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ii. Abstract 
 

The biggest challenge of the automotive industry today is the increasing complexity of it. 

Today, a high-end car software has approximately 100 million lines of code, that makes it one of 

the most complex machines. This comes with a drawback, increasing the probability of software 

defects which can cause system failures, thus increasing the risk of damage to a human. 

Moreover, this complexity has increased the cost of the production. Both mentioned topics 

created the objective of finding more efficient ways for developing a structural toolchain and 

reusable software, which indeed are the key words of this thesis. The main reference for this 

thesis is the international standard for automotive industry ISO26262 titled as “Road Vehicles – 

Functional Safety” that provides us with the requirements for Electrical and/or Electronic 

systems.   

ISO26262 is strictly defined for requirements that must be fulfilled, not tools or ways to 

satisfy those requirements, thus the need and necessity to develop toolchains to satisfy these 

requirements. Our goal was creating a development toolchain integrating or combining 

ISO26262, V-Cycle and Systems Engineering in one, that is what we called Hybrid-V-Cycle. In our 

quest to integrate all the methods into one, we started with the V-Cycle which is a standard in 

the development of any component of vehicle and then enforced this cycle upon the ISO26262 

standards. By this way, we developed a Hybrid-V-Cycle with feedback loops for continuous 

improvement which will be our first chapter. Each step of it is further improved by pointing the 

safety requirements we must fulfill in that step. Furthermore, we will explain our innovative 

approach for the Architecture of the system that focuses in two main things – Modularity and 

Reusability. In the last part of the chapter there will be an example on how we apply our Hybrid 

development chain with a simple project – Digital Filter.  

In the second chapter we will jump to a real automotive project – a battery manager for 

Lead-Acid batteries called BAT-MAN, developed by ‘Brain Technologies s.r.l.’ that is going to be 

our Customer. “The proposal of BAT-MAN is to make significant technologic innovations 

(especially relative to the techniques of estimation and diagnostics), realizing at the same time a 

product idea (realizing a prototype) that, on the one hand it can offer immediate and large-scale 

feedback on the solutions developed, and on the other can act as a forerunner to a series of 

applications based on the same technologies, either in areas closely related to accumulation 

systems, or in areas where advanced diagnostic and estimation techniques can bring a significant 

added value” (Brain Technologies). The project is focused on innovative estimation algorithm to 

estimate State of Charge and State of Health of a battery. On our several interactions with the 

customer we set up the requirements and they provide us with Concept model. After that we 

proceed as in the first chapter. It is important to mention that there are several parts of this 

project that we were not able to share because the BAT-MAN project is in the process of the 

patent application. The ascending branch of the V-Cycle will be the future of this project, where 



 
 

the software of BAT-MAN must be integrated, tested and after all be certified by ISO26262 and 

release on the market. 

The newly developed Hybrid-V-Cycle caters the needs for automotive component 

development considering all the safety standards now in place. With the example we showed the 

effectiveness of this development toolchain and applying it to the real-world BAT-MAN project 

showed that how it can be helpful in tackling real world complex problems. This Hybrid-V-cycle 

makes sure that we are compliant with the functional safety standards and makes the work easier 

to handle, thus increasing the efficiency. Also, adding here the modular architecture developed 

in this thesis makes it usable for several other fields, especially complex Control Engineering 

projects. 
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iii. Introduction 
Automotive sector is very competitive and challenging nowadays. There are many 

companies which are trying hard to increase there share of the market. This competition is 

forcing companies to use innovative methods to reduce the time of production (time to market) 

of any product. A research conducted by Jabil (Jabil, 2017) shows that in 2017, 68% of the 

automotive manufactures told that there time to market is less than 2 years. While it steadily 

increased to 71% in 2018. Shortening the time to market is a good trend but it raises some 

problems of functional safety. If we are reducing the time to market, we must cut down our time 

for the whole process chain. The major time-consuming factors which are delaying process are: 

 

Figure 1. Go to market statistics 

(Jabil, 2017) 

We are considering the major problems which are: 

• High research and development costs 

• Meeting government and safety regulation 

• Long test cycles 

• Procurement/supplier selection 

Meeting Government and safety regulations 

In order to reduce the time required for getting your product to pass through all the safety 

regulations, the automotive sector has developed some safety rules which are proving to be less 



 
 

time consuming and since most of them follow the same standards so it is easy for the 

government to pass the product in less time. The safety standards which are being followed are 

ISO 26262. While in order to reduce the time to market the automotive manufactures are starting 

to use new approaches for the product development which is model based designing. Apart from 

the need to reduce time to market, companies are also focusing on streamlining the projects. 

They are trying to develop certain systematic principles to follow by which they can create a new 

product. A set of basic rules which will be followed in every project and can be adapted to 

different kinds of project. The basic purpose is to develop a systematic way to find the solution 

of the problem.  

 

What we are doing? 

Developing new Hybrid V-cycle considering, ISO 26262 (safety standard for electric 

components in vehicles) with model-based engineering, systems engineering and V-cycle to 

streamline the process for product development while keeping in mind the functional safety 

concepts of the model. 

 

Why we are doing it? 

We are doing it to streamline the process to develop a software or hardware for our 

vehicles so that we can reduce time to market for both parts. 

 

How we are doing? 

We are taking a simple example, whose requirements are provided by the customer and 

trying to pass it through all the phases of our process so that we can establish the whole 

procedure for simple process and then we can move forward and apply the same process to real 

world project.
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1. ISO26262 
ISO 26262 is the safety standard which is specific for automotive industry. It applies to safety-

related road vehicle electronic and electrical systems, and addresses hazards due to 

malfunctions. It provides the whole lifecycle of the E/E system (including H/w and S/w 

components). Important thing about this standard is the documentation. We must produce 

documents and know which steps to follow to produce these documents. The standard defines 

everything, and we follow the whole procedure to get results. The description of the standard as 

given by the official website is as follows.  

 

ISO26262 series of standards: 

• Provides a reference for the automotive safety lifecycle and supports the tailoring of the 
activities to be performed during the lifecycle phases, i.e., development, production, 
operation, service and decommissioning. 

• Provides an automotive-specific risk-based approach to determine integrity levels 
[Automotive Safety Integrity Levels (ASILs)]. 

• Uses ASILs to specify which of the requirements of ISO 26262 are applicable to avoid 
unreasonable residual risk. 

• Provides requirements for functional safety management, design, implementation, 
verification, validation and confirmation measures; and 

• Provides requirements for relations between customers and suppliers. 

(Iso.org, 2018) 

The Draft International Standard (DIS) of ISO 26262 was published in June 2009. Since the 

publication of the draft, ISO 26262 has gained traction in the automotive industry. Because a 

public draft standard is available, lawyers treat ISO 26262 as the technical state of the art. The 

technical state of the art is the highest level of development of a device or process at a time. 

According to German law, car producers are generally liable for damage to a person caused by 

the malfunction of a product. If the malfunction could not have been detected by the technical 

state of the art, the liability is excluded [German law on product liability (§ 823 Abs. 1 BGB, § 1 

ProdHaftG). 

(Instruments, 2019) 
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Functional safety  

According to ISO 26262, functional safety is defined as the “absence of unreasonable risk 

due to hazards caused by malfunctioning behavior of electrical/electronic systems”. 

 

Figure 2. Functional safety cascade (cadence, 2019) 

 

 

 

Figure 3. Safety lifecycle for software product development (Iso.org, 2018) 

 

 

This standard is relatively new in the automotive industry. It is entirely based on concept 

of functional safety. It was developed to enforce functional safety measures in a robust manner. 

With the fast-changing technology, every company wants to reduce the time required for testing 

the model. But this must be done in a safe way, hence, ISO 26262 enforces safety standards to 

already existing development models to produce the same safety functions. ISO 26262 is divided 

in following parts 10 portions: 
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1. Vocabulary 

2. Management of Functional Safety 

3. Concept Phase 

4. Product Development: System Level 

5. Product Development: Hardware Level 

6. Product Development: Software Level 

7. Production and Operation 

8. Supporting Processes 

9. ASIL-oriented and Safety-oriented Analyses 

10. Guidelines on ISO 26262 

 

Concept phase – This is the first development phase that ISO 26262 defines. It includes: 

• Item definition - using layouts, illustrations, definitions to define the project clearly 

• Hazard analysis and risk assessment – using FMEA, Situational analysis etc. we define the 

hazards and analyze their risks 

• Functional safety – after Hazard analysis and risk assessment is done, we define the ASIL, 

a Safe state and the Functional safety concepts 

Furthermore, while we are in the first steps of development of V-Cycle we also must handle: 

• Customer requirements – meetings with customer must be arranged and a table of 

requirements must be created 

• Concept model – the Concept model can be given by the Customer, if not, we shall do. 

The definition of Concept model will be explained in Model based design part. 

Here we can see that immediately our development toolchain must melt V-Cycle, ISO 26262 

and requirement engineering into one Hybrid V-Cycle. 

Product Development: System Level – Here we define our systems architecture and 

interfaces. i.e. system level product development. In this thesis we will introduce an innovative 

architecture where the keywords of it are Modularity and Reusability. This architecture will be 

very helpful especially in the integration and testing part where the Modules can be very easily 

handled. Indeed, the integration and testing is defined in ISO 26262 in ‘4-7 System and item 

integration and testing’. Furthermore, the technical safety aspects will be defined, taken by ISO 

26262. 
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Product Development: Software Level – In this thesis we will be dealing with Model based 

design, thus the software produced by us will be automatically generated. In this chapter ISO 

26262 defines: 

• General topics for software development, i.e. with a level of abstraction 

• Specification of software safety requirement 

• Define safety aspects 

• Software architecture design 

• Integration and Testing 

 

We need to add also: 

• Technical model 

• Simulation 

• Verification with Concept model 

• Production model 

• Code generation 

Again, we see that we need a development that makes these work altogether. 

 

Process definition 

According to ISO 26262, every process must be defined clearly before it starts, i.e. we must 

define: 

• Methodologies 

• Tool aspects 

• Safety aspects 

• Techniques 

• Artefact 
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Figure 4. Artefacts 

Methodologies – This means that we need to define what kind of methodology we are using in 

that process. For example, Model-based Design is the Methodology in the process of ‘Technical 

Model’. Another example for the process of ‘Hazard Analysis and Risk Assessment’ the 

methodology can be a type of FMEA, Situational Analysis etc. 

Tool aspects – What tools are we using for getting the process done. For example, MATLAB is 

one of the tools used for design, Embedded Coder for code generation etc. 

Safety aspects – This must define the aspects of the process that have to do with safety or 

functional safety.  

Techniques – Here we must define which techniques are we using for fulfilling the Functional 

Safety requirements. They will be chosen from the tables provided by ISO 26262 for the specified 

ASIL. 

Artefact – Artefacts are basically the outputs of the process. Here we must define what will be 

achieved in the end of the process. For example, in every project, the Concept phase artefacts 

will be: 

• Defined item 

• Customer requirements 

• Safety goal 

• Functional safety concept 

• Concept model 
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2. V-cycle 
 

 

Figure 5. V-cycle for software 

(x-engineer.org, 2019) 

As mentioned in the beginning, every company is trying to develop a systematic procedure to 

approach a problem. The standard software development process used in the automotive 

industry is the V-cycle. V-cycle is divided in 3 major categories which are: 

• German V-Modell 

• US government V-cycle 

• General testing V-model 

In our thesis, we will only discuss German V-cycle and use it to develop our own method. 

 

German V-Modell 

The V-Modell is a model for planning and realizing Projects. The V-Modell improves 

project transparency, project management and the probability of success by specifying concrete 

approaches with the respective results and responsible roles. It describes ‘’Who’’ has to do 

‘’What’’ and ‘’When’’ within the project. The V-modell was first introduced in 1997 (2020) for 
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civil and military agencies. Since, then due to the rapid advancement of automation, this model 

was updated to adapt to the new technological developments. The V-Modell introduced in 1997 

was updated in 2004. Following things were incorporated in that model: 

• Project-specific and organization-specific adaptability, applicability within the 

scope of the project, scalability to different project sizes and changeability and 

growth potential of the V-Modell itself. 

• Consideration of the state-of-the-art of technology and adaptation to current 

regulations and standards 

• Extension of the application to the entire system life cycle already during the 

development 

• Introduction of an organization-specific process for improving process models 

 

Objectives of V-Modell 

The objectives of V-Modell are described as follows: 

• Minimization of project risks 

• Improvement and guarantee of quality 

• Reduction of total cost over project and system life cycle 

• Improvement of communication between stake holders 

 

Basic V-Cycle components 

The V model splits the software development process into two main phases. The left side 

of the V is the part of requirement analysis, function/software design and change management. 

The right side of the V concentrates the main verification and validation activities.  The left side 

of the model can also be termed as validation while the right side can be termed as verification. 

Validation: The assurance that product, service or system meets the need of the customer 

and other identified stake holders. It often involves acceptance and suitability with external 

service. 

Verification: Evaluation of whether a product, service or system complies with regulation 

requirement specification or imposed condition. It is often an internal process. 

 

 

 

 

Specification Stream 

• User requirement specification 

• Functional requirement specification 

• Design requirement specification 

Testing Stream 

• Installation qualification 

• Operation qualification 

• Performance qualification 
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Systems engineering 

This approach can be traced back to 1940. It has many definitions depending on its uses 

but the classical one is: 

‘’An interdisciplinary approach to translating users' needs into the definition of a system, its 

architecture and design through an iterative process that results in an effective operational 

system. Systems engineering applies over the entire life cycle, from concept development to final 

disposal’’. 

The definition used in our project can be represented by the following figure: 

 

Figure 6. Systems engineering 

(mitre.org, 2014) 

 

This is a common graphical representation of the system engineering life cycle. The left 

side of the V represents concept development and the decomposition of requirements into 

functions and physical entities that can be architected, designed, and developed. The right side 

of the V represents integration of these entities (including appropriate testing to verify that they 

satisfy the requirements) and their ultimate transition into the field, where they are operated 

and maintained. 
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But this systematic approach does not enforce or mentions any safety checks, or it does 

not incorporate functional safety concept inside the development process. There are tests 

available which are specific for each V-cycle, but they are not standards.  

 

3. Model Based Design 
(Jackson, 2019)  

Model-Based Software Development is an embedded software initiative where a two-

sided model is used to verify control requirements and that the code runs on target electronic 

hardware. One side is the Control Model, representing the embedded software of the system. 

The architecture of the embedded software is modeled with blocks containing algorithms, 

functions and logic components. Compiled software is auto generated from this model. The other 

side is the Plant Model, representing the physical aspects of the system. Each block contains 

mathematics that allows it to emulate the behavior of that physical item. 

 

Figure 7. V-Model for System Development and types of Simulation (MathWorks, n.d.) 

In the left part of the V-Model we have different types of Simulation and Prototyping that are: 

• Simulation 

• Rapid Simulation 

• Rapid Prototyping 

• Rapid Prototyping on Target Hardware 

On the other hand, in the right side of the V-Model we have In-the-Loop testing that are: 

• Software-in-the-loop 

• Processor-in-the-loop 
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• Hardware-in-the-loop 

Depending on what we want to simulate or test, we must choose the right target 

environment that can be: 

• Development computer 

• Real-time simulator 

• Embedded microprocessor 

SIL testing is done to verify the automatically generated source code and runs on development 

computer and it is not in real-time. 

PIL testing is needed to verify the object code and can be run either on embedded hardware or 

development computer with Simulink and an IDE. It is also not real-time. 

HIL in the other hand is done to verify overall system functionality. It executes on the target 

hardware and it is real-time. 

These all stages will be described further when we are describing how our method works 

and where we are using it in our system. 

The most important reason of using this type of approach is the ability to get it 

standardized. Since, all the code is autogenerated and the blocks used are Simulink with no self-

defined function, hence, it’s easy to get it standardized by regulatory bodies. 

 

Concept Model – should grasp and show the behavior of the main tasks either separately or 

together. The technology is still not defined, except for analog/digital. 

Technical Model – should exhibit the main technical aspects, i.e. the sampling rate and the 

quantization levels, the saturation levels as well as other non-linearities. In addition, it must 

define the overall logic, i.e. states, transitions between states, tasks associated with states. 

Production Model - is an adaptation of the Technical model with the block sets provided by the 
VMU and/or RCP manufacturers in order to generate and download code for their hardware. 

 

 

 

 

 

Concept 

Model 

Technical 

Model 

Production 

Model 

Figure 8. Model based design model flow 
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Concept Model simulation results allow to proceed to the assembly of the Technical 
Model whose simulation results (compared to the Concept Model) allows to issue hardware and 
software requirements to procure a suitable VMU and/or RCP platform. Once procured it is 
possible to proceed with the “code production” according to the specific platform. 
If simulation results of Technical model are wrong, or something done in Concept Model is not 

possible in Technical Model, we must go back to Concept Model and do the needed 

modifications. In more serious problems, the Customer requirements might be also modified, 

and Customer must be notified. 

If results of Production Model are wrong, or something done in Technical Model is facing 

problems to be implemented for a certain VMU or RCP, we must go back to Technical Model and 

make the required changes. 

 

3.1. MAAB Guidelines1 

The Mathworks Automotive Advisory Board (MAAB) developed certain guidelines for using 

MATLAB, Simulink, Stateflow and Embedded coder to meet the requests from its key automotive 

industry customers such as Ford, Daimler Benz and Toyota and now involves the major part of 

automotive industry. MAAB Guidelines can be: 

• Global MAAB 

• JMAAB (Japan) 

Since we are not specifically targeting the Japan automotive industry, we will be using Global 

MAAB version 3.0. The objective of MAAB Guidelines are: 

• System integration without problems 

• Well-defined interfaces 

• Reusable models 

• Readable models 

• Professional documentation 

• Fast software changes 

• Easy exchange of models 

• Understandable documentation 

The guidelines given by MAAB can be rated as three different priorities: 

• Mandatory 

• Strongly recommended 

• Recommended 

Mandatory guidelines are those guidelines that all companies agree that are essential. 

 
1 Mathworks.com 
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Strongly recommended guidelines are those guidelines that are agreed upon to be a good 

practice. Models should conform to these guidelines to the greatest extent. 

Recommended guidelines are those guidelines that are recommended to improve the 

appearance of the model diagram but are not critical. 

Since our tools that we will use on this work are from MATLAB, Simulink, Stateflow and 

Embedded coder we must strictly apply the Mandatory guidelines and as most as possible two 

other priority rates. In the following, we will show some examples of MAAB Guidelines. 

 

A Strongly recommended requirement is the position of the block names. They must be 

located below the block, as in figure shown below: 

 

Figure 9. MAAB guideline for Simulink modelling example (MathWorks, n.d.) 

 

A Mandatory requirement that we shall apply is the block that are not allowed to be inside 

controllers as the figure below shows: 

 

Figure 10. Prohibited blocks inside controllers (MathWorks, n.d.) 

Also, naming the files is very important and Mandatory according to MAAB, and they 

should be names as shown in the figure below: 
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Figure 11. MAAB for filenames (MathWorks, n.d.) 

 

For signal naming with a priority Strongly recommended, a signal name (MathWorks, n.d.): 

• should not start with a number 

• should not have blank spaces 

• should not have any control characters 

• should not return carriage returns 

• underscores can be used to separate parts 

• cannot have more than one consecutive underscore 

• cannot start with an underscore 

• cannot end with an underscore 
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4. Hybrid V-Cycle 
The purpose of creating a Hybrid V-Cycle comes from the need of integrating ISO 26262, 

Model based design flow in V-Cycle.  

 

4.1. ISO26262 into V-cycle 

In our project we are mapping these points on the V-cycle for automotive safety in order 

to make V-cycle coherent with functional safety rules of ISO 26262. The following picture shows 

our concept, 

 

Figure 12. Iso26262 Enforced on V-cycle 
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4.2. Hybrid V-Functional safety concept 

As can be seen from the figure 5 that we have mapped iso safety points on the V-Cycle. 

Now, we will mention our own V-cycle which shows the functional safety concepts already 

incorporated inside the model-based design.  

 

Figure 13. Hybrid V-functional safety concept 

 

 

 

 

 

 

 

 

 

 

 



16 
 

4.3. Steps for the Hybrid V-Functional safety cycle 

The figure 13 can be further defined in order to give us in-depth information about the 

whole process. We will divide the process mainly in three different categories which includes 

company, customer and supplier. The following diagram shows the interaction between them,  

 

 

Figure 14. Steps for hybrid V-cycle 

All the numbers on the diagram shows the points we follow to reach result. Two lines dividing 

the customer, company and supplier. The keyword’s we want to cover in this concept are 

following, 

• Functional safety 

• V-Cycle process 

• Model based design 

• Modularity 

• Reusability 

The first three keywords were incorporated when we were talking about the figure 13. We 

included all the concepts related to first three topics. In order to make code easy and reusable 

we are using the architecture which is divided by certain defined interfaces which helps us to 

make our code modular. We know all types of inputs and outputs so we can easily replace the 

block between the interfaces to get the required function from the model.  
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4.4. Explanation for the steps of Hybrid V- cycle 

 

Table 1 Steps for Hybrid V-cycle 

No. Of Point Models in the Nodes 
1 Customer Requirements 
2 Technical & production model  

2.1 Rapid Control Prototype (RCP) 
2.2 Testing of production model on dspace 
2.3 Production model for VMU (vehicle management unit) 
3 Vehicle Management Unit 
4 Integration and testing 
5 Prototype 

- Major changes 

- Minor changes 

 

Now, we will explain the steps we mentioned in table 1.  

1. Customer requirements 

Customer can provide us with the requirements or some model which we follow when 

developing technical models inside the company. This step is important because we understand 

all the requirements set up by the customer. After understanding the requirements, we interpret 

it and work on them to find out the best possible solution for the problem within the limits set 

by the customer. 

2. Technical and production model 

After specifying all the customer requirements, in technical model step, we focus on the 

making of simplest model as possible according to our understanding of the requirements laid 

down by our customer. After making the basic technical model we need a production to set all 

the parameters in order to run it on our rapid control prototype platform to quickly lay out the 

specifications for our vehicle management unit. 

2.1  Rapid control prototype 

Rapid control prototyping is a very efficient method to develop, optimize, and test new 

control strategies in a real environment quickly without manual programming (dspace, 2019). 
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After developing the model based on the requirements put down by the customer, we should 

run our model on this rapid control prototype in order to fine tune requirements and see how 

the program is working in this environment.  

2.2  Testing of Production model on dSpace 

Production model has a lot of flexibility and room for improvement. We need to optimize the 

model for code production and see how many bits are required to give us satisfactory results. 

We need optimization in order to reduce the memory of our code, hence, the cost of our vehicle 

management unit. So, the production model and rapid control prototype gives us the 

requirement for our vehicle management unit. 

Minor changes 

 While testing the model on our rapid prototyping platform we are unable to reach a 

conclusion or if the model is not producing the results desired by the customer, we have to go 

back again to the second step which is ‘’technical and production model’’. We change the model 

so that we can make it function as desired by the customer.  

 Moving from the 2.2 step to 2, costs nothing. Since we haven’t purchased anything and 

everything up-till now is on the software. So, we can iterate it as many times as we like 

considering the requirements from the customer. The main advantage of introducing rapid 

control prototype is to see whether the chosen equipment is suitable for this application or we 

need further improvements to reduce cost while maintain the same functionality.  

2.3  Production model for VMU (Vehicle Management Unit) 

After the specifications laid down by Dspace we will order the VMU from our vendors. We 

will move to this step after finalizing the model. If we need certain changes in the technical and 

production model, we will move straight to second point. 

3. Vehicle management unit 

This step will be performed outside the company. We will set up the requirements we need 

for our VMU. These requirements will be passed on to our vendors and vendor will be chosen 

accordingly. 

4. Integration and testing 

After getting the VMU from our supplier we will integrate our code with hardware and test it 

in different environments. The most important test is of fault injection in which we deliberately 

inject a fault in the system and see how robust our code is. After testing of our system if 

everything goes well then, we can move on to the next stage which is laying down the final 

product requirements. But if we are not able to produce the desired results, we must go back to 

fourth step or all the way back to second step. 
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Minor changes 

At the fourth step, we are testing on the real board and we have already bought this from 

the vendor. So, if we change it then we have to pay some damages but since we haven’t mass 

produced the system we still can go back to testing our model on rapid control prototype to 

change interfacing between the VMU and sensors to make it more efficient. It’s not 

recommended to change after you have bought the VMU from the vendor but if the system fails 

under fault injection system and it could be easily replaced by small changes then it is still 

feasible.  

Major changes 

 If at the fourth step while testing on the real hardware we have problem which is related 

to the understanding of basic requirements, then we must go back the second step which is 

technical and production model. This loop costs the same as the minor change after the 2.2 step, 

but it means that we have not understood the requirements well enough and have to revise 

those or to come up with new model to satisfy customer needs. The hybrid V-Cycle helps us to 

standardize the procedure and it makes management of the project easy. Even if we have gone 

to the second step, to move forward we cannot skip any step in between, and we must follow 

the procedure again. 

5. Final product requirements 

After integration and testing is successful, we will set out the product details for the 

customer. 

 

 

 

 

 

 

 

 

 

 



20 
 

5. Innovative Modular Architecture 
The concept of modularity and reusability can be explained by the following diagram. Figure 

from the notes of the prof: 

 

 

Figure 15. Reusability and modularity concept 

Figure 15 shows dotted lines which helps us to divide blocks in different sections. When we 

are talking about the modularity, we mean that we can replace the block and then test it for 

some other project. The process remains the same but whatever is in the blocks, by changing it 

we can change our target. 

5.1. Environment 

This block represents the external environment for our model. For example, if we are 

discussing about electronic circuits then we should consider the electromagnetic interference in 

our circuits from the external environments. We can simulate all the external influences in 

software (Simulink). This block is used to simulate the actual environment as close as possible to 

the real environment but only on the software. Every software has some restrictions, so we try 

to be as close as to the real environment. For example, if we are generating signal, we add noise 
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in the signal to reproduce the external affects. It affects the plant hence we have drawn signs in 

interference from this block to plant. 

 

5.2. Plant 

This block represents inputs we provide to control in order to make the decisions. This block 

is also simulated in the software.  

 

5.3. Control 

It is the main block in our scheme. It takes inputs from the plant and issues output to execute 

actions based on inputs. It also contains inputs from human machine interface. Our whole 

algorithm to control system is executed in this control block.  

 

5.4. Human machine interface 

This block in software represents interaction between human and machines. Each software 

gives us some controls which can reproduce actual human machine interaction.  In software, it is 

represented by buttons and switches which are in the software only and they don’t have any 

physical presence. You can choose the type of button and set some parameters to mimic actual 

behavior.  

 

5.5. Operator 

The programmer performs function of the operator. In real world, operator will input 

commands while here since everything is on the computer, hence the person controlling 

computer will be considered as operator. 

5.6. Interface 

These things define the connection between two blocks. In the above method we are 

connecting software with software, so interfaces are represented by just connections in the 

software. 

 

 



22 
 

 

Figure 16. Interface analysis (Ross, 2016) 

 

According to the Ford-FMEA-handbook there are four kinds of interfaces. (Ross, 2016) 

• Physical interface 

• Energy interfaces 

• Material transfer (interface) 

• Information interfaces 
 

 

6. Concept of reusability and modularity in Hybrid V-cycle 
 

In order to introduce this concept, we introduce the blocks. As shown in figure 8, we have 

divided the procedure in some blocks. We are going to define each block in order to understand 

the whole procedure.  

 

Software block 

 

 

Figure 17. Software blocks definition 



23 
 

This block represents the software portion of our Hybrid V-cycle. software will include 

anything which is not present physically, but it is designed and tested on computer. There is no 

interaction between physical parts. We design our systems and satisfy all the requirements 

virtually on a computer. 

 

Hardware block 

 

 

Figure 18. Hardware blocks definition 

This block represents the hardware portion of our Hybrid V-cycle. In this part, we have a 

physical equipment. We are no more working on the software which is all inside computer. This 

hardware block can include VMU, RCP, input from environment and all the sensors. VMU and 

RCP are included in the hardware block but in order to define the process in a better way we are 

going to highlight them separately just to identify the steps where we are introducing VMU and 

RCP. 

 

Rapid Control Prototype Block 

 

Figure 19. RCP representation of hardware block 

Rapid control prototype is a part of hardware block. We have represented it in a different 

way just to clarify the steps where we are using RCP. 

 

Vehicle Management Unit 

 

Figure 20. VMU representation of hardware block 
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Vehicle management unit is also a part of hardware block. We have represented it in a 

different way in order to clearly identify the steps where we are using VMU. 

 

 

7. Architecture impact in integration and testing 
 

As mentioned earlier that our procedure contains 5 important points which are as follows: 

• Functional safety 

• V-Cycle process 

• Model based design 

• Modularity 

• Reusability 

Now, we will link the modularity and reusability concepts with other concepts of functional 

safety, V-cycle process and model-based design. To explain it we have divided it in 3 parts. The 

first one is  

• Software in the loop  

• Hardware in the loop containing Rapid control prototype 

• Hardware in the loop containing VMU in the loop 
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7.1. Software in the loop 

 

Figure 21. Software in the loop 

This step is covered by 2nd step of our Hybrid V-functional safety cycle. In this step, we are 

going to develop our technical and production model based on the requirements demanded by 

our customer. This is the general scheme of our methodology in which we are going to divide our 

model into 5 main blocks. All these blocks are simulated in the software and at this stage no 

hardware is involved.  The blocks are: 

• Environment 

• Plant  

• Control 

• Human machine interface 

• Operator 

• Interface  

 

 

 

 



26 
 

7.2. Hardware in the loop containing Rapid control prototype 

 

 

Figure 22. Hardware in the loop containg rapid control prototype 

This step is covered by 2.2 and 2.3 step of our Hybrid V-functional safety cycle. As shown 

by the above diagram, after software in the loop we are doing code generation for our control 

block. 

7.3. Code generation 

We have the control block in software. In order to run it on our rapid control platform we 

convert it to a code. This process of code generation is handled automatically by software which 

produces C or C++. This automatic code is not optimized and in the following steps we will first 

try to run code on our rapid control prototype which can handle a large code size and is only 

introduced to check our control block performance and robustness. This equipment helps us to 

fine tune our control block and check for any potential errors. 
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Figure 23. Code generatioin 

7.4. Frame 

Every RCP requires some timers and assignment of ports which will help other blocks to 

communicate with it. We develop the frame in the next step to make sure that interfaces interact 

smoothly with RCP. 

 

Figure 24. Defining frame 
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7.5. Rapid Control Prototype Loop (2.2 & 2.3 step) 

 

Figure 25. RCP loop 

After constructing frame and placing code inside our rapid control prototype we replace 

the control block (referring to the left column) with rapid control prototype. After testing this 

configuration, we will observe how our control block is performing. We should make a distinction 

here, the yellow blocks on the left column with names, environment, plant, HMI and operator 

are all in the software. They are still controlled by computer which is connected to RCP which is 

a physical equipment with generated code running inside it.  

The right column has different sets of blocks. In this step, we have replaced all the 

software with hardware blocks. In the previous step, we were controlling everything from the 

computer. All the blocks except from RCP were not physically present. In this step, which is shown 

by column on right side of the diagram, we are going to replace all the software blocks with the 

hardware. All the inputs will be from hardware blocks. The operator will be a real person 

operating system with the HMI. While plant will be our sensors which will monitor the values and 

give it as an input to RCP. The environment will be everything surrounding equipment, which is 

affecting the system. 
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7.6. Hardware in the loop for vehicle management unit 

 

 

Figure 26. Hardware in the loop for VMU 

 

This step is covered by 4th step of our Hybrid V-functional safety cycle. As shown by the 

above diagram, the RCP gives us the specification of the VMU. It tells us the specifications of 

memory and other aspects of VMU. We need these aspects in order to select the vendor which 

will give us the best product at reasonable rates. The RCP also tells about the performance. So, 

instead of buying different VMU we will set the requirements set by RCP by running the code at 

various bit rates, to meet the performance requirements set by the customer, keeping in mind 

the safety aspects of our operation. If we can reduce the power requirements of the VMU we will 

be able to reduce the cost of purchase. VMU is supplied by the supplier which is represented by 

step 4th in our Hybrid V-functional safety cycle. 
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7.7. VMU loop (4th step) 

 

Figure 27. VMU loop 

As seen before, we will apply the same procedure as applied before in the RCP loop. We 

have 2 columns which are included in step 4th of our Hybrid V-Functional safety cycle. Column on 

the left side shows the integration of software in VMU and then testing it on a test bench. In this 

test bench, we have all the blocks in software except from the VMU which we got from the 

supplier. We will run the code first with this configuration to check the performance of the VMU 

and to make sure everything is in order and after that we will replace all the software blocks with 

hardware to do the final tests before finalizing the solution provided to the customer. 

 

7.8. Flexibility in model 

The procedure explained above is one of the many combinations that could be adopted in order 

to obtain the desired results. Now, we will explain some of the other combinations of the same 

procedure. For example, if we are considering the software in the loop, we can have many 

different combinations of it. 
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7.9. Different combinations of software in the loop, 

We will discuss some of the combinations here in order to show the flexibility of our Hybrid V-

Cycle.  

 

Figure 28. Combinations of software in the loop 

Here we can see that two software blocks are replaced by two hardware blocks. The environment 

is an actual environment while the plant is also considered as a hardware block. In some cases, 

we are using sensors to take input from the outside and then in order to process and control it 

we are using software. We can replace any block with hardware except from the control block 

since it’s an early to invest on a controller. Some other combinations of the software in the loop 

model can be seen below. 



32 
 

 

Figure 29. Combinations of software in the loop 

In figure 21, we have replaced the human machine interface with actual buttons and a human is 

controlling that panel to produce the results.  

 

Figure 30. Combinations of software in the loop 
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In the figure 22, we replaced plant with a hardware block while other blocks are still in software. 

 

Proposed Combinations of Hardware in the Loop Containing Rapid Control Prototype 

One of the combinations is explained in figure 17. We can consider other combinations 

also which are: 

 

Figure 31. Proposed combinations of hardware in loop for rcp 

Comparing figure 17 with 31 shows that even in the 2.3 step we can have a software block. 

This strategy makes our Hybrid V-cycle more flexible and it could be easily adapted to different 

conditions depending upon our requirements. 

In figure 31, the RCP is also considered as a hardware block, but we have mentioned it 

with different color to clearly identify this step. We must clearly define the interfaces when we 

are moving from software block to hardware block. We should keep in mind what are the 

requirements of hardware and software block. If the interfaces are not properly defined then it 

is impossible for the blocks to interact with each other. 
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Proposed Combinations of Hardware in the Loop for Vehicle Management Unit 

As explained in the figure 19, about hardware in the loop for vehicle management unit, 

we can think of other combinations also and make a hybrid model to satisfy our requirements. 

We will see an example to understand how it might work. 

 

Figure 32. Proposed combination of hardware in the loop for VMU 
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8. Updated Hybrid V- Cycle 
The following is our proposal for the updates in the V-cycle. There is small description of the 

whole cycle at the end. For complete consideration look at the previous headings.   

 

Figure 33. Updated hybrid V-cycle 

This updated V-cycle is slightly different from the previous one. In this cycle, we have further 

explained what we do in each step while developing our model. We will give the brief overview 

of whole process again and in following chapters we will take few examples for better 

understanding how the whole method works by considering actual examples, starting from a 

simple digital filter leading to the more complex problem.  

 

1. Customer requirements 

As described in the start, these are the requirements set by customer. It can be in the shape 

of requirements or a model. We completely understand it before starting to develop the model. 
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2. Technical and production model 

After specifying all the customer requirements, in technical model step, we focus on the 

making of simplest model as possible according to our understanding of the requirements laid 

down by our customer. After making the basic technical model we need a production to set all 

the parameters in order to run it on our rapid control prototype platform to quickly lay out the 

specifications for our vehicle management unit. 

In this step, we develop the model following ‘software in the loop’ and ‘model in the loop’ 

based on model-based engineering. We have nothing in hardware, every program is in software, 

for example Simulink. We modify the model according to requirements of customer. We also try 

to find out innovative solutions for satisfying requirements set out by our customer. There might 

be some requirements which cannot be incorporated in our model or even if they are 

incorporated, we pay a higher price for getting slightly better performance. At this point 

everything is in the software, hence, it costs nothing to make any changes in the model. We can 

simply do it by a click of the button.  

As described in figure 30-32, we can adopt different combinations of the software and 

hardware parts for making our system.  

 

2.1 Rapid control prototype 

Rapid control prototyping is a very efficient method to develop, optimize, and test new 

control strategies in a real environment quickly without manual programming (dspace, 2019). 

After developing the model based on the requirements put down by the customer, we should 

run our model on this rapid control prototype in order to fine tune requirements and see how 

the program is working in this environment.  

 

2.1 Testing of Production model on dSpace 

Production model has a lot of flexibility and room for improvement. We need to optimize the 

model for code production and see how many bits are required to give us satisfactory results. 

We need optimization in order to reduce the memory of our code, hence, the cost of our vehicle 

management unit. So, the production model and rapid control prototype gives us the 

requirement for our vehicle management unit. 

As mentioned above, if our model is not satisfying the customer requirements then we must go 

the second step again and follow the procedure again.  

At the 2.2 step, we can have different combinations of software and hardware blocks. We can 

adopt the suitable combination of both.  
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2.2 Production model for VMU (Vehicle Management Unit)  

After the specifications laid down by Dspace we will order the VMU from our vendors. 

 

3 Vehicle management unit 

This step will be performed outside the company. We will set up the requirements we need for 

our VMU. These requirements will be passed on to our vendors and vendor will be chosen 

accordingly. 

 

4 Integration and testing 

After getting the VMU from our supplier we will integrate our code with hardware and test it in 

different environments. The most important test is of fault injection in which we deliberately 

inject a fault in the system and see how robust our code is.  

As can be seen from the figure 26, if the integrations and testing is not successful then we again 

move either to step 2.2 or step 2 depending upon the changes we must make. If we have to make 

minor changes we have to move from step 4th  to step 2.3 while if we have to make a major 

change we have to move straight from 4th  step to 2nd one and again we have to follow all the 

points leading up to 4th step again. 

 

5 Final product requirements 

After finalizing the testing and code we will set out the product details for the customer.   

 

9. Standards and guidelines check 
 

Our product has certification goals, thus through all the development we have put our effort to 

comply with them. Simulink gives us the tools to check if our model and generated code complies 

with the standards and guidelines we set before: 

• ISO26262 

• MISRA C 

• MAAB Guidelines 

This can be done in Simulink via Model Advisor: 
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• Simulink -> Analysis tab -> Model Advisor 

For MISRA-C Model Advisor can run the check immediately, but for ISO26262 and MAAB 

Guidelines we must download the add-in Simulink Check™ that includes: 

• ISO 26262 

• IEC 61508 

• IEC 62304 

• DO-178 

• MAAB Guidelines 

For additional checks, we decided to run also IEC 61508 since it is the parent standard of ISO 

26262, allowing us to target different fields in the future.  

Also, an important thing to do for MISRA C certification is preparation of a compliance statement 

that is something we will not do in this thesis. 

When using MISRA C:2012 coding guidelines to evaluate the quality of your generated C code, 

you are required per section 5.3 of the MISRA C:2012 Guidelines for the Use of C Language in 

Critical Systems document to prepare a compliance statement for the project being evaluated. 

To assist you in the development of this compliance statement, MathWorks® evaluates the 

MISRA C:2012 guidelines against C code generated by using Embedded Coder. The results of the 

evaluation are published as: (MathWorks, n.d.) 

• Compliance summary tables 

• Deviations 

An extra check for more robustness, we will use also ‘Code Generation Advisor’ that helps us to 

check: 

• RAM Efficiency 

• Traceability 

• Safety precaution 

• Debugging 

• ROM Efficiency 

• Execution efficiency 
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10.  Documentation 
 

Professional and reliable documentation is a must in every process on any field but especially 

in Automotive industry where the ever-increasing complexity of its processes demands an 

increase in documentation quality as well. There are several different and software and tools for 

doing it, but they come with a very high cost. Thus, we have come up with our very low-cost but 

efficient and clean approach using Dropbox and Dropbox Paper. The Dropbox account called 

“VMU Project” is divided on 4 different main sections that are: 

• Development 

• Documentation 

• References 

• Meeting Notes (Dropbox paper) 

 

Development contains everything that concerns technical side of the project such as Simulink 

modelling. It also has 3 different folders: 

• Concept model 

• Technical model 

• Production model 

Documentation folder contains documentation of the development such as: 

• Requirements 

• Methodologies 

• Safety lifecycle according to ISO26262 

• Presentations to be presented in the meetings with the customer 

• Results of every development step 

 

References folder contains every reference that is used in the documentation and development. 

Meeting Notes in the other hand plays a key role in keeping track of the work that has to be 

done, creates a very collaborative environment allowing every participant to comment on notes, 

sharing ideas, references, alerting everyone that a report, model or documentation is ready and 

can be found on one of the folders that we already explained. A snapshot from the Meeting Notes 

below shows it very clearly how we used it: 
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Figure 34. Meeting Notes snapshot 

 

The illustration below sums up the architecture of Dropbox: 
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architecture 
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1. Customer Requirements 
 

Artefacts of this process are: 

• Item definition 

• Requirement specifications 

• Hazard analysis and risk assessment 

• Functional safety concept 

• Concept model 

1.1. Item definition 

 

Objective:  

Perform a Fast Fourier transform on the input signal and design a low-pass digital filter 

with certain requirements given by the customer. The system shall be designed in such a way 

that it must be easy to test and validate. 

 

 

 

 

  

                                Signal1 (-10,10) [V]        Signal2 

Signal Generator   Oscilloscope             

 

 

What is a Fast Fourier Transform? 

 When we want to decompose a signal that is composed by different signals with different 

frequencies into pure frequencies that they are made of, we apply a Fourier transform on it. A 

Fast Fourier Transform, in the other hand, is an efficient algorithm that makes us implement the 

Fourier transform in much faster way.  

What is a Low-pass Digital Filter? 

An analog low pass filter is a filter that passes analog signals with frequency below cut-off 

frequency. A digital low-pass filter is the same except that it acts on discrete-time signals. It is 

Digital filter 

Sampling frequency 1000 Hz 

 

FFT  

Sampling frequency 100 Hz 

Figure 36. Digital filter and FFT block scheme 



43 
 

programmable, doesn’t age and provides way higher performance than analog filter. Method, 

type and implementation of the low-pass digital filter will be discussed on the Analysis and 

Architecture phase. Layout of the item to be developed: 

 

 

Figure 37. Layout 

 

Table 2 Signal identification 

 

 

 

 

 

 

 

 

 

 

Signal Name Symbol Function Unit Value range 

switch_on sO Turn on system V Binary 

emergency_stop sE Emergency stop V Binary 

Signal1 u Input signal V +- 10 

Fourier analysis F(u) Output V Undefined 

Filtered signal y Output V +- 10 

On_button bo Input V Binary 

Emergency_switch bE Input V Binary 
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Expected results: 

 Input Expected Output for FFT 

 

 

 

   

 

  

 

 Input Expected Output for Filter 
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Requirement Specifications  

 

Table 3 Requirement specification 

Function 1 Digital filter 

Requirement 1-1 Sampling frequency must be fs = 1000 Hz 

Requirement 1-2 Input signal voltage shall be in the range of ± 10 [𝑉] 

Requirement 1-3 Output signal voltage shall be in the range of ± 10 [𝑉] 

Function 2 Fast Fourier Transform 

Requirement 2-1 Sampling frequency must be fs = 100 Hz 

Function 3 Supervisory Control 

Requirement 3-1 External Start/Stop push button must be added 

Requirement 3-2 System is turned by the Start/Stop push button 

Requirement 3-3 System is stopped by the Start/Stop push button 

Requirement 3-4 An external emergency switch must be added 

Requirement 3-5 When emergency switch is turned on, output must go to 0 
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1.2. Hazard analysis and risk assessments 

 

Hazard identification: 

 

Hazard analysis and assessment: 

Hazard Effect Comment 
Hazard 
1: Severity: 1 Wrong output can lead on wrong conclusions 
  Exposure: 4 Signal generator is always on when item is on 
  Controllability: 1 Simply controllable 
Hazard 
2: Severity: 1 Possible damage 
  Exposure: 4 Signal generator is always on when item is on 
  Controllability: 1 Simply controllable 

Hazard 
3: Severity: 1 

 
High voltage can cause electrical damage, causing damage to 
operator 

  Exposure: 4 Signal generator is always on when item is on 

Component Failure Mode Effect on the item 
Signal 
generator FM1: Wrong input signal Hazard 1: Item gives wrong output 

  FM2: Not grounded Hazard 2: Possibility of damage 

  FM3: Signal voltage beyond limits 
Hazard 3: Possible damage on 
electrical components 

Microprocessor 
FM4: Microprocessor fails in executing 
instructions 

Hazard 4: Item does not give any 
output 

On/Off switch FM5: Switch does not turn on Hazard 5: Item does not turn on 

  FM6: Switch does not turn off Hazard 6: Item does not turn off 

Emergency 
button 

FM7: Emergency button does not send the 
signal Hazard 7: High possibility of damage 

Oscilloscope 
FM8: Oscilloscope does not show any 
output 

Hazard 8: Item does not give any 
output 

  FM9: Not grounded Hazard 9: Possibility of damage 

  FM10: Oscilloscope shows wrong output Hazard 10: Item gives a wrong output 

Table 4. Hazard analysis 
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  Controllability: 1 Simply controllable 
Hazard 
4: Severity: 0 No damage possible when there is no output 
  Exposure: 3 Microprocessor often is working when item is working 
  Controllability: 1 Simply controllable 
Hazard 
5: Severity: 0 No voltage when item is not turned on 
  Exposure:  4 On switch is always needed when item must be turned on 
  Controllability: 1 Simply controllable 
Hazard 
6: Severity: 1 Low happening possibility of undesired actions  
  Exposure: 4 On/Off switch is always needed when item must be turned on 
  Controllability: 1 Simply controllable 
Hazard 
7: Severity: 3 

Undesired actions can cause damage on electrical components, 
causing damage to the operator 

  Exposure: 1 Emergency button is used rarely 
  Controllability: 3 Can be difficult to control 
Hazard 
8: Severity: 0 No damage possible when there is no output 
  Exposure: 4 Oscilloscope is always on when item is on 
  Controllability: 1 Simply controllable 
Hazard 
9: Severity: 0 No damage can be caused 
  Exposure: 4 Oscilloscope is always on when item is on 
  Controllability: 1 Simply controllable 
Hazard 
10: Severity: 1 Possible damage 
  Exposure: 4 Oscilloscope is always on when item is on 
  Controllability: 1 Simply controllable 

Table 5. Risk assessment 
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ASIL Selection: 

 

Figure 38. ASIL Selection table 

 

From the table: 

• ASIL A for Hazard 7 

• QM for all other Hazards 

 

Safety Goal: 

Safety goal 1: Item shall stop immediately when the Emergency button is pushed and enter to 

the safe state 

 

Safe state: The item shall to the OFF state, where the output goes to zero and the user is 

informed. 

 

1.3. Functional safety concept 

 

Functional safety: 

Because the required ASIL is ASIL A, functional safety action is necessary, but it must be 

low-cost since the hazardous situation is very unlikely. 

Proposed functional safety action: 

Functional Safety 1: Transition to emergency must be highest priority 
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1.4. Concept model 

As already explained in the first chapter, concept Model should grasp and show the behavior 
of the main tasks either separately or together.  

 

 

Figure 39. Concept model in Simulink 
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Figure 40. Results of Concept Model 
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2. Technical and production model 
 

Modular architecture and the components with interfaces must be defined: 

 

 

 

 

 

 

 

 

 

                             

 

                                                            

  

                                                       

 

                                                        

  

 

 

 

 
The following characteristic or features specified should be seen as requirements: (Ross, 2016) 

User 

Plant 

Control 

HMI 

Environment 

Interface –  

Cables 

Interface –  

Cables 

Interface –  

Manual 

Interface – EM 

Figure 41. Item Architecture 
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• The environment: The item will be placed in a Lab 

• There are no permitted ways of use 

• Only one mode of operation specified 

• Both our functions, Digital filtering and DFT are function call subsytems 

• Input signal is analog with range ±10 V, with a certain high frequency noise 

• Output signal is analog with range ±10 V 
 

 

2.0.1. Interfaces 

Physical interface 

• The item will be placed in a typical Lab desk 

• Room temperature 

• Signal range 20V peak-to-peak  

Energy interfaces 
• Electric energy only 
• 20V peak-to-peak voltage transfer 
• Energy provision via cables 

 
Material transfer (interface) 

• No material transfer 
 
Information interfaces 

• Signal processing 
• Analog input to ADC to RCP Platform to DAC to Oscilloscopes 
• Bus or communication systems CAN or Ethernet 

 

2.0.2. Production development: software level – Technical Model 

Technical Model should exhibit the main technical aspects, i.e. the sampling rate and the 
quantization levels, the saturation levels as well as other non-linearities. In addition, it must 
define the overall logic, i.e. states, transitions between states, tasks associated with states. 

Tool – MATLAB Simulink 

Techniques – Will be specified and chosen in each stage 

Methodologies – Model-based Design, MAAB Guidelines 

Artefacts – Software code 

Safety aspect – Techniques recommended by ISO26262 for ASIL  
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2.0.3. Initiation 

Guidelines to perform modelling that are required by ISO26262: 

 

Figure 42. Modelling and coding guidelines 

Since we have ASIL A, we must choose an appropriate combination of some requirements 

since they are alternative entries. A good appropriate combination for our item will be: 

1. Enforcement of low complexity 

2. Use of unambiguous graphical representation 

3. Use of naming conventions 

 

Specification of software safety requirement: 

Recalling the functional safety defined in the previous phase: 

Functional Safety 1: A redundant switch must be added, thus in case of failure of one of the 

switches, the other switch realizes Safety Goal 1. 

According to ISO26262 we must define the components of the item that are responsible to 

achieve or maintain the safe state, which are:  

1. Emergency switch 

2. Microcontroller 

 

Functions related to safety requirement: 

1. Supervisory control/Stateflow 

 

2.0.4. Software architecture and specification of safety requirements 

Methods for notation that are given by ISO26262, for ASIL A Informal notations is highly 

recommended, so we decide for 1a. 
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Figure 43. Notations for software architectural design 

For error handling we decide for Range checks of input and output data since it is highly 

recommended and can give us good desired results. 

 

Figure 44. Error detection at the sw architectural level 

 

For verification ISO26262 gives us several methods. An appropriate and robust combinations 

would be: 

1. Walk-through of the design 

2. Inspection of the design 

3. Control flow analysis 
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Figure 45. Methods for the verification of the software architectural design 

 
The following elements shall be verified: 
 

• Compliance with the software safety requirements 

• Compatibility with the target hardware 

• Adherence to design guidelines 

 

Unambiguous illustration of architectural design that realizes the software safety requirements: 

 

 

 

 

 

 

 

 

    

 

 

 

We have three states: 

• OFF State – which is set by default 

HW Interrupt 
SAFE 

STATE 

Emergency 

Switch 

Figure 46. Illustration of HW Interrupt 
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• ON State – where the actions required are performed and infrom the User via HMI 

• Emergency State – Where we set the output to zero and inform the User via HMI 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

2.0.5.  Model-based Design  

Notations to be followed for ASIL A: 

• Natural language 

• Informal notations 

 

Figure 48. Notations for software unit design 

 

Design principles for software unit design and implementation to be followed for each unit: 

• No hidden data flow or control flow 

• No recursions 

• Initialization of variables 

Supervisory 

Control 

Fs =10000Hz 

Digital Filter 

1000Hz 

FFT 

100Hz 

LED 

Green 

 No Output 

             No Output  LED 

Red 

Condition

s 

OFF 

State 

ON 

State 

Emergency  

State 

Figure 47. Illustration of model hierarchy 
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Figure 49. Design principles for sw unit design and implementation 

 

Methods for software unit testing: 

 

Figure 50. Methods for software unit testing 

 

Requirement-based test is highly recommended, and it is enough for our model. 

 

2.0.6. Supervisory control/Stateflow 

Concerning the discrete control, we must have 3 states: 

• OFF state, which is set by default 

• ON state 

• Emergency state 

Transition conditions from OFF to ON: On pushbutton must be pushed for 2 seconds. Color of the 

led will be yellow during the transition. 

Transition from ON to OFF: On pushbutton must be pushed for 2 seconds. Color of the led will be 

yellow during the transition. 
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Transition from ON to Emergency: Emergency switch is turned on. Color of the led will be yellow 

during the transition. 

Transition from ON to Emergency: Emergency switch is turned off. 

Transition from Emergency to ON is not possible for safety reasons. 

 

Figure 51. Stateflow chart 

Emergency function-call task Stateflow: 

 

Figure 52. Interrupt handling 
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Fast Fourier Transform 

 

 

Figure 53. Task control 

 

FFT: 

Performs FFT in the incoming signal 

Complex to Magnitude-Angle: 

Converts the complex values to magnitude. By default it has 2 outputs, magnitude and angle, but 

in our case only the Magnitude is selected. 

FFT Shift Matlab function: 

Shifts zero-frequency component to center of spectrum. It is useful for visualizing the Fourier 

transform with the zero-frequency component in the middle of the spectrum. 

FFT in Simulink: 

 

 

Figure 54. FFT modelling 

Result for a given input with 100Hz frequency and amplitude 10: 
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Figure 55. FFT result 

Result for a given input with 300Hz frequency and amplitude 10: 

 

Figure 56. FFT Result 

 

Digital Filter 

 

 

Figure 57. Task control 
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Design characteristics: 

• Frequency response: Lowpass  

• Sampling frequency: 𝑓𝑠 = 1000 𝐻𝑧 

• Cutting frequency: 𝑓𝑐 = 100 𝐻𝑧 

• Simulink block used: FIR Filter 

• Filter order: 2 

 

Simulink block used: 

 

Figure 58. Digital Filter modelling 

 

Results with a given input of 100Hz and amplitude 10: 

 

Figure 59. Results 1 of Digital Filter and FFT 

 

Results with a given input composed by two signals with 10Hz amplitude 10V and 40Hz amplitude 

5V: 
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Figure 60. Results 2 of Digital Filter and FFT 

 

From these results we can say that we satisfy the results of Concept Model. Furthermore, we 

added:  

• state machine 

• quantization 

• sampling 

• holding 

• HMI design 

Now to start the process of transitioning from Technical to Production model shall start we must 

implement: 

• Scheduling of the tasks 

• Interrupt handling 
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Scheduling 

Scheduling of the tasks is very important in Real-time applications such as ours. In this subchapter 

we will analyze how can we use Simulink to do so and implement it in our example. Simulink 

offers two types of scheduling: 

• Time-Based Scheduling 

• Event-Based Scheduling 

Firstly, as seen in Customer Requirements table, in our application we have 3 Synchronous tasks 

that must be executed as Time-Based Scheduling: 

• Supervisory Task 

• Digital Filter Task 

• FFT Task 

Secondly, we have another task that must be executed Asynchronously, i.e. only when the 

Emergency switch is turned on, thus this task must be scheduled as Event-Based Scheduling. The 

illustration below shows the scheduling principle without taking to  account the execution times 

of the tasks: 

 

 

Figure 61. Scheduling 

Simulink offers several ways to handle the scheduling of tasks(subsystems). Here we will use 

‘Temporal logic scheduler’ that is implemented via Stateflow. This technique allows us two 

different ways to use it: 

• Event-based Temporal logic 

• Absolute-time Temporal logic 
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For Absolute-time Temporal logic the operators that can be used are: 

• after(x,time) 

• before(x,time) 

• every(x,time) 

• temporalCount(time) 

• elapsed(time) 

 

Time can be set as seconds(sec), milliseconds(msec), microseconds(usec), and ‘x’ is the time 

value.  

But, for RTOS applications using Absolute time is not recommended from Simulink. Thus, we 

will use Event-based Temporal logic to execute Synchronous tasks. The operators are the same 

as Absolute time, but they are used in a different way. The syntax is as follows: 

• every(n,tick) 

The example is given for the operator ‘every’ but it is the same for every operator. The 

important thing is that the variable ‘tick’ has to be linked in a Timer, Clock or to the base rate. 

Here, we decide to not put anything more and complicate the model and use the base rate. In 

this case, the base-rate and sub-rate tasks will be managed by the OS itself and not by timer 

interrupts. The logic goes like this: 

• Execute Supervisory Control Task in a base rate that is 10Khz 

• Execute Digital Filter Task every 10 base rates, thus frequency is 1KHz 

• Execute FFT Task every 100 base rates, thus frequency 100Hz. 

 

Interrupts 

A more complex process to be managed in Simulink is handling Interrupt Service Routine(ISR). 

The block that creates an ISR and it also is supported from Embedded Coder, i.e. its code can be 

automatically generated is the block called ‘Hardware Interrupt’ block. This block can be used 

only in subsystems that are set as a ‘Function-call subsystems’ and it is different for every type 

of hardware. In this case we will analyze the most common one: 

• ARM Cortex-M processors 
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Figure 62. Hardware interrupt block and its parameters 

 

(Another example is ‘External Interrupt’ block for Arduino Hardware.) 

To use the ‘Hardware Interrupt’ block we must set its parameters: 

• Set interrupt group, in this case Cortex-M 

• Set interrupt name, it will correspond to the specific entry of the processors interrupt 

vector table. A good option is to leave it as it is and then check if that is available in the 

processors vector table 

• Interrupt number, corresponds to the position of interrupt in the processor vector table 

• Check the ‘Disable interrupt pre-emption’ because we do not want other interrupts to 

preempt the ‘Emergency Task’ 

 

Of course, when the code will be generated and integrated with the firmware, the GPIO input 

of the board that the hardware interrupt is connected (in our case the Emergency Switch), must 

be linked to the ISR via hand-written code. 
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All this procedure must be done when we set which hardware we will going to use. For 

now, we will use the Interrupt simulation block. Note that This block cannot be used for code 

generation. 

 

 

Figure 64. Control content with Interrupt simulation 

Emergency 

switch 

Boards input 

pin 

Hand-

written code 

ISR (Generated by 

Embedded coder) 

 

 

HARDWARE 

 

 

SOFTWARE 

Figure 63. Hardware interrupt flowchart 
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Monitoring of the Supervisory Control: 

 

Figure 65. Chart mode 

 

 Control frame 

Control frame input must take the Analog input signal and give a digital output to the Control 

content. Here, we have done it via Quantizer block in Simulink.  

 

 

Figure 66. Quantizer 

Several tests have been done to see the number of bits needed to have a good result, of course 

keeping in mind that we are in a simulation environment. We have concluded that until 6 bits, 

the results with our range of frequency and amplitude is enough. The results with 4 bits give us 

a wrong result about signal spectrum, since the algorithm does not have enough information to 

give us the good result. The output with 4-bit quantization is shown below: 
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Figure 67. FFT Output with 4-bit quantization 

The control frame output must take the calculated digital output from the Control content and 

transform it to Analog. Here we have done it via PWM and a Lowpass filter. The parameters to 

be set are: 

• Saturation levels 

• Period of Repeating sequence 

• Value of Repeating sequence 

• Relay switch on and off values 

• Output when off and on 

• LPF characteristics 

 

 

 

 

Figure 68. PWM Design 
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Results after reconstruction of the Signal1: 

 

Figure 69. PWM Results 

 

 

2.0.7. HMI 

 

Components: 

• Start/Stop push button 

• Emergency switch 

• Oscilloscope 

• On LED 

• Emergency LED 

 



70 
 

 

Figure 70. HMI Design 

HMI feedback: 

 

Figure 71. HMI Feedback 
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Figure 72. Simulink model architecture view 

 

 

2.1. Rapid control prototyping 
Since, the rapid control prototype was not essential for the use of this simple example so 

instead of testing it on a real prototype we resolved to using software only approach. 

 

2.2.  Production Model Testing 
Software-in-the-loop simulation mode denotes simulations in which the software of the real 

control system is embedded in the simulation loop. The simulation contains part of the real 

system, i.e. the control software, together with simulated parts, i.e. the device hardware and the 

environment. The executable code of the real control system is directly embedded in the 

simulation. In SIL, the software of the real control system is deployed on simulated devices that 

reside within a simulated environment with simulated sources of dynamism. SIL simulation is 

typically used during the late stages of application development. SIL simulation enables 

experimenting with the control system on simulated devices before deployment. (Adelinde M. 

Uhrmacher, 2009) 

In our case we will carry this task in Simulink. Certainly, SIL model contains only CONTROL 

module and nothing else. 
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Figure 73. SIL Settings 

 

 

Figure 74. Simulink model to run SIL 

 

 Because this example is computationally simple with very few variables, we 

see that the results are the same as Model-in-the-Loop. In the contrary, we will see that 

differences will be rather bigger when we deal with a real application. 
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Figure 75. SIL results 

Standards check  

The results of modelling were satisfactory and failed none of the standards or guidelines. 

But there is room to improve the Warnings given. All the reports of each check are generated 

and stored in documentation. In the following figures we can see the summary of results for each 

of the ran checks: 

 

Figure 76. ISO 26262 check results 
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Figure 77. MISRA C:2012 check results 

 

 

Figure 78. MAAB guidelines check results 

In addition of the standards, we run also Code Generation Advisor with no failures: 
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Figure 79. Code generation advisor check results 
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Chapter 2 
 

 

1.0. Customer Requirements 
 Develop a portable product to attach to the vehicle’s battery to predict state of health of 

the battery. 

Note: the solution of this problem will be found by applying hybrid V-cycle strategy to determine 

the efficiency of the proposed procedure.  

Background 

The evolution of automotive industries has become apple of eye nowadays, the eyes of 

world is directed towards power production and power storage. Batteries are the most common 

source of power storage. There are many types of batteries, small cells to large battery packs 

used to run whole offices. These batteries are charged and recharged many times during their 

lifetime.  

Here we are not going to discuss about how battery works and what are the factors 

involved in working of the batteries. But we are more interested in predicting the state of health 

and state of charge of the battery. Since, these two factors are important in predicting the usage 

of battery, so we should understand them first in order to get an idea how important is our 

product for present and in the future. 

At this very moment, there is no such product in the market that has the same 
functionalities. This product took an inner view into the study of batteries. Also, it processes 
data and informs the user through a simple interface such as an application on a smart phone. 
The outcome of the project will be directly applied for the development and marketing of a 
wide range of aftermarket products for the monitoring of Lead-Acid batteries. Moreover, the 
know-how and the technologies developed can be transferred to other types of batteries, such 
as Lithium Ion (LION), and therefore applicable to the technological development agenda 
foreseen for the next few years, regarding hybrid/fully electric vehicles (HBEV and BEV) with 
optimal management of co-generation micro-networks (photovoltaic, wind… etcetera).  
 

The aim of the model discussed below is to fully develop a battery State of Health (SOH) 

detection algorithm and implementing it in real time, afterwards, connect it to the device under 

management in order to observe and compile the data, and finally inform the user with various 

information about the battery under inspection specifically the battery State of Charge and State 

of Health. Before the discussion of model which helps us to predict the state of health of the 

battery, we should understand what State of health and other important factors about it is. 
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State of health of battery 

The state of health (SOH) of a battery is a ‘figure of merit’ to describe the battery 

condition, and how much of useful lifetime is remaining from the battery, thus, if you know  state 

of health of your battery you would have ability to know whether your battery needs repairs or 

even replacement, or is it functioning with the optimum performance. It is calculated in 

percentage points ‘%’.  

A 100% State of health of battery means that this battery is brand new (matching the 

specifications of the battery) and was not used before. Accordingly, a used battery has a 

decreasing state of health over time due to the battery decaying. The battery decaying happens 

due to chemical decomposition inside the battery due to cyclic charging and discharging of 

battery. A healthy battery behaves in a way that the ions flow freely from the anode to the 

cathode, and when the battery is put to a load (withdrawing electric current), the ion flows in the 

reverse direction.  

This process tears down the cathode and wears it by time, thus it means reduced battery 

capacity because less ions are now flowing from the anode to the cathode and vice versa. 

Nevertheless, battery state of health (SOH) is not provided by battery manufacturers because in 

its current condition it is know that it has a (100%) state of health, so this concept applies only 

when a battery is put into use and start withdrawing electric current. Moreover, the state of 

health of the battery can be applied to each cell of the battery in which in the end gives the 

overall value. And since every battery has different specifications and behaves differently, a 

battery state of health is measured differently amongst different batteries because it is a 

reference to the battery at its optimum performance which are different. So, the factors must 

contain previous knowledge of the battery states or performance in order to be able to 

determine the new state of health of a battery. 

 

Figure 80. Battery state 

As explained in the figure the state of health rated is different from the state of health at the 

current time, because of the degradation of the battery.  
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State of health importance 

As for a normal battery, a low state of charge is of no concerns in the terms of 

maintenance and replacement, as the battery will be subjected to the charging process, thus it 

will be able to provide the energy needed. But, a battery with a low State of health would require 

repairs or even replacements. As for any battery, there are 3 phases of working, which are:  

a. Service zone  

Which is the zone where the battery provides its rated capacity, thus providing fully the 

energy required. 

b. Replacement zone  

The zone where the battery starts degrading and the cathode is wearing out, which means 

that the battery is not providing its rated capacity. So, a battery in replacement zone will require 

either maintenance or replacement of the cathode or to be subjected to the necessary type of 

maintenance in order to retain it back in the Service zone.  

c. Failure zone  

Once you enter the failure zone, the battery is known as ‘failed’. Which means that the 

battery behavior cannot be predicted, and the battery is either not functioning or requires 

replacement. This phase is very dangerous for many types of applications as they required fixed 

voltage and current input. So, this phase must be avoided, and the battery should be subjected 

to direct maintenance or repairs. 

 

 

Figure 81 Battery cell usage 
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Hybrid V-cycle 

 

Figure 82 Hybrid V-cycle 

 

1.1. Requirements 

 The customer provided us with Simulink model which predicts SOH of the battery with a 

certain precision for only two windows (the word window here means a certain time length in 

which  signal has been divided, by this we can compare two adjacent windows to predict). 

Following are the customer requirements: 

Table 6 Customer Requirements 

Function 1 BATMAN Application 

Requirement 1-1 Must calculate SoH 

Requirement 1-2 Predict whether Soh greater or less than 40% 

Requirement 1-3 Reduce buffer size 

Requirement 1-4 Reduce code memory size 

Function 2 Supervisory Control 

Requirement 2-1 Start/Stop push button must be added (Mobile App) 
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Requirement 2-2 Should print text for change in battery 

Function 3 Bluetooth transmission 

Requirement 3-1 Outputs must be transmitted every time we have a result 

 

 

 

1.2. Simulink model provided by the customer 

 

Figure 83 Simulink model 

Above figure shows the Simulink model provided by the customer. We run this model as 

it is to see the results and then try to improve it as required by the customer. 
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Results 

 

Figure 84 Simulink Model Results 

The above figure shows the results of the model provided by the customer.  

In the following description, we will discuss the model, in order to understand it better. 

 

1.2.1 Model description 

 We can divide the model in the following parts in order to understand it better. We are 

not going to change some parts of the model since they are the basic components. After changing 

the model, we will compare the results in order to see whether it is performing according to 

requirements set by the customer. 

 The model can be divided into mainly three parts.  

- Battery model 

- Support Vector Machine (SVM) 

- Algorithm for SOH prediction 

Out of the above-mentioned things we will change Algorithm for the prediction of the SOH. 

The battery model mimics the real battery conditions while the support vector machine 

predicts when the battery is degraded to such an extent that we need replacement.  

 

1.2.2. Algorithm for SOH prediction 

 The battery model mentioned above was used to predict the real battery voltage and the 

previous work done by my colleagues proved that battery model is a good predictor of battery in 

real world conditions. From the analysis done on voltage we observe 3 parameters which are 

defined below: 

- Parameter 1 – Delta (voltage difference of battery) 
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- Parameter 2 – Difference delta (rate of change of voltage of batteries) 

- Parameter 3 – Variance of maximum/minimum peaks of voltage 

Parameter 1- Delta 

The analysis done by company shows that the change in peak to peak voltage is nearly 

constant above 40% when the state of health of battery is above 40% while below it we can 

detect a slope which shows that the difference between peak to peak voltage is increasing. 

Parameter 2 Difference delta 

 The other interesting feature of voltage of battery found by the company was that if we 

study the rate of change of voltage of battery when it is below 40% then we can see that it starts 

to increase. Which means that as SOH of the battery decreases the rate at which the voltage 

changes increases. It serves as the second indicator of the deteriorating state of health of the 

battery. But this parameter only gives the desired results when we have high initial state of 

charge of battery. 

Parameter 3 Variance of maximum/minimum peaks of voltage 

  Relation between variance with respect to the SOH, this parameter shows an increasing 

trend with the decrease of the battery state of health throughout whole experiment. This trend 

was interesting to us as a factor that could be fed to the estimating algorithm, in the sense that: 

𝑉𝑝𝑒𝑎𝑘𝑡𝑜𝑝𝑒𝑎𝑘 ∝1/𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

Hence, knowing the Variance over a window of time will help us understand the SOH of 

the battery, as the following cases applies: 

- Variance is constant over time, which is a representation that battery SOH is maintained 

at same level, not increasing or decreasing but maybe there is a slight change which is 

undetectable 

- Variance is decreasing over a window of time, which means that the battery life is 

degrading rapidly, and actions should be taken 

- Third case which the variance will be decreasing over time is NOT applicable. Because it 

means that the battery health is automatically regaining over time which is practically 

impossible without any intervention. 

Note that this parameter like the previous rate of change of voltage gives good results only 

when the initial state of charge of the battery is high. 

 

The above three parameters are used in the Simulink model in order to predict the state of health 

of the battery. The above discussion gives us a brief overview of the algorithm the results of these 
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parameters are fed into the SVM to predict SOH of the battery. In the following topics we will 

discuss how we are applying our Hybrid V-cycle for developing this model. 

 

2.0. Technical and production model 
 The second step in our hybrid V-cycle is to develop a technical model considering the 

requirements of our customer and then transform it into production model. In the first step we 

took the model from the customer and note down the requirements. The first step is important 

to understand what customer wants. This step is the base of our technical model. 

 In this step, we develop the model following ‘software in the loop’ and ‘model in the loop’ 

based on model-based engineering. We have nothing in hardware, every program is in software, 

for example Simulink. We modify the model according to requirements of customer. We also try 

to find out innovative solutions for satisfying requirements set out by our customer. There might 

be some requirements which cannot be incorporated in our model or even if they are 

incorporated, we pay a higher price for getting slightly better performance. At this point 

everything is in the software, hence, it costs nothing to make any changes in the model. We can 

simply do it by a click of the button. 

 

2.0.1. Technical model 

The Simulink model for the prediction of state of health of the battery is as follows. It is 

divided in following parts according to the ‘’Hybrid V-cycle Methodology’’ developed in our 

company in order to develop every project following some standardized procedure which makes 

it streamlined and easy for other persons who will work on this project to understand.  
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In our model, since we are using the battery model in Simulink, so we have all the blocks 

in software. In real world environment for this project, the environment software block will be 

replaced by real environment while the software block for the plant will be replaced by battery. 

According to the above figure we can arrange our Simulink model in the following given way: 
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Figure 85. Simulink Model in the wake of Hybrid V-cycle methodology 

  

Note that in this Hybrid V-cycle methodology user is not shown here which is the owner 

of this device. In the following passages we will take a brief overlook of the blocks present.  
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2.0.1.1. Environment 
This block represents the things which are affecting our electronic circuits due to which 

they are unable to predict the value accurately. The major factor is temperature which is affecting 

the performance of electric circuits. If the change in temperature is within certain limits than, as 

communicated by the manufacturer of the IC’s, our results are accurate. In real circuit we will 

have the voltage and current from the battery but in this case since we are working on the 

Simulink so we have to use a battery model which accurately predicts this. For this battery model 

we are placing value of the temperature. 

 

Figure 86. Environment block 
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2.0.1.2. Plant 
This block takes input as temperature from the environment. This block contains the 

Battery model which mimics the real battery conditions and gives out the voltage of the battery 

as it’s state of health is decreasing. In our control block we are only using the voltage coming 

from battery model.  

The inputs to the battery model are: 

• Temperature (from environment) 

• State of health (produced by signal generator varying from 100% to 0%) 

• Ts (simulation time step) 

• SOCinz (initial state of charge) 

 

Figure 87. Plant block 
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2.0.1.3. Control Block 
The input to the control block is voltage coming from the plant. In the control block we are 

calculating three types of values from that voltage coming from the battery model and giving it 

to SVM in order to predict the result. 

• Variance 

• Delta 

• Difference between delta 

• SVM 

 

Figure 88. Control Block 

We can see that this control block has one input which is voltage coming from the battery 

model while it has one output which is state of health for the human machine interface. 

Variance 

In order to predict the deterioration of state of health for the battery we calculate the 

variance of peaks of voltage profile. We see that when the state of health of the battery 

deteriorates the variance of the peaks of voltage profile starts to vary drastically.  
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Figure 89. SoH Deterioration effect on Variance 

As seen in the above figure, the variance starts to vary drastically as we reach state of 

health of battery below 40%. The calculation of variance is done by following scheme. 

 

 

Figure 90. Simulink Model for Variance 

 

Delta 

It is calculated by the difference between the maximum and minimum values of the 

difference between two consecutive values of the battery voltage. First, we find the difference 

between two values of the voltage input. This is done by using following blocks. 
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Figure 91. Simulink Model for difference calculation 

 

After calculating the difference, we calculate the difference between these values. As, 

state of health of battery deteriorates the difference between them starts to vary drastically as 

can be seen in figure 10. 

 

 

Figure 92. SoH detrioration affect on Delta 
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Difdelta 

The third and last variable is difference between the delta. It gives the same result as both 

above variables. As the state of health of battery deteriorates, we see that the value of difference 

delta changes as shown in figure 11. 

 

Figure 93. SoH detrioration effect on Difdelta 

 

The Simulink blocks used to calculate this are shown in the figure 12. 
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Figure 94. Simulink model for difdelta and delta calculation 

 

Support Vector Machine 

We saw how variables namely variance, delta and difference delta vary with change in 

state of health of the battery. Using this information, we can train our support vector machine to 

predict for all other data available. The support vector machine gets better in predicting the state 

of health as more data is fed to it and with the passage of time it’s accuracy will increase. The 

Simulink blocks used for predicting the state of health of  battery is shown in figure 13. 

 

 

Figure 95. Support Vector Machine 
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2.0.1.4. Human Machine Interface Block 
This block is used to display the result from the support vector machine. We keep in mind 

that the algorithm predicts whether state of health of battery is above a certain percentage or 

not. It doesn’t tell current value rather it tells that the battery can be used further, or we should 

replace it since, it’s crucial for the car. We have also used an app to communicate with customer 

to inform him when he should replace the battery. The app tells the state of health in percentage 

and tells whether the SoH of the battery is greater or less than 40%. 

 

Figure 96. Human Machine Interface Block 
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2.0.2. Comparing technical model results with Customer model 

We used 4 different types of real data in order to reproduce the real voltage values for 

our control block. We used this data to train our support vector machine also and then we used 

other 4 data to check the efficiency of our algorithm.  

 

Real_data1 

 

 

Figure 97. Real_data1 Results 

 

The figure 15 shows three values which is State of health (red), voltage from battery 

model (yellow) and State of health prediction (blue). It can be seen from the figure that when the 

state of health of the battery decreases below 40% the algorithm perfectly detects the and gives 

an output in the form of 1 which is multiplied to show it properly on the graph above. The 

simulation was run for more than 10 hours in the Simulink.  
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Figure 98. Real_data1 SOH 

We can see from Figure 16 that value of SoH is 30% when our algorithm predicts the 

deterioration of state of health of battery. 

 

Real_data2 

Now, we will reproduce the results by placing second set of data. 

 

Figure 99. Real_data2 Results 
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As shown in Figure 17, our algorithm predicts the deterioration of state of health of 

battery when it goes below 40%. The figure below shows that our algorithm predicts when the 

SoH is at 30% for real data 2.  

 

Figure 100. Real_data2 SoH 

 

Real_data3 

We are placing real_data3 in our algorithm. As can be seen from the statistics our 

algorithm predicts that the state of health is below 40% but, it’s 80%.  

 

 

Figure 101. Real_data3 Results 
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Real_data4 

As shown by the figure 20, the algorithm predicts accurately state of health of the battery. 

The state of health of battery is 30% when our algorithm predicts the deterioration of SoH below 

our marked threshold. 

 

Figure 102. Real_data4 Results 

 

Real_data5 

When we run our program with input as Real_data5, our algorithm predicts accurately 

the deterioration of the battery. Algorithm gives 1 (which is multiplied by 50 for reading data 

easily) when the SoH of battery is 30%. 
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Figure 103. Real_data5 Results 

 

Real_data6 

After running the Simulink model with input of Real_data6 we see that our algorithm 

predicts that the state of health of battery is less than 40% but in fact the actual state of health 

of battery is 83%. 

 

 

Figure 104. Real_data6 Results 
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Real_data7 

The figure 23 shows that our algorithm predicted that the state of health of battery is 

below 40% but, it is 82%. 

 

 

Figure 105. Real_data7 Results 

 

Real_data8 

After passing Real_data8 from our algorithm we can see that our algorithm predicts that 

the state of health of the battery is below 40% but it is 45%. 

 

Figure 106. Real_data8 Results 
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2.0.3. Analysis of results 

The following table shows the results: 

Table 7 Analysis of results 

Data 
Actual SoH while our algorithm predicts it 

less than 40% 
RESULTS 

Real_data1 30% PASS 

Real_data2 30% PASS 

Real_data3 80% FAIL 

Real_data4 30% PASS 

Real_data5 30% PASS 

Real_data6 83% FAIL 

Real_data7 82% FAIL 

Real_data8 45% 
PASS 

(Conditionally) 

 

The Table 1 shows the summarized results. We can consider an error of 5% in prediction 

which will be gradually reduced as we get more data to train our support vector machine.  

Hence, by calculating the average of pass in our tests conducted we get the following 

results. Our algorithm can predict the value with success ratio of 62.5%.  

Conclusion of the comparison 

As of right now our algorithm has a success ratio of 62.5%. As we are using support 

vector machine to predict the results. The SVM can be improved with the passage of time as we 

pass different types of data through it. The more data we pass through it, we are training it to 

increase the efficiency of prediction. We have used 8 different types of real data in order to train 

the SVM. 

As mentioned in the beginning, we can see the effect on variance of peaks, delta and 

difference delta as the state of health of the battery decreases. Hence, in conclusion we can 

predict if SoH is below certain percentage whose success ratio can be increased with better 

training of SVM in the future.  
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With respect to the customer requirements we can satisfy customer requirements by 

developing algorithm which predicts SOH with an efficiency of 62.5%.  

 

2.0.4. Production model 

 For the production model we must reduce the size of the buffer and make certain changes 

in the way we calculate variance. We develop a formula so that instead of storing 

maximum/minimum values for the whole window time and then sending it to a function to 

calculate variance. We are calculating the running variance using method given below.  

Running variance formula 

 The running variance can be calculated by using the following formulae.  

 

 

The above formula is used to calculate the running variance. This formula is incorporated in the 

Matlab function as follows: 

function variance = fcn(x,window) 

persistent i 

persistent m 

persistent S 

persistent v 
  

if isempty(i) 

    m=x; 

    S=0; 

    variance=0; 

    v=0; 

    i=2; 
  

else  

    M=m+(x-m)/(i+1); 

    S=S+(x-m)*(x-M); 
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    m=M; 

    i=i+1; 

    variance=v/(S/i)-1; 

    v=S/i; 

end  

 if i>window 

     v=0; 

     S=0; 

     i=2; 

     m=x; 
     

end 
 

 With the help of this, we can reduce the buffer size which will reduce the memory size of 

the code. This is shown in the following figure: 

 

Figure 107 Running variance 

 

The next step in order to move from step 2 of our hybrid V-cycle to next step we must 

generate the code and place it in our rapid control prototype. This can be shown by the following 

step: 
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Figure 108 Hybrid V-cycle steps 

 

The generated code is added in the appendix with description of settings used. We must see the 

customer requirements and we can see that by introducing running variance we have achieved 

to complete requirement no. 1.3 and 1.4.  

After checking the requirements, we are sure that we have satisfied the customer requirements. 

Now we will move to the rapid control prototyping step in which we will run our program on the 

rapid control prototype device. This device will set out the specifications of the final device. 

 

2.1. Rapid control prototype 

The RCP device we are using is from Texas instruments which is launchpad cc2640r2f. the 

specifications of the device is given as follows: 

 

Specifications of the TI  

I used code composer studio to program the device. In order to program the device we 

need to integrate the software files inside the code composer studio. The specification of the 

device and the related material about the code composer studio is given in appendix. 
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2.2. Production model testing 

 

I generated the C code using the embedded coder provided in the Simulink. The generated code 

is to be integrated in the firmware (already developed by some other student). After the 

integration, I tested the model on our rapid control protype. Due to the shortage of time I was 

unable to complete this phase of integration of the complete software and my work was limited 

to the code generation for testing on the rapid control prototype. 
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Conclusion: 
• We created a development toolchain by integrating ISO2622, V-Cycle and Systems 

Engineering in one, that is what we called Hybrid V-cycle. This newly developed Hybrid-

V-Cycle caters the needs for automotive component development considering all the 

safety standards now in place. this Hybrid V-cycle makes work easier to handle, thus 

increasing efficiency. 

• We introduced an innovative approach for the architecture of the system that focuses on 

modularity and reusability for the software components developed during the project. 

This modular structure enables us to use this toolchain for several other fields, especially 

complex control engineering. 

• We explained our process in detail by applying the newly developed toolchain on the 

simple example of digital filter. 

• To further establish the significance of our toolchain we took a real-world example of Bat-

Man project. It shows that how it can be useful in developing a real project considering 

all the function safety concepts along with the reusability and modularity of architecture 

of the system. 

• For the future development this tool chain can be easily fine-tuned to cater with other 

different kinds of projects. 
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