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Summary	

	
In	 the	 first	 chapter	 a	 history	 overview	 of	 the	 hybrid	 rocket	 engines	 (HREs)	 and	 their	

characteristic	 features	have	been	exposed.	 In	 the	 rocket	motors	background	 the	HREs	

exhibit	several	advantages	over	the	other	two	configurations,	the	liquid	rocket	engines	

(LREs)	and	the	solid	rocket	motors	(SRMs).	There	are	also	some	disadvantages	such	as	

the	low	fuel	regression	rate	and	the	combustion	instability.	The	purpose	of	this	work	is	

to	develop	a	numerical	method	capable	of	observing	 the	 combustion	 instability	 in	 the	

HREs	with	the	aid	of	the	previous	studies	developed	about	it.	In	the	experimental	tests	

on	the	HREs,	it	was	found	that	the	chamber	pressure	increases	from	its	mean	value	and	

it	 oscillates	 into	 a	 nonlinear	 limit	 cycle,	 the	 so-called	 “DC	 shift“.	 Furthermore	 the	

chamber	 pressure	 oscillates	with	 both	 low	 frequency	 and	 acoustic	 frequency,	 but	 the	

instability	takes	place	in	the	low	frequency	regime.	A	well	known	theory	was	developed	

to	 study	 the	 combustion	 instability	 in	 the	 LREs	 and	 in	 the	 SRMs;	 unfortunately	 that	

theory	 can	 not	 be	 used	 in	 the	 HREs.	 Thus,	 in	 this	 thesis,	 it	 has	 been	 developed	 a	

numerical	method	based	on	three	principal	subsystems	coupled.	In	detail,	in	the	second	

chapter	 have	 been	 explained	 the	 three	 physical	models	 involve	 in	 this	 study,	 in	 other	

words	the	quasi-one-dimensional	gas	dynamic	model,	the	chemical	model	and	the	one-

dimensional	thermal	model.		

Instead,	 in	 the	 third	 chapter	 the	 numerical	 methods	 have	 been	 exposed;	 they	 were	

applied	 to	 solve	 the	 equations	 of	 those	models.	 The	 first	 one	 is	 a	 computational	 fluid	

dynamic	 code	 in	 order	 to	 provide	 the	 gas	 dynamic	 properties	 inside	 the	 combustion	

chamber	and	the	nozzle	of	the	hybrid	rocket	system.	Since	the	chemical	reactions	take	

place	in	the	combustion	chamber,	a	chemical	code	it	has	to	be	used;	for	this	purpose	it	

was	employed	the	NASA	CEA	code	[16].	Because	of	the	complexity	of	the	CEA	code	and	

in	 order	 to	 reduce	 the	 computational	 cost,	 it	 has	 been	 developed	 an	 additional	 code,	

later	 named	 TEST	 code.	 It	 takes	 as	 inputs	 the	 internal	 energy,	 density	 and	 molar	

fractions	of	 the	 species	 inside	 the	 combustion	 chamber	and	provides	 the	 temperature	

and	the	pressure	at	the	chemical	equilibrium	as	results.	Finally,	the	thermal	conductivity	

of	the	solid-fuel	has	to	be	considered	and	this	is	possible	through	the	solution	of	the	heat	

equation	by	using	the	Finite	Volume	Method.	
In	the	fourth	chapter	have	been	explained	the	steps	in	order	to	link	this	code	together.	

The	 TEST	 code	 has	 been	 validated	 by	 comparing	 the	 results	with	 the	 results	 provide	



	 4	

from	the	CEA	code.	Then,	the	TEST	code	has	been	coupled	together	with	the	CFD	code.	It	

has	 been	 studied	 the	 chemical	 composition	 in	 a	 specific	 nozzle	 configuration,	 before	

using	 this	 code	 to	 analyse	 the	 flow	 in	 the	 combustion	 chamber,	 and	 the	 results	 have	

been	compared	with	the	results	achieved	in	[23].	After	the	validation	of	the	code	on	the	

nozzle	results	available	in	[23],	it	has	been	extended	in	order	to	describe	the	flow	field	in	

the	hybrid	rocket	engine.	A	further	equation	has	been	added	to	the	fluid	dynamic	system	

so	as	to	define	the	quantities	of	oxidizer	and	fuel	in	the	mainstream.	Then,	the	thermal	

code	has	been	added	and	the	differences	between	the	previous	version	of	the	code	has	

been	highlighted.	Finally	the	boundary	layer	delay	time	has	been	added	in	the	code	and	

the	instability	in	the	pressure	has	been	made	evident	by	comparing	the	results	obtained	

between	𝜏!" = 0 𝑠	and	𝜏!" = 0.001 𝑠.	
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Chapter	1	

	
Hybrid	Rocket	Engine	

	

1.1	History	of	the	hybrid	rocket	motors	
Hybrid	rocket	propulsion	systems	use	both	 liquid	and	solid	as	propellants,	 in	detail	 in	

the	 classical	 hybrid	 configuration	 the	 fuel	 is	 a	 solid	 and	 the	 oxidizer	 is	 a	 liquid.	 The	

development	 of	 hybrid	 rocket	 engines	 (HREs)	 began	 in	 the	 early	 1930s,	 also	 the	

developments	of	both	liquid	and	solid	rockets	took	place	in	the	same	time.	Historically	

the	 solid	 rocket	motors	 (SRMs)	 were	 first	 used	 because	 of	 a	 lot	 of	 knowledge	 in	 the	

gunpowder	 history.	 One	 of	 the	 problems	 in	 the	 SRMs	 was	 their	 explosive	 hazard,	

Hermann	Oberth,	that	was	one	of	the	pioneers	in	rocketry,	saying	that:	“Powder	believes	

it	must	 explode	 all	 at	 once;	 from	 the	 old	 use	 in	 shells	 and	 guns,	 it	 is	 too	well-trained	

always	to	destroy”	[1].	In	the	1933	there	was	a	tragic	demonstration	of	those	words,	for	

this	reason	Robert	Goddard,	who	had	started	his	work	with	powder	fuels,	thought	about	

solving	 the	 problem	 by	 injecting	 small	 quantities	 of	 powder	 into	 a	 small	 combustion	

chamber.	 His	 main	 ideas	 were	 to	 control	 burning	 rate	 avoiding	 the	 exposure	 of	 the	

complete	fuel	to	the	heat	of	the	combustion.	

The	first	forerunner	to	the	hybrid	rocket	was	the	“Rocket	Projectile	No.	9“,	a	work	led	by	

the	GIRD	(the	Group	for	Investigation	of	Reactive	Motion),	the	first	professional	rocket-

development	 organization	 in	 the	URSS	 [2].	 That	 rocket	was	 fed	 by	 the	 liquid	 oxidizer	

mixed	with	gelled	gasoline,	known	as	 “solid	benzene”,	 and	became	known	as	a	hybrid	

vehicle	(although	this	is	not	the	definition	of	a	hybrid	rocket).	Afterward	in	the	1937,	a	

lot	of	experiments	with	hybrid	rockets	began,	but	there	were	unsuccessful	results	due	to	

the	lack	of	knowledge	in	the	propellants	that	were	used.	As	a	matter	of	fact,	one	of	the	

main	problems	was	the	very	high	carbon’s	heat	of	sublimation.	

Later	in	the	mid	of	1940s	the	Pacific	Rocket	Society	conducted	significant	experiments	

on	 hybrid	motors	 that	 employed	 LOX	 as	 oxidizer	 and	 first	wood,	 then	wax	 loaded	 in	

black	carbon	and	finally	rubber	as	fuel.	The	rocket	was	called	XDF,	the	name	comes	from	

“experimental	Douglas	fir”;	there	were	a	lot	of	version,	but	the	design	used	was	the	XDF-

23	containing	LOX	rubber	fuel	and	aluminium	alloy	nozzle	that	successfully	flew	in	1951	

[1].	
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The	Society	worked	out	a	fundamental	result	that	 is	clear	from	the	follow	statement:	“	

The	 chamber-pressure	 of	 a	 solid-liquid	 rocket	 engine	 is	 proportional	 to	 oxidizer	 flow	

and	not	 to	 the	 internal	 surface	area	exposed	 to	 the	 flame.	Thus,	 there	 is	no	danger	of	

explosion	due	to	cracks	and	fissures	in	the	charge	as	solid	propellant	rockets	commonly	

used	for	boosters”	[3].	

During	the	1940s	H.Bartel	and	W.Rannie	conducted	at	 Jet	Propulsion	Laboratory	(JPL)	

the	 first	analytical	 investigations	of	a	combustion	process	but	 in	a	solid-fuel	ramjet.	 In	

that	configuration	the	oxidizer	was	air	and	was	caught	by	the	inlet	from	the	atmosphere,	

while	the	solid-fuel	was	graphite.	This	particular	configuration	was	abandoned	because	

of	the	high	sublimation	heat	of	carbon;	as	a	consequence	it	had	not	good	performance	in	

thrust	level	[1].	

In	 the	 late	1940s	analytical	and	experimental	 investigation	 in	hybrids	were	conducted	

by	George	Moore	 and	Kurt	Berman	 at	General	 Electric	 Company	 in	 Schenectady,	New	

York.	Their	engine	was	fed	by	90%	of	hydrogen	peroxide	as	oxidizer	and	polyethylene	

as	 fuel;	 moreover	 the	 fuel	 grain	 was	 composed	 by	 a	 tubular	 or	 rod	 and	 tube	

configuration.	 It	 was	 discovered	 that	 with	 small	 amount	 of	 fuel	 added	 in	 hydrogen	

peroxide	 the	 features	were	 improved	 in	 terms	 of	 specific	 impulse.	 Several	 tests	were	

made	and	at	the	end	they	concluded	that	the	burning	was	longitudinal	uniform,	the	grain	

crack	 had	 no	 effect	 in	 terms	 of	MEOP	 (Maximum	Except	Operator	 Pressure),	 no	 hard	

start	were	observed,	the	fuel	surface	behaved	as	its	own	flameholder	so	the	combustion	

was	 stable;	 because	 of	 the	 presence	 of	 a	 valve	 in	 the	 oxidizer	 feeding	 system	 the	

throttling	 was	 fulfilled,	 and	 they	 also	 observed	 that	 a	 high	 liquid-to-solid	 ratio	 was	

preferable	in	order	to	achieve	a	uniform	burning	in	the	combustion	chamber.		

On	the	other	hand	they	saw	some	negative	effects;	one	of	these	was	the	inherent	thermal	

instability	of	peroxide	[4].	

In	 the	 1960’s	 two	 European	 organizations	 began	 to	 work	 on	 hybrid	 rocket	 motors.	

These	 organizations	 were	 ONERA,	 based	 in	 France,	 and	 Volvo	 Flygmotor,	 based	 in	

Sweden.	 Both	 organizations	 developed	 sounding	 rockets	 based	 on	 hypergolic	 hybrid	

rocket	motor,	the	first	one	using	nitric	acid	as	oxidizer	and	an	amine	as	fuel,	while	the	

second	 one	 used	 polybutadiene	 with	 an	 aromatic	 amin,	 that	 it	 was	 known	 as	 “	

Tagaform”,	as	fuel	and	also	nitric	acid	as	oxidizer.	Meanwhile,	other	two	organizations	in	

the	United	States,	the	United	Technologies	Center	and	the	Beech	Aircraft,	were	working	

on	a	supersonic	drone	that	it	was	called	Sandpiper	[1].	That	drone	was	fed	with	MON-25	
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as	oxidizer,	 in	other	words	25%	NO	and	75%	N!O!,	and	with	polymethyl	methacrylate	

PMMA	as	a	fuel.		

The	 Sandpiper	was	 not	 the	 only	 drone	 they	 tested.	 They	 developed	 the	 HAST;	 it	 had	

IRFNA-PB/PMM	for	its	propellants	and	it	could	carry	a	heavier	payload	than	Sandpiper.	

In	the	mid	of	1980s	the	Chemical	System	Division	worked	alone	in	a	new	combination	of	

propellants	for	hypergolic	hybrid	rocket,	it	was	used	lithium	and	FLOx	(F!	and	O!);	that	

combination	showed	good	throtteable	features	and	combustion	efficiency	[1].	

In	the	late	1980s	was	created	the	largest	hybrid	rocket	and	it	was	made	by	AMROC,	the	

American	 Rocket	 Company.	 The	 rocket	 was	 fed	 by	 LOX	 and	 hydroxyl-terminated	

polybutadiene	(HTPB)	and	generated	312.000	newton	of	thrust	for	70	seconds	[1].	

During	the	1990s	Tier	One	project	started	[5];	its	aim	was	to	allow	the	suborbital	human	

spaceflight	 thanks	 to	 the	 reusable	 spacecraft	 “SpaceShipOne“	 and	 its	 own	 launcher	

White	Knight.	The	craft	was	designed	by	Burt	Rutan	and	 together	with	Paul	Allen	and	

Scaled	 Composites;	 they	 founded	 the	 Mojave	 Aerospace	 Venture	 to	 manage	 the	

commercial	 spinoff	 from	 the	 “Tier	 One“	 [6].	 The	 SpaceShipOne	 used	 a	 hybrid	 rocket	

engine	 supplied	 by	 SpaceDev	 and	 its	 propellants	 were	 liquid	 nitrous	 oxide	 and	 solid	

HTPB,	it	produced	88	kN	of	thrust	for	about	87	seconds.	On	June	21,	2004,	the	flight	15P	

was	 SpaceShipOne’s	 first	 spaceflight	 and	 the	 first	 privately	 funded	human	 spaceflight,	

then	with	the	flight	17P,	on	October	4,	it	won	US$10	million	Ansari	X	Prize	by	reaching	

the	 112	 kilometres	 of	 altitude,	 and	 it	 was	 retired	 in	 the	 same	 year	 [7].	 The	

SpaceShipTwo	 (SS2)	 is	 the	 successor	 of	 SpaceShipOne,	 it	 is	 manufactured	 by	 the	

Spaceship	Company.	The	company	was	 founded	by	Burt	Rutan	and	Robert	Branson	 in	

the	mid-2005,	and	it	was	owned	by	Virgin	Group	and	Scaled	owners.	The	hybrid	engine	

has	 not	 differences	 from	 that	 one	 used	 in	 the	 SpaceShipOne	 [8].	 It	 can	 be	 possible	 to	

recognize	 two	engine	generations,	where	 the	main	difference	 is	 the	 fuel.	The	 first	one	

had	a	HTPB	as	solid-fuel	but	it	was	seen	engine	stability	issues	on	burning	longer	than	

almost	 20	 seconds,	 this	 is	 the	 reason	 why	 the	 second-generation	 of	 engine	 used	 the	

thermoplastic	 polyamide	 as	 a	 solid	 fuel.	 However,	 in	 October	 2015	 Virgin	 Galactic	

announced	to	come	back	to	HTPB	as	solid	fuel	[9][10].	

There	were	also	conducted	experiments	with	the	reverse	configuration	of	hybrid	rocket,	

where	the	 fuel	was	the	 liquid	propellant	and	the	oxidizer	was	the	solid	propellant	 [1].	

These	experiments	led	to	unsuccessfully	results	in	terms	of	combustion	behaviour	and	

insufficient	 performance.	Moreover	 this	 particular	 configuration	does	 not	 concern	 the	

aim	of	this	work	and	for	these	reasons	it	will	not	be	inspected.	
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1.2	Advantages	and	disadvantages	of	HREs	
There	are	many	components	that	are	common	both	to	the	liquid	rocket	engines	(LREs)	

and	 the	 solid	 rocket	 motors	 (SRMs),	 but	 the	 hybrid	 rocket	 engines	 (HREs)	 present	

interesting	advantages	over	them.	In	order	to	appreciate	these	advantages	it	 is	needed	

to	 look	 into	 the	different	 combustion	 characteristics;	 in	 the	 solid	 rockets,	 the	oxidizer	

and	 fuel	 are	 mixed	 in	 the	 single	 solid	 phase	 and	 the	 combustion	 occurs	 from	 a	

microdiffusion	flame	while	in	the	liquid	rockets	the	combustion	arises	from	a	premixed	

flame	[11].	As	a	matter	of	fact	the	oxidizer	and	the	fuel	are	mixed	in	the	proximity	of	the	

injector.	The	hybrid,	however,	burns	as	a	macrodiffusion	 flame	where	 the	oxidizer-to-

fuel	 ratio	𝑂/𝐹 changes	 down	 the	 length	 of	 the	 combustion	 chamber,	 contrary	 to	 the	

uniform	mixture	in	both	liquid	and	solid	rockets.	This	system	has	an	inherent	safety	and	

operational	 features.	 First	 of	 all	 the	 fuel	 is	 inert	 and	 can	 be	 transported	 and	 handled	

safely;	in	addition	the	system	does	not	have	the	risk	to	explode	because	there	is	not	an	

intimate	mixture	of	oxidizer	and	fuel.	Unlike	solid	motors,	in	the	hybrid	engines	it	can	be	

possible	to	throttle	by	modulating	only	the	 liquid	 flow	rate,	which	 is	simpler	than	 in	a	

liquid	 engines	 where	 two	 flow	 rates	 must	 be	 synchronized;	 the	 shutdown	 is	 simply	

reached	by	turning	off	the	liquid	flow	rate.	The	other	aspect	that	leads	to	prefer	hybrid	

engines	 instead	 of	 solid	 rockets	 is	 the	 grain	 robustness.	 This	 is	 due	 to	 the	 lack	 of	

catastrophic	events	when	a	fuel-grain	crack	occurs	because	burning	happens	down	the	

port	where	it	comes	across	the	oxidizer	flow.	The	selection	of	propellants	is	better	than	

both	 liquid	 and	 solid.	 In	 the	 solid	 fuel,	 constituents	 can	 be	 added,	 such	 as	 energetic	

metals,	 to	 enhance	performance	 and	density,	while	 the	 liquid	 oxidizers,	 in	 contrast	 to	

solid	 ones,	 produce	 higher	 energy	 levels.	 A	 common	 feature	 with	 the	 LREs	 and	 a	

difference	with	the	SRMs	is	the	temperature	sensitivity.	In	other	words	the	temperature	

effect	 on	 burn	 rate	 is	 small	 and	 then	 the	 temperature	 variations	 have	 little	 effect	 on	

chamber	 pressure.	 From	 an	 economical	 point	 of	 view	 the	 operational	 cost	 for	 hybrid	

systems	is	affordable	and	it	depends	on	its	safety	features	and	inert	propellant	[1].	

Despite	the	several	advantages	of	hybrid	systems	compared	to	liquid	and	solid	systems,	

the	hybrids	have	not	seen	a	mass	production	unlike	liquid	or	solid,	whereas	they	have	

had	 a	 famous	 application	 in	 the	 space	 programs.	 In	 fact,	 the	 HREs	 suffer	 from	 some	

disadvantages	shown	below:	
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• Low	 regression	 rate:	 the	 regression	 rate	 is	 the	 main	 parameter	 that	

embodies	the	HREs	as	the	SRMs.	It	is	the	velocity	with	whom	the	solid	fuel	

is	converted	into	a	gas	fuel.	Unlike	the	solid	engine,	the	hybrid	has	a	 low	

regression	rate,	this	influence	the	desire	thrust	level.	In	order	to	improve	

this	 parameter,	 the	 total	 length-to-diameter	 ratio	𝐿/𝐷	may	 be	 checked.	

This	ratio	has	to	be	high	especially	when	it	requires	high	performance	and	

it	 becomes	 unacceptable.	 One	 possible	 solution	 for	 this	 issue	 is	 the	

multiport	grain,	that	allows	to	reduce	𝐿/𝐷	with	an	almost	mass	fuel	grain	

[12].	 Assuming	 both	𝐴! 	and	𝐴!	constant,	 it	 may	 be	 reduced	 the	 length	

grain	𝐿! = 𝐴!/𝑃	increasing	the	perimeter.	Unluckily,	that	solution	leads	to	

other	 disadvantages	 such	 as	 the	 high	 unburned	 mass	 fraction.	 	 As	 a	

consequence	 of	 the	 more	 complicated	 geometries,	 every	 ports	 could	

behave	 in	 different	 ways,	 thus	 a	 dedicated	 injector	 is	 required.	

Furthermore	 the	 grain	 structural	 integrity	 may	 become	 an	 issue,	

especially	 towards	 the	 end	 of	 burning.	 Recently	 studies	 at	 Stanford	

University	 [13]	 suggest	 that	 paraffin-based	 fuels	 improve	 the	 regression	

rate	reaching	3-4	times	the	value	of	a	conventional	hybrid	fuels.	The	main	

mechanism	that	helps	to	increase	the	rate	is	the	instability	of	a	thin	liquid	

layer	 produced	 on	 the	 grain	 surface.	 This	 layer	 is	 characterized	 by	 low	

viscosity	and	low	surface	tension;	the	liquid	fuel	droplets	are	injected	into	

the	boundary	layer	increasing	the	fuel	mass	flux	and	to	avoid	the	blocking	

effect	typical	of	gaseous	fuel	blowing. 

• Mixture	 ratio	 shifting:	 the	 regression	 rate	 in	HREs	 is	 assumed	 to	 be	 the	

follow	semi-empirical	correlation. 

𝑟 = 𝑎𝐺!"! 																																																												(1.1)	

Where	𝑎	and	𝑛	are	obtained	by	experimental	data,	and	𝐺!"	is	 the	oxidizer	

mass	flux	expressed	as	the	ratio	of	the	oxidizer	mass	flow	divided	by	the	

port	area	𝐺!" =  𝑚!"/𝐴!.	During	the	burning,	the	port	area	increases	and	

the	 regression	 rate	 decreases.	 On	 the	 other	 hand	 the	 burning	 area	𝐴!	

increases.	These	two	effects	are	not	balanced	and	the	mixture	ratio	shifts	

lead	 to	 a	 lower	 performance	 [12].	 Because	 of	 this,	 unconventional	

injectors	are	required	leading	to	a	complex	system.	
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• Mixing	inefficiencies:	unlike	liquid	or	solid	engines,	the	hybrid	engines	

have	the	large	diffusion	flame	results	in	a	lower	degree	of	mixing	and	

the	fuel	unburned	exits	the	nozzle	before	realising	chemical	energy.	A	

mixer	may	be	used	to	enhance	the	mixing	but	 it	 leads	to	 increase	the	

dry	weight	of	the	system	[12].	

• Slow	transient:	during	the	course	of	operation	HREs	undergo	a	number	

of	 transients	 phenomena	 such	 as	 ignition	 or	 thrust	 response	 to	

throttling	[12].	These	effects	are	due	to	the	thermal	lag	in	the	solid	fuel	

and	 it	may	 lead	 to	 instability	 phenomena	 that	 are	 the	 objects	 of	 this	

work.	

	

1.3	 Literature	 review	 of	 transient	 phenomena	 and	 combustion	

instability	in	HREs	
During	 a	 specific	 mission	 the	 thrust	 requirements	 has	 to	 be	 followed.	 The	 transient	

events	have	to	be	analysed	to	accomplish	the	constraints.	These	events	can	be	classified	

in	four	principal	phases	that	are:	ignition,	throttling,	thrust	termination	and	combustion	

instability.	

1) Ignition:	during	this	process	the	oxidizer	is	heated	by	some	kind	of	heat	sources	

as	spark	ignition	of	a	gaseous	fuel,	then	the	flame	takes	place	in	the	aft	part	of	the	

fuel	grain	where	the	mixture	ratio	𝑂/𝐹	is	oxidizer	rich	and	it	reaches	its	steady–

state	 configuration	 at	 the	 end	 of	 the	 transient.	 In	 hybrid	 rocket,	 the	 time	 lag	

required	to	reach	the	steady-state	configuration	is	longer	than	that	required	for	

the	solid	rocket,	and	it’s	due	to	the	delay	in	the	combustion	boundary	layer	and	

thermal	lag.		

2) Throttling:	for	the	same	reasons	during	the	throttling,	the	change	of	the	oxidizer	

mass	 flow	 leads	 to	 the	adjustment	of	 the	gas	velocity,	 the	 temperature	and	 the	

density	distribution	that	requires	a	lag	time	to	achieve	to	the	new	equilibrium.		

3) Thrust	 termination:	 in	hybrid	 rocket	during	 the	 shutdown	 there	 is	 a	 relaxation	

period	 where	 the	 accumulated	 heat	 in	 the	 solid	 is	 transferred	 in	 the	 surface,	

leading	to	vaporization	that	can	contribute	with	additional	impulse.	The	response	

during	this	phase	is	essentially	the	emptying	time	of	the	motor,	but	the	relaxation	

time	is	slower	than	emptying	time	and	because	of	this	 it	controls	the	shutdown	

impulse.	
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4) Combustion	instability:	this	transient	phenomenon	is	the	argument	of	this	work.	

“The	instability	is	defined	as	the	operation	condition	when	the	chamber	pressure	

oscillates	in	a	recognizably	coherent	form	with	an	amplitude	of	at	least	5%	of	its	

mean	 value“	 [1].	 It	 is	 clear	 that	 for	 a	 good	 design	 and	 in	 order	 to	 respect	 the	

mission	 constrains	 a	 combustion	 stability	 is	 needed,	 and	 it	 is	 important	 to	

understand	the	mechanism	related	to	that	instability.	In	liquid	or	solid	engines	it	

was	developed	a	theory	to	analyse	the	instability	phenomena	but	it	can’t	be	used	

in	HREs.	 The	 reason	 is	 to	 search	 into	 the	 regression	 rate	 law;	 in	 the	 SRMs	 the	

regression	 rate	 is	 proportional	 to	 the	 chamber	 pressure	 while	 in	 the	 HREs	 is	

proportional	 to	 the	oxidizer	mass	 flow.	Although	the	 instability	mechanism	and	

the	transient	events	have	not	been	explored	in	the	most	experimental	tests,	it	has	

seen	that	the	instability	is	in	the	form	of	limited	cycle	oscillations	in	the	range	of	

low	 frequencies	much	 smaller	 than	 the	 first	 longitudinal	 acoustic	mode	 of	 the	

combustion	 chamber.	 Moreover	 the	 hybrids	 do	 not	 have	 the	 catastrophic	

instabilities	of	liquid	or	solid	engines;	nevertheless	this	pressure	oscillation	could	

yield	to	overcome	the	structural	loading	or	thermal	loading.	Because	of	this	it	is	

necessary	to	develop	a	model	to	predict	this	instability.		

Several	 studies	have	been	conducted	and	a	possible	 theory	 is	 the	 thermal-combustion	

coupled	 model	 (TC),	 in	 this	 theory	 two	 transient	 phenomena	 are	 put	 together,	 the	

thermal	lag	in	the	solid	fuel	and	the	gas-phase	combustion.	Karabeyoglu	et	Al.	[14]	have	

included	 in	 the	 TC	 model	 another	 subsystem	 that	 is	 the	 gas-dynamic	 model	 (TCG).	

Although	the	TC	model	is	good	to	predict	the	low	frequency	instability	it	 is	not	able	to	

provide	 the	 necessary	 parameters	 to	 evaluate	 the	 performance	 of	 rockets	 such	 as	

pressure	 or	 specific	 impulse.	 First	 of	 all	 they	 analysed	 every	 single	 subsystem,	 in	

particular	 the	 ignition	and	vaporization	 subsystems	are	not	 treated	because	 there	 are	

several	 different	 elements	 for	 every	 design	 and	 this	 could	 lead	 to	 different	 response.	

Nevertheless	 these	 subsystems	 are	 isolated	 from	 the	 combustion	 chamber,	 the	

assumption	 to	 neglect	 them	 is	 valid.	 There	 are	 only	 three	 subsystems	 to	 take	 into	

account	and	they	are	the	three	involves	in	the	TCG	model.		

The	thermal	lag	model	explains	the	delay	time	due	to	the	heat	capacity	of	the	solid-fuel	

and	 because	 of	 this	 the	 regression	 rate	 can	 not	modify	 instantaneously	 to	 changes	 in	

wall	heat	flux;	in	this	model	are	also	modelled	the	gasification	and	pyrolysis	reactions	at	

the	surface.	The	second	model,	the	gas-phase	model,	aims	to	explain	what	happened	in	a	

transient	when	 changing	 in	 the	 oxidizer	mass	 flow	 occurs.	 Switching	 the	 value	 of	 the	
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oxidizer	mass	flow,	the	turbulent	boundary	layer	develops	over	the	fuel	surface	within	

the	chemical	reactions	take	place.	During	the	transient,	 the	convective	heat	transfer	to	

the	 surface	 is	 related	 to	 the	 regression	 rate	 through	 the	 blocking	 effect	 due	 to	 the	

blowing	of	the	gas.	These	dynamics	together	with	the	thermal	lag	lead	to	the	instability	

oscillation,	 Karabeyoglu	 et	 Al.	 [14]	 believe	 that	 the	 coupling	 of	 three	 parameters	 are	

responsible	for	the	instability;	these	parameters	are	the	activation	energy,	the	blocking	

factor	 and	 the	 delay	 in	 the	 boundary	 layer	 dynamic.	 The	 figures	 below	 show	 the	

consequence	 of	 changing	 these	 parameters,	 in	 particular	 they	 found	 out	 that	 the	

activation	energy	and	 the	blocking	 factor	do	not	affect	 the	 frequency	of	 the	oscillation	

but	they	affect	the	amplitude.	It	is	different	from	the	boundary	layer	delay	time,	in	fact	it	

affects	the	frequency.		

	

	
Figure	1.1.	Oscillation	frequency	and	amplitude	changing	the	activation	energy	[14]	
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Figure	1.2.		Oscillation	frequency	and	amplitude	changing	the	blocking	factor	[14]	

	

	
Figure	1.3.	Oscillation	frequency	changing	the	boundary	layer	delay	time	[14]	

	

In	 the	 figure	1.3,	 the	curve-fit	equation	suggests	a	relation	between	the	 frequency	and	

the	boundary	layer	delay	time:	

𝑓 = !.!"
!!"
																																																																														(1.2)					

	

The	last	subsystem	is	the	gas-dynamic	model	which	provides	the	chamber	pressure	and	

the	other	characteristic	parameters	such	as	specific	impulse	and	oxidizer	to	fuel	ratio.	In	

the	 paper	 [14]	 the	 combustion	 chamber	 is	 divided	 in	 three	 parts,	 pre-combustion	

chamber,	post-combustion	chamber	and	fuel	port	volume.		
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They	treated	the	first	two	parts	as	zero-dimensional	volume	elements	but	they	take	into	

consideration	 the	 variations	 of	 the	 conservative	 variable	 along	 the	 longitudinal	 axis.	

Solving	analytically	the	conservative	laws	after	linearization,	they	obtained	the	transfer	

function	 for	 the	 gas	 dynamic	model.	 The	 longitudinal	modes	 and	 the	 filling/emptying	

mode	are	shown	and	no	instability	modes	are	captured.	In	the	figure	1.4	that	modes	can	

be	seen.	The	conclusion	was	that	gas-dynamic	model	does	not	 influence	the	 instability	

dynamic,	even	if	the	presence	of	the	boundary	layer	delay	time.	

	

	
Figure	1.4.	Transfer	function	for	gas-dynamic	model	[14]	

	

In	the	TC	model	only	the	fuel	mass	flux	oscillation	or	the	regression	rate	oscillation	are	

represented	as	results.	 It	 takes	 the	 fuel	mass	 flux	and	 the	oxidizer	mass	 flux	as	 inputs	

including	the	gas-dynamic	model	and	it	shows	the	pressure	oscillation	as	a	result.	In	the	

figure	 1.5	 is	 shown	 a	 schematic	 diagram	 flux	 of	 the	 TCG	 coupled	 system.	 In	 their	

research	Karabeyoglu	et	Al.	[14]	discovered	that	the	presence	of	the	gas-dynamic	model	

does	not	influence	neither	the	frequency	nor	the	amplitude	of	the	oscillation	predicted	

by	the	TC	coupled	system.	

The	 figure	 1.6	 and	 1.7	 show	 the	 chamber	 pressure	 oscillation	 and	 the	 fast	 Fourier	

transform	 of	 chamber	 pressure	 for	 the	 paraffin-based	 motor	 tested	 in	 the	 Hybrid	

Combustion	Facility	at	NASA	Ames	Research	Center.		
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Figure	1.5.	Diagram	TCG	coupled	system	[14]	

	

	
Figure	1.6.	Chamber	and	feed	pressure	oscillations	for	paraffin-based	motor	[14]	

	

	
Figure	1.7.	Fast	Fourier	Transform	of	chamber	pressure	for	paraffin-based	motor	[14]	
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The	 fast	 Fourier	 transform	of	 chamber	pressure	 shows	 three	 different	 pick	 related	 to	

three	different	modes:	the	hybrid	low	frequency	instability,	the	chamber	bulk	mode	or	

Helmotz	 mode	 and	 the	 first	 longitudinal	 mode.	 It	 shows	 also	 that	 the	 maximum	

amplitude	pick	is	reached	only	from	the	low	frequency	mode,	while	the	other	two	modes	

present	lower	amplitude.	Furthermore	it	is	believed	that	the	acoustic	wave	is	driven	by	

the	low	frequency	instability;	the	variation	in	the	oxidizer	mass	flux	excites	the	acoustic	

modes	but	they	decay	in	a	short	time	thanks	to	their	stability.		

The	TCG	model	 is	able	 to	predict	 the	 frequency	of	 the	 instability	mode	but	 it	does	not	

provide	a	correct	result	from	the	amplitude	of	this	mode.	It	predicts	infinite	amplitude	

while	it	is	known	by	the	several	tests	that	these	oscillations	are	closed	to	a	limit-cycle.			

In	 the	 paper	 [15]	 Kung-Su	 Park	 and	 Changjin	 Lee	 deal	 with	 the	 same	 problem	 in	

laboratory-scale	 hybrid	motors.	 They	 tested	 15	 hybrid	motors	 changing	 some	 critical	

parameters	such	as	the	volume	ratio;	in	other	words	they	changed	the	ratio	between	the	

post-chamber	length	and	the	chamber	length,	the	oxidizer	mass	flow	rate	and	the	type	of	

solid	 fuel.	 In	 their	 tests	 they	 found	out	 that	 the	material	property	 like	 the	 type	of	 fuel	

propellant	and	the	change	 in	 the	oxidizer	mass	 flow	rate	do	not	seem	to	 influence	 the	

LFI,	while	this	seems	to	appear	when	the	volume	ratio	changes	and	when	the	fuel	port	

diameter	approaches	certain	values.		

These	and	other	articles	are	used	as	a	reference	in	this	thesis,	especially	the	subsystems	

division	 in	 order	 to	 develop	 a	 numerical	method	 capable	 of	 providing	 these	 transient	

phenomena.	 The	 physical	 and	 the	 numerical	models	will	 be	 explained	 in	 detail	 in	 the	

next	chapters.	
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Chapter	2	

Physical	models	
The	 physical	 models	 used	 to	 analyse	 the	 transient	 phenomena	 of	 the	 HREs	 will	 be	

exhibited	in	this	chapter.	It	is	needed	to	divide	the	physical	models	in	order	to	study	the	

fluid	dynamic	properties	of	the	mixture	inside	the	combustion	chamber	and	the	nozzle.	

The	 three	 models	 are	 the	 quasi-one-dimensional	 gas	 dynamic	 model,	 the	 chemical	

model	and	the	thermal	model.	

	

2.1	Quasi-one-dimensional	gas	dynamic	model	
The	gas	dynamic	model	is	the	quasi-one-dimensional	model	and	it	is	based	on	the	Euler	

equations	 along	 the	 longitudinal	 axis.	 The	model	 is	 quasi-one-dimensional	 because	 it	

takes	into	consideration	the	area	average	value	and	the	fluid	dynamic	variable	along	the	

longitudinal	 direction.	 Throughout	 the	 combustion	 process,	 the	 fuel	 pass	 through	 the	

solid-phase	into	the	gas	phase;	therefore	the	fuel	mass	flux	is	radially	injected	inside	the	

combustion	 chamber.	 So	 as	 to	 consider	 this,	 a	 source	 mass	 is	 added	 in	 the	 Euler	

equations.	Moreover	 a	 further	 equation	 is	 introduced,	 “the	mixture	 fraction	 transport	

equation”,	 as	 it	 has	 done	 by	 Karthikeyan,	 G.	 and	 Shimada	 T.	 in	 [11].	 This	 equation	 is	

similar	to	the	mass	conservation	equation,	but	in	addition,	there	is	a	new	variable	that	

multiplies	the	density,	called	the	“mixture	fraction”.	

	

𝜖 = !!!!!,!
!!,!!!!,!

																																																																	(2.1)	

	

In	 the	 equation	 2.1,	𝜖	represents	 the	mixture	 fraction,	while	𝑏!,!	and	 	𝑏!,!	are	 the	mole	

numbers	of	atomic	Carbon	per	unit	mass	of	mixture	gas	inside	both	fuel	and	oxidizer.	In	

this	hybrid	rocket	engine	model,	the	oxidizer	is	gaseous	oxygen	and	it	does	not	include	

any	carbon	atoms;	as	a	matter	of	fact	𝑏!,!	is	equal	to	zero	and	the	mixture	fraction	can	be	

expressed	in	this	way:	

	

𝜖 = !!
!!,!
																																																																				(2.2)	

	

The	standard	Euler	equations	are	modified	because	of	the	mixture	fraction	transport	

equation,	the	source	mass	and	the	area	average	value	into	the	following	equations.	
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!"#
!"
+ !"#$

!"
= 𝑚!𝑙!																																																																	(2.3)	

	
!"#$
!"

+ !"(!!!!!)
!"

= 𝑝 !"
!"
																																																													(2.4)	

	
!"#$
!"

+ !" !"!! !
!"

= 𝑚!𝑙!ℎ! 																																																					(2.5)	

	
!"#$
!"

+ !"#$%
!"

= 𝑚!𝑙!																																																														(2.6)	

	

In	the	equations	above,	𝑙!	represents	the	perimeter	of	the	cross-section	area	of	the	fuel	

grain,	while	ℎ! 	represents	the	specific	enthalpy	of	the	fuel	gas	evaporating	from	the	fuel	

surface.	The	specific	total	energy	is	expressed	as:	

	

𝐸 = 𝑒! +
!!

!
																																																																								(2.7)	

	

The	 parameter	𝑒! 	is	 the	 specific	 internal	 energy	 and	 it	 is	 one	 of	 the	 inputs	 for	 the	

chemical	 model.	 Once	 the	 specific	 total	 energy	 is	 known,	 with	 the	 equation	 2.7,	 the	

specific	internal	energy	can	be	extracted.		

In	order	to	study	the	properties	of	the	fluid	dynamic	equations,	they	can	be	rewritten	in	

a	compact	form.	

	
!"!
!"

+ !"!
!"

= 𝑆 + 𝑆!																																																																(2.8)	

where:	

𝑈 = 𝜌,𝜌𝑢,𝜌𝐸,𝜌𝜖  ! 																																																														(2.9)	

	

𝐹 = 𝜌𝑢,𝜌𝑢! + 𝑝, 𝜌𝐸 + 𝑝 𝑢,𝜌𝜖𝑢  ! 																																														(2.10)	

	

𝑆 = 0,𝑝 !"
!"
, 0,0  ! 																																																																(2.11)	

	

𝑆! = 𝑚!𝑙!, 0,𝑚!𝑙!ℎ! ,𝑚!𝑙!  ! 																																																			(2.12)	
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Generally	 the	 standard	 Euler	 equations,	 in	 their	 non-conservative	 form,	 may	 be	

expressed	in	terms	of	a,	u	and	S:	

	

!
!"

𝑎
𝑢
𝑆
+

𝑢             𝛿𝑎            0
!
!

            𝑢     − !!

!"
0              0               𝑢

!
!"

𝑎
𝑢
𝑆

= 0																																							(2.13)	

	

The	properties	of	the	standard	Euler	equations	are	studied	by	using	a	model	equation.	

	
!!
!"
+ 𝑨 !!

!"
= 0																																																											(2.14)	

	

Where	𝑉	is	a	vector	and	𝑨	is	a	matrix.	

The	equation	above	is	a	partial	differential	equation,	precisely	a	hyperbolic	differential	

equation	 and	 it	 represents	 a	 generalization	 of	 the	 advection	 equation	 !"
!"
+ 𝑎 !"

!"
= 0 .	

For	this	type	of	equation	exists	a	technique	to	solve	it,	the	method	of	characteristic.	This	

method	is	to	transform	the	PDE	in	a	system	of	ODE	and	to	find	the	characteristic	curve,	

along	which	signals	are	propagated	(as	example	𝑢(𝑥, 𝑡)	for	advection	equation),	but	 its	

derivatives	 are	 not	 defined.	 Therefore,	 if	 you	 know	 the	 initial	 conditions,	 it	 will	 be	

simple	to	solve	the	solution	in	the	simple	case	of	the	1D	advection	equation;	because	the	

solution,	 at	 a	 certain	 time	 and	 space,	 propagates	 through	 a	 characteristic	 line	 with	

constant	slope	𝑎.	This	slope	may	be	not	constant	if	𝑎	is	a	function	of	the	solution.	This	is	

the	case	of	 the	equation	2.14,	where	 the	slope	 is	a	 function	of	 the	solution;	moreover,	

there	are	 three	characteristic	curves	and	their	slopes	 that	can	be	 found	by	solving	 the	

determinant	of	the	matrix	 𝐴 − 𝜆𝐼 .	The	three	slopes	of	the	characteristic	curves	are	the	

following:	

	

𝛬! = 𝑢 − 𝑎																																																																				(2.15)	

𝛬! = 𝑢																																																																												(2.16)	

𝛬! = 𝑢 + 𝑎																																																																				(2.17)	

	

It	is	not	enough	to	know	the	initial	conditions	in	order	to	solve	the	PDE,	but	it	is	needed	

also	to	known	the	boundary	conditions.	The	characteristic	method,	thanks	to	the	slopes	

of	the	characteristic	curves,	helps	to	choose	where	and	how	many	boundary	conditions	
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have	 to	 be	 imposed.	 In	 the	 standard	 Euler	 equations,	 the	 slopes	 of	 the	 characteristic	

curves,	depends	on	the	Mach	number	of	the	flow	field;	indeed,	if	the	flow	field	is	in	the	

supersonic	regime	all	the	three	curves	have	positive	slopes	in	the	time-space	plane.	It	is	

different	from	the	subsonic	regime,	because	one	of	the	three	characteristic	curves	has	a	

negative	slope	in	the	time-space	plane.		

In	a	one-dimensional	problem,	as	that	treated	in	this	thesis,	if	the	flow	is	supersonic	at	

the	 inlet,	 then	 three	 boundary	 conditions	 have	 to	 be	 imposed;	while,	 if	 it	 is	 subsonic,	

then	 only	 two	 boundary	 conditions	 have	 to	 be	 imposed,	 but	 they	 must	 be	 able	 to	

communicate	with	the	characteristic	curve	coming	from	within	the	domain.	In	the	outlet	

of	the	domain,	 in	the	same	way,	 if	the	flow	is	supersonic,	then	no	boundary	conditions	

have	to	be	 imposed;	otherwise,	 if	 the	 flow	 is	subsonic,	only	one	boundary	condition	 is	

needed.	

In	this	thesis,	the	flow	is	subsonic	at	the	inlet,	but	becomes	supersonic	at	the	outlet;	so	

the	boundary	conditions	are	imposed	only	at	the	inlet.		

	

2.2	Chemical	equilibrium	model		
The	gas	dynamic	model	itself	is	not	able	to	capture	the	correct	thermodynamic	features	

of	 the	 mainstream	 flow	 into	 the	 combustion	 chamber,	 because	 a	 chemical	 reaction	

occurs.	 Therefore	 a	 chemical	 model	 is	 required.	 Since	 the	 time	 scale	 of	 the	 chemical	

kinetics	 is	 lower	 than	 the	 fluid	 dynamic	 time	 scale,	 it	 can	 be	 possible	 to	 consider	 the	

chemical	equilibrium	model	without	introducing	a	significant	error.	The	numerical	code	

applied	 to	 resolve	 the	 chemical	 equilibrium	 is	 the	 CEA	 code	 [16],	 it	 uses	 a	 solution	

method	based	on	 the	minimization	of	 free	energy.	The	 free	energy	could	be	 the	Gibbs	

energy	 or	 the	Helmhotz	 energy,	 it	 depends	 on	 the	 thermodynamic	 state	 variable.	 The	

variation	 of	 the	 free	 energy	 have	 to	 be	 zero,	 this	 is	 the	 condition	 for	 the	 chemical	

equilibrium.	What	 energy	 has	 to	 be	 selected,	 Gibbs	 or	 Helmhotz	 energy,	 depends	 on	

which	thermodynamic	variables	are	chosen	to	characterize	the	thermodynamic	state.		

Before	 describing	 how	 this	 method	 works,	 it	 is	 necessary	 to	 introduce	 some	

assumptions.	 All	 the	 gases	 are	 considered	 ideal,	 therefore	 the	 equation	 state	 for	 the	

mixture	is:	

	
!
!
= 𝑛𝑅𝑇																																																																	(2.18)	
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where	n	 is	 the	number	of	moles	per	kilogram	of	mixture,	 it	 is	not	constant	during	 the	

reaction.	The	equation	2.18	is	supposed	to	be	correct	even	if	the	condensed	species	are	

present.	 The	 variables	𝜌	or	 V	 and	 n	 refer	 to	 gaseous	 species,	 while	 the	 mass	 of	 the	

mixture	 refers	 to	 every	 species	 that	 are	 included	 in	 the	 reaction	 products.	 As	 a	

consequence,	the	following	relation	can	be	written:	

	

𝑛 = 𝑛!!"
!!! 																																																																			(2.19)	

	

where	𝑛! 	is	 the	number	of	moles	of	 the	 j-th	 species	per	kilogram	of	mixture	and	𝑁𝐺	is	

the	number	of	the	gaseous	species	in	the	mixture.	

The	molecular	weight	of	the	mixture	is	expressed	as:		

	

𝑀 = !
!
																																																																							(2.20)	

or		

𝑀 =
!!!!

!"
!!!

!!!"
!!!

																																																																	(2.21)	

	

In	the	equation	2.21	𝑀! 	is	the	molecular	weight	of	the	j-th	species,	while	𝑁𝑆	refers	to	all	

the	species	in	the	mixture.	It	should	be	noted	that	the	CEA	code	considers	from	1	to	𝑁𝐺	

only	the	gaseous	species	and	from	𝑁𝐺 + 1	to	𝑁𝑆	the	condensed	species.		

	

2.2.1	Minimization	of	Gibbs	energy		
The	Gibbs	energy	is	a	state	function.	It	represents	the	free	energy	in	the	thermodynamic	

state	with	constant	temperature	and	pressure.	These	two	state	variables	are	the	Gibbs	

energy	 own	 natural	 variables;	 as	 a	 matter	 of	 fact	 it	 is	 used	 to	 solve	 the	 chemical	

equilibrium	when	temperature	and	pressure	are	assigned.	The	definition	of	that	energy	

is:	

𝑔 = ℎ − 𝑇𝑠																																																																				(2.22)	

	

It	 also	 has	 another	 definition	 based	 on	 the	 chemical	 potential.	 In	 fact	 in	 a	𝑁𝑆	species	

mixture	the	Gibbs	energy	is	better	defined	as:		

	

𝑔 = 𝜇!𝑛!!"
!!! 																																																																(2.23)	
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The	 classical	 definition	 of	 the	 chemical	 potential	 of	 the	 j-th	 species	 is	 shown	 in	 the	

equation	2.24.	

	

𝜇! =
!"
!!! !,!,!!!!

																																																										(2.24)	

	

As	 the	Gibbs	 energy,	 also	 for	 the	 specific	 enthalpy	 and	 for	 the	 specific	 entropy	 of	 the	

mixture,	there	are	definitions	based	on	the	number	of	species.	

	

ℎ = 𝑛!𝐻!°!"
!!! 																																																																(2.25)	

	

𝑠 = 𝑛!𝑆!!"
!!! 																																																																	(2.26)	

	

In	 the	 equations	 2.25	 and	 2.26,	𝐻!°	is	 the	 standard-state	 molar	 enthalpy	 of	 the	 j-th	

species	of	the	mixture	and	𝑆! 	is	the	entropy	of	the	j-th	species	of	the	mixture.	As	well	as	

the	 chemical	 potential	𝜇! ,	 also	 the	 entropy	𝑆! 	has	 different	 relations	 in	 order	 to	

distinguish	 it	 from	 gaseous	 and	 condensed	 species,	 and	 these	 relations	 are	 written	

below.	

	

𝜇! =   
𝜇!° + 𝑅𝑇𝑙𝑛

!!
!

+ 𝑅𝑇𝑙𝑛𝑃                 𝑗 = (1,… ,𝑁𝐺)

𝜇!°                                                  𝑗 = (𝑁𝐺 + 1,… ,𝑁𝑆)
     																									(2.27)	

	

𝑆! =   
𝑆!° − 𝑅𝑙𝑛

!!
!

− 𝑅𝑙𝑛𝑃                        𝑗 = (1,… ,𝑁𝐺)

𝑆!°                                                 𝑗 = (𝑁𝐺 + 1,… ,𝑁𝑆)
     																											(2.28)	

	

In	2.27	and	2.28,	𝜇!° 	is	the	standard-state	chemical	potential	and	𝑆!°	is	the	standard-state	

molar	entropy.	

The	 minimization	 of	 the	 Gibbs	 energy	 is	 a	 constrained	 minimization	 problem.	 The	

constraint	is	the	mass-balance	and	it	may	be	expressed	with	the	next	equation.	

	

𝑎!"𝑛!!"
!!! − 𝑏!° = 0   𝑤𝑖𝑡ℎ     (𝑖 = 1,… , 𝑙)																																		(2.29)	

or		
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𝑏! − 𝑏!° = 0     𝑤𝑖𝑡ℎ   (𝑖 = 1,… , 𝑙)																																													(2.30)	

	

In	 equation	 2.29,	𝑎!" 	represents	 the	 stoichiometric	 coefficients;	 in	 other	 words,	 the	

number	 of	 atoms	 of	 element	 i	per	mole	 of	 species	 j,	 and	𝑏!°	is	 the	 assigned	 number	 of	

atoms	 of	 the	 i-th	 element	 per	 kilogram	of	 the	 reactants	mixture.	 The	 parameter	𝑏! ,	 in	

equation	2.30,	is	the	number	of	atoms	of	the	i-th	element	per	kilogram	of	the	products	

mixture,	it	may	be	written	as	the	following:	

	

𝑏! = 𝑎!"𝑛!!"
!!!      𝑤𝑖𝑡ℎ   (𝑖 = 1,… , 𝑙)																																				(2.31)	

	

In	 order	 to	 solve	 the	 constrained	 minimization	 problem,	 the	 method	 of	 Lagrange	

multipliers	 is	 applied.	 Instead	 of	 the	 Gibbs	 energy,	 a	 new	 function	 is	minimized.	 This	

function	takes	into	consideration	the	mass-balance	constraint.		

	

𝐺 = 𝑔 + 𝜆!(𝑏! − 𝑏!°)!
!!!      																																											(2.32)	

	

The	 equation	 2.32	 can	 be	 differentiated	 and	 set	 equal	 to	 zero	 for	 the	 equilibrium	

problem.		

	

𝛿𝐺 = (𝜇! +!"
!!! 𝜆!𝑎!"!

!!! )𝛿𝑛! + (𝑏! − 𝑏!°)!
!!! 𝛿𝜆! = 0     														(2.33)	

	

Treating	separately	𝛿𝑛! 	and	𝛿𝜆! 	lead	to	two	equations;	one	of	these	is	the	mass	balance	

equation	2.33,	while	the	other	is	a	new	equation	2.34,	that	links	the	chemical	potential	

with	the	stoichiometric	coefficients.		

	

𝜇! + 𝜆!𝑎!"!
!!! = 0  𝑤𝑖𝑡ℎ   (𝑗 = 1,… ,𝑁𝑆)     																															(2.34)	

	

The	chemical	equilibrium	problem	can	be	solved	with	the	aid	of	the	equations	2.25	and	

2.26	 once	 assigned	 two	 thermodynamic	 state	 variables.	 As	 discussed	 previously,	

temperature	and	pressure	are	usually	assigned	(𝑇 = 𝑇!;𝑃 = 𝑃!),	but	also	enthalpy	and	

pressure	 (ℎ = ℎ!;𝑃 = 𝑃!)	 or	 entropy	 and	 pressure	 (𝑠 = 𝑠!;𝑃 = 𝑃!)	 may	 be	 assigned.	

This	adds	other	 two	equations.	Furthermore	 the	equations	system	 for	 the	equilibrium	
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problem	is	not	linear	in	the	composition	variables,	this	requires	an	iterative	procedure.	

This	procedure	will	be	explained	later	on	the	paragraph	3.4.	

	

2.2.2	Minimization	of	Helmhotz	energy		
As	well	as	the	Gibbs	energy,	also	the	Helmhotz	energy	is	a	state	function,	but	it	is	defined	

in	a	different	way.	The	equations	below	are	the	expression	of	the	Helmhotz	energy,	and	

they	show	the	connection	with	 the	Gibbs	and	with	 the	chemical	potential.	 In	equation	

2.37	 the	 definition	 of	 the	 chemical	 potential	 is	 different	 from	 the	 equation	 2.24.	

Diversely	from	the	Gibbs	energy,	the	Helmhotz	energy	is	used	to	solve	the	equilibrium	

problem	with	constant	temperature	and	volume;	as	a	consequence	there	is	the	volume	

instead	of	the	pressure	in	the	subscripts	of	the	equation	2.37.		

		

𝑓 = 𝑔 − 𝑝𝑉																																																																								(2.35)	

	

𝑓 = 𝜇!𝑛!!"
!!! − 𝑝𝑉																																																													(2.36)	

	

𝜇! =
!"
!!! !,!,!!!!

																																																															(2.37)	

	

In	addition,	the	chemical	potential	is	defined	according	to	the	phase	of	the	species.	

	

𝜇! =   
𝜇!° + 𝑅𝑇 ln

!!!!!
!

                                 𝑗 = (1,… ,𝑁𝐺)

𝜇!°                                                  𝑗 = (𝑁𝐺 + 1,… ,𝑁𝑆)
     																			(2.38)	

	

where	𝑅! = 𝑅×10!!	according	to	[16].	

Substituting	the	equation	2.22	in	2.35	it	can	obtain	the	following:	

	

𝑓 = ℎ − 𝑇𝑠 − 𝑃𝑉 = 𝑒 − 𝑇𝑠																																																		(2.39)	

	

As	well	as	the	specific	enthalpy	ℎ,	also	the	specific	internal	energy	𝑒	is	function	of	𝑛! 	and	

it	can	be	seen	below:	

	

𝑒 = 𝑛!𝐸!°!"
!!! 																																																															(2.40)	
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The	minimization	of	the	Helmhotz	energy	is	also	a	constraint	minimization	problem.	It	

can	be	defined	a	new	function	with	the	Lagrangian	method	and	sets	the	condition	for	the	

equilibrium,	as	shown	before	for	the	Gibbs	energy.		

	

𝐹 = 𝑓 + 𝜆!(𝑏! − 𝑏!°)!
!!!      																																																	(2.41)	

	

𝛿𝐹 = (𝜇! +!"
!!! 𝜆!𝑎!"!

!!! )𝛿𝑛! + (𝑏! − 𝑏!°)!
!!! 𝛿𝜆! = 0     																		(2.42)	

	

Treating	𝛿𝑛! 	and	𝛿𝜆! 	independently,	it	can	be	found	the	following	equation:			

	

𝜇! + 𝜆!𝑎!"!
!!! = 0  𝑤𝑖𝑡ℎ   (𝑗 = 1,… ,𝑁𝑆)     																											(2.43)	

	

This	equation	is	apparently	equal	to	the	equation	2.34,	the	difference	is	on	the	definition	

of	 the	 chemical	 potential.	 Moreover,	 other	 two	 equations	 are	 needed	 to	 solve	 the	

problem	and	they	are	found	by	imposing	the	two	thermodynamic	state	variables;	these	

variables	 could	 be	 temperature	 and	 volume	(𝑇 = 𝑇!;𝑉 = 𝑉!),	 specific	 internal	 energy		

and	volume	(𝑒 = 𝑒!;𝑉 = 𝑉!)	or	specific	entropy	and	volume	(𝑠 = 𝑠!;𝑉 = 𝑉!).	The	set	of	

equations	 are	 not	 linear	 in	 the	 concentration	 variables	 as	 the	 equations	 for	 the	

minimization	of	the	Gibbs	energy.		

	

2.3	One-dimensional	thermal	model	
In	 the	quasi-one-dimensional	gas	dynamic	model	 is	present	 the	 source	 term,	 in	which	

there	is	the	fuel	flow	rate	𝑚!	and	it	is	evaluated	as	the	product	between	the	fuel	density	

𝜌!	and	the	regression	rate	𝑟.	It	is	not	simple	to	calculate	𝑟	because	it	depends	on	the	wall	

temperature	 at	 the	 fuel	 surface.	 In	 order	 to	 obtain	 this	 parameter	 a	 thermal	model	 is	

required.		

The	 one	 dimensional	 heat	 conduction	 equation	 is	 used	 to	 describe	 the	 temperature	

profile	inside	the	solid-fuel	and	to	give	the	wall	temperature	that	is	needed	to	evaluate	

the	regression	rate.	Some	assumptions	have	to	be	done	and	according	to	[17],	they	are:	

	

• The	thermal	penetration	thickness	is	much	smaller	than	the	fuel	port	grain,	this	

enables	to	solve	the	problem	in	a	planar	coordinate	system.		
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• The	thermo-physical	properties	of	the	solid-fuel	are	assumed	to	be	constant	with	

the	temperature.		

• 	The	 reaction	 and	melting	 of	 the	 solid-phase	 are	 confined	 inside	 the	 thin	 layer	

below	the	regression	surface.		

	

The	 figure	 2.1	 shows	 the	 schematic	 temperature	 profile	 inside	 the	 flame	 and	 the	 fuel	

grain,	the	direction	of	the	heat	transfer,	the	fuel	flow	rate	and	the	regression	rate.		

	

	
Figure	2.1.	Schematic	temperature	profile	inside	the	flame	and	the	fuel-grain	[17]		

	
In	 the	 following	 equation	 it	 is	 shown	 the	 one-dimensional	 heat	 conduction	 equation	

with	a	reference	system	which	follows	the	moving	regression	surface.	

	
!"
!"
= 𝑟 !"

!"
+ 𝛼 !!!

!!!
       																																																					(2.44)	

	

The	parameter	𝛼	is	 the	 solid	 thermal	diffusivity	 and	 it	 is	 calculated	 as	𝛼 = !
!!!!

,	where									

𝑘	is	the	thermal	conductivity	and	𝑐!	is	the	specific	heat	capacity	at	constant	pressure.		

The	 equation	 2.44	 is	 a	 partial	 differential	 equation,	 so	 the	 boundary	 and	 the	 initial	

conditions	 have	 to	 be	 specified	 in	 order	 to	 find	 the	 solution.	 The	 first	 boundary	

condition	is	the	following:	

	

𝑥 → ∞         𝑇 = 𝑇!																																																													(2.45)	
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The	second	boundary	condition	is	imposed	at	the	wall	position,	and	it	is:	

	

𝑥 = 0         𝑄! = −𝑘 !"
!" !

+ 𝑟𝜌!𝐿!																																											(2.46)	

	

Where	𝐿!	is	 the	 heat	 of	 vaporization	 and	𝑄! 	is	 the	 heat	 exchanged	 to	 the	 wall.	 This	

boundary	condition	says	that	the	heat	exchanged	to	the	wall	is	equal	to	the	heat	lost	by	

conduction	and	the	heat	required	to	vaporize	the	solid	[17].	

The	 other	 condition	 is	 the	 initial	 condition	 that	 imposes	 a	 certain	 initial	 temperature	

distribution	inside	the	solid-fuel.	It	is	expressed	as	the	following:	

	

𝑡 = 0         𝑇(𝑦) = 𝑇!(𝑦)																																																					(2.47)	

	

A	 law	 for	 the	 regression	 rate	 is	 necessary	 to	 close	 the	 problem.	 The	 Arrhenius	 type	

relation	 is	used	to	approximate	the	pyrolysis	or	the	vaporization	process;	 this	relation	

links	the	regression	rate	with	the	wall	temperature	as	it	can	see	below:	

	

𝑟 = 𝐴!𝑒
! !!
!!! 																																																																	(2.48)	

	

In	that	relation	appears	three	parameters:	𝐴!	that	is	a	pre-exponential	constant,	𝐸!	that	

is	the	activation	energy	and	𝑅	that	is	the	specific	gas	constant.		

	

2.3.1	Wall	heat	flux	model	
In	the	equation	2.46	the	wall	heat	flux	refers	only	to	the	convective	heat	flux	and	it	has	

to	 be	 defined.	 Starting	 from	 the	 assumption	 of	 Marxman	 and	 Gilbert	 [18],	 the	 flow	

through	 the	 grain	 surface	 is	 schematized	as	 a	 turbulent	boundary	 layer.	 Furthermore,	

the	flame	is	placed	at	a	distance	where	the	oxidizer	to	fuel	ratio	is	almost	stoichiometric.		

Therefore,	 the	wall	 heat	 flux	 is	 expressed	 as	 a	 function	 of	 the	 Stanton	number	𝑆𝑡	that	

takes	into	consideration	the	flame	properties.	

	

𝑄! = 𝑆𝑡𝜌!𝑢!𝛥ℎ																																																													(2.49)	

	

The	subscript	b	refers	to	the	flame	and	𝛥ℎ	is	the	difference	between	the	enthalpy	at	the	

flame	and	 the	enthalpy	at	 the	wall	 in	 the	gas	phase.	 In	 the	presence	of	 combustion	or	
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blowing	the	transition	from	laminar	to	turbulent	boundary	layer	takes	place	at	smaller	

Reynolds	number	then	in	the	absence	of	blowing	or	combustion.	Under	the	assumption	

that	over	the	whole	combustion	chamber	the	turbulent	boundary	layer	is	developed,	it	is	

possible	to	link	the	Stanton	number	with	the	skin	friction	coefficient.	

	

𝑆𝑡 = !
!
𝐶!

!!!!!

!!!!
!   ⟹   𝑄! =

!
!
𝐶!𝐺

!!
!!

𝛥ℎ																																		(2.50)	

	

In	 the	 equation	 2.50	𝐶!	is	 the	 skin	 friction	 coefficient,	𝑢! 	refers	 to	 the	 velocity	 at	 the	

boundary	layer	edge	and	𝐺 = 𝜌!𝑢! 	is	the	total	mass	flux.		

An	 important	phenomenon	 is	 the	 “blocking-effect”;	 it	 is	due	 to	 the	vaporization	of	 the	

fuel	mass,	this	effect	must	be	considered	because	it	influences	directly	the	wall	heat	flux	

and	the	regression	rate.	When	the	regression	rate	 is	high,	 the	wall-heat	 flux	decreases	

due	to	the	blowing	of	the	gas-fuel,	but	this	reduction	in	the	wall-heat	flux	consequently	

implies	 a	 reduction	 in	 the	 regression	 rate	 and	 the	 blowing.	 This	 is	 an	 oscillatory	

mechanism	that	affects	the	transition-state	during	the	combustion.	In	order	to	take	this	

effect	into	account,	the	dimensionless	blowing	parameter	is	used	and	it	is	defined	as	the	

following:	

	

𝐵 = 2𝜌!𝑟/𝐺𝐶! 																																																														(2.51)	

	

Marxman	[19]	found	a	relationship	between	the	skin	friction	coefficient	𝐶!	and	the	skin	

friction	 coefficient	𝐶!! 	in	 the	 absence	 of	 the	 blowing.	 He	 started	 from	 the	 relation	

proposed	 by	 Lees,	 where	 the	 “blocking-effect”	 is	 evaluated	 from	 the	 “film-theory”	

approach.		

	
!!
!!!

= !" !!!
!

 																																																																		(2.52)	

	

The	 equation	 2.52	 does	 not	 consider	 the	 effect	 of	 the	 wall-mass	 injection.	 Therefore,	

Marxaman	proposed	a	new	expression	for	 !!
!!!
	that	is	able	to	account	the	increase	of	the	

boundary	layer	thickness	when	the	wall-mass	injection	or	𝐵	is	large.		
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!!
!!!

= !" !!!
!

 
!.! !!!"!!" !

!!!

!!

!!! !!!!
!

 

!.!

																																																			(2.53)	

	

In	 the	 range	5 ≤ 𝐵 ≤ 100 	the	 equation	 2.51	 is	 approximated	 with	 the	 following	

equation:	

	
!!
!!!

= 𝑞𝐵!!! 																																																															(2.54)	

	

Furthermore	if	𝐵 → 0,	the	equation	2.52	provides	non-physical	results,	thus,	in	this	case	

an	alternative	equation	is	proposed,	according	to	[17].	

	
!!
!!!

= !
!!!.!!

																																																																(2.55)	

	

The	parameters	𝑞	and	𝑘!	are	imposed	to	be	𝑞 = 1	and	𝑘! = 0.68,	but	with	that	value	of	𝑞	

the	equation	2.52	and	2.53	do	not	match.	In	order	to	avoid	that	problem	D.	Pastrone	and	

C.	Carmicino	in	[17]	found	the	value	of	𝑞	such	that	the	two	equations	are	equal.		

	

𝑞 = !∗!!

!!!.!!∗
																																																																	(2.56)	

	

Where	𝐵∗	is	the	value	of	𝐵	for	the	equivalence	of	the	equations.	

Moreover,	by	taking	the	derivative	of	the	difference	between	equation	2.52	and	2.53	and	

equating	it	to	zero,	they	found	the	following	value	for	𝑞	and	𝐵∗:	

	

𝑞 = 2.5 !
!!!

!
(1− 𝑘)																																																				(2.57)	

	

𝐵∗ = 2.5 !
!!!

																																																																			(2.58)	

	

Substituting	 equation	 2.55	 in	 2.51	 for	𝐵 ≤ 𝐵∗,	 the	 following	 relation	 for	 the	 blowing	

parameter	is	obtained:	

	

𝐵 = !!!!
!!!!!!.!!!!

 																																																														(2.59)	
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While	substituting	equation	2.54	in	2.51	for	𝐵 > 𝐵∗,	another	relation	for	𝐵	is	expressed	

below.	

𝐵 = !!!!
!.!!"!!!!

!
!!!

 																																																									(2.60)	

	

The	 wall-heat	 flux	 can	 be	 rewrite	 including	 the	 thermochemical	 blowing	 parameter	

𝐵! =
!!
!!

𝛥ℎ/ℎ! ,	with	ℎ! = 𝐿! + 𝑐!(𝑇! − 𝑇!).		

	

𝑄! =
!
!
𝐶!

!!
!!!

𝐺𝐵!ℎ!																																																								(2.61)	

	

As	a	consequence	also	the	wall-heat	flux	can	be	written	with	two	equations	based	on	the	

blowing	parameter.	

	

𝑄! = 𝐵!ℎ!
!
!
𝐶!!𝐺 − 0.4𝜌!𝑟             𝑖𝑓 𝐵 ≤ 𝐵∗																															(2.62)	

𝑄! =
!.!!"
!
𝐶!!𝐺𝐵!ℎ!

!!!!
!.!!"!!!!

! !
!!!

 𝑖𝑓 𝐵 > 𝐵∗																														(2.63)	
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Chapter	3	

Numerical	methods	
	
3.1	Finite	volume	method	for	the	Euler	equations		
The	quasi-one-dimensional	gas	dynamic	model	involves	partial	differential	equations,	so	

as	to	solve	them	the	finite	volume	method	is	implemented.	This	method	is	preferable	to	

the	differential	method	because	 there	 is	 no	need	 to	 switch	 from	a	physical	 plane	 to	 a	

calculation	 plane.	 Therefore,	 the	 physical	 domain	 is	 discretized	 with	 elementary	

volumes,	but	with	some	conditions.	These	conditions	are:	

	

1. The	elementary	volumes	must	not	overlap;	

2. Two	neighbours	elements	must	have	only	one	side	in	common;	

3. The	elements	must	cover	the	whole	physical	domain;	

	

In	 order	 to	 explain	 how	 this	 method	 works	 a	 compact	 form	 of	 the	 one-dimensional	

standard	Euler	equations,	with	the	source	term,	is	taken	into	considerations.		

	
!!
!"
+ !!

!"
= 𝑄																																																																		(3.1)	

	

The	schematic	discretization	domain	in	time	and	space	are	shown	below.	

	Figure	3.1.	Schematic	discretization	one-dimensional	domain	in	space	and	time	[20]		
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The	equation	3.1	can	be	rewritten	in	an	integral	form.	

	

	 !
!"

𝑈𝑑𝑥
!
!!!!

!
!!!!

+ 𝐹 𝑈 𝑥!!!!
, 𝑡! − 𝐹 𝑈 𝑥!!!!

, 𝑡! = 𝑄𝑑𝑥
!
!!!!

!
!!!!

 																			(3.2)	

	

The	equation	above	is	applied	to	every	elementary	volume,	or	grid	cell,	and	for	each	of	

them	the	average	values	of	𝑈	and	𝑄	are	defined	as	the	follows:	

	

𝑈! =
!
!"

𝑈𝑑𝑥
!
!!!!

!
!!!!

																																																																(3.3)	

	

𝑄! =
!
!"

𝑄𝑑𝑥
!
!!!!

!
!!!!

																																																																(3.4)	

	

The	average	values	may	be	associated	to	the	centres	or	to	the	vertices	of	the	cells.	In	this	

case	 the	 average	 value	 is	 associated	 to	 the	 centres	 of	 the	 cells;	 as	 a	 consequence	 the	

equation	3.2	becomes	the	following:	

	

!(!!)
!"

+
!
!!!!

!!
!!!!

!"
= 𝑄! 																																																								(3.5)	

	

Where:	

𝐹!!!!
≅ 𝐹 𝑈 𝑥!!!!

, 𝑡! 																																																								(3.6)	

	

𝐹!!!!
≅ 𝐹 𝑈 𝑥!!!!

, 𝑡! 																																																								(3.7)	

	

The	fluxes	at	the	interface	between	two	adjacent	cells	can	be	estimated	by	knowing	the	

states	of	the	two	adjacent	cells.	Later	it	will	be	explain	what	method	is	used	to	calculate	

the	fluxes	at	the	interface.		
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3.2	Time	and	space	discretization		
The	 choice	 of	 the	 discretization	 scheme	 is	 important	 to	 avoid	 stability	 problems.	 In	

order	to	explain	what	is	the	good	choice,	the	advection	equation	is	considered.		

	
!"
!!
+ 𝑎 !"

!"
= 0     																																																														(3.8)	

	

The	first	term	of	the	equation	is	approximated	with	the	first-order	Taylor	series.	

	
!"
!"
= ! !!,!!!!" !! !!,!!

!"
+ 𝑂(𝛥𝑡)     																																									(3.9)	

	

Indeed,	for	the	second	term,	there	are	three	possible	schemes:	the	backward	scheme,	the	

forward	scheme	and	the	central	scheme.		

	

Forward	scheme				→						!"
!"
= ! !!!!,!! !! !!,!!

!"
+ 𝑂(𝛥𝑥)     																															(3.10)	

	

Backward	scheme				→						!"
!"
= ! !!,!! !! !!!!,!!

!"
+ 𝑂(𝛥𝑥)     																																(3.11)	

	

Central	scheme				→						!"
!"
= ! !!!!,!! !! !!!!,!!

!!"
+ 𝑂(𝛥𝑥!)     																											(3.12)	

	

𝑈 𝑥! , 𝑡! 	can	be	substituted	with	𝑈!!	and	the	advection	equation	may	be	implemented	by	

using	one	of	the	following	numerical	schemes:	

	

Forward	scheme				→						𝑈!!!! = 𝑈!! − 𝑎
!"
!"
(𝑈!!!! − 𝑈!!)     																																			(3.13)	

	

Backward	scheme				→						𝑈!!!! = 𝑈!! − 𝑎
!"
!"
(𝑈!! − 𝑈!!!! )       																																		(3.14)	

	

Central	scheme				→						𝑈!!!! = 𝑈!! − 𝑎
!"
!!"

(𝑈!!!! − 𝑈!!!! )        																														(3.15)	
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All	of	the	three	schemes	are	explicit	schemes	because	the	solution	at	a	certain	point	in	

the	 space	 is	 evaluated	 from	 the	 solution	 at	 a	 previous	 time.	 Each	 type	 of	 numerical	

scheme	 must	 fulfill	 the	 requirements	 of	 consistency,	 stability	 and	 convergence.	 A	

numerical	scheme	is	said	to	be	consistent	if	it	tends	to	the	starting	equation	by	reducing	

the	 truncation	 error	 [21].	 The	 schemes	 above	 are	 all	 consistent	 with	 the	 starting	

equation	when	𝛥𝑡 → 0	and	𝛥𝑥 → 0.		

Furthermore,	 Lax	 Equivalence	 theorem	 states	 that	 for	 a	 consistent	 finite	 difference	

method	 for	 a	well-posed	 linear	 initial	 value	problem,	 the	method	 is	 convergent	 if	 and	

only	if	it	is	stable.	As	a	consequence,	it	is	necessary	only	the	stability	analysis	to	ensure	

the	convergence	of	the	numerical	scheme.	

A	 numerical	 scheme	 is	 said	 to	 be	 stable	 if	 it	 produces	 a	 bounded	 error.	 This	 error	 is	

called	“round-off”	error	and	it	is	the	difference	between	the	numerical	solution	and	the	

exact	numerical	solution	and	it	depends	on	the	machine	precision.		

The	 Von	 Neumann	 stability	 analysis	 is	 used	 to	 check	 the	 stability	 of	 the	 numerical	

method	and	it	is	based	on	the	Fourier	decomposition	of	the	“round-off”	error	[21].	

Based	 on	 the	 definition	 of	 “stable	 condition”	 it	 is	 possible	 to	 write	 the	 following	

equation.	

	

𝑈!! = 𝑈!! + 𝜖!!     																																																						(3.16)	

		

Where	𝑈!!	represents	 the	 exact	 numerical	 solution	 and	𝜖!!	is	 the	 “round-off”	 error	 in	 a	

certain	point	of	time	and	space.	It	can	obtain	the	error	evolution	by	replacing	3.16	in	the	

three	numerical	schemes.	

	

Forward	scheme				→						𝜖!!!! = 𝜖!! − 𝑎
!"
!"
(𝜖!!!! − 𝜖!!)     																															(3.17)	

	

Backward	scheme				→						𝜖!!!! = 𝜖!! − 𝑎
!"
!"
(𝜖!! − 𝜖!!!! )       																												(3.18)	

	

Central	scheme				→						𝜖!!!! = 𝜖!! − 𝑎
!"
!!"

(𝜖!!!! − 𝜖!!!! )        																										(3.19)	

	

The	“round-off”	error	evolution	is	described	exactly	as	the	numerical	method,	then	the	

Fourier	 series	 is	 applied	 to	 this	 error	 and	 as	 a	 consequence	 the	 stability	 of	 each	

numerical	method	can	be	analysed.		
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To	 sum	 up,	 all	 the	 passages	 will	 be	 not	 explained,	 but	 only	 the	 conclusions	 will	 be	

exposed.		

If	𝑎	is	positive	only	the	backward	scheme	is	stable,	but	with	the	condition	that	𝑎 !"
!"
≤ 1,	

while	if	𝑎	is	negative	only	the	forward	scheme	is	stable	with	the	same	condition.	These	

types	of	schemes	are	called	“Upwind”	scheme,	they	attempt	to	discretize	the	information	

in	the	direction	in	which	it	propagates.	

	
Figure	3.2.	Example	of	Upwind	discretization	scheme	[21]		

	

The	 condition	 for	 the	 stability	 of	 the	 numerical	 scheme	 is	 called	 “the	 convergence	

condition	of	Courant-Friedrichs-Lewy”,	or	simply	“CFL”.	This	condition	is	necessary	for	

the	 stability	 of	 the	 explicit	 numerical	 scheme.	 It	 is	 based	 on	 the	 condition	 that	 the	

numerical	domain	must	include	the	analytic	domain,	as	it	can	be	seen	in	the	figure	3.2.	In	

other	words,	 it	 imposes	a	time	step	once	the	 length	interval	 is	determined.	 In	the	case	

that	𝑎	is	not	constant,	the	condition	is	𝑎 !"
!!
< 1	and	this	is	the	case	for	the	Euler	equation.		

As	regards	implicit	schemes,	where	the	solution	is	found	involving	both	the	solution	at	

the	current	time	and	at	the	later	one,	it	is	not	necessary	any	stability	condition	because	

they	are	already	stable.	An	example	of	implicit	central	scheme	is	shown	in	the	following	

equation.	

	

𝑈!!!! = 𝑈!! − 𝑎
!"
!!"

(𝑈!!!!!! − 𝑈!!!!!!)        																																	(3.20)	

	

Despite	of	the	good	stability	properties,	this	scheme	involves	an	extra	computation.	The	

choice	between	the	explicit	and	the	implicit	scheme	depends	on	the	problem	type.	If	we	
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are	 interested	 to	 study	 a	 steady-state	 condition,	 the	 implicit	method	may	be	 the	 right	

choice,	while	if	we	want	to	study	the	transient-state,	the	explicit	method	could	be	used	

with	the	right	condition	on	the	time	step.		

The	explicit	central	scheme,	as	it	can	be	seen	before	with	the	Von	Neumann	analysis,	is	

unstable,	but	 it	 could	be	made	stable	by	adding	an	artificial	viscosity.	This	viscosity	 is	

obtained	substituting	𝑈!!	with	
!!!!
! !!!!!

!

!
,	the	effect	is	to	dampen	the	oscillations.		

	

3.3	Fluxes	discretization	
The	Lax-Friedrichs	method	is	used	to	discretize	the	fluxes	in	the	equation	3.5	[20].	This	

method	 is	 based	 on	 the	 considerations	 made	 regarding	 the	 central	 scheme;	 so	 an	

artificial	viscosity	is	added.		The	new	expression	for	the	fluxes	at	the	interface	is	shown	

below.	

𝐹!!!!
= !!!!!!!

!
− !!!!

! !!!
!

!
max (𝑢! + 𝑎! ,𝑢! + 𝑎!)																			(3.21)	

																																																														

𝐹!!!!
= !!!!!!!

!
− !!

!!!!!!
!

!
max (𝑢! + 𝑎! ,𝑢! + 𝑎!)																			(3.22)	

	

In	 the	equations	3.21	and	3.22,	𝑢	and	a	are	 the	 flow	velocity	and	sound	speed	and	the	

subscripts,	A	or	B,	refer	to	the	two	adjacent	cells.		

The	 Lax-Friedrichs	 method	 is	 very	 dissipative	 due	 to	 the	 presence	 of	 the	 artificial	

viscosity;	therefore	it	is	able	to	dampen	the	possible	oscillations.	Nevertheless,	the	local	

Lax-Friedrichs	method	is	 implemented	here.	Differently	from	the	global	Lax-Friedrichs	

method,	 in	 the	 local	Lax-Friedrichs	method,	 the	max (𝑢! + 𝑎!,𝑢! + 𝑎!)	is	used	 instead	

of	!"
!"
.	Furthermore,	the	local	method	is	less	dissipative	then	the	global	method.		

	

3.4	NASA	Chemical	Equilibrium	with	Applications	
The	Chemical	Equilibrium	with	Applications	code	[22],	or	CEA	code,	 is	a	complex	code	

and	capable	of	making	several	analyses.	This	code	reads	a	file	 input	where	is	specified	

the	 problem	 case,	 it	 may	 be	 the	 rocket	 problem	 or	 the	 Champan-Jouguet	 detonation	

problem	 and	 so	 on.	 For	 the	 purpose	 of	 this	work	 it	was	 chosen	 the	 assigned	 internal	

energy	and	volume	problem.	Once	specified	the	inputs,	that	are	the	internal	energy,	the	

volume	mixture	and	 the	moles	of	 the	 reactants,	 it	 gives	as	 results	 the	 thermodynamic	
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variable	 and	 the	 mole	 fractions.	 The	 CEA	 code	 also	 offers	 the	 chance	 to	 choose	 the	

product	species.	It	is	good	practice	to	select	certain	species,	the	significant	ones,	in	order	

to	 simplify	 the	 complexity	 of	 the	 problem.	 The	 temperature	 and	 the	 pressure	 are	 the	

variables	 of	 interest,	 in	 this	 case,	 when	 the	 CFD	 code	 and	 the	 CEA	 code	 are	 linked.	

Because	of	the	complexity	of	the	CEA	code,	it	was	thought	to	develop	a	numerical	code	

able	 to	predict	 the	equilibrium	temperature	of	 the	mixture,	making	use	of	an	 iteration	

method,	such	as	the	Newton’s	method.	

	

3.4.1	Iterative	procedure	and	correction	variables	
Both	the	minimization	of	the	Gibbs	energy	and	the	Helmhotz	energy	lead	to	a	non-linear	

equations	system.	In	order	to	solve	it,	the	Newton-Raphson	method	is	used.	It	is	based	

on	the	Taylor	series	expansion	of	the	functions,	the	terms	with	derivatives	higher	than	

one	are	truncated.		

	

𝑓! 𝑥!!!! = 𝑓! 𝑥!! + !!!
!!!

 𝛥𝑥! + 𝑂 ∥ 𝛥𝑥! ∥!   																																				(3.23)	

	

Imposing	the	left	term	of	the	equation	3.23	equal	to	zero	leads	to	the	following	system:	

	

𝑓! 𝑥!!!! = 0  ⟹
!!!
!!!

 𝛥𝑥! = −𝑓! 𝑥!!

𝑥!!!! = 𝑥!! + 𝛥𝑥!
 																																														(3.24)	

	

From	the	first	equation	of	the	system	above	the	correction	variable	𝛥𝑥! 	is	obtained	and	

then	is	substituted	in	the	second	equation,	as	a	consequence	𝑥!!!!	is	found.	This	process	

occurs	 iterative	 until	 the	 convergence	 is	 obtained.	 Furthermore,	 for	 the	 two	methods	

explained	in	2.2.1	and	2.2.2,	it	can	be	written	the	functions	to	use	in	the	system	3.24.		

	

𝑥! = ln𝑛! ,𝑛! , ln𝑛, ln𝑇   																																															(3.25)	

	

The	 variables	 involved	 in	 the	 two	methods	 are	 expressed	 in	 3.25	 and	 the	 correction	

variables	are	the	following:	

	

𝛥𝑥! = Δln𝑛! ,𝛥𝑛! ,Δln𝑛,Δln𝑇   																																									(3.26)	
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3.4.2	Iterative	Gibbs	equations		
The	equations	involved	in	the	minimization	of	the	Gibbs	energy	can	be	expressed	in	five	

equations	in	order	to	apply	the	iterative	method.	These	functions	are:	

	

𝑓! = 𝜇! + 𝜆!𝑎!"!
!!!   𝑤𝑖𝑡ℎ   (𝑗 = 1,… ,𝑁𝑆)   																																						(3.27)	

	

𝑓! = 𝑎!"𝑛!!"
!!! − 𝑏!°  𝑤𝑖𝑡ℎ   (𝑗 = 1,… ,𝑁𝑆)   																																						(3.28)	

	

𝑓! = 𝑛!!"
!!! − 𝑛  																																																																																								(3.29)	

	

𝑓! = ℎ − ℎ!     																																																																																														(3.30)	

	

𝑓! = 𝑠 − 𝑠!     																																																																																															(3.31)	

	
!"

! !"!!
 𝛥 ln𝑛! +

!"
!!!

𝛥𝑛! +
!"

! !"!
 𝛥 ln𝑛 + !"

! !"!
 𝛥 ln𝑇 = −𝑓																										(3.32)				

	

In	 order	 to	 make	 dimensionless	 the	 functions	 above,	 they	 are	 divided	 by	 RT.	 By	

substituting	every	function	from	3.27	to	3.31	in	3.32	and	with	the	aid	of	equations	2.25,	

2.26,	2.27	and	2.28	permits	to	find	the	following	equations:	

																																																																																		

𝛥 ln𝑛! −  𝜋!𝑎!"!
!!! − 𝛥 ln𝑛 −

!!
°

!"
 𝛥 ln𝑇 = − !!

!"
    𝑤𝑖𝑡ℎ    (𝑗 = 1,… . ,𝑁𝐺) 														(3.33)				

																																										

−  𝜋!𝑎!"!
!!! −

!!
°

!"
 𝛥 ln𝑇 = − !!

!"
    𝑤𝑖𝑡ℎ    (𝑗 = 𝑁𝐺 + 1,… . ,𝑁𝑆) 															(3.34)								

																																						

𝑎!"𝑛!𝛥 ln𝑛! +!"
!!! 𝑎!"𝛥𝑛!!"

!!!"!! = 𝑏!° − 𝑏!   𝑤𝑖𝑡ℎ (𝑘 = 1,… , 𝑙)														(3.35)	

	

𝑛!!"
!!! 𝛥 ln𝑛! − 𝑛𝛥 ln𝑛 = 𝑛 − 𝑛!!"

!!!   																																												(3.36)	

	
!!!!

°

!"
!"
!!! 𝛥 ln𝑛! +

!!
°

!"
!"
!!!"!! 𝛥𝑛! +

!!!!,!
°

!
!"
!!! 𝛥 ln𝑇 = !!!!

!"
   																	(3.37)	
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!!!!
°

!
!"
!!! 𝛥 ln𝑛! +

!!
°

!
!"
!!!"!! 𝛥𝑛! +

!!!!,!
°

!
!"
!!! 𝛥 ln𝑇 = !!!!

!
+ 𝑛 − 𝑛!!"

!!! 					(3.38)	

	

When	 significant	 amount	 of	 species	 are	 considered	 in	 the	 problem,	 large	 numbers	 of	

simultaneous	equations	must	be	solved.	So	as	to	avoid	that,	the	equations	of	the	system	

can	be	reduced	simply	by	substituting	the	expression	for	𝛥 ln𝑛! ,	by	solving	the	equation	

3.33,	 in	 the	 equations	 from	 3.35	 to	 3.38.	 The	 resultant	 equations	 are	 shown	 in	 the	

following.	

	

𝑎!"𝑎!"𝑛!!"
!!! 𝜋!!

!!! + 𝑎!"𝛥𝑛!!"
!!!"!! + 𝑎!"𝑛!!"

!!! 𝛥 ln 𝑛 +
!!"!!!!

°

!"
!"
!!!  𝛥 ln𝑇 = 𝑏!° − 𝑏! +

+
!!"!!!!
!"

 !"
!!!     𝑤𝑖𝑡ℎ    (𝑘 = 1,… . , 𝑙)																																																						(3.39)	

	

𝜋!𝑎!"!
!!! +

!!
°

!"
 𝛥 ln 𝑇 =

!!
!"

    𝑤𝑖𝑡ℎ    (𝑗 = 𝑁𝐺 + 1,… . ,𝑁𝑆) 																												(3.40)			

		

𝑎!"𝑛!!"
!!! 𝜋!!

!!! + 𝑛! − 𝑛!"
!!! 𝛥 ln 𝑛 +

!!!!
°

!"
!"
!!!  𝛥 ln𝑇 =  𝑛 − 𝑛!!"

!!! +
!!!!
!"

 !"
!!! 																	(3.41)		

			

!!"!!!!
°

!"
!"
!!!

!
!!! 𝜋! +

!!
°

!"
!"
!!!"!! 𝛥𝑛! +

!!!!
°

!"
!"
!!! 𝛥 ln 𝑛 +

!!!!,!
°

!
!"
!!! +

!! !!
° !

!!!!
!"
!!! 𝛥 ln𝑇 = !!!!

!"
+

+
!!!!

°!!
!!!!

!"
!!! 																																																																		(3.42)				

!!"!!!!
°

!
!"
!!!

!
!!! 𝜋! +

!!
°

!
!"
!!!"!! 𝛥𝑛! +

!!!!
°

!
!"
!!! 𝛥 ln 𝑛 +

!!!!,!
°

!
!"
!!! +

!!!!
°!!
°

!!!
!"
!!! 𝛥 ln𝑇 = !!!!

!"
+ 𝑛 −

− 𝑛𝑗𝑁𝐺
𝑗=1 +

!!!!
°!!

!!!
!"
!!!  																(3.43)				

	

3.4.3	Iterative	Helmhotz	equations		
In	the	same	way,	the	equations	involved	in	the	minimization	of	the	Helmhotz	energy	are	

treated	 as	 the	 equations	 before.	 The	 difference	 is	 that	 the	 function	 3.30	 involves	 the	

specific	internal	energy	and	it	is	written	below.	

	

𝑓! = 𝑒 − 𝑒!     																																																																	(3.44)	

	

Moreover,	the	chemical	potential	2.38	has	a	different	definition	respect	to	2.27	and	the	

variable	 n	 does	 not	 appear	 explicitly.	 As	 a	 consequence	 the	 correction	 variable	𝛥 ln𝑛	

does	not	appear	in	the	equations	below,	so	the	equation	3.29	is	not	used	here.	



	 40	

	

𝛥 ln𝑛! −  𝜋!𝑎!"!
!!! −

!!
°

!"
 𝛥 ln𝑇 = − !!

!"
    𝑤𝑖𝑡ℎ    (𝑗 = 1,… . ,𝑁𝐺) 																(3.45)				

																																										

−  𝜋!𝑎!"!
!!! −

!!
°

!"
 𝛥 ln𝑇 = − !!

!"
    𝑤𝑖𝑡ℎ    (𝑗 = 𝑁𝐺 + 1,… . ,𝑁𝑆) 																	(3.46)								

																																						

𝑎!"𝑛!𝛥 ln𝑛! +!"
!!! 𝑎!"𝛥𝑛!!"

!!!"!! = 𝑏!° − 𝑏!   𝑤𝑖𝑡ℎ (𝑘 = 1,… , 𝑙)																(3.47)	

	
!!!!

°

!"
!"
!!! 𝛥 ln𝑛! +

!!
°

!"
!"
!!!"!! 𝛥𝑛! +

!!!!,!
°

!
!"
!!! 𝛥 ln𝑇 = !!!!

!"
   																	(3.48)	

	

𝑛!
!!
!
− 1!"

!!! 𝛥 ln𝑛! +
!!
!

!"
!!!"!! 𝛥𝑛! +

!!!!,!
°

!
!"
!!! 𝛥 ln𝑇 = !!!!

!
															(3.49)	

	

Even	here	it	is	necessary	to	reduce	the	equations	of	the	system,	in	the	same	way	this	

goal	is	reached	by	substituting	the	expression	for	𝛥 ln𝑛! ,	by	solving	3.45,	in	the	

equations	from	3.47	to	3.49.	

	

𝑎!"𝑎!"𝑛!

!"

!!!

𝜋!

!

!!!

+ 𝑎!"𝛥𝑛!

!"

!!!"!!

+
𝑎!"𝑛!𝐸!°

𝑅𝑇

!"

!!!

 𝛥 ln 𝑇 = 𝑏!° − 𝑏! +
𝑎!"𝑛!𝜇!
𝑅𝑇

 
!"

!!!

    	

𝑤𝑖𝑡ℎ    (𝑘 = 1,… . , 𝑙)																																																						(3.50)	
	

𝜋!𝑎!"!
!!! +

!!
°

!"
 𝛥 ln 𝑇 =

!!
!"

    𝑤𝑖𝑡ℎ    (𝑗 = 𝑁𝐺 + 1,… . ,𝑁𝑆) 																												(3.51)			

		

!!"!!!!
°

!"
!"
!!!

!
!!! 𝜋! +

!!
°

!"
!"
!!!"!! 𝛥𝑛! +

!!!!,!
°

!
!"
!!! +

!! !!
° !

!!!!
!"
!!! 𝛥 ln𝑇 = !!!!

!"
+ +

!!!!
°!!

!!!!
!"
!!! 												

(3.52)		

	
!!"!!(!!!!)

!
!"
!!!

!
!!! 𝜋! +

!!
!

!"
!!!"!! 𝛥𝑛! +

!!!!,!
°

!
!"
!!! +

!!!!
°(!!!!)

!!!
!"
!!! 𝛥 ln 𝑇 = !!!!

!"
+

!!(!!!!)!!
!!!

!"
!!!  		

(3.53)	

	

Once	the	two	thermodynamic	state	variables	are	chosen,	the	equations	of	the	system	can	

be	solved	and	the	correction	variables	are	found	and	then	the	process	is	repeated	until	
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convergence.	Therefore,	it	is	needed	to	set	initial	estimates	of	those	variables	and	rights	

criteria	of	convergence	have	to	be	applied.		

	

3.4.4	 Initial	 estimates	 and	 convergence	 for	 obtaining	 equilibrium	

compositions	
A	 simple	 procedure	 is	 used	 to	 set	 the	 initial	 estimates	 in	 [16],	 also	 the	 optimal	

convergence	criteria	are	used	in	[16]	and	they	are	explained	in	this	paragraph.		

For	the	first	iteration	of	the	first	point	is	assigned	𝑛 = 0.1,	in	other	words	the	molecular	

weight	is	assigned	to	10	kg/mole.	The	number	of	moles	of	each	species	per	kilogram	of	

mixture	 is	set	0.1/NG,	where	NG	is	 the	number	of	gaseous	species.	Furthermore,	 if	 the	

temperature	is	not	assigned	as	input	variables,	the	initial	estimate	for	the	temperature	is	

𝑇 = 3800 𝐾.	 After	 the	 first	 step	 the	 results	 are	 used	 as	 new	 initial	 estimates.	 This	

technique	 for	 the	 initial	 conditions	 provides	 poor	 initial	 estimate,	 nevertheless	 this	

simple	procedure	is	preferable	for	general	chemistry	problem.	As	a	consequence,	given	

these	initial	estimates,	it	is	needed	to	choose	the	convergence	criteria.		

There	are	 two	situations	when	 the	 iteration	equations	give	 large	corrections.	The	 first	

situation	 is	at	 the	beginning	of	 the	 iteration	and	 it	 is	due	 to	 the	poor	estimates,	when	

there	 a	 small	 amount	 of	 species	 the	 other	 situation	 occurs,	 because	 of	 the	 iteration	

procedure	 attempts	 to	 increase	 the	 moles	 of	 that	 species.	 In	 order	 to	 handle	 these	

problems,	 a	 control	 factor	𝜆! 	is	 used;	 this	 permits	 to	 avoid	 the	 large	 increase	 of	ln𝑛! 	

𝑗 = 1,… . ,𝑁𝐺 ,	𝑛! 	 𝑗 = 𝑁𝐺 + 1,… . ,𝑁𝑆 ,	ln𝑛	and	ln𝑇.	 The	 corrections	 for	 temperature	𝑇	

and	𝑛 	are	 limited	 to	𝑒!.! ,	 moreover	 for	 the	 gaseous	 species	 are	 implemented	 two	

definitions	for	𝜆! 	and	they	are	based	on	the	control	parameter	SIZE.	The	parameter	SIZE	

is	 included	 to	 save	 the	 computation	 time;	 this	 is	 done	 by	 calculating	𝑛! 	only	 for	 those	

species	 with	 moles	 fractions	 greater	 than	 the	 parameter	 SIZE	 that	 is	 imposed	 as	

SIZE = 18.420681.	 If	ln !!
!
≥ −SIZE	then	 the	 correction	 for	𝑛! 	is	 limited	 to	𝑒!	and	 the	

control	factor	is	calculated	as:	

	

𝜆!! =
!

!"# (! ! !"! ,! ! !"! , ! !"!! )
																																																					(3.54)	
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In	the	event	that	ln !!
!
< −SIZE	and	𝛥 ln𝑛! ≥ 0,	the	control	factor	is:	

	

𝜆!! = min 
! !"

!!
! !!.!"#$%#%

! !"!!!! !"!
																																																												(3.55)	

The	 control	 factor	𝜆! 	that	 appears	 in	 the	 equation	 below	 is	 chosen	 as	 the	 minimum	

between	1, 𝜆!! 	and	𝜆!! .	

	

ln𝑛!!!! = ln𝑛!! + 𝜆!! 𝛥 ln𝑛!!   𝑤𝑖𝑡ℎ  𝑗 = 1,… . ,𝑁𝐺 																												(3.56)	

	

𝑛!!!! = 𝑛!! + 𝜆!! 𝛥𝑛!!   𝑤𝑖𝑡ℎ  𝑗 = 𝑁𝐺 + 1,… . ,𝑁𝑆 																																(3.57)	

	

ln𝑛!!! = ln𝑛! + 𝜆!! 𝛥 ln𝑛!   																																																																						(3.58)	

	

ln𝑇!!! = ln𝑇! + 𝜆!! 𝛥 ln𝑇!   																																																																						(3.59)	

	

In	the	equations	above	the	superscript	i	refers	to	the	 i-th	estimate.	When	the	values	of	

the	estimates	are	close	to	the	equilibrium	values	𝜆! 	will	be	equal	to	one,	otherwise	it	will	

be	 less	 than	 one.	 The	 correction	 variables	 have	 to	 respect	 certain	 criteria	 until	 the	

convergence;	these	are	shown	in	the	following.	

	
!! ! !"!!

!!!"
!!!

≤ 0.5×10!!	𝑤𝑖𝑡ℎ  𝑗 = 1,… . ,𝑁𝐺 																																								(3.60)	

	
!!!

!!!"
!!!

≤ 0.5×10!!			𝑤𝑖𝑡ℎ  𝑗 = 𝑁𝐺 + 1,… . ,𝑁𝑆 																															(3.61)	

	
! ! !"!

!!!"
!!!

≤ 0.5×10!!																																																																												(3.62)	

	

The	 temperature	 is	 shown	 as	 a	 variable	 in	 the	 problem	 case	 of	 this	 thesis	 and	 it	 is	

needed	a	criteria	for	the	convergence,	this	is	shown	below.	

	

𝛥 ln𝑇 ≤ 1.0×10!!																																																																	(3.63)	
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Furthermore,	the	convergence	test	for	those	species	with	𝑏!! ≥ 1.0×10!!	is:	

	

𝑏!! − 𝑛!𝑎!"!"
!!! ≤ 𝑏!! !"#

×1.0×10!!  𝑤𝑖𝑡ℎ   (𝑖 = 1, . . , 𝑙)																			(3.64)	

	

Others	criteria	are	imposed	for	those	problems	where	the	entropy	is	assigned	and	when	

the	 parameter	 TRACE	 is	 not	 equal	 to	 zero.	 For	 the	 first	 one	 is	 imposed	 the	 following	

condition:	

	
!!!!
!

≤ 0.5×10!!																																																											(3.65)	

	

While	 for	 the	 second	 one	 is	 imposed	 a	 condition	 for	 the	 variable	𝜋! =
!!
!"
	and	 it	 is	

expressed	as:	

	

!!
!!!!

!!!

!!
!!! ≤ 0.001     𝑤𝑖𝑡ℎ    (𝑖 = 1,… 𝑙)																									(3.66)	

	

The	parameter	TRACE	is	an	input	parameter	and	its	default	value	is	zero.	The	aim	of	this	

parameter	 is	 the	 choice	 of	 the	 value	 for	 SIZE,	 for	 the	 value	 of	 ITN	 (the	 maximum	

iteration	number)	and	for	the	values	of	the	other	practical	parameters	that	are	required	

for	the	different	species.	 	Nevertheless	there	is	also	a	test	for	the	condensed	species	in	

order	 to	 include	 or	 not	 to	 include	 them.	 This	 test	 is	 done	 with	 the	 aid	 of	 the	 Gibbs	

energy;	 if	 the	condensed	species	are	present	 in	 the	mixture,	 the	variation	of	 the	Gibbs	

energy	respect	to	𝑛! 	is	lower	than	zero.		

	

!"
!!!

=
!!
!

!" !
− 𝜋!𝑎!"!

!!! < 0																																														(3.67)	

	

The	subscript	c	refers	to	the	condensed	species.	Furthermore,	the	equation	3.67	can	be	

used	even	if	the	gas	phase	of	the	species	corresponding	to	the	condensed	species	is	not	

present.	The	species,	whose	respect	the	equation	3.67,	are	included	in	the	mixture,	and	

when	several	condensed	species	are	present	only	the	species	with	larger	negative	value	

of	 !"
!!!
	are	considered.	After	the	equilibrium	composition	is	reached,	if	the	concentrations	
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of	 the	 condensed	 species	 are	 negative,	 they	 are	 removed	 and	 a	 new	 equilibrium	

composition	is	obtained.		

	

3.5	Newton’s	method	for	the	equilibrium	temperature		
Although	 the	 optimal	 results	 provided	 from	 the	 CEA	 code,	 its	 complexity	 involves	 a	

substantial	 computational	 code.	 The	 aim	 of	 this	 additional	 code	 is	 to	 reduce	 this	

computational	cost	and	the	goal	 is	 to	minimize	calls	 to	 the	CEA	code.	This	code	 is	 less	

complex	than	the	CEA	code,	but	it	requires	some	results	provided	by	CEA	code	as	inputs.	

These	results	are	the	mole	fractions	of	the	product	species;	in	addition	also	the	internal	

energy	and	the	density	of	the	mixture	is	required.	Every	chemical	species	together	with	

their	properties	are	stored	into	a	library	file.	For	each	species,	the	specific	enthalpy,	the	

specific	 heat	 at	 constant	 pressure	 and	 the	 specific	 entropy	 are	 functions	 of	 the	

temperature	and	they	have	the	following	forms.	

	

!°
!"
= !!°!"

!"
 																																																																			(3.68)	

!!°
!
= 𝑎!𝑇!!!  																																																															(3.69)	

	

!°
!
= !!°!"

!"
 																																																																				(3.70)	

	

The	 equations	 3.68,	 3.69	 and	 3.70	 are	 the	 general	 forms,	 while	 in	 the	 chemical	

equilibrium	program	is	used	a	fourth	order	polynomial	form	[16].		

	
!!°
!
= 𝑎!𝑇!! + 𝑎!𝑇!! + 𝑎! + 𝑎!𝑇 + 𝑎!𝑇! + 𝑎!𝑇! + 𝑎!𝑇! 																								(3.71)	

	
!°
!"
= −𝑎!𝑇!! + 𝑎!𝑇!! ln𝑇 + 𝑎! + 𝑎!

!
!
+ 𝑎!

!!

!
+ 𝑎!

 !!

!
+ 𝑎!

!!

!
+ !!

!
														(3.72)	

	
!°
!
= −𝑎!

!!!

!
− 𝑎!𝑇!! + 𝑎! ln𝑇 + 𝑎!𝑇 + 𝑎!

!!

!
+ 𝑎!

 !!

!
+ 𝑎!

!!

!
+ 𝑎!															(3.73)	

	

The	equation	3.71	and	3.72	are	implemented	in	the	iterative	loop	but	they	are	multiplied	

with	𝑋! ,	in	other	words	the	mole	fractions	of	every	species.		
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In	 those	 functions,	 the	 constant	 coefficients	𝑎! 	are	 stored	 into	 the	 library	 file	 early	

mentioned	and	they	are	different	for	each	species.	Furthermore,	there	are	three	sets	of	

constant	coefficients	and	which	one	to	choose	depends	on	the	thermal	range.	The	three	

intervals	are	200	to	1000	K,	1000	to	6000	K	and	6000	to	20000	K.	During	the	iterative	

procedure,	 the	 additional	 code	 is	 able	 to	 read	 from	 the	 library	 file	 the	 constant	

coefficients	based	on	the	right	temperature	range.		

The	iterative	procedure	is	based	on	the	classic	Newton’s	method.	

	

𝑇!!! = 𝑇! −
! !!
!! !!

																																																														(3.74)	

	

In	the	equation	3.74,	the	function	𝑓 𝑇! 	and	its	derivate	𝑓′ 𝑇! 	have	the	following	forms:	

	

𝑓 𝑇! = !
!
− !°

!
+ !!

!"
																																																														(3.75)	

	

𝑓′ 𝑇! = − !!°

!
+ !

!"
																																																															(3.76)	

	

The	variable	𝑃𝑀	is	the	molecular	weight	of	the	mixture	and	is	related	to	the	molecular	

weight	of	every	species	𝑃𝑀! ,	therefore	the	definition	for	𝑃𝑀	is	the	following:	

	

𝑃𝑀 = 𝑋!𝑃𝑀!
!"
!!! 																																																													(3.77)							

	

The	code	 is	able	to	read	the	right	coefficients	of	 the	species	that	are	considered	 in	the	

simulation.	Then	the	equation	3.75	and	3.76	are	initialized	with	𝑇 = 3800 𝐾,	after	that	a	

while	 loop	 starts	 as	 long	 as	 the	 condition	 is	 respected,	 in	 other	words	 it	 continues	 as	

long	as	ERR_T>TOL_T.	The	variable	ERR_T	is	defined	as:	

	

𝐸𝑅𝑅_𝑇 = !"#(!!!!)
!"#(!)

																																																													(3.78)		

	

In	 the	 equation	 3.78,	𝑇! 	is	 the	 temperature	 at	 the	 earlier	 iteration	 and	 T	 is	 the	

temperature	at	the	current	iteration.	The	variable	TOL_T	is	imposed	as	TOL_T=1D-10.	
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Furthermore	 on	 every	 iteration,	 there	 is	 also	 a	 control	 on	 the	 temperature,	 so	 as	 to	

check	in	which	of	the	three	temperature	intervals	fall	and	so	which	coefficients	have	to	

be	chosen.		

Once	the	while	loop	ends	the	temperature	is	found	and	also	the	pressure,	this	last	one	is	

calculated	from	the	gas	equation	as	following:	

	

𝑝 = 𝜌𝑅𝑇																																																																			(3.79)		

	

In	the	equation	above	𝑅	is	the	specific	gas	constant	of	the	mixture	and	its	dimension	is	
!"
!"#

,	 while	𝑅,	 in	 the	 previous	 equations,	 is	 the	 gas	 constant	 and	 its	 value	 is	𝑅 =

8.314 !
!"#$

.	

	

3.6	Finite	volume	method	for	the	one-dimensional	thermal	model	
For	the	discretization	of	the	one-dimensional	heat	conduction	equation	is	used	the	finite	

volume	method,	as	in	the	quasi-one-dimensional	gas-dynamic	model.	

The	equation	2.44	is	in	the	form	of	the	convective-diffusion	equation.	The	diffusion	term	

is	the	conductive	term	that	comes	directly	from	the	heat	equation,	while	the	convective	

term,	 or	 better	 the	 advection	 term,	 comes	 out	 because	 the	 equation	 is	 written	 in	 a	

reference	system	located	in	the	solid-fuel	regression	surface.		

The	 solid-fuel	 domain	 is	 discretized	 as	 it	 was	 done	 from	 the	 gas-dynamic	model,	 but	

with	the	difference	that	the	nodes	grid	are	not	uniformly	spaced.	This	difference	will	be	

better	explained	in	the	paragraph	4.4.		

Each	 terms	 of	 the	 equation	 2.44	 are	 integrated	 on	 an	 arbitrary	 volume	 and	 then	 the	

average	value	at	the	centre	of	the	cell	is	taken.	

	

	
!
!"

𝑇𝑑𝑦
!
!!!!

!
!!!!

= 𝑟 !"
!"

!
!!!!

!
!!!!

𝑑𝑦 + 𝛼 !!!
!!!

!
!!!!

!
!!!!

𝑑𝑦 																															(3.80)	

	

𝑇! =
!
!"

𝑇𝑑𝑦
!
!!!!

!
!!!!

																																																											(3.81)	
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By	developing	the	calculations,	the	following	expression	is	found.	

	

!!!
!"
= 𝑟

!
!!!!

!!
!!!!

!"
+ 𝛼

!"
!" !!!!

! !"
!" !!!!

!"
 																																					(3.82)	

	

Differently	from	the	choice	that	it	is	done	for	the	gas	dynamic	fluxes,	here	it	is	chosen	to	

apply	the	forward	scheme	for	the	first	term	in	the	right	hand.	As	a	consequence	it	can	be	

written	𝑇!!! = 𝑇!!!!
	and	𝑇! = 𝑇!!!!

,	so	this	is	an	“Upwind”	scheme.	For	the	second	term	on	

the	right	hand,	instead,	it	is	chosen	to	apply	the	central	scheme.				

	
!!!
!"
= 𝑟 !!!!!!!

!"
+ 𝛼 !!!!!!!!!!!!!

!!!
 																																									(3.83)	

	

For	 the	 time	 integration	 the	 explicit	 Euler	 is	 implemented,	 as	 a	 consequence	 the	

accuracy	of	the	system	is	of	the	first	order.		

	

𝑇!!!! = 𝑇!! +
!!!
!"
𝛥𝑡 																																																					(3.84)	

	

The	equation	2.48	has	to	be	implemented	in	order	to	close	the	problem.	As	it	can	be	seen	

from	 that	 equation,	 the	 regression	 rate	 is	 function	 of	 the	wall-temperature,	 thus,	 this	

temperature	is	solved	iteratively	using	the	bisection	method.		

For	the	bisection	method	the	function	implemented	is	the	following:	

	

𝐹𝑁𝑅 = 𝑄! +
! !!!!!

!"
− 𝜌!𝐿!𝐴!𝑒

! !!
!!!  																																					(3.85)	

	

In	 the	 equation	 3.85	 appears	 the	wall-heat	 flux	𝑄! 	and	 as	 it	 is	 seen	 in	 the	 paragraph	

2.3.1,	 there	 are	 two	 expression	 based	 on	 the	 blowing	 parameter.	 The	 wall-heat	 flux	

expressions	 are	 rewritten	 so	 as	 to	 be	 function	 of	 the	 oxidizer	 mass	 flux;	 these	 new	

expressions	are	shown	in	the	following.	

	

𝑄! = 𝐴!𝐺!"! − 𝐴!𝑟          𝑖𝑓 𝐵 ≤ 𝐵∗																																										(3.86)	

	

𝑄! = 𝐴!𝐺!"
!
!!!𝑟!

!
!!!         𝑖𝑓 𝐵 > 𝐵∗																																											(3.87)	
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Where	𝑛 = 0.8	and	the	other	coefficients	are	valuated	as	the	following.	

	

𝐴! =
!
!
𝐶!!!"#𝐺!"#$%!!!   𝐵!"#ℎ!"#$       																																						(3.88)	

	

𝐴! = 0.4𝜌!𝐵!"#ℎ!"#$																																																															(3.89)	

	

𝐴! =
!!"#$

!!"#$%
! !!"#

!!
!

!!!
         																																																										(3.90)	

	

For	the	coefficients	𝐴!	and	𝐴!	it	 is	supposed	that	the	blowing	parameter	is	equal	to	the	

thermochemical	blowing	parameter	in	the	steady	state	condition.		

According	to	the	study	of	M.	Arif	Karabeyoglu	[14],	in	this	code	it	was	also	implemented	

another	subroutine	so	as	to	take	into	consideration	the	boundary	layer	time	delay	𝜏!" .	In	

that	 subroutine,	 the	 regression	 rate	 is	 solved	at	 the	 time	𝑡 − 𝜏!" .	The	 relations	 for	 the	

wall-heat	flux	are	modified	consequently.	

	

𝑄! = 𝐴!𝐺!"! − 𝐴!𝑟(𝑡 − 𝜏!")          𝑖𝑓 𝐵 ≤ 𝐵∗																																				(3.91)	

	

𝑄! = 𝐴!𝐺!"
!
!!!𝑟(𝑡 − 𝜏!")

! !
!!!         𝑖𝑓 𝐵 > 𝐵∗																																					(3.92)	
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Chapter	4	

Numerical	Results	
	
4.1	Comparing	results	between	CEA	code	and	TEST	code	
Once	the	three	numerical	models	are	completed,	before	linking	them	together,	they	have	

to	 be	 tested	 and	 validated.	 It	was	 seen	 that	 once	 the	 CFD	 code	 and	 the	 CEA	 code	 are	

linked,	 the	 long	computational	 time	occurs,	 thus,	 it	 is	needed	to	 find	out	that	problem.	

The	long	computational	time	was	due	to	the	CEA	code	complexity	and	therefore	it	has	to	

be	 run	 at	 every	 point	 along	 the	 combustion	 chamber.	 As	 it	 was	 explained	 in	 the	

paragraph	3.4	of	the	chapter	3,	its	complexity	is	due	to	the	several	problems	it	is	able	to	

solve	 and	 on	 the	 reading	 and	 writing	 procedure	 from	 file.	 As	 a	 consequence,	 it	 was	

thought	to	develop	a	numerical	code	simpler	than	the	CEA	code	but	that	it	is	able	to	give	

the	same	results	of	the	CEA.	The	goal	is	to	reduce	the	calls	to	the	chemical	code	at	every	

time	step.	The	TEST	code	takes	the	mole	fractions	of	the	product	species,	internal	energy	

and	density	of	the	mixture	as	inputs	and	it	gives	temperature	and	pressure	as	outputs.	

Obviously	several	tests	were	made	before	using	this	code	together	with	the	other	two.	In	

order	 to	 validate	 the	 code,	 some	 chemical	 species	mixture	were	 chosen	 and	 then	 the	

results	were	compared	with	the	CEA	code.	In	the	tables	below	are	exposed	some	results,	

the	 specific	 internal	 energy	 and	 the	 density	 are	 the	 same	 for	 each	 of	 the	 exposed	

chemical	reactions	 𝑒! = 1.6920𝑒 + 03 !"
!"

,𝜌 = 0.88625 !"
!! .	

	

	

Reactants	 𝑶𝟐  +		𝑯𝟐	

Products	 𝑯+𝑯𝟐 +𝑯𝟐𝑶+ 𝑶+ 𝑶𝟐	

	 TEST	code	 CEA	code	

Temperature	[K]	 2684.006	 2684.01	

Pressure	[BAR]	 6.4037	 6.404	

Table	4.1.	Temperature	and	pressure	comparison	between	the	two	codes	in	the	chemical	reaction	of	𝑂!	and	𝐻!		
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Reactants	 𝑶𝟐  +		𝑵𝟐	

Products	 𝑵+𝑵𝟐,+𝑵𝑶+ 𝑶+ 𝑶𝟐	

	 TEST	code	 CEA	code	

Temperature	[K]	 2331.64	 2331.64	

Pressure	[BAR]	 5.4178	 5.4182	
Table	4.2.	Temperature	and	pressure	comparison	between	the	two	codes	in	the	chemical	reaction	of	𝑂!	and	𝑁!		

	

Reactants	 𝑶𝟐  +		𝑪𝟐𝑯𝟒	

Products	 𝑪𝟐𝑶+ 𝑪𝟐𝑯𝟒 +𝑯+𝑯𝟐 +𝑯𝟐𝑶+ 𝑶+ 𝑶𝑯+ 𝑶𝟐	

	 TEST	code	 CEA	code	

Temperature	[K]	 3319.217	 3319.23	

Pressure	[BAR]	 8.2664	 8.2670	
Table	4.3.	Temperature	and	pressure	comparison	between	the	two	codes	in	the	chemical	reaction	of	𝑂!	and	𝐶!𝐻!		

	

It	is	noted,	from	the	tables	above,	that	the	temperature	and	the	pressure	provided	by	the	

TEST	code	are	in	good	agreement	with	those	of	the	CEA	code.		

	

4.2	 Validation	 of	 coupled	 code	 results	 in	 a	 specific	 nozzle	

configuration	
Thanks	 to	 the	 good	 results	 provided,	 once	 the	 TEST	 code	 is	 validated,	 it	 is	 linked	

together	with	the	CFD	code	and	the	CEA	code.	Therefore,	 the	TEST	code	runs	at	every	

time	step;	it	takes	the	mole	fractions	from	the	CEA,	the	specific	internal	energy	and	the	

density	 from	 the	 CFD	 code	 as	 inputs	 and	 gives	 the	 temperature	 and	 the	 pressure	 as	

outputs.	As	it	did	for	the	TEST	code	also	for	these	coupled	codes,	the	results	have	to	be	

validated.	 In	 order	 to	 do	 that,	 it	 is	 thought	 to	 compare	 the	mole	 fractions	with	 those	

obtained	 from	 [23],	where	 they	are	 shown	as	 function	of	 the	nozzle	 area	 ratio.	 It	was	

chosen	 a	nozzle	 geometry	 in	which	 the	 area	 ratio	 is	 variable	 from	one	 to	 ten	 	→  !
!∗
=

[1: 10];	𝐴	is	 the	 generic	 nozzle	 area	while	𝐴∗	is	 the	 throttle	 area.	 The	 chemical	 species	

are	 those	 exposed	 in	 the	 table	 4.2;	 the	 total	 temperature	 and	 total	 pressure	 of	 the	

mixture	are	the	following:	𝑇! = 8000 𝐾 ;  𝑃! = 100 𝑎𝑡𝑚 .			

In	 the	 initial	 conditions	 the	 specific	 internal	 energy	 can	 not	 be	 calculated	 with	 the	

following	formula:	
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𝑒! =
!!
!!!

																																																																		(4.1)	

	

The	reason	is	that	the	specific	gas	constant	𝑅	and	𝛾	depend	on	the	mixture	composition.	

So	 as	 to	 calculate	 the	 specific	 internal	 energy,	 it	 is	 thought	 to	 run	 the	 CEA	 code	 by	

imposing	 the	 temperature	 and	 pressure	 instead	 of	 the	 specific	 internal	 energy	 and	

density.	 In	 addition,	 the	 code	 provides	 also	 the	 mole	 fractions	 and	 the	 ratio	 of	 the	

specific	heats	𝛾,	then	these	are	used	to	impose	the	boundary	conditions	at	the	inlet.	The	

flow	at	the	inlet	is	subsonic,	thus,	the	boundary	conditions	have	to	be	imposed	by	taking	

into	consideration	the	signal	that	goes	back	from	the	inside	of	the	domain.	This	can	be	

done	by	using	 the	method	of	 characteristics	 and	by	 imposing	 the	 total	 pressure,	 total	

temperature	 and	 the	 value	 of	 the	 Riemann	 invariant	 that	 goes	 back	 from	 the	 inside.	

Nevertheless,	 the	 expressions	 used	 for	 the	 signals	 are	 written	 for	 the	 ideal	 gases,	 in	

which	 the	enthalpy	and	 the	 internal	energy	are	zero	 for	𝑇 = 0 [𝐾].	 Instead,	 in	 the	CEA	

code,	the	internal	energy	and	the	enthalpy	are	expressed	in	a	polynomial	fitting	as	it	can	

be	 seen	 in	 equation	 3.72.	 In	 order	 to	 make	 coherent	 the	 values	 evaluated	 from	 the	

boundary	 conditions	 with	 the	 values	 evaluated	 from	 the	 CEA	 code,	 the	 “bias”	 is	

calculated	between	the	two	definitions	of	the	internal	energy.		

	

𝑏𝑖𝑎𝑠 = 𝜌𝑒! −
!
!!!

																																																									(4.2)	

	

Once	this	parameter	is	known	and	after	the	resolution	of	the	boundary	condition	at	the	

inlet	pressure,	temperature	and	density	are	known.	As	a	consequence,	the	value	of	the	

specific	internal	energy	multiplied	by	density	is	valuated	as	 !
!!!

	with	the	addition	of	the	

“𝑏𝑖𝑎𝑠”.	

It	is	worth	noting	that	for	the	outlet	no	boundary	conditions	have	to	be	imposed	because	

of	the	supersonic	nature	of	the	flow,	that	simplify	the	work	and	for	all	 the	simulations	

the	divergence	part	of	the	nozzle	is	considered.		

Another	important	aspect	to	be	highlighted	concerns	the	evaluation	of	the	fluxes	to	the	

interface	through	Lax-Friedrichs	method;	differently	from	the	classical	method,	because	

of	 the	 chemistry,	 the	 speed	 of	 sound	 in	 the	 neighbours	 cells	 has	 to	 be	 calculated	 by	

knowing	the	temperature	and	also	the	ratio	of	the	specific	heats	and	the	gas	constant	of	

the	two	adjacent	cells.		
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The	results	are	shown	in	the	following.	

Figure	4.1.	Mole	fractions	through	the	nozzle	in	[23]	

	

	
Figure	4.2.	Mole	fractions	through	the	nozzle	evaluated	from	the	code	

	

In	 figure	4.2	the	divergence	part	of	 the	nozzle	starts	 from	𝑥 = 0.5	to	𝑥 = 1.	The	results	

are	in	good	agreement	with	those	exposed	in	figure	4.1.	This	is	the	proof	that	the	three	

codes	are	successfully	coupled.		

	

	

	



	 53	

4.3	 Fluid	 dynamic	 flow-field	 in	 axial-injected	 hybrid	 rocket	 motor	

without	thermal	model	
In	the	simulation	exposed	in	the	paragraph	4.2,	there	is	not	the	source	term	and	only	the	

nozzle	is	considered.	The	code	runs	successfully,	thus,	the	combustion	chamber	can	be	

added	 at	 the	 nozzle	 geometry	 and	 also	 the	 source	 term,	 relative	 to	 the	 fuel	 mass	

addition,	 can	 be	 implemented.	 The	 new	 geometry	 is	 schematized	 in	 the	 figure	 below	

while	the	geometry	parameters	are	exposed	in	the	table	4.4.	

	

Geometry	data	

Port	area		 𝟒.𝟏𝟑 ∗ 𝟏𝟎!𝟒	 𝒎𝟐 	

Throat	area		 𝟐.𝟎𝟔𝟓 ∗ 𝟏𝟎!𝟒	 𝒎𝟐 	

Total	Length		 𝟏.𝟎𝟗	 𝒎 	

Chamber	Length		 𝟎.𝟓𝟒𝟓	 𝒎 	

Table	4.4.	Geometry	data	of	the	Hybrid	Rocket	Engine		

	

	

	

	

	

	Figure	4.3.	Schematic	semi-geometry	of	the	combustor	and	the	nozzle	of	the	Hybrid	Rocket	engine	
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The	figure	above	shows	the	semi-geometry	of	the	combustion	chamber	and	nozzle	of	the	

hybrid	 rocket	 engine.	 Exactly	 the	 solid	 fuel	 is	 not	 schematized	 in	 that	 figure,	 only	 the	

geometry	of	the	port	area	is	shown;	furthermore,	the	axis	are	normalized	respect	to	the	

reference	length,	which	is	the	total	length	of	the	rocket	engine.		

Figure	4.4.	Fluid-dynamic	flow	field	through	the	combustion	chamber	and	the	nozzle	
	

The	 figure	 4.4	 represents	 the	 results	 of	 the	 fluid-dynamic	 flow-field	 through	 the	

combustion	chamber	and	the	nozzle	of	the	hybrid	rocket	motor.	In	detail,	it	can	be	seen	

the	 Mach	 number,	 the	 non-dimensional	 temperature	 and	 the	 pressure	 in	 steady	

conditions.	

The	 reference	parameters	used	 for	 the	normalization	of	 the	equations	and	 the	 results	

are	exposed	in	the	table	below.	

	

𝑹𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔	

𝑻𝒓𝒆𝒇	 𝟑𝟎𝟎 [𝑲]	

𝑷𝒓𝒆𝒇	 𝟗.𝟓𝟓𝟑 ∗ 𝟏𝟎𝟓 [𝑷𝒂]	

𝑹𝒓𝒆𝒇	 𝟐𝟓𝟗.𝟖𝟐 
𝑱

𝒌𝒈𝑲 	

𝑳𝒓𝒆𝒇	 𝟏.𝟎𝟗 𝒎 	

Table	4.5.	Reference	parameters	for	the	CFD	code		
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Differently	 from	 the	 case	 exposed	 in	paragraph	4.2,	 here	 the	boundary	 conditions	 are	

not	 valuated	 with	 the	 Riemann	 invariants.	 In	 this	 case,	 the	 mass	 flow	 rate	 and	 the	

temperature	of	the	oxidizer	is	imposed,	the	pressure	is	calculated	from	the	internal	flow	

field,	 then	the	density	and	the	 flow	velocity	are	consequently	obtained.	Because	of	 the	

presence	of	 the	 fourth	equation,	 the	mixture	 fraction	has	 to	be	 initialized	and	 it	 is	 set	

equal	to	10!!.	This	last	value	is	not	exactly	zero	because	the	CEA	code	does	not	run	if	the	

mole	of	the	fuel	is	equal	to	zero.		

Those	boundary	conditions	for	subsonic	inlet	are	shown	in	the	table	4.6.	

	

Parameter	 Value	given	

Pressure			𝒑	 Zeroth-order	extrapolation	from	

internal	flow-field	

Temperature			𝑻	 𝟑𝟎𝟎 [𝑲]	

Mass	flow	rate	𝒎𝒐𝒙	 𝟎.𝟏𝟒 𝒌𝒈 𝒔 	

Mixture	fraction			𝝐	 𝟏𝟎!𝟔	
Table	4.6.	Boundary	conditions	for	the	CFD	code			

	

In	this	preliminary	analysis,	it	is	imposed	a	constant	regression	rate	and	so	the	fuel	mass	

flow	is	constant	during	time	 𝑟 = 0.0005 !
!
,𝑚! = 0.4795 !"

!!!
,	the	injection	point	of	

the	 fuel	 is	 for	𝑥 = 0.1.	 In	 the	 same	 graph,	 it	 can	 be	 noted	 the	 end	 of	 a	 combustion	

chamber	for	𝑥 = 0.5,	in	other	words	the	point	where	the	temperature	reaches	its	biggest	

value.	Furthermore	it	is	shown	the	nozzle	throat	area	for	𝑥 ≅ 0.76.	
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Figure	4.5.	Density	through	the	combustion	chamber	and	the	nozzle	
	

The	 graph	 above	 represents	 the	 non-dimensional	 density	 in	 order	 to	 complete	 the	

physical	quantities	needed	for	the	description	of	the	fluid	dynamic	flow-field.	

The	figure	4.6	shows	the	mixture	fraction	𝜖	through	the	hybrid	rocket	motor.	

The	graph	provides	a	proof	that	the	condition	we	are	seeing	is	the	steady	condition,	in	

fact	the	mixture	ratio	has	a	linear	trend	from	𝑥 = 0.1	to	𝑥 = 0.5,	in	other	words	the	point	

of	the	fuel	injection	and	the	end	of	combustion	chamber.	Before	and	after	those	points,	

the	mixture	fraction	assumes	a	constant	shape.	

	
Figure	4.6.	Mixture	fraction	through	the	combustion	chamber	and	the	nozzle	
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The	mixture	fraction	𝜖	provides	the	inputs	for	the	CEA	code	in	terms	of	reactant	moles.	

Indeed,	directly	 from	 its	own	definition,	 the	mole	number	of	Carbon	element	per	unit	

mass	 of	 the	 mixture	𝑏! 	is	 found,	 then	 with	 the	 following	 relations	 the	 moles	 of	 both	

reactants	can	be	found.	

	
𝑏!!!! =

!!
!
																																																																																(4.3)	

𝑘𝑔!!!! = 𝑏!!!! ∗ 𝑃𝑚!!!! 																																																					(4.4)	

𝑘𝑔!! = 1− 𝑘𝑔!!!! 																																																																(4.5)	

𝑏!! =
!!!!
!!!!

																																																																															(4.6)	

	

In	 these	 relation,	𝑘𝑔!!!! 	and	𝑘𝑔!! 	mean	 the	 kilogram	 of	 ethylene	 and	 oxygen	 in	 the	

actual	mixture,	while	𝑃𝑚!!!! 	and	𝑃𝑚!! 	are	the	molecular	weight	of	both	species	express	

in	 !"
!"!

.	

	

	Figure	4.7.	Mole	fractions	through	the	combustion	chamber	and	the	nozzle	
	

	
As	a	conclusion,	it	is	shown,	in	the	figure	4.7,	the	mole	fractions	through	the	combustion	

chamber	and	the	nozzle,	and	as	we	can	expected	the	mole	fraction	of	molecular	oxygen	

decreases	from	𝑥 = 0.1	to	𝑥 = 0.5,	while	the	mole	fractions	of	𝐶𝑂!	and	𝐻!𝑂	increase	as	a	

proof	that	the	reaction	with	𝐶!𝐻!	is	happening.	
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4.4	Fluid	dynamic	flow-field	in	axial-injected	hybrid	rocket	motor	with	

thermal	model	and	without	boundary	layer	delay	time		
In	 the	previous	simulation	 the	 regression	rate	 is	assumed	 to	be	constant	and	equal	 to	

𝑟 = 5𝑑 − 4 !
!
.	So	as	to	find	the	right	value	of	the	regression	rate	the	thermal	code	has	

to	 be	 implemented,	 because	 this	 parameter	 depends	 on	 the	 fuel	 grain	 surface	

temperature.	 In	 order	 to	 link	 this	 code	with	 the	 others,	 the	 thermal	 properties	 of	 the	

solid-fuel	are	needed,	in	this	case	the	solid-fuel	is	the	HDPE.		

The	thermal	properties	are	exposed	in	the	table	below	and	they	have	been	taken	from	

[24].	

	

Thermal	properties	of	HDPE	

Specific	heat	at	constant	pressure	𝒄𝒑 	 𝟑𝟎𝟎𝟎
𝑱

𝒌𝒈𝑲 	

Solid-fuel	density	𝝆𝒇 	 𝟗𝟓𝟗
𝒌𝒈
𝒎𝟑 	

Heat	of	vaporization	𝑳𝒗 	 𝟐𝟐 ∗ 𝟏𝟎𝟓
𝑱
𝒌𝒈 	

Activation	energy	𝑬𝒂 	 𝟔𝟑
𝒌𝒄𝒂𝒍
𝒎𝒐𝒍 	

Thermal	diffusivity	𝜶 	
𝟏.𝟑𝟐𝟎𝟖 ∗ 𝟏𝟎!𝟕

𝒎𝟐

𝒔 	

Table	4.7.	Thermo-physical	properties	of	HDPE			

	

The	domain	of	 the	solid-fuel	 is	set	[0,100𝛿]	where	𝛿 = 𝛼/𝑟!"# ,	 therefore	the	number	of	

spatial	 point	 in	 this	 domain	 is	𝑁 = 40 .	 Because	 of	 the	 largest	 gradients	 in	 the	

temperature	 occur	 near	 the	 regression	 surface,	 the	 grid	 nodes	 are	 spaced	 non-

uniformly;	 the	 first	node	 is	placed	at	0.005 [𝑚𝑚]	while	the	distance	between	the	other	

adjacent	nodes	increase	by	11.5%	towards	the	outside	of	the	fuel-grain.	The	grid	nodes	

along	the	combustor	and	nozzle	are	instead	equal	to	100	and	they	are	uniformly	spaced.			
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The	reference	parameters	for	the	thermal	code	are	exposed	in	the	table	below.	

	

𝑹𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔	

𝑻𝒘𝒓𝒆𝒇 	 𝟔𝟐𝟐.𝟓 [𝐾]	

𝒓𝒓𝒆𝒇	 𝟎.𝟓𝟒𝟏 ∗ 𝟏𝟎!𝟑  
𝑚
𝑠 	

𝑩𝒓𝒆𝒇	 𝟓.𝟑𝟏𝟑	

𝑳𝒓𝒆𝒇 	 𝟎.𝟓𝟒𝟓 𝑚 	

𝑮𝒐𝒙𝒓𝒆𝒇 	 𝟏𝟎𝟎 
𝑘𝑔
𝑚!𝑠 	

𝑪𝒇𝟎𝒓𝒆𝒇	 𝟔.𝟒𝟕 ∗ 𝟏𝟎!𝟑	

Table	4.8.	Reference	parameters	for	the	thermal	code			

	

	

	

The	results	of	that	simulation	are	exposed	in	the	figure	below.	

	

Figure	4.8.	Fluid-dynamic	flow	field	through	the	combustion	chamber	and	the	nozzle	by	adding	the	thermal	model	
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	Figure	4.9.	Density	through	the	combustion	chamber	and	the	nozzle	by	adding	the	thermal	model	
	

The	fluid-dynamic	flow-field	is	not	so	much	different	from	the	previous	simulation.	This	

happens	because	the	value	of	the	regression	rate	found	with	the	aid	of	the	thermal	code	

is	 not	 really	 different	 from	 the	 previous	 value.	 Obviously,	 now	 the	 value	 of	 the	

regression	 rate	 is	 correctly	 found	according	 to	 the	 solid	 fuel	 surface	 temperature;	 the	

code	 is	 able	 to	 take	 into	 consideration	 the	 effects	 of	 some	 parameters	 such	 as	 the	

blowing	parameter,	 the	activation	energy	and	 the	boundary	delay	 time,	which	are	 the	

fundamental	parameters	responsible	for	the	instability	phenomena	according	to	[14].	

Even	 if	 the	 value	 of	 the	 regression	 rate	 differs	 slightly	 from	 the	 previous	 value,	 it	 is	

worth	noting	that	the	value	of	the	temperature	is	increased	according	to	the	increase	in	

the	 fuel	mass	 flow.	Therefore,	 in	 the	 figure	below,	 the	maximum	value	of	 the	mixture	

fraction	is	increased	too,	so	this	means	that	more	fuel	is	added	in	the	mixture.		
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	Figure	4.10.	Mixture	fraction	through	the	combustion	chamber	and	the	nozzle	by	adding	the	thermal	model	
	

The	figure	below	represents	the	mole	fractions	of	the	considered	chemical	species;	it	is	

evident	 that	 the	 oxygen	mole	 fraction	 reaches	 a	 lower	 value	 than	 that	 reached	 in	 the	

previous	 simulation.	 This	was	 to	 be	 expected	 according	 to	 the	mixture	 fraction,	more	

fuel	is	added	more	oxygen	is	consumed.		

	Figure	4.11.	Mole	fractions	through	the	combustion	chamber	and	the	nozzle	by	adding	the	thermal	model	
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	Figure	4.12.	Regression	rate	through	the	combustion	chamber	and	the	nozzle	by	adding	the	thermal	model	
	

In	 the	 last	 graph	 exposed,	 the	 regression	 rate	 through	 the	 combustor	 is	 shown.	 This	

value	 is	 equal	 to	 zero	 before	𝑥 = 0.1	and	 after	𝑥 = 0.5,	 because	 the	 fuel	 injection	was	

imposed	 to	 happen	 inside	 that	 region.	 Furthermore,	 the	 value	 reached	 is	 almost	

constant	 inside	 that	 region	 and	 is	 equal	 to	𝑟 ≅ 6.5𝑑 − 4 !
!
.	 This	 trend	 is	 what	 I	

expected,	 because	 the	 boundary	 time	 delay	 is	 set	 equal	 to	 zero	 and	 the	 instability	

phenomena	do	not	appear.		

	

4.5	 Pressure	 and	 regression	 rate	 history	 with	 and	 without	 the	

boundary	layer	delay	time	
The	last	graphs	showed	the	pressure	and	the	regression	rate,	with	𝜏!" = 0 [𝑠],	through	

the	 combustion	 chamber.	 In	 order	 to	 focus	 the	 attention	 into	 the	 time	 signal	 and	 to	

appreciate	 the	 pressure	 and	 regression	 rate	 oscillations,	 I	 chose	 to	 track	 these	 two	

variables	 in	𝑥 = 0.3,	 which	 corresponds	 to	 the	 middle	 of	 the	 combustor.	 Firstly	 the	

boundary	layer	delay	time	was	set	to	zero	and	the	results	are	represented	in	the	figure	

below.		
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	Figure	4.13.	Temporal	variation	of	the	pressure	in	𝑥 = 0.3	and	with	𝜏!" = 0 𝑠	
	

	Figure	4.14.	Temporal	variation	of	the	regression	rate	in	𝑥 = 0.3	and	with	𝜏!" = 0 𝑠	
	

Despite	 the	 short	 time	of	 the	 simulation,	 it	 is	 evident	 that	 the	 system	has	 reached	his	

steady	state	condition	because	both	the	pressure	and	the	regression	rate,	after	a	sharp	

transitional	period,	do	not	present	any	oscillations.	Different	is	the	case	with	boundary	

layer	delay	time	set	equal	to	one	millisecond	𝜏!! = 0 .001[𝑠].		
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Figure	4.15.	Temporal	variation	of	the	pressure	in	𝑥 = 0.3	and	with	𝜏!" = 0.001 𝑠	

Figure	4.16.	Temporal	variation	of	the	regression	rate	in	𝑥 = 0.3	and	with	𝜏!" = 0.001 𝑠	
	

Even	 if	 the	 small	 value	 of	𝜏!" ,	 the	 oscillations	 are	 evident.	 The	 goal	 of	 this	 numerical	

code	is	that	the	oscillations	in	the	regression	rate	can	be	translated	in	terms	of	pressure	

oscillations.	Given	that,	the	boundary	layer	delay	time	is	the	delay	between	the	wall	heat	

flux	 and	 the	 response	 of	 the	 regression	 rate,	 this	 leads	 to	 the	 oscillations	 in	 this	

parameter,	but	there	is	not	a	relation	that	links	it	with	the	pressure.	Indeed,	as	I	wrote	

before,	the	regression	rate	in	the	HREs	is	linked	to	the	mass	flux;	as	a	consequence,	the	

CFD	code	is	able	to	appreciate	the	changes	in	the	mass	flux,	in	detail	in	the	fuel	mass	flux,	
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and	to	convert	them	in	pressure	oscillations.	 It	 is	worth	noting	that,	 in	the	figure	4.15,	

the	so-called	“DC	shift”	in	the	chamber	pressure	is	present	and	the	oscillation	proceeds	

into	a	nonlinear	limit	cycle.		
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Conclusion	
	

The	goal	of	this	thesis	is	to	develop	a	numerical	code	that	is	able	to	analyse	the	transient	

phenomena	and	to	catch	the	instability	due	to	the	boundary	layer	delay	time.	Firstly,	it	

was	necessary	to	split	the	physical	models	that	took	place	in	this	analysis,	there	are	the	

quasi-one-dimensional	gas	dynamic	model,	the	chemical	model	and	the	one-dimensional	

thermal	model.	Then,	every	model	was	discretized	by	an	appropriate	numerical	method;	

as	regards	the	chemical	model,	the	CEA	code	was	used	together	with	a	further	code,	this	

one	 was	 developed	 in	 this	 thesis	 and	 it	 is	 able	 to	 substitute	 the	 CEA	 code	 when	 the	

assumption	 that	 the	 mole	 fractions	 are	 constant	 is	 acceptable.	 This	 additional	 code	

enables	to	reduce	the	computational	time.	For	the	other	two	physical	models,	the	Finite	

Volume	 Method	 was	 used.	 Furthermore,	 in	 the	 Q1D	 gas	 dynamic	 model,	 a	 further	

equation	was	needed	so	as	 to	 take	 into	account	 the	presence	of	 the	 fuel	mass	 through	

the	mixture	fraction	𝜖.	Specific	attention	has	been	taken	for	the	fluxes	discretization	and	

for	 the	 boundary	 condition;	 the	 Lax-Friedrichs	method	was	 used	 for	 the	 fluxes,	 but	 it	

was	 slightly	modified	 in	 order	 to	 take	𝛾	and	𝑅	as	 inputs,	 because	with	 the	presence	of	

the	 chemical	 reaction	 these	 two	 parameters	 are	 also	 variables	 between	 two	 adjacent	

cells.	 Indeed,	 the	 boundary	 condition	 at	 the	 inlet,	 in	 the	 nozzle	 geometry	 case,	 was	

adjusted	 in	 such	 a	way	 that	 the	 chemical	 contribution,	 in	 the	 specific	 internal	 energy,	

would	be	considered.	This	was	possible	by	introducing	a	“bias”,	so	as	to	make	coherent	

the	internal	energy	evaluated	from	the	CEA	code,	through	a	polynomial	fitting,	and	the	

internal	 energy	 evaluated	 from	 the	 characteristics	 equations	 used	 in	 the	 boundary	

condition	 for	 subsonic	 flow.	 In	 the	 thermal	model,	 special	 attention,	was	 taken	 in	 the	

domain	discretization,	as	 it	was	explained	 in	the	chapter	4.3,	and	 in	the	wall	heat	 flux.	

This	 last	one	depends	on	 the	oxidizer	mass	 flux	and	 the	 regression	 rate;	 furthermore,	

two	 relations	 were	 implemented,	 based	 on	 the	 blowing	 parameter	 according	 to	 [17].	

Anyway,	 in	 the	chapter	3	a	more	detailed	explanation	of	 the	numerical	method	can	be	

found.	

Finally	 these	 four	 numerical	 codes	 were	 linked	 together	 after	 a	 validation	 of	 each	

coupling	 as	 it	 can	 be	 seen	 in	 the	 chapter	 4.	 In	 the	 paragraph	 4.4	 the	 final	 results	 are	

exposed	and	in	the	paragraph	4.5	the	difference	between	𝜏!" = 0 𝑠	and	𝜏!" = 0.001 𝑠	is	

shown.	In	addition,	it	was	noted	that	the	instability	takes	place	when	the	boundary	layer	

delay	time	is	present.		
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As	 a	 conclusion,	 this	numerical	 code	 shows	good	 results	 although	 the	 approximations	

made.	Future	works	will	be	done	to	improve	the	code	both	in	the	numerical	method	and	

in	the	physical	model.	
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