work will help the 3D printing community
and the aerospace industry better to understand the process of carbon fiber additive
manufacturing. New manufacturing methods are being developed fast these days, and
the formulation of the dedicated designing algorithm is the key to the spreading of
these technologies. Continuous CFRP additive manufacturing is a new technique, but
much work is still needed to be done before the printing process can achieve the needed
quality to be aerospace qualified.



Appendix A

Full convergence history for the
FCFAO algorithm.

In this appendix is presented the convergence history for the FCFAO algorithm. The
full analysis took 924 iterations and here the imagers present the iteration n. 1, 150,
550, and 924. Togheter with the history of the

Figure A.1: Iteration n. 1 of the FCFAO algorithm used on a 60x10 mesh and MBB
load case.
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Figure A.2: Iteration n. 150 of the FCFAO algorithm used on a 60x10 mesh and
MBB load case.

Figure A.3: Iteration n. 550 of the FCFAO algorithm used on a 60x10 mesh and
MBB load case.



87

Figure A.4: Iteration n. 924 of the FCFAO algorithm used on a 60x10 mesh and
MBB load case.
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Appendix B

Matlab Code

All code can be found at https://github.com/enricostragiotti/FCFAO
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List of Abbreviations

3DP Three Dimensional Printing
AFP Automated Fiber Placement
AM Additive Manufacturing
ATL Automated Tape Laying
BCP Bi-Value Coding Parameterization
BCs Boundary Conditions
CAD Computer-Aided Design
CAM Computer-Aided Manufacturing
CFAO Continuous Fibre Angle Optimization
CFRP Carbon Fiber Reinforced Polymer
CNC Computer Numerical Control
DMO Discrete Material Optimization
EBM Electron Beam Melting
FCFAO Filtered Continuous Fibre Angle Optimization
FDM Fused Deposition Modelling
FEM Finite Element Method
FFF Fused Filament Fabrication
FW Filament Winding
GA Genetic Algorithm
LENS Laser Engineered Net Shaping
LOM Laminated Object Manufacturing
MBB Messerschmitt-Bölkow-Blohm
MDO Multidisciplinary Design Optimization
MMA Method of Moving Asymptotes
NC Numerical Controlling
PDE Partial Differencial Equation
SFP Shape Functions with Penalization
SIMP Solid Isotropic Material with Penalization method
SLA Stereolithography
SLM Selective Laser Melting
SLS Selective Laser Sintering
SQP Sequential Quadratic Programming
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