
POLITECNICO DI TORINO

CORSO DI LAUREA MAGISTRALE

IN INGEGNERIA AEROSPAZIALE

FINAL TEST

ANALYSIS OF DEPLOYABLE STRUCTURAL

ELEMENTS FOR SPACE APPLICATIONS

CANDIDATE SUPERVISORS

SIMONE AMBROSINO ERASMO CARRERA

ALFONSO PAGANI

APRIL 2020



To my family



Abstract

In this work, a series of analyses concerning the behavior of structures typically

used in space applications are carried out. These structures are united by their

properties of lightweight and minimal thickness, along with the need for them to

occupy a highly confined space; this last necessity makes the deployable structures

the most acceptable solutions in the space industry.

The numerical analyses of this kind of structure are carried out through two

different codes: the commercial software Abaqus and the Mul2 code developed by

the homonymous group of the PoliTo, based on the CUF theory. The objective of

this work is, therefore, to introduce the main features of the deployable structures

and then to demonstrate the ability of the Mul2 code to reproduce very reliable

results for different kinds of analysis and structures.

The thesis is subdivided into two distinct parts, presenting separately the theo-

retical subject on which the Mul2 code is based, and the numerical analysis them-

selves.

Chapter 1 is an introduction to the main subject: deployable structures. The

existing literature on the argument is presented, together with some classifica-

tion methods. Moreover, some relevant and commonly used space structures are

showed, and both their folding processes and their applications are given.

In Chapter 2, the CUF theory is briefly introduced, just enough to understand

the mathematics standing hidden behind the code. The application of the CUF

theory to non-linear analysis is presented too.

Chapter 3 deals with the preliminary analysis of some classical structures, not

necessarily applicable for spatial purposes: in ascending order of complexity are

analyzed square beams, C-beams, and C-beams with holes along the axis.

In Chapter 4, typical space structures such as tape springs are analyzed, also

studying the effect of some features on the buckling behavior. At the end of the
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chapter, the numerical results are also compared with an experimental test carried

out by the CalTech.

At last, in Chapter 5, TRAC boom structures are introduced and analyzed. Their

buckling behavior is deeply discussed, also through a linearized buckling analysis.

Last but not least, results concerning a parametric analysis on the effects of the

boom length are shown.

In the Conclusions are provided some general comments regarding the analysis

previously made, and some ideas for future developments.
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Chapter 1

Introduction

This first introductory chapter deals with a quick overview of the various deploy-

able structures, with a particular focus on space applications. In the beginning, a

definition for this kind of structure is given, also reporting some examples already

written in literature; then, a sort of classification is described, based on geometry,

functional features or technology. In the final part of the chapter, three different

families of deployable structures are described singularly. The main source for

this overview is taken from the work of Pellegrino (2001) [23]. More info about

deployable and inflatable structures than the ones briefly introduced hereafter can

be found in [13], [21], [14].

Let’s start from the etymological meaning of the word deployable [11]: it stems

from the Latin displicare, which precisely means to deploy. Thus, deployable struc-

tures are such elements able to modify their configuration from a folded state to

a deployed (unfolded) one, through a transformation that is called, again, deploy-

ment. The inverse transformation, the transition from the unfolded back to the

folded configuration, is commonly named retraction.

Typically, the deployment should be performed autonomously, thus the mecha-

nism responsible for the structure movement is quite essential. Moreover, the tran-

sition from one configuration to the other must be controlled in order to maintain

a fluid motion and to avoid damages in the structure.

Deployable structures are vital for space applications, due to their lightweight

and ease of accommodating in tiny compartments. They are usually folded dur-

1



CHAPTER 1. INTRODUCTION 2

ing the launch of the spacecraft, and unfold themselves automatically when the

operative orbit is reached, or when their functionalities are needed. Thus, func-

tional requirements are different for folded and unfolded configuration: the former

one requires small volume and compact structure, the latter one the functions for

which the instrument has been designed.

One of the most common examples of a deployable instrument is the umbrella,

which is usually folded, and then deployed when it is necessary to cover from rain

(i.e., to perform its function). On the other hand, typical space applications for

deployable structures are accounted for by solar panels deployment mechanisms,

expandable antennas, solar reflectors, and many others.

(a) Rigid structure (b) Deformable structure

(c) Flexible structure (d) Combined structure

Figure 1.1: Adrover classification - some examples [26]

A recent classification was made by Adrover (2015) [26]. The author at first
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Figure 1.2: Adrover classification [11]
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made a general distinction based on the approach used for the development of the

structure: ”Structural components” are those instruments whose design is driven

by the structural mechanism that moves its parts; ”Generative Technique” is used

instead for objects whose development is based on movements and forms inspired

by other sources. This last family contains, for example, origami techniques.

The focus of this study must remain obviously on structural components be-

cause this class represents all the deployable engineering structures. The author

goes on, subdividing these structures into four categories: rigid, deformable, flex-

ible, and combined components. The first two of them are the categories that

are usually adopted in literature, whereas Adrover added the last two in order

to include other structures which were not included in the first two. The overall

classification can be seen in Fig.1.2.

An example of each type of deployable class is showed in Fig. 1.1: the rigid one

is a truss structure developed by NASA in 1997 as extensible support for either

solar concentrators or phased arrays; the deformable one represents a connection of

different inflated air cells, which can become very useful in the colonization of other

celestial bodies; the flexible structure is a BRC, utilized in various applications

such as deployable tube pointing camera mechanisms; the combined structure is

a Soundform, the first outdoor portable stage invented in 2012 and capable of

optimizing sound audience in the neighboring.

Some of the items collocated in Fig.1.2 will be adequately presented in the

following sections.

On the other hand, a real classification was not made by Pellegrino, who pre-

ferred to present some relevant and quite generic examples one by one. This is the

approach that will be adopted hereafter.

1.1 Coiled rods

A simple example of a coiled rod is shown in Fig 1.3. Here a rod with a circular

cross-section, wrapped around a spool with radius R, is deployed into a straight

structure employing a series of rotative mechanisms.

These spools are contained in small housings and deployed when needed. Typ-

ical materials for the rod structure can be glass fibers or even steel. Despite the
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Figure 1.3: Coiled rod [23]

lightweight and small volume, a harmful property of such a structure is the not

excellent stiffness: in fact, these types of coiled rods are only a few more rigid than

a simple tape measure, though this last one has a housing dimension typically one-

fifth of the coiled rod.

Many improvements can be reached with a different kind of structure: the

lattice column, or coilable mast. A schematic representation of such a device is

shown in Fig. 1.4.

Figure 1.4: Coilable mast [23]

The assembly of various components composes this complex structure: some

longerons (3 in this case, that is the minimum number allowable) run along the
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longitudinal direction, and are interconnected by transversal elements like bracing

cables and battens. Regarding Fig. 1.4, the battens form a series of equidistant

triangles lying on the transversal plane, each vertex of the triangle is connected by

the bracing cables to the vertexes belonging to different longerons of the triangles

above and underneath. The space between two successive triangles is named ”bay”.

This structure can reach a very high stiffness maintaining a little weight, and it is

usually utilized for the deployment of some scientific instruments or solar arrays.

Figure 1.5: Coilable mast retraction

In order to achieve an efficiently working structure, the h
l

ratio must be decided

following some rules:

• each bay should be approximately square to obtain an efficient structure (i.e.
h
l
≈ 1);
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• stacking requirements tell that h 6= 2πR
3

, where R is the radius of the mast

in the folded configuration, in order to guarantee a proper helical stacking

without leaving any gap in the closed structure;

• the local buckling load of each bay should be smaller, but not too much

smaller than the global buckling load.

The last of the three rules is usually the most demanding, thus the typical h
l

ratio

is equal to 2
3
.

Let us describe now the retracting process with the help of Fig. 1.5. It shows

how the folding of a typical short mast (up to 3 m) works: a compression load is

applied at the top edge of the mast, which collapses and begins to rotate and get

compressed, creating a helical transition structure that moves on toward the base

of the mast. If the coilable mast is too long, then the stiffness of the transition

region is not big enough to support the stowed region above, and hence the first

part to collapse into a helix is collocated near the base instead of the top. In both

cases, the base of the structure is typically contained within a canister, which can

rotate, moved by an electrical motor, and contribute with the mast retraction.

1.2 Structural mechanisms

The structural mechanisms presented here are ”assemblies of rigid parts connected

by movable joints, arranged in such a way that the transformation from a packaged

to a deployable configuration is possible” [23]. These structures look very similar

to the coilable masts already discussed, but the main difference is that structural

mechanisms are rigid parts assembled into a new structure utilizing unrelated

joints, whereas the joints of the coilable musts are part of the structure themselves.

An interesting example of such a structure is the pantograph [32], an assembly

of bars connected by multiple joints that permit their rotation, as shown in Fig.

1.6. Here the deployment mechanism is also represented.

In the figure, some cables connecting the joints are also visible; these are pre-

tensioned in the deployed configuration in order to increase the structural stiffness.

Another configuration is the ring-like pantograph, as the one shown in Fig.

1.7. Here the deployment is obtained through a radial motion of the structure,

which increases its diameter expanding. In this kind of pantograph, it is not rare
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Figure 1.6: Pantograph deployment

to have different dimensions of the bars, as shown in Fig. 1.8; in this way, it

is possible to create a structure that is smaller in the center and higher in the

outer region. Ring-like pantographs are often used in the deployment mechanism

of parabolic antennas due to their circular shape, which is very similar to the

antenna to accommodate.

1.3 Membranes

Membranes are very versatile structures, modeled as thin layers of material that

can be folded in various ways, according to the functional requirements to achieve.

When they are subjected to a biaxial state of tension, they reach a good value of

stiffness and stability, but once the tension is removed, they can collapse easily

into the packed configuration, by a series of folding steps which can be arranged

in every desired way. Three ways of folding are the most commonly used and are

described hereafter.

Letter folding This folding process is the most straightforward and consists of a

series of folding about the center lines: taking as reference Fig. 1.9, the membrane

is first folded about its centerline, then about a new centerline in the perpendicular

direction, and this process is repeated until the complete packaged configuration
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Figure 1.7: Ring-like pantograph deployment

Figure 1.8: Ring-like pantograph components [23]
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is reached, alternating 0◦ and 90◦ foldings.

Figure 1.9: Letter folding [23]

As can be reasonably thought, the unfolding process must take place in pre-

cisely the inverse order than the folding one: a first unfold in a direction, then

one in the perpendicular one, repeating these steps until the membrane is fully de-

ployed. This procedure implies a very demanding automation process to perform,

and then this folding way is not very used.

Map folding The map folding process is an evolution of the letter folding one:

the folds are first made in only one direction, creating a concertina, and then the

process is repeated in the perpendicular direction. The result of such folding is

shown in Fig. 1.10.

Figure 1.10: Map folding [23]

The improvement given to the unfolding process by this way of folding is that

now the membrane is first completely unfolded in a direction, and then entirely
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in the other; only two different movements are needed then, instead of a sequence

of alternate unfolds as in the letter folding configuration. A further improvement

can be reached with the Miura-ori folding.

Miura-ori folding This folding philosophy is the most complex but can imply a

significant simplification in the unfolding process. The Miura-ori folding is showed

in Fig. 1.11.

Figure 1.11: Miura-ori folding [23]

The vertical folds lines are not straight but follow a zigzag path. This kind

of folding has the great advantage of permitting the unfolding process to be per-

formed by only one step, which is single traction along the diagonal direction of

the rectangular membrane. This leads to an enormous simplification of the deploy-

ment mechanism. Moreover, in the packed configuration, the structure maintains

a small distance from every membrane layers; in this way, the maximum curvature

is reduced and consequently, also the stresses. In order to have a look at the work

of Miura one can use as reference [20].

An example of a membrane structure application is showed in Fig. 1.12: a

solar rays concentrator for a solar panel. Its function is elementary: solar rays

are reflected on the membrane and directed toward the solar array; in this way,

the apparent surface of the solar panel is increased by several factors. The two
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membranes visible in the figure are deployed using the booms in correspondence of

the short edges. Thus, the folding process would probably be a single concertina,

maintaining the packed shape of the structure as one long strip. Once they are

deployed, each reflector is tensioned by a tension spring, which maintains the

membrane wrinkle-free.

Figure 1.12: Solar concentrator [23]

1.4 Flexible shells

The most common example of a flexible shell structure is the steel tape measure:

it is formed by a skinny layer of steel (typical thickness varies from 0.1-0.2 mm)

which can reach lengths of 3 m, curved with a radius of 12-14 mm (the cross-

section is an arc of a circle). In the packed configuration, the tape is flattened and

coiled into a small container. Usually, the booms are arranged as showed in Fig.

1.13. Here three different configurations are visible:

a STEM One single tape with a great arc angle, greater than 360◦, forming a

circular extendible tube;

b bi-STEM Two tapes are nested into each other, creating a symmetric structure

with a short transition region;

c Collapsible tube One single tape with a double layer with opposite curvature,

which increases the torsional stiffness considerably.
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Figure 1.13: Tape measure booms [23]

In the folded configuration, these structures are flattened, and, due to their

minimal thickness, this flattening acts as an elastic deformation only. The elastic

energy held in the structure is the released once the tape is fully deployed. Usually,

one can identify two different ways of folding: equal sense and opposite sense.

Figure 1.14: Tape measure coiling [23]

Figure 1.14 shows the equal sense coiling on the left, and the opposite sense

coiling on the right. In the first case, the edges of the shell go into compression

during coiling, whereas in the second case, they go into traction. Typically, r
R

ratios are close to 1.

The same nomenclature is adopted when the tape is subjected to a flexion,

as in Fig. 1.15. The top figures show the opposite sense bending, whereas the

bottom figures the equal sense one. The behavior of this kind of structure under

the effect of bending moments is the subject of the successive analyses reported in

the following chapters.
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Figure 1.15: Tape measure bending [23]

A practical application of a flexible shell was used for the solar arrays deploy-

ment system of the Hubble space telescope, where bi-STEM tapes were adopted.

For more info about the behavior of these structures, one can see as reference

[28].



Chapter 2

Unified models for the analysis of

highly flexible beams

In this chapter is presented the CUF theory and its application on non-linear

analysis. In the beginning, there is an introductory section where the main vec-

tors appearing in the structural mechanics are showed. Then the CUF is fully

explained, together with the derivation of the governing equations and their re-

spective matrices. At last, the non-linear analysis procedure is exposed, with

particular reference to the Crisfield arch-length method.

In order to carry out this theoretical study, the main works taken as reference

are [7] for the beam models, whereas [22] for the non-linear analysis.

2.1 Preliminaries

Before to start talking about the mathematics involved in the classical theories

and CUF, an introduction of the main elements that are going to be find hereafter

must be made. Let’s define, for the moment, how the components of displacements,

strains and stresses are named:

• Displacements u. The displacement components of a point P belonging to

a deformable body are contained into the displacement vector; in a three-

dimensional space this vector has got three components, as follows:

u =
{
ux, uy, uz

}T
15
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Each component represents the displacement value along one of the three

orthogonal axis (x, y, z in this case).

• Strains ε. The strain vector is composed by nine terms:

ε =
{
εxx εyy εzz εxz εyz εxy εzx εyx εzy

}T
The first three terms are the axial deformations, whereas the last six ones

are the shear deformations, which are symmetric. For this reason the inde-

pendent terms are only six, and the vector is generally written as:

ε =
{
εxx εyy εzz εxz εyz εxy

}T
• Stresses σ. The stress vector is composed by nine terms:

σ =
{
σxx σyy σzz σxz σyz σxy σzx σyx σzy

}T
The first three terms are the axial stresses, whereas the last six ones are the

shear stresses, which are symmetric. For this reason the independent terms

are only six, and the vector is generally written as:

ε =
{
σxx σyy σzz σxz σyz σxy

}T
Stresses and strains are not independent but are linked by, in the case of linear

elastic materials, the Hooke’s law, which provides the constitutive relation. It

states that:

σ = Cε (2.1)

where C is the material stiffness matrix.

The following expression governs strains and displacements relation:

ε = εl + εnl = (bl + bnl)u (2.2)

where bl and bnl are respectively the linear and nonlinear matrices containing

differential operators; their complete form can be read in [22].
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2.2 Carrera Unified Formulation

The CUF is a refined beam theory able to overcome the limits of classical modeling

techniques. In fact, classical theories like the Euler-Bernoulli (EBBT) [10] and

Timoshenko (TBT) [30] models are based on a fixed number of variables, and this

number is usually related to the particular problem that is taken into account. This

property of the classical theories makes them problem-dependent, and hence their

application field is limited. On the other hand, CUF is based on a displacement

field obtained in a unified manner, and then every theory order can be reached.

In this section, the unified formulation is given at first, and then finite elements

are used to obtain the ”fundamental nuclei” and all the matrices needed.

2.2.1 Unified formulation

In order to achieve an unified formulation of the beam cross-section, the displace-

ment field is written as follows:

u(x, y, z) = Fs(x, z)us(y), s = 1, 2, ....,M (2.3)

where Fs are functions of the coordinates x and z on the cross-section, us is the

displacement vector along the beam axis, and M stands for the number of the

terms used in the expansion. The repeated subscript s indicates summation. By

choosing different Fs functions one can decide the order of the model; for example,

if a second order model is chosen, eq. (2.3) can be written as:

ux = ux1 + xux2 + zux3 + x2ux4 + xzux5 + z2ux6

uy = uy1 + xuy2 + zuy3 + x2uy4 + xzuy5 + z2uy6

uz = uz1 + xuz2 + zuz3 + x2uz4 + xzuz5 + z2uz6

In this case M = 6 and there are 18 different displacement variables. Note that

one can find the particular cases of Euler-Bernoulli and Timoshenko displacements

fields simply by using an appropriate set of Fs functions.
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2.2.2 Finite element formulation

Through a finite element formulation, the weak form of the governing equations

can be obtained. Let us begin the study introducing the nodal displacement vector:

qsj =
{
quxsj quysj quzsj

}T
s = 1, 2, . . . ,M j = 1, 2, . . . , NEN (2.4)

Here the subscript j indicates the element node, and NEN the number of nodes

per element. Note that the element considered now is a beam element along the

longitudinal y-axis. This displacement variables are interpolated along the y-axis

by means of the shape functions Nj, obtaining:

u = Nj(y)Fs(x, z)qsj j = 1, 2, . . . , p+ 1 (2.5)

where p is the order of the shape functions. The complete form of the shape

functions can be found in [3]. It is important to underline that, whatever the

shape functions are, they are always independent of the cross-section polynomials

Fs. In the analysis presented in the following chapters, for example, are usually

adopted B4 elements for the longitudinal mesh (third-order shape functions) and

L9 (Lagrange polynomials with 9 points) elements on the cross-section. For further

information about the LE beam theories the readers can use as reference [8] and

[6].

In order to derive the fundamental nuclei of the CUF theory the PVD is applied.

It states that the sum of all the virtual work done by the internal and external forces

existing in the system in any arbitrary infinitesimal virtual displacements satisfying

the prescribed geometrical constraints is zero [31]. This can be written as:

δLint − δLext = 0 (2.6)

where Lint is the strain energy, and Lext is the work of the external forces. If eqs.

(2.3), (2.5) and (2.6) are used, the following expression is derived:

Kijτs
S qsj − psj = 0 (2.7)

Kijτs
S is the fundamental nucleus (FN) of the secant stiffness matrix, whereas psj

is the FN of the loading vector. The fundamental nuclei must be assembled during
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the expansion in order to obtain the global matrices, as in the expression:

KSq − p = 0 (2.8)

Thus, the purpose of the following sections is to explain how the secant stiffness

matrix and the loading vector are created; once they are assembled, the nodal

unknowns can be computed by means of eq.(2.8).

2.2.3 Secant stiffness matrix

For the derivation of the secant stiffness matrix FN the expression of the virtual

variation of the strain energy must be taken into account:

δLint =< δεTσ > (2.9)

Hereafter it is defined < (.) >=
∫
V

(.)dV ; V is the initial volume of the beam

structure.

The purpose now is to express the integral argument in terms of nodal un-

knowns. Remembering the expression of the strains in (2.2) and using the unified

formulation introduced in eq. (2.5) one can write:

ε = (Bsj
l +Bsj

nl)qsj (2.10)

Bsj
l and Bsj

nl are differential operators matrix which contains functions of u, F s

and N j and their derivatives. The first has got the linear terms only, while the

second the non-linear ones. Their full form can be seen in [22]. As it is necessary

to have the virtual variation of the strains vector, the following step is to write:

δε = (Bτi
l + 2Bτi

nl)δqτi (2.11)

And thus:

δεT = δqTτi(B
τi
l + 2Bτi

nl)
T (2.12)

Here the apexes τ and i are used in order to differentiate this equation from the

one written for the stress vector; in fact, remembering the constitutive equation
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of the material (2.1) one can also write:

σ = C(Bsj
l +Bsj

nl)qsj (2.13)

Thus, substituting eqs. (2.12) and (2.13) in eq. (2.9) the result is:

δLint = δqTτi < (Bτi
l + 2Bτi

nl)
TC(Bsj

l +Bsj
nl) > qsj

= δqTτiK
ijτs
0 qsj + δqTτiK

ijτs
lnl qsj + δqTτiK

ijτs
nll qsj + δqTτiK

ijτs
nlnlqsj

= δqTτiK
ijτs
S qsj

(2.14)

The secant stiffness matrix KS is then the sum of four different matrices:

Kijτs
S = Kijτs

0 +Kijτs
lnl +Kijτs

nll +Kijτs
nlnl (2.15)

These matrices represent, respectively, the linear component, the two non-linear

components of order 1, and the non-linear component of order 2. They are given

in terms of fundamental nuclei, and are the result of:

Kijτs
0 =< (Bτi

l )TCBsj
l >

Kijτs
lnl =< (Bτi

l )TCBsj
nl >

Kijτs
nll = 2 < (Bτi

nl)
TCBsj

l >

Kijτs
nlnl = 2 < (Bτi

nl)
TCBsj

nl >

(2.16)

The elemental secant stiffness matrix can be obtained, once the Fτ functions

are chosen, by expanding the indexes τ, s = 1, . . . ,M and i, j = 1, . . . , p+ 1. After

this expansion, the global stiffness matrix is obtained in the classical way of FEM.

This method is explained for example in [6].

2.2.4 Loading vector

In order to obtain the loading vector psj the expression of the external virtual

work must be taken into account. Given a concentrated load P applied in one of

the nodes of the structures, as it is always done in the next analysis, the external

virtual work is:

δLext = PδuT (2.17)
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With the CUF formulation of eq. (2.5) the virtual work can be written in terms

of the nodal unknowns vector:

δLext = FsNjPδq
T
sj (2.18)

Thus, the loading vector fundamental nucleus is given by:

psj = FsNjP (2.19)

In a similar way to what was done for the secant stiffness matrix, the ele-

mental loading vector is obtained by expanding the indexes s = 1, . . . ,M and

j = 1, . . . , p+ 1, and then the global loading vector with the classical FEM theory.

For a different load distribution [7] can be seen as a reference.

2.3 Non-linear analysis

The non-linear analysis is presented here using the Newton-Raphson method [24],

and Crisfield arc-length method [9]. In the end, the analytical derivation of the

tangent stiffness matrix is given.

2.3.1 Newton-Raphson linearization

The starting point is eq. (2.8), which can be reformulated as:

ϕres ≡KSq− p = 0 (2.20)

Here ϕres represents the residual nodal forces vector; it is the parameter which

must be set the closest possible to zero in order to obtain the equilibrium solu-

tion. This last equation can be linearized using a Taylor’s series expansion of ϕres
stopped at the first-order terms:

ϕres(q + δq,p + δp) = ϕres(q,p) +
∂ϕres
∂q

δq +
∂ϕres
∂p

δλpref = 0 (2.21)

The loading vector p is been written as p = λpref , where λ is the load parameter.

Moreover, ∂ϕres

∂q
= KT is the tangent stiffness matrix, and −∂ϕres

∂p
is equal to the
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identity matrix. Thus, eq. (2.21) can be simplified and the compact form is:

KT δq = δλpref −ϕres (2.22)

An additional constraint relationship must be written in order to solve this equa-

tion, as the load parameter is a variable itself. Thus, the complete system is:KT δq = δλpref −ϕres
c(δq, δλ) = 0

(2.23)

Different constraint relationships lead to different incremental methods: for

example, if the constraint is δλ = 0 eq. (2.23) represents a load-control method,

and if it is δq = 0 is a displacement-control method. These two methods, together

with the path-following one, are briefly depicted in Fig. 2.1.

Figure 2.1: Non-linear analysis control methods [5]

2.3.2 Crisfield arc-length method

The Crisfield arc-length method, adopted for all the non-linear analysis of the next

chapters, is of the ”path-following” kind, and the constraints relationship contains

both load and displacement variation controls. This is the best way to obtain

equilibrium curves with very non-linear shapes, such as snap-backs. In order to

understand how this method works, the reader must have a look at Fig. 2.2.

In this figure, the subscript m indicates the global iteration, and the apex n the

local one. This means that the analysis is formed by a series of global iterations (or
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Figure 2.2: Crisfield arc-length method [22]

load steps) that identify a first solution, δ0mq; then, a second inner iteration makes

converge the solution toward the equilibrium curve, by solving eq. (2.23). Once

the residual nodal forces vector is small enough, a new global iteration is made,

and the process restarts. The global iterations are made using the tangent stiffness

matrix: the first attempt to find the m-step equilibrium point is made along the

tangent to the (m− 1)-step solution. The vector that connects the solution of one

step to the solution of the next step is indicated with t, and so the first attempt

to find the equilibrium point of the m-step is made through the t0m vector.

The constraints relationship corresponds to a multi-dimensional sphere with

radius equal to the initial arc-length value ∆l0m. This means that the modulus of

the vector t is equal to the square of the initial arc-length, and then eq. (2.23) for

the Crisfield arc-length method transforms into:KT δq = δλpref −ϕres
tn

T

m tnm = (∆l0m)2
(2.24)

For further details about the strategies adopted to preserve symmetric solvers the

reader is directed to [22].
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2.3.3 Tangent stiffness matrix

The solution of eq. (2.24) requires the knowledge of the tangent stiffness matrix

KT . That is obtained from the linearization of the virtual variation of the strain

energy, as follows:

δ(δLint) =< δ(δεTσ) >

=< δεT δσ > + < δ(δεT )σ >

= δqTτi(K
ijτs
0 +Kijτs

T1
+Kijτs

σ )δqsj

= δqTτiK
ijτs
T δqsj

(2.25)

Thus, the tangent stiffness matrix fundamental nucleus is given by the sum of

three different matrices:

Kijτs
T = Kijτs

0 +Kijτs
T1

+Kijτs
σ (2.26)

where Kijτs
0 is the linear component, the same of eq. (2.16), and the other two

matrices are the non-linear components. In order to obtain the expression forKijτs
T1

and Kijτs
σ too, the second line of eq. (2.25) must be developed more. The virtual

variation of the stress vector is present in the first term, and can be expressed,

remembering eq. (2.11), as:

δσ = δ(Cε) = Cδε = C(Bsj
l + 2Bsj

nl)δqsj (2.27)

And hence, considering the first term of the second line of eq. (2.25), one has:

< δεT δσ > = δqTτi < (Bτi
l + 2Bτi

nl)
TC(Bsj

l + 2Bsj
nl) > δqsj

= δqTτiK
ijτs
0 qsj + δqTτi(2K

ijτs
lnl )qsj + δqTτiK

ijτs
nll qsj + δqTτi(2K

ijτs
nlnl)qsj

= δqTτi(K
ijτs
0 +Kijτs

T1
)δqsj

(2.28)

Thus, Kijτs
T1

is a linear combination of three of the matrices already encountered

in eq. (2.16):

Kijτs
T1

= 2Kijτs
lnl +Kijτs

nll + 2Kijτs
nlnl (2.29)

The Kijτs
σ matrix is evaluated operating on the term < δ(δεT )σ >. The full
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demonstration is not reported here and can be find in [22]; let’s just say that the

final form is:

Kijτs
σ = Kijτs

σl
+Kijτs

σnl
=< diag((B∗

nl)
T (σl + σnl)) > (2.30)

where σl = Cεl and σnl = Cεnl. It is a diagonal matrix composed by the elements

of the vector (B∗
nl)

T (σl + σnl).

Given the fundamental nucleus Kijτs
T , as already done for the secant stiffness

matrix and the loading vector, the elemental tangent stiffness matrix is obtained

by expanding the indexes τ, s = 1, . . . ,M and i, j = 1, . . . , p+ 1. Then, the global

KT is given by the classical FEM theory.



Chapter 3

Preliminary results

In this chapter, the non-linear analyses of some preliminary cases are introduced.

The problems that are here exposed are presented in ascending order of difficulty:

at first, a simple beam with a square cross-section is analyzed, then the cross-

section is transformed into a ”C”, and at last, some holes are made along the

C-Beam length.

In some cases, in addition to the usual CUF analysis, other analyses involving

Abaqus are performed.

3.1 Square Beam

The following analysis has as objective the study of the non-linear behavior of a

classical cantilever beam with a square cross-section. As a literature reference, the

work of Pagani and Carrera can be seen [22].

The beam geometry is showed in Fig. 3.1 and its related properties are listed

below:

• L = 100 mm;

• h = 10 mm;

• E = 75000 Mpa;

• ν = 0.33

• I = h4

12
= 833.3333 mm4.

26



CHAPTER 3. PRELIMINARY RESULTS 27

Figure 3.1: Cantilever square beam geometry. L is the length, h the height

As one can see, the beam has got a square cross-section with side equal to h,

and its length is denoted with L. E and I are respectively the Young modulus

and the inertia momentum of the cross-section.

The beam is clamped at one edge and free at the opposite one; in this case, the

free edge is the one with the outgoing y-axis, i.e., the one located at y = 100 mm

(on the right in Fig. 3.1).

This particular cantilever beam has a length-to-height ratio equal to L
h

= 10,

then it can be classified reasonably as short, and a non-linear analysis is much

more essential. In fact, in the case of slender beams, the classical Euler-Bernoulli

theory can approximate the real beam behavior for a much more extensive range

of deflection, but for short beams, this is no longer true.

3.1.1 CUF Model

This section presents the CUF model adopted for the current analysis.

Material

For this analysis, only one material needs to be created; its properties are shown

in Tab. 4.1.

E(MPa) ν

75 · 103 0.33

Table 3.1: Square beam material properties
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As this analysis deals with an isotropic and homogeneous material, the lami-

nation matrix has only one element as well.

Nodes

The current analysis is made using 20 B4 elements along the y-axis of the beam.

Thus, a total amount of 61 nodes are present along the longitudinal length of the

beam. The 61 nodes are enumerated in ascending order starting from the one at

y = 0, which is #1, until the one at y = 100, which is #61. This simple formula

gives the coordinate of the N-th node:

y(N) =
L

60
(N − 1)

The number of elements adopted is the same as the one used in literature [22].

In this way, a direct comparison can be made.

Mesh

A single L9 element has accomplished the cross-section meshing. Thus, the total

amount of nodes along the whole structure is equal to:

N◦ nodes = 9 · 61 = 549

Each node has got 3 degrees of freedom (i.e., displacements along the three

axes), then:

N◦ DOF = 3 · 549 = 1647

This meshing is the same as in literature, too [22].

BCs and Loads

Since the problem deals with a clamped-free beam, the displacements of all the

nodes located in the plane y = 0 must be set at zero. Meanwhile, a concentrated

force is applied in the central node of the cross-section in the plane y = 100,

pointing toward the positive z-direction. The intensity of the force is variable

during the non-linear analysis, and the initial value is given later in Sec. 3.1.2.
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3.1.2 Analysis

A non-linear static analysis (sol. 108) is elaborated.

Taking as a reference the analysis made previously on the same problem by

Pagani and Carrera [22], an initial load step equal to pref = 1250 N was chosen.

In this way, the dimensionless load is, remembering the geometry values given in

Sec.3.1,
prefL

2

EI
= 0.2. pref is the value of the force introduced in Sec. 3.1.1 and, as

will be clearer later, looking at the results, it is small enough to obtain a smooth

load-deflection curve.

Before starting the non-linear analysis, it is recommended first to try the code

by launching a linear analysis (sol.101). In this way, it can immediately be seen

whether the input files regarding the geometry and the BCs have been written

correctly; moreover, by looking at the Connectivity file, the number of the DOF

to be monitored during the non-linear analysis can be easily found. In order to

make this linear analysis, a load equal to P = 18750 N was chosen, corresponding

to a dimensionless load of PL2

EI
= 3.

In the section concerning the results, both kinds of analysis are taken into

account.

3.1.3 Results

This section deals with the results of the previously described analysis.

Under the effect of the growing load introduced in Sec. 3.1.2, the cantilever

beam deflects in the way shown in Fig. 3.2. There can be seen that a huge

deflection is reached in the last step of the analysis.

More details about the load-displacement curve are represented in Fig.3.3. It

shows the results of both the linear and non-linear analysis made, together with

an analytical reference one based on Euler-Bernoulli beam model [4]. The dis-

placement and the load are made dimensionless in order to stay the most generic

possible.

By looking at the graphic, an extreme similarity between each of the non-linear

solutions can be seen: the yellow line representing the current Mul2 solution is very

close to the reference model for all the curve path. Moreover, the simple linear

analysis can predict well the displacement for small deflections.

In conclusion, this analysis has confirmed the ability of the CUF theory to deal
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Figure 3.2: Deformed shape for three different load values - square beam

Figure 3.3: Square beam load-deflection curve, reference from [4]
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with classical beam problems for both linear and non-linear cases. In fact, the

solution obtained here perfectly reflects the analytical solution based on Euler-

Bernoulli beam model.

3.2 C-Beam

This section deals with the non-linear analysis of a cantilever beam with a C-shaped

cross-section. The aim of this study is the comparison between the load-deflection

curve obtained by an Abaqus model and by a CUF model. Moreover, different

kinds of elements are used in Abaqus in order to see how the solutions change.

Two different length-to-height ratios are adopted, too, in order to show also

how the CUF model works with either short or long beams. Actually, L
h

= 3 and
L
h

= 30 geometries are considered.

Figure 3.4: C-beam cross-section. Points for load application and displacement
monitoring are included

The cross-section, which is the same for both the length-to-height ratios, is

showed in Figure 3.4. The dimensions of all parameters are reported below:
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• h = 30 cm

• w = 10 cm

• t = 1.6 cm

• s = 1 cm

Given the value of the height, the length of the beam is, for the two configurations,

L1 = 90 cm and L2 = 900 cm.

In Figure 3.4 the applied load P is also visible; as we can see, the force is

applied along the medium plane of the vertical face (please note that in case of

shell elements the medium plane coincides with the face itself), and points toward

the negative z-direction. Moreover, the point A represents the node used for the

displacement measurement.

Finally, the material adopted for the beam is such that E = 21, 000 kN/cm2

and ν = 0.3.

3.2.1 Abaqus model

As already anticipated in Section 3.2, the current Abaqus analysis is carried out

employing two different types of elements: solid and shell. The utilization of solid

elements usually produces a better solution than the one which can be obtained

by shell elements, but a more expensive analysis is needed in terms of duration

and memory occupation.

In the following, the subdivision of the section is made by analyzing the short

and the long beam configuration separately.

Short beam
(
L
h

= 3
)

The short beam configuration holds a length of the beam equal to L1 = 90 cm.

For both the solid elements and the shell elements models the mesh created is the

same, and it is shown in Figure 3.5: there are ten elements for each cross-section,

and 18 elements along the axial direction, for a total amount of 180 elements.

As can be reasonably seen by looking at Figure 3.5, the distance between two

consecutive nodes (i.e., the dimension of an element) is the same along all the

three axes. Please pay some particular attention to the fact that two elements are
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(a) Shell elements (b) Solid elements

Figure 3.5: C-beam, short configuration - Shell and solid elements mesh compari-
son - 10x18 elements

(a) Shell: P = 494 kN (b) Solid: P = 486 kN

(c) Shell: P = 1016 kN (d) Solid: P = 1020 kN

(e) Shell: P = 1503 kN (f) Solid: P = 1526 kN

Figure 3.6: C-Beam, short configuration - Deformed shapes for different load values
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present in the top and bottom faces of the cross-section; this, as will be seen, is

a finer choice for the mesh than the one adopted for the CUF model as will be

discussed later in Section 3.2.2.

It is commonly known that the shear center of a C-section is located, taking

as reference Figure 3.4, on the left of the vertical face. It is then reasonable to

foresee the deformation that the beam will have when subjected to the load: in

fact, the direction of application of the load does not pass from the shear center;

in this way, the beam rotates and translates simultaneously.

What has just been said is confirmed by Figure 3.6, which shows the deformed

shapes of the two types of beams, subjected to growing loads.

By comparing the various figures it is possible to evaluate broadly if any dif-

ferences between the shell and the solid model are encountered: this do not seem

to be the case, because both models looks very similar to each other.

In Section 3.2.3 the load-deflection curve will be presented for both element

types in order to understand the differences between the two models better.

Long beam
(
L
h

= 30
)

The total length of the long configuration is L2 = 900 cm. Here, unlike the

previous subsection, two different meshes are used: the one adopted for the shell

configuration is composed of 5 elements on the cross-section and 90 along the beam

axis, whereas the solid configuration has got ten elements on the cross-section and

180 along the beam axis. In Figure 3.7, these meshes can be seen.

These two very different meshes will permit us to see more clearly the differences

between the two types of elements. Moreover, the mesh selected for the shell

configuration is as fine as the one chosen for the CUF model, and this is a further

verification for that model.

For the same reasons already discussed in Section 3.2.1, the beam, when sub-

jected to the load, will deflect and rotate. This behavior is confirmed by the

deformed shapes showed in Figure 3.8.

As can be seen by looking at those figures, the solid elements beam is not as

rigid as the equivalent shell elements one. In fact, when subjected to the same

load, the solid elements beam rotate much more than the shell one; for example,

in Figure 3.8b, the beam has already passed the buckling load, while in Figure
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(a) Shell elements - 5x90 elements

(b) Solid elements - 10x180 elements

Figure 3.7: C-Beam, long configuration - Shell and solid elements mesh comparison
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(a) Shell: P = 9.05 kN (b) Solid: P = 9.08 kN

(c) Shell: P = 11.43 kN (d) Solid: P = 11.38 kN

(e) Shell: P = 18.02 kN (f) Solid: P = 17.92 kN

Figure 3.8: C-Beam, long configuration - Deformed shapes for different load values
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3.8a the instability has not been encountered yet. This peculiar behavior will be

more clearly explained later in Section 3.2.3.

3.2.2 CUF model

In this section is described the CUF model adopted for the current analysis. The

main relevance is given to the explanation of the axial and cross-sectional mesh

utilized.

Material

For the sake of completeness, the material features are here reported again.

E(kN/cm2) ν

21 · 103 0.3

Table 3.2: C-Beam material properties

As for the material, only one lamination is adopted.

Nodes

Along the beam axis, 20 B4 elements are utilized, for a total amount of 61 nodes.

The distance between each node is d = L
60

. The length of the beam L is different

from the short and the long beam configuration, whereas the number of nodes

does not vary; this implies a finer longitudinal mesh for the short beam compared

to the long one.

d1 =
L1

60
= 1.5 cm d2 =

L2

60
= 15 cm

The following expression finally gives the coordinate along the y-axis of each node:

y(N) = d(N − 1) N = 1, . . . , Nnodes

The finer mesh used for the short beam is compensated by the fact that, for a small

length-to-height ratio, beam elements are not as accurate as for longer beams. For

this reason, a finer mesh can improve the solution.
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Mesh

(a) 6 elements mesh (b) 23 elements mesh

Figure 3.9: C-Beam - Cross-section CUF meshes

The cross-section mesh initially created is showed in Figure 3.9a. Here each

rectangle represents an L9 polynomial element of the mesh. As one can see, there

are 6 L9 elements for a total amount of 39 nodes; furthermore, the nodes for the

application of the load and the displacement measure are not explicitly visible,

as they are at the center of the top borderline of their respective element. These

nodes coordinates are given here:

xP = −7 xA = −7

zP = 15 zA = 0

The mesh is finer at the corner of the section, which is probably the most peculiar

part of the ”C” in terms of deformations.

After a first analysis, it was found out that a too big difference appears, in the

case of short beam configuration, between the CUF and Abaqus solutions (this

little accurate solution is reported in Sec. 3.2.3). Thus, a convergence analysis

was carried out, and a second mesh was created, as showed in Fig. 3.9b. Here 23

L9 elements are disposed on the cross-section, for a total amount of 159 nodes.
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The nodes for the load application and displacement monitoring are not changed.

Loads and BCs

The concentrated force is applied, as already discussed, in point P, whose coor-

dinates are given in Subsection 3.2.2. The intensity of the load is not a defined

number, but it varies according to the non-linear analysis evolution. For the short

beam configuration, its maximum value is imposed at 1700 kN , whereas for the

long configuration at 18 kN .

The beam is clamped-free, hence all the nodes of the fixed section (the one at

y = 0) have displacements and rotations imposed at zero.

Note that Figure 3.9 represents the fixed section, as the y-axis is pointing into

the plane of the page; The points A and P are located on the face at y = L.

3.2.3 Results

In this section, the results of the analysis are finally given. At first, the short beam

configuration is taken into account, and then the long configuration one.

The analyses with the CUF model are carried out using, when possible, both the

old and the new version of the code MUL2, but since the two curves obtained are

nearly indistinguishable from each other, only one curve is represented hereafter.

Precisely, the old code gave results for both the configuration, while the new code

converged only for the short beam.

Note that the load and the displacement are directed toward the negative

direction of the z-axis but, to simplify the visibility of the graphics and to be able

to compare these results with literature, P and Uz are considered as positive (i.e.,

it is plotted P and −Uz).

Short beam
(
L
h

= 3
)

The P-U curve of the short beam is shown in Figure 3.10. The Abaqus analyses

are represented by the green and purple lines, while the MUL2 analysis by the

blue and yellow lines. Here, as already anticipated, two CUF analyses have been

carried out because convergence was not obtained with the first one.



CHAPTER 3. PRELIMINARY RESULTS 40

Figure 3.10: C-Beam load-deflection curve
(
L
h

= 3
)

The not-convergence of the Mul2 analysis with six elements on the cross-section

is visible in Fig. 3.10, where the blue curve is sharply apart from the others. Nev-

ertheless, a good result is reached in the pre-buckling region, where the blue curve

matches very well the Abaqus ones; thus, critical buckling load can be sufficiently

well predicted with a very coarse mesh already.

On the other hand, the CUF analysis with 23 elements on the cross-section

gives excellent results also in the post-buckling region. A fascinating behavior can

be noted by looking carefully at the curves: the CUF solution matches the Abaqus

solid one perfectly until a displacement value of about 20 cm and then follows the

shell curve.

An evident difference may also be seen between the Abaqus shell and solid

model: the structure modeled by shell elements presents a more significant buckling

load than the solid elements model; moreover, the shell curve is not as smooth as

the solid one in that zone.
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(a) Case I: P = 200 kN (b) Case II: P = 500 kN

(c) Case III: P = 1000 kN (d) Case IV: P = 1600 kN

Figure 3.11: C-Beam deformed CUF models
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Long beam
(
L
h

= 30
)

The P-U curve of the long beam is shown in Figure 3.12. The Abaqus curves are

represented by the purple and green lines, while the MUL2 analysis by the blue

one.

Figure 3.12: C-Beam load-deflection curve
(
L
h

= 30
)

The first thing that stands out immediately is the perfect correspondence be-

tween the CUF curve and the solid elements Abaqus curve. This is such a great

result because it is demonstrated that a simple CUF model based on B4 beam

elements can obtain precisely the same results as a more complex Abaqus model

with solid elements, with significant savings in terms of calculation time.

The shell elements Abaqus model has the same behavior as the one already

registered for the short beam in Subsection 3.2.3: the buckling load is bigger than

the one obtained by the solid elements model. Apart from this difference, the

curve shape is nearly the same as the other two ones.

Finally, a last comment regarding the buckling behavior shall be made: all

the curves suggest a clear boundary between the linear and non-linear zone; this

implies that the structure is highly rigid until the buckling load is reached, and
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from that point on large deflections can be obtained for small load increments.

3.3 C-Beam with holes

This section is an evolution of the previous one, since some holes are added to

the C-Beam already analyzed. Initially, the force applied to the structure is the

same as the previous section, when the core of the beam was without any hole;

successively, two forces are applied in the direction of the insoles (i.e., along the

x-axis), simulating the folding behavior of the structure.

In fact, many deployable structures of this kind are folded using some holes

disposed suitably, as can be seen in Fig. 3.13. For further information about this

kind of structures, an interesting work by Mallikarachchi [17] can be used as a

reference.

Figure 3.13: Booms unfolding [18]

A series of analyses with different loads and geometries are now presented

separately.

3.3.1 Load in the plane of the core

Two analyses are performed in this section: geometry and loads are the same as in

Sec. 3.2, but in the core of the beam are present either one or two holes. This is the
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(a) Cross-section (b) Cross-section mesh

Figure 3.14: C-Beam with holes load and control point disposition (left), and
cross-section mesh 7 L9 (right)

(a) C-Beam with one hole

(b) C-Beam with two holes

Figure 3.15: Holes disposition in C-Beam
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plane in which the structure is most likely to work, and then a good resistance in

this direction is essential. For the sake of completeness, the cross-section with the

load is reported again here and is visible in Fig. 3.14a. The point of application

of the load and the control point for the displacement are not varied from the

previous analysis.

Figure 3.16: Holed C-beam equilibrium curve due to a load directed along the core
direction

The mesh adopted here is a little different from the one used in Sec. 3.2, due

to the presence of the hole, which requires the addition of an extra element. The

mesh chosen for the cross-section is visible in Fig. 3.14b. The element denoted

with the letter ”h” is present in the sections without the hole, while it is absent

where the hole is located; this means that the cross-section mesh is composed of

6 L9 elements where there is the hole and 7 L9 elsewhere. This is the reason why

the hole dimension is the same as the dimension of the element h collocated in the

center of the core and 9 cm high.

The position of the hole along the longitudinal axis instead is determined by

which of the 20 B4 elements has got the 6 L9 cross-section mesh: in the beam with

one hole, the pierced elements are the 10TH and the 11TH , while in the beam with

two holes they are the 6TH , the 7TH , the 14TH and the 15TH .

The results of the non-linear analysis carried out are shown in the graph of

Fig. 3.16. Here the curve named ”6L9 No holes” is the same as in Fig. 3.12.

The graph shows that the presence of the holes does not compromise the ability
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(a) Deformed shape, case I

(b) Deformed shape, case II

(c) Deformed shape, case III

Figure 3.17: Deformed shapes of the C-Beam with two holes, load along the core
direction
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of the structure to withstand loads directed along the core direction. In fact, the

three curves are really close to one another, and in the linear region, they are even

indistinguishable. Moreover, a more marked buckling due to the presence of the

holes is not visible too.

In Fig. 3.17 are visible the deformed shapes of the beam in the points indicated

in the corresponding graph. The torsional-bending behavior is the same as the

beam with no holes, and this confirms that the holes do not affect the correct

functioning of the structure.

3.3.2 Load out of the plane of the core

The analysis carried out now deals with the lateral flexing of the C-Beam subjected

to a load perpendicular to the plane of the core. Testing the behavior of the beam

bending in this plane is functional to the prediction of the folding process, which

is intended to take place in this way.

Figure 3.18: Holed C-beam cross-section mesh with lateral forces, 7L9

A total of three new analyses are presented here: C-Beam with no holes, one

hole, and two holes. The mesh along the beam axis is the same as the previous

section, depending on whether it is the case with one or two holes. The mesh on
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the cross-section is unchanged too, but the same cannot be said for the load. Fig.

3.18 shows the position and the direction of the two applied forces, located at the

free edge of the beam, i.e., the section with y = 900 mm; the other edge remains

with an encastre as the boundary condition. In this way, the two forces have as

resultant a load passing by the symmetry axis of the cross-section, and then by the

shear center; thus, a simple bending deflection, without any torsion, is foreseen.

Figure 3.19: Equilibrium curve for a load directed out of the plane of the core

The equilibrium curves of the three analyses are shown in Fig. 3.19. They

have a shape very similar to the load-deflection curve of the square beam analyzed

in Sec. 3.1. Moreover, a perfect match is immediately detectable, as the three

curves are completely overlapped and indistinguishable from one another. As it

was already discovered for the square beam, a clear buckling behavior is not visible

here too.

By looking at Fig. 3.20 it is immediately apparent that the deflection of the

beam does not take place in the zone where one of the holes is present, but the

beam merely bends itself as if the holes were not present at all. This behavior

suggests that perhaps to achieve a buckling effect, one should change the loads

and BCs disposition, as it will be done in the next analysis by applying a moment

instead of a force at the extremity.
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(a) Case I (b) Case II

Figure 3.20: C-Beam with two holes and load directed out of the plane of the core
- deformed shapes

3.3.3 Bending moments applied to the edges of the beam

The current analysis is a bit different from the last two described ones: the BCs

are no more the ones for a clamped-free beam but, as already done in chapter 4.1,

the beam is only able to rotate around the x-axis in one edge, and also to translate

along the y-axis in the other one. In order to achieve these BCs, some nodes on

the two cross-sections of the extremities have some DOF blocked, as it will be

explained shortly. The main reason why this analysis is done is that with the

previous two ones the buckling configuration was not reached, so this new attempt

with a moment should give better results in that sense.

The overall geometry is the same as in the previous two sections, and thus it is

not reported here again. The mesh along the longitudinal axis of the beam is also

the same (20 B4), always according to the fact that where the hole is present, the

cross-section mesh is different from the other parts. Note that here, unlike chapter

4.1, the geometry has not been elongated with the two rigid edges, because it is

supposed that, due to the already thigh cross-section, local forces should not imply

very high local strains.
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Figure 3.21: Holed C-beam with two moments applied, Cross-section mesh, 9 L9;
loads are applied in points A and C, boundary conditions in points B

Figure 3.22: Holed C-beam equilibrium curve due to two moments applied at the
extremities of the structure
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The cross-section mesh is showed in Fig. 3.21, where the presence of 9 L9

elements is visible (remember that the element denoted with the letter ”h” is not

present in the parts where the holes are located). Some relevant points are also

indicated, where the BCs and loads are applied. In particular, concerning the

cross-section whit y = 0 mm, in points A there are two forces (one for each point)

directed towards the inside of the page, in C two forces directed to the outside

of the page, and in points B the BC assuming all the displacement equal to zero

(remember that in the other edge cross-section, where y = 180 mm, the movements

along the y-axis are permitted). The four applied forces have the same value, in

order not to create undesired moments.

The equilibrium curve obtained for this analysis is shown in Fig. 3.22, even

if it is not of particular relevance. It is substantially a straight line, without any

non-linear behavior; in fact, the little deflection detectable for angles of rotation

greater than 60◦ is attributable only to the way the moment is calculated:

M = F ∗ t ∗ cos
θ

2
(3.1)

where F is one of the forces applied as explained before, t is the distance between

the two points A (or B, equivalently), and θ is the angle in abscissa. Thus, as the

angle increases, the factor cos θ
2

makes the moment decrease. This is the reason

for the little decrement of the curve visible in Fig. 3.22 and, to avoid this problem,

from now on, all the curves subjected to this formula for the moment calculation

will be limited to θ = 60◦.

Graphical results of this analysis are showed in Fig. 3.23. Although the pro-

nounced rotation, the deformed beam follows an arc of a circle, without any partic-

ular discontinuity due to a possible collapse in the hole region. This can be because

the cross-section of the beam is still very thick, not allowing the establishment of

the buckling behavior; for this reason, the subsequent analysis will be carried out

with a very smaller thickness of the cross-section, and a little bigger hole.

3.3.4 Bending moments with thin cross-section

This analysis is an evolution of the previous one, as it is a further attempt to

establish a buckling behavior in the beam subjected to a bending moment. Thus,
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Figure 3.23: C-Beam with one hole and moments applied to the two extremities -
deformed shapes

the cross-section of the C-Beam has been considerably thinned, and the dimensions

of the hole have been increased.

The new geometry of the cross-section, together with its mesh, is showed in

Fig. 3.24. Some of the dimensions indicated in this figure are changed from the

previous analysis, and all of them are reported here for convenience:

• h = 30 cm

• w = 10 cm

• t = 1.6 mm

• s = 1 mm

• W = 5 cm

• H = 10 cm

The hole is located at the center of the vertical side of the ”C” and, in the holed

elements, its corresponding element is not present, reducing the mesh to 8 L9. The

mesh along the axis of the beam is not varied from the last analysis as regards the

number of elements (20 B4), but the hole has been enlarged, and now it occupies

the 9TH , 10TH , 11TH and 12TH elements. The result of the disposition of the hole

can be seen in Fig. 3.25.

Forces and BCs are imposed using the same nodes as in the previous analysis;

thus, regarding Fig. 3.21, in points A and C two sets of two forces each are located,
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Figure 3.24: Holed C-beam with thin cross-section mesh, 9 L9

Figure 3.25: Thin C-beam, hole location
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Figure 3.26: Holed C-beam equilibrium curve with the thin structure and bending
moments applied

creating a bending moment around the vertical z-axis, while in points B the BCs

bind the structure to move as already described in Sec. 3.3.3.

The equilibrium curve of this analysis is shown in Fig. 3.26. The straight

path obtained in the analysis with the thick cross-section is a bit modified here, as

the curve leaves the linear behavior already for little angles of rotation; moreover,

the curve has got a discontinuity near the middle of its length, a symptom that

something new is going on.

The graphical result in Fig. 3.27 confirms that the buckling is taking place.

In Fig. 3.27a the global deformation of the structure can be seen, and one can

notice that the shape is no more a perfect arc of a circle, but a more marked

curvature appears in the hole zone, together with a constriction of the side profile.

Fig. 3.27b shows in detail the hole zone, where one can see that the insoles

are diverging from each other, flattening the whole section, and the hole itself is

growing in dimensions. In this figure are also reported the normal stresses σY Y in

the zone of the hole, and can be noticed how their intensity grows a lot on the

free edges of the hole and the insoles, which are probably the most problematic



CHAPTER 3. PRELIMINARY RESULTS 55

regions.

(a) Global deformation

(b) Hole deformation with normal stresses

Figure 3.27: C-Beam with one hole, thin cross-section and bending moment -
Deformation

In conclusion, the buckling behavior has been finally registered, and in this

case, it appears under a bending moment of approximately 900 kNcm; under that

value, the structure can work quite good without losing its rigidity too much.



Chapter 4

Analysis of tape spring structures

In this chapter, thin-walled structures are finally introduced, together with their

linear and non-linear analysis. The structure chosen as an example to study the

bending behavior of thin deployable structures is a simple tape spring measure,

as the one visible in Fig. 4.1. These are widespread deployable means for the

unfolding of space instruments, as already demonstrated in chapter 1.

Figure 4.1: Tape spring measure ready to be tested, courtesy of CalTech

The study is subdivided here into three parts, the first of which deals with a

beginning linear analysis, the second one with the non-linear analysis of different

types of tape structures, and in the end an experimental test carried out at the

CalTech is presented together with the numerical results obtained with the CUF

model.

56
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4.1 Linear analysis

The purpose of the following FEA is to evaluate the rotation of a tape spring

subjected to a specific torque in the pre-buckling (i.e., linear) region, and for this

reason, the post-buckling behavior is out of interest at the moment (it is discussed

later in chapter 4.2). The same analysis is made both with Abaqus and with a

CUF model. The two models are presented, and the comparison is made in the

end.

4.1.1 Geometry

This analysis has been conducted on the tape spring structure of the same kind

as the one showed in Fig. 4.1. The total length of the tape is L = 170 mm, and

it is made of steel with E = 210 GPa and ν = 0.3. The cross-section shape is

represented in Fig. 4.2, and it is composed of an arc of a circle with two straight

segments at its extremities.

Figure 4.2: Tape spring measure cross-section geometry

The values of the geometrical parameters showed in Fig.4.2 are as follows:

• R = 12.3 mm;

• l = 6.1 mm;

• t = 0.114 mm;

• α = 62.0◦.
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4.1.2 Abaqus analysis

In this section, the discussion of the results obtained by the Abaqus aided analysis

is made. First, the mesh and the load application are introduced, and then the

results in terms of strains.

Mesh, loads, and BCs

For the discretization of this model is adopted a 16x113 shell elements mesh, as

shown in Fig.4.3.

Figure 4.3: Tape spring measure Abaqus model, 16x113 shell elements. RP1 and
RP2 are the rotation points

In the previous figure, two points are visible, named as RP-1 and RP-2: these

are the rotation points of the edge sections, and they are used to apply loads and

BCs as described afterward. Only by looking at Fig.4.3, one can say that the mesh

is pretty fine, and so the results should be accurate.

As already anticipated, loads and BCs have applied thanks to the RPs. Pre-

cisely, two moments, one for each RP, are present. The intensity of each moment

is settled at M = 400 N · mm, in order to work in the linear field. Hereafter

it is defined section 1 the section corresponding to RP-1, and section 2 the one

corresponding to RP-2. Section 1 is free to translate along the z-axis, while section

2 is completely fixed; both the sections can rotate around the x-axis only. The
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BCs then can be written as:

u1x = u1y = 0

φ1
y = φ1

z = 0

u2x = u2y = u2z = 0

φ2
y = φ2

z = 0

The apexes denote the number of the section. Similarly, the applied torques in

the current reference system are:

M1
x = 400 n ·mm

M2
x = −400 n ·mm

Note: torques are positive if concordant with the positive x-axis following the

right-hand rule.

Results

The graphical result of the static linear analysis done is represented by the de-

formed tape in Fig.4.16, where different colors mean different uy displacements. It

must be specified that the representation is not in scale, but amplified in order to

see the displacement better.

The rotation to which each of the two edge cross-sections is subjected is equal

to 1.304◦. Thus, the total rotation, given as the double of the number written

right now, is:

θ = 2.608◦

4.1.3 MUL2 analysis

In this section is described the CUF Model adopted to do the analysis and the

results obtained.

Before starting to talk about the CUF Model, it is necessary to make some

annotations: the purpose of this work is to do a static linear analysis of the

structure preparatory for a successive non-linear analysis; Mul2 code is not able

to do a non-linear analysis with concentrated torques, but only with concentrated
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Figure 4.4: Tape spring measure Abaqus model deformation; colors scale stands
for the vertical displacement

forces. For this reason, in order to prepare the input files for the successive analysis,

the torques applied at the tape edges are transformed into a set of concentrated

forces in some particular nodes, as it is discussed in Section 4.1.3.

Applying concentrated forces unfortunately creates a new problem: local de-

formations. In order to minimize these errors a 5 mm length piece of structure

will be added at both edges of the tape, with a Young modulus 100 times greater

than the rest of the structure. In this way, local strains at the edges of the tape

are negligible, and the edge effects are reduced. This trick is repeated every time

the bending of a structure involves a set of concentrated forces, like in chapter 4.2.

Finally, it is also important to emphasize that the reference system here is

different from the one adopted for the Abaqus model, and from now on, the lon-

gitudinal axis will be the y-axis, while the x-axis and the z-axis will be on the

cross-section; the origin is the circumference arc center.

CUF Model

Material For the reasons discussed previously, two different isotropic materials

are created; their properties are listed in Tab. 4.1.
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Material ID# E(MPa) ν

1 210 · 103 0.3

2 210 · 105 0.3

Table 4.1: Tape spring measure CUF model material properties

Given these two materials, two different laminations are created, one for each

material. Please note that in this case, creating a lamination is useful just be-

cause Mul2 code needs it; otherwise, as we are working with isotropic materials, a

lamination is mostly superfluous.

Nodes Along the y-axis of the beam, different spacing between nodes is made

for the central 170 mm and the lateral 5 mm: 10 B4 elements are created for the

central part, whereas 1 B3 element is created for each of the lateral parts. There

is, therefore, a total amount of 35 nodes and 12 elements.

B3 elements are adopted for the lateral parts because they are only 5 mm long,

less than each element of the central part (spacing between each node is 2.5 mm

in the lateral parts and 5.67 mm in the central part).

Mesh On the cross-section of the beam is created a mesh composed of 14 L9

elements, positioned as shown in Fig.4.5.

The nodes denoted with the letters A and B are of particular relevance: B-

nodes have the same z-coordinate as the RP-point of the Abaqus model, whereas

the A-nodes have the same z-distance from B as the C-node (zA = 8.38 mm,

zB = 10.34 mm, zC = 12.3 mm). It must be specified that the nodes indicated

with the letters are the ones arranged along the middle layer of the section, i.e., at

an equal distance between the top and bottom surfaces. Moreover, it is also used

hereafter the subscript 1 for the section at y = 0, and the subscript 2 for the one

at y = 180. The reasons because of this particular mesh will be cleared in Section

4.1.3.

BCs and Loads In order to recreate as accurately as possible the boundary

conditions of the Abaqus analysis, on this model are applied four node-located

constraints:
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Figure 4.5: Tape spring measure CUF cross-section mesh, 14 L9; forces are applied
in points C and A, BCs in points B

• 2 hinge joints in B1 nodes;

• 2 sliding joints (y-free) in B2 nodes.

In this way BCs are applied exactly at the same z-coordinate as the RP-points.

A torque load must be applied to both edges of the beam, but, as already

discussed previously, there is the need to decompose the torques into a set of

concentrated forces. The loads’ composition visible in Tab. 4.2 is then created

(positive sign if concordant with positive y-axis).

Intensity Location Quantity

−F A1 2

2F C1 1

F A2 2

−2F C2 1

Table 4.2: Loads applied on the tape

There is a total amount of 6 concentrated forces, disposed in order to give as

resultant only the torque needed. In fact, on both edge sections, the equilibrium
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equation along y-axis gives:

R = 2F − F − F = 0

To calculate the intensity of F an equilibrium equation around x-axis must be

made:

T = 400 = 2F · (zC − zA)

F = 51.0204 N ·mm

Results

The graphical result of the deformed shape of the beam is shown in Fig.4.6, where

a scale factor is adopted to point out the curvature better.

Figure 4.6: Tape spring measure CUF model deformed shape; colder colors indicate
higher vertical displacement

The mechanical result object of this work is the rotation angle θ around the

x-axis. In order to calculate it, the Uy displacements must be taken into account,

especially of the particular nodes listed in Tab. 4.3.

Node ID# x y z Uy [mm]

1 0 5 12.357 0.046695

2 0 5 12.3 0.045415

3 0 5 12.243 0.044029

Table 4.3: Longitudinal displacements of some relevant nodes



CHAPTER 4. ANALYSIS OF TAPE SPRING STRUCTURES 64

By making the hypothesis of small rotations and planar deformed shape of the

cross-section, the θ rotation can therefore be calculated as:

θ =
Uy,1 − Uy,3
z1 − z3

= 1.33957◦ (4.1)

This is the rotation around the x-axis of the beam section located at y = 5 mm,

so the first real section of the structure (as the first 5 mm must not be considered).

Please note that Node 2 in Tab. 4.3 coincides with Node C1.

4.1.4 Comparison between Abaqus and MUL2 solutions

Finally, a comparison between Abaqus and Mul2 solutions can be made. It is still

necessary to double up the angle θ obtained in Eq. (4.1), as we need the sum of

both edges rotation. The overall rotation then is:

θ∗ = 2 · θ = 2.6798◦

The comparison between the Abaqus and the Mul2 solutions is visible in the

next table:

θAbq 2.608◦

θCUF 2.680◦

Table 4.4: Comparison between the rotations obtained with Abaqus and Mul2

The two rotations are very close to each other, and the difference is about 2%.

This gap could probably be filled if the hypothesis of small rotations had not been

adopted when the θCUF was calculated in Eq. (4.1). For the non-linear analysis

carried out in chapter 4.2, a different way for computing the rotation is utilized

since this hypothesis is no longer valid.
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4.2 Non-linear analysis and sensitivity versus cur-

vature radius

In this section, the non-linear behavior of the tape structure is described, with

particular reference to the effects of the radius of curvature changing. To do that,

all other parameters, that is the material and the length of the two sides of the

tape (L and l), are maintained constant.

Figure 4.7: General tape geometry [28]

In literature, an in-depth study of this problem has already been done by Seffen

and Pellegrino in 1997 [28]. Previously, analytical solutions to this problem was

find by Rimrott (1966) [25] and Mansfield (1973) [19]. Later, numerical results was

find by Fischer (1995) [12] and Seffen himself (1997) [29]. Thus, the aim of this

section is not to explain how the tape structures work in the post-buckling field,

but how the CUF model can predict this behavior accurately. The comparison is

made with the Abaqus solution obtained for the same problem. Finally, in the last

section, a complete study carried out with Abaqus is given.

Usually, the equilibrium curve of a tape structure subjected to a bending mo-

ment is of the kind showed in Fig. 4.8. Here are visible some characteristic

quantities, such as the opposite sense critical moment Mmax
+ , the equal sense crit-

ical moment Mmax
− , and the post-buckling moment M∗

+. The slope of the curve

in the linear region represents the initial stiffness of the structure. Hence, the

curve follows at the beginning a straight path, identified with the pre-buckling

(nearly-linear) region; there is successively an unstable region, from A to D, where

the moment and the rotation decrease both; at last, the post-buckling region is

represented by a horizontal line.

Semi-analytical expressions for all the parameters visible in Fig. 4.8 are pre-
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Figure 4.8: Tape typical M-θ diagram [28]

sented in [28]. For example, the expression for M∗
+ is:

M∗
+ = (1 + ν)Dα (4.2)

where ν is the Poisson’s ratio, α is the angle subtended by the circular arc of the

cross-section, and D is a function of the material and the thickness of the tape,

i.e.:

D =
Et3

12(1− ν2)
For all the following analysis E = 210 GPa, t = 0.114 mm, and ν = 0.3, hence

D = 28.491 Nmm.

4.2.1 CUF validation

The purpose of this section is to compare a specific CUF model with the same

Abaqus model, in order to demonstrate the correct behavior of the first one. To

do this, the radius of curvature chosen is equal to 100 mm, and the opposite sense
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bending is taken into account. The length l of the middle layer of the cross-section

is constant for all the analyses and equal to 25.5 mm. The angle α can be easily

computed with the relation α = l
R

; for l = 100 mm, its value is α = 14.6◦. The

thickness t is maintained constant and equal to 0.114 mm, and the length of the

tape is L = 170 mm.

The following subsections present the models created for the Abaqus and Mul2

analysis. These models are, apart for some little changes in the cross-section

geometry, the same for all the analyses reported hereafter.

Abaqus model

The Abaqus model is showed in Fig. 4.9. The mesh is composed of 1020 shell

elements, of which 12 along the short edge, and 85 along the long edge. Two

moments are applied, on the two edges of the tape, through a set of coupling

constraints that connect the cross-section kinematics to the movements of its center

of mass. The position of the center of mass is given by the formula YG = R sinα
α

,

where the origin Y = 0 is fixed at the center of the arc of a circle representing the

cross-section.

Figure 4.9: Abaqus model tape R100, 12x85 shell elements
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CUF model

The CUF model is composed of 22 B4 elements along the longitudinal y-axis of the

beam and 10 L9 elements on the cross-section. The cross-section mesh is visible

in Fig. 4.10.

Figure 4.10: CUF model tape R100, 10 L9

Figure 4.11: Detail of Fig. 4.10

For the reasons already discussed in a previous chapter, when the linear analysis

of the tape spring was carried out, Mul2 code can not deal with moments, but only

with concentrated forces. Thus, an analogous mesh is here done, in which a series

of points are identified. By looking at Fig. 4.11 it is visible that these points lie

on the middle layer of the shell. A force equal to F is applied in point A, and

forces equal to F
2

are applied in the points C creating, depending on their verse,

a moment that will bend the tape in the opposite or equal sense. In points B,
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the constraints are present; remembering the notation of that previous chapter, in

points B1 only the rotation around x-axis is permitted, while in points B2 also the

translation along the y-axis.

The total length of the beam here is 180 mm, in order to eliminate the local

effects of the concentrated forces (in fact, the first and last 5 mm are composed by

a material with a Young modulus 100 times greater than the rest of the beam).

Numerical results

The comparison between the two models is shown in the graph of Fig. 4.12.

Figure 4.12: Equilibrium curve, tape R100, Abaqus shell and CUF models

The Mul2 solution predicts very well the Abaqus one, especially in the pre-

buckling and post-buckling region. On the other hand, in the unstable region are

present some minimal differences, perhaps due to the different steps adopted by

Abaqus and Mul2 in that region. Nevertheless, the overall result is quite excellent,

and it is then proved that the CUF model can predict very well this kind of

problem.

With the help of Eq. (4.2), the analytical M∗
+ should be equal to M∗

+ =
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9.44 Nmm. The value predicted by both the Abaqus and Mul2 analysis is slightly

lower (a little more than 8 mm), but the difference is still acceptable.

4.2.2 CUF analysis

Once the Mul2 code is validated, a series of analyses can be made with it in order

to establish how the equilibrium curve of the tape modifies itself when the radius

of curvature changes. The results of these analyses are shown in the graph of Fig.

4.13.

Figure 4.13: Effect of radius of curvature on the tape equilibrium curve, various
CUF models

The R100 model is the same as described in Sec. 4.2.1, while the mesh on the

cross-section of the other models is shown in Fig. 4.14.

The mesh in Fig. 4.14c represents a flat tape. In that case, only two forces,

of equal intensity, are applied in each of the end cross-section, in points A and C;

these points are respectively positioned on the top surface and the bottom sur-

face. On the other hand, the two constraints are maintained the same as the other

models, but points B are moved to the side edges of the cross-section (still on the
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(a) R80, 10 L9

(b) R150, 10 L9

(c) R∞, 1 L9

Figure 4.14: Tape CUF meshes, different curvature radius and number of elements
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middle layer).

The behavior of the flat tape equilibrium curve is quite peculiar: it is practi-

cally a straight line as if the deformation takes place in a linear context; a direct

consequence is that the critical load is absent, as well as the unstable region.

With a decreasing radius of curvature, the initial stiffness of the tape increases

rapidly, as well as the critical load and the post-buckling load. Moreover, also the

unstable region becomes more and more evident. In Tab. 4.5 are listed some of

these particular numbers.

R [mm] K0 [Nmm
deg

] Mmax
+ [Nmm] θmax+ [deg] M∗

+ [Nmm]
Mmax

+ −M∗
+

Mmax
+

80 5.817 24.42 6.529 10.04 58.89%

100 3.733 15.87 6.662 7.963 49.81%

150 1.700 7.485 7.012 5.209 30.40%

∞ 0.07471 NA NA NA NA

Table 4.5: M − θ curve parameters variation due to curvature radius changing

From these analyses, it is clear that by imposing curvature on the tape, its

stiffness grows considerably, together with its critical buckling load. However, and

this is usually not convenient, the buckling ”leap” increases too, bringing to a more

severe buckling snap.

4.2.3 Abaqus analysis

In this section, a complete analysis carried out with Abaqus is presented for both

the opposite and equal sense bending. Graphical results are visible in Fig. 4.15.

Fig. 4.15a shows the behavior of the tape subjected to an opposite sense

bending (the R100 curve is the same as in Fig. 4.12). It is confirmed the fact

that the higher is the radius of curvature, the greater are the buckling load, the

stiffness, and the snap jump; in fact, for radius bigger than 300 mm, the buckling

is not even present. Another fascinating behavior takes place for high bending

angles: all the equilibrium curves, either directly or after the typical ”plateau”,

tend to take the same slope as the flat tape curve, but still maintaining a certain
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(a) Opposite sense

(b) Equal sense

Figure 4.15: Effect of the radius of curvature on the tape equilibrium curve, Abaqus
shell models
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(a) Point I, pre-buckling

(b) Point II, post-buckling

(c) Point III, far post-buckling

Figure 4.16: Tape R100, Abaqus shell models deformation in the points indicated
in Fig. 4.15a
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distance from one another. This behavior was not highlighted before with the

CUF models, because the analyses have been stopped before reaching it.

Fig. 4.15b shows the equal sense case instead. All the considerations made for

the opposite sense bending are still valid, except one: the curves continue to take

on the same slope as the flat tape curve, but now there is no more the distance

from one another found for the opposite case.

In general, the initial stiffness is nearly the same both for the opposite and the

equal sense bending, but the buckling load is slightly higher in the first case. The

last comment should be made about the quasi-linear far post-buckling behavior:

this could be because the tape, originally curved, begins to flatten out during the

bending, assuming a behavior more and more similar to the flat tape; this behavior

can be easily seen in Fig. 4.16.

The deformed shapes show that the maximum Von Mises stresses are initially

concentrated on the lateral edges and in a narrow area in the center of the tape.

Once the buckling takes place, the central part of the tape is flattened, and the

stresses are increased a lot. Continuing to bend the tape, the flat zone widens to

include nearly all the tape.

4.3 Comparison with experimental analysis

The tape spring measure already introduced in the linear analysis of Sec. 4.1 is

now retrieved in order to explain the experimental analysis carried out on it, and

the numerical results obtained.

4.3.1 Experiment

The purpose of this section is to explain how the experimental tests have been

achieved. Thus, the experimental method adopted by the Caltech (Pasadena,

California) is introduced.

The structure used for the tests is, as already anticipated, a typical commercial

tape spring made of steel and a thin layer of coating all around. The coating is

neglected since it was proved that it does not affect the mechanical properties of

the structure; thus, only the steel is considered. Wanting to define as accurately as

possible the geometry of the selected tape, a FaroArm scanner has been used. This
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Figure 4.17: Commercial tape spring

is because even tiny imperfections in the material surface can lead to anomalies

in the mechanical behavior of the structure. Thus, after cutting a piece of tape

170 mm long, the cross-section geometry stemmed from the scanner analysis is

the one already used for the analysis of Sec. 4.1.

Figure 4.18: FaroArm scanner

On the other hand, measurements of the tape thickness were made by a needle

caliber, doing a series of measures, and taking the average value as a result. All

these measurements were made after the removal of the coating surface employing

sandpaper. The average thickness found out is 0.114± 0.007 mm.

The sample is then prepared for the testing machine with the adding of two

circular acrylic plates, as shown in Fig. 4.19. These plates are then clasped to the
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Fischer’s machine [12] used for the test, visible in Fig. 4.20.

Figure 4.19: Tape spring sample, courtesy of Caltech

Figure 4.20: Fischer’s machine, courtesy of Caltech

The moment is then applied thanks to two control dials. Moreover, one of the

machine sides is fixed, while the other end is allowed to translate along the axis.

The machine can determine by itself the moment and the rotation measured in

each control dial. The test procedure then takes place as follows: the dials rotate

with a rotation-control method, and the relative moment is read on the amplifiers

of the machine; sometimes, when desired, the machine is stopped, and the two dials

rotation is slightly modified in order to have the moments on the two amplifiers as

equal as possible; at this point, the moment is read together with the sum of the

two rotations, and these data are reported on the M − θ diagram. This procedure

is repeated many times until both sides of the machine are in contact. At last,

the rotation obtained is slightly modified, since the adapters of the machine are

subjected to elastic deformation during the rotation; this means that the overall

rotation is the sum of the base rotation and the elastic one, θ = θel + θbase.
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Figure 4.21: Experimental results, opposite sense bending, courtesy of Caltech
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Figure 4.22: Experimental results, equal sense bending, courtesy of Caltech
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Finally, the two graphs showing the opposite and equal sense bending are

obtained and visible in figures 4.21 and 4.22. Five different measurements have

been made for both the bending senses, using different samples, and doing several

trials. The figures showing the deformed shapes of the tape highlight how the

instabilities take place in many ways: apart from the classical bending buckling, a

torsional buckling is also encountered in some configuration, and even the bending

is not always at the tape center, but unbalanced toward one or the other end.

This unusual behaviour, probably derived from some material irregularities, can

not be predicted by mathematical models, which are realized as perfect structures;

thus, some of the differences in the equilibrium curve between experimental and

mathematical analysis can be due to this fact. A further problem can be identified

in the correct estimation of the material mechanical properties, that have been

assumed to be the ones owned by classical steel, but in the real sample can be

slightly different.

4.3.2 Numerical results

Here a final deep study of the non-linear behavior of the tape spring structure is

carried out, ending with the achievement of the complete equilibrium curve. The

same problem is addressed with both Abaqus and CUF models to compare the

results; moreover, in the final graph also the comparison with the experimental

solution just described is reported.

Models

Both the Abaqus and the CUF models used in the current analysis are the same

as the ones adopted previously for the linear analysis (apart from a very little

difference in the longitudinal mesh of the CUF model) of Sec. 4.1, and, hence,

an in-depth presentation of them is not written here again. However, for the sake

of completeness, some important information is still provided here to help the

reader’s work.

Abaqus model is composed of 16x113 shell elements, as shown in Fig. 4.3. CUF

model, on the other hand, is composed of only 14 L9 elements on the cross-section,

and 12 B4 elements along the axis. Thus, again, the mesh of the Abaqus model is

pretty finer than the CUF one but, as can be seen soon, results are good for both
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the cases.

Equilibrium curve

The complete equilibrium curve can be seen by looking at the graph in Fig. 4.23,

where both the equal sense and the opposite sense bending are shown together

with some experimental results.

Figure 4.23: Tape spring measure complete equilibrium curve

As it is written in the graph, the opposite sense region is the first quadrant,

whereas the equal sense is in the third one. The black dots represents the ex-

perimental test results, as it is described in the previous section. The curve is

thoroughly developed, as the post-buckling constant-moment region has already

been reached for all three curves.

As can be seen even at first sight, both the Abaqus and the CUF solutions

match well enough the experimental solutions. In fact, both the Abaqus 2D model

and the CUF 1D model can predict very well the critical load, especially in the

opposite sense bending; the equal sense bending critical load is slightly overesti-

mated, but the difference remains very little. Moreover, the curve shape obtained

with the CUF model matches very well the theory exposed by Seffen and Pellegrino
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([28]). The most critical region is undoubtedly that of the equal sense bending,

where there is the transition region between the pre-buckling and post-buckling.

Figure 4.24: Tape spring measure equilibrium curve - opposite sense detail

Fig. 4.24 shows, as it is written in its caption, the detail of the right side of the

complete equilibrium curve, representing the opposite sense bending. This figure

highlights a small difference between the numerical solutions and the experimen-

tal tests also in the pre-buckling region: this can be due to several factors, like

the presence of small imperfections in the samples (not provided in the numeri-

cal models), or the wrong assumption of its Young modulus. In fact, as already

told in the previous section, the physical samples together with the bending be-

havior show also a torsional movement, not predicted with the numerical models,

whose deformed shapes are shown in Fig. 4.25 using Abaqus. The peculiar be-

havior registered in the first of the three pictures, where the tape is flexed to form

three humps, is completely absent in the experimental test; the three humps then

merge into a single hump, which remains the same for all the deformation process,

becoming home to the greatest stress values.
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Figure 4.25: Tape spring measure deformed shapes with Abaqus, 16x113 shell
elements



Chapter 5

Analysis of TRAC boom

structures

This chapter wants to introduce and study the main applications of the TRAC

booms and to evaluate their equilibrium curves. The chapter begins describing

possible applications of these structures and goes on with a series of analyses,

including a parametric analysis where the boom length is changed in order to

study its effects on equilibrium curves.

5.1 Introduction

The Triangular Rollable And Collapsible boom (TRAC) is another kind of struc-

ture widely used in spacecraft applications, due to its lightweight and coiling prop-

erties. The name itself gives suggests how its shape must look, and its shape is

shown in both the closed and open configuration in Fig. 5.1. This truss is usually

coiled around a central hub, as showed in Fig. 5.2.

One of the most diffused application is the supporting structure for large planar

deployable membranes, carrying solar cells, antennas, or used as solar sails. Fig.

5.3 shows, for example, the configuration of a solar sail, where the TRAC booms are

colored green, and represents the diagonals of the square sail; such booms when

folded are coiled around a hub staying in the center of the sail, which rotating

produce the folding process resulting in the stowed configuration visible in Fig.

5.4.

84
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(a) Closed (b) Open

Figure 5.1: TRAC geometry in the open and closed configuration (modified from
[2])

Figure 5.2: TRAC boom with central hub mechanism [2]
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Figure 5.3: Typical TRAC application in membranes supporting [1]

Figure 5.4: Membrane folding process thanks to TRAC booms [1]
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It has also been established by Roybal [27] that TRAC structures work better

than comparable CTM and STEM ones, and hence this is the reason for further

studies about these particular booms. More information in the literature about

the argument can also be taken from the works of Leclerc and Pellegrino ([15],

[16]).

Geometry All the analyses described in this chapter will refer to the general

cross-section geometry represented in Fig. 5.5, whose parameters are equal to:

• w = 8 mm;

• t = 0.08 mm;

• r = 12.7 mm;

• θ = 90◦.

It is composed by a vertical web and two flanges, all of them with a very little

thickness; these three components together make the triangle that gives the name

to the structure. The length of the beam is a parameter that will be changed in the

various analysis, from 500 mm to 1500 mm, in order to study how this quantity

affects the structure behavior.

Figure 5.5: TRAC cross-section geometry with main parameters denomination
(modified from [16]). w = 8 mm, t = 0.08 mm, r = 12.7 mm, θ = 90◦
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5.2 Linear analysis

This section contains the results of some preliminary linear analysis carried out on

the TRAC structure, subjected to three different load conditions. Every analysis

is described separately in a dedicated subsection. Each subsection begins with the

description of the various meshes adopted in the following analysis, both the linear

and non-linear ones. Nevertheless, every time a new analysis is described in the

following sections, the corresponding mesh is called back.

The overall geometry of the boom, apart from the cross-section already given

in Fig. 5.5, is showed in Fig. 5.6, where the orientation of the axis is also visible.

This particular boom is 500 mm long, but the length is the only property that

will be changed further on.

Figure 5.6: TRAC boom geometry with orthogonal axis orientation

Moreover, despite the different lengths of the booms, the longitudinal mesh is

also the same, and it is composed of 21 B4 elements. The first element is made

by a more rigid material than the other 20 elements, in order to delete possible

effects of the concentrated forces; moreover, the 20 ”normal” elements compose

the total length of the boom, while the first rigid element is added to the first

part of it. The material chosen for all the analyses is steel, with E = 210 GPa

(E = 21000 GPa for the rigid element). That said, in all the linear analyses only

the 500 mm configuration boom has been considered, and thus the total length of

the boom composed of 21 elements amounts to 525 mm (this means that the rigid

element is 25 mm long).

Hereafter, with the terms X-bending and Z-bending will be called the bending
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respectively around the X-axis and Z-axis.

5.2.1 Z-bending

The cross-section mesh used for the Z-bending load configuration is shown in Fig.

5.7, where every purple triangle represents the end of one element. For the sake

of clearness, the detail of the vertical straight flange is also visible in Fig.5.8. As

can be seen, the vertical flange has got two series of elements along its thickness,

while the two curved flanges have only one series. In conclusion, the cross-section

mesh is composed of 32 L9 elements, ten on each of the curved flanges, and 12 in

the vertical one, for a total amount of 185 nodes.

Figure 5.7: TRAC boom cross-section mesh for the Z-Bending configuration. Each
of the triangle represents the edge of an element. Letters indicate the nodes upon
which BCs and loads are applied, BCs in A, loads in B. 32 L9

Loads and BCs are applied to the nodes marked with letters of Fig. 5.7. Here

letters A indicate the nodes upon which the BCs are present, while letters B where

the loads are. Naturally each load and BC is applied on the central node of the

trio each letter can identify. In points A, only the translation along the Y-axis is
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Figure 5.8: Detail of the vertical flange of the cross-section of Fig. 5.7, together
with the conjunction zone. 12 L9 elements on this flange

permitted, while the others are locked; in this way, torsional rotation of the cross-

section is not permitted. The total moment desired for this linear analysis is equal

to M = 1000 Nmm, and in order to obtain this load, as the distance between the

two points B is equal to d = 21.6262 mm, in each of the points is applied a force

equal to F = 46.24 N . The sign of each force depends on the rotation one wants

to obtain: for a positive rotation around the Z-axis, B1 has a positive force, while

B2 a negative one. On the other edge of the boom, the cross-section is clamped

in all its nodes. In Tab. 5.1 and Tab. 5.2 all the loads and the BCs on the frontal

cross-section are summarised for more clarity.

Location FX FY FZ

B1 0 46.24 0

B2 0 −46.24 0

Table 5.1: TRAC boom Z-bending loads (expressed in [N ])

Location UX UY UZ

A 0 free 0

Table 5.2: TRAC boom Z-bending boundary conditions
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The graphical result of the analysis is shown in Fig. 5.9, where a scale factor

of 20 is applied. The two sub-figures represent the side and the top view, and

the color contour shows the UZ and the UX , respectively. As can be seen, the

boom correctly rotates around the Z-axis, and the deformed shape presents a

pronounced hunchback at about the 30% of its length. Curiously, the vertical

flange is nearly undeformed at all, maybe due to the loads and BCs dispositions.

Another interesting thing to underline is that a slight downward bend is also visible

from the side view, in the same position as the lateral hunchback already described.

On the other side, not visible in the figure, the bend is upward.

(a) Side view. Contour represents UZ

(b) Top view. Contour represents UX

Figure 5.9: Deformed shape of the TRAC boom subjected to MZ = 1000 Nmm,
linear static analysis. Scale factor of 20

The rotation measured in the frontal cross-section is equal to θZ = 0.282◦.

This result will be compared later with the equilibrium curve obtained with the

non-linear analysis on the same structure.

5.2.2 X-bending

In the X-bending, due to the asymmetry of the problem, both the positive and

negative rotation must be analyzed. Nevertheless, the mesh is the same for both



CHAPTER 5. ANALYSIS OF TRAC BOOM STRUCTURES 92

the load configuration, and the only things that change are the signs of the loads.

The cross-section mesh, differently from the one adopted for the Z-bending,

has got 34 L9 elements, for a total amount of 195 nodes. This addition of two

elements is due to a reason of loads balancing, in order to have the resulting force

exactly in the same location of the resulting BC. Thus, the cross-section mesh is

visible in Fig. 5.10, with the vertical flange detail in Fig. 5.11. Here, again, the

purple triangles indicate the edges of the elements. The only difference from the

mesh with 32 L9 used in the Z-bending is in the top part of the vertical flange,

where the first element has been further fractioned; the remaining parts of the

mesh are unchanged.

Figure 5.10: TRAC boom cross-section mesh for the X-Bending configuration.
Each of the triangle represents the edge of an element. Letters indicate the nodes
upon which BCs and loads are applied, BCs in A, loads in B. 34 L9

In points A the BCs are applied, and only the translation along the Y-axis

is permitted, avoiding any torsional rotation; in points B are the concentrated

forces, according to Tab. 5.3, which describes how a positive moment is created

(for a negative one, one changes the signs). This set of forces is created in order

to obtain a moment equal to MX = 2000 Nmm, given the Z-distance of the top
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Figure 5.11: Detail of the vertical flange of the cross-section of Fig. 5.10, together
with the conjunction zone. 14 L9 elements on this flange

and bottom forces equals to d = 19.36104 mm.

Location FX FY FZ

B1 0 51.65 0

B2 0 51.65 0

B3 0 −103.3 0

Table 5.3: TRAC boom X-bending loads (expressed in [N ]). For a negative mo-
ment the all the signs must be changed

Location UX UY UZ

A 0 free 0

Table 5.4: TRAC boom X-bending boundary conditions

The deformed shapes of the TRAC boom are visible in Fig. 5.12 and Fig.

5.13, which show equal sense and opposite sense bending, respectively. When the

moment is positive, the boom correctly bends upward, always in the same part

where it twists when subjected to MZ ; curiously, looking at the top view, one can

see that in the first part of the boom is visible a constriction, which makes the
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(a) Side view. Contour represents UZ

(b) Top view. Contour represents UX

Figure 5.12: Deformed shape of the TRAC boom subjected to MX = 2000 Nmm,
linear static analysis. Scale factor of 20

(a) Side view. Contour represents UZ

(b) Top view. Contour represents UX

Figure 5.13: Deformed shape of the TRAC boom subjected toMX = −2000Nmm,
linear static analysis. Scale factor of 20
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two curved flanges approach each other. Apart from this peculiar behavior, no

other buckling deformation is encountered. On the other hand, when a negative

moment is applied, the effect is the opposite of the one just described: the boom

is flexed downward, and the curved flanges flatten, moving away from each other.

The measured rotation due to M = ±2000 Nmm is equal to θX = ±0.451◦.

The rotation is hence the symmetrical with respect to the zero. This property

must then be confirmed by the equilibrium curve obtained with the non-linear

analysis.

5.3 Linearized buckling analysis

In this section, some graphical results given by the linearized buckling analysis are

described. Three different analyses have been carried out, under three different

load conditions: uniform compression, positive X-bending, positive Z-bending.

The deformed shapes corresponding to the most interesting modes are shown in

Fig. 5.14, Fig. 5.15 and Fig. 5.16, which represent the compression, MX , and MZ ,

respectively.

(a) Mode 1 (b) Mode 10

Figure 5.14: Deformed shapes of the TRAC boom subjected to uniform compres-
sion, buckling analysis. Scale factor of 20

All of the analyses have been carried out on the TRAC boom in the 500 mm

long configuration. Thus, calling back the meshes already described in Sec. 5.2,
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(a) Mode 1 (b) Mode 8

Figure 5.15: Deformed shapes of the TRAC boom subjected X-bending, buckling
analysis. Scale factor of 20

21 B4 elements are present along the longitudinal axis (the first is more rigid than

the others), and the cross-section located at the end of the boom (where the Y-

axis is outgoing) is clamped. Depending on the load configuration, meshes and

loads on the frontal cross-section are different: for the X-bending, a 34 L9 mesh

is adopted (Fig. 5.10), while for the Z-bending a 32 L9 mesh is preferred (Fig.

5.7). On the other hand, a different approach is used for the compression case: in

order to simulate a uniform pressure, on every node of the cross-section mesh a

force has been applied; having adopted the 32 L9 mesh, 185 concentrated forces

are created, as much as the number of the nodes on that cross-section. BC in the

frontal cross-section is imposed to make it only slide along the Y-axis.

The first 10 critical loads are listed in Tab. 5.5.



CHAPTER 5. ANALYSIS OF TRAC BOOM STRUCTURES 97

(a) Mode 1

(b) Mode 6

Figure 5.16: Deformed shapes of the TRAC boom subjected Z-bending, buckling
analysis. Scale factor of 20
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Mode Compression [N ] X-bending [Nmm] Z-bending [Nmm]

1 53.67 −295 1722

2 54.06 −302 1879

3 57.26 −346 1955

4 57.61 −358 2060

5 60.44 −403 2169

6 60.96 −421 2295

7 63.42 −476 2394

8 64.25 500 2459

9 66.56 517 2564

10 67.65 628 2725

Table 5.5: TRAC boom first critical loads

Fig. 5.14 shows that the buckling with a compression load associated with

Mode 1 takes place in the first part of the boom, producing a series of waves in

the vertical flange. The waves amplitude decreases moving toward the end of the

boom and stops completely near the middle of the total length. As the modes

advance, the waves move toward the end of the boom, until all the length is wavy.

Very similar behavior is noticed when a negative X-bending is applied, aimed

at compressing the vertical flange, even if the waves are less pronounced. On the

other hand, the effect produced by a positive MX is the opposite, as it creates the

waves in the final part of the boom, where it is clamped.

Different is the buckling behavior when a Z-bending is applied, as shown in

Fig. 5.16. Here the flange where the waves are registered is the one on the right,

and they take place, in Mode 1, immediately after the end of the rigid element,

extinguishing themselves in a few crests. Increasing the number of the mode waves

move again toward the end of the boom, and a deflection of the vertical flange can

be seen too.

In conclusion, the buckling shapes obtained with this linearized buckling anal-

ysis show that usually instabilities take place in the flanges, which tend to bend

into a series of waves in the first part of the boom. In the next section, dealing

with the non-linear static analysis, these statements will be investigated.
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5.4 Non-linear analysis and sensitivity versus boom

length

In this section, the non-linear analyses of the TRAC boom structure are docu-

mented, starting from the meshes and loads conditions adopted in the linear anal-

yses described in the previous section. For this reason, every time a new analysis is

presented, the corresponding mesh is referred to thanks to the figures of Sec. 5.2,

and the figure is not repeated here again. As it was already done in that section,

this one is subdivided into two main subsections, describing the Z-bending and the

X-bending. Each subsection begins with a first non-linear curve corresponding to

the 500 mm boom, and also reporting the result of the linear analysis obtained in

Sec. 5.2; afterward, a parametric analysis is made, studying the effect of the boom

length on the equilibrium curve.

5.4.1 Z-bending

The geometry and the mesh of the cross-section, together with the loads and BCs

disposition, are not varied with respect to the linear analysis of Sec. 5.2.1. For

this reason, the geometry is the one in Fig. 5.5, the mesh is shown in Fig. 5.7 and

Fig. 5.8, and the load disposition is the same as already described in that section.

The intensities of the forces are not the same as the one in Tab. 5.1, because now

a non-linear analysis must be carried out, and the intensity changes during the

analysis itself; the only thing that must remain unchanged is the equality between

the two moduli. The axial mesh is also the same and consists of 21 B4 elements,

the first more rigid than the other 20 (E = 21000 GPa instead of E = 210 GPa).

Comparison with linear and buckling analysis

The graphical result of the non-linear analysis, at the same moment intensity of

MZ = 1000 Nmm as the one used for the linear analysis, is shown in Fig. 5.17.

The deformed shape is the same as the one obtained in the linear analysis and

visible in Fig. 5.9: the central part of the boom is subjected to a flex-torsional

movement, which makes deflect downward the curved flange on the positive side

of the X-axis. Again, no buckling is yet encountered on the vertical flange.
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(a) Side view. Contour represents UZ

(b) Top view. Contour represents UX

Figure 5.17: Deformed shape of the TRAC boom subjected to MZ = 1000 Nmm,
Non-linear static analysis. Scale factor of 20

Figure 5.18: TRAC boom 500 mm long, equilibrium curve under Z-bending. Lin-
ear analysis result is included
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Figure 5.19: TRAC boom 500 mm long deformed shape at the end of the equilib-
rium curve (MZ = 2546 Nmm, θ = 1.43◦)

The equilibrium curve is represented in Fig. 5.18, where also the result of the

linear analysis is enclosed. As can be seen with the curve, the buckling load is

reached at about M = 1700 Nmm, where the curve sharply deflects from the

linear trend had so far. This fact is consistent with the fact that the linear and

non-linear analyses do not differ from each other at a lower moment. Over that

intensity, as said, the buckling occurs, and the rigidity of the boom drops.

At the end of the curve, the situation is the one in Fig. 5.19. The shape

has become completely asymmetric, as the right flange is collapsed under the

compression to which it is subjected, while the left flange, subjected to traction,

has flattened itself. The vertical flange is not entirely straight anymore, but some

ripple is visible. Probably, if the analysis should go on, the boom would collapse in

the red region and bend there. This result is also in agreement with the linearized

buckling analysis, where the first critical buckling load obtained was 1722 Nmm;

moreover, the region where the right flange collapses coincides with the region

where the waves were noticed in Fig. 5.16.
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Figure 5.20: TRAC boom equilibrium curve under Z-bending for three different
lengths

Parametric analysis

It is now the moment to change the length of the boom and see how it afflicts

the equilibrium curve. Thus, in addition to the already presented analysis of

the 500 mm boom, two new analyses dealing with a 1000 mm and a 1500 mm

long booms are carried out and presented hereafter. The cross-section mesh is the

same as before, the only thing that slightly changes is the longitudinal mesh, which

remains composed of 21 B4 elements, but now the first rigid element is shorter

than the others: the rigid element is maintained 25 mm long, while the rest of the

boom is subdivided into equal parts (for example, in the 1000 mm boom there are

20 B4 elements each 50 mm long).

The results of the analyses are contained in the graph of Fig. 5.20. It shows

that the more is the length, the less is the rigidity of the structure, as the linear

slope of the curve is inversely proportional to the length. Also, the buckling load

slightly decreases with the length, reaching a value of about 1500 Nmm for the

1500 mm configuration. The two new curves, unlike the 500 mm one, over the
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buckling load begin to flatten, reaching a horizontal trend.

Figure 5.21: TRAC boom 1000 mm long deformed shape at the end of the equi-
librium curve (MZ = 2185 Nmm, θ = 3.40◦)

In Fig. 5.21 and Fig. 5.22 the two deformed shapes at the end of the equilibrium

curve, for the 1000 mm and the 1500 mm respectively, are shown.

The deformed shape relative to the 1000 mm long boom is quite similar to the

one of Fig. 5.19, but the right flange collapse here is even more pronounced, and

in addition to the downward bending also an inward one can be seen; the vertical

flange is also definitely deformed, mainly following the boom rotation, but with

several little local buckling along its length.

Rising the value of the length to 1500 mm the right flange collapse is not

alone anymore, but a new bending, this time upward, is registered a little further

downstream. Moreover, the vertical flange is wholly deformed, whit the most

significant deformation right in correspondence of the collapses of the right flange.

The further rotation could lead to even more collapsing, extended over all the

boom length.
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Figure 5.22: TRAC boom 1500 mm long deformed shape at the end of the equi-
librium curve (MZ = 2293 Nmm, θ = 4.71◦)

5.4.2 X-bending

The geometry, the cross-section mesh, the loads and BCs disposition, and the

materials are not changed with respect to the linear analysis. Fig. 5.5, Fig. 5.10

and Fig. 5.11 can thus give all the useful information about the analysis. Hence,

the cross-section mesh consists of 34 L9 elements, and the axial mesh of 21 B4

elements (the first of them is 100 times more rigid than the others, and it is

25 mm long independently from the boom length). The loads are not constant

but vary during the analysis proceeding. Moreover, one must remember that for

the X-bending both the positive and the negative moments must be taken into

account.

Comparison with linear and buckling analysis

The deformed shapes associated with the moment MX = ±2000 Nmm, the same

value as the linear analysis, are shown in Fig. 5.26 and Fig. 5.27, which represent

the equal sense and the opposite sense bending, respectively.

The results for the equal sense bending are quite unexpected, as the curved

flanges, which in the linear analysis were approaching each other (Fig. 5.12), here
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(a) Side view. Contour represents UZ

(b) Top view. Contour represents UX

Figure 5.23: Deformed shape of the TRAC boom subjected to MX = 2000 Nmm,
Non-linear static analysis. Scale factor of 20

(a) Side view. Contour represents UZ

(b) Top view. Contour represents UX

Figure 5.24: Deformed shape of the TRAC boom subjected toMX = −2000Nmm,
Non-linear static analysis. Scale factor of 20
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tend to flatten themselves, with a behavior that is precisely the opposite than

before. No changes are visible for the opposite sense bending; instead, it deforms

the same as the linear analysis (Fig. 5.13). Thus, the linear analysis was not able

to capture the flattening of the curved flanges correctly.

Figure 5.25: TRAC boom 500 mm long, equilibrium curve under X-bending. Lin-
ear analysis result is included

In Fig. 5.25 the equilibrium curve is shown, together with the linear analysis

results. Despite the differences encountered in the deformed shape, the linear

solution matches the non-linear one. On the other end, the buckling analysis gave

as results that the first critical load was equal to −295 Nmm, much more content

than the moments encountered here. In fact, the non-linear equilibrium curve is

not very irregular, and only a minimal decrease in the rigidity is registered for high

moment values. This fact is also in agreement with the deformation shapes at the

two ends of the curve, shown in Fig. 5.26 and Fig. 5.27, where a proper buckling

can not be seen. In fact, in the equal sense case, there is only a pronounced

hunchback in the first part of the boom (right after the rigid element), but no

other particular irregularities are encountered. In the opposite sense bending the

deflection of the flanges is outward, and only in the very final part of the boom a
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Figure 5.26: TRAC boom 500 mm long deformed shape at the end of the equilib-
rium curve (MX = 7923 Nmm, θ = 2.26◦)

Figure 5.27: TRAC boom 500 mm long deformed shape at the end of the equilib-
rium curve (MX = −11597 Nmm, θ = −2.89◦)
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counter-deflection is visible. In both cases, the vertical flange is always undeformed

and follows a nearly straight line. None effects at all are visible on the vertical

flange, in both cases, and this is not in agreement with the buckling analysis, which

expected a series of waves on it.

In conclusion, X-bending is highly influenced by geometry and loads defects,

and in their absence the buckling could not verify. If some instabilities take place,

on the other hand, the equilibrium curve could deflect from the linear trend earlier.

Parametric analysis

The effects of the variation of the boom length are visible in the graph of Fig.

5.28, where the equilibrium curves of the 1000 mm and 1500 mm configurations

are added to the one already described relative to the 500 mm boom.

Figure 5.28: TRAC boom equilibrium curve under X-bending for three different
lengths

According to Fig. 5.28 the rigidity of the TRAC booms decrease with increasing

lengths, making the structure easier to bend. On the other hand, the buckling load

does not seem to have easily predictable behavior, as the green curve relative to
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Figure 5.29: TRAC boom 1000 mm long deformed shape at the end of the equi-
librium curve in the opposite sense bending (MX = −2238 Nmm, θ = −1.28◦).
Scale factor of 5

Figure 5.30: TRAC boom 1500 mm long deformed shape at the end of the equi-
librium curve in the opposite sense bending (MX = −10366 Nmm, θ = −9.55◦)
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the 1000 mm boom, for example, has got a sharp early buckling for a relatively

low moment, whereas the 1500 mm boom is practically linear in all the rotation

range considered. Further studies on this problem could lead to the addition of a

defect to the structure, which could anticipate the buckling in the curve.

The deformed shapes are visible in Fig. 5.29 and Fig. 5.30. They represent

only the opposite sense bending, as the equal sense has not registered any specific

behavior, maintaining a pre-buckling shape. On the other hand, very interesting is

the result obtained in the 1000 mm case, where the vertical flange is completely in

post-buckling, with a series of waves visible with the scale factor of 5. This behavior

is strictly connected to the unusual shape of the corresponding equilibrium curve,

and hence this must be a typical unstable solution. Much more regular is the

1500 mm long boom instead, where the only thing that stands out is a little bend

near the end of the boom, which deflects downward the right flange.



Conclusions

The present work dealt mainly with the analysis of thin-walled structures having

the first property to be deployable, an essential feature in space applications. The

study on deployable structures provided the tools needed to order and classify dif-

ferent kinds of space objects, determining their application fields, and discovering

some important realizations.

The CUF theory has been proved to be very versatile, and all sorts of structures

can be easily modeled with the use of Lagrangian and beam elements on the

cross-section and axis, respectively. A very impressive characteristic of the CUF

modeling is that the cross-section can be built in a completely separated way from

the axis mesh, and this thing is a significant work simplification.

The work went on with the actual applications of the CUF modeling on the

analysis of typical space deployable structures. In the beginning, some preliminary

analysis carried out on standard shaped beams, allowed to demonstrate the ability

of the Mul2 code to replicate very well the results present in the literature on these

simple structures analysis. In the following chapter the analysis of tape spring

structures permitted to evaluate all the peculiarities of the equilibrium curve of

these particular deployable elements accurately; Mul2 code gave the proof to be

very reliable also for these highly thin structures, matching the curves obtained

by the Abaqus software in all cases treated. Successively, further comparison with

an experimental test proved that the non-linear post-buckling behavior of tape

spring measures could be reasonably well replicated too. In the final chapter, a

series of analyses on TRAC boom structures permitted to evaluate their buckling

properties, with a focus on the effects of the boom length on the mechanical

features.

All of the analyses made in this work have been carried out on isotropic metallic

structures, and future development could be the extension to composite materials,
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which need a much more significant amount of calculation time using the Mul2

code. Moreover, only two typical deployable structures have been analyzed; this

work can then continue with the study of different structures, such as membranes,

for example. The ability to predict as accurately as possible the behavior of these

deployable structures is essential, because the projects involving these elements

need to know how the structure moves, and the forces needed to the folding and

unfolding processes.

In conclusion, an in-depth study on deployable structures for space applications

made understand all possible fields in which these structures can be used, and how

the CUF theory can be adapted to model them, with a relatively high level of

simplicity and accuracy of results.
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