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Abstract

The changes on aircraft structures and the increased use of advanced and light
materials have led to the design of more efficient and flexible aircraft. This implies
that rigid body dynamics are no longer sufficient to describe the aircraft behaviour
in atmospheric flight. Furthermore, the frequencies of the lower structural modes are
close to the frequencies of the rigid aircraft dynamics and, thus, a possible coupling
between structural dynamics and piloting task must be taken in consideration during
aircraft modelling.

In this thesis, an analytical method, based on a mixed Newtonian-Lagrangian
approach, is used to derive a simplified model of the flexible aircraft which main-
tains a "strong" link with the rigid aircraft equations of motion. Moreover, flexible
displacements and torsional variables, starting from the Lagrange’s equations, are
discretized from the beginning by means of the Galërkin method, i.e. by means of
a finite number of generalized coordinates. This approach allows to derive directly
a finite-order system of ordinary differential equations, making it less complex and
suitable for real time simulation and control law synthesis.

Once the flexible model is defined, a proper gust model must be applied to
evaluate the aircraft response. In this work both discrete and continuous gust models
are presented, in order to both generate large rigid aircraft loads and excite the
elastic modes of the structure. The models here considered are based on continuous
random turbulence theory and, thus, a prior introduction to probability and Power
Spectral Density (PSD) methods is given. Finally, the implementation of Dryden
and von Kármán continuous turbulence models is addressed, since these models are
the most used in aircraft design.

So, the aircraft response to a gust can be evaluated, both in terms of deformation
variables and dynamic loads, generated on the structure. Two methods of load
determination are presented and compared. The first method is directly linked to
the mixed Newtonian-Lagrangian model and it is more accurate, while the second
proposed method is based on the strip theory and aims to reconstruct the loads with
limited knowledge of the structural model.

To conclude the study, a closed loop control system able to reduce the gust
loads is designed. The objective is to decrease fatigue loads and improve passenger
comfort by controlling the flexible structure deformations. The control strategy,
here proposed, is a Linear Quadratic Regulator (LQR) for the rigid body dynamics,
to indirectly reduce the flexible structure response, after a gust, by means of elevator
and (symmetric) aileron deflections.



Sommario

L’evoluzione delle strutture aeronautiche e l’uso di materiali sempre più avanzati
e leggeri ha portato allo sviluppo di velivoli più efficienti e flessibili. Ciò implica
che la sola dinamica del velivolo rigido non è più sufficiente a descriverne il com-
portamento durante il volo atmosferico. Inoltre, le frequenze dei primi modi propri
strutturali si avvicinano a quelle della dinamica del velivolo rigido e pertanto un
eventuale accoppiamento tra la dinamica strutturale e le manovre di pilotaggio va
considerato durante la modellazione del velivolo. In questa tesi un metodo analitico
basato su un approccio misto Newtoniano-Lagrangiano è stato usato per derivare un
modello semplificato del velivolo flessibile. Tale modello mantiene un forte legame
con le equazioni del moto del velivolo rigido, rendendo l’interpretazione dei termini
ottenuti maggiormente intuitiva. Inoltre, gli spostamenti flessibili e le variabili tor-
sionali, entrambi ottenuti mediante le equazioni di Lagrange, vengono fin dall’inizio
discretizzati per mezzo del metodo di Galërkin, il quale permette di esprimerli at-
traverso un numero finito di coordinate generalizzate. Tale approccio permette di
derivare direttamente un sistema di ordine finito di equazioni differenziali ordinarie,
il che lo rende poco complesso ed adatto per simulazioni in tempo reale e nella defi-
nizione delle leggi di controllo. Definito il modello flessibile, un opportuno modello
di raffica deve essere utilizzato per valutare la risposta del velivolo. In questo lavoro
vengono presentati sia modelli di raffica discreti che continui, entrambi usati per
generare grandi carichi alari e per eccitare i modi propri della struttura. Particolare
attenzione è stata rivolta a modelli stocastici di turbolenza continua e, pertanto,
viene affrontata un’introduzione al concetto di probabilità e ai metodi basati sulle
Densità Spettrali di Potenza (PSD). Infine, è stata descritta l’implementazione dei
modelli di turbolenza di Dryden e von Kármán, in quanto tra i più utilizzati in fase
di design. A questo punto è possibile valutare la risposta del velivolo ad una raffica,
sia in termini di deformazione della struttura che di carichi dinamici generati su di
essa. In questa tesi vengono presentati due metodi per la ricostruzione dei carichi: il
primo è direttamente correlato al modello flessibile qui presentato, mentre il secon-
do è una semplificazione basata sulla teoria di striscia, il cui obbiettivo è quello di
ricostruire i carichi supponendo di avere una conoscenza limitata del modello strut-
turale. Per concludere, viene applicato al modello un sistema di controllo mirato
alla riduzione dei carichi di raffica. L’obbiettivo è quello di diminuire i carichi a fa-
tica e di migliorare il comfort dei passeggeri andando a controllare la deformazione
della struttura flessibile. La strategia di controllo proposta prevede l’utilizzo di un
Regolatore Quadratico Lineare (LQR) sulla dinamica del velivolo rigido, in modo
di influenzare e ridurre indirettamente la risposta della struttura flessibile ad una
raffica attraverso la deflessione dell’equilibratore e degli alettoni.
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Chapter 1

Introduction

The progress in aerospace materials has led to the creation of more light and slender
aircraft structures. This results in both weight and drag reduction, and consequently
in more efficient aircraft in terms of fuel consumption. On the other hand, this slen-
der structures tend to be highly deformable, and thus the assumption of rigid body
used in classical flight mechanics is no longer a valuable option when modelling the
aircraft. The deformation of the structure increases fatigue loads by means of the
the dynamic loads generated by the aircraft manoeuvres or by external perturba-
tions. Also more flexibility leads to lower frequencies of the structural modes which
might couple with typical aircraft dynamics frequencies [1] resulting in dangerous
resonance phenomenons.

For these reasons is necessary to define a complete model which takes in account
of the flexible dynamics of the aircraft structure. Such models have been a subject
of study not only in recent years, but comprehensive mathematical formulations of
the problem have been derived for both structural dynamics [2] and aeroelastic [3]
purposes. The problem of the majority ot these formulations is that are not suitable
for real-time applications because of their high complexity level. Therefore, a good
compromise between model accuracy and computational cost must be found.

First flexible aircraft models have been studied starting from the early 1960s. At
that time strong simplifications where needed in order to obtain a solution of the
equations, because of the lack of computational power. One of the most important
works of that period was presented by Milne [4] in 1964. This study consisted of
developing a model considering only the longitudinal motion of the aircraft under
the assumption of both small deformations and state variable variations. Particular
attention was given to the choice of the best set of axes between attached, mean and
principle axes. The final result led to the mean axes as the best choice, since in this
set of axes the deformation rate does not affect the angular momentum, permitting
to decouple rigid and flexible degrees of freedom.

From this starting point, the development of flexible models has taken different
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Introduction

directions. In 1977 Cavin and Dusto [5] presented a model based on Hamilton’s
principle, in which approximate results were obtained by means of finite-elements
method. Then, in 1987 Butril, Zeiler and Arbuckle [6] presented an integrated non-
linear flexible model of the F/A-18 aircraft using the Lagrange’s equations in a mean
axes reference frame. The problem in this approach is that the mean axes position
it is difficult to determine, affecting the model accuracy and requiring adequate
measurements on-board the aircraft.

Years later, specifically in 2004, Meirovitch and Tuzcu [7] presented a model
based on Lagrange’s equations but without the need to determine the mean axes
position. Their approach consists in deriving an hybrid system of ordinary and par-
tial differential equations in terms of quasi-coordinates (or generalized coordinates),
which permits to express the transport degrees of freedom in terms of flight vari-
ables, as linear and angular velocities. This is convenient for real time simulation
of the flexible structure but compromises the simplicity of the formulation, since
the Lagrange’s equation has to take in consideration additional terms and, also,
the obtained hybrid system of ordinary and partial equations needs some form of
discretization.

Figure 1.1: Flexible Aircraft Model Presented by Meirovitch and Tuzcu

The model presented in this thesis takes as main reference the work of Avanzini,
Capello and Piacenza [8], which is based on the aforementioned Meirovitch and
Tuzcu article. Their objective was to derive a minimum-complexity flexible model
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which takes in account the effects of bending and torsion of fuselage and wings on the
aircraft rigid dynamics. This is done by means of a mixed Newtonian-Lagrangian
approach, using the classical equations of flight dynamics to derive the rigid degrees
of freedom and the Lagrange’s equations to derive the flexible terms. Splitting
the problem in these two parts and expressing from the beginning the deformation
variables in terms of quasi-coordinates, not only simplifies the interpretation of the
terms but also permits to write directly a system of ordinary differential equations,
without passing through the hybrid system derived by Meirovitch and Tuzcu. This
approach, although introduces some simplifications, is particularly convenient for
real time simulation and for the design of control laws which take in consideration
the flexible body interaction with the aircraft flight dynamics. Furthermore, this
model represents a good foundation for studying the response and the loads of the
flexible parts, not only during the aircraft manoeuvres but also to external gusts.

For this reason, in this thesis particular attention is given to the gust modelling
and its implementation in the presented model. Regulations as CS-25 [9] require
to simulate different gusts during the aircraft design phase, in order to identify the
loads generated by these perturbations and, thus, verify that the flight envelope
limits are not exceeded. Gust models are generally divided in:

• Discrete gusts: The gust is idealized as a single finite disturb with a specific
"shape".

• Continuous gusts: The gust is idealized as a series of concatenated disturbs of
varying intensity. In general these gusts are generated as stochastic processes.

One of the must used discrete gust models, which is also reported in both in military
and civil regulations, is the "1 − cos" gust idealization. This gust shape is widely
used since permits to simulate a wide range of perturbations, as reported in Figure
1.2, by means of two parameters: H and Uds. The first is called gust gradient and
identifies if the perturbation is small or large and, thus, if it is rapid or slow. The
gust design velocity Uds, instead, identifies the perturbation intensity by defining the
maximum reachable peak in terms of gust speed. Both of this parameters have to be
scaled accordingly with the flight altitude and with the aircraft mass configuration.
Regulations require that a wide set of perturbations is tested during aircraft design,
in the entire altitude range indicated by the flight envelope.

This gust idealization is particularly convenient for the ease with which can
be applied, and in general is used to simulate large loads on the entire aircraft.
Anyway, it is not an accurate representation of the random nature of the atmospheric
turbulences. Especially if the objective is to excite the various elastic modes of the
flexible structure. In this case it is necessary to implement continuous gust models
in order to study the effect of a more realistic turbulence on the flexible structure.
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Figure 1.2: Typical "1− cos" Gust Velocity Profiles

Continuous gust models express the turbulence as a stochastic process which
varies randomly in space and time. In practice, to describe mathematically the tur-
bulence, the gust is generally idealized as a "stationary Gaussian random process"
[10], which, although is a simplification, leads to more realistic results then the dis-
crete gust models. The two most used continuous gust models, are the Dryden [11]
and von Kármán [12] turbulence models. Both define the gust by means of math-
ematical expressions of the Power Spectral Densities (PSD) of the various velocity
components. These Power Spectral Densities can be then used to design "forming
filters" which take as input a white noise and output a gust time history based on
Dryden and von Kármán models. The Dryden model has rational PSD for every
velocity component and, thus, an exact filter can be designed. The von Kármán,
instead, has irrational PSDs and thus the forming filters can be only approximated.
Also, the von Kármán model results to be the more accurate between the two mod-
els and, in fact, it is the only one which si implemented in both military [13] and
civil [9] regulations.

In practice both Dryden and von Kármán models give as output the gust linear
and angular velocities components time histories, as in the example in Figure 1.3,
which can be used in the rigid aircraft equations of motions as wind disturbances.
In this way the entire model is affected by the external perturbations and thus the
flexible structure response can also be analysed.
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Figure 1.3: Example of Gust Linear Velocity Components - von Kármán

As stated before, this flexible structure response not only affects the aircraft
rigid dynamics but also generates dynamic loads which are directly connected to
the deformations and their respective rates. These loads can be determined start-
ing from the flexible model or by approximating the loads depending only on the
variation of the local angle of attack. The first method is surely more accurate, but
requires the definition of a flexible model and, thus, some structural data obtained,
generally, with a prior FEM analysis. On the other hand, the second method can be
applied knowing only the deformations and their respective rates, which can be also
measured with sensors on the surface, but neglecting some structural information.

In any case, since the objective is not to calculate the fatigue strength of the
components, but to evaluate the effectiveness of a controller designed for gust load
alleviation (GLA) purposes, the approximations introduced by both the previously
mentioned methods can be considered acceptable.

Alleviation of the dynamic loads generated by gusts is subject of study since
the 1950s [14], but only in recent years, with the more extended use of composite
materials, the interest in this type of systems is renewed.

Gust load alleviation systems, in general, can be divided in two macro categories,
which differentiate for the type of control action:
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• Passive systems: do not require an actuation system and in general are related
to the wing geometry.

• Active systems: require an actuation system and rely on the regular control
surfaces, as ailerons and elevators, or on unconventional control surfaces de-
signed for the purpose of load alleviation. In general, a specifically designed
control law is needed.

One interesting passive gust alleviation system concept was presented by Roesch
and Harlan [15] in 1974. The main topic of the study was to develop a gust load
alleviation method which was suitable for small aircraft, and thus not requiring the
installation of a heavy actuation system. They observed that a good wing load
alleviation could be obtained by means of trailing edge flaps, and imagined that
those surfaces could be directly actuated by two small auxiliary wings, as in Figure
1.4. This wings were, in practice, an angle of attack sensor large enough to drive the
flaps directly. Therefore, these devices were articulated in roll to deflect the flaps
and in pitch for coupling to the elevator and maintaining basic manoeuvrability,
since this device induced stability issues. Although their method can not be applied
on large aircraft, two important concepts can be extracted from Roesch and Harlan
study: the load dependence on the angle of attack and the necessity of specifically
designed control surfaces on the wing.

Figure 1.4: Roesch and Harlan Auxiliary Wing System

More recent studies, thanks also to the CFD development, demonstrate that
passive gust load alleviation can be achieved by passive twist of the wing-tip, as
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in [16], or, even more recently, by means of passive ventilation with porous surface
and deflectable vanes [17]. In general, passive methods are more simple and reliable
of the active methods, since they do not require power or any interaction with the
aircraft systems. On the other hand, they can not deal with more severe turbulences
and can not provide load control if it is needed.

For these reasons, active gust load alleviation systems are, at the moment, the
most studied and implemented during the aircraft design. These systems differen-
tiate mostly for the control surface used for the alleviation, generally conventional
and unconventional, and for the chosen controller architecture.

One possible approach, consist in to controlling directly the flexible part by
means, for example, of symmetric deflection of the ailerons. This can be done by
means of an adaptive feedforward controller as presented Zeng et al. in [18]. The
approach presented in their paper consisted in the design of a FIR (Finite Impulse
Response) filter based on the LMS (Least Mean Square) algorithm [19]. In practice
the goal of this filter its to reduce an error between a selected reference signal and
a desired signal. For example, in Zeng work, the flexible acceleration of the wing
is compared with the rigid acceleration of the center of mass, then the generated
error is reduced via LMS algorithm. This approach, although is very effective,
brings some complications. The first consist in to selecting significant reference and
desired signal, especially if the equations of aircraft and flexible dynamics are in a
dimensional form. In fact, since the output of the filter is a command, and the input
signal is an acceleration, there is no mean to scale the output properly. Therefore,
this approach requires the knowledge of a state-space formulation of the complete
model, which is not always practical to determine, for both the non-linear nature of
the system and for the complexity of determining the complete state vector.

Another approach consist in to apply a linear optimal control technique to the
aircraft plant as presented by Dillsaver in [20]. This is done by means of an LQR
[21] (Linear Quadratic Regulator) controller which is used to determine an optimal
state feedback gain. This controller its also used in dual loop configurations, as
presented by Gonzalez in [22]: one inner loop for augmenting the aircraft stability
and minimizing elastic displacements and an outer loop for altitude, heading and
speed control.

Other widely spread control design techniques used for gust load alleviation
purposes are represented by the implementation of H2 and H∞ robust controllers, as
proposed by Aouf, Boulet and Botez in [23]. Their work consisted on implementing
an H∞ controller on a flexible model of the B-52 aircraft, achieving a strong gust
load alleviation for severe turbulences simulated with the Dryden model. However,
from their work emerged that the result consistency is strongly dependant on the
considered aircraft model. This was also demonstrated by Cook et al. in [24], which
have combined robust control with model-reduction methodologies. While they

12



Introduction

obtained a load reduction up to 9% on root bending moment, they also highlighted
a significant decrease in control performance if even small uncertainties were added
to the model.

A more comprehensive gust load alleviation technique is given by the L1 adaptive
controller developed by Capello et al. in [25]. The advantage of this controller con-
sists in its capacity to adapt to the uncertainties deriving from the weight and flight
condition variation. With this approach, the author was able to obtain an average
20% wing load reduction between different mass and flight condition configurations.

In this thesis, since the proposed aircraft model maintains a strong link between
rigid aircraft dynamics and the flexible dynamics, a LQR controller is implemented.
One of the major difficulties of the presented problem, as already stated before, is
to write the entire system in a state-space form. The advantage of the presented
model is the possibility to implement an LQR controller only on the rigid equa-
tion of motion, and thus indirectly influencing the flexible model. This is a more
straightforward method, since the state-space model formulation of the aircraft rigid
dynamics is already well known. The LQR controller acts on the rigid states influ-
enced by the external perturbation and outputs elevators and symmetric ailerons
commands. Then the controlled states are used in the flexible dynamics model, and
the resulting loads are compared with the open loop response.

1.1 Thesis Outline
After this brief introduction, Chapter 2 contains the derivation of the complete
model, starting from the longitudinal non-linear rigid equations of motion and a
brief description of the aerodynamic model. Then the flexible dynamics model of
the wing is derived by means of the Lagrangian approach. Finally, the section at the
end of the chapter briefly describes how to use the obtained flexible displacements
(and rates) to correct the aircraft rigid equations of motion.

Chapter 3 is focused on the description of the gust models used to perturb the
aircraft. After an introduction to the gust loads, a comparison between discrete and
continuous gust models is addressed. Then, in order to better describe the latter,
some basic concepts of probability and Power Spectral Density (PSD) theory are
given. The last section is dedicated to the description of the Dryden and von Kármán
continuous turbulence models and how these are implemented in the simulations.

In Chapter 4 are reported the results in terms of wing response and dynamic
loads. The wing response is evaluated in terms of bending and torsion rates and
accelerations achieved after an elevator step command, a "1− cos" discrete gust and
von Kármán moderate turbulence. Then, two different methods for the determina-
tion of the dynamic loads are described: one based on the MCK definition of the
flexible system and one based on the strip theory. Finally, the results in terms of root
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bending and torsion moments obtained with both the load determination methods
are compared, analysing their accuracy for both the discrete and continuous gusts
mentioned above.

Chapter 5 is dedicated to the design and implementation of the proposed gust
load alleviation control strategy. The first part of the chapter is dedicated to the
derivation of the non-dimensional state-space formulation of the system. Then the
design of the LQR controller is addressed, describing the algorithm and reporting the
chosen gain matrices. The last part of the chapter is dedicated to the comparison
between open loop and closed loop results, in terms of root bending and torsion
moments reduction for both the "1−cos" discrete gust and the von Kármán moderate
turbulence.

Finally, in Chapter 6 are contained some concluding remarks and some possible
future developments of this work.

14



Chapter 2

Aircraft Model

The complete aircraft model can be seen as an interaction between three major
blocks:

• Rigid aircraft model

• Aerodynamic model

• Flexible model

Particularly, the latter acts as a correction to the first two, adding the displacements
due to elastic deformation to the rigid model and the aerodynamic loads which this
deformation generates to the aerodynamic model, as schematized in Figure 2.1.

Figure 2.1: Complete Model Scheme
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In this work particular attention is given to the flexible model, since the objec-
tive is to study the wing load behavior under a gust disturbance. However, wing
deformation is caused by both aerodynamic and inertial loads, which can be evalu-
ated only considering the rigid aircraft dynamics and an appropriate aerodynamic
model. For this reason and for the sake of completeness, in this chapter each part
of the model will be briefly discussed, including also how to correct the rigid model
with flexible dynamics.

2.1 Non-Linear Rigid Model
The rigid model is based on the non-linear dimensional equations of motion written
in the body axes frame as reported in [26]. The resulting 6 DoF differential equation
system takes in consideration 12 variables, that are:

• Linear velocities {u, v, w}, from force equations.

• Angular rates {p, q, r}, from moment equations.

• Euler angles {φ, θ, ψ}, from kinematic equations.

• Coordinates {xN , yE, zD}, from navigation equations (NED1 reference frame).

Derivation of the complete rigid model is given in Appendix A. Here, for simplicity,
since only the longitudinal dynamics components are taken in consideration in the
flexible model, the entire system could be reduced neglecting the lateral-directional
equations components, thus obtaining:



u̇+ qw = 1
m

(X + TmaxδT )− g sin θ

ẇ + uq = 1
m
Z + g cos θ

q̇ = 1
Iy
M

θ̇ = q

(2.1)

Where earth rotation and round earth corrections are considered already applied.
Also the effect of throttle δT is taken in consideration. The aerodynamic forces and

1North-East-Down
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moments X, Z and M can be written as:

X = 1
2ρV

2SCX (2.2)

Z = 1
2ρV

2SCZ (2.3)

M = 1
2ρV

2ScCM (2.4)

In which the aerodynamic coefficients CX , CZ and CM are function of the angle of
attack α, the non-dimensional pitch rate q̄ = qc̄

V
and the commands, that is δe if the

only longitudinal dynamics are considered.

Ci = Ci(α, q̄, δe) with i = X,Z,M (2.5)

Finally the angle of attack α and the airspeed V are proper of the wind axes,
therefore they need to be expressed in body axes:

α = tan w
u

(2.6)

V =
√
u2 + w2 (2.7)

2.2 Aerodynamic Model
For a correct interaction between the various blocks of the complete model, aero-
dynamic modelization of the wing should express the loads in the same reference
frame of the rigid and flexible models. Furthermore, for the purpose of this work,
it is important to find a good balance between load estimation accuracy and model
complexity, which would translate in a computational load increase.

For this reason, the strip theory, as described in [3], was selected for the aero-
dynamic load estimation. The 3D effects associated with finite elongation wings
(e.g. tip vortices) are neglected, preferring a 2D analysis. The wing is thus divided
into sections along the wing span and each of them has its own resistance, lift and
aerodynamic moment. Lift of each section is than considered to depend only on
the local incidence given by the 2D theory and to be independent from the angle of
attack of any other section. The total lift is therefore obtained by integrating the
aerodynamic load of each station along the wing span.

Drag coefficient of each section can be evaluated by the following quadratic
relation:

CD = CD0 + kC2
L (2.8)

This approach permits to easily determine the aerodynamic loads of each section
by simply knowing its angle of attack variation, which could be due either from a
maneuver or a gust disturbance and the resulting wing deformation.
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2.3 Flexible Model
The chosen method to describe the flexible aircraft dynamics is based on the mixed
Newtonian-Lagrangian approach, which is largely discussed in [7] and [8]. In this
work only the wings are considered to be deformable while the rest of the aircraft
is considered to be rigid, although the reference method could also consider the
fuselage and the tail as deformable.

In the general form, Lagrange’s equations can be written as:

d

dt

∂L
∂q̇
− ∂L
∂q

= Qq (2.9)

Where q represents the generalized coordinates, Qq represents the generalized forces
and L is the Lagrangian, defined as:

L(t) = T(t) − U(t) (2.10)

With T and U respectively kinetic and potential energy. Once every component
of the Lagrange’s equation is calculated, it will be possible to determine the elastic
deformation of the wing, that can be also used to correct the rigid model dynamics.
The scheme in Figure 2.2 shows how elastic deformations affect the entire aircraft,
including fuselage and tail which in this thesis, as already stated before, are consid-
ered rigid.

2.3.1 Kinetic & Potential Energy
The kinetic energy of the entire system is given by the sum of the kinetic energy of
each system component. In this thesis, the aircraft is considered to be divided in
rigid fuselage and flexible wings, thus obtaining:

T(t) = TRIG(t) + 2Tw(t) (2.11)

Where, from here on, the subscriptRIG indicates the rigid fuselage and the subscript
w indicates the flexible wing. In general:

TRIG = 1
2mRIG(VRIG · VRIG) + 1

2ΩT
RIGJRIGΩRIG (2.12)

Tw = 1
2

Ú lw

0
µwṘw · Ṙwdxw + 1

2

Ú lw

0
ΩT
wjwΩw dxw (2.13)

Where ΩRIG and VRIG are respectively the angular rate vector and the linear velocity
vector of the rigid fuselage, µw represents the mass density per unit of length and jw
is the inertial tensor of the wing element. Finally, Ṙw and Ωw are respectively the
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Figure 2.2: Aircraft Deformations

linear velocity vector and the angular rate vector which take into account of wing
deflection ξw and torsion θw. In general, those are expressed as:

Ṙw = VB + ωB × rw + ξ̇w (2.14)
Ωw = ωB + θ̇w × τ̂w + ξ̇

Í

w (2.15)

Where VB and ωB are linear and angular speed vectors in body reference frame, rw
is the position of the considered wing element in the wing reference frame and τ̂w is
the torsion axis. Symbols (̇) and (̇)Í represent respectively time and space derivative.
In this case Eq. 2.14 and 2.15 become:

Ṙw =


u
v
w

+


p
q
r

× [Cw]T


xw
yw

zw + ξw

+ [Cw]T


0
0
ξ̇w

 (2.16)

Ωw =


p
q
r

+ [Cw]T

θ̇w
0
0

+


0
−ξ̇Í

w

0

 (2.17)
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Where [Cw] is a rotational matrix used to transport a vector from the body reference
frame to a wing reference frame, taking in account the sweep angle Λ and the dihedral
angle Γ of the wing. In this thesis, as in [8], the wing reference frame has the xw axis
along the wingspan, zw axis that points downwards and the yw axis that completes
the frame following the right-handed rule. Considering this wing reference frame
positioning, [Cw] should be expressed as:

Cw =

− sin Λ cos Γ cos Λ cos Γ − sin Γ
− cos Λ − sin Λ 0

− sin Λ sin Γ cos Λ sin Γ cos Γ

 (2.18)

Although, for simplicity, dihedral and sweep angles are considered to be null in this
work, [Cw]T is used in Eq. 2.16 and 2.3.1 to express all elements in body reference
frame. Knowing this, and expressing the cross product in Eq. 2.16 in matrix form
by means of the skew-symmetric matrix:

[ωB×] =

 0 −r q
r 0 −p
−q p 0

 (2.19)

Expressions of Ṙw and Ωw become:

Ṙw =


u
v
w

+


−rxw + q (zw + ξw)
−ryw − p (zw + ξw)

pxw + qyw

+


0
0
ξ̇w

 (2.20)

Ωw =


p
q
r

+


0
θ̇w
0

+


0
−ξ̇Í

w

0

 (2.21)

Where distances xw, yw and zw now must also take in account the distance between
the aircraft CG and the origin of the wing reference frame. Note that, although
structural flexibility therms could be small, they cannot be neglected as it is impos-
sible to know in advance the entity of the rigid ones.

The potential energy can be written as the sum of the elastic energy of the system
flexible parts plus gravitational potential. In this work, since the wing is the only
flexible part, the potential energy can be written as:

U = Uwb + Uwt + Uwg (2.22)

Where Uwb is the potential energy due to the wing bending, which can be expressed
as strain energy of an Euler-Bernoulli beam:

Uwb = 1
2

Ú lw

0
EIw(ξÍÍ

w)2 dxw (2.23)
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In a similar fashion, the potential energy due to the wing torsion Uwt can be
written as:

Uwt = 1
2

Ú lw

0
EJt,w(θÍ

w)2 dxw (2.24)

At last, the potential energy due to the change in altitude caused by the wing
bending Uwg, considering dihedral angle to be null, can be expressed as:

Uwg =
Ú lw

0
µwg(ξw cos θ) dxw (2.25)

Note that, in the above equations only the half-wing is considered, therefore the
potential energy components must multiplied by 2 in order to consider the entire
wing.

2.3.2 Generalized Coordinates: Galërkin Method
In order to represent the behavior of a flexible system, reducing the model com-
plexity, an appropriate set of generalized coordinates must be chosen. The Galërkin
method [27], permits to represent the wing deformation over time through truncated
series expansions in the form:

ξw(xw, t) =
NØ
j=1

Φj(xw)ηwj (t) (2.26)

θw(xw, t) =
NØ
j=1

Ψj(xw)ζwj (t) (2.27)

Where ηwj (t) and ζwj (t) are amplitudes of the assumed modes represented by Φj(xw)
and Ψj(xw) shape functions, which should satisfy the physical and geometric bound-
ary conditions of the considered element. For example, for a generic cantilevered
beam:

Φi(x) = cosh
A
λi
l
x

B
− cos

A
λi
l
x

B
+ χi

A
sinh

A
λi
l
x

B
− sin

A
λi
l
x

BB
(2.28)

Where:

χi =
cosh

A
λi
l

B
+ cos

A
λi
l

B

sinh
A
λi
l

B
+ sin

A
λi
l

B (2.29)

and l is the beam length and λi is the eigenvalue solution of:

cosλi cosh λi = −1 (2.30)
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The choice of shape functions and generalized coordinates number N , influences
the number of vibrational modes considered. In this case only the first two bending
modes and the first torsional mode where considered, since these have frequencies
similar to the ones representing the rigid aircraft dynamics:

ξw(xw, t) = Φ1(xw)ηw1 (t) + Φ2(xw)ηw2 (t) (2.31)

θw(xw, t) = Ψ1(xw)ζw1 (t) (2.32)

Once the set of generalized coordinates is selected, it is possible to obtain and
derive the expressions of kinetic and potential energy, thus obtaining the left side
of the Lagrange’s equation. Note that the obtained derivatives have the same form
for each generalized coordinate, independently from the number of flexible modes
considered.

2.3.3 Generalized Forces
In order to complete the Lagrange’s equation also the generalized forces Qq must be
obtained. These can be derived through the principle of virtual work, which for the
dependant variable r in presence of k external forces can be expressed as:

∂W =
kØ

h=1
Fh · ∂rh (2.33)

where ∂r is the virtual displacement which could be also expressed in terms of the
N generalized coordinates:

∂rh =
NØ
j=1

∂rh
∂qj

∂qj (2.34)

thus obtaining:

∂W =
kØ

h=1
Fh

NØ
j=1

∂rh
∂qj

∂qj =
NØ
j=1

A
kØ

h=1
Fh
∂rh
∂qj

B
∂qj =

NØ
j=1

Qqj∂qj (2.35)

Therefore, in Eq. 2.35 the virtual work is expressed as function of generalized
coordinates and forces, which are expressed as:

Qqj =
kØ

h=1
Fh
∂rh
∂qj

with j = 1, ..., N (2.36)

In this study, the virtual work of each flexible part can be expressed as a function
of external forces that act on it (i.e., aerodynamic distributed and concentrated

22



Aircraft Model

loads) multiplied by the virtual displacements, which are the dependent variables.
So, similarly to Eq. 2.33, for the flexible wing is possible to write:

∂Ww,b =
Ú lw

0
fAw(αw, xw)ξw(xw, t) dxw (2.37)

∂Ww,t =
Ú lw

0
MAw(αw, xw)θw(xw, t) dxw (2.38)

where fAw and MAw represent the distributed aerodynamic force and moment gen-
erated by the wing. Note that, if the aircraft engine is mounted under the wing, a
concentrated load must be considered at the corresponding wing section. As stated
in section 2.2, in this thesis the aerodynamic loads of each section are considered to
be dependant only on the angle of attack and its variation due the maneuver and
wing deformation. Therefore, aerodynamic force and moment can be expressed, for
the entire wing, as:

fAw = 1
2ρV

2SCLααw (2.39)

MAw = 1
2ρV

2SCLα(xθ − xCA)αw (2.40)

where (xθ − xCA) represents the distance between the torsion axis and the airfoil
aerodynamic center, and αw is given by the sum of aircraft angle of attack αWB, wing
twist angle iw, pitch rate q, bending rate ξ̇, torsion angle θ and its time derivative
θ̇:

αw = αWB + iw(xw)− qxF
u

+ ξ̇w
u

+ θw + θ̇w(xθ − xCA)
u

(2.41)

Where xF represents the distance between the aerodynamic centre of the considered
section and the aircraft CG in body reference frame.

More accurately, external aerodynamic force and moment can be written in the
form:

fAw(x) = fA0 + ∂fA

∂ξ̇w
ξ̇w (2.42)

MAw(x) = MA0 + ∂MA

∂θ̇w
θ̇w (2.43)

where the subscript 0 indicates the aerodynamic load generated by the “frozen” con-
figuration, for the current values of transport and deformation variables, whereas
the second term indicates the increment generated by deformation rates. This ap-
proach permits to split the virtual work, expressed for the k-th wing element, in two
contributions:

∂Wk,b =
Ú lk

0
fAδξ dxk =

Ú lk

0
fA0δξ dxk +

Ú lk

0

A
∂fA

∂ξ̇
ξ̇

B
δξ dxk (2.44)
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∂Wk,t =
Ú lk

0
MAδθ dxk =

Ú lk

0
MA0δθ dxk +

Ú lk

0

A
∂MA

∂θ̇
θ̇

B
δθ dxk (2.45)

The contribution to the virtual work of the "frozen" term generated by aerodynamic
force and moment can be simply expressed as:
Ú lk

0
fA0δξ dxk =

=
Ú lk

0

1
2ρV

2Sc(k)CLα

5
αWB + θw,k −

q

u
xF

6 1
Φ(k)

1 δη1 + Φ(k)
2 δη2

2
dxk (2.46)

Ú lk

0
MA0δθ dxk =

=
Ú lk

0

1
2ρV

2Sc(k)CLα(xθ − xCA)
5
αWB + θw,k −

q

u
xF

6 1
Ψ(k)

1 δζ1
2
dxk (2.47)

In which c(k) is the chord of the k-th wing element.
The second term of Eq. 2.44 and 2.45, generated by deformation rates, can be

expressed in terms of Rayleigh dissipation function F [2]:

Ú lk

0

A
∂fA

∂ξ̇
ξ̇

B
δξ dxk =

NØ
j=1

∂F (k)
b

∂η̇j
δηj = ∂F (k)

b

∂η̇1
δη1 + ∂F (k)

b

∂η̇2
δη2 (2.48)

Ú lk

0

A
∂MA

∂θ̇
θ̇

B
δθ dxk =

NØ
j=1

∂F (k)
t

∂ζ̇j
δζj = ∂F (k)

t

∂ζ̇1
δζ1 (2.49)

The Rayleigh dissipation function is used to represent the viscous damping forces
by means of a single scalar. The viscous damping is proportional to the generalized
velocities q̇j and is one of the most important non-conservative forces acting on an
aerodynamic surface. Taking this approach to represent the external forces acting
on the flexible system, the Lagrange’s equation could be also written in this special
form:

d

dt

∂L
∂q̇
− ∂L
∂q

+ ∂F
∂q̇

= Qq0 (2.50)

Where Qq0 represents the generalized forces generated by the "frozen" configuration.
In this work, when referring to the generalized forces Qq both "frozen" and viscous
damping forces are considered.

Returning on Eq. 2.48 and 2.49, the terms of the Rayleigh’s dissipation function
relative to wing bending Fb and torsion Ft, are defined as:

F (k)
b =

Ú lk

0

∂fA

∂ξ̇
ξ̇2 dxk (2.51)
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F (k)
t =

Ú lk

0

∂MA

∂θ̇
θ̇2 dxk (2.52)

Which can be both recast in a quadratic form as:

F (k)
b = η̇TC

(k)
b η̇ = {η̇1 η̇2}

è
C

(k)
b

é Iη̇1
η̇2

J
(2.53)

F (k)
t = ζ̇TC

(k)
t ζ̇ = ζ̇1

è
C

(k)
t

é
ζ̇1 (2.54)

Where the elements of the positive definite matrices C(k)
b and C(k)

t are given by:

è
C

(k)
b

é
i,j

= 1
2

Ú lk

0

∂fAk
∂ξ̇k

Φi(xk)Φj(xk) dxk (2.55)

è
C

(k)
t

é
i,j

= 1
2

Ú lk

0

∂MAk

∂θ̇k
Ψi(xk)Ψj(xk) dxk (2.56)

Therefore, since in this thesis two bending modes are considered, the C(k)
b matrix

becomes:
1
2

Ú lk

0
qdSc

(k)CLα

51
u

6
Φ2

1(xk) dxk
1
2

Ú lk

0
qdSc

(k)CLα

51
u

6
Φ1(xk)Φ2(xk) dxk

1
2

Ú lk

0
qdSc

(k)CLα

51
u

6
Φ2(xk)Φ1(xk) dxk

1
2

Ú lk

0
qdSc

(k)CLα

51
u

6
Φ2

2(xk) dxk


(2.57)

Where qd is the dynamic pressure. Regarding the matrix concerning the torsion
terms, its derivation is more straightforward, since only one torsional mode is con-
sidered:

C
(k)
t =

Ú lk

0

1
2ρV

2Sc(k)CLα (xθ − xCA)
C

(xθ − xCA)
u

D
Ψ2

1(xk) dxk (2.58)

Returning on the expression of the virtual work derived in Eq. 2.35, in the
considered case the virtual work of the flexible wing can be expressed as:

δW = Qq1δq1 + ...+Qqnδqn = Qη1δη1 +Qη2δη2 +Qζ1δζ1 (2.59)

Therefore, by means of Eq. 2.46-2.49, the expressions of the generalized forces
generated by every considered mode Qqn can be straightforwardly derived by simply
collecting the terms multiplying the virtual displacements expressed in terms of
generalized coordinates δη1, δη2 and δζ1.
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2.3.4 Flexible Model Conclusion
Now that all the terms of Lagrange’s equation are available it is possible to write the
equations of motion of the flexible wing. Since in this work only two bending modes
and one torsional mode were considered, the complete system is the following:

d

dt

∂L
∂η̇1
− ∂L
∂η1

= Qη1

d

dt

∂L
∂η̇2
− ∂L
∂η2

= Qη2

d

dt

∂L
∂ζ̇1
− ∂L
∂ζ1

= Qζ1

(2.60)

which can be reorganized in the following matrix from:

Mq̈ + Cq̇ +Kq = fq (2.61)

where q = {η1, η2, ζ1} and M is the mass matrix which collects all the terms which
multiply the second time derivative of the deformation variables. Similarly, C is the
damping matrix and collects all the terms which multiply the first time derivative
of the deformation variables. Finally, K is the stiffness matrix and the vector fq
contains all the terms which do not depend on {η1, η2, ζ1}.

2.4 Complete Model
Once the flexible model is fully derived, it can be also used as "correction" to the
rigid and aerodynamic models, as shown in Figure 2.1. That means rewriting the
aerodynamic loads also in function of the local angle of attack αw derived in Eq.
2.41, which will influence the equations of the rigid aircraft dynamics together with
the elastic deformations. This can be achieved by simply proceeding as follows:

• Impose trim conditions and derive from Eq. 2.61 the generalized coordinates
vector q = {η1, η2, ζ1}.

• Once η1, η2 and ζ1 are known, it is possible to determine the elastic deforma-
tions ξw and θw from Eq. 2.31 and 2.32.

At this point it is straightforward to determine the local angle of attack variation
due to the wing deformation αw using Eq. 2.41. The latter can then be used to
calculate the new aerodynamic loads which are going to modify the states obtained
with the rigid model.
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Gust Model

As stated before, the aim of this thesis is to study the wing behaviour under a
gust disturbance. In order to achieve this objective, a proper gust model must be
selected. Regulations, as [9] (paragraphs CS 25.341 and AMC 25.341), refer to two
different types of gust disturbance models which can be used to determine the loads
acting on an aircraft during flight:

• Discrete gust models.

• Continuous gust models.
The first is also referred as an "individual gust" and it is generally an idealization
of the gust structure, the second instead aims to represent more accurately the
probabilistic nature of atmospheric turbulence.

This chapter is focused on highlighting the differences between the discrete and
continuous models, giving particular attention to the latter description through some
probability concepts. All of this is largely described in [10], which is the main
reference for this chapter. Finally, implementation in the flexible model will be
addressed.

However, before diving in the description of these gust models, a brief introduc-
tion on gust loads fundamentals may be required.

3.1 Gust Load Introduction
Gust loads, whether due to discrete gusts or continuous turbulence, are ordinarily
considered to be the result of a change in angle of attack due to a component of gust
velocity at right angles to the flight path. Vertical and lateral gusts fall into this
category and the change in angle of attack, in the hypothesis of small perturbations,
can be expressed as:

tan(∆α) = Ug
V
≈ ∆α (3.1)
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Where V is the aircraft forward speed and Ug is the gust velocity, as schematized
in the example in Figure 3.1.

Figure 3.1: Example of Vertical Gust

Considering a vertical gust, the lift variation due to the perturbation can be
written as:

∆L = 1
2ρV

2SCLα∆α = 1
2ρV

2SCLα
Ug
V

= 1
2ρUgV SCLα (3.2)

This variation in angle of attack, moreover, affects the aircraft motion. The net
change of angle of attack felt by the entire aircraft depends not only on the gust
velocity, but also on the aircraft motion induced by the gust itself. Since a gust
perturbation will never reach its maximum instantaneously, during the build-up the
aircraft will have time to acquire motion. For example, for vertical gust, the aircraft
will respond by:

• Plunging: the aircraft translates in the direction of the gust velocity, thus the
net gust velocity effect is reduced.

• Pitching: generally the aircraft, due to its pitch stability, will tend to reduce
the increment in angle of attack due to the gust.

This behaviour can be described by writing the differential equation of motion of
the rigid aircraft responding to a vertical gust in terms of a single variable α. The
variable α represents the increment in angle of attack due to the aircraft motions and
it does not include the angle of attack αg associated with the gust velocity, which
is used instead as the forcing function. The result is a second-order differential
equation, so the aircraft response to a gust is analogous to that of a mass-spring-
damper system. For this reason the aircraft motions can result not only in load
alleviation1, but also in a load increase due to dynamic overshoot.

1The loads are proportional to (αg + α), and at low frequencies α tends to subtract from αg,
resulting in a load reduction.
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Loads due to lateral gust are affected by aircraft motions similarly to what has
just been described for a vertical gust.

However, gust disturbances are not always perpendicular to the aircraft forward
speed, but can also be in the same direction, as schematized in Figure 3.2. This
perturbation is called head-on gust, and it affects only the dynamic pressure (the
angle of attack remains constant).

Figure 3.2: Example of Head-on Gust

For this reason, in this case the lift variation due to the perturbation can be
written as:

∆L = 1
2ρ[(V + Ug)2 − V 2]SCL = 1

2ρ[2UgV + U2
g ]SCL =

= 1
2ρ(2UgV )

3
1 + 1

2
Ug
V

4
SCL ≈

1
2ρ(2UgV )SCL (3.3)

Note that in this case ∆L depends on steady-flight CL instead of CLα , but still
depends on the product UgV . This means the head-on gust produces only a lift
increase, not a side force or a change in the aircraft attitude directly.

This lift variation affects also the aircraft motion. For a head-on gust, the al-
leviation effect of plunge motion is the same as for a vertical gust; the motion will
depend only on the lift produced, not on its source. The pitch motion instead will
be different, as the increment in lift due to a vertical gust will act at the aircraft
aerodynamic center, whereas the lift due to a head-on gust will act at the l-g flight
center of pressure, that is, the CG. These can differ substantially, for example as the
result of a difference between wing and tail angles of attack in l-g flight. In addition,
head-on gust could lead to a small alleviation effect due to the slowdown resulting
from the drag increase associated with the dynamic pressure increase.

3.2 Discrete Vs. Continuous Gusts
In this thesis when referring to a gust profile a gust velocity time history is intended.
Typically, gust profiles tend to be continuous and irregular, as in the example shown
in Figure 3.3. Generally, when the profile is continuous, the gust structure is referred

29



Gust Model

to as turbulence, whereas when the gust structure consists of more or less isolated
pulses, the single pulse is referred to as a gust. Also, a continuous turbulence profile
can be thought as a series of individual gusts.

Figure 3.3: Example of Gust Profile

The usual individual gust, or discrete gust, idealization of the gust structure,
reported also in CS 25 regulation, consist in a "1− cos" ("one-minus-cosine") pulse,
as shown in Figure 3.4.

Figure 3.4: "1− cos" Discrete Gust Idealization

Mathematically, the shape of the gust is described as follows:

Ug =


Uds
2

5
1− cos

3
πs

H

46
0 < s ≤ 2H

0 s > 2H
(3.4)

Where s represents the distance penetrated in to the gust; H is the gust gradient,
which is the distance parallel to the aircraft flight path for the gust to reach its peak
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velocity (ranges between 9m and 107m). Lastly, Uds is the design gust velocity in
equivalent airspeed, given by the following formula:

Uds = UrefFg

3
H

107

41/6

(3.5)

In which, Uref represents the reference gust velocity in equivalent air speed, indicated
by CS 25 regulation as a function of altitude for a gust gradient H of 107m. Finally,
Fg represents the flight profile alleviation factor. In defining the value of Uref at each
altitude, it is assumed that the aircraft is flown 100% of the time at that altitude.
The factor Fg is applied to account for the expected service experience in terms of
the probability of the aeroplane flying at any given altitude within its certification
altitude range. Fg value is minimum at sea level, linearly increasing to 1.0 at the
certified maximum altitude. At sea level, Fg can be determined by the following
equation:

Fg = 0.5 (Fgz + Fgm) (3.6)

Where:
Fgz = 1− Zmo

76200 (3.7)

Fgm =
ó
R1 tan

3
πR2

4

4
(3.8)

R1 = MLW

MTOW
(3.9)

R2 = MZFW

MTOW
(3.10)

In which Zmo is the aircraft maximum operating altitude, MLW is the maximum
landing weight, MTOW is the maximum take-off weight and MZFW is the maxi-
mum zero fuel weight.

The "1 − cos" gust idealization is a straightforward method to represent atmo-
spheric turbulence acting on an aircraft during flight and thus an "easy-to-use" tool
to determine gust loads within a good approximation. For this reason is included
in both military and civil regulations and must be taken in consideration during
aircraft design.

However, it does not represent well the continuous and irregular nature of gust
profiles, as represented in the example in Figure 3.3. For this reason gust profiles are
often idealized as "stationary Gaussian random processes". With this method, the
profile is considered stationary, that means it is considered of infinite duration and
its statistical properties are the same wherever it may be sampled. The gust time
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history it is also Gaussian, because if it is sampled at random, the resulting prob-
ability distribution is Gaussian (or "normal") and defined by a probability density
function:

p(y) = 1√
2πσy

e
− 1

2

1
y
σy

22

(3.11)

where σy is constant. Finally the term "random" indicates that the profile has no
apparent pattern or regularity, thus it can be defined only in terms of its statistical
characteristics.

This idealization is vastly more realistic than the simple discrete-gust idealiza-
tions. In fact, it provides:

• Infinite shape variation of the individual gusts.

• Variation of gust magnitude with the gust gradient distance H.

• Proper superposition of short-gradient gusts, that excite the various elastic
modes, with the longer-gradient gusts, that give the largest rigid-aircraft loads.

• The reduced gust velocity properly associated (on an equal-probability basis)
with a resonant series of gusts.

In addition, several mathematical techniques are available to use this idealization,
as generalized harmonic analysis or power-spectral analysis. These permit to de-
termine the statistical characteristics of the aircraft response (accelerations, loads,
etc.) directly from the statistical description of the gust velocity profile. For this
reason, before describing the most used continuous gust models, in section 3.3 some
probability and PSD2 concepts are given.

3.3 Probability and PSD Concepts
First of all, a measure of the magnitude of the continuous gust profile must be
determined. Let y be any stationary random function of time, as the gust time
history in Figure 3.3. The magnitude of the fluctuations of y over its mean value,
can be measured by its RMS3 value σy, defined as:

σy =
ñ
y2 =

ó
lim
T→∞

1
2T

Ú T

−T
[y(t)]2 dt (3.12)

2Power Spectral Density
3Root-Mean-Square
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in which the "bar" over y denotes the average. This equation applies only when the
mean value of y is zero. If it is not then, for the purpose of Eq. 3.12, y has to be
taken as an increment to its mean value. For example if y is, instead of the gust
velocity, the aircraft response, y is taken to be the increment relative to the 1-g
level flight value. To evaluate σy from a time history, the time history can be read
at small uniform intervals, or it can be sampled randomly, as represented in Figure
3.5. In either case, Eq. 3.12 becomes:

σy =
ñ
y2 =

öõõô lim
N→∞

1
N

NØ
i=1

[y(ti)]2 (3.13)

Figure 3.5: Example of Gust Sampling

Note that y is squared before averaging because otherwise positive and negative
fluctuations will offset each other to give a value of zero. Thus, the purpose of
measuring the magnitude of the fluctuations of y would be defeated.

Other two important concepts to better understand the magnitude of y are the
probability density and the probability distribution. The probability density p(y) is
defined as the quantity such that, in any trial, the probability that y lies between y1
and y1 + dy is equal to the area of the element p(y1)dy, as shown in Figure 3.6. The
term y1 is a particular value of y. In the example in Figure 3.6, p(y) is symmetrical
about y = 0. This symmetry is characteristic of a stationary Gaussian random
process but is not necessary in general.

The probability distribution P (y), schematized in Figure 3.7, is defined as the
probability that y < y1, and its given by:

P (y) =
Ú y1

−∞
p(y)dy (3.14)
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Figure 3.6: Probability Density

Another way to define the probability distribution is the function 1 − P (y), which
is the probability that y is greater than y1:

1− P (y) =
Ú ∞
y1

p(y)dy (3.15)

Figure 3.7: Probability Distribution

Graphically 1−P (y) plot can be obtained simply by mirroring Figure 3.7 around
the ordinate axis, but it is usually plotted in semi-logarithmic scale, as reported in
Figure 3.8.

This form of plot is especially useful in connection with selection of design values
of y, especially for values that are exceeded with low probability. For example, a
value of 0.00026, is simpler both to understand and plot than 0.99974. Also, it
permits to express the value of y as a two-significant-figure number instead of a
five-significant-figure one.
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Figure 3.8: 1− P (y) in Logarithmic Scale

As already stated in section 3.2, a particular probability distribution of great
importance for continuous gust modelling is the Gaussian probability distribution.
This is defined by the probability density given by Eq. 3.11, where σy is the RMS
value of y. Note, again, that y is the difference between y and its mean: if y is taken
as the quantity itself, it should be replaced with (y−ymean) in Eq. 3.11. Graphically,
Figure 3.6 shows an example of Gaussian probability density.
Importance of normal distributions is partly due to the central limit theorem, which
states that, under some conditions, the average of many samples (observations) of
a random variable with finite mean and variance (defined as σ2

y) is itself a random
variable whose distribution converges to a normal distribution as the number of
samples increases. For this reason, Gaussian distributions are often used to represent
real-valued random variables whose distributions are not known, such as continuous
gust velocities.

In loads applications, an additional requirement is that the probability density
of ẏ is also Gaussian and ẏ has to be independent of y. An alternate way to express
this requirement is that the process has to be "joint Gaussian", which means that
the joint probability density of y1 and y2, where y1 and y2 are values of y separated
by a given time increment τ , has to be Gaussian. A joint probability density is
defined analogously to a single variable probability density, thus is expressed as the
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probability that x is between x and x+ dx and at the same time y is between y and
y + dy is p(x, y)dxdy, where:

p(x, y) =

= 1
2πσxσy

√
1− r2

exp
− 1

1− r2

1
2

A
x

σx

B2

− r
A
x

σx

BA
x

σy

B
+ 1

2

A
x

σy

B2
 (3.16)

It can be demonstrated that if this more fundamental requirement is met, then the
previously stated additional requirement, that ẏ be Gaussian, is also met.

The practical importance of any additional requirement, over and above the one
that the distribution of y itself has to be Gaussian, is that is necessary in the deriva-
tion of Rice’s equation. Rice’s equation is the basis for the analytical determination
of frequency of exceedance curves, which are used to apply the probabilistic nature
of the atmospheric turbulence directly as loads on the structure. In practice, the
probability distribution of any load quantity y, expressed in the form 1 − P (y),
can be thought as equivalent to the fraction of time, over a very long sample, that
y will be in excess of y1. However, this probability tells nothing at all about the
probability that a maximum peak within some finite time interval, will be in excess
of a certain y1. Nor does it indicate the number of peaks to be expected, in excess
of various values of y1 within the same time interval. For this kind of information,
frequency of exceedance data is needed. Although this is not this thesis objective,
is noticeable how the data given by this approach is useful in the determination of
the aircraft load spectrum, thus in the fatigue sizing of structural components.

Recapping what has been said so far, the magnitude of a stationary Gaussian ran-
dom process is defined statistically by its RMS value and its probability distribution
(Gaussian). In order to complete the statistical description of the random process,
it is required, in addition, the definition of its frequency content.

A stationary Gaussian random process can be considered to be generated by the
superposition of an infinite number of sinusoidal components, which differ infinites-
imally in frequency (ω) from one to the next. Also, each component is of prescribed
infinitesimal amplitude and each is randomly phased relative to the others.
Mathematically this can be expressed as:

y(t) =
∞Ø
m=1

ñ
Φ(ωm)∆ωü ûú ý

Inf. Amplitude

cos(ωmt+ Ψmüûúý
Random Phase

) (3.17)

How sinusoids superimpose to form a stationary Gaussian random process is illus-
trated in the example in Figure 3.9. Note that a sum of a limited number of sinusoids
has already the appearance of a stationary Gaussian random process.
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Figure 3.9: Example of Superimposition of Sinusoids

Returning on Eq. 3.17, the term Φ(ωm) is called the PSD of the process, which, as
a continuous function of frequency ω, provides the complete measure of the frequency
content of the process. Physically speaking, if Φ(ω) is the PSD of the quantity y(t),
then Φ(ω)dω is the contribution to y2 (or σ2

y) of frequencies between ω and ω + dω
(Figure 3.10). In terms of RMS this can be expressed as:

σy =
óÚ ∞

0
Φ(ω)dω (3.18)

Figure 3.10: PSD Scheme
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Given Φ(ω), an infinite number of time histories can be generated by means of
Eq. 3.17. Conversely, given a time history a single PSD can be calculated. This
could be done, for example, using the "autocovariance function", defined as:

R(τ) = y(t)y(t+ τ) = lim
T→∞

1
2T

Ú T

−T
y(t)y(t+ τ) dt (3.19)

This expresses the correlation of a function with itself ("auto") at points separated
by various times τ . For τ = 0, R = y2 = σ2

y, quantity which in statistics is often
referred as "variance". The PSD can be determined from R(τ) as follows:

Φ(ω) = 2
π

Ú ∞
0

R(τ) cosωτ dt (3.20)

Conversely:
R(τ) =

Ú ∞
0

Φ(ω) cosωτ dt (3.21)

Equations 3.20 and 3.21 are a special form of Fourier transform. This is only an
example of how determine a PSD from a time history. A more effective way, in
terms of computational cost, is given by the Fast Fourier Transform method (FFT),
which is not covered in this thesis.

In general, given a gust PSD, two types of approach can be followed to determine
the gust response of an aircraft. One consist in to use the gust PSD to generate a
gust velocity time history, which its then used to perturb the aircraft model. This
method is the one selected for this thesis and it is described in Section 3.4. The
other approach consist in to use the gust PSD (input) to determine the PSD of the
aircraft response (output), and will be briefly described below.

For a linear system, with subscripts i and o denoting input and output, the input
spectrum (Φi) is multiplied, frequency by frequency, by the square of the modulus
of the frequency-response function (transfer function), to give the output spectrum:

Φo(f) = Φi(f) |H(f)|2 (3.22)

The output probability distribution, if the input probability distribution is Gaussian,
will also be Gaussian. The output RMS value is given by the square root of the area
under the output PSD curve, as given by Eq. 3.18.

In gust loads applications, the transfer function is obtained by solution of the
differential equations of motion of the aircraft: the input is a sinusoidally varying
(steady state) gust velocity, and the various outputs are the corresponding sinu-
soidally varying shears, bending moments, torsions, accelerations, concentrated in-
ertia forces, and/or whatever else may be of interest.
This approach can be useful, for example, to determine if and how much gust loads
increase due to structural flexibility. It is sufficient to determine the frequency
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response function for both the rigid and the flexible aircraft. Then use those to
calculate, for example, both flexible and rigid bending moment PSD by means of
Eq. 3.22. Therefore it is possible to calculate, using Eq. 3.18, the RMS of the
output PSD. The ratio of flexible-aircraft to rigid-aircraft bending moments is then
given by the ratio of the RMS values, thus obtaining a ratio between both bending
moments magnitude. This approach, using a von Kármán’s vertical gust PSD shape
as input (described in Section 3.4), is basically the one presented in CS-25 regulation
for continuous gust loads determination.

However this method requires the system to be linear in order to determine its
transfer function and thus applying Eq. 3.22. Since the aircraft model presented in
this thesis is expressed by a non-linear system, this gust load determination method
based on PSD is not suitable for this work.

3.4 Dryden and von Kármán Turbulence Models

Two continuous gust, or turbulence, models have been widely used in aircraft design
and simulation applications: those are the Dryden and von Kármán models. Both
models define the linear and angular velocity components of continuous gusts as
stationary Gaussian random processes and specify each component PSD by means
of mathematical expressions. Both of these models PSD and the procedures related
to them are reported in [13], [28] and [29].
For the head-on gust velocity ug, the corresponding PSD Φu(ω) is defined as:

Dryden

2σ2
uLu
πV

· 1

1 +
3
Lu

ω

V

42 (3.23)

von Kármán

2σ2
uLu
πV

· 1C
1 +

3
1.339Lu

ω

V

42
D5/6

(3.24)

For vertical and lateral gust velocities wg and vg, the corresponding PSD Φw(ω) and
Φv(ω) are the same and are defined as:

Dryden

2σ2
wLw
πV

·
1 + 12

3
Lw

ω

V

42

C
1 + 4

3
Lw

ω

V

42
D2 (3.25)

von Kármán

2σ2
uLu
πV

·
1 + 8

3

3
2.678Lw

ω

V

42

C
1 +

3
2.678Lu

ω

V

42
D11/6

(3.26)

As mentioned above, these models specify also angular velocity components PSD.
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Since the flexible model presented in this thesis takes in consideration only the air-
craft longitudinal dynamics, only the pitch rate PSD Φq(ω), which is the same for
both Dryden an von Kármán models, is here reported:

Φq(ω) =
±
3
ω

V

42

1 +
A

4bω
πV

B2 · Φw(ω) (3.27)

In both military and civil regulations, these PSD are expressed in terms of spatial
frequency Ω, instead of circular frequency ω, which can be written as:

Ω = ω

V
(3.28)

Where V is the speed with which the aircraft is moving through the gust field.
Therefore, the PSD in terms of spatial frequency are expressed as:

Φi(Ω) = V Φi(ω) (3.29)
Other terms appearing in the PSD equations are the turbulence intensity σi,

which is the gust component RMS, and the turbulence scale length Li. This latter
variable, in practice, determines the frequency at which the knee of the PSD curve
occurs: in other words, Li influences the shape of the PSD curve, as shown in
Figure 3.11. This implies that the value of Li should be chosen so that the resulting
gust PSD fits , as closely as possible, the actual turbulence that the aircraft will
encounter. However, as pointed in Figure 3.11, for values of L ≥ 1000 ft, the
turbulence scale length affects the RMS value without changing the curves in the
region of frequencies where the aircraft develops load.

For this reason, in civil aircraft design, for gust load determination purposes Li
tent to be selected as constant: CS-25 regulation takes Li equal to 2500 ft for all
altitudes, while the gust RMS is changed and scaled with a Fg factor, which is the
same of Eq. 3.6 pointed in Section 3.2.

However, for altitudes less than about 2500 ft above the ground, the scale of
turbulence probably tends to be less, especially for the vertical component. This is
surely important for high-speed flight at low altitudes but also when modelling the
aircraft landing. For this reason, military regulations attempt to reflect this turbu-
lence reduction specifying a low-altitude model (h ≤ 1000 ft) and a medium/high-
altitude model (h ≥ 2000 ft).

For altitudes less than 1000 ft, the turbulence scale length for both Dryden and
von Kármán is taken as:

2Lw = h (3.30)

Lu = 2Lv = 1
(0.177 + 0.000823h)1.2 (3.31)
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Figure 3.11: Effect of L on PSD

The fact that longitudinal turbulence scale length is twice as great then the ver-
tical and lateral ones is obtained experimentally by expressing Li in terms of the
autocovariance function (Eq. 3.19), as follows:

L =
s∞

0 R(τ) dt
R(0) (3.32)

The turbulence intensities σi instead, are given, again for both models as:

σw = 0.1W20 (3.33)
σu
σw

= σv
σw

= 1
(0.177 + 0.000823h)0.4 (3.34)

WhereW20 is the wind speed at 20 ft, which is typically 15 knots for light turbulence,
30 knots for moderate turbulence and 45 knots for severe turbulence. Note that, at
low altitudes, wind speed is taken in wind axes, thus a direction cosine matrix must
be defined to rotate the gust velocities in body axes.
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For altitudes above than 2000 ft, the turbulence scale length is taken as:

Dryden

Lu = 2Lv = 2Lw = 1750ft (3.35)

von Kármán

Lu = 2Lv = 2Lw = 2500ft (3.36)
The turbulence intensities instead have the same value in all directions and are de-
termined from a lookup table that provides the turbulence intensity as a function of
altitude and the probability of the turbulence intensity being exceeded. This table
is derived from the graphic in Figure 3.12. The turbulence axes orientation in this
altitude region is defined as being already aligned with the body coordinates.

Figure 3.12: Medium/High Altitude Turbulence Intensities

Finally, for altitudes between 1000 ft and 2000 ft the turbulence velocities and
turbulence angular rates are determined by linearly interpolating between the value
from the low altitude model (transformed in body coordinates) and the value from
the high altitude model.

At this point it remains to explain how to recreate a gust velocity time history
starting from a gust PSD given by Dryden or von Kàrmàn model. This can be done
by passing a band limited white noise 4 through a forming filter derived from the

4In signal processing, white noise is a random signal having equal intensity at different frequen-
cies, giving it a constant power spectral density.
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gust PSD. This leads to an output signal with the same PSD of the chosen model,
which can be used as wind disturbance. For Dryden’s PSD, an exact filter can be
derived from the spectral square roots of the spectrum equations (spectral factoriza-
tion process). For von Kàrmàn’s PSD, the desired filter can only be approximated.
For the longitudinal gust component, the filter Hu(s) is given by:

Dryden

σu

ó
2Lu
πV
· 1

1 + Lu
V
s

(3.37)

von Kármán

σu

ó
2Lu
πV

3
1 + 0.25Lu

V
s
4

1 + 1.357Lu
V
s+ 0.1987

3
Lu
V

42
s2

(3.38)

For the vertical and lateral gust components, the filters Hw(s) and Hv(s) are given
by:

σw

ó
Lw
πV
·

1 +
√

3Lw
V
s3

1 + Lw
V
s
42 Dryden (3.39)

σw

ó
2Lw
πV

A
1 + 2.74782Lw

V
s+ 0.3398

32Lw
V

42
s2
B

1 + 2.99582Lw
V

s+ 1.9754
32Lw
V

42
s2 + 0.1539

32Lw
V

43
s3

von Kármán (3.40)

Finally, for the pitch rate angular velocity gust component, the filter Hq(s) for both
Dryden and von Kármán models is defined as:

Hq(s) =
± s
VA

1 +
A

4b
πV

B
s

B ·Hw(s) (3.41)

Knowing these filters expressions allows to, since a white noise is by definition a
random signal, generate an infinite number of gust time histories witch share the
same PSD.

Speaking of the two turbulence models here presented, the von Kármán gives the
better fit to observed data and for this reason it is the standard for design use. The
Dryden model has retained its importance primarily because of the ease of deriving
the filter needed to generate a proper gust time history.

Regarding model implementation, the Matlab/Simulink Aerospace Blockset pro-
vides already a block containing both Dryden and von Kármán models as described
above. An example of moderate continuous turbulence time history for the vertical
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gust velocity component, generated using the von Kármán model block in Simulink,
is shown in Figure 3.13.

Figure 3.13: Continuous Gust Example

Once the gust time history is obtained, two approaches can be followed to im-
plement it as disturbance in the model. The first is to derive the variation over time
of the angle of attack due vertical gust perturbation by means of Eq. 3.1. Then
use it as external perturbation of the angle of attack obtained by the rigid model.
However, this approach does not take in consideration an eventual head-on or pitch
rate perturbation. This is acceptable in terms of civil aircraft regulation, since CS-
25 gives requirements only on vertical and lateral gusts.
A second method is to consider the gust velocities as direct perturbation of the
rigid ones inside of the aircraft rigid model. This permits to consider all the de-
sired velocities, although it is formally incorrect since, by definition, a gust is an
external disturbance. However, this approach permits to consider different gust
perturbations at the same time, giving possibly a more realistic atmospheric turbu-
lence behaviour.
In either case, gust disturbances act firstly on the rigid model which then influ-
ences, as explained in Chapter 2, the flexible behaviour of the aircraft by means of
Lagrange’s equations (Section 2.3).

44



Chapter 4

Wing Response & Load
Determination

Having defined a gust model, it is possible to use the resulting velocity time histories
to perturb the rigid aircraft model. The rigid model response, in turn, influences
the flexible wing response in terms of bending, torsion and their relative rates by
means of Lagrange’s equation, as explained in Section 2.3.
Knowing how the wing reacts to an external perturbation, anyway, does not give
directly any information on the loads this perturbation has generated on the flexible
structure. Load determination is important in both aircraft structural analysis,
which is largely performed via FEM1 simulations, and in control system design,
especially for GLA2 purposes.

Generally, dynamic flexible aircraft models, as the one presented in this work,
can not leave aside completely a prior FEM analysis of the flexible structure, since
data needed in the model as, for example, shape functions and Young’s modulus
of every considered airframe section are not easily computable without having an
accurate structural model. Anyway, although determining loads by means of a FEM
analysis leads to more accurate results, this approach introduces significant compli-
cation both in calculations and in the model definition.
For this reason, in this chapter two approaches for gust load determination are pre-
sented and compared. The first is directly linked to the flexible model as presented
in Section 2.3.4, whereas the second is linked to the strip theory. While the first it
is more accurate but dependant from some FEM data as explained above, the sec-
ond requires some approximations and simplifications, but also does not necessarily
require FEM data in order to determine the flexible loads.

1Finite Element Method
2Gust Load Alleviation
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Furthermore, the first part of this chapter will show the wing response to discrete
and continuous gusts in terms of flexible accelerations, in order to give a complete
overview of how an external perturbation influences flexible dynamics.

4.1 Wing Response
In order to analyse the generic flexible wing response to a gust perturbation, a
proper model, following the theory addressed in Chapter 2, was implemented using
Matlab/Simulink software. Some general wing geometry data and the aircraft mass
used in the model are shown in Table 4.1. The model considers the aircraft being in

Wing Geometry & Aircraft Mass
Wing Span 29.65 m
Mean Aerodynamic Chord 2.56 m
Wing Surface 73.28 m2

Aircraft Mass 20147 kg

Table 4.1: General Aircraft Data

cruise phase with an OEW3 mass configuration. The aerodynamic force and moment
coefficients are calculated using classical flight mechanics linear expressions:

CL = CL0 + CLαα +
1
CLα̇α̇ + CLqq

2 c̄
V

+ CLδeδe + CLδa (δaR + δaL) (4.1)

CM = CM0 + CMαα +
1
CMα̇α̇ + CMqq

2 c̄
V

+ CMδe
δe (4.2)

CD = CD0 + kC2
L + CDδa (δaR + δaL) (4.3)

In which c̄ is the mean aerodynamic chord and the subscripts R and L denote re-
spectively right and left wing. Furthermore, these coefficients are considered reliable
under the following hypotheses:

• Mach number M ≤ 0.3

• Angle of Attack 0° < α < 4°

• Maximum deflection of control surfaces ±10°

3Operative Empty Weight
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Also note that the aileron deflection derivative here accounted is referred to the
symmetric activation of the control surfaces, since, as already stated in Section 2.1,
only the longitudinal aircraft dynamics are considered in the presented model.

Regarding the flexible part of the model, the wing is considered divided in 30
sections and mounted to the aircraft with null dihedral and sweep angles. Shape
functions values were approximated idealizing the wing as a cantilever beam.

Once the initial data is defined, the flexible model is applied as explained in Sec-
tion 2.3. The obtained system of Lagrange’s equations (Eq. 2.60) is then reorganized
in the matrix form shown in Eq. 2.61. This "mass-spring-damper" configuration of
the flexible dynamics equations permits to easily determine the accelerations of the
wing sections in terms of generalized coordinates:

{q̈} = [M ]−1 [{fq} − [C] {q̇} − [K] {q}] (4.4)

Where is recalled that q = {η1, η2, ζ1} is the generalized coordinates vector, fq is the
vector containing the terms related to the rigid dynamics and thus not dependant
on the wing deformation and M , C and K are respectively the mass, damping and
stiffness matrices of the flexible system.
The generalized coordinates vector can be determined by integrating q̈ two times
consecutively. This integration can be done by using quadrature methods, as for
example, the trapezoidal rule or its composite variant.
Once the generalized coordinates vector is obtained, the actual wing deflection and
torsion of each section are easily determinable by multiplying each mode amplitudes
by the respective shape function, as shown in Eq. 2.31 and 2.32. The same approach
can be applied to determine the flexible velocities and accelerations from q̇ and q̈.

Following this approach is thus possible determining the wing response to a gust
disturbance or to a command.

Firstly, the wing response to an elevator step is evaluated. This type of com-
mand is useful to highlight the differences between the wing response in terms of
acceleration and deformation rates, which are not appreciable when analysing more
gradual perturbations, as discrete or continuous gusts. Figures 4.1 and 4.2 show
respectively bending and torsion rates, while Figures 4.3 and 4.4 show the respec-
tive accelerations. All the results are scaled in percentage of the maximum peak
occurred during the simulation and are given for three different wing sections: wing
root section, a mid wing section and the wing tip section.
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Figure 4.1: Wing Bending Rate after an Elevator Step

Figure 4.2: Wing Torsion Rate after an Elevator Step
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Figure 4.3: Wing Bending Acceleration after an Elevator Step

Figure 4.4: Wing Torsion Acceleration after an Elevator Step
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In these graphs is already visible how torsional response is in general more "noisy"
when compared to bending response. This is given to the grater stiffness along the
wing chord, which results in a more oscillatory response. Also in Figure 4.4 it is clear
how this grater torsional stiffness generates numerical issues when an instantaneous
perturbation, as a step command, is evaluated.

The first analysed perturbation is a "1− cos" vertical discrete gust as described
in Eq. 3.4, having:

H = 26m Uref = 17.07 m
s

The obtained gust profile is shown in Figure 4.5. This gust velocity is then used to
describe the perturbation in terms of angle of attack:

αg ≈
wg
V

(4.5)

which is in turn used in the rigid dynamics equations to perturb the aircraft:

αAC = αRIG + αg (4.6)

The graphs in Figure 4.6 and Figure 4.7 show respectively the wing response in
terms of bending and torsion accelerations. Again, the results are referred to three
wing section and scaled in percentage of the maximum occurred peak.

Figure 4.5: "1− cos" Gust Profile
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Figure 4.6: Wing Bending Acceleration after a "1− cos" Gust

Figure 4.7: Wing Torsion Acceleration after a "1− cos" Gust
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Another analysed perturbation consist in a von Kármán continuous vertical gust
shown in Figure 4.8. As reported in Section 3.4, since the model considers the aircraft
being in cruise, the turbulence scale length is set to 2500 ft. The turbulence intensity
(RMS) is set to "moderate" which corresponds to a probability of exceedance of 10−3

as shown in Figure 3.12. The wing response is again reported in terms of flexible
acceleration and scaled in percentage of the maximum peak, as shown in Figure 4.9
and Figure 4.10. Both graphs show only the first part of the turbulence, in order to
give a more clear view of the wing response.

Comparing the obtained results, is immediately visible the irregular nature of
the wing response after a continuous randomly generated gust, especially when
compared to the discrete gust response, which shows a typical second order dynamic
system trend. Although continuous gust gives a more accurate representation of the
atmospheric turbulence, its "noisy" nature makes sometimes the results difficult to
read, especially if the analysed system has high stiffness, as for the wing torsion
response. In fact in Figure 4.10 is visible how every gust velocity peak generates a
"stand-alone" response which is immediately dumped until another peak is reached.
This phenomena does not occur with the bending acceleration since the wing stiffness
along the wing span is smaller than along the wing chord.
In general, continuous gusts are uses to excite the various elastic modes, while
discrete gusts are used to generate and study large loads on the structure.

Figure 4.8: Continuous von Kármán Gust Profile
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Figure 4.9: Wing Bending Acceleration after a von Kármán Gust

Figure 4.10: Wing Torsion Acceleration after a von Kármán Gust
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4.2 Load Determination

4.2.1 MCK Method
Following the model presented in Section 2.3, an accurate method to determine the
flexible loads is given by Eq. 2.61. Since an external gust is used to perturb the
aircraft, the matrix form of the Lagrange’s equations system can be rewritten as:

Mq̈ + Cq̇ +Kq = fq0 + fg (4.7)

Where fg represents the vector of elastic loads generated by the external perturba-
tion in terms of generalized coordinates. This component appears in the equation
since, as explained in section 2.3.3, external aerodynamic forces can be expressed
as sum of the load generated by the current values of transport and deformation
variables ("frozen" configuration) and the load increment generated by the deforma-
tion rates. The term fg represents this load increment over the "frozen" loads of the
trim conditions fq0 . In practice, fg represents the loads terms given by the Rayleigh
dissipation function as expressed in Eq. 2.48 and 2.49. Having already defined the
entire system, the elastic loads can be easily obtained as follows:

fg = fq0 − (Mq̈ + Cq̇ +Kq) (4.8)

However, from Eq. 4.8, fg is still expressed in terms of generalized coordinates and
thus it has to be properly multiplied by the shape function of every considered wing
element k:

f (k)
ag = fgη1

Φ(k)
1 + fgη2

Φ(k)
2 (4.9)

M (k)
ag = fgζ1

Ψ(k)
1 (4.10)

The terms f (k)
ag and M (k)

ag represent respectively the aerodynamic force and the aero-
dynamic moment generated by the wing deformation on the k-th wing element.
These loads are expressed in terms of the aerodynamic chord of the considered sec-
tion and thus can be seen as distributed loads over the wing span, as schematized
in Figure 4.11.

Therefore, the bending moment generated by the wing deflection calculated at
the wing root can be expressed as follows:

Mbending = Myw =
NØ
k=1

Ú x(k)

0
f (k)
ag x

(k)
w dx =

NØ
k=1

f (k)
ag

x2(k)
w

2 (4.11)

Similarly, the torsion moment, since it is also distributed over the wing span, can
be calculated at the wing root as follows:

Mtorsion = Mxw =
NØ
k=1

M (k)
ag x

(k)
w (4.12)
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Figure 4.11: Distributed Loads Over The Wing Span

Following this approach it is thus possible to determine the wing loads, in terms
of wing bending and torsion moment, starting directly from the "MCK" definition
of the system. This is convenient if a model of the flexible dynamics is available,
which requires several structural terms that are given from a previous structural
analysis. However, in the event that the only available information is the wing
response in terms of deformations and relative deformation rates, the MCK method
results difficult to apply, and therefore an alternative approach must be found.

4.2.2 Strip Theory
Another, even more simple, method for load determination is given by the strip
theory as described in Section 2.2. Neglecting 3D effects associated with finite
elongation wings, the aerodynamic loads are expressible in terms of local angle of
attack variation of every considered wing section. This angle of attack, as already
stated in Section 2.3.3, can be expressed in terms of rigid and flexible variables and,
in the hypothesis of small perturbations, is defined as follows:

αw ≈ αWB+ iw(xw)− q
u
xF (xw)+ ξ̇w(xw, t)

u
+θw(xw, t)+ θ̇w(xw, t)(xθ − xCA)

u
(4.13)

Where again xF represents the distance between the aerodynamic centre of the
considered section and the aircraft CG in body reference frame and (xθ − xCA)
represents the distance between the torsion axis and the airfoil aerodynamic center.
Note that the spatial derivative of the wing deflection ξÍ

w does not influence the local
angle of attack, but it generates a small rotation of the lift vector around the yw
axis of the wing reference frame. However, in this case, since the deformations are
small, the effect of this rotation can be neglected.

Therefore, knowing αw and CLα of the considered wing element it is possible to
determine its CL:

CL(αw, xw) = CLα(xw)αw(xw) (4.14)
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And thus CD by the following quadratic relation:

CD(αw, xw) = CD0 + k (CL(αw, xw))2 (4.15)

With:
k = 1

π b
2

S
e

(4.16)

In which e is the Oswald factor, in this case taken as 0.9. At this point, knowing the
lift and drag coefficients it is possible to determine the aerodynamic force coefficient
CZ of the considered wing section:

CZ(αw, xw) = −CL(αw, xw) cosαw − CD(αw, xw) sinαw (4.17)

At this point it is possible to easily determine the aerodynamic force and moment
acting on every wing section as follows:

fAw = 1
2ρV

2c(xw)CZ(αw, xw) (4.18)

MAw = 1
2ρV

2c(xw)CZ(αw, xw)(xθ − xCA) (4.19)

These loads as well are expressed in terms of the aerodynamic chord of the considered
section and thus can be seen as distributed loads over the wing span. Therefore
bending and torsion moments at the wing root can be expressed by means of Eq.
4.11 and Eq. 4.12, equally to the loads determined with the MCK method.

4.3 Results Comparison
This section is dedicated to show and compare the results given by the two methods
presented in Section 4.2. Figures 4.12 and 4.13 represent respectively bending and
torsion moments at wing root generated by an elevator step. Both graphs are referred
to the loads generated by only the deformation rates, in order to eliminate the loads
associated with the "frozen" trim configuration and make the MCK and strip theory
methods comparable. For this reason, in the least method, the angle of attack
given by Eq. 4.13 was reduced considering only the deformation rates ξ̇w and θ̇w.
In the same way, Figures 4.14 and 4.15 represent respectively bending and torsion
moments at wing root generated by the "1− cos" discrete gust shown in Figure 4.5.
Concluding, Figures 4.16 and 4.17 show bending and torsion moment generated by
the deformation rates only after the von Kármán continuous gust represented in
Figure 4.8.
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Figure 4.12: Wing Root Bending Moment - Deformation Only - Step of δe

Figure 4.13: Wing Root Torsion Moment - Deformation Only - Step of δe
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Figure 4.14: Wing Root Bending Moment - Deformation Only - "1− cos"

Figure 4.15: Wing Root Torsion Moment - Deformation Only - "1− cos"
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Figure 4.16: Wing Root Bending Moment - Deformation Only - von Kármán

Figure 4.17: Wing Root Torsion Moment - Deformation Only - von Kármán
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For all the considered perturbations, results where again scaled to the maximum
peak occurred during the simulations. In all graphs it is visible how the results
obtained with the strip theory are less damped then the ones obtained with the
"MCK" method, especially for the torsion load. This happens because the strip
theory takes all structural information from only the deformation rates, and thus
this clearly results in an approximation of the structural loads, and particularly of
the structural damping. In any case, the difference between the two methods its
about 5%-13% at the bending load peak and 15%-20% at the torsional load peak.

Both of the methods here proposed bring several simplifications and limitations
with them:

• CLα is the only aerodynamic derivative considered to determine the flexible
dynamic loads, thus neglecting all the other aerodynamic effects. Also this
derivative should be calculated for every considered wing section in order to
guarantee more accurate results.

• Due to the model definition, these methods consider only the aircraft longitu-
dinal dynamics effects.

• Load determination accuracy is heavily influenced by the number of wing
sections considered, since the aerodynamic loads along the wing span are ap-
proximated as a superimposition of the distributed loads generated by these
sections. If the number of wing stations is excessively limited, the reconstruc-
tion of the loads may be not accurate.

Furthermore, the strip theory method is valid only if the wing is the only consid-
ered flexible surface of the aircraft. If other components, as for example the fuselage,
are considered flexible, this simplified method would not be suitable for determine
the loads of the whole aircraft, and thus other methods must be found. However,
this method allows to have an almost accurate estimation of the dynamic loads act-
ing on the wing without necessarily having a prior FEM model. The deformation
rates used to determine the local angle of attack (Eq. 4.13) can be obtained directly
by means of sensors placed on desired wing stations. This represents an advantage
since, in this case, a prior structural analysis to determine data as, for example,
the shape functions of the considered wing sections are not needed. However, the
strip theory represents a further approximation over the MCK method, which is
preferable if a flexible model is already available.
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Chapter 5

Control System Design

The last part of this thesis will focus on the design of a control system able to reduce
the dynamic loads determined in Chapter 4. As already mentioned before, this loads
are generated by the flexible wing response to an external perturbation: therefore,
controlling the wing deformation, and, in particular, deformation rates, permits to
influence the loads acting on the surface.

However, applying an effective controller directly in the flexible variables is not
simple and requires a large amount of data concerning the flexible structure. For
this reason, the control strategy proposed in this thesis consist in acting on the
rigid aircraft response to an external perturbation, in order to indirectly reduce the
flexible structure response and thus the generated dynamic loads.

This can be done by means of a Linear Quadratic Regulator (LQR) acting on
both elevator deflections and symmetric aileron deflections. However, this controller
can be applied on LTI1 systems, and thus a linear state-space definition of the model
must be defined.

So at beginning of this chapter, a linear state-space definition of the aircraft
longitudinal dynamics is given. This is done by means of dimensional derivatives,
following the approach reported in [30].

Then a description of the LQR controller theory, as reported in Reference [31],
from the cost function definition to the Algebraic Ricatti Equation (ARE) is given,
in order to better understand its implementation in the aircraft model.

Finally, the last part of the chapter will be dedicated to display the results
in terms of reduction of the aerodynamic loads generated by both discrete and
continuous gust. This loads will be determined with the MCK method reported in
Section 4.2.1, since this is the more accurate method of the two presented in this
work.

1Linear Time-Invariant
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5.1 State-Space System Definition
To proceed with the LQR controller design, the rigid aircraft model must be defined
as an LTI system as follows:

ẋ = Ax+Bu (5.1)

Where A is the state matrix, x is the state vector, B is the control matrix and u
is the control vector. Since only the longitudinal dynamics are considered in the
aircraft model, the state vector is composed of only four elements:

x = {u,w, q, θ}T (5.2)

While the control vector contains only elevators and ailerons deflection, neglecting
throttle effects:

u = {δe, δa}T (5.3)

Therefore, A will be a [4× 4] matrix and B a [4× 2] matrix.
The characteristics of the longitudinal motion can be determined starting from

aerodynamic forces and moments, expressed by mean of dimensional aerodynamic
derivatives. Therefore, resolving in terms of accelerations, the system can be wrote
as:

u̇ = Xuu+Xww − g cos θ

ẇ = Zu
1− Zẇ

u+ Zw
1− Zẇ

w − g

1− Zẇ
sin θ + Zq + V0

1− Zẇ
q + Zδe

1− Zẇ
δe + Zδa

1− Zẇ
2δa

q̇ = Muu+Mww +Mẇẇ +Mqq +Mδeδe +Mδa2δa
θ̇ = q

(5.4)
In which V0 is the initial aircraft speed and aileron deflections are multiplied by 2
as, in longitudinal dynamics, only their symmetrical deflection is considered. Sub-
stituting the second equation in the third equation, q̇ expression becomes:

q̇ =
3
Mu + MẇZu

1− Zẇ

4
u+

3
Mw + MẇZw

1− Zẇ

4
w +

C
Mq + Mẇ (Zq + V0)

1− Zẇ

D
q+

+
3
Mδe + MẇZδe

1− Zẇ

4
δe +

3
Mδa + MẇZδa

1− Zẇ

4
2δa (5.5)

Rewriting the system in Eq. 5.4 substituting the third equation with Eq. 5.5
and assuming to have small perturbations, state and control matrices can be easily
determined:
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A =



Xu Xw 0 −g
Zu

1− Zẇ
Zw

1− Zẇ
Zq + V

1− Zẇ
0

Mu + MẇZu
1− Zẇ

Mw + MẇZw
1− Zẇ

Mq + Mẇ (Zq + V0)
1− Zẇ

0
0 0 1 0


(5.6)

B =



0 0
Zδe

1− Zẇ
Zδa

1− Zẇ
Mδe + MẇZδe

1− Zẇ
Mδa + MẇZδa

1− Zẇ
0 0


(5.7)

The used derivatives, since the equations of motion are expressed in accelerations
terms, are normalized with the aircraft mass for the aerodynamic forces and with
the inertial tensor along the y axis for the aerodynamic moments. The derivatives
of each state and command variable are reported below:

Xu = ρSV0

2m (−3CD0) Zu = ρSV0

2m (−2CL0) Mu = ρSV0c̄

2Iy
(CMu) (5.8)

Xw = ρSV0

2m (CL0) Zw = ρSV0

2m (−CLα) Mw = ρSV0c̄

2Iy
(CMα) (5.9)

Zẇ = ρSc̄

4m (−CLα̇) Mẇ = ρSc̄2

4Iy
(CMα̇) (5.10)

Zq = ρSV0c̄

4m
1
−CLq

2
Mq = ρSV0c̄

2

4Iy

1
CMq

2
(5.11)

Zδe = ρSV 2
0

2m
1
−CLδe

2
Mδe = ρSV 2

0 c̄

2Iy

1
CMδe

2
(5.12)

Zδa = ρSV 2
0

2m
1
−CLδa

2
Mδa = ρSV 2

0 c̄

2Iy

1
CMδa

2
(5.13)

However, in order to obtain a state-space definition of the system which can
be used in the LQR controller design, matrices A and B in Eq. 5.6 and 5.7 must
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be written in a non-dimensional form. Starting from non-dimensional forces and
moments, these can be easily derived as follows:

F̂i = Fi
1
2ρV

2
0 S

M̂i = Mi
1
2ρV

2
0 Sc̄

(5.14)

In which, from now on, the superscript (̂ ) indicates the non-dimensional form of
the variable. The aircraft mass and the inertial tensor become:

m̂ = 2m
ρSc̄

Îy = Iy

ρS
1
c̄
2

23 (5.15)

Finally, the time derivative in non dimensional form can be written as:
d

dt
= 2V0

c̄
(5.16)

Having these informations and knowing that the state-vector in its non-dimensional
form is:

x̂ =
I
u

V0
,
w

V0
, q

c̄

2V0
, θ

JT
= {û, α, q̂, θ}T (5.17)

the sate and control matrices become:

A =



−3CD0

2m̂
CL0 − CDα

2m̂ 0 −CWe

2m̂
− CL0

2m̂+ CLα̇
−CLα + CD0

2m̂+ CLα̇

2m̂
2m̂+ CLα̇

0

−CMα̇

2CL0

2m̂+ CLα̇
Îy

CMα − CMα̇

CLα + CD0

2m̂+ CLα̇
Îy

CMq − CMα̇

2m̂
2m̂+ CLα̇

Îy
0

0 0 1 0


(5.18)

B =



0 0

−
CLδe

2m̂+ CLα̇
−

CLδa
2m̂+ CLα̇

CMδe

Îy

CMδa

Îy
0 0


(5.19)

In which the new derivatives CDα and CWe can be expressed as:

CDα = 2CLα
πe b

2

S

CL0 CWe = mg
1
2ρV

2
0 S

(5.20)
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5.2 Linear Quadratic Regulator (LQR)
Once the the state space system is defined, it is possible to proceed with the LQR
design. The LQR is a technique that provides optimal controllers through a mathe-
matical algorithm that minimizes a cost function with weighting factors defined by
the user. In other words, the LQR algorithm is an automated way to find an appro-
priate state-feedback controller K that minimizes a cost function J which includes
the deviation of key measurements from their desired values and the magnitude of
control action needed.

Therefore, in general the optimal LQR problem consists of finding the control
input that minimizes:

J =
Ú ∞

0
xTQx+ ρuTRudt (5.21)

With ρ positive constant and Q and R symmetric positive-definite matrices. These
are respectively the weighting matrices associated to the states and the commands.
It can be noticed that greater values of Q elements would lead to a great state
alleviation at the cost of a large control input, while grater values of R elements
would lead to controller which generates small control input but large control output.

In this thesis Q is selected as an identity matrix Q = I4×4, while R is selected as
diagonal matrix in which the elements are computed by means of the Bryson’s rule
[32] (ρ is taken as unitary):

Rjj = 1
maximum acceptable value ofu2

j

with j = 1, ..., N (5.22)

Therefore, in matrix form:

R =


1

|δeMAX
|2

0

0 1
|δaMAX

|2

 (5.23)

In practice, the Bryson’s rule scales the variables so that the maximum acceptable
value of each term is one. This is important especially when the units used for
different components of the command (and/or state) vector make the values of
these variables numerically different from each other [31]. However, Bryson’s rule
its also often used as starting point of a trial-end-error process aimed to obtain the
desired closed-loop performance.

The aim of the LQR controller is to find a control input u the minimizes the
cost function J in Eq. 5.21. As stated before, this could be done by means of a
state-feedback K for which the optimal control is given by:
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u = −Kx (5.24)
In which K is defined as:

K = R−1BTP (5.25)
Where P is a symmetric matrix obtained from the resolution of the Algebraic Ricatti
Equation (ARE):

ATP + PA+Q− PBR−1BTP = 0 (5.26)
This equation is used since the LQR problem can be solved using an argument

based on "square completion" that avoids the use of calculus of variations. This
means the the problem is rewritten dividing Eq. 5.21 in two terms:

J = J0 +
Ú ∞

0
(u(t)− u0(t))T R (u(t)− u0(t)) dt (5.27)

In witch J0 is called "feedback invariant" and, by definition, its value does not depend
on the choice of the control input. It can be demonstrated that this definition of
the problem can be achieved by introducing a symmetric matrix P which can be
found by solving Eq. 5.26. Solving the problem in this form leads to definition of
the feedback matrix K as given in Eq. 5.25.
In practice the LQR control design can be summarized in three steps:

• Definition of the weighting matrices Q and R.

• Resolution of the ARE (Eq. 5.26) to find the matrix P .

• Computation of the gain matrix K as defined in Eq. 5.25.

Since the considered state vector has four elements and the control vector con-
tains elevator and aileron deflections, in this case K is a [2×4] matrix. The obtained
closed loop is schematized in Figure 5.1.

Figure 5.1: Closed Loop System Scheme
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5.3 Control System Implementation
Implementing an LQR controller on the rigid model means not only controlling and
reducing the gust loads acting on the flexible wing but also, clearly, improving the
aircraft dynamics characteristics. Particularly, since in this case only the longitudi-
nal dynamics were considered, phugoid and short period will be affected. Once the
loop is closed with the gain matrix obtained in Eq. 5.25, as shown in Figure 5.1,
the new resulting system can be rewritten as:

ẋ = (A−KB)x+Bu (5.28)

In which (A−KB) is the closed loop state matrix. Computing the eigenvalues of
both open and closed loop matrices and plotting the results on the complex plane
leads to the graph shown in Figure 5.2. From the graph it is clear how the LQR
controller as defined in Section 5.2 has a great impact on the aircraft dynamics,
stabilizing both the phugoid and the short period modes.

Figure 5.2: Open Loop Vs. Closed Loop Eigenvalues
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Also its visible how the LQR tends to completely cancel the phugoid by reducing
its imaginary part. Its possible to improve the control action by modifying weight
matrices Q and R or the gain ρ, but this also leads to a stronger response of the
aircraft, thus reducing the comfort of the passengers. For this reason, weights and
ρ were left to the initial values reported in Table 5.1.

LQR Controller Data
ρ 1

δeMAX
± 15°

δaMAX
± 10°

Table 5.1: LQR Controller Data

The main objective of the controller designed in this section is to reduce the
loads induced by a gust on the flexible wing structure. The analysed perturbations
are the discrete "1−cos" gust (Figure 4.5) and the von Kármán moderate turbulence
(Figure 4.8) presented in Chapter 4. The chosen load determination method is the
one based on the MCK form of the flexible system, since it is the most accurate
between the two methods presented in this work. All the external perturbations
were started after 4 seconds of simulation, in order to start at an equilibrium state.

Figure 5.3: Open Loop Vs. Closed Loop - Bending Moment - "1−cos" Discrete Gust
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Figure 5.4: Open Loop Vs. Closed Loop - Torsion Moment - "1− cos" Discrete Gust

Figure 5.5: Open Loop Vs. Closed Loop - Bending Moment - von Kármán Gust
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Figure 5.6: Open Loop Vs. Closed Loop - Torsion Moment - von Kármán Gust

Figures 5.3 and 5.4 show the comparison between open loop and closed loop
loads after a discrete gust has perturbed the aircraft, while Figures 5.5 and 5.6 show
the effect of the controller after a von Kármán continuous gust.

These graphs show how the implementation of an LQR on the rigid body dy-
namics leads to an effective load reduction both in terms of bending and torsion
moments. The reduction at the maximum peak for the discrete "1 − cos" gust is
about 22% for the bending moment and about 21% for the torsion moment.

The results for the von Kármán moderate turbulence, although the load reduc-
tion is clearly visible, are a little less consistent if compared to the discrete gust. This
is imputable to multiple factors: for example the rapid changes in velocity direction
do not permit the model to update accordingly to the command action, and thus,
especially for the small peaks, its visible a small translation of the loads instead of
a proper reduction. Also, in general, peak velocities of a continuous gust are small
if compared with the discrete gust ones. This translates in smaller command am-
plitude and therefore in a smaller effect on the loads which is heavily influenced by
the sensitivity of the entire system to the control action. In any case, the maximum
reduction reached at peak for the von Kármán turbulence is of 26% for the bending
moment and 25% for the torsion moment, with an average reduction at the peaks,
for both the moments, of about 15%.
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Conclusions

This thesis aims to give a complete overall on the simulation of a flexible aircraft,
especially for what is concerning dynamic wing loads in an unsteady atmospheric
condition, and their reduction via an optimal control technique.

Chapter 2 shows how the presented flexible model maintains a strong link with
the rigid dynamics model. For this reason the implementation in Matlab/Simulink of
the model results to be very practical, since it is possible to simulate firstly the rigid
aircraft dynamics and then use the rigid states to implement the flexible model
via the Lagrangian approach. Also, expressing the obtained set of equations by
means of generalized coordinates using the Galërkin method, reduces the complexity
of the formulation and thus the computational load required. Furthermore, the
external aerodynamic forces can be expressed as sum of a "frozen" component and
an increment generated by the deformation rates. This permits to consider the effect
of the aerodynamic damping by expressing the latter component of the generalized
forces by means of the Rayleigh dissipation function.

Since a strong link is maintained between rigid and flexible aircraft models, the
flexible wing response to a gust can be evaluated by simply implementing the turbu-
lence models presented in Chapter 3 directly as wind perturbation inside the rigid
dynamics model. This is possible since both the presented discrete and continuous
models express the gust as a wind velocity component time history, which can be
easily summed to the velocity components of the state vector. The resulting veloc-
ities are then used inside the Lagrange’s equations and thus the elastic response of
the structure to the selected gust can be evaluated.

Chapter 4 shows wing response and the load generated by the external gusts. In
particular, speaking of the load determination methods, it is clear how the method
based on the strip theory as produced grater loads then the one based directly on
th MCK formulation of the flexible system. Such behaviour is visible in the bend-
ing loads (5-13% increment) but is greatly accentuated for torsional loads(∼20%
increment). This happens, as already stated before, because the method neglects
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some structural damping terms which are instead contained in the flexible system
equations. This could be acceptable for data collection or for some structural ap-
plications, but it is not suitable for the control law design. Greater loads, in fact,
could induce the control engineer to set an unnecessary great control action which
can result in both degradation of the flight quality and passenger comfort. One the
other hand, the MCK method necessarily requires the definition of a flexible model
and, thus, some data obtained with previous structural analyses. This does not
represent a problem for simulation purposes, but may be unpractical if the objective
is to evaluate the loads during air tunnel tests or just for data collection. For this
reason both of the methods are presented in this thesis.

In any case, the load determination method based on the MCK formulation
is the one selected to evaluate the effectiveness of the control law implemented in
Chapter 5. The LQR controller results to be very effective for both stabilizing the
aircraft response and for the load alleviation, especially thanks to the combined
action of elevator and the symmetric activation of the ailerons. The drawback
of this implementation is that the controller acts on the aircraft attitude without
acting directly on the wing deformation. This could result sometimes in a controller
limitation in order to not compromise, for example, the passengers comfort. Also,
for the continuous turbulence loads, it is clear that the entire aircraft response to the
control input its not always on point with the load reduction. On the other hand, the
LQR controller leads to good results in both aircraft response and load alleviation,
with an average load reduction of the 20%, with minimum implementation effort.
In fact the model configuration, makes easy to implement the feedback controller
in terms of gain K, directly inside the real time simulation. Therefore, also the
comparison between the open loop and closed loop loads, obtained with the methods
presented in Chapter 4 is straightforward.

It is clear now that the strength of this model is the ease with it is possible
to implement new parts, depending on what is its required, without burdening too
much the formulation. This results in a great advantage in early design phases, al-
though further steps in an aircraft development may require more accurate analyses,
especially for what is concerning the structural studies. However, the model is also
well predisposed for being updated with more accurate structural data coming from
a FEM analyses as, for example, shape functions of high order modes. This makes
it a good instrument to study flexible aircraft dynamics and for control law design
and testing.

Concluding, although some approximations have been made, the model presented
in this thesis, represents a good foundation for an accurate and complete analysis
of the flexible aircraft dynamics in a turbulent atmosphere for real time simulation
and gust load alleviation purposes.
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6.1 Future Developments
This section aims to suggest some possible future improvements for each part of
the presented study, especially for the aircraft modelling, load determination and
control design sections.

In future implementations the presented model could be improved considering
the complete rigid aircraft dynamics and including other flexible parts in additions
to the wings, such as the fuselage and the tail. Also the aerodynamic loads could be
calculated non only by means of local variation of the angle of attack, but including
the contribution of control surfaces, as ailerons, on the interested sections. This
could lead to a better representation of the effects commands have on the flexible
loads, especially for gust load alleviation purposes. Other possible developments
could include higher bending and torsional modes, in order to evaluate which is the
best compromise between result accuracy and computational load. Also, aeroelastic
effects such as flutter, buffering, divergence and control surface reversal could be
studied starting from the presented flexible model.

Regarding the load determination methods, as already stated before, while the
strip theory method could lead in some cases to an excessive approximation, the
MCK method requires some structural data which is available only through previous
structural analyses. A solution in between of the two presented in this work, could
be the definition of method based on a fine aerodynamic mesh, in order to obtain
an accurate load determination knowing only part of the structural data.

Finally, concerning the control law design, in future developments it can be
evaluated the use of two combined controllers, one for the rigid dynamics and one
specifically designed for the flexible dynamics. This could be done by means of, for
example, a FIR filter or more robust controllers, like L1 or H∞ which could achieve
not only a good load reduction but also load control.
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Appendix A

Complete Non-Linear Rigid
Aircraft Model

As already stated in Section 2.1, the rigid model is based on the non-linear dimen-
sional equations of motion written in the body axes frame as reported in [26]. The
resulting 6 DoF differential equation system takes in consideration 12 variables, that
are:

• Linear velocities {u, v, w}, from force equations.

• Angular rates {p, q, r}, from moment equations.

• Euler angles {φ, θ, ψ}, from kinematic equations.

• Coordinates {xN , yE, zD}, from navigation equations (NED reference frame).

Force equations are classically expressed directly in terms of linear accelerations,
as reported in the following matrix form:

u̇
v̇
ẇ

 = −

 0 −r q
r 0 −p
−q p 0



u
v
w

+ g

W


X
Y
Z

 (A.1)

Where X, Y and Z represent the aerodynamic forces along the body axes, g is the
the gravitational acceleration and W is the aircraft weight. In a similar fashion,
moment equations are expressed as follows;

ṗ
q̇
ṙ

 = [IB]−1



L
M
N

−
 0 −r q
r 0 −p
−q p 0

 [IB]


p
q
r


 (A.2)
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In which L, M and N are the aerodynamic moments in body axes reference frame
and IB is the inertial tensor, in general defined as:

[IB] =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

 (A.3)

Figure A.1 gives a representation of the body reference frame, including linear ve-
locities, angular rates and aerodynamic forces and moments.

Figure A.1: Body Axes Reference Frame

Continuing with the rigid model definition, kinematic equations used to obtain
the Euler angles are defined as:


φ̇

θ̇

ψ̇

 =


1 Sφ · Sθ

Cθ

Cφ · Sθ
Cθ

0 Cφ −Sφ
0 Sφ

Cθ

Cφ
Cθ



p
q
r

 (A.4)

Where S(·) and C(·) are respectively sine and cosine functions. Finally position
coordinates in NED reference frame can be determined by means of navigation
equations:

ẊN

ẎE
ŻD

 =

Cθ · Cψ Sφ · Sθ · Cψ − Cφ · Sψ Cφ · Sθ · Cψ + Sφ · Sψ
Cθ · Sψ Sφ · Sθ · Sψ + Cφ · Cψ Cφ · Sθ · Sψ − Sφ · Cψ
−Sθ Sφ · Cθ Cφ · Cθ



u
v
w

 (A.5)
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In order to conclude the rigid model definition, aerodynamic forces and moments
must be defined. Aerodynamic forces acting on the aircraft can be seen as sum of
three contributions:

X = XG +XA +XT (A.6)
Y = YG + YA + YT (A.7)
Z = ZG + ZA + ZT (A.8)

Where subscripts G, A and T represent respectively gravitational, aerodynamic and
thrust forces. Gravitational terms can be simply defined as:

XG = −mg sin θ (A.9)
YG = mg sinφ cos θ (A.10)
ZG = mg cosφ cos θ (A.11)

In which m is the aircraft mass. Aerodynamic forces, instead, are expressed as:

XA = −D cosα + L sinα (A.12)
YA = Y (A.13)
ZA = −D sinα− L cosα (A.14)

Where L, D and Y represent respectively lift, drag and side force. Assuming the
thrust force equal to drag in magnitude and direction, but of opposite sign, the total
forces can be expressed as:

X = −D cosα + L sinα−mg sin θ + (D cosα)T (A.15)
Y = Y +mg sinφ cos θ (A.16)
Z = −D sinα− L cosα +mg cosφ cos θ + (D sinα)T (A.17)

The aerodynamic forces (L, D, Y ) and moments (L, M, N) can be derived by
the following classical equations:

L = 1
2ρV

2SCL (A.18)

D = 1
2ρV

2SCD (A.19)

Y = 1
2ρV

2SCY (A.20)

L = 1
2ρV

2SbCl (A.21)

M = 1
2ρV

2Sc̄Cm (A.22)

N = 1
2ρV

2SbCn (A.23)
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In which ρ is the air density, V is the aircraft speed, b is the wing span and c̄ is
the mean aerodynamic chord. The aerodynamic coefficients are calculated using
classical flight mechanics linear expressions:

CL = CL0 + CLαα +
1
CLα̇α̇ + CLqq

2 c̄
V

+ CLδeδe + CLδa,SYMM
(δaR + δaL) (A.24)

CD = CD0 + kC2
L + CDδa,SYMM

(δaR + δaL) (A.25)

CY = CYββ +
1
CYpp+ CYrr

2 b
V

+ CYδr δr + CYδa

A
δaR + δaL

2

B
(A.26)

Cl = Clββ +
1
Clpp+ Clrr

2 b
V

+ Clδr δr + Clδa

A
δaR + δaL

2

B
(A.27)

CM = CM0 + CMαα +
1
CMα̇α̇ + CMqq

2 c̄
V

+ CMδe
δe (A.28)

Cn = Cnββ +
1
Cnpp+ Cnrr

2 b
V

+ Cnδr δr + Cnδa

A
δaR + δaL

2

B
(A.29)

Note that derivatives with subscripts δa,SYMM are referred to the symmetric activa-
tion of the ailerons. The airspeed V , the angle of attack α and the side-slip angle
β are proper of the wind axes, therefore they need to be expressed in body axes as
follows:

V =
√
u2 + v2 + w2 (A.30)

α = arctan w
u

(A.31)

β = arcsin v

V
(A.32)

The last term needed to complete the aerodynamic forces determination is α̇, which
can be derived by manipulating the linear velocities and their respective rates:

α̇ = uẇ − u̇w
u2 + w2 (A.33)
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