

Collegio di Ingegneria Meccanica, Aerospaziale, dell'Autoveicolo e della Produzione
Department of Automotive Engineering

Corso di Laurea Magistrale in Ingegneria Dell'Autoveicolo

Master Thesis

Development of tool chain for vehicle electrification

Supervisor: Candidate:
Dr. Stefano Carabelli Muaaz Tariq S250960

Academic Year 19/20

i. Acknowledgment

First, I thank God for bestowing upon me his countless blessings.

Thanks to my family who supported me all through these years so that I can achieve more and

live up to my true potential. Although at this moment my family is not with me, but I know they

will always support me and prove to be my safety net. My dad is not here to see what I have

achieved but I hope if he had been alive, he would have been proud of my accomplishments.

My prof. Stefano Carabelli taught me a lot during my thesis, and I am thankful to him. His method

of teaching is innovative and the interactive session I had with him during this thesis always left

me with countless innovative way to find solution of the same problem.

I am thankful to Brain tech. and especially Ing. Giovani Guida for giving me the opportunity to do

my internship with them. Mr. Guida is a talented person and I learned many things from him.

This knowledge was not restricted to books, but it was also related to dealing with a real-world

problem and how to make the best of it.

Although, I was alone here but my friends never made me feel that I am alone. They have always

been there for me in times when I needed them the most. Every one of them taught me

something valuable and the experiences I had with them will remain in my memory for ever and

I will cherish these moments throughout my life.

Last but not the least, in this moment of happiness we can’t forget the people who have lost their

family members in this pandemic. I can feel their pain and assure them that we are in this

together and we will fight it together.

Thanks

ii. Abstract

The biggest challenge of the automotive industry today is the increasing complexity of it.

Today, a high-end car software has approximately 100 million lines of code, that makes it one of

the most complex machines. This comes with a drawback, increasing the probability of software

defects which can cause system failures, thus increasing the risk of damage to a human.

Moreover, this complexity has increased the cost of the production. Both mentioned topics

created the objective of finding more efficient ways for developing a structural toolchain and

reusable software, which indeed are the key words of this thesis. The main reference for this

thesis is the international standard for automotive industry ISO26262 titled as “Road Vehicles –

Functional Safety” that provides us with the requirements for Electrical and/or Electronic

systems.

ISO26262 is strictly defined for requirements that must be fulfilled, not tools or ways to

satisfy those requirements, thus the need and necessity to develop toolchains to satisfy these

requirements. Our goal was creating a development toolchain integrating or combining

ISO26262, V-Cycle and Systems Engineering in one, that is what we called Hybrid-V-Cycle. In our

quest to integrate all the methods into one, we started with the V-Cycle which is a standard in

the development of any component of vehicle and then enforced this cycle upon the ISO26262

standards. By this way, we developed a Hybrid-V-Cycle with feedback loops for continuous

improvement which will be our first chapter. Each step of it is further improved by pointing the

safety requirements we must fulfill in that step. Furthermore, we will explain our innovative

approach for the Architecture of the system that focuses in two main things – Modularity and

Reusability. In the last part of the chapter there will be an example on how we apply our Hybrid

development chain with a simple project – Digital Filter.

In the second chapter we will jump to a real automotive project – a battery manager for

Lead-Acid batteries called BAT-MAN, developed by ‘Brain Technologies s.r.l.’ that is going to be

our Customer. “The proposal of BAT-MAN is to make significant technologic innovations

(especially relative to the techniques of estimation and diagnostics), realizing at the same time a

product idea (realizing a prototype) that, on the one hand it can offer immediate and large-scale

feedback on the solutions developed, and on the other can act as a forerunner to a series of

applications based on the same technologies, either in areas closely related to accumulation

systems, or in areas where advanced diagnostic and estimation techniques can bring a significant

added value” (Brain Technologies). The project is focused on innovative estimation algorithm to

estimate State of Charge and State of Health of a battery. On our several interactions with the

customer we set up the requirements and they provide us with Concept model. After that we

proceed as in the first chapter. It is important to mention that there are several parts of this

project that we were not able to share because the BAT-MAN project is in the process of the

patent application. The ascending branch of the V-Cycle will be the future of this project, where

the software of BAT-MAN must be integrated, tested and after all be certified by ISO26262 and

release on the market.

The newly developed Hybrid-V-Cycle caters the needs for automotive component

development considering all the safety standards now in place. With the example we showed the

effectiveness of this development toolchain and applying it to the real-world BAT-MAN project

showed that how it can be helpful in tackling real world complex problems. This Hybrid-V-cycle

makes sure that we are compliant with the functional safety standards and makes the work easier

to handle, thus increasing the efficiency. Also, adding here the modular architecture developed

in this thesis makes it usable for several other fields, especially complex Control Engineering

projects.

Table of Contents
Master Thesis .. 0

Development of tool chain for vehicle electrification .. 0

i. Acknowledgment ... 1

ii. Abstract .. 2

iii. Introduction.. 11

Chapter 1, Part 1 ... 0

1. ISO26262 .. 1

2. V-cycle .. 6

Systems engineering .. 8

3. Model Based Design... 9

3.1. MAAB Guidelines .. 11

4. Hybrid V-Cycle .. 14

4.1. ISO26262 into V-cycle ... 14

4.2. Hybrid V-Functional safety concept ... 15

4.3. Steps for the Hybrid V-Functional safety cycle .. 16

4.4. Explanation for the steps of Hybrid V- cycle .. 17

5. Innovative Modular Architecture .. 20

5.1. Environment ... 20

5.2. Plant .. 21

5.3. Control .. 21

5.4. Human machine interface .. 21

5.5. Operator ... 21

5.6. Interface .. 21

6. Concept of reusability and modularity in Hybrid V-cycle .. 22

7. Architecture impact in integration and testing ... 24

7.1. Software in the loop ... 25

7.2. Hardware in the loop containing Rapid control prototype .. 26

7.3. Code generation ... 26

7.4. Frame .. 27

7.5. Rapid Control Prototype Loop (2.2 & 2.3 step) .. 28

7.6. Hardware in the loop for vehicle management unit .. 29

7.7. VMU loop (4th step) .. 30

7.8. Flexibility in model .. 30

7.9. Different combinations of software in the loop, .. 31

8. Updated Hybrid V- Cycle .. 35

1. Customer requirements ... 35

2. Technical and production model ... 36

2.1 Rapid control prototype ... 36

2.1 Testing of Production model on dSpace... 36

2.2 Production model for VMU (Vehicle Management Unit) .. 37

3 Vehicle management unit .. 37

4 Integration and testing ... 37

5 Final product requirements ... 37

9. Standards and guidelines check ... 37

10. Documentation .. 39

Chapter 1 Part 2 .. 41

1. Customer Requirements .. 42

1.1. Item definition .. 42

1.2. Hazard analysis and risk assessments .. 46

1.3. Functional safety concept... 48

1.4. Concept model.. 49

2. Technical and production model ... 51

2.0.1. Interfaces .. 52

2.0.2. Production development: software level – Technical Model 52

2.0.3. Initiation .. 53

2.0.4. Software architecture and specification of safety requirements 53

2.0.5. Model-based Design .. 56

2.0.6. Supervisory control/Stateflow .. 57

2.0.7. HMI .. 69

2.1. Rapid control prototyping .. 72

2.2. Production Model Testing .. 72

Standards check ... 74

Chapter 2 .. 77

1.0. Customer Requirements .. 77

1.1. Requirements ... 80

1.2. Simulink model provided by the customer .. 81

1.2.1 Model description ... 82

1.2.2. Algorithm for SOH prediction .. 82

2.0. Technical and production model ... 84

2.0.1. Technical model .. 84

2.0.1.1. Environment .. 87

2.0.1.2. Plant ... 88

2.0.1.3. Control Block ... 89

2.0.1.4. Human Machine Interface Block ... 94

2.0.2. Comparing technical model results with Customer model 95

2.0.3. Analysis of results ... 101

2.0.4. Production model ... 102

2.1. Rapid control prototype ... 104

2.2. Production model testing ... 105

Conclusion: ... 106

Bibliografia ... 107

List of Figures:

Figure 1. Go to market statistics ... 11

Figure 2. Functional safety cascade (cadence, 2019) ... 2

Figure 3. Safety lifecycle for software product development (Iso.org, 2018) 2

Figure 4. Artefacts ... 5

Figure 5. V-cycle for software ... 6

Figure 6. Systems engineering .. 8

Figure 7. V-Model for System Development and types of Simulation (MathWorks, n.d.) 9

Figure 8. Model based design model flow .. 10

Figure 9. MAAB guideline for Simulink modelling example (MathWorks, n.d.) 12

Figure 10. Prohibited blocks inside controllers (MathWorks, n.d.) .. 12

Figure 11. MAAB for filenames (MathWorks, n.d.) .. 13

Figure 12. Iso26262 Enforced on V-cycle .. 14

Figure 13. Hybrid V-functional safety concept ... 15

Figure 14. Steps for hybrid V-cycle ... 16

Figure 15. Reusability and modularity concept .. 20

Figure 16. Interface analysis (Ross, 2016)... 22

Figure 17. Software blocks definition ... 22

Figure 18. Hardware blocks definition .. 23

Figure 19. RCP representation of hardware block .. 23

Figure 20. VMU representation of hardware block .. 23

Figure 21. Software in the loop .. 25

Figure 22. Hardware in the loop containg rapid control prototype ... 26

Figure 23. Code generatioin .. 27

Figure 24. Defining frame ... 27

Figure 25. RCP loop ... 28

Figure 26. Hardware in the loop for VMU .. 29

Figure 27. VMU loop ... 30

Figure 28. Combinations of software in the loop ... 31

Figure 29. Combinations of software in the loop ... 32

Figure 30. Combinations of software in the loop ... 32

Figure 31. Proposed combinations of hardware in loop for rcp... 33

Figure 32. Proposed combination of hardware in the loop for VMU ... 34

Figure 33. Updated hybrid V-cycle .. 35

Figure 34. Meeting Notes snapshot .. 40

Figure 35. Documentation architecture ... 40

Figure 36. Digital filter and FFT block scheme .. 42

Figure 37. Layout ... 43

Figure 38. ASIL Selection table .. 48

file:///C:/Users/muaaz/Desktop/final%20thesis%20writing%20and%20presentation/thesisss_v2.docx%23_Toc35609246
file:///C:/Users/muaaz/Desktop/final%20thesis%20writing%20and%20presentation/thesisss_v2.docx%23_Toc35609273
file:///C:/Users/muaaz/Desktop/final%20thesis%20writing%20and%20presentation/thesisss_v2.docx%23_Toc35609274

Figure 39. Concept model in Simulink .. 49

Figure 40. Results of Concept Model .. 50

Figure 41. Item Architecture ... 51

Figure 42. Modelling and coding guidelines ... 53

Figure 43. Notations for software architectural design.. 54

Figure 44. Error detection at the sw architectural level ... 54

Figure 45. Methods for the verification of the software architectural design 55

Figure 46. Illustration of HW Interrupt ... 55

Figure 47. Illustration of model hierarchy .. 56

Figure 48. Notations for software unit design .. 56

Figure 49. Design principles for sw unit design and implementation .. 57

Figure 50. Methods for software unit testing ... 57

Figure 51. Stateflow chart ... 58

Figure 52. Interrupt handling .. 58

Figure 53. Task control .. 59

Figure 54. FFT modelling ... 59

Figure 55. FFT result .. 60

Figure 56. FFT Result ... 60

Figure 57. Task control .. 60

Figure 58. Digital Filter modelling ... 61

Figure 59. Results 1 of Digital Filter and FFT ... 61

Figure 60. Results 2 of Digital Filter and FFT ... 62

Figure 61. Scheduling .. 63

Figure 62. Hardware interrupt block and its parameters ... 65

Figure 63. Hardware interrupt flowchart ... 66

Figure 64. Control content with Interrupt simulation .. 66

Figure 65. Chart mode .. 67

Figure 66. Quantizer ... 67

Figure 67. FFT Output with 4 bit quantization .. 68

Figure 68. PWM Design ... 68

Figure 69. PWM Results .. 69

Figure 70. HMI Design ... 70

Figure 71. HMI Feedback .. 70

Figure 72. Simulink model architecture view ... 72

Figure 73. SIL Settings ... 73

Figure 74. Simulink model to run SIL .. 73

Figure 75. SIL results ... 74

Figure 76. ISO 26262 check results ... 74

Figure 77. MISRA C:2012 check results ... 75

Figure 78. MAAB guidelines check results .. 75

Figure 79. Code generation advisor check results .. 76

file:///C:/Users/muaaz/Desktop/final%20thesis%20writing%20and%20presentation/thesisss_v2.docx%23_Toc35609279
file:///C:/Users/muaaz/Desktop/final%20thesis%20writing%20and%20presentation/thesisss_v2.docx%23_Toc35609284
file:///C:/Users/muaaz/Desktop/final%20thesis%20writing%20and%20presentation/thesisss_v2.docx%23_Toc35609285
file:///C:/Users/muaaz/Desktop/final%20thesis%20writing%20and%20presentation/thesisss_v2.docx%23_Toc35609301

Figure 80. Battery state .. 78

Figure 81 Battery cell usage .. 79

Figure 82 Hybrid V-cycle ... 80

Figure 83 Simulink model ... 81

Figure 84 Simulink Model Results ... 82

Figure 85. Simulink Model in the wake of Hybrid V-cycle methodology 86

Figure 86. Environment block ... 87

Figure 87. Plant block .. 88

Figure 88. Control Block .. 89

Figure 89. SoH Deterioration effect on Variance .. 90

Figure 90. Simulink Model for Variance.. 90

Figure 91. Simulink Model for difference calculation ... 91

Figure 92. SoH detrioration affect on Delta .. 91

Figure 93. SoH detrioration effect on Difdelta ... 92

Figure 94. Simulink model for difdelta and delta calculation ... 93

Figure 95. Support Vector Machine .. 93

Figure 96. Human Machine Interface Block ... 94

Figure 97. Real_data1 Results ... 95

Figure 98. Real_data1 SOH ... 96

Figure 99. Real_data2 Results ... 96

Figure 100. Real_data2 SoH .. 97

Figure 101. Real_data3 Results ... 97

Figure 102. Real_data4 Results ... 98

Figure 103. Real_data5 Results ... 99

Figure 104. Real_data6 Results ... 99

Figure 105. Real_data7 Results ... 100

Figure 106. Real_data8 Results ... 100

Figure 107 Running variance .. 103

Figure 108 Hybrid V-cycle steps .. 104

List of tables

Table 1 Steps for Hybrid V-cycle ... 17

Table 2 Signal identification .. 43

Table 3 Requirement specification ... 45

Table 4. Hazard analysis .. 46

Table 5. Risk assessment ... 47

Table 6 Customer Requirements .. 80

Table 7 Analysis of results ... 101

iii. Introduction
Automotive sector is very competitive and challenging nowadays. There are many

companies which are trying hard to increase there share of the market. This competition is

forcing companies to use innovative methods to reduce the time of production (time to market)

of any product. A research conducted by Jabil (Jabil, 2017) shows that in 2017, 68% of the

automotive manufactures told that there time to market is less than 2 years. While it steadily

increased to 71% in 2018. Shortening the time to market is a good trend but it raises some

problems of functional safety. If we are reducing the time to market, we must cut down our time

for the whole process chain. The major time-consuming factors which are delaying process are:

Figure 1. Go to market statistics

(Jabil, 2017)

We are considering the major problems which are:

• High research and development costs

• Meeting government and safety regulation

• Long test cycles

• Procurement/supplier selection

Meeting Government and safety regulations

In order to reduce the time required for getting your product to pass through all the safety

regulations, the automotive sector has developed some safety rules which are proving to be less

time consuming and since most of them follow the same standards so it is easy for the

government to pass the product in less time. The safety standards which are being followed are

ISO 26262. While in order to reduce the time to market the automotive manufactures are starting

to use new approaches for the product development which is model based designing. Apart from

the need to reduce time to market, companies are also focusing on streamlining the projects.

They are trying to develop certain systematic principles to follow by which they can create a new

product. A set of basic rules which will be followed in every project and can be adapted to

different kinds of project. The basic purpose is to develop a systematic way to find the solution

of the problem.

What we are doing?

Developing new Hybrid V-cycle considering, ISO 26262 (safety standard for electric

components in vehicles) with model-based engineering, systems engineering and V-cycle to

streamline the process for product development while keeping in mind the functional safety

concepts of the model.

Why we are doing it?

We are doing it to streamline the process to develop a software or hardware for our

vehicles so that we can reduce time to market for both parts.

How we are doing?

We are taking a simple example, whose requirements are provided by the customer and

trying to pass it through all the phases of our process so that we can establish the whole

procedure for simple process and then we can move forward and apply the same process to real

world project.

0

Chapter 1, Part 1

1

1. ISO26262
ISO 26262 is the safety standard which is specific for automotive industry. It applies to safety-

related road vehicle electronic and electrical systems, and addresses hazards due to

malfunctions. It provides the whole lifecycle of the E/E system (including H/w and S/w

components). Important thing about this standard is the documentation. We must produce

documents and know which steps to follow to produce these documents. The standard defines

everything, and we follow the whole procedure to get results. The description of the standard as

given by the official website is as follows.

ISO26262 series of standards:

• Provides a reference for the automotive safety lifecycle and supports the tailoring of the
activities to be performed during the lifecycle phases, i.e., development, production,
operation, service and decommissioning.

• Provides an automotive-specific risk-based approach to determine integrity levels
[Automotive Safety Integrity Levels (ASILs)].

• Uses ASILs to specify which of the requirements of ISO 26262 are applicable to avoid
unreasonable residual risk.

• Provides requirements for functional safety management, design, implementation,
verification, validation and confirmation measures; and

• Provides requirements for relations between customers and suppliers.

(Iso.org, 2018)

The Draft International Standard (DIS) of ISO 26262 was published in June 2009. Since the

publication of the draft, ISO 26262 has gained traction in the automotive industry. Because a

public draft standard is available, lawyers treat ISO 26262 as the technical state of the art. The

technical state of the art is the highest level of development of a device or process at a time.

According to German law, car producers are generally liable for damage to a person caused by

the malfunction of a product. If the malfunction could not have been detected by the technical

state of the art, the liability is excluded [German law on product liability (§ 823 Abs. 1 BGB, § 1

ProdHaftG).

(Instruments, 2019)

2

Functional safety

According to ISO 26262, functional safety is defined as the “absence of unreasonable risk

due to hazards caused by malfunctioning behavior of electrical/electronic systems”.

Figure 2. Functional safety cascade (cadence, 2019)

Figure 3. Safety lifecycle for software product development (Iso.org, 2018)

This standard is relatively new in the automotive industry. It is entirely based on concept

of functional safety. It was developed to enforce functional safety measures in a robust manner.

With the fast-changing technology, every company wants to reduce the time required for testing

the model. But this must be done in a safe way, hence, ISO 26262 enforces safety standards to

already existing development models to produce the same safety functions. ISO 26262 is divided

in following parts 10 portions:

3

1. Vocabulary

2. Management of Functional Safety

3. Concept Phase

4. Product Development: System Level

5. Product Development: Hardware Level

6. Product Development: Software Level

7. Production and Operation

8. Supporting Processes

9. ASIL-oriented and Safety-oriented Analyses

10. Guidelines on ISO 26262

Concept phase – This is the first development phase that ISO 26262 defines. It includes:

• Item definition - using layouts, illustrations, definitions to define the project clearly

• Hazard analysis and risk assessment – using FMEA, Situational analysis etc. we define the

hazards and analyze their risks

• Functional safety – after Hazard analysis and risk assessment is done, we define the ASIL,

a Safe state and the Functional safety concepts

Furthermore, while we are in the first steps of development of V-Cycle we also must handle:

• Customer requirements – meetings with customer must be arranged and a table of

requirements must be created

• Concept model – the Concept model can be given by the Customer, if not, we shall do.

The definition of Concept model will be explained in Model based design part.

Here we can see that immediately our development toolchain must melt V-Cycle, ISO 26262

and requirement engineering into one Hybrid V-Cycle.

Product Development: System Level – Here we define our systems architecture and

interfaces. i.e. system level product development. In this thesis we will introduce an innovative

architecture where the keywords of it are Modularity and Reusability. This architecture will be

very helpful especially in the integration and testing part where the Modules can be very easily

handled. Indeed, the integration and testing is defined in ISO 26262 in ‘4-7 System and item

integration and testing’. Furthermore, the technical safety aspects will be defined, taken by ISO

26262.

4

Product Development: Software Level – In this thesis we will be dealing with Model based

design, thus the software produced by us will be automatically generated. In this chapter ISO

26262 defines:

• General topics for software development, i.e. with a level of abstraction

• Specification of software safety requirement

• Define safety aspects

• Software architecture design

• Integration and Testing

We need to add also:

• Technical model

• Simulation

• Verification with Concept model

• Production model

• Code generation

Again, we see that we need a development that makes these work altogether.

Process definition

According to ISO 26262, every process must be defined clearly before it starts, i.e. we must

define:

• Methodologies

• Tool aspects

• Safety aspects

• Techniques

• Artefact

5

Figure 4. Artefacts

Methodologies – This means that we need to define what kind of methodology we are using in

that process. For example, Model-based Design is the Methodology in the process of ‘Technical

Model’. Another example for the process of ‘Hazard Analysis and Risk Assessment’ the

methodology can be a type of FMEA, Situational Analysis etc.

Tool aspects – What tools are we using for getting the process done. For example, MATLAB is

one of the tools used for design, Embedded Coder for code generation etc.

Safety aspects – This must define the aspects of the process that have to do with safety or

functional safety.

Techniques – Here we must define which techniques are we using for fulfilling the Functional

Safety requirements. They will be chosen from the tables provided by ISO 26262 for the specified

ASIL.

Artefact – Artefacts are basically the outputs of the process. Here we must define what will be

achieved in the end of the process. For example, in every project, the Concept phase artefacts

will be:

• Defined item

• Customer requirements

• Safety goal

• Functional safety concept

• Concept model

6

2. V-cycle

Figure 5. V-cycle for software

(x-engineer.org, 2019)

As mentioned in the beginning, every company is trying to develop a systematic procedure to

approach a problem. The standard software development process used in the automotive

industry is the V-cycle. V-cycle is divided in 3 major categories which are:

• German V-Modell

• US government V-cycle

• General testing V-model

In our thesis, we will only discuss German V-cycle and use it to develop our own method.

German V-Modell

The V-Modell is a model for planning and realizing Projects. The V-Modell improves

project transparency, project management and the probability of success by specifying concrete

approaches with the respective results and responsible roles. It describes ‘’Who’’ has to do

‘’What’’ and ‘’When’’ within the project. The V-modell was first introduced in 1997 (2020) for

7

civil and military agencies. Since, then due to the rapid advancement of automation, this model

was updated to adapt to the new technological developments. The V-Modell introduced in 1997

was updated in 2004. Following things were incorporated in that model:

• Project-specific and organization-specific adaptability, applicability within the

scope of the project, scalability to different project sizes and changeability and

growth potential of the V-Modell itself.

• Consideration of the state-of-the-art of technology and adaptation to current

regulations and standards

• Extension of the application to the entire system life cycle already during the

development

• Introduction of an organization-specific process for improving process models

Objectives of V-Modell

The objectives of V-Modell are described as follows:

• Minimization of project risks

• Improvement and guarantee of quality

• Reduction of total cost over project and system life cycle

• Improvement of communication between stake holders

Basic V-Cycle components

The V model splits the software development process into two main phases. The left side

of the V is the part of requirement analysis, function/software design and change management.

The right side of the V concentrates the main verification and validation activities. The left side

of the model can also be termed as validation while the right side can be termed as verification.

Validation: The assurance that product, service or system meets the need of the customer

and other identified stake holders. It often involves acceptance and suitability with external

service.

Verification: Evaluation of whether a product, service or system complies with regulation

requirement specification or imposed condition. It is often an internal process.

Specification Stream

• User requirement specification

• Functional requirement specification

• Design requirement specification

Testing Stream

• Installation qualification

• Operation qualification

• Performance qualification

8

Systems engineering

This approach can be traced back to 1940. It has many definitions depending on its uses

but the classical one is:

‘’An interdisciplinary approach to translating users' needs into the definition of a system, its

architecture and design through an iterative process that results in an effective operational

system. Systems engineering applies over the entire life cycle, from concept development to final

disposal’’.

The definition used in our project can be represented by the following figure:

Figure 6. Systems engineering

(mitre.org, 2014)

This is a common graphical representation of the system engineering life cycle. The left

side of the V represents concept development and the decomposition of requirements into

functions and physical entities that can be architected, designed, and developed. The right side

of the V represents integration of these entities (including appropriate testing to verify that they

satisfy the requirements) and their ultimate transition into the field, where they are operated

and maintained.

9

But this systematic approach does not enforce or mentions any safety checks, or it does

not incorporate functional safety concept inside the development process. There are tests

available which are specific for each V-cycle, but they are not standards.

3. Model Based Design
(Jackson, 2019)

Model-Based Software Development is an embedded software initiative where a two-

sided model is used to verify control requirements and that the code runs on target electronic

hardware. One side is the Control Model, representing the embedded software of the system.

The architecture of the embedded software is modeled with blocks containing algorithms,

functions and logic components. Compiled software is auto generated from this model. The other

side is the Plant Model, representing the physical aspects of the system. Each block contains

mathematics that allows it to emulate the behavior of that physical item.

Figure 7. V-Model for System Development and types of Simulation (MathWorks, n.d.)

In the left part of the V-Model we have different types of Simulation and Prototyping that are:

• Simulation

• Rapid Simulation

• Rapid Prototyping

• Rapid Prototyping on Target Hardware

On the other hand, in the right side of the V-Model we have In-the-Loop testing that are:

• Software-in-the-loop

• Processor-in-the-loop

10

• Hardware-in-the-loop

Depending on what we want to simulate or test, we must choose the right target

environment that can be:

• Development computer

• Real-time simulator

• Embedded microprocessor

SIL testing is done to verify the automatically generated source code and runs on development

computer and it is not in real-time.

PIL testing is needed to verify the object code and can be run either on embedded hardware or

development computer with Simulink and an IDE. It is also not real-time.

HIL in the other hand is done to verify overall system functionality. It executes on the target

hardware and it is real-time.

These all stages will be described further when we are describing how our method works

and where we are using it in our system.

The most important reason of using this type of approach is the ability to get it

standardized. Since, all the code is autogenerated and the blocks used are Simulink with no self-

defined function, hence, it’s easy to get it standardized by regulatory bodies.

Concept Model – should grasp and show the behavior of the main tasks either separately or

together. The technology is still not defined, except for analog/digital.

Technical Model – should exhibit the main technical aspects, i.e. the sampling rate and the

quantization levels, the saturation levels as well as other non-linearities. In addition, it must

define the overall logic, i.e. states, transitions between states, tasks associated with states.

Production Model - is an adaptation of the Technical model with the block sets provided by the
VMU and/or RCP manufacturers in order to generate and download code for their hardware.

Concept

Model

Technical

Model

Production

Model

Figure 8. Model based design model flow

11

Concept Model simulation results allow to proceed to the assembly of the Technical
Model whose simulation results (compared to the Concept Model) allows to issue hardware and
software requirements to procure a suitable VMU and/or RCP platform. Once procured it is
possible to proceed with the “code production” according to the specific platform.
If simulation results of Technical model are wrong, or something done in Concept Model is not

possible in Technical Model, we must go back to Concept Model and do the needed

modifications. In more serious problems, the Customer requirements might be also modified,

and Customer must be notified.

If results of Production Model are wrong, or something done in Technical Model is facing

problems to be implemented for a certain VMU or RCP, we must go back to Technical Model and

make the required changes.

3.1. MAAB Guidelines1

The Mathworks Automotive Advisory Board (MAAB) developed certain guidelines for using

MATLAB, Simulink, Stateflow and Embedded coder to meet the requests from its key automotive

industry customers such as Ford, Daimler Benz and Toyota and now involves the major part of

automotive industry. MAAB Guidelines can be:

• Global MAAB

• JMAAB (Japan)

Since we are not specifically targeting the Japan automotive industry, we will be using Global

MAAB version 3.0. The objective of MAAB Guidelines are:

• System integration without problems

• Well-defined interfaces

• Reusable models

• Readable models

• Professional documentation

• Fast software changes

• Easy exchange of models

• Understandable documentation

The guidelines given by MAAB can be rated as three different priorities:

• Mandatory

• Strongly recommended

• Recommended

Mandatory guidelines are those guidelines that all companies agree that are essential.

1 Mathworks.com

12

Strongly recommended guidelines are those guidelines that are agreed upon to be a good

practice. Models should conform to these guidelines to the greatest extent.

Recommended guidelines are those guidelines that are recommended to improve the

appearance of the model diagram but are not critical.

Since our tools that we will use on this work are from MATLAB, Simulink, Stateflow and

Embedded coder we must strictly apply the Mandatory guidelines and as most as possible two

other priority rates. In the following, we will show some examples of MAAB Guidelines.

A Strongly recommended requirement is the position of the block names. They must be

located below the block, as in figure shown below:

Figure 9. MAAB guideline for Simulink modelling example (MathWorks, n.d.)

A Mandatory requirement that we shall apply is the block that are not allowed to be inside

controllers as the figure below shows:

Figure 10. Prohibited blocks inside controllers (MathWorks, n.d.)

Also, naming the files is very important and Mandatory according to MAAB, and they

should be names as shown in the figure below:

13

Figure 11. MAAB for filenames (MathWorks, n.d.)

For signal naming with a priority Strongly recommended, a signal name (MathWorks, n.d.):

• should not start with a number

• should not have blank spaces

• should not have any control characters

• should not return carriage returns

• underscores can be used to separate parts

• cannot have more than one consecutive underscore

• cannot start with an underscore

• cannot end with an underscore

14

4. Hybrid V-Cycle
The purpose of creating a Hybrid V-Cycle comes from the need of integrating ISO 26262,

Model based design flow in V-Cycle.

4.1. ISO26262 into V-cycle

In our project we are mapping these points on the V-cycle for automotive safety in order

to make V-cycle coherent with functional safety rules of ISO 26262. The following picture shows

our concept,

Figure 12. Iso26262 Enforced on V-cycle

15

4.2. Hybrid V-Functional safety concept

As can be seen from the figure 5 that we have mapped iso safety points on the V-Cycle.

Now, we will mention our own V-cycle which shows the functional safety concepts already

incorporated inside the model-based design.

Figure 13. Hybrid V-functional safety concept

16

4.3. Steps for the Hybrid V-Functional safety cycle

The figure 13 can be further defined in order to give us in-depth information about the

whole process. We will divide the process mainly in three different categories which includes

company, customer and supplier. The following diagram shows the interaction between them,

Figure 14. Steps for hybrid V-cycle

All the numbers on the diagram shows the points we follow to reach result. Two lines dividing

the customer, company and supplier. The keyword’s we want to cover in this concept are

following,

• Functional safety

• V-Cycle process

• Model based design

• Modularity

• Reusability

The first three keywords were incorporated when we were talking about the figure 13. We

included all the concepts related to first three topics. In order to make code easy and reusable

we are using the architecture which is divided by certain defined interfaces which helps us to

make our code modular. We know all types of inputs and outputs so we can easily replace the

block between the interfaces to get the required function from the model.

17

4.4. Explanation for the steps of Hybrid V- cycle

Table 1 Steps for Hybrid V-cycle

No. Of Point Models in the Nodes
1 Customer Requirements
2 Technical & production model

2.1 Rapid Control Prototype (RCP)
2.2 Testing of production model on dspace
2.3 Production model for VMU (vehicle management unit)
3 Vehicle Management Unit
4 Integration and testing
5 Prototype

- Major changes

- Minor changes

Now, we will explain the steps we mentioned in table 1.

1. Customer requirements

Customer can provide us with the requirements or some model which we follow when

developing technical models inside the company. This step is important because we understand

all the requirements set up by the customer. After understanding the requirements, we interpret

it and work on them to find out the best possible solution for the problem within the limits set

by the customer.

2. Technical and production model

After specifying all the customer requirements, in technical model step, we focus on the

making of simplest model as possible according to our understanding of the requirements laid

down by our customer. After making the basic technical model we need a production to set all

the parameters in order to run it on our rapid control prototype platform to quickly lay out the

specifications for our vehicle management unit.

2.1 Rapid control prototype

Rapid control prototyping is a very efficient method to develop, optimize, and test new

control strategies in a real environment quickly without manual programming (dspace, 2019).

18

After developing the model based on the requirements put down by the customer, we should

run our model on this rapid control prototype in order to fine tune requirements and see how

the program is working in this environment.

2.2 Testing of Production model on dSpace

Production model has a lot of flexibility and room for improvement. We need to optimize the

model for code production and see how many bits are required to give us satisfactory results.

We need optimization in order to reduce the memory of our code, hence, the cost of our vehicle

management unit. So, the production model and rapid control prototype gives us the

requirement for our vehicle management unit.

Minor changes

 While testing the model on our rapid prototyping platform we are unable to reach a

conclusion or if the model is not producing the results desired by the customer, we have to go

back again to the second step which is ‘’technical and production model’’. We change the model

so that we can make it function as desired by the customer.

 Moving from the 2.2 step to 2, costs nothing. Since we haven’t purchased anything and

everything up-till now is on the software. So, we can iterate it as many times as we like

considering the requirements from the customer. The main advantage of introducing rapid

control prototype is to see whether the chosen equipment is suitable for this application or we

need further improvements to reduce cost while maintain the same functionality.

2.3 Production model for VMU (Vehicle Management Unit)

After the specifications laid down by Dspace we will order the VMU from our vendors. We

will move to this step after finalizing the model. If we need certain changes in the technical and

production model, we will move straight to second point.

3. Vehicle management unit

This step will be performed outside the company. We will set up the requirements we need

for our VMU. These requirements will be passed on to our vendors and vendor will be chosen

accordingly.

4. Integration and testing

After getting the VMU from our supplier we will integrate our code with hardware and test it

in different environments. The most important test is of fault injection in which we deliberately

inject a fault in the system and see how robust our code is. After testing of our system if

everything goes well then, we can move on to the next stage which is laying down the final

product requirements. But if we are not able to produce the desired results, we must go back to

fourth step or all the way back to second step.

19

Minor changes

At the fourth step, we are testing on the real board and we have already bought this from

the vendor. So, if we change it then we have to pay some damages but since we haven’t mass

produced the system we still can go back to testing our model on rapid control prototype to

change interfacing between the VMU and sensors to make it more efficient. It’s not

recommended to change after you have bought the VMU from the vendor but if the system fails

under fault injection system and it could be easily replaced by small changes then it is still

feasible.

Major changes

 If at the fourth step while testing on the real hardware we have problem which is related

to the understanding of basic requirements, then we must go back the second step which is

technical and production model. This loop costs the same as the minor change after the 2.2 step,

but it means that we have not understood the requirements well enough and have to revise

those or to come up with new model to satisfy customer needs. The hybrid V-Cycle helps us to

standardize the procedure and it makes management of the project easy. Even if we have gone

to the second step, to move forward we cannot skip any step in between, and we must follow

the procedure again.

5. Final product requirements

After integration and testing is successful, we will set out the product details for the

customer.

20

5. Innovative Modular Architecture
The concept of modularity and reusability can be explained by the following diagram. Figure

from the notes of the prof:

Figure 15. Reusability and modularity concept

Figure 15 shows dotted lines which helps us to divide blocks in different sections. When we

are talking about the modularity, we mean that we can replace the block and then test it for

some other project. The process remains the same but whatever is in the blocks, by changing it

we can change our target.

5.1. Environment

This block represents the external environment for our model. For example, if we are

discussing about electronic circuits then we should consider the electromagnetic interference in

our circuits from the external environments. We can simulate all the external influences in

software (Simulink). This block is used to simulate the actual environment as close as possible to

the real environment but only on the software. Every software has some restrictions, so we try

to be as close as to the real environment. For example, if we are generating signal, we add noise

21

in the signal to reproduce the external affects. It affects the plant hence we have drawn signs in

interference from this block to plant.

5.2. Plant

This block represents inputs we provide to control in order to make the decisions. This block

is also simulated in the software.

5.3. Control

It is the main block in our scheme. It takes inputs from the plant and issues output to execute

actions based on inputs. It also contains inputs from human machine interface. Our whole

algorithm to control system is executed in this control block.

5.4. Human machine interface

This block in software represents interaction between human and machines. Each software

gives us some controls which can reproduce actual human machine interaction. In software, it is

represented by buttons and switches which are in the software only and they don’t have any

physical presence. You can choose the type of button and set some parameters to mimic actual

behavior.

5.5. Operator

The programmer performs function of the operator. In real world, operator will input

commands while here since everything is on the computer, hence the person controlling

computer will be considered as operator.

5.6. Interface

These things define the connection between two blocks. In the above method we are

connecting software with software, so interfaces are represented by just connections in the

software.

22

Figure 16. Interface analysis (Ross, 2016)

According to the Ford-FMEA-handbook there are four kinds of interfaces. (Ross, 2016)

• Physical interface

• Energy interfaces

• Material transfer (interface)

• Information interfaces

6. Concept of reusability and modularity in Hybrid V-cycle

In order to introduce this concept, we introduce the blocks. As shown in figure 8, we have

divided the procedure in some blocks. We are going to define each block in order to understand

the whole procedure.

Software block

Figure 17. Software blocks definition

23

This block represents the software portion of our Hybrid V-cycle. software will include

anything which is not present physically, but it is designed and tested on computer. There is no

interaction between physical parts. We design our systems and satisfy all the requirements

virtually on a computer.

Hardware block

Figure 18. Hardware blocks definition

This block represents the hardware portion of our Hybrid V-cycle. In this part, we have a

physical equipment. We are no more working on the software which is all inside computer. This

hardware block can include VMU, RCP, input from environment and all the sensors. VMU and

RCP are included in the hardware block but in order to define the process in a better way we are

going to highlight them separately just to identify the steps where we are introducing VMU and

RCP.

Rapid Control Prototype Block

Figure 19. RCP representation of hardware block

Rapid control prototype is a part of hardware block. We have represented it in a different

way just to clarify the steps where we are using RCP.

Vehicle Management Unit

Figure 20. VMU representation of hardware block

24

Vehicle management unit is also a part of hardware block. We have represented it in a

different way in order to clearly identify the steps where we are using VMU.

7. Architecture impact in integration and testing

As mentioned earlier that our procedure contains 5 important points which are as follows:

• Functional safety

• V-Cycle process

• Model based design

• Modularity

• Reusability

Now, we will link the modularity and reusability concepts with other concepts of functional

safety, V-cycle process and model-based design. To explain it we have divided it in 3 parts. The

first one is

• Software in the loop

• Hardware in the loop containing Rapid control prototype

• Hardware in the loop containing VMU in the loop

25

7.1. Software in the loop

Figure 21. Software in the loop

This step is covered by 2nd step of our Hybrid V-functional safety cycle. In this step, we are

going to develop our technical and production model based on the requirements demanded by

our customer. This is the general scheme of our methodology in which we are going to divide our

model into 5 main blocks. All these blocks are simulated in the software and at this stage no

hardware is involved. The blocks are:

• Environment

• Plant

• Control

• Human machine interface

• Operator

• Interface

26

7.2. Hardware in the loop containing Rapid control prototype

Figure 22. Hardware in the loop containg rapid control prototype

This step is covered by 2.2 and 2.3 step of our Hybrid V-functional safety cycle. As shown

by the above diagram, after software in the loop we are doing code generation for our control

block.

7.3. Code generation

We have the control block in software. In order to run it on our rapid control platform we

convert it to a code. This process of code generation is handled automatically by software which

produces C or C++. This automatic code is not optimized and in the following steps we will first

try to run code on our rapid control prototype which can handle a large code size and is only

introduced to check our control block performance and robustness. This equipment helps us to

fine tune our control block and check for any potential errors.

27

Figure 23. Code generatioin

7.4. Frame

Every RCP requires some timers and assignment of ports which will help other blocks to

communicate with it. We develop the frame in the next step to make sure that interfaces interact

smoothly with RCP.

Figure 24. Defining frame

28

7.5. Rapid Control Prototype Loop (2.2 & 2.3 step)

Figure 25. RCP loop

After constructing frame and placing code inside our rapid control prototype we replace

the control block (referring to the left column) with rapid control prototype. After testing this

configuration, we will observe how our control block is performing. We should make a distinction

here, the yellow blocks on the left column with names, environment, plant, HMI and operator

are all in the software. They are still controlled by computer which is connected to RCP which is

a physical equipment with generated code running inside it.

The right column has different sets of blocks. In this step, we have replaced all the

software with hardware blocks. In the previous step, we were controlling everything from the

computer. All the blocks except from RCP were not physically present. In this step, which is shown

by column on right side of the diagram, we are going to replace all the software blocks with the

hardware. All the inputs will be from hardware blocks. The operator will be a real person

operating system with the HMI. While plant will be our sensors which will monitor the values and

give it as an input to RCP. The environment will be everything surrounding equipment, which is

affecting the system.

29

7.6. Hardware in the loop for vehicle management unit

Figure 26. Hardware in the loop for VMU

This step is covered by 4th step of our Hybrid V-functional safety cycle. As shown by the

above diagram, the RCP gives us the specification of the VMU. It tells us the specifications of

memory and other aspects of VMU. We need these aspects in order to select the vendor which

will give us the best product at reasonable rates. The RCP also tells about the performance. So,

instead of buying different VMU we will set the requirements set by RCP by running the code at

various bit rates, to meet the performance requirements set by the customer, keeping in mind

the safety aspects of our operation. If we can reduce the power requirements of the VMU we will

be able to reduce the cost of purchase. VMU is supplied by the supplier which is represented by

step 4th in our Hybrid V-functional safety cycle.

30

7.7. VMU loop (4th step)

Figure 27. VMU loop

As seen before, we will apply the same procedure as applied before in the RCP loop. We

have 2 columns which are included in step 4th of our Hybrid V-Functional safety cycle. Column on

the left side shows the integration of software in VMU and then testing it on a test bench. In this

test bench, we have all the blocks in software except from the VMU which we got from the

supplier. We will run the code first with this configuration to check the performance of the VMU

and to make sure everything is in order and after that we will replace all the software blocks with

hardware to do the final tests before finalizing the solution provided to the customer.

7.8. Flexibility in model

The procedure explained above is one of the many combinations that could be adopted in order

to obtain the desired results. Now, we will explain some of the other combinations of the same

procedure. For example, if we are considering the software in the loop, we can have many

different combinations of it.

31

7.9. Different combinations of software in the loop,

We will discuss some of the combinations here in order to show the flexibility of our Hybrid V-

Cycle.

Figure 28. Combinations of software in the loop

Here we can see that two software blocks are replaced by two hardware blocks. The environment

is an actual environment while the plant is also considered as a hardware block. In some cases,

we are using sensors to take input from the outside and then in order to process and control it

we are using software. We can replace any block with hardware except from the control block

since it’s an early to invest on a controller. Some other combinations of the software in the loop

model can be seen below.

32

Figure 29. Combinations of software in the loop

In figure 21, we have replaced the human machine interface with actual buttons and a human is

controlling that panel to produce the results.

Figure 30. Combinations of software in the loop

33

In the figure 22, we replaced plant with a hardware block while other blocks are still in software.

Proposed Combinations of Hardware in the Loop Containing Rapid Control Prototype

One of the combinations is explained in figure 17. We can consider other combinations

also which are:

Figure 31. Proposed combinations of hardware in loop for rcp

Comparing figure 17 with 31 shows that even in the 2.3 step we can have a software block.

This strategy makes our Hybrid V-cycle more flexible and it could be easily adapted to different

conditions depending upon our requirements.

In figure 31, the RCP is also considered as a hardware block, but we have mentioned it

with different color to clearly identify this step. We must clearly define the interfaces when we

are moving from software block to hardware block. We should keep in mind what are the

requirements of hardware and software block. If the interfaces are not properly defined then it

is impossible for the blocks to interact with each other.

34

Proposed Combinations of Hardware in the Loop for Vehicle Management Unit

As explained in the figure 19, about hardware in the loop for vehicle management unit,

we can think of other combinations also and make a hybrid model to satisfy our requirements.

We will see an example to understand how it might work.

Figure 32. Proposed combination of hardware in the loop for VMU

35

8. Updated Hybrid V- Cycle
The following is our proposal for the updates in the V-cycle. There is small description of the

whole cycle at the end. For complete consideration look at the previous headings.

Figure 33. Updated hybrid V-cycle

This updated V-cycle is slightly different from the previous one. In this cycle, we have further

explained what we do in each step while developing our model. We will give the brief overview

of whole process again and in following chapters we will take few examples for better

understanding how the whole method works by considering actual examples, starting from a

simple digital filter leading to the more complex problem.

1. Customer requirements

As described in the start, these are the requirements set by customer. It can be in the shape

of requirements or a model. We completely understand it before starting to develop the model.

36

2. Technical and production model

After specifying all the customer requirements, in technical model step, we focus on the

making of simplest model as possible according to our understanding of the requirements laid

down by our customer. After making the basic technical model we need a production to set all

the parameters in order to run it on our rapid control prototype platform to quickly lay out the

specifications for our vehicle management unit.

In this step, we develop the model following ‘software in the loop’ and ‘model in the loop’

based on model-based engineering. We have nothing in hardware, every program is in software,

for example Simulink. We modify the model according to requirements of customer. We also try

to find out innovative solutions for satisfying requirements set out by our customer. There might

be some requirements which cannot be incorporated in our model or even if they are

incorporated, we pay a higher price for getting slightly better performance. At this point

everything is in the software, hence, it costs nothing to make any changes in the model. We can

simply do it by a click of the button.

As described in figure 30-32, we can adopt different combinations of the software and

hardware parts for making our system.

2.1 Rapid control prototype

Rapid control prototyping is a very efficient method to develop, optimize, and test new

control strategies in a real environment quickly without manual programming (dspace, 2019).

After developing the model based on the requirements put down by the customer, we should

run our model on this rapid control prototype in order to fine tune requirements and see how

the program is working in this environment.

2.1 Testing of Production model on dSpace

Production model has a lot of flexibility and room for improvement. We need to optimize the

model for code production and see how many bits are required to give us satisfactory results.

We need optimization in order to reduce the memory of our code, hence, the cost of our vehicle

management unit. So, the production model and rapid control prototype gives us the

requirement for our vehicle management unit.

As mentioned above, if our model is not satisfying the customer requirements then we must go

the second step again and follow the procedure again.

At the 2.2 step, we can have different combinations of software and hardware blocks. We can

adopt the suitable combination of both.

37

2.2 Production model for VMU (Vehicle Management Unit)

After the specifications laid down by Dspace we will order the VMU from our vendors.

3 Vehicle management unit

This step will be performed outside the company. We will set up the requirements we need for

our VMU. These requirements will be passed on to our vendors and vendor will be chosen

accordingly.

4 Integration and testing

After getting the VMU from our supplier we will integrate our code with hardware and test it in

different environments. The most important test is of fault injection in which we deliberately

inject a fault in the system and see how robust our code is.

As can be seen from the figure 26, if the integrations and testing is not successful then we again

move either to step 2.2 or step 2 depending upon the changes we must make. If we have to make

minor changes we have to move from step 4th to step 2.3 while if we have to make a major

change we have to move straight from 4th step to 2nd one and again we have to follow all the

points leading up to 4th step again.

5 Final product requirements

After finalizing the testing and code we will set out the product details for the customer.

9. Standards and guidelines check

Our product has certification goals, thus through all the development we have put our effort to

comply with them. Simulink gives us the tools to check if our model and generated code complies

with the standards and guidelines we set before:

• ISO26262

• MISRA C

• MAAB Guidelines

This can be done in Simulink via Model Advisor:

38

• Simulink -> Analysis tab -> Model Advisor

For MISRA-C Model Advisor can run the check immediately, but for ISO26262 and MAAB

Guidelines we must download the add-in Simulink Check™ that includes:

• ISO 26262

• IEC 61508

• IEC 62304

• DO-178

• MAAB Guidelines

For additional checks, we decided to run also IEC 61508 since it is the parent standard of ISO

26262, allowing us to target different fields in the future.

Also, an important thing to do for MISRA C certification is preparation of a compliance statement

that is something we will not do in this thesis.

When using MISRA C:2012 coding guidelines to evaluate the quality of your generated C code,

you are required per section 5.3 of the MISRA C:2012 Guidelines for the Use of C Language in

Critical Systems document to prepare a compliance statement for the project being evaluated.

To assist you in the development of this compliance statement, MathWorks® evaluates the

MISRA C:2012 guidelines against C code generated by using Embedded Coder. The results of the

evaluation are published as: (MathWorks, n.d.)

• Compliance summary tables

• Deviations

An extra check for more robustness, we will use also ‘Code Generation Advisor’ that helps us to

check:

• RAM Efficiency

• Traceability

• Safety precaution

• Debugging

• ROM Efficiency

• Execution efficiency

39

10. Documentation

Professional and reliable documentation is a must in every process on any field but especially

in Automotive industry where the ever-increasing complexity of its processes demands an

increase in documentation quality as well. There are several different and software and tools for

doing it, but they come with a very high cost. Thus, we have come up with our very low-cost but

efficient and clean approach using Dropbox and Dropbox Paper. The Dropbox account called

“VMU Project” is divided on 4 different main sections that are:

• Development

• Documentation

• References

• Meeting Notes (Dropbox paper)

Development contains everything that concerns technical side of the project such as Simulink

modelling. It also has 3 different folders:

• Concept model

• Technical model

• Production model

Documentation folder contains documentation of the development such as:

• Requirements

• Methodologies

• Safety lifecycle according to ISO26262

• Presentations to be presented in the meetings with the customer

• Results of every development step

References folder contains every reference that is used in the documentation and development.

Meeting Notes in the other hand plays a key role in keeping track of the work that has to be

done, creates a very collaborative environment allowing every participant to comment on notes,

sharing ideas, references, alerting everyone that a report, model or documentation is ready and

can be found on one of the folders that we already explained. A snapshot from the Meeting Notes

below shows it very clearly how we used it:

40

Figure 34. Meeting Notes snapshot

The illustration below sums up the architecture of Dropbox:

Project

documentation

Meeting Notes Development Documentation References

Traceability

Collaborative

Share ideas

Share references

Comment and

discuss

Store models

Keep track on

versions

Keep track on

changes

Readme file for

summary

Development

documentation

Customer

requirements

Safety

Requirements

Code generation

report

Safety lifecycle

documentation

References used

in Development

References used

in

Documentation

Figure 35. Documentation
architecture

41

Chapter 1 Part 2

42

1. Customer Requirements

Artefacts of this process are:

• Item definition

• Requirement specifications

• Hazard analysis and risk assessment

• Functional safety concept

• Concept model

1.1. Item definition

Objective:

Perform a Fast Fourier transform on the input signal and design a low-pass digital filter

with certain requirements given by the customer. The system shall be designed in such a way

that it must be easy to test and validate.

 Signal1 (-10,10) [V] Signal2

Signal Generator Oscilloscope

What is a Fast Fourier Transform?

 When we want to decompose a signal that is composed by different signals with different

frequencies into pure frequencies that they are made of, we apply a Fourier transform on it. A

Fast Fourier Transform, in the other hand, is an efficient algorithm that makes us implement the

Fourier transform in much faster way.

What is a Low-pass Digital Filter?

An analog low pass filter is a filter that passes analog signals with frequency below cut-off

frequency. A digital low-pass filter is the same except that it acts on discrete-time signals. It is

Digital filter

Sampling frequency 1000 Hz

FFT

Sampling frequency 100 Hz

Figure 36. Digital filter and FFT block scheme

43

programmable, doesn’t age and provides way higher performance than analog filter. Method,

type and implementation of the low-pass digital filter will be discussed on the Analysis and

Architecture phase. Layout of the item to be developed:

Figure 37. Layout

Table 2 Signal identification

Signal Name Symbol Function Unit Value range

switch_on sO Turn on system V Binary

emergency_stop sE Emergency stop V Binary

Signal1 u Input signal V +- 10

Fourier analysis F(u) Output V Undefined

Filtered signal y Output V +- 10

On_button bo Input V Binary

Emergency_switch bE Input V Binary

44

Expected results:

 Input Expected Output for FFT

 Input Expected Output for Filter

45

Requirement Specifications

Table 3 Requirement specification

Function 1 Digital filter

Requirement 1-1 Sampling frequency must be fs = 1000 Hz

Requirement 1-2 Input signal voltage shall be in the range of ± 10 [𝑉]

Requirement 1-3 Output signal voltage shall be in the range of ± 10 [𝑉]

Function 2 Fast Fourier Transform

Requirement 2-1 Sampling frequency must be fs = 100 Hz

Function 3 Supervisory Control

Requirement 3-1 External Start/Stop push button must be added

Requirement 3-2 System is turned by the Start/Stop push button

Requirement 3-3 System is stopped by the Start/Stop push button

Requirement 3-4 An external emergency switch must be added

Requirement 3-5 When emergency switch is turned on, output must go to 0

46

1.2. Hazard analysis and risk assessments

Hazard identification:

Hazard analysis and assessment:

Hazard Effect Comment
Hazard
1: Severity: 1 Wrong output can lead on wrong conclusions
 Exposure: 4 Signal generator is always on when item is on
 Controllability: 1 Simply controllable
Hazard
2: Severity: 1 Possible damage
 Exposure: 4 Signal generator is always on when item is on
 Controllability: 1 Simply controllable

Hazard
3: Severity: 1

High voltage can cause electrical damage, causing damage to
operator

 Exposure: 4 Signal generator is always on when item is on

Component Failure Mode Effect on the item
Signal
generator FM1: Wrong input signal Hazard 1: Item gives wrong output

 FM2: Not grounded Hazard 2: Possibility of damage

 FM3: Signal voltage beyond limits
Hazard 3: Possible damage on
electrical components

Microprocessor
FM4: Microprocessor fails in executing
instructions

Hazard 4: Item does not give any
output

On/Off switch FM5: Switch does not turn on Hazard 5: Item does not turn on

 FM6: Switch does not turn off Hazard 6: Item does not turn off

Emergency
button

FM7: Emergency button does not send the
signal Hazard 7: High possibility of damage

Oscilloscope
FM8: Oscilloscope does not show any
output

Hazard 8: Item does not give any
output

 FM9: Not grounded Hazard 9: Possibility of damage

 FM10: Oscilloscope shows wrong output Hazard 10: Item gives a wrong output

Table 4. Hazard analysis

47

 Controllability: 1 Simply controllable
Hazard
4: Severity: 0 No damage possible when there is no output
 Exposure: 3 Microprocessor often is working when item is working
 Controllability: 1 Simply controllable
Hazard
5: Severity: 0 No voltage when item is not turned on
 Exposure: 4 On switch is always needed when item must be turned on
 Controllability: 1 Simply controllable
Hazard
6: Severity: 1 Low happening possibility of undesired actions
 Exposure: 4 On/Off switch is always needed when item must be turned on
 Controllability: 1 Simply controllable
Hazard
7: Severity: 3

Undesired actions can cause damage on electrical components,
causing damage to the operator

 Exposure: 1 Emergency button is used rarely
 Controllability: 3 Can be difficult to control
Hazard
8: Severity: 0 No damage possible when there is no output
 Exposure: 4 Oscilloscope is always on when item is on
 Controllability: 1 Simply controllable
Hazard
9: Severity: 0 No damage can be caused
 Exposure: 4 Oscilloscope is always on when item is on
 Controllability: 1 Simply controllable
Hazard
10: Severity: 1 Possible damage
 Exposure: 4 Oscilloscope is always on when item is on
 Controllability: 1 Simply controllable

Table 5. Risk assessment

48

ASIL Selection:

Figure 38. ASIL Selection table

From the table:

• ASIL A for Hazard 7

• QM for all other Hazards

Safety Goal:

Safety goal 1: Item shall stop immediately when the Emergency button is pushed and enter to

the safe state

Safe state: The item shall to the OFF state, where the output goes to zero and the user is

informed.

1.3. Functional safety concept

Functional safety:

Because the required ASIL is ASIL A, functional safety action is necessary, but it must be

low-cost since the hazardous situation is very unlikely.

Proposed functional safety action:

Functional Safety 1: Transition to emergency must be highest priority

49

1.4. Concept model

As already explained in the first chapter, concept Model should grasp and show the behavior
of the main tasks either separately or together.

Figure 39. Concept model in Simulink

50

Figure 40. Results of Concept Model

51

2. Technical and production model

Modular architecture and the components with interfaces must be defined:

The following characteristic or features specified should be seen as requirements: (Ross, 2016)

User

Plant

Control

HMI

Environment

Interface –

Cables

Interface –

Cables

Interface –

Manual

Interface – EM

Figure 41. Item Architecture

52

• The environment: The item will be placed in a Lab

• There are no permitted ways of use

• Only one mode of operation specified

• Both our functions, Digital filtering and DFT are function call subsytems

• Input signal is analog with range ±10 V, with a certain high frequency noise

• Output signal is analog with range ±10 V

2.0.1. Interfaces

Physical interface

• The item will be placed in a typical Lab desk

• Room temperature

• Signal range 20V peak-to-peak

Energy interfaces
• Electric energy only
• 20V peak-to-peak voltage transfer
• Energy provision via cables

Material transfer (interface)

• No material transfer

Information interfaces

• Signal processing
• Analog input to ADC to RCP Platform to DAC to Oscilloscopes
• Bus or communication systems CAN or Ethernet

2.0.2. Production development: software level – Technical Model

Technical Model should exhibit the main technical aspects, i.e. the sampling rate and the
quantization levels, the saturation levels as well as other non-linearities. In addition, it must
define the overall logic, i.e. states, transitions between states, tasks associated with states.

Tool – MATLAB Simulink

Techniques – Will be specified and chosen in each stage

Methodologies – Model-based Design, MAAB Guidelines

Artefacts – Software code

Safety aspect – Techniques recommended by ISO26262 for ASIL

53

2.0.3. Initiation

Guidelines to perform modelling that are required by ISO26262:

Figure 42. Modelling and coding guidelines

Since we have ASIL A, we must choose an appropriate combination of some requirements

since they are alternative entries. A good appropriate combination for our item will be:

1. Enforcement of low complexity

2. Use of unambiguous graphical representation

3. Use of naming conventions

Specification of software safety requirement:

Recalling the functional safety defined in the previous phase:

Functional Safety 1: A redundant switch must be added, thus in case of failure of one of the

switches, the other switch realizes Safety Goal 1.

According to ISO26262 we must define the components of the item that are responsible to

achieve or maintain the safe state, which are:

1. Emergency switch

2. Microcontroller

Functions related to safety requirement:

1. Supervisory control/Stateflow

2.0.4. Software architecture and specification of safety requirements

Methods for notation that are given by ISO26262, for ASIL A Informal notations is highly

recommended, so we decide for 1a.

54

Figure 43. Notations for software architectural design

For error handling we decide for Range checks of input and output data since it is highly

recommended and can give us good desired results.

Figure 44. Error detection at the sw architectural level

For verification ISO26262 gives us several methods. An appropriate and robust combinations

would be:

1. Walk-through of the design

2. Inspection of the design

3. Control flow analysis

55

Figure 45. Methods for the verification of the software architectural design

The following elements shall be verified:

• Compliance with the software safety requirements

• Compatibility with the target hardware

• Adherence to design guidelines

Unambiguous illustration of architectural design that realizes the software safety requirements:

We have three states:

• OFF State – which is set by default

HW Interrupt
SAFE

STATE

Emergency

Switch

Figure 46. Illustration of HW Interrupt

56

• ON State – where the actions required are performed and infrom the User via HMI

• Emergency State – Where we set the output to zero and inform the User via HMI

2.0.5. Model-based Design

Notations to be followed for ASIL A:

• Natural language

• Informal notations

Figure 48. Notations for software unit design

Design principles for software unit design and implementation to be followed for each unit:

• No hidden data flow or control flow

• No recursions

• Initialization of variables

Supervisory

Control

Fs =10000Hz

Digital Filter

1000Hz

FFT

100Hz

LED

Green

 No Output

 No Output LED

Red

Condition

s

OFF

State

ON

State

Emergency

State

Figure 47. Illustration of model hierarchy

57

Figure 49. Design principles for sw unit design and implementation

Methods for software unit testing:

Figure 50. Methods for software unit testing

Requirement-based test is highly recommended, and it is enough for our model.

2.0.6. Supervisory control/Stateflow

Concerning the discrete control, we must have 3 states:

• OFF state, which is set by default

• ON state

• Emergency state

Transition conditions from OFF to ON: On pushbutton must be pushed for 2 seconds. Color of the

led will be yellow during the transition.

Transition from ON to OFF: On pushbutton must be pushed for 2 seconds. Color of the led will be

yellow during the transition.

58

Transition from ON to Emergency: Emergency switch is turned on. Color of the led will be yellow

during the transition.

Transition from ON to Emergency: Emergency switch is turned off.

Transition from Emergency to ON is not possible for safety reasons.

Figure 51. Stateflow chart

Emergency function-call task Stateflow:

Figure 52. Interrupt handling

59

Fast Fourier Transform

Figure 53. Task control

FFT:

Performs FFT in the incoming signal

Complex to Magnitude-Angle:

Converts the complex values to magnitude. By default it has 2 outputs, magnitude and angle, but

in our case only the Magnitude is selected.

FFT Shift Matlab function:

Shifts zero-frequency component to center of spectrum. It is useful for visualizing the Fourier

transform with the zero-frequency component in the middle of the spectrum.

FFT in Simulink:

Figure 54. FFT modelling

Result for a given input with 100Hz frequency and amplitude 10:

60

Figure 55. FFT result

Result for a given input with 300Hz frequency and amplitude 10:

Figure 56. FFT Result

Digital Filter

Figure 57. Task control

61

Design characteristics:

• Frequency response: Lowpass

• Sampling frequency: 𝑓𝑠 = 1000 𝐻𝑧

• Cutting frequency: 𝑓𝑐 = 100 𝐻𝑧

• Simulink block used: FIR Filter

• Filter order: 2

Simulink block used:

Figure 58. Digital Filter modelling

Results with a given input of 100Hz and amplitude 10:

Figure 59. Results 1 of Digital Filter and FFT

Results with a given input composed by two signals with 10Hz amplitude 10V and 40Hz amplitude

5V:

62

Figure 60. Results 2 of Digital Filter and FFT

From these results we can say that we satisfy the results of Concept Model. Furthermore, we

added:

• state machine

• quantization

• sampling

• holding

• HMI design

Now to start the process of transitioning from Technical to Production model shall start we must

implement:

• Scheduling of the tasks

• Interrupt handling

63

Scheduling

Scheduling of the tasks is very important in Real-time applications such as ours. In this subchapter

we will analyze how can we use Simulink to do so and implement it in our example. Simulink

offers two types of scheduling:

• Time-Based Scheduling

• Event-Based Scheduling

Firstly, as seen in Customer Requirements table, in our application we have 3 Synchronous tasks

that must be executed as Time-Based Scheduling:

• Supervisory Task

• Digital Filter Task

• FFT Task

Secondly, we have another task that must be executed Asynchronously, i.e. only when the

Emergency switch is turned on, thus this task must be scheduled as Event-Based Scheduling. The

illustration below shows the scheduling principle without taking to account the execution times

of the tasks:

Figure 61. Scheduling

Simulink offers several ways to handle the scheduling of tasks(subsystems). Here we will use

‘Temporal logic scheduler’ that is implemented via Stateflow. This technique allows us two

different ways to use it:

• Event-based Temporal logic

• Absolute-time Temporal logic

64

For Absolute-time Temporal logic the operators that can be used are:

• after(x,time)

• before(x,time)

• every(x,time)

• temporalCount(time)

• elapsed(time)

Time can be set as seconds(sec), milliseconds(msec), microseconds(usec), and ‘x’ is the time

value.

But, for RTOS applications using Absolute time is not recommended from Simulink. Thus, we

will use Event-based Temporal logic to execute Synchronous tasks. The operators are the same

as Absolute time, but they are used in a different way. The syntax is as follows:

• every(n,tick)

The example is given for the operator ‘every’ but it is the same for every operator. The

important thing is that the variable ‘tick’ has to be linked in a Timer, Clock or to the base rate.

Here, we decide to not put anything more and complicate the model and use the base rate. In

this case, the base-rate and sub-rate tasks will be managed by the OS itself and not by timer

interrupts. The logic goes like this:

• Execute Supervisory Control Task in a base rate that is 10Khz

• Execute Digital Filter Task every 10 base rates, thus frequency is 1KHz

• Execute FFT Task every 100 base rates, thus frequency 100Hz.

Interrupts

A more complex process to be managed in Simulink is handling Interrupt Service Routine(ISR).

The block that creates an ISR and it also is supported from Embedded Coder, i.e. its code can be

automatically generated is the block called ‘Hardware Interrupt’ block. This block can be used

only in subsystems that are set as a ‘Function-call subsystems’ and it is different for every type

of hardware. In this case we will analyze the most common one:

• ARM Cortex-M processors

65

Figure 62. Hardware interrupt block and its parameters

(Another example is ‘External Interrupt’ block for Arduino Hardware.)

To use the ‘Hardware Interrupt’ block we must set its parameters:

• Set interrupt group, in this case Cortex-M

• Set interrupt name, it will correspond to the specific entry of the processors interrupt

vector table. A good option is to leave it as it is and then check if that is available in the

processors vector table

• Interrupt number, corresponds to the position of interrupt in the processor vector table

• Check the ‘Disable interrupt pre-emption’ because we do not want other interrupts to

preempt the ‘Emergency Task’

Of course, when the code will be generated and integrated with the firmware, the GPIO input

of the board that the hardware interrupt is connected (in our case the Emergency Switch), must

be linked to the ISR via hand-written code.

66

All this procedure must be done when we set which hardware we will going to use. For

now, we will use the Interrupt simulation block. Note that This block cannot be used for code

generation.

Figure 64. Control content with Interrupt simulation

Emergency

switch

Boards input

pin

Hand-

written code

ISR (Generated by

Embedded coder)

HARDWARE

SOFTWARE

Figure 63. Hardware interrupt flowchart

67

Monitoring of the Supervisory Control:

Figure 65. Chart mode

 Control frame

Control frame input must take the Analog input signal and give a digital output to the Control

content. Here, we have done it via Quantizer block in Simulink.

Figure 66. Quantizer

Several tests have been done to see the number of bits needed to have a good result, of course

keeping in mind that we are in a simulation environment. We have concluded that until 6 bits,

the results with our range of frequency and amplitude is enough. The results with 4 bits give us

a wrong result about signal spectrum, since the algorithm does not have enough information to

give us the good result. The output with 4-bit quantization is shown below:

68

Figure 67. FFT Output with 4-bit quantization

The control frame output must take the calculated digital output from the Control content and

transform it to Analog. Here we have done it via PWM and a Lowpass filter. The parameters to

be set are:

• Saturation levels

• Period of Repeating sequence

• Value of Repeating sequence

• Relay switch on and off values

• Output when off and on

• LPF characteristics

Figure 68. PWM Design

69

Results after reconstruction of the Signal1:

Figure 69. PWM Results

2.0.7. HMI

Components:

• Start/Stop push button

• Emergency switch

• Oscilloscope

• On LED

• Emergency LED

70

Figure 70. HMI Design

HMI feedback:

Figure 71. HMI Feedback

71

72

Figure 72. Simulink model architecture view

2.1. Rapid control prototyping
Since, the rapid control prototype was not essential for the use of this simple example so

instead of testing it on a real prototype we resolved to using software only approach.

2.2. Production Model Testing
Software-in-the-loop simulation mode denotes simulations in which the software of the real

control system is embedded in the simulation loop. The simulation contains part of the real

system, i.e. the control software, together with simulated parts, i.e. the device hardware and the

environment. The executable code of the real control system is directly embedded in the

simulation. In SIL, the software of the real control system is deployed on simulated devices that

reside within a simulated environment with simulated sources of dynamism. SIL simulation is

typically used during the late stages of application development. SIL simulation enables

experimenting with the control system on simulated devices before deployment. (Adelinde M.

Uhrmacher, 2009)

In our case we will carry this task in Simulink. Certainly, SIL model contains only CONTROL

module and nothing else.

73

Figure 73. SIL Settings

Figure 74. Simulink model to run SIL

 Because this example is computationally simple with very few variables, we

see that the results are the same as Model-in-the-Loop. In the contrary, we will see that

differences will be rather bigger when we deal with a real application.

74

Figure 75. SIL results

Standards check

The results of modelling were satisfactory and failed none of the standards or guidelines.

But there is room to improve the Warnings given. All the reports of each check are generated

and stored in documentation. In the following figures we can see the summary of results for each

of the ran checks:

Figure 76. ISO 26262 check results

75

Figure 77. MISRA C:2012 check results

Figure 78. MAAB guidelines check results

In addition of the standards, we run also Code Generation Advisor with no failures:

76

Figure 79. Code generation advisor check results

77

Chapter 2

1.0. Customer Requirements
 Develop a portable product to attach to the vehicle’s battery to predict state of health of

the battery.

Note: the solution of this problem will be found by applying hybrid V-cycle strategy to determine

the efficiency of the proposed procedure.

Background

The evolution of automotive industries has become apple of eye nowadays, the eyes of

world is directed towards power production and power storage. Batteries are the most common

source of power storage. There are many types of batteries, small cells to large battery packs

used to run whole offices. These batteries are charged and recharged many times during their

lifetime.

Here we are not going to discuss about how battery works and what are the factors

involved in working of the batteries. But we are more interested in predicting the state of health

and state of charge of the battery. Since, these two factors are important in predicting the usage

of battery, so we should understand them first in order to get an idea how important is our

product for present and in the future.

At this very moment, there is no such product in the market that has the same
functionalities. This product took an inner view into the study of batteries. Also, it processes
data and informs the user through a simple interface such as an application on a smart phone.
The outcome of the project will be directly applied for the development and marketing of a
wide range of aftermarket products for the monitoring of Lead-Acid batteries. Moreover, the
know-how and the technologies developed can be transferred to other types of batteries, such
as Lithium Ion (LION), and therefore applicable to the technological development agenda
foreseen for the next few years, regarding hybrid/fully electric vehicles (HBEV and BEV) with
optimal management of co-generation micro-networks (photovoltaic, wind… etcetera).

The aim of the model discussed below is to fully develop a battery State of Health (SOH)

detection algorithm and implementing it in real time, afterwards, connect it to the device under

management in order to observe and compile the data, and finally inform the user with various

information about the battery under inspection specifically the battery State of Charge and State

of Health. Before the discussion of model which helps us to predict the state of health of the

battery, we should understand what State of health and other important factors about it is.

78

State of health of battery

The state of health (SOH) of a battery is a ‘figure of merit’ to describe the battery

condition, and how much of useful lifetime is remaining from the battery, thus, if you know state

of health of your battery you would have ability to know whether your battery needs repairs or

even replacement, or is it functioning with the optimum performance. It is calculated in

percentage points ‘%’.

A 100% State of health of battery means that this battery is brand new (matching the

specifications of the battery) and was not used before. Accordingly, a used battery has a

decreasing state of health over time due to the battery decaying. The battery decaying happens

due to chemical decomposition inside the battery due to cyclic charging and discharging of

battery. A healthy battery behaves in a way that the ions flow freely from the anode to the

cathode, and when the battery is put to a load (withdrawing electric current), the ion flows in the

reverse direction.

This process tears down the cathode and wears it by time, thus it means reduced battery

capacity because less ions are now flowing from the anode to the cathode and vice versa.

Nevertheless, battery state of health (SOH) is not provided by battery manufacturers because in

its current condition it is know that it has a (100%) state of health, so this concept applies only

when a battery is put into use and start withdrawing electric current. Moreover, the state of

health of the battery can be applied to each cell of the battery in which in the end gives the

overall value. And since every battery has different specifications and behaves differently, a

battery state of health is measured differently amongst different batteries because it is a

reference to the battery at its optimum performance which are different. So, the factors must

contain previous knowledge of the battery states or performance in order to be able to

determine the new state of health of a battery.

Figure 80. Battery state

As explained in the figure the state of health rated is different from the state of health at the

current time, because of the degradation of the battery.

79

State of health importance

As for a normal battery, a low state of charge is of no concerns in the terms of

maintenance and replacement, as the battery will be subjected to the charging process, thus it

will be able to provide the energy needed. But, a battery with a low State of health would require

repairs or even replacements. As for any battery, there are 3 phases of working, which are:

a. Service zone

Which is the zone where the battery provides its rated capacity, thus providing fully the

energy required.

b. Replacement zone

The zone where the battery starts degrading and the cathode is wearing out, which means

that the battery is not providing its rated capacity. So, a battery in replacement zone will require

either maintenance or replacement of the cathode or to be subjected to the necessary type of

maintenance in order to retain it back in the Service zone.

c. Failure zone

Once you enter the failure zone, the battery is known as ‘failed’. Which means that the

battery behavior cannot be predicted, and the battery is either not functioning or requires

replacement. This phase is very dangerous for many types of applications as they required fixed

voltage and current input. So, this phase must be avoided, and the battery should be subjected

to direct maintenance or repairs.

Figure 81 Battery cell usage

80

Hybrid V-cycle

Figure 82 Hybrid V-cycle

1.1. Requirements

 The customer provided us with Simulink model which predicts SOH of the battery with a

certain precision for only two windows (the word window here means a certain time length in

which signal has been divided, by this we can compare two adjacent windows to predict).

Following are the customer requirements:

Table 6 Customer Requirements

Function 1 BATMAN Application

Requirement 1-1 Must calculate SoH

Requirement 1-2 Predict whether Soh greater or less than 40%

Requirement 1-3 Reduce buffer size

Requirement 1-4 Reduce code memory size

Function 2 Supervisory Control

Requirement 2-1 Start/Stop push button must be added (Mobile App)

81

Requirement 2-2 Should print text for change in battery

Function 3 Bluetooth transmission

Requirement 3-1 Outputs must be transmitted every time we have a result

1.2. Simulink model provided by the customer

Figure 83 Simulink model

Above figure shows the Simulink model provided by the customer. We run this model as

it is to see the results and then try to improve it as required by the customer.

82

Results

Figure 84 Simulink Model Results

The above figure shows the results of the model provided by the customer.

In the following description, we will discuss the model, in order to understand it better.

1.2.1 Model description

 We can divide the model in the following parts in order to understand it better. We are

not going to change some parts of the model since they are the basic components. After changing

the model, we will compare the results in order to see whether it is performing according to

requirements set by the customer.

 The model can be divided into mainly three parts.

- Battery model

- Support Vector Machine (SVM)

- Algorithm for SOH prediction

Out of the above-mentioned things we will change Algorithm for the prediction of the SOH.

The battery model mimics the real battery conditions while the support vector machine

predicts when the battery is degraded to such an extent that we need replacement.

1.2.2. Algorithm for SOH prediction

 The battery model mentioned above was used to predict the real battery voltage and the

previous work done by my colleagues proved that battery model is a good predictor of battery in

real world conditions. From the analysis done on voltage we observe 3 parameters which are

defined below:

- Parameter 1 – Delta (voltage difference of battery)

83

- Parameter 2 – Difference delta (rate of change of voltage of batteries)

- Parameter 3 – Variance of maximum/minimum peaks of voltage

Parameter 1- Delta

The analysis done by company shows that the change in peak to peak voltage is nearly

constant above 40% when the state of health of battery is above 40% while below it we can

detect a slope which shows that the difference between peak to peak voltage is increasing.

Parameter 2 Difference delta

 The other interesting feature of voltage of battery found by the company was that if we

study the rate of change of voltage of battery when it is below 40% then we can see that it starts

to increase. Which means that as SOH of the battery decreases the rate at which the voltage

changes increases. It serves as the second indicator of the deteriorating state of health of the

battery. But this parameter only gives the desired results when we have high initial state of

charge of battery.

Parameter 3 Variance of maximum/minimum peaks of voltage

 Relation between variance with respect to the SOH, this parameter shows an increasing

trend with the decrease of the battery state of health throughout whole experiment. This trend

was interesting to us as a factor that could be fed to the estimating algorithm, in the sense that:

𝑉𝑝𝑒𝑎𝑘𝑡𝑜𝑝𝑒𝑎𝑘 ∝1/𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

Hence, knowing the Variance over a window of time will help us understand the SOH of

the battery, as the following cases applies:

- Variance is constant over time, which is a representation that battery SOH is maintained

at same level, not increasing or decreasing but maybe there is a slight change which is

undetectable

- Variance is decreasing over a window of time, which means that the battery life is

degrading rapidly, and actions should be taken

- Third case which the variance will be decreasing over time is NOT applicable. Because it

means that the battery health is automatically regaining over time which is practically

impossible without any intervention.

Note that this parameter like the previous rate of change of voltage gives good results only

when the initial state of charge of the battery is high.

The above three parameters are used in the Simulink model in order to predict the state of health

of the battery. The above discussion gives us a brief overview of the algorithm the results of these

84

parameters are fed into the SVM to predict SOH of the battery. In the following topics we will

discuss how we are applying our Hybrid V-cycle for developing this model.

2.0. Technical and production model
 The second step in our hybrid V-cycle is to develop a technical model considering the

requirements of our customer and then transform it into production model. In the first step we

took the model from the customer and note down the requirements. The first step is important

to understand what customer wants. This step is the base of our technical model.

 In this step, we develop the model following ‘software in the loop’ and ‘model in the loop’

based on model-based engineering. We have nothing in hardware, every program is in software,

for example Simulink. We modify the model according to requirements of customer. We also try

to find out innovative solutions for satisfying requirements set out by our customer. There might

be some requirements which cannot be incorporated in our model or even if they are

incorporated, we pay a higher price for getting slightly better performance. At this point

everything is in the software, hence, it costs nothing to make any changes in the model. We can

simply do it by a click of the button.

2.0.1. Technical model

The Simulink model for the prediction of state of health of the battery is as follows. It is

divided in following parts according to the ‘’Hybrid V-cycle Methodology’’ developed in our

company in order to develop every project following some standardized procedure which makes

it streamlined and easy for other persons who will work on this project to understand.

85

In our model, since we are using the battery model in Simulink, so we have all the blocks

in software. In real world environment for this project, the environment software block will be

replaced by real environment while the software block for the plant will be replaced by battery.

According to the above figure we can arrange our Simulink model in the following given way:

86

Figure 85. Simulink Model in the wake of Hybrid V-cycle methodology

Note that in this Hybrid V-cycle methodology user is not shown here which is the owner

of this device. In the following passages we will take a brief overlook of the blocks present.

87

2.0.1.1. Environment
This block represents the things which are affecting our electronic circuits due to which

they are unable to predict the value accurately. The major factor is temperature which is affecting

the performance of electric circuits. If the change in temperature is within certain limits than, as

communicated by the manufacturer of the IC’s, our results are accurate. In real circuit we will

have the voltage and current from the battery but in this case since we are working on the

Simulink so we have to use a battery model which accurately predicts this. For this battery model

we are placing value of the temperature.

Figure 86. Environment block

88

2.0.1.2. Plant
This block takes input as temperature from the environment. This block contains the

Battery model which mimics the real battery conditions and gives out the voltage of the battery

as it’s state of health is decreasing. In our control block we are only using the voltage coming

from battery model.

The inputs to the battery model are:

• Temperature (from environment)

• State of health (produced by signal generator varying from 100% to 0%)

• Ts (simulation time step)

• SOCinz (initial state of charge)

Figure 87. Plant block

89

2.0.1.3. Control Block
The input to the control block is voltage coming from the plant. In the control block we are

calculating three types of values from that voltage coming from the battery model and giving it

to SVM in order to predict the result.

• Variance

• Delta

• Difference between delta

• SVM

Figure 88. Control Block

We can see that this control block has one input which is voltage coming from the battery

model while it has one output which is state of health for the human machine interface.

Variance

In order to predict the deterioration of state of health for the battery we calculate the

variance of peaks of voltage profile. We see that when the state of health of the battery

deteriorates the variance of the peaks of voltage profile starts to vary drastically.

90

Figure 89. SoH Deterioration effect on Variance

As seen in the above figure, the variance starts to vary drastically as we reach state of

health of battery below 40%. The calculation of variance is done by following scheme.

Figure 90. Simulink Model for Variance

Delta

It is calculated by the difference between the maximum and minimum values of the

difference between two consecutive values of the battery voltage. First, we find the difference

between two values of the voltage input. This is done by using following blocks.

91

Figure 91. Simulink Model for difference calculation

After calculating the difference, we calculate the difference between these values. As,

state of health of battery deteriorates the difference between them starts to vary drastically as

can be seen in figure 10.

Figure 92. SoH detrioration affect on Delta

92

Difdelta

The third and last variable is difference between the delta. It gives the same result as both

above variables. As the state of health of battery deteriorates, we see that the value of difference

delta changes as shown in figure 11.

Figure 93. SoH detrioration effect on Difdelta

The Simulink blocks used to calculate this are shown in the figure 12.

93

Figure 94. Simulink model for difdelta and delta calculation

Support Vector Machine

We saw how variables namely variance, delta and difference delta vary with change in

state of health of the battery. Using this information, we can train our support vector machine to

predict for all other data available. The support vector machine gets better in predicting the state

of health as more data is fed to it and with the passage of time it’s accuracy will increase. The

Simulink blocks used for predicting the state of health of battery is shown in figure 13.

Figure 95. Support Vector Machine

94

2.0.1.4. Human Machine Interface Block
This block is used to display the result from the support vector machine. We keep in mind

that the algorithm predicts whether state of health of battery is above a certain percentage or

not. It doesn’t tell current value rather it tells that the battery can be used further, or we should

replace it since, it’s crucial for the car. We have also used an app to communicate with customer

to inform him when he should replace the battery. The app tells the state of health in percentage

and tells whether the SoH of the battery is greater or less than 40%.

Figure 96. Human Machine Interface Block

95

2.0.2. Comparing technical model results with Customer model

We used 4 different types of real data in order to reproduce the real voltage values for

our control block. We used this data to train our support vector machine also and then we used

other 4 data to check the efficiency of our algorithm.

Real_data1

Figure 97. Real_data1 Results

The figure 15 shows three values which is State of health (red), voltage from battery

model (yellow) and State of health prediction (blue). It can be seen from the figure that when the

state of health of the battery decreases below 40% the algorithm perfectly detects the and gives

an output in the form of 1 which is multiplied to show it properly on the graph above. The

simulation was run for more than 10 hours in the Simulink.

96

Figure 98. Real_data1 SOH

We can see from Figure 16 that value of SoH is 30% when our algorithm predicts the

deterioration of state of health of battery.

Real_data2

Now, we will reproduce the results by placing second set of data.

Figure 99. Real_data2 Results

97

As shown in Figure 17, our algorithm predicts the deterioration of state of health of

battery when it goes below 40%. The figure below shows that our algorithm predicts when the

SoH is at 30% for real data 2.

Figure 100. Real_data2 SoH

Real_data3

We are placing real_data3 in our algorithm. As can be seen from the statistics our

algorithm predicts that the state of health is below 40% but, it’s 80%.

Figure 101. Real_data3 Results

98

Real_data4

As shown by the figure 20, the algorithm predicts accurately state of health of the battery.

The state of health of battery is 30% when our algorithm predicts the deterioration of SoH below

our marked threshold.

Figure 102. Real_data4 Results

Real_data5

When we run our program with input as Real_data5, our algorithm predicts accurately

the deterioration of the battery. Algorithm gives 1 (which is multiplied by 50 for reading data

easily) when the SoH of battery is 30%.

99

Figure 103. Real_data5 Results

Real_data6

After running the Simulink model with input of Real_data6 we see that our algorithm

predicts that the state of health of battery is less than 40% but in fact the actual state of health

of battery is 83%.

Figure 104. Real_data6 Results

100

Real_data7

The figure 23 shows that our algorithm predicted that the state of health of battery is

below 40% but, it is 82%.

Figure 105. Real_data7 Results

Real_data8

After passing Real_data8 from our algorithm we can see that our algorithm predicts that

the state of health of the battery is below 40% but it is 45%.

Figure 106. Real_data8 Results

101

2.0.3. Analysis of results

The following table shows the results:

Table 7 Analysis of results

Data
Actual SoH while our algorithm predicts it

less than 40%
RESULTS

Real_data1 30% PASS

Real_data2 30% PASS

Real_data3 80% FAIL

Real_data4 30% PASS

Real_data5 30% PASS

Real_data6 83% FAIL

Real_data7 82% FAIL

Real_data8 45%
PASS

(Conditionally)

The Table 1 shows the summarized results. We can consider an error of 5% in prediction

which will be gradually reduced as we get more data to train our support vector machine.

Hence, by calculating the average of pass in our tests conducted we get the following

results. Our algorithm can predict the value with success ratio of 62.5%.

Conclusion of the comparison

As of right now our algorithm has a success ratio of 62.5%. As we are using support

vector machine to predict the results. The SVM can be improved with the passage of time as we

pass different types of data through it. The more data we pass through it, we are training it to

increase the efficiency of prediction. We have used 8 different types of real data in order to train

the SVM.

As mentioned in the beginning, we can see the effect on variance of peaks, delta and

difference delta as the state of health of the battery decreases. Hence, in conclusion we can

predict if SoH is below certain percentage whose success ratio can be increased with better

training of SVM in the future.

102

With respect to the customer requirements we can satisfy customer requirements by

developing algorithm which predicts SOH with an efficiency of 62.5%.

2.0.4. Production model

 For the production model we must reduce the size of the buffer and make certain changes

in the way we calculate variance. We develop a formula so that instead of storing

maximum/minimum values for the whole window time and then sending it to a function to

calculate variance. We are calculating the running variance using method given below.

Running variance formula

 The running variance can be calculated by using the following formulae.

The above formula is used to calculate the running variance. This formula is incorporated in the

Matlab function as follows:

function variance = fcn(x,window)

persistent i

persistent m

persistent S

persistent v

if isempty(i)

 m=x;

 S=0;

 variance=0;

 v=0;

 i=2;

else

 M=m+(x-m)/(i+1);

 S=S+(x-m)*(x-M);

103

 m=M;

 i=i+1;

 variance=v/(S/i)-1;

 v=S/i;

end

 if i>window

 v=0;

 S=0;

 i=2;

 m=x;

end

 With the help of this, we can reduce the buffer size which will reduce the memory size of

the code. This is shown in the following figure:

Figure 107 Running variance

The next step in order to move from step 2 of our hybrid V-cycle to next step we must

generate the code and place it in our rapid control prototype. This can be shown by the following

step:

104

Figure 108 Hybrid V-cycle steps

The generated code is added in the appendix with description of settings used. We must see the

customer requirements and we can see that by introducing running variance we have achieved

to complete requirement no. 1.3 and 1.4.

After checking the requirements, we are sure that we have satisfied the customer requirements.

Now we will move to the rapid control prototyping step in which we will run our program on the

rapid control prototype device. This device will set out the specifications of the final device.

2.1. Rapid control prototype

The RCP device we are using is from Texas instruments which is launchpad cc2640r2f. the

specifications of the device is given as follows:

Specifications of the TI

I used code composer studio to program the device. In order to program the device we

need to integrate the software files inside the code composer studio. The specification of the

device and the related material about the code composer studio is given in appendix.

105

2.2. Production model testing

I generated the C code using the embedded coder provided in the Simulink. The generated code

is to be integrated in the firmware (already developed by some other student). After the

integration, I tested the model on our rapid control protype. Due to the shortage of time I was

unable to complete this phase of integration of the complete software and my work was limited

to the code generation for testing on the rapid control prototype.

106

Conclusion:
• We created a development toolchain by integrating ISO2622, V-Cycle and Systems

Engineering in one, that is what we called Hybrid V-cycle. This newly developed Hybrid-

V-Cycle caters the needs for automotive component development considering all the

safety standards now in place. this Hybrid V-cycle makes work easier to handle, thus

increasing efficiency.

• We introduced an innovative approach for the architecture of the system that focuses on

modularity and reusability for the software components developed during the project.

This modular structure enables us to use this toolchain for several other fields, especially

complex control engineering.

• We explained our process in detail by applying the newly developed toolchain on the

simple example of digital filter.

• To further establish the significance of our toolchain we took a real-world example of Bat-

Man project. It shows that how it can be useful in developing a real project considering

all the function safety concepts along with the reusability and modularity of architecture

of the system.

• For the future development this tool chain can be easily fine-tuned to cater with other

different kinds of projects.

107

Bibliografia
(2020, Gennaio 2). Retrieved from http://ftp.uni-kl.de/pub/v-modell-xt/Release-1.1-

eng/Dokumentation/pdf/V-Modell-XT-eng-Teil1.pdf

Adelinde M. Uhrmacher, D. W. (2009). Multi-Agent systems: Simulation and Applications.

Brain Technologies. (s.d.). Preliminary analysis of BATMAN project. Torino.

cadence. (2019, 08). cadence. Tratto da https://www.cadence.com/content/dam/cadence-

www/global/en_US/documents/solutions/automotive-functional-safety-wp.pdf

dspace. (2019). Tratto da dspace:

https://www.dspace.com/en/ltd/home/applicationfields/our_solutions_for/bussimulati

on/bussimulation_usecases/rapid_control_prototyping.cfm

Instruments, N. (2019, 3 5). white paper. Tratto da https://www.ni.com/it-it/innovations/white-

papers/11/what-is-the-iso-26262-functional-safety-standard-.html

Iso.org. (2018). ISO online browsing platform. Retrieved from ISO online browsing platform:

https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en

Jabil. (2017). Retrieved from jabil: https://www.jabil.com/insights/blog-main/automotive-

industry-trends-point-to-shorter-product-development-cycles.html

Jackson, C. (2019). lifecycle insights. Tratto da https://www.lifecycleinsights.com/tech-

guide/model-based-development/

MathWorks. (s.d.). Tratto da Mathworks website:

https://www.mathworks.com/help/ecoder/gs/v-model-for-system-

development.html#brufb98-7

mitre.org. (2014, may). mitre. Tratto da https://www.mitre.org/publications/systems-

engineering-guide/systems-engineering-guide/the-evolution-of-systems

Ross, H.-L. (2016). Functional safety for road vehicles. Springer International Publishing.

x-engineer.org. (2019). Tratto da https://x-engineer.org/graduate-engineering/modeling-

simulation/model-based-design/essential-aspects-of-the-v-cycle-software-

development-process/

