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Abstract

The present Master thesis addresses the problem of the modelling and control of a non-
holonomic Unmanned Ground Vehicle (UGV) for trajectory tracking application. Much
effort has been put by the scientific community in the research and development of new
modelling methods and in the study of new techniques aimed at finding suitable control
laws for this category of vehicle. All this interest is due both by the high number of possible
applications for which these platforms are ideal. For example, all those characterised by
Dull, Dirty and Dangerous (D3) tasks that have made them gain great fame even in
military or civilian fields. Non-holonomic UGVs, and in particular Four-Wheeled Skid-
Steering Mobile Robots (4W-SSMRs) which is that vehicle class directly analysed by this
thesis, are characterised by highly non-linear behaviours, especially concerning wheel-soil
interaction, which requires advanced design methods. This work aims to provide a valid
comparison between two different control techniques through numerical simulations and
experimental tests.

The vehicle dynamics, along with its linearisation, is first derived using the Euler-
Lagrange approach and the problem of determining the resistive forces due to the wheel-
soil interaction has been overcome by proposing an advanced friction model not yet used
for this type of applications. Furthermore, the major system uncertainties have been
resolved exploiting a system identification process based on evolutionary algorithm.

After that, two controllers have been designed and implemented: the straightforward
Proportional Integrative Derivative (PID) controller and the more advanced Sliding Mode
Control (SMC) strategy. Both of them have been analysed from a theoretical point of
view, validated through numerical simulations with the developed mathematical model
and experimentally tested and compared on the real robotic platform on four different
trajectories in the indoor test facility of the Shanghai BeiDou Research Institute (BRI).
Besides, the optimal parameter tuning of both controllers was done following a heuristic
approach based on a Differential Evolution (DE) algorithm.

The PID approach, thanks to its ease of implementation and being known by the
whole research community, has served as a yardstick for the most advanced controller. In
particular, its structure is composed of two different branches for longitudinal and latero-
directional control. Also, for improving its tracking performance, a feed-forward loop has
been implemented for speed control. Nevertheless, a trade-off between robustness and
performance is necessary when dealing with this standard control technique, being subject
to performance limitations, especially when dealing with non-linear systems affected by
uncertainties and parametric perturbations.

The robustness problem has tried to be solved by the adoption of the more advanced
Variable Structure Control (VSC) theory which, thanks to the application of a non-linear
high-frequency switching control, alters the dynamics of the non-linear system under anal-
ysis forcing it into a sliding motion along a cross-section of the system’s normal behaviour,
allowing us to consider a reduced-order model of plant dynamics. Besides, another ad-
vantage is that of having low sensitivity to matched uncertainty. In this master thesis is
employed a multi-variable sliding mode controller developed on a new switching function



design in which the lateral and the angular error are coupled in a sliding surface leading
to the convergence of both variables. Besides, the chattering problem deriving from the
discontinuity of the infinitely fast switching control architecture is suppressed by the use
of a continuous quasi sliding mode approach. It is demonstrated that the achieved con-
figuration guarantees satisfying performance also when applied to a complete non-linear
model affected by uncertainties and parametric perturbations. Due to the SMC poten-
tiality in dealing with complex and non-linear systems, such as the Skid-Steering Mobile
Robots (SSMRs), satisfying results have been achieved even when the non-linear model
has been perturbed by sensor noise and parametric uncertainties.

A final confrontation among the two controllers applied to the Clearpath Husky plat-
form shows that PID and SMC are comparable at low tracking velocities in terms of
nominal performance. However, when the control performance demand is increased, the
implemented PID architecture always resulted inferior.

The simulation scenario, the mobile robot plant and the proposed controllers have
been developed using MATLAB R2019b and Simulink which, thanks to the numerous
toolboxes, have made that work easy to implement. Particular importance was gained by
the Robot Operating System (ROS) toolbox which made possible to greatly simplify the
interface between the developed controllers and the Husky platforms, allowing us to carry
out the experimental tests.
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Preface

The current Master thesis is realized within the Department of Mechanical and Aerospace
Engineering (DIMEAS) of the Polytechnic of Turin for the fulfilment of the Master of
Science (MSc) degree in Aerospace Engineering. The research project was carried out for
a total of four months at Shanghai Jiao Tong University (SJTU) Institute for Sensing
and Navigation (ISN) and thanks to them collaboration with BeiDou Research Institute,
it was possible to test the obtained results in their indoor test facility, also located in
Shanghai, China.

Both of these universities are active in a wide range of research projects related to
unmanned vehicles. The first one, thanks to its aerospace background mostly focusses
on the development of unmanned aircraft with an emphasis on their control system. An
example is the research carried out by DRAFT student team, which aims to increase the
autonomy of today’s Unmanned Aerial Vehicle (UAV) technology by developing innova-
tive solution focussed on artificial intelligence. The ISN, managed by the Department of
Electronic Information and Electrical Engineering, through the Key Laboratory of Naviga-
tion and Location-based Services and the Shanghai Key Laboratory of Intelligent Sensing
and Recognition mainly researches on robotics, navigation and localization services, radar
detection and remote sensing. Some of the on-going projects include the realisation of
a next-generation Inertial Navigation Computation able to improve the accuracy of an
ideal IMU up to a meter error per hour, the development of a 3D vehicle motion planning
and obstacle avoidance algorithm for cluttered environments and the implementation of
a millimetre-wave Simultaneous Localization and Mapping (SLAM) for Advanced Driver-
Assistance System (ADAS) applications.

The aim of this project, which during the mobility period was carried out in collab-
oration with another student also coming from the Polytechnic of Turin, was the design
and the implementation of three different control laws for an unmanned wheeled mobile
robot. The request under this work was first to collaborate on the development of a classic
PID approach to acquire confidence with the control technique applied to this particular
class of vehicles and to assess its performances, necessary as a reference for the subse-
quent comparison with an advanced control method on which each of us had to specialize:
a SMC strategy and a Linear Quadratic Regulator (LQR) controller. The idea was to
provide an ultimate confrontation among the three different techniques independent from
the type of controller adopted or from the WMR mathematical model used for the tests.

By going into detail, the specialization of the present research was made on the sliding
mode control theory because this approach allows us to consider a reduced-order mod-
elling of plant dynamics and moreover gives the advantage of having low sensitivity to
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matched uncertainty. After each controller was identified, the vehicle dynamics was first
derived. Then the following phase consisted in the study and definition of the control laws
mathematical basis. The theoretical foundations derived was generally taken from exist-
ing work, but was elaborated and combined to guarantee an innovative contribution for
every case. For example, the main problems regarding the mathematical modelling of this
category of vehicles, which are the determination of the resistive forces due to the wheel-
soil interaction and the necessity to deal with system uncertainties, have been overcome
respectively by proposing an advanced friction model not yet used for this type of ap-
plications, see Section 2.2.2, and an evolutionary algorithm based heuristic identification
process, see Section 3.4.

Regarding the SMC, as explained in Section 4.4.3, a new switching function design
is proposed in which, the lateral and the angular error are coupled. The realization
of numerical simulations was used to validate the proposed approaches and finally, the
controllers were tested and compared on the real robotic platform. The combination of
expertise achieved from the different research fields of the two universities allowed us
to overcome various problems that arose during the progress of the project, in particular
concerning our limited knowledge of robotics. Different practical problems were also solved
in the experimental test phase, which leads to the controllers’ parameters adjustment.
Unfortunately, the coincidence of the test period with the lunar new year holidays and
with COVID-19 outbreak in mainland China resulted in a prolonged university and indoor
test facility lockdown, which caused our consequent repatriation thus limiting the number
of experimental tests carried out.

The thesis is structured as follows: Chapter 1 introduces the UGV technology and
defines the tasks addressed in this work, going from the SSMR control problem to the
proposed control techniques, suggesting different solutions emphasizing their contribution
to state of the art. Chapter 2 describes the developed linear and non-linear mathematical
models of the mobile robot adopted for the definition and the testing of the controllers.
In Chapter 3, the experimental set-up adopted in this thesis is described, going from the
BeiDou Research Institute indoor test facility to the Clearpath Husky testing platform and
ending with the benefits and drawbacks of the exploited frameworks and tools. Besides the
experimental set-up, part of the chapter is dedicated to the description of the parameter
estimation method used for dealing with some model uncertainties. Chapters 4 and 5
respectively address the design process followed by the results of the software simulations
of the proposed controllers and their final experimental validation and comparison made
on the physical platform. The problems encountered and the adopted solutions are here
illustrated, and the main results of the preliminary tests are presented. Finally, Chapter 6
draws the conclusions and suggests possible improvements that can be developed in future
works. The thesis ends with one appendices, Appendix A, which describes and reports
the pseudo-code of the self-adaptive evolutionary algorithm used for both parameters
estimation and optimal tuning of the controllers’ gains.
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Chapter 1

Introduction

Everyday robotics finds more and more applications in the real world, replacing man in
those jobs that until now have been carried out manually. Their use, from agriculture and
mining operations, up to the use inside factories and hospitals, is increasing performance,
efficiency and safety in all tasks otherwise considered too dull, dirty or dangerous for
manual work.

Robotics has achieved its greatest success to date in the world of industrial manu-
facturing. According to a recent study carried out by McKinsey Global Institute (MGI)
in collaboration with International Federation of Robotics (IFR), in 2017 the industrial
robotics market grew by 19%, reaching USD 48 billion, see Fig. 1.1, and, thanks to the
reduction in production costs, the increasing variety of models, the ease of integration, the
increase in the cost of labour and ever greater technical skills achievable, it was estimated
to continue double-digit grow at least through to 2021 [1].

Figure 1.1: Robot systems 2017 market breakdown revenues.
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Thanks to the continuous technological evolution, the robotic arm can move with high
speed and precision to perform repetitive activities such as painting or welding. However,
despite their great success, these robots suffer from one major disadvantage: the lack of
mobility. A fixed manipulator has a limited range of motion which depends on where it
is positioned in the assembly line. On the contrary, a mobile robot can travel through
the production plant, applying its talents flexibly wherever it is most effective. This great
advantage, however, entails the need to have a control system that allows the robot to
navigate from a point A to a point B and to perform its tasks efficiently and safely.

1.1 Overview on UGV Technology

UGVs together with their marine-based1 and aerial-based2 counterparts, are part of mo-
bile robotics. This acronym comprehends a broad range of powered vehicle that does not
carry a human operator, can be operated autonomously or remotely while in contact with
the ground, can be expendable or recoverable, and can carry a lethal or non-lethal pay-
load. Ballistic or semi-ballistic vehicles, cruise missiles, artillery projectiles, torpedoes,
mines, satellites, and unattended sensors (with no form of propulsion) are not considered
unmanned vehicles [2].

The first documented UGV appeared in October 1921 [3, 342-343] when World Wide
Wireless magazine published the news that Captain R.E. Vaughn, chief of the McCook
Field radio section, controlled a car through radio signals, showing the possibilities of
Remote Control (RC) locomotion and it was thought this immature technology could
someday be adapted in the military field. The interest in this category of vehicles has its
origins in the military environment during World War II. The Soviet Union was the first
to apply this technology; they developed radio-controlled TT-26 tanks, each of which was
controlled by another tank about 500 ÷ 1500 m away, see Fig. 1.2a. The "tele-tanks"
were armed with machine guns, flame-throwers, or loaded with explosives that could be
detonated remotely behind enemy lines. On the other side of the conflict, the Germans
also used remote assistance on land vehicles developing the "Beetle" tank, see Fig. 1.2b,
which was not considered a great success as it travelled very slowly, and had a low ground
clearance. Besides, the main unit was connected to a small control box via a triple-strand
of telephone wires that were vulnerable to entanglement and damage [4].

After the war, the attention shifted to the automation of these vehicles. In universi-
ties, teams of researchers focused on how the robot could generate a response based on
the surrounding environment and no longer following the command of an external oper-
ator. The first fully autonomous UGV was developed by William Walter at the Burden
Neurological Institute in Bristol [5]. The robot, called "Elsie", see Fig. 1.3a, was able
to respond to contact with external objects and to perceive light through photoelectric
sensors. Relying on these to navigate, they used two vacuum tube amplifiers that guided
the relays to control the steering and drive the engines.

1Unmanned Underwater Vehicles (UUVs) and Unmanned Surface Vehicles (USVs)
2UAVs
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(a) URSS "Tele-tank" (1941). (b) German "Beetle" (1940).

Figure 1.2: The First Autonomous Ground Vehicles.

The next more sophisticated autonomous vehicle appeared in the early 1960s, re-
searchers at the Johns Hopkins University Applied Physics Lab created "The Beast", see
Fig. 1.3b. Controlled by dozen of transistors the Hopkins Beast wandered the University’s
hallways centring itself using Sound Navigation and Ranging (SONAR) until its batteries
run low. Then it would seek black wall outlets with special photocell optics, and plug
itself in by feel with its special recharging arm [4].

(a) William Walter’s "Elsie" (1949). (b) Johns Hopkins "Beast" (early 1960s).

Figure 1.3: The First Autonomous Ground Vehicles.

Later in this decade Stanford University and Stanford Research Institute (SRI) de-
veloped the first computer-controlled autonomous UGVs: "Cart" and "Shakey". The
primary purpose of these projects was to study the processes for perception, communi-
cation, decision making and the real-time control of a robotic system interacting with a
complex environment [6].

In the same period, a second and slightly different research trend started. The aim
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was to solve the problem of locomotion of robotic vehicles on rough terrain. The goal of
the work was the design and study of the kinematics and dynamics of multi-legged robots.
The main research thrust was aimed at designing the structure and coordinating the legs.
Work was done on four-legged structures, for example, the General Electric Quadruped [7]
and on biped systems, but the most popular test benches were the six-legged ones. In
1980 a six-legged robot, the Hexapoda, began to be built at the University of Paris VII,
Laboratoire de Robotique et Intelligence Artificielle [8], but the problems that remained
to be solved to obtain satisfactory control over this type of locomotion were mainly related
to the limited computing power and the reduced environmental perception [8, 9].

The first major WMR development effort, called Shakey, see Fig. 1.4a, was created in
1966 as a research study on Artificial Intelligence (AI) for the Defense Advanced Research
Projects Agency (DARPA) at the SRI [6]. It was a platform on wheels equipped with an
adjustable TV camera for capturing images of its environment, ultrasound range finder
for sensing its distance from walls and other objects and bump detectors for detecting
the collisions with the external environment. It was connected via RF to his mainframe
computer which performed navigation and exploration tasks.

(a) SRI’s "Shakey" (1966). (b) Stanford "Cart" (1963). (c) CMU "Rover" (1981).

Figure 1.4: The First Autonomous Ground Vehicles.

Shakey’s development has led to numerous results that had a far-reaching impact
on the fields of robotics, computer science and AI. The most notable include the de-
velopment of the A? search algorithm [10], which is widely used in path-finding3 and
graphs traversal4; the Visibility Graph method [6,11], used for find the shortest Euclidean

3Is the plotting, by a computer application, of the shortest route between two points. This field of
research is based heavily on Dijkstra’s algorithm for finding the shortest path on a weighted graph.

4Also known as graph search, refers to the process of visiting each vertex in a graph.

4



1.1 – Overview on UGV Technology

paths between obstacles in the plane; and the Stanford Research Institute Problem Solver
(STRIPS) [10,12], an automated planner who generated plans of actions that Shakey had
to perform within a mission. Shakey had a list of pre-set actions inside his planner. These
actions ranged from travelling from one location to another, turning the light switches
on and off, opening and closing the doors. The robot photographed its surroundings and
then, through STRIPS, planned a route to the objective position that avoided obstacles
by carrying out the necessary actions. The solver’s task was to find a composition of
operations that transforms a given initial world model into one that satisfies an objective
condition. Today, A? search algorithm is used in many applications including language
analysis, route calculation and interactive computer games; while the STRIPS laid the
foundation for today’s AI planners [10].

From 1961 to 1981 a similar project at Stanford University, nicknamed Stanford
"Cart", see Fig. 1.4b, caught on. It began as a research vehicle for remote Moon mis-
sions [13] during the space race against the Soviet Union that, in the same period, was
developing the Lunokhod 1 Moon rover.5 After President John F. Kennedy’s announce-
ment on September 12 1962, of the U.S. human-crewed mission to the Moon, the project
of the unmanned lunar rover was put off and turned into a test bench for autonomous
vehicle research. In particular, from 1973 to 1981, Dr. Hans Moravec led the Cart project
at the Stanford University’s AI Lab, exploring the problems of navigation and obstacle
avoidance using a stereo vision system based on a single TV camera that sent images
to an external mainframe for processing. The extraction of the characteristics and the
correlation between images allowed the reconstruction of a 3D model of the scene, which
was used to plan an obstacle-free route to destination [13,14].

In the second half of the ’70s, at the Jet Propulsion Laboratory (JPL), a very ambitious
project was underway destined to be an autonomous system for planetary exploration:
the Mars ROVER. Perception systems, based on cameras and range finders, and decision-
making were the central parts of the project. Furthermore, path-finding was obtained
using an algorithm PATH?, similar to A? [15].

The Shakey and Cart programs showed some weaknesses. The systems were very
slow, taking several dozens of minutes to travel 1 meter. This was caused by technological
limitations related to environmental perception systems, which did not reliably see simple
polygonal objects making visual navigation fragile in certain conditions, in particular
when there was not sufficiently high contrast; and to the available computing power, with
consequent excessively long times required for tests. In addition, the minimal nature of
robot hardware has precluded economic solutions for most basic functions as well [16].

Between the 1960s and 1970s, significant advances in the technological field led to the
development of microprocessors and integrated circuits, to higher computational power,

5Lunokhod 1 was the first successful rover to explore another world. It arrived on the Moon on
November 17, 1970, on the Luna 17 lander. Led by remote control operators in the Soviet Union, it
travelled more than 10 kilometres. Lunokhod 1 held the durability record for space rovers for more than
30 years until a new record was set by the National Aeronautics and Space Administration (NASA)
Opportunity Mars rover during the Mars Exploration Rover (MER) mission in 2004.
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to new communication techniques and to the development of new materials. Addition-
ally, satellite tracking has become routine since the Global Positioning System (GPS) was
declassified in 1983 and it is possible to realistically predict a series of real-world appli-
cations, in addition to those supporting scientific research, such as intervention robots
that operate in hostile or extremely dangerous environments, or day-to-day machines in
highly automated factories. Similarly, advances in signal and data processing techniques
have resulted in the sophisticated estimation, optimisation, tracking and machine learning
techniques which, in turn, have allowed the advancement of automation.

In this context in 1981 Moravec moved at Carnegie Mellon University (CMU) where
continued his work on a new mobile robotic test bench: the CMU "Rover", see Fig.
1.4c, a multi-sensor three wheel omnidirectional platform which utilizes a new distributed
microprocessor architecture to provide an high level closed-loop control and sensory func-
tions [16]. CMU became a major leader in mobile robot research during the 1980s, in
particular with its Navlab vehicle for the results obtained about perception and naviga-
tion in outdoor environments [17].

In France, the Hilare project, see Fig. 1.5, began at Laboratory for Analysis and
Architecture of Systems (LAAS) in 1977: it was considered the first European mobile
robot capable of autonomously negotiating an unknown environment. The goal of the
project was to carry out comprehensive research on word perception and modelling, path
planning, navigation and decision making. To implement a series of its high-level func-
tions, it makes use of expert systems6 and of a variety of sensors, such as optical encoders,
laser range finder, ultrasonic sensors and vision cameras, that can send information to the
multilevel computer and decision-making system [18].

From the data collected by these sensors, the on-board computer system was able to
calculate the position information. The idea was to use redundant position sensing to
obtain complementary data, thereby improving the accuracy and precision of the overall
measurements. This structure allows the robot to model its universe, build one possible
plan, then develop and execute it [19]. Its modularity allowed for incremental changes,
which then resulted in HILARE 2 and HILARE 2bis, a trailer-pulling wheeled robot even-
tually built in 1992 [20]. The development of the HILARE project helped to consolidate
what are today’s subsystems of any mobile wheeled robot [21]:

• Locomotion;

• Communication;

• Power Source;

• Human-Robot Interaction;

• Planning, Perception and Navigation;

• Learning and Adaptation.

6In artificial intelligence, an expert system is a computer system that emulates the decision-making
ability of a human expert. Expert systems are designed to solve complex problems by reasoning through
bodies of knowledge, represented mainly as if-then rules rather than through conventional procedural
code.
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Figure 1.5: LAAS Hilare 1 (1977).

This evolution clearly shows that mobile robots are intended for much more than
moving from one point to another. However, when it comes to controlling their movement,
intended as the combination of path execution and actuation, it is necessary having a
control scheme. A general control scheme could be the one shown in Fig. 1.6, which is a
simplified version of what is presented in [22].

Figure 1.6: Wheeled Mobile Robot Control Scheme.
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In the case of wheeled robots, research focuses on three main areas:

• Manoeuvrability;

• Controllability;

• Stability.

These are all influenced by the combination of two physical properties: wheel types and
geometry. Unlike cars, which are mostly designed for a very highly standardised envi-
ronment, represented by the road network, mobile robots are designed for applications
in a wide variety of scenarios. For that reason, cars share similar wheel configurations
because there is only one design that maximises manoeuvrability, controllability and sta-
bility on their standard environment: the asphalt road. However, no wheel configuration
maximises these qualities for the variety of environments faced by mobile robots. This
is why there are a large number of wheel configurations for that class of vehicles. Few
WMR use the car’s Ackermann configuration due to its poor handling and stability on
rough terrain, except of course for those designed for paved roads applications.

Mobile robot wheels are generally of four types:

• Standard;

• Castor;

• Swedish;

• Spherical.

The two on the right offer more degrees of freedom but are more difficult to produce.
The total number of wheels used directly influences the overall stability; conventionally,
static stability is obtained with a minimum of three wheels and the centre of gravity of the
robot lying inside the ground footprint described by the wheels contact points. However,
most designs employ two, three, four or six wheels. Furthermore, taking into account the
presence or absence of a steering system, it is possible to obtain the designs shown in
Figure 1.7.

Regarding manoeuvrability, there are omnidirectional robots that can move in any
direction at any time. Clearly, it requires the use of Swedish or spherical wheels. Other
architectures can still do the same, but first, they must rotate on their vertical axis,
sometimes without even changing the footprint of the terrain, as in the case of two-wheel
differential drive vehicles. The less manoeuvrable models are those that use Ackermann
steering characterised by a larger turning radius.

In general, there is an inversely proportional relationship between manoeuvrability
and controllability. For instance, omnidirectional robots are the most difficult to control.
Imagine what is necessary to drive a robot in a straight line, in the case of an Ackermann
system, it is sufficient to centre and lock the wheels in position. In contrast, for differential
drive robots, in which each wheel is independently driven, it is required that the wheels
follow the same speed profile, a difficult task due to differences in transmissions, wheels
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Figure 1.7: UGV possible wheel configurations.

and in the interaction with the ground. The differential transmission is used in the absence
of a steering system and is often related to another type of control architecture known as
skid-steering. The operation principle at the base of skid-steering is similar to the one of
the tanks crawlers. When this design is used on rough terrain, manoeuvrability increases
significantly, with a harmful effect on controllability. This type of architecture will be
further analysed in Section 1.2.

For the purpose of this work, it is necessary to introduce another block from the
control scheme illustrated in Figure 1.6: perception. The perception of the real-world
environment occurs through the following actions:

• Sensing;

• Information Extraction and Interpretation;

and depends on the robot’s sensors which in turn depend on its applications. The most
common are [23]: Encoder, IMU, GPS, Laser Imaging Detection and Ranging (LIDAR),
Radio Detection and Ranging (RADAR) and SONAR.

Since multiple of the aforementioned sensors can be mounted on a mobile robot at
the same time, statistical sensor fusion techniques, such as Kalam filtering, are used
to combine multiple sensor readings and obtain more accurate estimations of a single
measurement. In particular, SLAM technique, which is a crucial point for autonomous
navigation, is a problematic area of application of high-dimensional non-linear filtering
problems and, without sensor fusion, it would not be possible. On the other hand, another
localisation technique is used when autonomy is not necessary: dead reckoning is the pro-
cess of determining one’s position uniquely using information about its initial condition,

9



Introduction

speed and acceleration data sensed by the use of encoders or IMU. The major problem of
this technique is the error propagation, due to continuous state integrations, if the data
is not corrected using observations from the outside world, for example, via LIDAR or
GPS. But with well-tuned sensor fusion algorithms implementation, reasonable accuracy
can be achieved.

From what has been stated, it is easy to realise that the mobile robotics design process
involves the integration of many branches of engineering, making it as interdisciplinary as
possible. Until the early 2000s, however, it was extremely challenging to find experts who
were also willing to manage the complex software infrastructures used by robots due to
its deep layered structure and the excessive time to be spent for setting up the hardware.
For this reason, many robotic researchers solved some of those issues by presenting a wide
variety of frameworks to manage complexity and facilitate rapid prototyping of software
for experiments resulting in several robotic software such as Player [24] or CARMEN [25].
In 2007, Willow Garage funded a Stanford University project born out of the desire to
create a universal robotic framework that aimed to standardise and simplify the complex
robot interfaces. It took the name of ROS [26], and now has become the most trending
and popular robotic framework having a vast collection of tools and libraries that are
natively supported by over 80 commercial robots. ROS promotes code reuse with different
hardware by providing a large number of libraries and tools for 3D visualisation, recording
experiments and playing back data off-line. Regular updates enable the users to obtain,
build, write, test and run ROS code; additionally, thanks to its simple architecture, ROS
allows reusing code from numerous other open-source projects, such as Stage [27], Gazebo
[28], OpenCV and more.

Without ROS, its counterparts, low-cost technology and advances in miniaturisation,
sensors, computer processing, signal and image processing, communication techniques and
materials science, robotics would not have progressed as it has done in recent decades.
Today’s applications of unmanned ground vehicles cover several industries; some notable
examples are:

• Civilian and commercial applications [29,30], like:

– Manufacturing;

– Industrial Automated Guided Vehicles (AGVs), see Fig. 1.8a;

– Agriculture;

– Mine exploration;

– Outdoor exploration;

– Volcanology;

– Home appliances;

– Hospital and nursing;

– Self-driving Cars;

• Space exploration [31], such as Planetary rovers, see Fig. 1.8b;

• Emergency response [32], like:
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– Search and Rescue (SAR);
– Fire fighting, see Fig. 1.8c;
– Nuclear response;

• Military applications [2, 21, 33], like:

– Explosive Ordnance Disposal (EOD), see Fig. 1.8d;
– Unexploded Ordnance (UXO) clearance;
– Reconnaissance, Surveillance and Target Acquisition (RSTA);
– Chemical, Biological, Radiological, Nuclear, Explosive (CBRNE) reconnais-

sance;
– Close range field support;
– Logistics.

(a) Comau "Agile1500" industrial AGV. (b) NASA "Curiosity" Mars rover.

(c) SHARK Robotics "Colossus". (d) Foster-Miller "TALON".

Figure 1.8: Unmanned Ground Vehicles application examples.

1.2 Skid-Steer Control Problem and Proposed Solutions

Many of today’s external applications of UGVs described in the previous section 1.1, such
as terrain navigation and exploration, SAR, defence, involve the use of SSMR because the
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absence of the steering mechanism, like differential drive robots, makes it mechanically
robust [34,35] and able to move on rough terrain with good manoeuvrability [36,37]. Like
tracked vehicles, with which it shares many properties [35, 38], steering is provided con-
trolling the relative velocities of the left and right sides drives. However, this locomotion
scheme, which requires wheels slippage for steering, makes it challenging to develop an
accurate kinematic and dynamic mathematical model or a robust tracking control scheme
capable of describing the robot movement, due to the continuous change in the interaction
forces between tires and soil. It results very difficultly for the skid-steering kinematics to
predict the exact movement of the vehicle only from its control inputs. For this reason,
kinematic models with pure rolling and no-slip hypotheses for non-holonomic wheeled ve-
hicles cannot be applied in this case [38]. Besides, other disadvantages are that movement
tends to be energy inefficient, difficult to control and for wheeled vehicles, tires tend to
wear out more quickly [34,39].

Even though there is a great amount of research on dynamic modelling and tracking
control of differential-driven mobile robots that are under the non-holonomic constraint of
zero lateral velocity, such as unicycles or car-like robots [40–42], the counterpart research
on skid-steered mobile robots is less frequently reported. Some studies have presented a
dynamic model for a 4W-SSMR and in [36] a non-holonomic constraint between the robot’s
lateral velocity and yaw rate was considered, assuming perfect knowledge of the wheel-
to-ground interaction. In [34], a simple Coulomb friction model was used to describe the
wheel-ground interaction, and a non-linear feedback controller was designed for trajectory
tracking. A general 2D dynamic model was developed in [43, 44]. This model, unlike the
others proposed, is based on the functional relationship between shear stress and shear
displacement. But dynamic models for skid-steering can be too expensive for real-time
control and dead–reckoning.

Authors in [45, 46] considered the kinematic relationship between driving and vehicle
speeds but without taking into account the main slip effects. Wheel slip has been proven
to have a crucial role in the kinematic and dynamic modelling of skid-steering mobile
robots. The slip information provides a connection between the rotational speed of the
wheel and the linear movement of the mobile platform. In [47] an estimate of the slip
from the actual inertial readings was performed using an EKF and a kinematic model of
the vehicle correlates the slip parameters with the track speeds. In [48], an experimental
method was developed to determine the sliding ratios, and the sliding coefficients of the
tracks were modelled as an exponential function of the radius of the traversed path.

In [49, 50] the authors followed a different approach adopting an additional trailer to
study the kinematic relationship for SLAM applications. They concluded that an ideal
differential-drive kinematic model could not be used for skid-steering robots.

In the work reported in [38, 39], a geometric analogy with an ideal differential-driven
wheeled mobile robot was studied and validated experimentally for both tracked and skid-
steered vehicles. These correspond to the position of the ideal differential drive wheels
for a given terrain. The assumption is based on the fact that the Instantaneous Center
of Rotations (ICRs) values of the treads depend on the dynamics, but they are located
within a bounded area at moderate speeds. A group of constant kinematic parameters
were derived as optimized values for the tread ICRs on the plane. These values vary
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with the mobile robot velocity and with the curvature of the path. Hence, authors in [51]
further experimentally described the relationship between the tread ICRs values and the
curvature of the path and the speed of the vehicle with a derived approximation function.

All of these authors agree in the fact that motion control for this type of vehicles is
a very complicated problem. Furthermore, most published works are based on simulated
results and used complex vehicle dynamics or on-line parameters adaptation that may re-
sult too costly for real-time implementation. For this reason, the proposed work adopts a
simplified bi-dimensional non-linear mathematical model inspiring at the results proposed
by [37] and [52], considering constant, given the low speeds and accelerations in analysis,
the local x-position of the ICR. Furthermore, the wheel-ground interaction is modelled
as rolling friction for the longitudinal resistance, while for the lateral resistance is imple-
mented an enhanced dry friction model, proposed for the first time in [53], that is able
to select the correct sign of the friction force according to the direction of the actuation
speed and, employing a zero-crossing detection algorithm, to distinguish between the stick
and slip conditions, to evaluate the possible stopping of the element previously in motion,
to maintain the stationary condition correctly and to evaluate the possible breakaway of
the previously stopped element.

1.3 PID Control Related Work and Contribution

PID controllers are still widely used in motion control of mobile robots and for control-
ling industrial systems in general because their excellent performance in a wide range
of operating conditions, their straightforward architectures and their familiarity in the
control community, makes them very simple and easy to implement [61]. However, its
ability to cope with some complex model characteristics such as non-linearities, external
disturbances and time-varying parameters is known to be very poor. For this reason,
traditional PID gains design commonly requires a compromise between system robustness
and performance.

Over the years various design methods7 have been proposed to determine the PID
controller parameters. Some methods use information about the open-loop step response,
e.g. the Coon-Cohen reaction curve method [62]; other methods use some knowledge of
the Nyquist curve of the plant, e.g. the Ziegler-Nichols frequency response method [63]
or the gain-phase margin approach [64]. The simple regulation laws used to determine
the controller gains has made these methods suitable for the implementation in some
commercial auto-tuner algorithms. However, since the small amount of information on
the dynamic behaviour of the system used, these methods often do not provide good tun-
ing. For example, Ziegler Nichols method may give high overshoots, highly oscillatory
and longer settling time for a high order system and Coon-Cohen method is only valid
for systems having S-shaped plant step response [65]. However, they have been widely
used as heuristic methods for determining PID controller parameters. Evolutions of these
methods have been proposed to improve these techniques as the Åström-Hägglund phase

7With the term design method it is meant the determination of the three parameters of the controller
which are the proportional, integral, and derivative gains.
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margin method [66] and the refined Ziegler-Nichols method [67]; however, in some cir-
cumstances, these methods do not produce satisfactory closed-loop responses for example
when a system has a large time delay, resulting in a very oscillatory closed-loop response.
The major limits of implementation of these methods are the need of having the transfer
function of the plant. To overcome these limitations, various methods have been devel-
oped to obtain optimal PID parameters ranging from conventional pole placement [61]
to the implementation of a variety of AI techniques such as Artificial Bee Colony (ABC)
optimization algorithm [68], Simulated Annealing (SA), Population Based Incremental
Learning (PBIL), Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and DE
algorithms [69].

Recently, GA has been widely adopted in the search for optimal PID parameters
thanks to its ease of implementation and its high adaptability as demonstrated in [70].
In [71], the authors applied a GA to derive the optimal gains of a PID controller used
in a trajectory taking application, demonstrating the improved performance in terms of
control precision and speed of convergence compared to the conventional tuning method.
Although the performance effectiveness of GA in looking for a globally optimal solution,
some studies have highlighted shortcomings in the algorithm’s performances such as poor
premature convergence, loss of the best solution found and no absolute assurance that the
algorithm will find a global optimum [72].

These limitations are overcome by the DE algorithm, which was designed to meet
the requirements of the practical minimization technique [73], therefore the algorithm has
attracted great attention within the scientific community. In [74], authors studied the
performance of DE, GA and PSO in optimizing the PID controller for in-position control
of a manipulator concluding that DE is generally more robust than other methods and not
suffers from local minima problems such as GA. In [75] authors applied the DE algorithm
in setting up the PID controller for the trajectory tracking control of quad-rotors. The
simulation results show that the controlled system has a satisfactory response and that it
is able to deal with the aircraft coupled dynamics, thus demonstrating the effectiveness
of the proposed optimization method.

The method here illustrated follows the multi-loop structure. The inner loop, dedi-
cated to speed control, it is divided into two branches for controlling the linear and the
angular velocity of the rover; furthermore, his work is aided by a feed-forward branch for
improving the velocity tracking. The reference variables are the velocity errors. The outer
loop is dedicated to the position control of the WMR. It is divided into three branches in
which the control variables are the position errors. Given the number of parameters, an
optimization algorithm is used to speed up the tuning process. In essence, the selected
algorithm is DE due to its implementation simplicity, also ensuring excellent results in a
variety of problems. In particular, an improved version based on the work of [76,77] called
jDE was adopted, characterized by self-adaptive control parameters which give flexibility
to the algorithm: the mutation control parameters evolve together with the candidate
individuals obtaining a flexible DE architecture that does not require an additional tun-
ing of its parameters. Gains are chosen on one hand to obtain adequate stability and
performance and on the other hand, to optimize closed-loop performances in terms of
step response and waypoint tracking. In particular, a range in which the PID gains give
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a stable and acceptable response is first identified by trial and error. Then the jDE al-
gorithm is applied to the user-specified range to find the optimal gain values. Adopting
this approach, since the PID parameters searching area is restricted due to the control
engineer sense, the convergence time of the jDE algorithm and consequently the time to
get the optimized set of PID gains is drastically shortened.

1.4 Sliding Mode Control Related Work and Contribution

During the past decades, some investigation focused on non-linear controllers design for
implementing the stability of those systems for which an approximation to linear model or
the design of a conventional linear controller may results too complicated or inaccurate.
One of the fields which is generating greater interest in this research branch is that of
Variable Structure Control Systems (VSCSs), in particular, the SMC technique due to its
robustness to system uncertainties [78] making it an effective candidate for mobile robot
control applications.

In [79, 80], a sliding mode control strategy shows, from the simulations results, the
robustness of the controller against the system uncertainties. However, since the control
was only applied at torque level, it ensures only the reverence velocity tracking generated
by a separated kinematic controller. In [81], the authors designed a kinematic sliding
mode controller for a WMR following a local coordinate transformation. The control law
proposed, based on reaching law approach, demonstrates a good tracking performance,
making the initial posture error converge to zero as the time approaches infinity, and its
superiority over the classical PID. However, the controller was described in an implicit
form which is inconvenient for practical implementation on a real platform. The authors
in [82] used a feedback linearisation approach for applying the sliding mode controller
to a mobile robot. Even if excellent results have been obtained for both the tracking
and the regulation tasks, from a piratical point of view that solutions would be difficult
to implement due to the authors’ choice of considering the active force generated by the
rover drivetrain as one of the system states. That choice, necessary to satisfy the feedback
linearisation, would inevitably increase the system complexity and computational cost. A
different approach has been taken in [83] where the SMC gain parameters have been tuned
employing a genetic algorithm to follow the desired trajectory satisfactorily, obtaining a
high tracking efficiency even in the presence of disturbances.

Yang and Kim proposed in [84] a robust sliding mode control strategy for a two-
wheeled mobile robot trajectory tracking purposes. Although the proposed control law
asymptotically stabilised the mobile platform to the desired trajectory, it was affected
by chattering problems due to hardware limitation, not exhibiting the expected tracking
performances. The chattering drawback has been analysed in detail in [85], where authors
experimentally compared four different control laws based on the reaching-law method,
and in [86], where an exponential sliding mode is proposed for reducing the chattering
phenomenon.

In this context, the sliding mode control algorithm introduced in this thesis proposes
a new switching function design, similar to the one suggested in [87] but introducing the
dependency of the x-error derivative in its longitudinal term for achieving a better tracking
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of the linear velocity, and an enhanced exponential reaching law based on a quasi-sliding
mode approach, for forcing the state to reach the switching manifolds faster when the
switching function is large reducing the reaching phase and at the same time reducing the
chattering effect tanks to the substitution of the signum function with a continuous relay
function. Furthermore, the jDE algorithm is applied to a user-specified range for tuning
the controller gains optimally obtaining a high tracking efficiency.

1.5 Trajectory Evaluation Metrics

Since Robotic systems in the last decades are gradually finding more and more applica-
tions, ranging from everyday life to industry applications, the evaluation of their perfor-
mances is gaining significant attention also by companies interested in developing robotics
applications for the general public. In this context plenty of research activities are point-
ing to define evaluation frameworks for the assessment of the robot performances ranging
from the comparison of different motion planners based on statistical measurements of
the performed trajectories [54] to the development of more complex laws that make pos-
sible the so popular robotic competitions like the DARPA Grand Challenge [55] or the
Robocup@Home [56] because able to compare at the same time the performances of dif-
ferent robotic assets deployed in the same environmental conditions.

Considering now our problem, that is finding a method to compare the goodness
of different trajectory tracking controllers, it is clear that a similar framework can be
adopted. Taking inspiration from the work done by [57], in which the autonomous nav-
igation performances of the mobile robot, considered as a black-box, are assessed trough
several metrics based on external observations. The purpose of the proposed approach is
to adapt some of these metrics for comparing the simulated/real robot trajectory defined
by the controllers with the reference one.

Because of the efficiency and the accuracy of a control system are generally measured
exploiting different quantities that for some reasons provide complementary pieces of
information, the key point in this work consists in comparing the proposed metrics and
later combining them into a cost function to obtain a general evaluation for a specific
controller architecture. Being inspired by the standard closed-loop specifications, i.e. the
overshoot could be linked to the Hausdorff distance and the settling time to the total
bending energy, a list of performance indices focussing on trajectory tracking tasks are
formally expressed as follows:

• Distance ratio: The distance ratio dratio metrics directly compares the travelled
length of the robot and the reference trajectory. Considering dT as a generic eu-
clidean distance defined as the sum of each segment length composing the trajectory,
the distance ratio is defined as:

dratio =
dTrob
dTref

(1.1)

• Hausdorff distance: The Hausdorff distance dhaus, broadly employed in image
matching and handwriting recognition applications, gives an indication of the max-
imum separation between two trajectories T 1 (t), T2 (t) [58], see fig.1.9. It is evalu-
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Figure 1.9: Hausdorff distances between two trajectories.

ated as the maximum among the minimum distances from the points in one curve
to the points in the other curve. Given two trajectories Tref (t) and Trob (t), having
respectively n and m elements, the Hausdorff distance between the two curves can
be calculated as:

dhaus = max
{

min
{
dTref (ti) − dTrob(tj)

}}
where, i = 1, . . . , n, j = 1, . . . ,m (1.2)

• Root Mean Square (RMS) of minimum distances: The overall separation
between two trajectories T1 (t), T2 (t) can be calculated as the RMS of the minimum
distances from the points in one curve to the points in another other curve so, given
the trajectories Tref (t) and Trob (t), the minimum distance between any two points
of each trajectory, and consequently its RMS, can be calculated as:

drms = RMS
{

min
{
dTref (ti) − dTrob(tj)

}}
where, i = 1, . . . , n, j = 1, . . . ,m (1.3)

• Total bending energy: The total bending energy ebend can be understood as
the energy necessary to bend a rod to the desired shape so, applied to a trajectory,
could represents a measure of efficiency indicating how ’curvy’ the overall trajectory
is [59, 60]. Defining ci as the local curvature along the discrete trajectory of n
elements each long dTi , the total bending energy is defined as:

ebend =

n∑
i=0

c2
i dTi (1.4)
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The analysed metrics are selected to assess the trajectory efficiency and the vehicle
capability to follow the desired trajectory. These include absolute parameters which
describe the characteristics of the trajectory and will be later applied to compare the
measured robot simulated/experimental trajectory with the theoretical one. Furthermore,
the cost function obtained combining these indices will be used in the optimisation process
of the controllers’ parameters in which the selected algorithm tries to find, generation
after generation, the controllers’ gains that minimise an objective function fopt until a
stop criterion is satisfied or the final generation is reached. A more detailed description
of the operation of the optimisation algorithm is given in Section 3.4 and Appendix A.
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Chapter 2

Mathematical Model

A complete mobile robot mathematical model is defined by three sets of differential equa-
tions that govern its dynamics. These describe the forces and moments acting on it and its
orientation towards a reference frame. In this chapter, a 2D-simplified non-linear model is
presented along with its linearisation and state-space representation. As usual, the model
has been decoupled into an independent kinematic and dynamic formulation. In order to
obtain the kinematic one, the non-holonomic constraint of the vehicle will be considered
and derived using the chassis geometrical properties and a transformation between the
coordinate systems. The dynamical properties, on the other hand, will be derived using
the Euler-Lagrange equations. Some mathematical tools necessary to fully understand
the equations proposed are introduced first. In essence, these include the reference frames
and the Euler angles used. Finally, the mobile platform adopted for simulations and
experimental tests is introduced, in particular, the Clearpath Husky mobile robot which
represents the test bench for the controllers proposed in this thesis.

2.1 Mathematical Tools Overview

2.1.1 Reference Frames

A reference frame consists of an abstract coordinate system and the set of physical ref-
erence points that uniquely represent the position and orientation of a dynamic system;
in this case, the mobile robot. Due to the great variety of existing reference frames, an
introduction to those used in this work is necessary for the sake of clarity.

Local Frame

With Local Frame, we refer to those generic body axes that have origin in the mobile
robot Centre of Gravity (CoG). They are defined as follows: xl and zl lie in the robot
plane of symmetry, with xl generally parallel to the car body reference line and directed
towards the rover nose, zl is directed from the lower to the upper surface of the shell; the
yl axis is selected so that the coordinate frame is right-handed, see 2.1. The local frame
is fixed with respect to the mobile robot; therefore, it is an inertial reference frame: the
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moments of inertia of the rover calculated within this frame do not change during the
motion.

Global Frame

With Global Frame, we refer to those generic Cartesian axes fixed in a determined origin.
They are defined as follows: Xg and Yg lie on a plane parallel to the ground, and the Zg
axis is selected so that the coordinate frame is right-handed, see 2.1. The global frame
is fixed with respect to the external environment; therefore, it is a non-inertial reference
frame: the moments of inertia of the rover calculated within this frame change during the
motion.

Figure 2.1: Global and local reference frames.

2.1.2 Euler Angles

The Euler angles are a mathematical tool used to define the orientation of a reference
frame with respect to another. Indicated as Φ, Θ, Ψ, they represent three independent
angular rotations necessary to align two reference frames. For example, considering the
two coordinate systems S1 (X1, Y1, Z1) and S2 (X2, Y2, Z2) represented in Figure 2.2,
the rotations1 Φ, Θ, Ψ aligns S 2 to S1.

According to this description, Euler angles can also be used to define the transfor-
mation of the components of a generic vector between two reference frames through the
elementary rotation matrix. Assuming that [FX1 , FY1 , FZ1 ]T is a generic vector of the

1The rotations are performed in sequence and the order of the rotations is fixed.
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Figure 2.2: Generic reference frames.

coordinate system S1, the relationship with the corresponding vector [FX2 , FY2 , FZ2 ]T in
the final coordinate system S2 is:FX2

FY2
FZ2

 =
[
R21

] FX1

FY1
FZ1

 (2.1)

whereR21= [Φ] [Θ] [Ψ] represent the matrix of complete transformation and [Φ] , [Θ] , [Ψ]
are the elementary rotation matrices defined as:

[Φ] =

cosΦ −sinΦ 0
sinΦ cosΦ 0

0 0 1

 , [Θ] =

 cosΘ 0 sinΘ
0 1 0

−sinΘ 0 cosΘ

 , [Ψ] =

1 0 0
0 cosΨ −sinΨ
0 sinΨ cosΨ


Since the elementary matrices are orthogonal, alsoR21 is orthogonal, soR−1

21 = R12 =
RT

21. This allows to define the inverse transformation as:FX1

FY1
FZ1

 =
[
RT

21

] FX2

FY2
FZ2

 (2.2)

Global-Local Transformation

Is now illustrated the Euler angle used in the present work representing the rotation
necessary to transform the components of a generic vector between the reference frames
described in Section 2.1.1 or to align the two reference frames.

In order to project the local frame Sl (x, y, z) to the global frame Sg (X, Y, Z),
reported in Fig. 2.1, it is necessary one rotation of f magnitude ϑ about zl so the corre-
sponding Euler angle is:

Φ = ϑ (2.3)
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and the local-global rotation matrix Rlg is:

Rlg =

cosϑ −sinϑ 0
sinϑ cosϑ 0

0 0 1

 (2.4)

2.2 Non-linear Mathematical Model

The non-linear mobile robot mathematical model is here presented for trajectory track-
ing application and built starting from the dynamic and kinematic characteristics of the
mobile platform.

According to the conclusions derived in section 1.2, without loss of generality, the
following assumptions are considered:

1. The centre of mass of the robot lies on the car body reference line and is fixed during
motion;

2. The vehicle is rigid and moves on a horizontal plane.

3. The four wheels are always in contact with the ground surface;

4. There is point contact between the wheel and the ground;

5. Each side’s two wheels rotate at the same speed;

6. The vehicle speed is below 1 m/s;

7. The longitudinal wheel slippage is neglected;

8. The tire lateral force is function of its vertical load.

2.2.1 Kinematic Model

Considering the vehicle allowed to move only on a two dimensional, see figure 2.3a, is
possible to define the state vector describing the generalized coordinates of the robot2

and the body velocity vector respectively as q = [X,Y, ϑ] and V = [vx, vy, ωz]
T , with

vx, vy, ωz determining respectively the longitudinal, lateral and angular velocity of the
vehicle.

Accordingly if we consider the body velocity vector it is possible to derive, in the case

of planar motion, the global velocity vector3 q̇ =
[
Ẋ, Ẏ , ϑ̇

]T
by means of the rotation

matrix defined in eq. 2.4:

q̇ =

cosϑ −sinϑ 0
sinϑ cosϑ 0

0 0 1

V = RlgV (2.5)

2I.e., the CoG position, X and Y , and the orientation ϑ of the local coordinate frame with respect to
the inertial frame.

3In case of planar motion the relationship ϑ̇ = ωz is verified.
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(a) Free-body kinematics. (b) Wheel velocities relationships.

Figure 2.3: Kinematics of SSMR.

Since equation 2.5 describes free-body kinematics and does not impose any restriction
on the in-plane movement of the SSMR, it is necessary to analyse the relationship between
the speeds of the wheels and the local velocities.

Neglecting, for the sake of simplicity, the thickness of the wheel and assuming it is in
contact with the plane at point Pi, see fig. 2.4, we suppose that the wheels rotates with
an angular velocity ωi (t), where i = 1,2, . . . ,4 represents the i-th wheel. For skid-steer
robots, in contrast to most wheeled vehicles, the lateral velocity viy, is generally non-
zero; because the mechanical structure of the SSMR makes lateral skidding necessary for
changing the orientation of the vehicle. Therefore the wheels are tangent to the path only
when ω = 0, i.e. when the robot moves on a straight line.

Whereas we neglect any longitudinal slip between the wheels and the surface, according
to this assumption based on work done in [88], the following relation can be developed:

vix = riωi (2.6)

where vix is the longitudinal component of the total velocity vector vi of the i-th wheel
expressed in the local frame and ri denotes the so-called effective rolling radius 4 of that
wheel.

Considering the whole mobile platform, with reference to the figure 2.3b, it is possi-
ble to express the following relationship between the position of the ICR and the local
velocities vectors components with respect to the local frame:

‖vi‖
‖di‖

=
‖V ‖
‖dc‖

= |ωz| (2.7)

4It represents ratio of the linear velocity of the wheel centre to the angular velocity of the wheel.
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Figure 2.4: Velocities of one wheel.

where ‖ · ‖ represent the euclidean norm.
Defining the local frame ICR coordinates as:

ICR (xICR, yICR) = (−dxc,−dyc) (2.8)

it is possible to rewrite 2.7 as:
vx
yICR

= − vy
xICR

= ωz (2.9)

furthermore, the coordinates between the ICR and the i-th wheel satisfy the following
relationships:

d1y = d4y = dcy +
W

2

d2y = d3y = dcy −
W

2
d1x = d2x = dcx + b

d3x = d4x = dcx − a

(2.10)

where a, b, W are geometric constants of the mobile robot.
The relationships between wheel velocities can be obtained from eqs. 2.7 and 2.10:

vL = v1x = v4x

vR = v2x = v3x

vF = v1y = v2y

vB = v3y = v4y

(2.11)

where:

• vL and vR represent the longitudinal coordinates of the left and right wheels veloc-
ities;
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• vF and vB represent the lateral coordinates of the front and rear wheels velocities.

Combining eqs. (2.7)–(2.11) it is possible to obtain the relationship between the wheel
and the robot velocities: 

vL
vR
vF
vB

 =


1 −W

2

1 W
2

0 −xICR + b
0 −xICR − a

[vxωz
]

(2.12)

moreover, considering for each wheel the same effective radius ri = r, from eqs. 2.6 and
2.11, we can write:

ωw =

[
ωL
ωR

]
=

1

r

[
vL
vR

]
(2.13)

where ωl and ωr are respectively the angular velocities of the left and right wheels.
Finally, it is possible to derive a relation between the angular wheel velocities and the

velocities of the robot; starting from eqs. 2.12 and 2.13 we can introduce a new control
input at kinematic level η ∈ R2:

η =

[
vx
ωz

]
= r

ωL+ωR
2

ωR−ωL
W

 (2.14)

In order to complete the kinematic model of the SSMR, a velocity constraint must be
introduced:

vy + xICRωz = 0 (2.15)

The last equation it was introduced for the first time in [37]: it is a not integrable equation
that imposes the null motion along the local y-direction. In other words, it represents a
non-holonomic constraint which bounds the x-position of the ICR in the robot wheelbase
avoiding severe loss of stability due to elevate skidding.

Equation 2.15 can be rewritten in the Pfaffian form introducing the constraint vector
A ∈ R3 and using eq. 2.5:[

−sinϑ cosϑ xICR
] [
Ẋ Ẏ ϑ̇

]T
= A (q) q̇ = 0 (2.16)

Since the generalized velocity vector q̇ is always in the null space of A, introducing a
general coordinates transformation matrix S ∈ R3x2 we can write:

q̇ = S (q)η (2.17)

where:
ST (q)AT (q) = 0 (2.18)

and:

S (q) =

cosϑ xICRsinϑ
sinϑ −xICRcosϑ

0 1

 (2.19)
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Since dim (η) = 2 < dim (q) = 3, eq. 2.17 describes the kinematics of an under-actuated
robot.

Considering the angular velocity ω as control input has an advantage over the choice to
use vy like in [37] because adopting this choice it is possible to have the SSMR kinematic
model without the knowledge of the y component of the ICR in the local frame which can
be only obtained experimentally.

2.2.2 Dynamic Model

As concluded in [37] the dynamic properties of SSMR play a significant role because of the
interaction between wheels and ground: reactive friction forces are usually much higher
than forces resulting from inertia when the robot is changing its orientation. The dynamic
properties of SSMR, for this reason, influences its motion much more than for vehicles
under the pure rolling assumption. Therefore is here presented a simplified dynamic model
of the SSMR useful for control purposes of the real mobile platform.

The SSMR dynamic equation can be obtained from Euler-Lagrange principle with
Lagrange multipliers to include the non-holonomic constraint 2.15. The Euler-Lagrange
equation is:

Γ =
d

dt

∂L
∂q̇
− ∂L
∂q

(2.20)

where Γ denotes the active torques and forces vector without considering any external
force and L = E − U is the Lagrangian of the system defined as the sum of kinetic and
potential energy. Due to assumption 2 and 3, the potential energy U is equal to 0, so in
our case the Lagrangian coincides with the kinetic energy of the robot:

L (q̇, q) = E (q̇, q) (2.21)

Neglecting the kinetic energy of the wheels for sake of simplicity, the following equation
describing the kinetic energy of the vehicle can be developed:

E =
1

2
mvTv +

1

2
Iω2

z (2.22)

where I is the moment of inertia of the robot about its CoG. Since:

vTv = v2
x + v2

y = Ẋ2 + Ẏ 2

eq. 2.22 can be rewritten in:

E =
1

2
m
(
Ẋ2 + Ẏ 2

)
+

1

2
Iϑ̇2 (2.23)

The inertial forces can be obtained from the partial derivative of kinetic energy and
its time-derivative as:

d

dt

(
∂E

∂q̇

)
=

mẌmŸ
Iϑ̈

 = Mq̈ (2.24)
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where M ∈ R3x3 denotes the constant, diagonal, positive definite inertia matrix:

M (q) =

m 0 0
0 m 0
0 0 I

 (2.25)

Before deriving the resistive forces, with reference to fig. 2.5, we first describe the
wheel-ground interaction. The active and reactive forces, respectively Fxi and Ni are
functions of the wheel torque and the gravity load, in addition Fxi is linearly dependent
on the wheel control input τi:

Fxi =
τi
r

(2.26)

Figure 2.5: Forces acting on one wheel.

Assuming that the vertical loads Ni acts from the surface to the wheel [88], neglecting
additional dynamic properties like the kinetic energy of the wheels, see fig. 2.6, the
following equilibrium equation can be obtained:

N4a = N1b

N2b = N3a

4∑
i=1

Ni = mg

(2.27)

where m and g represents respectively the vehicle mass, considered distributed homo-
geneously, and the gravity acceleration. Since the longitudinal mid-line symmetry, it is
possible to state:

N1 = N2 =
a

2 (a+ b)
mg

N3 = N4 =
b

2 (a+ b)
mg

(2.28)

Assuming Rxi derive from the rolling resistant moment τri, this vector can be treated
as rolling resistance; while the vector Fyi, that denotes the lateral reactive force, based
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on [37] can be regarded as friction force. Since modelling the friction is quite complicated
due to its highly non-linearities and its many variables dependencies, in most it is used
a simplified approximation describing the friction Ff as a superposition of Coulomb and
viscous friction:

Ff (v) = µcNsgn (v) + µvv (2.29)

where N is the force perpendicular to the surface, µc and µv denote respectively the
coefficients of Coulomb and viscous friction. Since the mobile robot velocity v is relatively
low, especially during lateral slippage, it is possible to neglect the viscous term µvv due
to the relation µcN � µvv, simplifying the model.

Figure 2.6: Active and resistive forces of the vehicle.

Based on the preview considerations the longitudinal rolling resistance and the lateral
friction force can be written as:

Rxi = uximg sgn (vxi)

Fyi = µcyimg sgn (vyi)
(2.30)

where ux is the longitudinal rolling coefficient and µcy is the lateral friction coefficient.

Consequently, the energy dissipating forces namely, according to fig. 2.6, the resulting
rolling resistance Rx, the resultant reactive force Fy and moment Mr around the CoG
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expressed in the local frame:

Rx (q̇) =
4∑
i=1

Rxi (vxi)

Fy (q̇) =
4∑
i=1

Fyi (vyi)

Mr (q̇) = b
∑
i=1,2

Fyi (vyi)− a
∑
i=3,4

Fyi (vyi) +
W

2

∑
i=2,3

Rxi (vxi)−
∑
i=1,4

Rxi (vxi)


(2.31)

for defining the vector of resultant resistive forces and torque R ∈ R3:

R (q̇) =

Rx (q̇) cosϑ− Fy (q̇) sinϑ
Rx (q̇) sinϑ+ Fy (q̇) cosϑ

Mr (q̇)

 (2.32)

The resultant active force Fx and torque M generated by the robot’s actuators can be
expressed in the local frame as:

Fx =

4∑
i=1

Fxi

M =
W

2

∑
i=2,3

Fxi −
∑
i=1,4

Fxi

 (2.33)

that compose the vector of active forces F ∈ R3:

F =

FxcosϑFxsinϑ
M

 (2.34)

Introducing a new control input vector τ ∈ R2 based on the active torques, defined
as:

τ =

[
τL
τR

]
=

[
τ1 + τ4

τ2 + τ3

]
(2.35)

and combining 2.35 with eqs. 2.26, 2.33 and 2.34, is possible to rewrite the active force
vector as:

F = E (q) τ (2.36)

where E ∈ R3x2 is the input transformation matrix defined as:

E (q) =
1

r

cosϑ cosϑ
sinϑ sinϑ

−W
2

W
2

 (2.37)
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Starting from eqs. 2.24,2.32, 2.36, and neglecting the centrifugal loads due to assump-
tion 6, a first dynamic model is obtained:

M (q) q̈ +R (q̇) = E (q) τ (2.38)

It can be noted that this equation does not include the non-holonomic constraint 2.15 yet
so describes only the dynamics of a free body. For imposing the constraint, a vector of
Lagrange multipliers λ, is introduced:

M (q) q̈ +R (q̇) = E (q) τ +AT (q)λ (2.39)

However, to eliminate the unknown vector of Lagrange multipliers λ, we left multiply
equation 2.39 by the matrix ST (q) defined in 2.19 and using the kinematic constraint
propriety 2.18, it is possible to rewrite the dynamic model in the generalized coordinates
q:

ST (q)M (q) q̈ + ST (q)R (q̇) = ST (q)E (q) τ (2.40)

For control purposes it would be more suitable and more clear to express 2.40 in terms
of the local velocity vector η. After taking the time derivative of 2.17, we obtain:

q̈ = Ṡ (q)η + S (q) η̇ (2.41)

and replacing it in 2.40 the dynamic equations become:

M̄η̇ + C̄η + R̄ = Ēτ (2.42)

where:

M̄ = ST (q)M (q)S (q)

C̄ = ST (q)M (q) Ṡ (q)

R̄ = ST (q)R (q̇)

Ē = ST (q)E (q)

(2.43)

By explaining equation 2.42 as a function of the control variables η, it can be noted the
presence of a direct dependence with the active torque vector τ . Since we have no direct
information related to engine dynamics, to solve the model we assumed that the motor
can always provide the angular velocity required by the motor velocity servo-controller.
In such conditions, the motor dynamics can be described by a first order system defined
as follows:

ω̇i = Kw

(
ωiref − ωi

)
(2.44)

It is also well known that the motor dynamics can be described by the equation:

τi = Imω̇i (2.45)

where Im represent the motor inertia. Combining equations 2.44 and 2.45, we obtain the
following relation defining the torque control input:

τi = ImKw

(
ωiref − ωi

)
(2.46)
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If we do not take into account any gear/transmission and electrical issue typical of DC
motors, it is possible to state that Kw = 1

Im
, therefore the control torque is simply

provided by the difference between the desired and measured wheel angular velocities;
in addition the relationship between the wheel angular velocity and the vehicle linear
velocity is stated by eq. 2.14.

It must be remembered that such a model is justified only if the motor can always
provide the desired torque. That assumption can be considered verified because of the
low test loads and low-speed conditions. Moreover, any elasticity effect due to the motor
belt has been taken into account by the model.

Enhanced Dry Friction Model

This section is dedicated to the description and implementation of an innovative dry
friction model developed by Borello, et al., in [53], able to overcome the characteristic
limits of the classical Coulomb model and its other variants and evolutions proposed in
literature [89,90], maintaining consistency, robustness and ease of integration in complex
problems.

The main advantages deriving from the model under analysis are the abilities to:

• Select the correct friction force/torque sign as a function of the sensed actuation
rate;

• Distinguish between the sticking condition and the slipping one assigning respec-
tively two different values to the friction force/torque: FSJ for static condition and
FDJ for dynamic one;

• Evaluate the eventual stop of the previously moving element;

• Assesses the eventual breakaway of the element in standstill condition;

• Correctly keep the standstill element in a standstill position;

• Takes into account the presence of eventual mechanical end-stops, supposing a com-
pletely inelastic shock.

With reference to the graphic representation in figure 2.7, the model can be generically
mathematically formulated as follows:

FF =


−Fatt if v = 0 ∧ |Fatt| ≤ FSJ
−sgn (Fatt)FSJ if v = 0 ∧ |Fatt| > FSJ

−FDJ if v /= 0

(2.47)

where FF is friction force/torque actually calculated coming as model output, FSJ is
the static friction force/torque, FDJ the dynamic one and Fatt is the active force/torque
applied to the system.
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Figure 2.7: Borello dry friction model graphic representation.

In order to avoid numerical instability phenomena, similar to those manifested for
example in the Karnopp model [89], during the execution of the model inside of simula-
tion programs, the mechanical system stop is imposed, through a zero crossing detection
algorithm, whenever linear or angular speed changes sign during the integration step:

v (ti+1) = 0 if v (ti+1) v (ti) ≤ 0
or

ϑ̇ (ti+1) = 0 if ϑ̇ (ti+1) ϑ̇ (ti) ≤ 0

In case the imposed stop would not result to be correct the imbalance between active
and resistive forces/torques acting on the system would cause its proper runaway at the
next integration step. This control represents the fundamental innovation with respect
the other models cited, giving to this method robustness and accuracy.

Another key point of the proposed model is the ability to distinguish aiding and op-
posing conditions, by comparing the load sign with the actuation speed one and choosing,
step after step, the right parameters. A block diagram representation of the model is
reported in figure 2.8, where it is possible to distinguish the static/dynamic friction and
velocity reset branches.

Although the aforementioned model is easy to implement within a simulation program,
applying it to the case under analysis results complex at a structural level, due to the
matrix formulation of the SSMR dynamic model, and at computational cost since the
presence of 4 wheels would require the application of the presented friction model to each
wheel. For these reasons, it was decided to modify the structure of the dynamic model
by simplifying and writing it through the equations of motion in Newtonian form.

With reference to figure 2.6, due to assumption 5 and eq. 2.31, the equation of motion
can be written in the local frame as:

max = 2Fx1 + 2Fx2 −Rx (q̇)

may = Fy (q̇)

Iϑ̈ = W (Fx2 − Fx1)−Mr (q̇)

(2.48)
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Figure 2.8: Borello dry friction model block diagram.

Introducing now 2 additional assumption, we consider the mobile robot symmetric
with respect of its y axis, i.e. a = b, and we modify the non-holonomic constraint 2.15
imposing xICR = 0, id est the x position of the instantaneous centre of rotation lies on
the CoG line. As result the new non-holonomic constraint became:

ẏ = 0 (2.49)

that imposes the mobile robot no-lateral skidding. Consequently, ay = 0 and we can
rewrite the equation of motion as:

max = 2Fx1 + 2Fx2 −Rx (q̇)

Iϑ̈ = W (Fx2 − Fx1)−Mr (q̇)
(2.50)

This formulation allows us to keep the longitudinal and lateral branches separated and
therefore easily apply the proposed friction model for the computation of the reactive
moment Mr (q̇). With reference to figure 2.8 and to eqs. 2.47 and 2.50 we can now write
the following variables as:

FF = Mr (q̇)

Fatt = W (Fx2 − Fx1)

v = ϑ̇

(2.51)

completing the friction model.

2.3 Linear State-Space Model

Even though the non-linear mathematical model provides a powerful tool for studying
the SSMR dynamics and performances in all operating conditions, in some occasions the
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high accuracy provided may not be necessary, and a simpler model is preferred. Such
simplification has been obtained linearising the simplified equation of motion defined by
eq. 2.50, which, in this case, were chosen without the improved friction model introduced
in Section 2.2.2 as it is not suitable for the process here presented.

Since its friction forces represent the only non linearities of the system, the Jacobian
linearisation around a near-zero operating point is not possible due to the presence of the
sign function discontinuous first derivative. To cope with this discontinuity, it is possible
to approximate the signum function by means of an arctangent one as proposed by [34]:

sgn (x) =
2

π
arctan (ksx) (2.52)

where ks � 1 is a constant representing the accuracy of the approximation according to
the following relation:

lim
ks→∞

2

π
arctan (ksx) = sgn (x) (2.53)

Figure 2.9: Friction approximation with Arctan and Hyper-Viscous models

Replacing 2.52 in 2.30 it is possible to rewrite the friction forces acting of each wheel:

Rxi = uximg
2

π
arctan (ksxvxi)

Fyi = µcyimg
2

π
arctan (ksyvyi)

(2.54)

and their Taylor expansion about an equilibrium point v̄i:

Rxi ≈ Rxi (v̄xi) +
∂R

∂vxi

∣∣∣∣
vxi=v̄xi

δvxi +O (vxi)

Fyi ≈ Fyi (v̄yi) +
∂F

∂vyi

∣∣∣∣
vyi=v̄yi

δvyi +O (vyi)

(2.55)
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where δvi are the deviations defined as: δvi = vi − v̄i
Neglecting the higher order terms and making the partial derivatives explicit:

Rxi ≈ Rxi (v̄xi) + µxi
2ksx

π
[
1 + (ksxv̄xi)

2
]δvxi

Fyi ≈ Fyi (v̄yi) + µcyi
2ksy

π
[
1 + (ksyv̄yi)

2
]δvyi (2.56)

Choosing v̄xi = v̄yi = 0 as equilibrium point means Rxi (v̄xi) = Fyi (v̄yi) = 0 because
there is no friction at zero velocity so, it is possible to rewrite eq. 2.56 as:

Rxi ≈
2

π
ksxuximgvxi

Fyi ≈
2

π
ksyµcyimgvyi

(2.57)

Considering the friction coefficients constant on a defined surface it is notable the
similarity of eq. 2.57 with the form Kiẋ representing a viscous friction. Introducing the
general viscous coefficient Ki it is possible to rewrite eq. 2.57 as:

Rxi ≈ Kuivxi

Fyi ≈ Kyivyi
(2.58)

The formulation obtained is analogous to what is generally called hyper-viscous friction
model [53], it presumes that viscous effects dominate on any other form of resistance in
the range of application, resulting on the linear dependency of the resulting resistive force
from the mobile robot speed as depicted in figure 2.9.

After having linearised the model, a state-space representation is now proposed be-
cause, providing the mathematical model of the system as a set of input, output and state
variables related first-order differential equations, represents a simple and valid approach
for the design and analysis of a feedback control system. Let’s now define a set of notions
necessary to better understand the following modelling process:

• System state: With reference to a dynamic system, the concept of state refers [61]
to those minimum number of variables, named state variables, which, together with
their initial value and with the input signals, are necessary to fully describe the
system and its response at any time t ≥ t0.

• State equations: Represent the set of n decoupled first-order differential equations,
composed by both state variables xi (t) and system inputs ui (t), which mathemat-
ically describe the system. In the general case the form of the n state equations
is:

ẋ1 = f1 (x, u, t)...
ẋn = fn (x, u, t)

(2.59)
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for i = 1, . . . , n. Limiting the attention to LTI systems, equations 2.59 become a
set of n coupled first-order linear differential equations with constant coefficients,
which, for a LTI system with r inputs, become:

ẋ1 = a11x1 + a12x2 + · · ·+ a1nxn + b11u1 + · · ·+ b1rur

ẋ2 = a21x1 + a22x2 + · · ·+ a2nxn + b21u1 + · · ·+ b2rur...
ẋn = an1x1 + an2x2 + · · ·+ annxn + bn1u1 + · · ·+ bnrur

(2.60)

where the constants ai,j and bi,j describe the system. Adopting a matrix form,
system 2.60 can be written as:

ẋ1

ẋ2
...
ẋn

 =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann



ẋ1

ẋ2
...
ẋn

+


b11 . . . b1r
b21 . . . b2r
...

. . .
...

bn1 . . . bnr



u1

u2
...
ur

 (2.61)

whose compact form is:
ẋ = Ax+Bu (2.62)

where x ∈ Rn is the state vector, u ∈ Rr is the input vector, A ∈ Rn×n is a square
constant matrix of coefficients ai,j and B ∈ Rn×r is the input constant matrix of
coefficients bi,j .

• Output equations: The term output means any system variable of interest. Since
all of the system variables can be represented as a linear combination of the states
and the inputs of the system, a generic output of a nth order system with r inputs
may be written as:

y1 = c11x1 + c12x2 + · · ·+ c1nxn + d11u1 + · · ·+ d1rur

y2 = c21x1 + c22x2 + · · ·+ c2nxn + d21u1 + · · ·+ d2rur...
yn = cm1x1 + cm2x2 + · · ·+ cmnxn + dm1u1 + · · ·+ dmrur

(2.63)

or in matrix form as:
y1

y2
...
yn

 =


c11 c12 . . . c1n

c21 c22 . . . c2n
...

...
. . .

...
cm1 cm2 . . . cmn



ẋ1

ẋ2
...
ẋn

+


d11 . . . d1r

d21 . . . d2r
...

. . .
...

dm1 . . . dmr



u1

u2
...
ur

 (2.64)

whose compact form is:
y = Cx+Du (2.65)

where y ∈ Rn is the output vector, C ∈ Rm×n is a constant matrix of coefficients
ci,j that weight the state variables andD ∈ Rm×r is a constant matrix of coefficients
di,j that weight the system inputs, which for many physical system, including the
one here analysed, is null leading to the form:

y = Cx (2.66)
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Knowing the basis of the state-space representation approach, is now possible deriving
that formulation for our SSMR simplified mathematical model, trying to express it as the
system: {

ẋ = Ax+Bu

y = Cx+Du
(2.67)

In order to do so, it is possible to consider Eq. 2.14 as our input, obtaining:

u =

[
u1

u2

]
=

[
vx
ωz

]
= r

ωL+ωR
2

ωR−ωL
W

 (2.68)

from which, is possible to obtain the speeds of the wheels as:

ωL = u1 − u2
W

2

ωR = u1 + u2
W

2

(2.69)

From Eqs. 2.46 and 2.69 is possible to obtain the control torque as:{
τL =

(
u1 − u2

W
2 − ωLref

)
Kw

τR =
(
u1 + u2

W
2 R− ωRref

)
Kw

(2.70)

also, expressing the reference wheel speeds as{
ωLref = ẋ− ϑ̇W2
ωRref = ẋ+ ϑ̇W2

(2.71)

Eq. 2.70 become: τL =
(
u1 − u2

W
2 − ẋ+ ϑ̇W2

)
Kw

τR =
(
u1 + u2

W
2 R− ẋ− ϑ̇

W
2

)
Kw

(2.72)

Starting from the assumptions proposed in Section 2.3, we can rewrite the simplified
model defined by Eq. 2.50 as:

ẍ =
1

m

[
(τR + τL)

1

r
− ẋmgKux

]
ϑ̈ =

1

Jz

[
(τR − τL)

W 2

4r
− ϑ̇mgW

2
Kϑ

] (2.73)

and substituting Eq. 2.72 we finally obtain:

ẍ = ẋ

(
−2Kw

rm
−mgKux

)
+

2Kw

rm
u1

ϑ̈ = ϑ̇

(
−KwW

2

2rJz
− mg

Jz
Kϑ

W

2

)
+
KwW

2

2rJz
u2

(2.74)
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Lets now make a change of variables. Introducing a set of phase variables it is possible
to reduce the order of the system:

x1 = x→ ẋ1 = x2

x2 = ẋ→ ẋ2 = ẍ so ẋ2 = x2

(
−2Kw

rm −mgKux

)
+ 2Kw

rm u1

x3 = ϑ→ ẋ3 = x4

x4 = ϑ̇→ ẋ4 = ϑ̈ so ẋ4 = x4

(
−KwW 2

2rJz
− mg

Jz
Kϑ

W
2

)
+ KwW 2

2rJz
u2

(2.75)

Converting now the system derived from 2.75 in its matrix form, the state-space
representation of the model is obtained:

ẋ1

ẋ2

ẋ3

ẋ4

 =


0 1 0 0

0 −2Kw
rm −mgKux 0 0

0 0 0 1

0 0 0 −KwW 2

2rJz
− mg

Jz
Kϑ

W
2



x1

x2

x3

x4

+


0 0

2Kw
rm 0
0 0

0 KwW 2

2rJz

[u1

u2

]
(2.76)

Regarding the output equation, since the output variables required by the control system
are the same as the state variables and matrix D is considered null, we can simply write:

y1

y2

y3

y4

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



x1

x2

x3

x4

 (2.77)

Writing Eqs. 2.76 and 2.77 in in their compact form, we obtain the final formulation:{
ẋ = Ax+Bu

y = Cx+Du
(2.78)

Taking a close look to equation 2.76 it is not difficult to notice that the effects of the
two control parameters are decoupled. Indeed the input u1 only affects the linear motion
of the WMR, while the input u2 only affects its angular response. It is therefore possible,
tanks to the assumptions made in Section 2.3, on which the whole linear formulation is
based, to consider the Multi Input Multi Output (MIMO) system as two decoupled Single
Input Single Output (SISO) systems thus simplifying the control system analysis.
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Chapter 3

Experimental Set-Up and Model
Tuning

This chapter takes a closer look to the SSMR mathematical models proposed in Chap-
ter 2 describing their implementation within the Simulink simulation environment and
the tuning necessary to faithfully simulate the behaviour of the Clearpath Husky testing
platform. For this reason, the first part of this chapter is dedicated to explain which was
the experimental set-up used for the development of this thesis: going from the indoor
testing facility of the BeiDou Research Institute in Shanghai to the description of the
Husky rover and of its interaction with ROS. After that, a heuristic approach, based on a
self-adaptive Differential Evolution algorithm, for determining the unknown parameters
is applied to each model and the comparison of their resulting performances, to check the
simulation accuracy obtainable, is carried out. Finally, the last pages are dedicated to
the Gazebo robotics simulator accuracy analysis concluding with the explanation of why
it was not used during the project.

3.1 BRI Indoor Test Facility

The experimental tests presented in this thesis were carried out at the Robotic Testing
and Training Area of BeiDou Research Institute Shanghai division; institute that deals
with the development of the Chinese satellite navigation system. The BeiDou1 project was
officially initiated in 2000, with its first experimental satellite constellation named BeiDou-
1, composed of 3 satellites offering limited coverage and navigation services mainly for
users in China and neighbouring regions. Decommissioned towards the end of 2012, it
was replaced by the second generation of the system, officially called BeiDou Navigation
Satellite System (BDS), offering services to customers in the Asia-Pacific region. Starting
fromMarch 2015, China launched the third and current generation BeiDou system, namely

1It is named after the Big Dipper asterism, which is known in Chinese as 北斗 (pinyin: Běidǒu) that
literally means ’Northern Dipper’. This name was given by ancient Chinese astronomers to the seven
brightest stars of the Ursa Major constellation, set of stars historically used in navigation to locate the
North Star.
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BeiDou-3, for global coverage constellation. To this day, BeiDou-3 counts 33 satellites,
the latest of which launched on December 16, 2019. The last two satellites meant to
complete its fleet are due to become operational by June 2020. When fully completed,
BeiDou will provide an alternative global navigation satellite system to United States GPS,
Russian GLObal NAvigation Satellite System (GLONASS) or European Galileo systems,
and is expected to be more accurate than these, reaching millimetre-level accuracy after
Satellite-based Augmentation Systems (SBAS) implementation.2 By 2020, its market
value is estimated at 400 billion RMB, approximately 52 billion euros.

According to a 2018 report conducted by the China Satellite Navigation Office, the
axes of development for BDS are multiple, ranging from mass applications such as smart-
phones enhanced localization and factory-installed car navigation systems, but also to
much broader sectors such as smart cities, transportation, public security, disaster allevi-
ation and relief, agriculture and meteorological detection. It aims to push China towards
a leadership position in key technological sectors through the implementation in the new
industry 4.0 sector of a series of technological innovations aimed at improving industrial
productivity. These include cloud computing, artificial intelligence and more broadly
smart automation like drone delivery or automated warehouse logistics.

The Shanghai BRI division located at West Hongqiao, see Figure 3.1b was developed
along those axes, focusing on the development of innovative technologies for UAVs and
UGVs.

(a) Robotics Testing and Training Area. (b) West Hongqiao facility aerial view.

Figure 3.1: BeiDou Research Institute.

About a quarter of the fifth floor of building 1, the left oval-shaped one shown in
Figure 3.1b, hosts the institute’s Robotics Testing and Training Area, a 500 squared
meters indoor laboratory equipped with one of the world’s most comprehensive infrared-
marker multi-camera localization system, counting 62 REALis motion tracking Realis
Tracking System (RTS)1000 cameras, which specifications are summarized in Table 3.1,
and a Ultra-Wideband (UWB) positioning system. This technology establishes state of the
art in indoor localization, achieving a tenth of millimetre accuracy. The system employs
high precision infra-red cameras tracking a set of retro-reflective markers mounted on the

2For more information the reader is referred to consult BeiDou website.
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target, as represented in Figure 3.2.

(a) The object is lit using near IR light. (b) Retro-reflective marker reflect back.

Figure 3.2: Representation of IR marker multi-camera localization system.

Table 3.1: RTS1000 camera specifications.

PERFORMANCES

IMMAGE RESOLUTION 1280× 1024 @ 210 FPS

FIELD OF VIEW 58°× 48°

LENSES Fixed focus F#1.8× 5.5 mm

LEDS 14 high power LEDs

MEASUREMENT FREQUENCY 4.8 ms

MAXIMUM DISTANCE OF THE OBJECT 13 m

SIZE AND WEIGHT

DIMENSIONS 90× 91× 70.5 mm

WEIGHT 0.55 kg

MATERIAL Alluminium alloy

POWER SYSTEM AND INTERFACING

POWER SUPPLY POE + DC 12V

DATA INTERFACE Gigabit RJ54

OUTPUT 2D markers location
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3.2 Clearpath Husky

The test bench used in this thesis for carrying out the experimental test and for validating
the simulations results is Clearpath HUSKY™A200 robot base developed by CLEARPATH
ROBOTICS™; it is a medium-sized robotic development platform globally trusted by
hundreds of researchers and engineers. Due to the numerous research papers published
using it as the test set-up, Husky provides a well-tried benchmark for establishing new
robot research and development efforts.

Its large payload capacity and power systems can accommodate a large variety of
customised payloads, and it is plug-and-play compatible with a wide range of accessories
and sensors for meeting research needs, such as stereo cameras, LIDAR, GPS, and IMUs.
Even industrial manipulators can be easily interfaced with the platform for teleoperated
or autonomous manipulation tasks. The Husky’s rugged construction and high-torque
maintenance-free drivetrain built out of durable materials with very few moving parts
make it suitable to deal with challenging real-world terrain. Furthermore, Husky was the
first robotics platform to support ROS from its factory settings, making it easy to use
and to integrate with the existing research carried out by the ROS community.

Figure 3.3: Husky robot base dimensions.

By going into detail, Husky is a 50 kg lightweight all-terrain vehicle with an Interna-
tional Protection (IP) rating of IP55 [91] that fully protect it against splash water and
dust; thus avoiding interferences with equipment correct operations.

Due to its generous ground clearance and a width of almost 1m, see Fig. 3.3 and table
3.2, the mobile robot is able to easily get over large obstacles and thanks to its 330mm
off-road tires with four-wheel high-torque drive, it is suitable for traversing harsh terrains
and for operating with confidence in sand, snow, mud and dirt. Moreover its skid-steer
configuration, similarly to tracked vehicles, give it excellent traction on the surface making
it particularly suited for rough terrains. However, the performance of the vehicle strongly
depends on the ground it is crossing, and speed of the vehicle since skidding can cause
unpredictable power requirements because of terrain irregularities and non-linear tire–soil
interaction. Its left and right pairs of wheel are mechanically linked, and each pair is
actuated by an electric motor; however, their specifications were not made available by
the producer.

In terms of performances, the robot base can take a maximum payload of 75 kg over
out-door terrains, reaching speeds of up to 1.0 m/s, and being able to climb slopes of up
to 45°.
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Table 3.2: Husky base specifications.

SIZE AND WEIGHT

EXTERNAL DIMENSIONS (LxWxH) 990× 670× 390 mm

INTERNAL DIMENSIONS 296× 411× 155 mm

WEIGHT 50 kg

WHEEL RADIUS 330 mm

GROUND CLEARANCE 130 mm

SPEED AND PERFORMANCE

MAX. PAYLOAD 75 kg

ALL-TERRAIN PAYLOAD 20 kg

MAX SPEED 1.0 m/s

DRIVETRAIN / DRIVE POWER 4× 4 Zero-Maintenance

MAX CLIMB GRADE 45°

MAX TRAVERSAL GRADE 30°

BATTERY AND POWER SYSTEM

BATTERY CHEMISTRY Sealed Lead Acid

CAPACITY 24 V, 20 Ah

RUNTIME - STANDBY 8 Hours

RUNTIME - NOMINAL USAGE 3 Hours

CHARGE TIME 4 Hours

USER POWER 5 V, 12 V, 24 V Fused at 5 A each. 192 W total available power.

INTERFACING AND COMMUNICATION

CONTROL MODES Direct voltage, wheel speed, and kinematic velocity.

FEEDBACK Battery voltage, motor currents, wheel odometry, and control system output.

COMMUNICATION RS232 @ 115200 baud

ENCODERS Quadrature: 78000 pulses/m

DRIVERS AND APIs ROS, C++, and Python.

ENVIRONMENTAL

OPERATING AMBIENT TEMPERATURE −10 to 40 °C Not in direct sunlight

STORAGE TEMPERATURE −40 to 60 °C

RATING IP 55

The A200 Husky is equipped with several sensors and hardware placed inside the
ample storage area. In addition, some conversion kits can be purchased for mounting
sensors on an external structure placed above the aluminium rail of the robot base.

The robot is powered by a single 24 V, 20 Ah sealed Lead-Acid battery, capable of
delivering 1800 W , placed in the battery compartment on the rear chassis. The power
outputs provided are 5 V , 12 V , and 24 V fused at 5 A each and allows the robot to
operate continuously for 3 h.

The Husky base is equipped with high-resolution quadrature encoders with 78000 pulse/m
that gives it improved state estimation and dead reckoning capabilities. It multiple control
modes, such as direct voltage, wheel speed or kinematic velocity, provides flexibility for
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Figure 3.4: Husky Platform block diagram

specific research objectives and application requirements. In addition to wheel encoders,
an UM7 Orientation Sensor containing gyroscopes, accelerometers and magnetometers,
provides 3D orientation expressed in quaternion, acceleration and rate of turn to the mo-
bile robot. These outputs generated by the two sensors are combined in an EKF used
to estimate the position of the robot knowing only its previous state, the applied input
and the sensor measurements, giving the localisation system improved dead reckoning
capabilities. Without it would be severally compromised by the skid phenomenon. The
EKF relies on the ROS localization package, developed by the Clearpath, with which it is
possible to directly edit the filter parameters that, for the purpose of this work were left
as default.

In terms of communication, the Husky A200 base provides an RS232 Connector for
serial port communication, which interfaces with the hardware via a USB-serial adapter
that we have connected to an USB Port Hub enabling communication to the outside.
This equipment enables USB connection of the robot to an external computer receiving
feedback data for on-line and off-line analysis. The host computer chosen to process
all data and run the developed control system is a XPS 15 9570 with an Intel Core
i7-8750H2.20 GHz running on Linux 18.04 LTS and using ROS Melodic Morenia as
middleware.

The mobile robot can be controlled in two ways: via a remote controller giving linear
and angular velocity direct commands or via the on-board computer using ROS as mid-
dleware for giving commands with different levels of authority. The commands natively
supported with these control interfaces are of two types, plus a third one implemented as
part of the research work:

1. Linear and angular velocity: the robot has no autonomy and the wheel speeds
are regulated and maintained by an embedded controller which characteristics are
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not made available by the producer. This is the only type of command which can
be generated by a remote.

2. Target pose3: once communicated, the robot tries to reach it generating corre-
sponding speed commands for traversing a known environment. If the robot is
equipped with the required sensors, it can also navigate autonomously in an un-
known environment mapping its surroundings for localising itself. Once it founds
its location, the robot auto-generates sequential intermediate target poses and the
associated speed commands for reaching them.

3. Reference Trajectory: command not supported natively, can be interpreted only
by mean of the control system developed in this research. The method in which
the trajectory is processed is similar to that used for autonomous navigation. In
essence, sequential intermediate target poses are feed in the control system, but this
time every pose is associated with a time stamp.

3.2.1 Robot Operating System Interface

Despite the existence of many different robotic frameworks that were developed in the
last decade, the significant advantages of ROS, such as hardware abstraction, low-level
device control, implementation of commonly-used functionalities, message and package
management, made it the most trending and popular robotic framework.

The A200 Husky is fully integrated with the robot operating system framework tanks
to the Clearpath’s driver for the robot base and fortunately, ROS provides seamless in-
tegration of external sensors thus we make use of the UM7 driver available by the ROS
community for the IMU and EKF integration. Furthermore, other packages have been
used, in particular, the tele-operation and the Virtual-Reality Peripheral Network (VRPN)
packages respectively for directly controlling the robot via joystick sending velocity com-
mands and for receiving the ground truth of the rover via the RTS. Tele-operation is
particularly useful to park the robot or to position it in a specific place, i.e. at the initial
point of the trajectory. For this porpoise, a Logitech joystick is used, which can commu-
nicate with the robot via a wireless receiver connected in the USB hub inside the robot.
The commands published by the tele-operation node have the highest priority, second
only to the emergency stop button mounted on the rover chassis, meaning that it can be
used for overriding any command and safely recover remote control of the vehicle.

The implementation of such packages creates small executables: the ROS nodes, see
Fig. 3.5, which expose library functionalities to ROS. When booting the robot, since
the whole system is the result of an integration of several different modules, it will auto-
matically check which components are plugged in and start their respective driver; which
become responsible for publishing sensor data in dedicated ROS topics. The robot’s com-
munication light on the rear panel will change from red to green, indicating that the robot
operating system is up and has established communications with the Husky.

3A pose indicates the coordinates of a point in space plus its orientation; following the convention
reported in chapter 2, a generic pose can be expressed as a three-element vector [X, Y, ϑ].
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Figure 3.5: ROS rqt graph4of the Husky robot used during tests

The controllers have been developed in MATLAB/Simulink R2019b and using the
stable distribution ROS Melodic and the MathWorks ROS toolbox it was possible to
test the controllers on the mobile platform by publishing the commands in the cmd_vel
topic and receiving the feedback by subscribing respectively at the odometry_filtered and

4The presence of the node /gazebo is due to the fact that the image was taken during a session on
Gazebo simulator.

46



3.2 – Clearpath Husky

vrpn_client_ node/pose 5 topics. Moreover, some bash scripts6 has been written to auto-
mate some steps during simulations, such as running the executable for connecting at the
VRPN client at the beginning of the simulations or calling the service for set/reset the
initial position between two simulations. All the other data useful for post-processing is
saved in rosbags7 and exported in the MATLAB workspace.

3.2.2 Default Mobile Platform Internal Controller

The Husky mobile platform drivers, which communicate with the motors, are in the
husky_node that continuously exchange data to a series of topics. One of these is cmd_vel,
which accepts a translational velocity and a rotational velocity vector for command pur-
poses. When data is published on this topic, husky_node extracts the x velocity vx and
z angular velocity ω and feeds these into the diff_drive_controller for:

• Converting the robot reference velocities into wheel speeds;

• Actuating the wheels via the electric motors;

• Controlling the wheel speeds;

It is a generic controller used for differentially steered devices, and handles both body
velocity to wheel speed conversions and dead reckoning odometry calculations, using the
following equations:

ωL =
1

wrr

(
vx −

Wwsω

2

)
ωR =

1

wrr

(
vx +

Wwsω

2

)
vx =

wrr (ωR + ωL)

2
vy = 0

ω =
1

Wws
[wrr (ωR − ωL)]

(3.1)

where wr and ws are respectively the wheel radius multiplier and wheel separation mul-
tiplier ; these two constants are used to reduce the error deriving from having considered
the mobile robot as differential drive and therefore to take into account the presence of
skidding. Since the internal architecture and parameters of this build-in controller are not
made available to the public, Section 3.4 propose a system identification method to cope
with this uncertainties.

5For receiving this data the on-board computer and the host computer on which the RTS client is run
must be connected at the same Wi-Fi network.

6These scripts are called by executing operating system commands from the MATLAB command line.
7Bags are typically created by a tool like rosbag, which subscribe to one or more ROS topics, and store

the serialised message data in a file as it is received.
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3.3 Simulink Models Implementation

The following paragraphs deals with the Simulink implementation of the tree SSMR math-
ematical models proposed in Chapter 2, namely:

1. The non-linear model with Coulomb friction formulation.

2. The non-linear model with enhanced friction formulation.

3. The LTI state-space model with hyper-viscous friction formulation.

Regardless of the mathematical formulation with which they were derived, each model
shares some characteristics, starting from, see Fig 3.6, the definition of the input-output
scheme:

• Inputs:

– u_cmd : commanded linear velocity.

– omega_cmd : commanded angular velocity.

• Outputs:

– q : mobile robot pose in the global reference frame, with components [X, Y, theta].

– dq : mobile robot velocity in the global reference frame, with components
[dX, dY, dtheta].

– eta: mobile robot velocity in the local reference frame, with components [dx, dheta].

Figure 3.6: Input-Output representations of the proposed SSMR Simulink models.

Entering the SSMR Physical Model block represented if Fig. 3.7, apart from the Husky
Plant block which containing the mathematical formulation of the model differs in each
individual variant, it is possible to identify other common components, namely:

• Saturation blocks: needed for limiting the upper and lower values of the com-
mands u_cmd and omega_cmd. Regarding the Husky platform these values respec-
tively are bounded in the ranges [−1, 1] m/s and [−2, 2] rad/s.
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• Delay blocks: needed for simulating the delay on each command caused by the in-
ternal processing unit during the transmission and conversion of the signals. This is
one of the values covered by the system identification process subsequently presented
in Section 3.4.

• Wheel Torque Controller block: Needed for simulating the feedback control
loop that regulates and converts the velocity inputs into wheel torque commands. As
seen in Fig. 3.8 the controller, based on equation 2.46 presented in Section 2.2.2, is
composed by an upper branch which converts the saturated and delayed commands
in reference wheel velocities, and a lower one which converts the feedbacked local
velocity vector into the actual wheel speeds. The two branches are subtracted, and
the result is fed to a proportional gain and saturated for simulating the mechanical
limits of the electric wheel motors. The two proportional gains here introduced are
the other two values affected by the identification process.

Figure 3.7: Insight on SSMR Physical Model Simulink block.

Figure 3.8: Insight on Wheel Torque Controller Simulink block.

3.3.1 Non-linear Model with Coulomb Friction Formulation

The model depicted in figure 3.9 is the block-diagram representation of the dynamic
system defined by Eq. 2.42. Since each component is easily identifiable within the model,
this representation does not require further explanation.
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Figure 3.9: Insight on Non-linear Husky Plant with Coulomb friction Simulink block.

3.3.2 Non-linear Model with enhanced Friction Formulation

Figure 3.10 defines the block-diagram representation of the simplified non-linear dynamical
model deriving from the simplifications made in Section 2.2.2 for obtaining the system
equations 2.50. The upper branch, composed by the green blocks, defines the longitudinal
dynamics of the WMR, while the lower one, composed by the blue blocks, computes its
latero-directional behaviour.

Figure 3.10: Insight on Non-linear Husky Plant with enhanced friction Simulink block.

The reason why a further non-linear model of the aircraft has been proposed, also
containing greater simplifications, lies in the possibility to implement an enhanced fric-
tion model, whose properties and mathematical formulation has been presented in Sec-
tion 2.2.2, that is believed to bring significant improvements in the behaviour of the mobile
robot model, especially regarding the wheel-soil interaction problem. The model is imple-
mented via the orange block within the latero-directional loop; its structure, that can be
seen from Fig. 2.8 is based on eq. 2.47 and receives three different inputs:

• v StatePort : In this case represents the rover angular velocity ω computed by the
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state port of the integrator positioned between ϑ̈ and ϑ. That velocity must be
taken from the state port to avoid the occurrence of algebraic loops that stops the
simulation program. This quantity is used in the zero-crossing detection algorithm
that resets the angular velocity, i.e. every time a change in its sign is detected, the
value of ω is set to zero.

• v : Namely ω, the standard output of the integrator described above, whose sign is
used to define the direction of the static resistive force.

• F_act : Represent the resultant of the active forces, whose sign is used to define the
direction of the static resistive force.

3.3.3 LTI State-Space Model with Hyper-viscous Friction Formulation

Finally, the block-diagram representation of the system State-Space formulation obtained
in Section 2.3, and based on eqs. 2.76 and 2.77 is presented in figure 3.11. It is pointed
out that all the computations made after the demultiplexer are needed only to express
the result in global coordinates.

Figure 3.11: Insight on LTI State-Space Husky Plant Simulink block.

3.3.4 Sensor Noise Modelling

As presented in Section 3.2, the Clearpath Husky used for experimental tests, for locate
itself is space relied on five different sensors, four wheel encoders and a IMU, whose data
is interpreted and merged in an EKF. This signal, being generated by physical sensors,
is intrinsically characterised by background noise, which, if not properly assessed, can
significantly affect the performance of the developed controllers. One example could be
the derivative action of a PID controller which, if not tuned accounting for noise, can
bring the system to unstable behaviours when tested in real scenarios. For this reason,
the following section proposes a simple approach to modelling the sensor noise; however,
its analysis, which can be considered a discipline by itself, is outside the scope of this
thesis.

51



Experimental Set-Up and Model Tuning

To understand the properties of the noise affecting the signals generated by the UGV
sensors, respectively its position q (X, Y, ϑ) and velocity η (vx, ω) vectors, the EKF
output was measured in different scenarios, defined in Table 3.3, and then replicated via
MATLAB and Simulink.

Table 3.3: Test cases employed for the EKF sensor noise analysis.

Case № uc [m/s] ωc [rad/s]

1 0.25 0

2 0.50 0

3 0 0.25

4 0 0.50

The process adopted for each test case was the following:

1. The measurements of the interested signals were converted into timeseries objects.

2. Each timeseries was high-pass filtered to keep only the noise component of the signal.
The high-pass filter settings are shown in Table 3.4.

Table 3.4: High-pass filter settings.

Setting Value

Passband frequency 10.0 Hz

Trasnition band steepness 0.85

Stopband Attenuation 60.0 dB

3. The noise variance was evaluated via the MATLAB var command.

The obtained variances, summarized in Table 3.5, are then used to set up the Simulink
random number blocks whose output is summed to the original signals to replicate their
noise component, as in the example reported for the position signal in Figure 3.12.

Table 3.5: Test cases employed for the EKF sensor noise analysis.

Parameter Variance Parameter Variance

X 8.8786× 10−6 vx 5.0115× 10−5

Y 7.9259× 10−12 ω 3.5298× 10−5

ϑ 1.2941× 10−8
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Figure 3.12: q vector sensor noise component within the SSMR Simulink model.

An example of the results achieved in the test case №1 is presented in Figure 3.13.

(a) X position. (b) Y position. (c) ϑ position.

(d) Linear velocity. (e) Angular velocity.

Figure 3.13: EKF output reconstruction compared to real one for test case №1.

3.3.5 External Disturbances Modelling

The external disturbances acting on the Husky UGV during the experimental tests within
the test facility laboratory environment can be considered very limited but, to better test
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the control architectures to external uncertainties, they were included in the Simulink
model. The disturbance has been chosen to affect the angular acceleration of the rover
and was simulated using a random number block with a variance, determined by trial and
error, set to 25. Whose output was summed to the angular acceleration ϑ̈, as can be seen
from Figure 3.14.

Figure 3.14: External disturbance implementation on the SSMR Simulink model.

3.3.6 Model Discretization

In order to simulate the real behaviour of the Husky platform, the Simulink model rep-
resentation has been discretised following a Zero Order Hold (ZOH) approach. The ZOH
Simulink block introduces the discretisation by holding its input for the sample period
specified. With regards to the Clearpath Husky, multiple signals need to be transmitted
or received at a specific frequency, as shown in Table 5.1. These are the commands, and
the odometry and ground truth respectively generated by the on-board EKF and the
laboratory RTS.

3.4 Unknown Parameters Estimation: an Evolutionary Ap-
proach

From what emerges from the previous section, the presence of 6 uncertain parameters, i.e.
two delays in the control action, two proportional gains in the Wheel Torque Controller
and the longitudinal and lateral friction coefficients, does not guarantee the reliability of
the results deriving from the simulations of the proposed models, necessitating a trial and
error approach that would slow down the development of the controllers and affect their
performance and reliability. For this reason, a heuristic approach for the determination
of these parameters is proposed here. The selected method is based on the use of an
optimisation algorithm belonging to the class of Evolutionary Algorithm (EA): the Dif-
ferential Evolution. In particular, an adaptive version named jDE/best/2, characterised
by a gradient descent self adaptability of its control parameters and by the use of the
two-difference vector perturbation best/2 mutation strategy. The following only contains
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the description and the results of the global optimisation process; therefore, the reader is
referred to Appendix A which contains a detailed description of the proposed algorithm
and its pseudo-code.

The underlying idea behind this process requires:

1. A reliable reference response dataset. To obtain that, a real Husky was controlled
with a sequence of known commands. Since it was tested in the known laboratory
environment presented in Section 3.1, its exact response was tracked and measured
tanks to the RTS.

2. The execution of numerous simulations. To do this, the DE algorithm was imple-
mented into a recursive MATLAB script so that, by executing a large number of
Simulink runs, it could experiment with different values of the unknown parameters
until the simulated behaviour would mimic the real one.

By following this approach, and by testing the results on more than one sample trajectory,
it has been possible to find the correct combination of the unknown parameters which
guarantees the most faithful simulation model. Obviously, the single parameters could
not be exact if taken alone, but their combination is. Furthermore, this type of optimi-
sation, which aims at replicating a real, measured result, allows to include in the output
parameters the effects of other nearly exact or totally unaccounted physical quantities, if
not of entire dynamic effects.

The generated MATLAB script has been divided to allow faster reconfiguration and
better recognition of each task into a main file and two sub-functions:

• main: in which all the required parameters are initialized and the final optimized
results are saved. Its pseudo-code is reported in Algorithm 3.1.

Algorithm 3.1 Parameters estimation main file.
Input: Reference trajectory, SSMR properties and algorithm control pa-

rameters
Output: Optimized unknown parameters
1: Import reference trajectory and related commands
2: Set SSMR properties, initial conditions, Simulink solver parameters

. Begin jDE initialization
3: Initialise unknown parameters as global variables and declare its search

bounds
4: Set objective function weights
5: Set population number NP
6: Set maximum generations NG
7: Initialize scale factor F
8: Initialize crossover rate CR

. Continued in the next page
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Algorithm 3.1 – Continued from previous page
9: Set objective function threshold df

. Start optimization
10: procedure jDE optimization
11: Call jDE_best_2_desc function
12: Receive optimized parameters
13: end procedure
14: Save and print optimization results

• jDE_best_2_desc: in which the mutation, crossover and selection processes are
executed. Is the core of the jDE algorithm, as we can se from the listing in Algo-
rithm 3.2.

Algorithm 3.2 Parameter estimation jDE_best_2_desc function.
Input: Control parameters from main
Output: Optimized unknown parameters
1: Receive control parameters from main
2: Initialize jDE control parameters
3: for each nth parameter to be optimized do
4: Define initial population of target vector
5: end for
6: while number of generations ≤ NG AND relative difference between

the objective functions of two subsequent generations ≤ df do
7: for each element of the population do
8: Find four random indexes within NP
9: Generate randF in the range [0, 1]

. Perform Mutation
10: procedure Define F given the relationship between

randF (1) and τ1

11: Define F . Equation (A.9)
12: end procedure
13: Define the mutant vector . Equation (A.4)
14: end for
15: for each element of the population do
16: Generate randCR in the range [0, 1]

. Perform Crossover
17: procedure Define CR given the relationship between

randCR (1) and τ2

18: Define CR . Equation (A.10)
19: end procedure

. Continued in the next page
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Algorithm 3.2 – Continued from previous page
20: Define the trial vector . Equation (A.7)
21: end for
22: for each element of the population do
23: procedure Simulation run and selection
24: Call eval_obj_fun function for both sample vector and trial

vectors
25: Receive objective functions results

. Perform Selection
26: if objective function improves using the trial vector then
27: Keep trial vector
28: Evaluate relative improvement of objective function
29: end if
30: end procedure
31: end for
32: Move to next generation
33: end while
34: Return optimized unknown parameters

• eval_obj_fun: which receives, see Algorithm 3.3, the parameter vector obtained
from the optimization algorithm, uses it to run a Simulink simulation with whom
results evaluates the objective function and returns it to the jDE function for the
selection process.

Algorithm 3.3 Parameter estimation eval_obj_fun function.
Input: Trial vectors and simulation parameters from jDE_best_2_desc
Output: Objective function results
1: Receive the simulation parameters and trial vectors from

jDE_best_2_desc function
. Parse results

2: Run Simulation
3: Evaluate RMS of minimum distances . Equation (1.3)
4: Evaluate Hausdorff distance . Equation (1.2)
5: Evaluate bending energy . Equation (1.4) If needed
6: Evaluate objective function . Equation (3.2)
7: Return objective function result

For the optimisation process of the Husky rover physical models, it was chosen to
employ the following quantities to assess the fitness of the trial and target vector during
the selection process. The cost function fopt to be minimised has bees selected as the
combination of the features of the evaluated trajectory derived from some of the metrics
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presented in Section 1.5:

fopt = kddratio + khausdhaus + krmsdrms (3.2)

where the constant values kd, khaus, krms have been chosen, see Table 3.6, for guarantee a
balanced effect of the evaluated features on the cost function. In particular, looking more
closely at each component of the function, it is possible to express some considerations.
Regarding the RMS of the minimum distances and the Hausdorff distances, the greater
the accuracy of the mathematical model, the closer the two metrics should be to zero.
Then, talking about the distance ratio, in a perfect simulation, its value equals 1.

Table 3.6: Objective function gains for the mathematical models optimization.

Parameters Values Parameters Values

kd 5 khaus 8

krms 20

3.4.1 Sample Trajectories

Four different reference trajectories have been tested in the BRI robotics laboratory. To
standardise each test hast been crested a Python ROS node able to execute a predefined
series of commands based on the tracking of linear and angular velocity. In particular,
because the major interest was to assess the dynamic effects which arise during steering,
it has been decided to command constant linear velocity and, once the rover had reached
its linear target speed, to introduce an angular sinusoidal component too, whose am-
plitude and frequency features were changed between tests to obtain different responses
and therefore consider different cases. In particular, the cases characterised by higher
frequencies or amplitudes has also been considered to assess the more evident non-linear
effects which significantly changes the vehicle response. The parameters of the the four
trajectories are listed in Table 3.7 and a graphical example of the commands provided for
trajectory number 2 is present in Figure 3.15.

Table 3.7: Sample trajectories parameters.

№ ucmd [m/s] ωcmd [rad/s] f [Hz] A [m]

1 0.50 A sin (ωt) 0.50 1.00

2 0.50 A sin (ωt) 0.25 0.25

3 0.50 A sin (ωt) 0.25 0.50

4 0.50 A sin (ωt) 0.25 0.75

The Husky position was measured using the RTS system and its data, together with
the rover internal measurements, were registered using the rosbag functionality provided

58



3.4 – Unknown Parameters Estimation: an Evolutionary Approach

(a) Odometry.

(b) Linear velocity command.

(c) Angular velocity command.

Figure 3.15: Sample trajectory №2.

by ROS. The rosbag was then processed in MATLAB by cropping and smoothing its data
to remove some sensors’ noise. The smoothing process relied on the native smoothdata
MATLAB function, using a Gaussian-weighted moving average with a SmoothingFactor 8

of 0.01. In the case here presented, a very low SmoothingFactor was adopted for removing
only the underlying sensor noise. It was concluded that more intense smoothing would
have cut through some important parameters variations. An example of the low impact
smoothing applied is visible in Figure 3.16.

8Represent a parameter that determines the size of the window considered by the algorithm at each
data point. In essence, a higher value produces a more significant smoothing.
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(a) Along linear X.

(b) Along Y.

(c) Along ϑ.

Figure 3.16: Example of the RTS data after smoothing procedure.

3.4.2 Optimization of the Non-linear Model with Coulomb Friction For-
mulation

Concerning the non-linear mathematical model with the Coulomb friction formulation,
the following parameters had to be determined:

• Wheel torque controllers proportional gain Kw. Their value are considered equal on
each branch.

• Rolling resistance coefficient ux.

• Dynamic lateral friction coefficient between the wheels and the ground µcyd.

As for the linear and angular velocity commands delays, namely delayu and delayomega,
they were manually determined by observing the response curves of the rover. While the
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maximum torque generated by the electric motors was found using the Husky specifica-
tions published by Clearpath Robotics [91].

By instructing the EA, adopting the configuration parameters reported in Table 3.8
which also contains the control parameters of the jDE algorithm defined in Appendix A, to
replicate the fourth trajectory described in Table 3.7, since it represents the most common
application case of the Husky UGV, the algorithm convergence was achieved after 1500
iterations obtaining the results reported in Table 3.9.

Table 3.8: Configuration parameters for non-linear model optimization.

Parameters Values Parameters Values

F init 0.75 CRinit 0.80

F l 0.10 F u 1.00

CRmin 0.00 CRmax 1.00

τ1 0.10 τ2 0.10

nr 4.0 ξ 0.20

df 0.001 dt 0.001

NP 50.0 NG 300.0

Table 3.9: Non-linear model unknown parameters results.9

Parameters Search Boundaries Results

delayu – 0.22 s

delayω – 0.22 s

τmax – ±7.0 N m

ux [0.0, 0.1] 0.0727 m

µcy [0.1, 0.2] 0.0254

Kw [20, 200] 56.75

These parameters were then tested on the other remaining sample trajectories giving
the results in Table 3.10 and depicted in Figure 3.17.

9It should be specified that these results were obtained after a short refinement procedure in which
the objective function weights, defined in Table 3.6, were adjusted until they guaranteed the best results,
and the parameters search boundaries were gradually reduced as well to ensure faster convergence.
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Table 3.10: Non-linear model optimization objective functions results over the four sample
trajectories.

№ dratio dhaus drms

1 0.9666 0.3726 0.1416

2 1.0408 0.1039 0.0217

3 0.9998 0.0557 0.0252

410 1.0312 0.0250 0.0146

(a) Trajectory №1. (b) Trajectory №2.

(c) Trajectory №3. (d) Trajectory №4.10

Figure 3.17: Non-linear model optimization trajectories results.

10Trajectory used for jDE optimization.
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Comparing the results, the following two considerations can be drawn:

1. The trajectory on which the optimisation was made, namely trajectory №4, is simu-
lated with a higher degree of realism. Assertion confirmed by its objective function
coefficients result in Table 3.10 and its trajectory represented in Figure 3.17d. The
values of drms and dhaus have an order of magnitude of 1× 10−2, while dratio shows
that the simulated trajectory is only 3.12% longer than the real one, leading to a
satisfactory result.

2. Trajectory №1 is the one that most diverges from reality. This lies in two reasons:
first, it is the case with the higher frequency and amplitude of the angular velocity
command, which means it is the case with the greatest non-linearities. Secondly,
it was concluded that the electric motors deliver a slightly different torque, leading
to some unexpected behaviours which are almost invisible in the other more linear
trajectories. This will be clearer while analysing the experimental results of the
trajectory tracking controllers in Chapter 5.

3.4.3 Optimization of the Non-linear Model with enhanced Friction
Formulation

Analysing now the version of the non-linear mathematical formulation containing the
enhanced friction model, the following four parameters had to be determined:

• Wheel torque controllers proportional gain Kw. Their value are still considered
equal on each branch.

• Rolling resistance coefficient ux.

• Static lateral friction coefficient between the wheels and the ground µcys.

• Dynamic lateral friction coefficient between the wheels and the ground µcyd.

The commands delays, and the maximum wheel torque Kw, were kept identical to
the previous case, as well as the other configuration parameters that are reported in
Table 3.8 and the fitness function gains of Table 3.6. After a little adjustment of the
search boundaries, the same optimisation procedure used in Section 3.4.2 was carried out
on trajectory №4 coming to the convergence of the algorithm after 2500 iterations and
obtaining the results reported in Table 3.11

The obtained parameters were then tested on the other remaining sample trajectories
giving the results in Table 3.12 and depicted in Figure 3.18c.

Comparing the results, the considerations made in the previous case in Section 3.4.2
are still valid. It is necessary to specify though, that since the distinction between static
and dynamic lateral friction is introduced by means of the advanced model, the search
boundaries of µcys and µcyd have to be chosen so that they didn’t overlap, to avoid the
risk of running into numerical problems during simulations.
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Table 3.11: Non-linear model with enhanced friction formulation unknown parameters
results.

Parameters Search Boundaries Results

delayu – 0.22 s

delayω – 0.22 s

τmax – ±7.0 N m

ux [0.05, 0.20] 0.1282 m

µcys [0.08, 0.15] 0.0972

µcyd [0.0, 0.07] 0.0409

Kw [60, 120] 118.04

Table 3.12: Non-linear model with enhanced friction formulation optimization objective
functions results over the four sample trajectories.

№ dratio dhaus drms

1 0.9668 0.3720 0.1420

2 1.0411 0.1049 0.0222

3 1.0000 0.0561 0.0252

411 1.0312 0.0255 0.0145

(a) Trajectory №1. (b) Trajectory №2.

Figure 3.18: Non-linear model with enhanced friction formulation optimization trajecto-
ries results. (continued)

11Trajectory used for jDE optimization.
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(c) Trajectory №3. (d) Trajectory №4.11

Figure 3.18 – Continued from previous page.

3.4.4 Optimization of the LTI State-Space Model with Hyper-viscous
Friction Formulation

Finally, considering the linear state-space formulation, the following three parameters had
to be determined:

• Wheel torque controllers proportional gain Kw. Their value are still considered
equal on each branch.

• Longitudinal viscous coefficient Kux .

• Lateral viscous coefficient Kϑ.

The commands delays, and the maximum wheel torque Kw, were kept identical to the
other previous case, as well as the other configuration parameters that are reported in
Table 3.8 and the fitness function gains of Table 3.6. After a little adjustment of the search
boundaries, the same optimisation procedure used in Sections 3.4.2 and 3.4.3 was carried
out on trajectory №4 coming to the convergence of the algorithm after 5750 iterations
and obtaining the results reported in Table 3.13

The obtained parameters were then tested on the other remaining sample trajectories
giving the results in Table 3.14 and depicted in Figure 3.19.
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Table 3.13: State-space model with hyper-viscous friction formulation unknown parame-
ters results.

Parameters Search Boundaries Results

delayu – 0.22 s

delayω – 0.22 s

τmax – ±7.0 N m

Kux [0.01, 0.03] 0.0277

Kϑ [0.00, 0.03] 0.0298

Kw [80, 300] 229.58

Table 3.14: State-space model with hyper-viscous friction formulation optimization ob-
jective functions results over the four sample trajectories.

№ dratio dhaus [m] drms [m]

1 0.9641 0.3793 0.1427

2 1.0382 0.0677 0.0154

3 0.9972 0.0451 0.0176

412 1.0285 0.0269 0.0150

(a) Trajectory №1. (b) Trajectory №2.

Figure 3.19: State-space model with hyper-viscous friction formulation optimization tra-
jectories results. (continued)

12Trajectory used for jDE optimization.
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(c) Trajectory №3. (d) Trajectory №4.12

Figure 3.19 – Continued from previous page.

Comparing the results, the considerations made in the first case in Section 3.4.2 are
still valid.

3.5 Mathematical Models Comparison

By comparing the accuracy of the three mathematical models, it is clear that the results
are very similar to each other, as evidenced in Table 3.15. In addition none of the models
can correctly represent the trajectory №1, see Figures 3.17a, 3.18a and 3.19a. As already
explained, that is due to unaccounted non-linearities and wheel motor imperfections. As
expected, despite having unknown parameters in common, i.e. wheel torque proportional
gain and friction coefficients, their optimised value changes from case to case, as the DE
algorithm looks for the best suitable combination of parameters, instead of their isolated
exact values.

Table 3.15: Mathematical models comparison over trajectory №4.

Model dratio dhaus [m] drms [m]

LTI hyper-viscous friction 1.0285 0.0269 0.0150

Non-linear Coulomb friction 1.0312 0.0250 0.0146

Non-linear improved friction 1.0314 0.0255 0.0144

The linear model appears to be a fitting simplification of the non-linear counterparts.
It was therefore used to assess the initial response of the proposed controllers for finding
the stability boundaries of the parameters to be optimised. The non-linear ones, on
the other hand, are required for accurate simulations. By going beyond the trajectories
comparison, the most significant differences can be appreciated by looking at the angular
velocity curves and the simulation time. Referring to Figure 3.20, it possible to notice that
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the angular velocity trend ω differ from one model to the other. The model with Coulomb
friction formulation, see Figure 3.20a, exhibits numerical artefacts near the velocity sign
reversal area, while the improved friction formulation, see Figure 3.20b, is much more
faithful as it includes the stiction phenomenon.

Regarding the simulation time, the Coulomb friction model requires more time to be
executed; on average, it takes 2.18 seconds to simulate the fourth sample trajectory, due to
its complexity. While the improved friction one, with all its simplifying assumptions, only
takes about 0.50 seconds. A reduction of 77% is of great importance when the simulation
has to be repeated numerous times, as in the case of the controllers optimisation via EA.

Given all the considerations above, only the non-linear model with the improved fric-
tion formulation was used to design and test the controllers.

(a) Coulomb friction formulation. (b) Enhanced friction formulation.

Figure 3.20: Angular velocity trends on trajectory №4.

3.6 Gazebo Simulator Accuracy Analysis

Gazebo simulator, greatly used by the robotics community, was initially thought to be
the best simulation environment for testing the trajectory controllers with. It relies on
well-known physics engines, natively supports the Husky model developed by Clearpath
Robotics, and can interface with Simulink via ROS. After thorough analysis and repeated
attempts, however, it was concluded that its outputs were far away from reality, an issue
not easily mended. This section will give a brief overview of the tests and consequent
unsatisfactory results, which contributed to the final decision to fully replicate the model
within Simulink and abandon Gazebo. The considerations here presented are only valid
for Gazebo 9 and the ROS distribution Melodic Morenia.

Gazebo 7 supports four physics engine: ODE, Bullet, Simbody and DART. However,
only one of them is compatible with ROS: ODE, which, not so coincidentally, is the default
engine and also the most outdated. The creator’s website (www.ode.org) defines ODE as
an open-source, high-performance library for simulating rigid body dynamics with appli-
cations ranging from games to 3D animation tools and industrial simulators. At first, the
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only configuration deemed necessary was related to the ground-wheel friction coefficients,
that had to replicate the BRI testing facility conditions. Initial tests highlighted deeper
problems, only solvable by thoroughly studying the user manual. This resulted in the
selection of the parameters13 whose tuning would have impacted the robot dynamics the
most:

• iters: The number of iterations for each simulation step. A higher number produces
greater accuracy at a performance cost.

• max_step_size: Maximum time step size at which every system in the simulation
can interact with the states of the world.

• contact_surface_layer : The depth of the surface layer around all geometry ob-
jects. Contacts are allowed to sink into the surface layer up to the given depth
before coming to rest.

• contact_max_correcting_velocity : The maximum correcting velocities allowed
when resolving contacts.

• max_contacts: Maximum number of contacts allowed between two entities, in
this case, wheels and ground.

• friction_model : The type of friction model used by ODE, it can be chosen be-
tween the pyramid, box or cone model.

• cfm: Constrain force mixing parameter, used to smooth the contact between two
surfaces.

• Friction Coefficients: Namely µ and µ2, the first determines the friction force
along the first direction of the pyramid model, determined by the parameter fdir1 ,
while the second along the direction perpendicular to fdir1 .

The parameters were tested by creating a MATLAB script, summarised in Algo-
rithm 3.4, which allowed to effortlessly reconfigure Gazebo, to output a predefined set
of commands and to post-process the data recorder by ROS.

Algorithm 3.4 MATLAB algorithm used to test Gazebo parameters.
Input:
Output:
1: Run a Linux script that opens Gazebo and executes all the launch le

required
. Continued in the next page

13As the detailed explanation of each parameter would be outside the scope of this thesis, the reader is
advised to refer to the on-line documentation, reachable through this link, for further information.
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Algorithm 3.4 – Continued from previous page
2: Run a Linux script that resets the Husky pose and velocity
3: Get from the user the commands to test (uc and ωc)
4: for i← 1, number of test cases do
5: Execute the script that loads the parameters of the ith case
6: Create a ROS publisher
7: Create a ROS Service Client
8: Execute the script that starts a rosbag
9: for j ← 1, tcmd × fcmd do

10: Create a ROS message with the required uc
11: Create a ROS message with the required ωc
12: Publish the commands via the ROS publisher
13: Wait for the duration of the commands (1/fcmd)
14: end for
15: Create a ROS message with uc = ωc = 0
16: Stop the rover by publishing the previous cmd
17: Call the ROS Service Client that calls the /gaze-

bo/get_physics_properties service
18: Parse its output to read the Gazebo configuration parameters
19: Stop and save the rosbag
20: end for
21: Shut-down ROS
22: Close Gazebo

The scripts used to switch between physics pro le relied on the command: gz physics
–profile [preset_name] where preset_name the field is related to the preset coded into
the world file launched by the command husky_empty_world.launch or any other
launch file within the husky_gazebo package. The XML world file, in turn, was structured
as follows:

Listing 3.1: Gazebo world file example.
1 <?xml ve r s i on ="1.0" ?>
2 <sd f ve r s i on = ’1.6 ’>
3 <world name=’ de fau l t ’>
4 <model name=’ground_plane ’>
5 <l i n k name=’ l ink ’>
6 <c o l l i s i o n name=’ c o l l i s i o n ’>
7 <su r f a c e>
8 <f r i c t i o n>
9 <ode>

10 <mu>0.250000</mu>
11 <mu2>0.150000</mu2>
12 </ode>
13 </ f r i c t i o n>
14 </ su r f a c e>
15 </ c o l l i s i o n>
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16 </model>
17

18 <phys i c s name=’ preset1 ’ d e f au l t = ’1 ’ type=’ode ’>
19 <max_step_size> . . .</max_step_size>
20 <real_time_update_rate> . . .</ real_time_update_rate>
21 <max_contacts> . . .</max_contacts>
22 <ode>
23 <so l v e r>
24 <type>quick</ type>
25 <i t e r s> . . .</ i t e r s>
26 <sor> . . .</ sor>
27 <fr i c t ion_mode l> . . .</ f r i c t ion_mode l>
28 </ so l v e r>
29 <con s t r a i n t s>
30 <contact_sur face_layer> . . .</ contact_sur face_layer>
31 <contact_max_correcting_vel> . . .</ contact_max_correcting_vel>
32 <cfm> . . .</cfm>
33 <erp> . . .</ erp>
34 </ con s t r a i n t s>
35 </ode>
36 </ phys i c s>
37

38 <phys i c s name=’ preset2 ’ d e f au l t = ’0 ’ type=’ode ’> . . .</ phys i c s>
39 <!−−other phys i c s p r e s e t s−−>
40 </world>
41 </ sd f>

The the combination of parameters that better represented the experimental observa-
tions are shown in Table 3.16.

Table 3.16: ODE physics engine main parameters.

Parameters Values Parameters Values

iters 400 max_step_size 0.001

contact_max_correcting_velocity 100 contact_surface_layer 0.001

µ 0.25 max_contacts 20.0

µ2 0.15 cfm 0.0

friction_model cone

Despite many attempts, it was not possible to achieve satisfactory results. Figures 3.21
to 3.24 show the measured response of the rover to the same inputs used for test trajectory
№3 defined in Table 3.7, which should produce a sine-wave in the XY -plane, preceded by
a straight path. The tests were conducted using the parameters presented in Table 3.16
and the three runs presented differ for the friction model employed: respectively pyramid,
box and cone model. The time axes should be taken as reference as they present some
synchronisation problems between the devices used for record the rosbags and the one
used for the simulation and post-processing of the data which couldn’t be addressed at
the time of the experiments.
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Figure 3.21: XY frame trajectory of the three runs.

(a) Run1: pyramid model (b) Run2: box model.

(c) Run3: cone model.

Figure 3.22: Husky’s wheel speeds in Gazebo simulator.

(a) Run1: pyramid model (b) Run2: box model.

(c) Run3: cone model.

Figure 3.23: Husky’s linear velocity in Gazebo simulator.
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(a) Run1: pyramid model (b) Run2: box model.

(c) Run3: cone model.

Figure 3.24: Husky’s angular velocity in Gazebo simulator.

By analysing the responses, it is evident that:

• The three friction model, despite being approximations of the same physical descrip-
tion, give very different results.

• The box friction model is, by far, the worst. Nevertheless, the other two models
produce very unreliable results, being far off from reality which was presented in the
previous sections.

• At some point during the first and second runs, the simulated robot drives in a
straight line even though the wheel speeds are identical in modulus and opposite in
sign; behaviour which is not physically possible unless some external disturbances
had arisen. This is clearly not the case of the simulation here reported.

• The angular velocity fluctuations, concerning the reference signal shown in Fig-
ure 3.24, follow an unusual pattern and are accompanied by sudden linear acceler-
ations. It is possible to see that in this cases the linear velocity is greater than the
reference speed of about 40− 50%.

These phenomena are far from the real response witnessed during the preliminary tests
at BRI. Not being able to solve such type of issues, it was concluded that replicating
the mathematical model of the vehicle within the MATLAB/Simulink environment would
have been a better choice.
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Chapter 4

Trajectory Tracking Controllers

This chapter deals with the presentation and design of the control architectures developed
within this research. After a brief initial introduction on the WMRs motion control
and the reference trajectories generation, a PID and a SMC controllers are introduced,
explaining their characteristics and the mathematical theories on which are based, and
then developed in a trajectory tracking perspective, proposing where possible innovative
approaches aiming to improve their performance or solve their characteristic problems.
One of these, common to both architectures, is a heuristic approach to the gains tuning
carried out using the jDE algorithm described in Appendix A. Them final implementation
in a numerical simulation environment allows us to assess their tracking performance and
then decide if are reliable enough to be implemented on the real Husky platform.

4.1 Motion Control Problem for WMR

Control problems involving mobile robots have attracted considerable attention in the con-
trol community, leading, in recent years, to the development of different solving methods
that can be classified into the following three categories:

• Sensor-based control: This first category of controllers approaches the navigation
problem emphasizing the autonomy of the vehicles deployed in dynamic unknown
environments [92]. Since in this application the WMR has to traverse an unstruc-
tured environment, i.e. that can change over time, it must completely rely on its
on-board sensors to cope with the constant changes in the surrounding dynamic
environment. Most of the reported projects dealing with this approach are based on
intelligent control schemes, such as fuzzy logic [93] and neural network [94]. Further-
more, to correctly plan the movement of the mobile robot, the controller must also
be able to estimate the movement of obstacles and predict the configuration of the
environment by means of sensory information from the external environment. How-
ever, since the rover to do this responds to its surroundings reactively or reflectively,
the trajectory performed may not be globally optimized.

• Path Planning and Execution: Decomposing the navigation problem this two
instances, a collision-free path is first generated based on a well-known map of the
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environment in which the WMR must be deployed, and then executed by the robot
that will have a priori knowledge of its surroundings. The planning procedures make
use of certain optimization algorithms based on minimal time, minimal distance or
minimal energy performance index, able to generate a collision-free path according
to the environmental map space-time relations [95]. The mobile robot then must
follow the planned path employing a path-following controller.

• Trajectory Tracking: The last category follows a motion control approach in
which the desired trajectory has to be accurately tracked. With the term trajectory
tracking, we mean the need for the vehicle to follow a time parametrized reference.
This type of problem has been investigated for years and now is well understood
for the fully-actuated system, for which can be found satisfactory solutions in the
most non-linear advanced-control textbooks. Regarding under-actuated1 vehicles,
in whose category the skid-steering mobile robots are included, unfortunately, this
problem is still a very active topic of research. Some solution have been proposed,
ranging from the most common linearisation and feedback linearisation methods
[96,97] to the more advanced Lyapunov based control laws [98].

Concerning this thesis, we try to asses the trajectory tracking main control objec-
tive, i.e. the guidance of the state trajectories of the dynamical systems along a desired
reference trajectory employing two different controller architectures based on a feedback
action. In particular, the objective of both controllers is based on the zeroing of the track-
ing error, that is, considering a time-varying reference or desired trajectory xd (t) and the
controlled system’s state trajectory xr (t) both defined in the time interval t0 ≤ t ≤ tend,
to minimize the relative error e (t) = xd (t) − xr (t) for each t by performing a control
action both in speed and position. The closer the controlled state trajectory follows
the reference one, the better the control target is achieved until an ideal case is reached
characterized by the coincidence the two trajectories for every time instant.

By going into detail, lets consider that the state trajectories are expressed by a three
element vector with components (x, y, ϑ), with reference to figure 4.1 it is possible to
define the trajectory tracking error, according to the coordinate change which is the inverse
formulation of 2.4, as the difference between the reference and the robot poses:

e =

xeye
ϑe

 =

 cosϑr sinϑr 0
− sinϑr cosϑr 0

0 0 1

xd − xryd − yr
ϑd − ϑr

 (4.1)

The aim of the trajectory tracking controller is to find the control input u that, under a
random initial condition, makes the tracking error e bounded and:

lim
t→∞
‖e‖ = 0 (4.2)

1With under-actuated, it is meant that class of vehicles that have fewer actuators than state variables
to be tracked.
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Figure 4.1: Representation of the Trajectory Tracking Problem.

4.2 Reference Trajectories Generation

A trajectory, as already mentioned, is a path containing an explicit function of time. Thus,
being expressed as an equation in form T = f (x, t), it is clear that for obtaining smooth
movement, the trajectory must be twice differentiable to give a continuous velocity and
acceleration profile. As a result, curve fitting techniques are an integral part of trajectory
planning, such as the use linear splines, B-splines2 or cubic splines [99].

A simple planning technique could be based on the assumption that the WMR is
omnidirectional and able to flawlessly execute every trajectory. However, in the real
applications, these assumptions are often not valid: planning a trajectory which disregards
the robot constraints could have a serious impact on the ability of the robot to track the
reference path [100]. Whereby for planning our feasible reference trajectory, dynamic
and kinematic robot constrains has been considered such as upper-velocity bounds and
non-holonomic constraint. The proposed trajectories are defined as follows:

1. A straight line at 45° given by the equations:

X = vref t cosϑd Ẋ = vref cosϑd
Y = vref t sinϑd Ẏ = vref sinϑd
ϑd = 45° ϑ̇d = 0

(4.3)

where vref is the constant linear reference velocity and t is the simulation time.

2. A circumference with radius r of 1.5 m given by the equations:

X = r cos
vref
r t Ẋ = −vref sin

vref
r t

Y = r sin
vref
r t Ẏ = vref cos

vref
r t

ϑd = π
2 +

vref
r t ϑ̇d =

vref
r

(4.4)

2Is a particular spline function that has minimal support with respect to a given degree, smoothness,
and domain partition.
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3. A sinusoidal trajectory with initial straight segment at 0° generated with the equa-
tions:

• if t ≤ 1.5 s

X = vref t

Y = 0

ϑd = 0°
(4.5)

• if t > 1.5 s

X = vref t

Y = 0.5 sin (0.1π (t− 1.5))

ϑd = atan2 [(Y − Yf ) , (X −Xf )]

(4.6)

where the desired orientation is obtained through theMATLAB function atan2 (Y, X)
which returns the four-quadrant inverse tangent of Y and X which in turn are cal-
culated as the difference between the current position and that at the previous
integration step; and the desired velocity is obtained for simplicity deriving the
position signal via the Simulink derivative block.

4. A complex trajectory composed by different turns generated with C2 continuous
piecewise Bézier curves starting from a Theta? path [95]. The two trajectory com-
ponents (X, Y ) are loaded in MATLAB via an Excel sheet and by means of the
lookup table Simulink block it is possible to obtain, by cubic interpolation, a ref-
erence point for any integration step so as to avoid discontinuity problems which
lead to not negligible oscillations in position error. The third component, ϑ, of the
reference trajectory and the desired velocity are also obtained this time through
the MATLAB function atan2 (Y, X), which graphic representation is shown in Fig-
ure 4.2, and by deriving the position signal via the Simulink derivative block. This
selection process can be described by the algorithm proposed in Algorithm 4.1, where
the lines 13 to 16 describe the function that imposes the simulation stop when the
last waypoint is reached.

Algorithm 4.1 Waypoint selection algorithm.
Input: Waypoint xlsx file, reference velocity
Output: Reference waypoint
1: Import a series of waypoints from a xlsx file
2: if the waypoints don’t include a time coordinate then
3: Ask the user a reference velocity
4: for each waypoint do
5: Evaluate the time coordinate so that the average constant velocity

required to move from the previous waypoint to the one considered is
equal to the reference velocity input by the user

. Continued in the next page
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Algorithm 4.1 – Continued from previous page
6: end for
7: end if
8: for each waypoint do
9: Use atan2 function to evaluate the angle ϑ of the segment that con-

nects the current waypoint to the next one
10: end for
11: while stopCondition← 1 do
12: t← simulation time
13: if t == tend then
14: Select the last waypoint as target
15: stopCondition = 1
16: else
17: Find two waypoints WPn (Xn, Yn, tn) and

WPn+1 (Xn+1, Yn+1, tn+1) so that tn ≤ t ≤ tn+1

18: Linearly interpolate the X, Y, t coordinate between the two se-
lected waypoints

19: end if
20: Send the reference waypoint to the control system
21: end while

Figure 4.2: Matlab atan2 function graphic representation.3

3Image taken from the MathWorks official website.
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4.3 PID Control

The Proportional Integrative Derivative control technique was first developed by Mi-
norsky [101] in the early Twenties for a maritime application to automatic ship steering
but, its greatest success is due to its mechanical implementation in the electronic analogue
controllers, making this control strategy very successful in the industrial field. Further-
more, its mathematical simplicity and straightforward implementation allowed this old
approach to gain great popularity, and to keep it up to the present day, also for applica-
tions different than industrial ones, ranging from aviation to robotics.

4.3.1 Definitions and Preliminaries

The PID is based on a feedback architecture in which its underlying principle is to regulate
the signal error e (t) between the measured and the desired state using appropriate gains
that modify the control action uc (t) according to the error signal proprieties. The basic
controller implementation and its tuning starting point is the introduction in the control
loop of a proportional gain KP which modify the control action in:

uc (t) = KP e (t) (4.7)

The only proportional action is not always sufficient as it can lead to the emergence of a
steady-state error with respect to a constant reference signal or to the susceptibility of the
system to external disturbances. Moreover, an excessively increase in the gain value, in
attempt to reduce the generated error or the system’s rising time, can lead to the creation
of instability, in particular for high-order systems.

To overcome these limitations, in support of the proportional action, an integral gain
KI can be added. Its main task is to cancel the steady-state error generating a contribution
proportional to the time evolution of the integral of the signal error:

uc (t) = KI

∫ t

0
e (τ) dτ (4.8)

Since the integral term took into account the time evolution of the error, it is possible
to have a control action different from zero also in presence of a null signal error. The
introduction of the integral contribution improves the steady-state response tracking but,
an excessive increase in the KI value leads to a slower response for equal overshoot, or to
a rise in overshoot for the same response velocity.

Finally, the last contribution can be added by a derivative term KD which, tanks to its
anticipatory behaviour increases the damping of the system response ad of consequence
its stability. The derivative gain contribution to the total control action is proportional
to the rate of change of the signal error:

uc (t) = KD
de

dt
(t) (4.9)

The sum of these three terms is a linear combination of the signal error, its integral
and its derivative over time, leading to the PID controller formulation in the time domain:

uc (t) = KP e (t) +KI

∫ t

0
e (τ) dτ +KD

de

dt
(t) (4.10)
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or in the frequency domain:

uc (t) = KP +
KI

s
+KDs (4.11)

4.3.2 Implementation and Tuning with DE Algorithm

After the system kinematic and dynamic model are determined, and supposing that a
feasible reference trajectory for the mobile robot is pre-specified by the planner described
in Section 4.2, in the format of pose qd = [xd, yd, ϑd]

T and velocity vd = [vd, ωd]
T , it

is now possible to design a classical PID controller so that the robot will correctly track
the desired trajectory. This section aims to design a stable controller that generates a
command vector u = [uc, ωc]

T in order to respect the assumptions made in chapter 2 on
the form of the kinematic and dynamic eqs. (2.17) and (2.42); and also to respect, and
therefore make possible its later implementation, the commands required by the physical
Husky platform which, using the cmd_vel topic, needs them in the linear and angular
velocities format.

Starting from the trajectory tracking problem described in Section 4.1, consider the
robot real position expressed as a three element vector with components (xr, yr, ϑr).
With reference to figure 4.1, lets recall the expression of the error that will be useful for
the mathematical formulation of the controller:

e =

xeye
ϑe

 =

 cosϑr sinϑr 0
− sinϑr cosϑr 0

0 0 1

xd − xryd − yr
ϑd − ϑr

 (4.12)

The aim of the trajectory tracking controller, ass seen in eq. 4.2 is to drive towards
zero the state trajectory error in finite time, generating a control action dependent on the
state feedback for controlling both position and velocity of the mobile robot. To achieve
this target has been thought the development of a multi-loop PI controller capable of
taking into account both the kinematic and dynamic aspects of the WMR to obtain
better motion control performance. The global control structure, with reference to Figure
4.3, is therefore decomposed into two stages:

1. An outer loop: that, depending on the robot kinematics, employs a kinematic-level
control action used for controlling the vehicle pose xr (t).

2. An inner loop: that, depending on the robot dynamics, employs a dynamic-level
control action used for controlling the vehicle linear vr and angular ωr velocities.

Kinematic-level Control Model

Starting from the outer-loop, the controller reference variable, i.e. the pose error, must
be defined. At first, it was considered a decoupled control for lateral and longitudinal
branches, adopting the polar formulation of the tracking error defined as:

eρ =

[
ρe
ϑe

]
=


√

(Xd −Xr)
2 + (Yd − Yr)2 sgn

(√
(Xd −Xr)

2 + (Yd − Yr)2 cosβ

)
ϑd − ϑr

 (4.13)
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Figure 4.3: Proposed PID global control architecture.

where this particular ρe manipulation also takes into account the sign and β is yaw to
reach the target position. But, after some initial tests, it was noticed that, being the
control action decoupled, in the particular event of presence of an cross-track error, if the
robot pose had been parallel to the reference trajectory, the controller would not have been
able to recover that error. For this reason, a further control component that considers the
cross-track error, defined as:

XTE =

√
(Xd −Xr)

2 + (Yd − Yr)2 sinβ (4.14)

,has been added in the latero-directional branch remedying this problem. Adding now
a Proportional and Integral term on each of these branches, we obtain the kinematic
controller shown in Figure 4.4 characterized by the following mathematical formulation:

u (t) =

[
u (t)
ω (t)

]
=

 KPρρe (t) +KIρ

∫ t
0 ρe (τ) dτ

KPϑϑe (t) +KPXTEXTE (t) +KIϑ

∫ t
0 ϑe (τ) dτ +KIXTE

∫ t
0 XTE (τ) dτ

 (4.15)

Figure 4.4: Kinematic controller block diagram representation.
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Dynamic-level Control Model

Considering now the inner-loop, lets use as reference signal the outputs of eq.4.15: ud (t) =
u (t). The state error is here simply represented as the difference between the reference
and actual velocities:

ev =

[
ve
ωe

]
=

[
ud − ur
ωd − ωr

]
(4.16)

Adding now a Proportional and Integral term on the longitudinal and lateral branches, we
obtain a first dynamic controller. For improving its responsiveness and velocity tracking
performances, a feed forward component can be added in its architecture introducing the
two gains FF u and FFω obtaining the structure represented in Figure 4.5 defined by the
equations:

uc (t) =

[
uc (t)
ωc (t)

]
=

KPuue (t) +KIu

∫ t
0 ue (τ) dτ + FFuud

KPωωe (t) +KIω

∫ t
0 ωe (τ) dτ + FFωωd

 (4.17)

Figure 4.5: Dynamic controller block diagram representation.

Replacing eqs. (4.15) and (4.16) in eq. 4.17 the final control action, that represents
the controller architecture shown in Fig. 4.6, can be obtained.
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Figure 4.6: PID controller block diagram representation.

According to a first simulation on the tracking of a linear trajectory at the reference
velocity of 0.25 m/s, with the robot having an initial cross-track error and different ori-
entation compared to the first reference point, see fig. 4.7c, the tracking errors slowly
converges to 0, as we can see from figure 4.7b. Even though the controller parameter have
been determined roughly and manually at the values reported in table 4.1, these results
demonstrated the functionality of the implemented controller, giving the green light for
the optimization process.

Table 4.1: PID gains for the example trajectory in presence of initial pose error.

Controller Branch Gain Value Gain Value

Position
Linear

KPρ 1.50 KIρ 0.20

KPXTE 5.00 KIXTE 0.50

Angular KPϑ 2.50 KIϑ 0.0

Velocity
Linear KPv 0.05 KIv 0.40

Angular KPω 0.20 KIω 0.20

Feed Forward Both FFρ 0.90 FFω 0.50

84



4.3 – PID Control

(a) Linear and angular velocity evolution. (b) Errors evolution.

(c) Travelled trajectory.

Figure 4.7: PID tracking results of a linear trajectory with initial pose error.

Controller Tuning and Optimization

Before further simulations can be performed, the controller’s gain values must be refined.
In this particular application, a manual trial and error tuning of gain parameters KP i,
KI i and FF i has to be performed, leading at the determination of 12 parameters. This
can be a very time-consuming process and also them optimum tuning is not guaranteed.
To overcome this difficulty, an automatic parameters tuning using the MATLAB script
based on the DE algorithm, already used in Section 3.4 and described by Algorithms 3.1,
3.3 and A.1, has been employed. The operational explanation of the chosen algorithm,
together with its pseudo code, is reported in Appendix A, as it is common for both of
the controllers studied; while in this section, we limit to report the values of its control
parameters and the results obtained in terms of controller gains and fitness function values.
The controller then will be tested on the different trajectories presented in Section 4.2.

For running the jDE optimization over the selected mathematical model, not con-
sidering both external disturbances and sensor noise, after having decided its control
parameters, it is necessary to define the search boundaries for each gain. To avoid too
long convergence times, it is a good choice limiting the search area. For this reason, the
bounds have been identified by a first trial and error approach in order to identify which
were the most suitable ranges to also avoid the areas where they could have occurred
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instability phenomena due to excessively high gains. Moreover, we have to define the cost
function used to assess the fitness of the trial and target vector during the selection pro-
cess, and consequently, the performances of the developed controllers. The cost function
fopt to be minimized has bees selected as the combination of the features of the evaluated
trajectory derived from the metrics presented in Section 1.5:

fopt = kddratio + kbenderbend + khausdhaus + krmsdrms (4.18)

where erbend is defined as the ratio between the bending energy resulting from the simu-
lation and the corresponding one of the reference path, both derived from Eq. 1.4, and
where the constant values kd, kbend, khaus, krms have been chosen, see Table 4.2, for
guarantee a balanced effect of the evaluated features on the cost function.

Table 4.2: Objective function gains.

Parameters Values Parameters Values

kd 10 khaus 15

kbend 10 krms 100

By instructing the EA, adopting the configuration parameters reported in Table 4.3
which also contains the control parameters of the jDE algorithm already defined in Ap-
pendix A, to replicate the complex trajectory described in Section 4.2 used as test case,
the values obtained through the optimization process and the corresponding optimization
time, are shown in Table 4.4. It is worth noting that the feed-forward gains were set
manually before starting the optimization process.

Table 4.3: Configuration parameters for non-linear model optimization.

Parameters Values Parameters Values

F init 0.75 CRinit 0.80

F l 0.10 F u 1.00

CRmin 0.00 CRmax 1.00

τ1 0.10 τ2 0.10

nr 4.0 ξ 0.20

df 0.001 dt 0.001

NP 100.0 NG 150.0
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Table 4.4: PID optimized parameters.

Controller Branch Gain Values fopt Optimization time Search bounds

Complex trajectory

Position

Linear

KPρ 2.8360

28.311 9.621× 103

[0, 6]

KIρ 0.1146 [0, 2]

KPXTE 5.9828 [0, 6]

KIXTE 1.9708 [0, 2]

Angular
KPϑ 4.5073 [0, 6]

KIϑ 5.276× 10−4 [0, 2]

Velocity

Linear
KPv 0.0372 [0, 2]

KIv 0.4769 [0, 2]

Angular
KPω 0.6498 [0, 2]

KIω 0.5481 [0, 2]

Feed Forward
Linear FFρ 1.0 constant

Angular FFω 0.0 constant

4.3.3 Simulation Results

In this subsection, the simulation results of the PID controller are presented. Since the
simulations are run in Simulink, the equations describing the trajectory planner, see Sec-
tion 4.2, are transformed into their block diagram representation and cascaded to the
PID and mobile robot with advanced friction ones described respectively in Sections 3.3.2
and 4.3.2, obtaining the model block diagram shown in Figure 4.8.

Figure 4.8: PID simulation model block diagram.

In particular, the waypoint selector block consist of a variant subsystem, containing
the planners of the 4 type trajectories, which output the reference trajectory selected
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by the user. The error block generates the tracking error by subtracting the robot pose
from the reference one; the resulting orientation is given in the range (−π, π). The next
section is composed by the purple, yellow and blue blocks that together make the PID
controller, which takes the tracking error as reference and generates the control action
based on equation 4.17. Once the control signal enters the mobile robot plant, it is first
transformed by the wheel controller into the desired torque by eq. 2.46 so it can enter as
input in the dynamic plant, containing the enhanced friction model and some saturation
blocks for limiting the generated torques and velocities at them maximum values reported
in table 3.2, which obtains the actual rover pose, used as feedback, by dead-reckoning.
The last blocks are used for the sensor noise generation, based on a white noise model.

The control model is now simulated for all the trajectories described before, without
any initial position error and at a reference velocity of 0.25 m/s, using the gains obtained
from the first optimization process carried out on the test trajectory and reported in
table 4.4. It is worth specifying that the other three trajectories were used only to assess
the controller performances in different scenarios. The obtained result are represented in
Figures 4.9 to 4.12 and the respective metric values are summarized in Table 4.5.

(a) Linear and angular velocities evolution. (b) Errors evolution.

(c) Travelled trajectory.

Figure 4.9: PID simulation tracking results of a linear trajectory.
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(a) Linear and angular velocities evolution. (b) Errors evolution.

(c) Travelled trajectory.

Figure 4.10: PID simulation tracking results of a circumferential trajectory.

(a) Linear and angular velocities evolution. (b) Errors evolution.

Figure 4.11: PID simulation tracking results of a sinusoidal trajectory. (continued)
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(c) Travelled trajectory.

Figure 4.11 – Continued from previous page.

(a) Linear and angular velocities evolution. (b) Errors evolution.

(c) Travelled trajectory.

Figure 4.12: PID simulation tracking results of a complex trajectory.
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Table 4.5: PID trajectory tracking numerical simulations results.

Trajectory dratio dhaus [m] drms [m]

Straight line 0.992 0.038 0.004

Circumference 0.999 0.013 0.006

Sinusoidal trajectory 0.996 0.045 0.015

Complex trajectory 1.034 0.101 0.034

Starting from the linear trajectory, which represents the least demanding case for the
controller, it can be seen from figure 4.9a that after a settling period of about 2 second,
the actual outputs perfectly tracked the desired linear velocity remaining in an acceptable
range.

Interesting considerations can be made regarding errors evolution of the first three tra-
jectories, respectively represented in Figures 4.9b, 4.10b and 4.11b, in particular regarding
ρe which shows a convergent trend but a very slow zeroing. This is strictly dependent
on the value of the integrative gain, which in this case is very low to avoid the onset of
unstable responses.

Analogizing the simulation of the complex trajectory reported in 4.12, in correspon-
dence with the more accentuated turns, high oscillations arise. This is due to the sudden
increases in tracking errors. Despite this behaviour, the controller can quickly drive back
the state on the tracked trajectory generating a maximum deviation of 0.101 meters, quite
high for this low speed. Furthermore, the angular speed profile in Figure 4.12a seems to
have quite high peaks in correspondence with the most accentuated turns, this could
generate problems during the experimentation on the real Husky platform.

With regard to the metrics values shown in Table 4.5, it is worth to mention that the
bending energy ratio has not been considered this time due to faulty results given by the
implement of sensor noise.

4.4 Sliding Mode Control

Sliding mode control is a type of variable structure control system which control logic
switches between two opposed control laws, based on the location of the state trajectory,
to achieve the desired performances of the system under analysis. The control architecture
relies on a switching function to chose between the two control laws, which drives the state
trajectory towards a sliding surface4 that, once is reached, traps the state trajectory and
forces it to move towards the equilibrium point of the state by a sliding movement. Hence
the name sliding mode control.

The most significant advantage of this class of controllers is its robustness, due to

4When the dimension of the sliding surface is greater than two, it is also called sliding manifold or
hypersurface.
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its shifting control structure, which makes it entirely insensitive for those uncertainties
implicit in the input channel, called matched uncertainty, during the sliding motion [78].
Besides, once the state trajectory reaches the sliding surface, the order of the system
can be considered reduced, simplifying the complexity of the system and, under suitable
conditions, the controller can deal with systems in the presence of unmatched uncertainty
[102]. However, the main drawback of sliding mode control is represented by the chattering
phenomenon: the high-frequency switching motion of the state trajectory between the two
opposite control laws occurring in the sliding surface bounds. This phenomenon arises
in the attempt of the switching function to trap the state trajectory within the sliding
surface, which is switched at an infinite frequency. However, due to physical limitations
in real-world systems, directly applying the above-developed control algorithms can lead
to unwanted oscillations and to heat generation or wear off mechanical parts, eventually
damaging them.

4.4.1 Definitions and Preliminaries

The sliding mode is a motion, characterized by the very high-frequency switching of the
control logic, which took place in any control system with a discontinuous control function
or in any dynamic system presenting discontinuities in the equation of motion. To provide
a clear about the key design techniques of SMC and to minimize confusion, the discussion
and the further examples concentrate only on linear systems or at least on systems which
are linear in the control variables.

Considering a general system characterized by the following equation:

ẋ = f (x, u, t) (4.19)

where, x ∈ Rn and the control u (x, t) ∈ Rm with its respective components ui (x, t) has
the form:

ui (x, t) =

{
u+
i (x, t) , when si (x) > 0

u−i (x, t) , when si (x) < 0
, for i = 1, . . . ,m (4.20)

where u+
i (x, t) and u−i (x, t) are continuous functions, some basic definitions are given as

follows:

• Switching surface: Let si (x) be a continuous (n− 1)-dimensional switching func-
tion; since the control entries ui (x, t) undergoes discontinuity on the surface iden-
tified by the aforementioned function, si (x) = 0 is called a switching surface or
switching hyperplane.

• Sliding mode: Let S = {x : s (x) = 0} be a switching surface that includes the
origin x = 0; if, for any initial state x0 ∈ S, the condition x (t) ∈ S is verified at
every t > t0, then x (t) is a sliding mode of the system. In general, a sliding mode
exists if in the vicinity of the switching surface S, the velocity vectors of the state
trajectory always point towards the switching surface.

• Sliding surface: If a sliding mode exist on the switching surface S = {x : s (x) = 0},
i.e., if exist a trajectory, for every point in the surface S, able to reach the surface
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from both sides, then the switching surface S is called sliding surface or sliding
manifold depending on its dimensions.

• Reaching condition: The existence of a sliding mode requires the stability of
the state trajectory towards the sliding surface S = {x : s (x) = 0} at least in its
neighbourhood, in other words the state trajectory must approach the surface at
least asymptotically.

• Region of attraction: Represents the largest neighbourhood of the sliding surface
S = {x : s (x) = 0} in which the reaching condition is satisfied.

• Reaching mode: Represents the phase in which the state trajectory undergoes
the reaching condition.

From the definitions above, it is shown that for an nth-order system with m inputs
there arem switching functions and 2m−1 switching surfaces of different dimensions [103]:

1. m surfaces of dimension (n− 1)defined as:

Si = {x : s (x) = 0} , for i = 1, . . . ,m (4.21)

2. Considering the intersection of two surfaces Si and Sj which generates an (n− 2)-
dimensional switching surface, the total number of such intersections equals the
number of combinations of m surfaces Si taken two at a time:(

m

2

)
=
m (m− 1)

2
(4.22)

These surfaces can be described as:

Sij = Si ∩ Sj , for i, j = 1, . . . ,m with i < j (4.23)

Figure 4.13 shows a generic interpretation of two planes S1 and S2 which intersection
is the switching surface S12 represented by a line.

3. Further intersections involving multiple surfaces Si, can be described in the same
manner as in 4.23; so the intersection of k surfaces generates

(
m
k

)
switching surfaces

of dimension (n− k).

4. There is finally a single switching surface SE of dimension (n−m) which is the
intersection of the all surfaces Si, with i = 1, . . . ,m, given by:

SE = S1 ∩ · · · ∩ Sm (4.24)

This last surface can be called eventual sliding surface, to which the all trajectories
must eventually reach.

Given this number of sliding surfaces, in such a system it is possible to have 2m−1 different
sliding modes which can actually begin in a number of different ways, hereafter referred
to as a switching scheme. The number of switching schemes that exist depends on the
order of entering different sliding modes, three of them are described briefly here [104]:
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Figure 4.13: Geometric representation of two intersecting switching surfaces.

• Fixed-Order Sliding Mode Switching: In this scheme, as shown in Fig.4.14a,
sliding modes take place in a preassigned order while the state is traversing the state
space. For example, considering the initial state x0, it can move into the switching
surface S1 of dimension (n− 1), to the surface S12 = S1 ∩ S2, which has dimension
(n− 2) and so on, moving to progressively lower-dimensional sliding surfaces and
eventually reaching the (n−m)-dimensional surface SE :

x0 → S1 → (S1 ∩ S2)→ ...→ SE (4.25)

Although it is conceptually simple, the associated control system has a long transient
period and the work needed for determining it is tedious and time-consuming.

• Eventual Sliding Mode Switching: In this scheme, as shown in Fig. 4.14b, the
state is driven from any initial state x0 to the eventual sliding surface SE on which
the sliding mode takes place. On the other switching surfaces sliding modes there
may or may not be obtained. This scheme is simple to implement and a smooth
control can be easily obtained; however the switching scheme does not guarantee
good transient characteristics.

• Free-Order Sliding Mode Switching: Here, the order of sliding modes are not
preassigned but follows its natural evolution in a "first-reach-first-switch" scheme in
which the state is driven to the eventual sliding surface SE , as shown in Fig. 4.14c.
This scheme, compared to the fixed-order approach, is more simple to implement,
the reaching mode possesses better dynamic characteristics and the resulting control
effort is smaller in magnitude. Hence, saturation is less likely to occur.

After having defined these basic concepts, it is now possible to present the most com-
monly used design procedures for this type of controllers. Generally, the SMC design
consists of two steps: first, the sliding surface must be defined so that the design ob-
jectives are satisfied by the system performance during the sliding mode. Second, the
switched control logic is designed for satisfying the reaching condition and thus ensuring
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(a) Fixed-order. (b) Eventual. (c) Free-order.

Figure 4.14: Switching schemes.

the finite-time convergence of the state trajectory to the sliding surface, maintaining it
there thereafter. In other word s (x) = 0 ∀ t ≥ ts where ts is the time needed to the state
trajectories for reaching the sliding surface.

Sliding Surface Design

The design of a sliding surface can be done following different approaches thanks to the
great effort that has been put in this research topic, especially regarding the linear systems.
Considering the following generic non-linear system:

ẋ = Ax+Bu (4.26)

where x ∈ Rn and the control u (x, t) ∈ Rm, and its generic sliding surface:

S = {x : s (x) = 0} (4.27)

some of these theories are summarized as follows:

• Canonic form: In presence of a linear single input system, after writing it in its
canonic form:

ẋi = xi+1 for i = 1, . . . , n− 1

ẋn =

n∑
i=1

aixi + bu
(4.28)

it is possible to define the sliding surface as a linear combination of the states [105]:

s (x) = Λx =

n−1∑
i=1

λixi + xn = 0 (4.29)

where the λi coefficients of the switching function define the desired characteristics
of the closed loop system after the reaching phase.
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• Coordinate transformation: Considering a linear system written as 4.26 and
supposing the existence of a non-singular transformation matrix Q:

QB =

[
0
B2

]
(4.30)

where B2 ∈ Rm×m is a non-singular matrix, it is possible possible to transform the
system in:

ẋ1 = A11x1 +A12x2

ẋ2 = A21x1 +A22x2 +B2u
(4.31)

where, x1 ∈ Rn−m, x2 ∈ Rm. Writing the switching function as [106]:

s (x) = Λ1x1 + Λ2x2 (4.32)

and assuming Λ2 non-singular, during the sliding mode Λ1x1 + Λ2x2 it is possible
to linearly relate x2 to x1 so the system can be transformed in:

ẋ1 = A11x1 +A12x2

ẋ2 = −Kx1
(4.33)

where K = Λ1
Λ2

represents an (n−m)th order system, in which x2 is considered as
the control variable, which sliding dynamic described by:

ẋ1 = (A11 −A12K)x2 (4.34)

Following this procedure we have changed to a reduced order state feedback problem
which can be solved with classical approaches, like linear quadratic methods, for
determining of the value of K that satisfies our system requirements. Once K is
determined, the switching function, and the associated sliding surface, takes the
form:

s (x) = Λx = Λ2 [K, I]x (4.35)

• Linear Quadratic (LQ) approach: Represents one possible improvement of the
Coordinate transformation, based on the optimal choice of the value of K by min-
imising a quadratic cost function over infinite time interval [106]. For example,
considering the problem defined by eqs. 4.33, since x2 can be considered as the
control input, it is possible to find the optimal sliding mode of the system by a LQ
optimization, minimising the cost function:

J =

∞∫
ts

(
xT1 Q11x1 + 2xT1 Q12x2 + x2Q22x2

)
dt (4.36)

For sake of simplicity, considering Q11 = 0, without loss of generality it is possible
to write the optimal control x2 as:

x2 = −Q−1
22 A

T
12Px1 = −Kx1 (4.37)
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where P is a positive defined matrix solution of the Ricatti equation:

AT11P + PA11 − PA12Q
−1
22 A

T
12P = −Q11 (4.38)

Considering Λ2 = I then the switching function 4.35, and its related sliding surface,
can be written as:

s (x) = Kx1 + x2 =
[
Q−1

22 A
T
12P, I

]
x (4.39)

• Equivalent control method: This approach introduces the condition ṡ (x) = 0
as a further requirement for maintaining the state trajectory on the sliding surface
[107]. Assuming that a sliding mode exist on the generic surface 4.27, we can find a
continuous control such that under the initial condition of the state vector on this
surface, it yields to zero the time derivative of the switching function along the state
trajectories:

ṡ (x) = Gẋ = GAx+GBu = 0 (4.40)

where the components of the matrix G ∈ Rm×n represent the gradients ∂s
∂x of the

switching function.
Assuming the existence of a solution for the system 4.40, it is possible solving for
the equivalent control ueq expressed as:

ueq = − ∂s
∂x
Ax

(
∂s

∂x
B

)−1

(4.41)

where ∂s
∂xB is non singular.

Substituting the the equivalent control in the system 4.26, its dynamic can be written
as:

ẋ =

[
I −B ∂s

∂x

(
∂s

∂x
B

)−1
]
Ax (4.42)

and its relative sliding surface as:

s (x) = Gx = 0 (4.43)

• Time varying surface for tracking control: According to [107], one possible
approach for designing the sliding surface of a single input system is going through
the definition of the desired control bandwidth, considering a tracking problem and
expressing the state trajectory x as the tracking error for control purposes, a sliding
surface can be written as:

s (x, t) =

(
d

dt
− λ
)n−1

x = 0 (4.44)

where λ is a positive constant determining the closed-loop bandwidth.

These presented are just some possible methods, others for developing linear or non-linear
sliding surfaces can be found in literature, such as [108] where a frequency-shaped sliding
surface, which appears as a linear operator, was designed to attenuate high frequency
components in order to avoid vibrations given to the interaction between sliding mode
and unmodelled system dynamics, or [109, 110] where a robust sliding hyperplanes was
designed respectively via a Ricatti and Lyapunov approach.
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Control Law Design

After finding a suitable sliding surface, the reachability problem must be analysed to
design a control function u : Rn → Rm able to drive the state trajectory x towards the
sliding surface and to maintain it herein. To do this, it is first necessary to define a reaching
law and then it is possible to derive the control method. Some different approaches are
here proposed [103]:

1. Reaching laws: The following reaching laws are valid for both SISO and MIMO
systems:

• Direct switching function approach: A sufficient reaching condition for
make sliding mode appear is:

siṡi < 0 , for i = 1, . . . ,m (4.45)

Even if this reaching condition is global, it do not guarantee finite reaching
time. A similar sufficient condition was also proposed in [105]:

lim
si→0+

ṡi < 0 and lim
si→0−

ṡi > 0 (4.46)

These reaching laws generates a control structure in which the individual
switching surfaces and their intersection are all sliding surfaces but results
but it is very difficult to implement for the multiple-input systems.

• Lyapunov function approach: Choosing the Lyapunov function candidate:

V (x, t) = sTs (4.47)

a global reaching condition is given by:

V̇ (x, t) < 0 (4.48)

This approach results in a control structure in which the sliding mode is guar-
anteed only on the intersection of the all sliding surfaces leading to the so
called eventual sliding mode. The major drawback is that the points lying on
the individuals switching surfaces si could not belong to the sliding surface.
Furthermore finite reaching time is not guaranteed, but this problem is easily
fixable by modifying 4.48 in:

V̇ (x, t) < −ε (4.49)

where ε is a strictly positive value.

• Gao’s reaching law approach: Gao proposed in [111] a method for express-
ing the reaching law by differential equation, which parameters can define the
dynamic qualities of the control system during the reaching mode. A practical
general form of the proposed reaching law is:

ṡ = −Qsgn (s)− Ph (s) (4.50)
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where:

Q = diag [q1, . . . , qm] , where qi > 0 for i = 1, . . . ,m

P = diag [p1, . . . , pm] , where pi > 0 for i = 1, . . . ,m

sgn (s) = [sgn (s1) , . . . , sgn (sm)]T

h (s) = [h1 (s1) , . . . , hm (sm)]T

(4.51)

and

sihi (s) > 0

hi (0) = 0
(4.52)

Four practical special cases of 4.50 are given below:

– Constant rate reaching :
ṡ = −Qsgn (s) (4.53)

The switching function is forced to reach the switching surface S at the
constant rate |ṡi| = −qi. Its simplicity makes it a valid approach but some
attention must be paid in the choice of qi because if it is too small the
reaching time will be to long and, on the contrary, a too large value t will
cause severe chattering.

– Constant plus proportional rate reaching :

ṡ = −Qsgn (s)− Ps (4.54)

Adding the proportional term −Ps at the previous formulation, it is pos-
sible to force the state to approach the switching surface faster when s is
large. Furthermore, it can be shown that the reaching time for x to move
from an initial state x0 to the switching manifold Si is finite, and is given
by:

Ti =
1

pi
ln

(
pi |si|+ qi

qi

)
, for i = 1, . . . ,m (4.55)

– Power rate reaching :

ṡi = −pi |si|α sgn (si) , for i = 1, . . . ,m (4.56)

where 0 < α < 1. By using this formulation, the reaching speed is in-
creased when the state is far away from the switching surface, but reduced
when it is in its proximity. The reaching time can be obtained integrating
4.56 from si = si0 to si = 0:

Ti =
1

(1− α) pi
|si (0)|(1−α) , for i = 1, . . . ,m (4.57)

Thus the proposed law gives a finite time reaching and, in addition, the
absence of the constant rate term −Qsgn (s) reduces the chattering.
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– Particular rate reaching : An enhanced version of 4.56 based on a speed
control relationship in the reaching phase was developed by Loh and Yeung
in [112]:

ṡi = −pieα|si|sgn (si) , for i = 1, . . . ,m (4.58)

where the switching gain pi and α are strictly positive values, and the
reaching time becomes:

Ti =
1

αpi

(
1− e−α|si(0)|

)
, for i = 1, . . . ,m (4.59)

This approach provides a fastest reaching time and chattering reduction.

2. Control laws: After having selected the reaching equation, is now possible to
determine the control law; some design processes are here presented:

• Equivalent control augmentation method: Even if we have already de-
rived a control action ueq based on equivalent control according to eq. 4.41,
only using this equation if the initial condition x0 of the system is not on the
sliding surface S the state cannot be driven towards S. One possible solution
is to augment ueq with a discontinuous or switched component uN for satisfy
the reaching condition obtaining:

u = ueq + uN (4.60)

Combining eqs. (4.41) and (4.60) in 4.40, we obtain:

ṡ (x) =
∂s

∂x
[Ax+B (ueq + uN )] =

∂s

∂x
BuN (4.61)

assuming for sake of simplicity ∂s
∂xB = I then:

ṡ (x) = uN (4.62)

This condition allows an easy verification of the sufficiency conditions for the
existence and reachability of a sliding mode: si (x) ṡi (x) < 0. Some structures
of uN are now presented below according to [113]:

– Relay with gains:

uN =

{
−αsgn (s (x)) , if s /= 0

0, if s = 0
(4.63)

where α must be strictly greater than 0 and can be either a constant
matrix or state dependent α (x). Can be noted that this controller meet
the sufficiency condition for the existence of a sliding mode since each of
its components uNi respect:

si (x) ṡi (x) = −αsi (x) sgn (si (x)) < 0, for si (x) /= 0 (4.64)

100



4.4 – Sliding Mode Control

– Linear feedback with switching gains:

uNi = ψx (4.65)

where ψ = [ψij ] defined as:

ψij =

{
−αij , if sixj > 0

βij , if sixj < 0
(4.66)

with αij , βij > 0. Again,the reaching condition is satisfied with:

si (x) ṡi (x) = si (x) (ψi1x1 + · · ·+ ψinxn) < 0 (4.67)

– Linear continuous feedback :

uNi = −αsi (x) (4.68)

where αi is a strictly positive value and the condition for the existence of
a sliding mode is:

si (x) ṡi (x) = −αis2
i (x) < 0 (4.69)

or more generally:
uN = −Ls (x) (4.70)

where L ∈ Rm×m is a strictly positive defined constant matrix and hence
the reaching condition is:

sT (x) ṡ (x) = −sT (x)Ls (x) < 0 (4.71)

– Univector non-linearity with scalar factor :

uN = − s (x)

‖s (x) ‖
ρ (4.72)

where ρ is a strictly positive scalar. The existence condition is:

sT (x) ṡ (x) = −‖s (x) ‖ρ < 0 (4.73)

• Reaching law method: By using the reaching law approach proposed in
[111], the control can be directly obtained by computing s (x) time derivative
along the reaching trajectory:

ṡ (x) =
∂s

∂x
(Ax+Bu) = −Qsgn (s)− Ph (s) (4.74)

thus, solving for u, the control action took the form:

u = −
[
∂s

∂x
Ax+Qsgn (s) + Ph (s)

](
∂s

∂x
Bu

)−1

(4.75)

The resulting sliding mode is not preassigned but follows the natural trajectory
on a first-reach-first-switch scheme, so the switching takes place depending on
the location of the initial state.
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• Control hierarchy method: This approach is based on the direct switching
function approach reaching law which sufficient condition for a sliding mode is
siṡi < 0 , for i = 1, . . . ,m. The method establishes a control scheme in which
the sliding modes take place in a preassigned order. Starting from the initial
condition x0, the state trajectory moves progressively onto lower dimensional
switching surfaces and eventually reaches the final sliding surface SE :

x0 → S1 → (S1 ∩ S2)→ ...→ SE (4.76)

The main drawback is that the control is determined by a set of complicated
inequalities. For example, with reference to the system 4.26, the determination
of the control u involves the solution of m pairs of inequalities:

ṡi (x) =
∂si
∂x

(Ax+Bu) =

{
> 0, if si (x) < 0

< 0, if si (x) > 0
, for i = 1, . . . ,m (4.77)

This process is very time consuming so this approach is seldom used.

4.4.2 Chattering Problem and its Reduction

As already mentioned, given the need for sliding mode controllers to request infinitely fast
switching mechanisms, in order to guarantee the required closed-loop performances, an
inevitable occurrence of oscillations in the proximity of the switching surface causes the
main limitation of this type of control algorithms in real applications. This phenomenon
is called chattering and is due, in agreement with Young [114], to two possible causes:

1. The presence of switching non-idealities, such as time delays or time constants, which
characterize any implementation of switching devices, including both analogue and
digital circuits, and microprocessor-based implementations as well.

2. The presence of parasitic dynamics, in series with the plant, may cause a small
amplitude high-frequency oscillation to appear in the neighbourhood of the sliding
surface. These dynamics are those of actuators, sensors and other high-frequency
modes of the controlled process, which are often neglected in the open-loop model
used for control design if the associated poles are well damped and outside the
desired bandwidth of the feedback control system.

However, since the characteristic control signal discontinuity in sliding mode applica-
tions, the interactions between the parasitic dynamics and the switching action may cause
non-dumped oscillations with finite amplitude and frequency which, if the switching gain
is large, may lead to unpredictable system instability. Furthermore, other side effects
in electronic or mechanical systems may appear due to heat generation or mechanical
wearing. For this reasons, chattering effect is considered as a major obstacle for SMC to
become a more appreciated control method and its reduction has been a major research
objective. Some existing approaches for chattering reduction are now presented.
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Boundary Layer SMC

As as the name specified by name, a boundary layer is introduced around the sliding
surface. Inside that layer, as represented in fig. 4.15, the signum discontinuity in the
switching function is replaced by a linear feedback gain, thus the control signal becomes
continuous and chattering is avoided. As a consequence, ideal sliding mode is no longer
taking place and state trajectories are confined to a vicinity of the sliding surfaces instead
of exact tracking. One possible solution is the saturation function defined as:

sgn (s) ≈ sat
(s
ε

)
=

{
s
ε , if

∣∣s
ε

∣∣ ≤ 1

sgn
(
s
ε

)
, if

∣∣s
ε

∣∣ > 1
(4.78)

where the value ε represents the width of the area extending from the sliding surface
where the state trajectory will be trapped in.

Figure 4.15: Graphic representation of saturation function.

The shortcoming of this approach is the loss of robustness inside the boundary layer,
implying that uncertainties and parasitic dynamics must be carefully considered and mod-
elled in order to avoid instability.

Quasi Sliding Mode

Similar to the boundary layer method, in order to reduce chattering, the approximation
is done by means of a continuous sigmoid function defined as:

sgn (s) ≈ s

|s| + ε
(4.79)

where ε is a positive constant defined in the interval 0 < ε < 1.

SMC with Variable Gain Switching

Another class of techniques is to keep the signum function unchanged and replace the
constant switching gain Q with a variable one function of the sliding variable s, one
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possible choice can be:

Q (s) =
1(

1 + 1
|s|

)
e−|s|

(4.80)

As s becomes zero, the value of switching gain becomes:

lim
s→0

Q (s) ≈ lim
s→0

s

s+ 1
= 0 (4.81)

hence the switching gain becomes zero at sliding surface (where s = 0), and chattering
will be eliminated at steady state.

SMC with Variable Bandwidth Filter

Another possible solution to reduce chattering is to apply a filter to the control input.
The control law is same as in the case of conventional SMC with the constant switching
gain Q, but a filter with variable bandwidth, function of the sliding variable s, is used
instead. The filter transfer function can be implemented as follows:

G (s)
1

1 + sτf
(4.82)

where the bandwidth is ωf = k |s| and τf = 1
ωf

. The bandwidth will be large during
transient period, since the magnitude of s is large during transient period, and zero during
steady state for the same reason.

Observer-based Sliding Mode Control

This more advanced approach uses an asymptotic state observers to construct an high
frequency by pass loop [114]. The control is therefore discontinuous only with respect to
the observer variables making chattering only localized inside the observer loop which,
as we can see in fig. 4.16, bypasses the plant. However, this approach assumes that an

Figure 4.16: Observer based sliding mode control block diagram.

asymptotic observer can indeed be designed such that the observation error converges to
zero asymptotically.
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High-order Sliding Mode Control

The last proposed solution is to introduce a control action which is a function of higher
order time derivatives of the sliding variable s. For example, authors proposed in [115] a
second order sliding mode approach that allows the definition of a discontinuous control
u̇ capable of steering both the sliding variable s and its time derivative ṡ to zero. in this
way that the plant input u is a continuous function and thus chattering can be avoided.
The major difficulty of this approach is that there is no general method for tuning the
parameters which characterize the various algorithms.

4.4.3 Implementation and Tuning with DE Algorithm

After the system kinematic and dynamic model is determined, and supposing that a
feasible reference trajectory for the mobile robot is pre-specified by the planner defined
in Section 4.2, in the format of pose qd = [xd, yd, ϑd]

T and velocity vd = [vd, ωd]
T ,

it is now possible to design a robust sliding mode controller, based on some suitable
methods proposed in the above sub-section so that the robot will correctly track the
desired trajectory under a large class of disturbances. This section aims to design a stable
controller that generates a command vector u = [uc, ωc]

T to respect the assumptions
made in chapter 2 on the form of the kinematic and dynamic eqs. (2.17) and (2.42),
and also to respect, and therefore make possible its later implementation, the commands
required by the physical Husky platform which, utilizing the cmd_vel topic, needs them
in the linear and angular velocities format.

Starting from the trajectory tracking problem described in Section 4.1, lets consider
that the robot real position is expressed by a three element vector with components
(xr, yr, ϑr). With reference to figure 4.1 and to the trajectory tracking error expressed
by eq. 4.1, it is possible to obtain the corresponding error derivatives as:

ẋe = −vr + vd cosϑe + yeωr

ẏe = vd sinϑe − xeωr
ϑ̇e = ωd − ωr

(4.83)

The equation 4.83 is a two-input non-linear system, of which the switching function
is difficult to be designed so, in this thesis we propose a new switching function design
in which the lateral error ye, and the angular error ϑe are internally coupled with each
other in a sliding surface leading to convergence of both variables. For that purpose the
following switching functions are proposed:

s =

[
s1

s2

]
=

[
ẋe + kxe

ϑe + arctan (vdye)

]
(4.84)

where k is a positive constant parameter.
To verify that the function is a good candidate for a sliding mode application, i.e.

drives the state trajectory to the sliding surfaces, we have to check the reachability con-
dition. If for s1 it is clear that if it converges to zero, trivially xe converges to zero, for s2

this conclusion is not so immediate. Lets chose a Lyapunov candidate such as:

V =
1

2
y2
e (4.85)
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Knowing that, for any x ∈ R and |x| <∞, exist a function:

φ (x) = x sin (arctanx) ≥ 0 (4.86)

when xe equals zero, the sliding function s→ 0 if:

ϑe = − arctan (vdye) (4.87)

Explaining the time derivative of V:

V̇ = yeẏe = ye (vd sinϑe − xeωr) (4.88)

and substituting the condition 4.87 can be obtained:

V̇ = −yexeωr − yevd sin (arctan (yevd)) (4.89)

Hence, remembering that xe = 0 and applying the propriety derived from eq. 4.86 to
equation 4.89, the reachability condition for s2 is verified:

V̇ ≤ 0 (4.90)

So it ca be true that when s1 → 0 and s2 → 0 consequently xe → 0 and ϑe converges to
arctan (yevd), so it comes with ye → 0 and ϑe → 0.

Having designed the switching function is now possible to start deriving the control
law from the choice of the reaching law. A practical general form of reaching law is, as
described above, the constant plus proportional rate reaching in which the introduction
of a proportional term −Ps makes the state trajectory approach the switching surface
faster. This is based on its simplicity, but a major drawback occurs: the presence of
the discontinuous signum function causes the chattering phenomenon due to unmodelled
dynamics. In this thesis, a quasi sliding mode approach is used to weaken the chattering;
so the improved reaching law can be described as:

ṡi = −Qisi − Pi
si

|si|+ εi
, for i = 1,2 (4.91)

where Qi and Pi are positive constants and εi is bounded in the interval 0 < ε < 1.
From the time derivation of equation 4.84 we can write:

ṡ1 = −v̇r + v̇d cosϑe − vd sinϑeϑ̇e + ẏeωr + yeω̇r + kẋe

ṡ2 = ωd − ωr +
ye

1 + (yevd)
2 v̇d +

vd

1 + (yevd)
2 (vd sinϑe − xeωr)

(4.92)

Replacing now ṡi with 4.91 it is possible to solve the resulting system for v̇r and ωr
obtaining the following control law:

u =

[
v̇r=c
ωr=c

]
=


Q1s1 + P1

s1
|s1|+ε + v̇d cosϑe − vd sinϑeϑ̇e + ẏeωr + yeω̇r + kẋr

Q2s2+P2
s2
|s2|+ε

+ωd+ ye

1+(yevd)2
v̇d+

vd

1+(yevd)2
vd sinϑe

1+
vd

1+(yevd)2
xe

 (4.93)
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It can be noted that the linear control action obtained is written as the time derivative
of the quantity we were looking for so, to be able to implement it, it will be necessary to
integrate it.

According to a first simulation on the tracking of a linear trajectory at the reference
velocity of 0.5 m/s, with the robot having an initial cross-track error and different orien-
tation, see Figure 4.17a, the tracking errors converges to 0 in about 10 s, see Figure 4.17c
and the state trajectories reach the sliding surfaces in about 3 s as we can see respec-
tively from Figure 4.17d. Even though the controller parameter have been determined

(a) Travelled trajectory. (b) Linear and angular velocities evolution.

(c) Errors evolution. (d) Switching functions convergence

(e) s1 state trajectory convergence. (f) s2 state trajectory convergence.

Figure 4.17: SMC simulation tracking results of a linear trajectory with initial pose error.

roughly and manually at the values reported in Table 4.6, these results demonstrated the
functionality of the implemented controller.

Before further simulations can be performed, the sliding mode controller’s gain val-
ues must be refined. In this particular application, a manual trial and error tuning of
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Table 4.6: SMC parameters for the example trajectory in presence of initial pose error.

Gains and Parameters Values Gains and Parameters Values

Q1 1.8 P1 0.01

Q2 0.9 P2 0.6

k 0.5 ε 0.1

gain parameters Qi, Pi and k have to be performed, leading at the determination of 5
parameters. This can be a very time-consuming process and also them optimum tuning
is not guaranteed. To overcome this difficulty, the automatic tuning of parameters using
a heuristic GA approach has been employed. The operational explanation of the chosen
algorithm, together with its pseudo code, is reported in Appendix A, as it is common
for both of the controllers studied; while in this section, we limit to report the values of
its control parameters and the results obtained in terms of controller gains, convergence
times and fitness function values. As done for the PID controller, the SMC will be op-
timised on the test complex trajectory and later tested on the other different trajectories
presented in Section 4.2 for the sake of completeness. The optimization process does not
take into account any external disturbance of sensor noise. The control parameters of
the optimization algorithm and the cost function gains have been left the same as those
used for PID tuning reported in respectively in Tables 4.2 and 4.3. The values obtained
through the optimization process and the corresponding search bounds are shown in table
4.7.

Table 4.7: SMC optimized parameters.

Gains and Parameters Values fopt Optimization time Search bounds

Complex trajectory

Q1 1.5756

21.6290 2.1340× 104

[0, 2]

Q2 0.4759 [0, 2]

P1 0.0103 [0, 2]

P2 0.4009 [0, 2]

k 0.5662 [0, 1]

ε 0.1 constant

4.4.4 Simulation Results

In this subsection, the simulation results of the proposed controller are presented. The
simulations are run in Simulink, so the equations describing the trajectory planner, see
Section 4.2, the sliding mode controller and the plant of the mobile robot are transformed
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into the model block diagrams shown in figure 4.18. In particular, the waypoint selector

Figure 4.18: SMC simulation model block diagram.

block consists of a variant subsystem, containing the planners of the 4 type trajectories
described above, which output the reference trajectory selected by the user. The error
block generates the tracking error by subtracting the robot pose from the reference one;
the resulting orientation is given in the range (−π, π). The next block is the sliding
mode controller, which takes the tracking error as reference and generates the control
action based on equation 4.93. Once the control signal enters the mobile robot plant, it
is first transformed by the wheel controller into the desired torque by eq. 2.46 so it can
enter as input in the dynamic plant, containing the enhanced friction model and some
saturation blocks for limiting the generated torques and velocities at them maximum
values reported in table 3.2, which obtains the rover actual pose, used as feedback, by
dead-reckoning. The last blocks are used for the sensor noise generation, based on white
noise model.

The control model is simulated for all the trajectories described before, without any
initial position error and at a reference velocity of 0.25 m/s, using the gains obtained from
the first optimization process reported in table 4.7.

Starting from the linear trajectory, which represents the least demanding case for
the controller, it can be seen from figure 4.19 that, after a simulation of 20 seconds and
taken away an initial settling period of about 4 second caused by the delay between the
command and the response in which the state reaches the sliding surface, the actual
outputs perfectly tracked the desired values, see Fig. 4.19d. From figure 4.19b, we can
observe that the velocity profiles perfectly track the desired ones, and the command vx
remains in an acceptable range. Furthermore, once the initial error of ex is recovered, we
can observe from Fig. 4.19c that it is maintained around zero for the remaining part of
the simulation.

Interesting considerations can be made regarding the simulation of the complex tra-
jectory reported in 4.22, in correspondence with the more accentuated turns, the state
trajectory is driven away from the sliding surface, see Fig. 4.22d this is due to the sudden
increases in the tracking errors. Despite this behaviour, the controller is able to quickly
drive back the state on the sliding surface without too many oscillations. Furthermore,
it is noted that the maximum deviation from the trajectory, indicated by the Hausdorff
distance, is approximately 0.07 meters, demonstrating the correct functioning of the con-
troller even in more complex cases. However, by analysing the speed profiles, should be
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(a) Travelled trajectory. (b) Linear and angular velocities evolution.

(c) Errors evolution. (d) Switching functions convergence

Figure 4.19: SMC tracking results of a linear trajectory.

(a) Travelled trajectory. (b) Linear and angular velocities evolution.

(c) Errors evolution. (d) Switching functions convergence

Figure 4.20: SMC tracking results of a circumferential trajectory.
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(a) Travelled trajectory. (b) Linear and angular velocities evolution.

(c) Errors evolution. (d) Switching functions convergence

Figure 4.21: SMC tracking results of a sinusoidal trajectory.

(a) Travelled trajectory. (b) Linear and angular velocities evolution.

(c) Errors evolution. (d) Switching functions convergence

Figure 4.22: SMC tracking results of a complex trajectory.
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pointed out that the high angular velocity peaks in correspondence with the most accen-
tuated turns could generate problems during the experimentation on the real rover thus
making it necessary to additionally adjust the values of the gains.

Table 4.8: SMC trajectory tracking results.

Trajectory dratio dhaus [m] drms [m]

Straight line 1.000 0.006 0.002

Circumference 0.996 0.031 0.014

Sinusoidal trajectory 1.002 0.016 0.010

Complex trajectory 1.021 0.071 0.033

The values of sliding variables for every trajectory, shown in figs. 4.19d, 4.20d, 4.21d
and 4.22d, are very close to zero, confirming that the control law is working correctly.
It must be restated that the values of the sliding variable will not be perfectly equal to
zero during the sliding mode. It can be seen from Figure 4.21d by zooming the graph
since the signum function is replaced with the sigmoid function. Therefore, the values of
sliding variable are only trapped in the vicinity of the sliding surface where s = 0. Can be
concluded that the results obtained from simulating the control law modelled in Simulink
verify that the developed control logic is working properly. This modelled controller is
now ready to be tested on the real platform.
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Chapter 5

Experimental Results

The previous chapter illustrates the design of the proposed controller architectures, them
implementation and the results of the numerical simulations that shown their control
capability of the proposed WMR model, also in presence of sensor noise, external para-
metric disturbances and system uncertainties. This chapter deals with the preparation
and the fulfilment of the experimental tests carried on a physical Clearpath Husky mobile
platform at BRI indoor robotic testing facility. The controllers are first interfaced to the
real platform and to the VRPN1 client for having access to the ground truth of the rover
measured by the RTS, explaining the problems encountered and the solutions proposed.
Then the two control architectures are tested on different trajectories, and finally, the
obtained results are compared. It is worth remembering that the experimental results
here presented are incomplete, for the same reasons highlighted at the beginning of this
thesis: this research was abruptly stopped by COVID-19 outbreak in mainland China at
the end of January 2020. Therefore, the last and most promising computer simulations
couldn’t be tested on the real rover.

5.1 Model Configuration

To achieve the final objective of this thesis, namely to test the developed control laws
directly on a physical mobile platform, it is first necessary to adapt the presented model
to this occurrence, removing the part corresponding to the mathematical modelling of
the WMR, as it is no longer necessary because replaced by its physical counterpart, and
setting up a communication interface that allows real-time exchange of data between the
two different actors. The controllers will then directly command the rover, basing their
control action on the feedback signals measured by real sensors mounted on the vehicle.
Thanks to the use of the ROS communication interface, which enables the different parts of
a robotic system to discover each other and to send and receive data between them, it was

1The Virtual-Reality Peripheral Network is a device-independent, network-based interface for access-
ing Virtual Reality (VR) peripherals, such as the Realis Motion Tracking System (RTS) used in this
research, over Transmission Control Protocol (TCP) or User Datagram Protocol (UDP), providing a
unified interface to this input devices.
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possible to carry out this operation without having to resort to other more complex and
time-consuming methods, like C/C++ code generation and implementation on a control
board. Besides, by means of the MathWorks ROS Toolbox and the ROS-enabled Husky
UGV, it was possible to directly interface the Matlab/Simulink environment with the
mobile robot, creating a network of ROS nodes thanks to special functions or blocks
useful for importing, analysing and reproducing the data recorded in the rosbag, and also
connecting to a live ROS network to access ROS messages.

The main changes made to the structure of the simulation program are shown as
follows:

• Command velocity publisher: Replaces the part that represented the inputs of
the mathematical model of the vehicle, generating, see Figure 5.1, a message of type
geometry_msgs/Twist sampled at 20 Hz. The message is then compiled via the Bus
Assignment block, which assigns the commands uc and ωc from the controller to a
bus coding them respectively as Linear.X and Angular.Z, and finally sent via the
Publisher to the /cmd_vel ROS topic.

Figure 5.1: Block diagram representation of the command velocity publisher.

• Odometry subscriber: Replaces the part of the mathematical model that com-
puted the WMR odometry by, see Figure 5.2a, receiving a message of type nav_msgs
/Odometry sampled at 50 Hz from the subscription, by means of a Subscriber block,
to the /odometry_filtered ROS topic. The received message is then unpacked by
a Bus Selector block which extracts the values of position and orientation, this
expressed in quaternions, computed by the Husky EKF and codified respectively
as signals Pose.Pose.Position.X, Y and Pose.Pose.Orientation.X, Y, Z, W. As we
can see from Figure 5.2b, the Husky orientation is then transformed in its Euler
angles representation by means of the MATLAB function quat2eul, thus obtaining
the robot actual pose in the required format to be feed-backed to the controller.

• Velocity subscriber: This component replaces the part of the mathematical model
that computed the rover actual velocity. With reference to Figure 5.3 , its function-
ing is completely analogous to the odometry subscriber one but the message of
type nav_msgs/Odometry, sampled also at 50 Hz, is this time received from the
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(a) Subscriber structure. (b) Odometry transformation.

Figure 5.2: Block diagram representation of the odometry subscriber.

/husky_velocity_controller/odom ROS topic. The Husky linear vr and angular ωr
actual velocity values extracted by the Bus Selector according respectively to the
coding Twist.Twist.Linear.X and Twist.Twist.Angular.Z, are then feed-backed to
the controller without any further transformation because already in the required
format.

Figure 5.3: Block diagram representation of the velocity subscriber.

• RTS pose subscriber: This block diagram do not replaces any part of the mathe-
matical model but is introduced for receiving the ground truth of the Husky platform
measured by the motion tracking system of the laboratory. As can be seen from Fig-
ure 5.4a, completely analogous to other subscribers, the robot real pose is received
by the as a message of type geometry_msgs/PoseStamped, sampled at 120 Hz from
the /vrpn_client_node/husky/pose ROS topic. To be able to compare the Husky
ground truth with its odometry, after extracting the content of the message through
the Bus Selector block, in the same way as for odometry, the obtained orientation
expressed in quaternion, see Figure 5.4b, is transformed in its Euler angles repre-
sentation by the aforementioned quat2eul MATLAB function. The obtained pose is
sent directly to the MATLAB workspace for post-processing operations.

It should be specified that the sampling time used in the respective blocks was not
chosen randomly but dictated by the characteristics of the sensors or systems, and there-
fore necessary to obtain valid simulation results. The components or systems relating to
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(a) Subscriber structure. (b) RTS pose transformation.

Figure 5.4: Block diagram representation of the RTS pose subscriber.

the specified sampling times are shown in Table 5.1.

Table 5.1: Sampling times and relative system components.

Components Sampling Time [Hz]

RTS 120

EKF 50

CmdVel 20

By applying the aforementioned changes to the models, we are ready to execute the
test on the Husky physical platform.

5.1.1 Encountered Problems

Before assessing the experimental results, it is good to describe, for the sake of clarity,
the problems encountered during this phase and the proposed solutions:

• IMU frame mismatch: The Husky EKF computes the vehicle pose merging
the measurements coming from the IMU and the wheel encoders within the local
reference frame, whose values are the basis of the feedback action. Preliminary
tests on the mobile platform showed a mismatch in the IMU and the mobile robot
reference frame. The first was rotated of 180° around X causing incorrect reading
of speeds and accelerations by the EKF, generating unexpected responses. The
problem was solved by modifying the vehicle configuration files loaded by ROS at
rover start-up, reported in Listing 5.1

Listing 5.1: Husky IMU setup file.
1 # Mark l o c a t i o n o f s e l f so that robot_upstart knows where to

f i nd the setup f i l e .
2 export ROBOT_SETUP=/etc / ros / setup . bash
3
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4 # Setup robot ups tar t jobs to use the IP from the network
br idge .

5 # export ROBOT_NETWORK=br0
6 # In s e r t ext ra platform−l e v e l environment v a r i a b l e s here . The

s i x hashes below are a marker
7 # fo r s c r i p t s to i n s e r t to t h i s f i l e .
8

9 export HUSKY_IMU_XYZ=’ 0 −0.15 0 .065 ’
10 export HUSKY_IMU_RPY=’ 3 .14 0 0 ’
11 export HUSKY_TOP_PLATE_ENABLED=true
12

13 ######
14 # Pass through to the main ROS workspace o f the system .
15 source /opt/ ro s /melodic / setup . bash

• RTS frame orientation mismatch: The motion tracking system measures the
actual position of the vehicle by inserting it into a pre-setted reference system which,
for the sake of simplicity, was used as the global reference frame for the experimental
tests carried out. Initial tests have shown that although the RTS correctly measured
the displacements within the generated coordinate system, the angular component
ϑ, which represents the actual orientation of the rover, had an error of 90° compared
to what was expected. Not being able to act directly within the tracking system set-
tings for technical reasons, it was decided to solve the problem within the simulation
environment by subtracting the a value of π2 from each measurement in question.

• Discontinuity in RTS orientation measurements: Since the motion track-
ing system provides the Husky orientation in the interval (−π, π), every time the
rover crosses this discontinuity the controller receives an unexpected angular error
which causes an unpredicted unwanted response. For this reason, it was decided to
create a Simulink block named Remove Theta Discontinuity containing a function,
reported in Listing 5.2, that eliminated this discontinuity by adding or subtracting
the quantity 2π to the ridden value depending on the crossing direction.

Listing 5.2: Remove Theta Discontinuity matlab function.
1 f unc t i on theta = fcn ( bu f f e r )
2

3 g l oba l i_phase
4

5 theta_prev = bu f f e r (1 ) ;
6 theta_now = bu f f e r (2 ) ;
7

8 i f ( theta_prev−theta_now ) > 6 % −pi −> pi c r o s s i n g
9 i_phase = i_phase+1;

10 e l s e i f abs ( theta_prev−theta_now ) > 6 % pi −> −pi c r o s s i n g
11 i_phase = i_phase−1;
12 end
13

14 theta = theta_now+i_phase ∗2∗ pi ;

• RTS inaccuracies: Although the motion tracking system installed in the testing
facility was characterised by a very high measurements accuracy, see Section 3.1,
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a first inspection of the simulations data noticed the presence of not negligible
oscillations which however did not reflect the actual behaviour of the vehicle. This
problem has been identified in the presence of grey areas in the laboratory sector used
for testing which, given the not negligible dimensions of the reference trajectories,
represented the only possible choice. Since the only way to remedy the problem
was to reposition the motion capture cameras, obviously not possible for technical
reasons, it was decided to accept these inaccuracies by trying to reduce it as much as
possible during the post-processing; representing the ground truth of the rover, these
are fundamental measurements for evaluating the performance of the controllers.

• Simulation rate synchronization: Since the Simulink environment is charac-
terised by an execution pace for which one simulation-second is completed in a few
wall clock time milliseconds, testing the controller directly on a real mobile platform
through this simulation environment would produce results that have no physical
correlation since the time to which the controller refers and the one to which the
vehicle is subject are not synchronised. To overcome this problem, the simulation
pace block was introduced in the model block diagram, which allows to run the sim-
ulation at a slower pace by imposing unitary equality between simulation time and
wall clock time. The simulation pace is implemented by putting the entire MAT-
LAB thread to sleep until it must run again to keep up the pace. Following this
approach is now possible to observe the simulation results and understand the sys-
tem behaviour, identify design issues and demonstrate its near real-time behaviour.

• Husky EKF pose initialization: The rover measures its position by merging
the data from IMU and encoder starting from an initial null pose, re-setted at
each power on, and increasing it during movement based on the sensor readings.
Since these values are used for position feedback, and the reference trajectory is
generated in the global reference system defined by the RTS, it is necessary that
the initial odometry value coincide with the pose of the first trajectory waypoint.
For doing this, we call via MATLAB the rosservice set_pose, which initialises the
initial position end orientation of the UGV at the values received from the RTS.
The service call is implemented in the bash file set_pose.sh reported in Listing 5.3,
that is written whenever it is necessary to initialise the pose:

Listing 5.3: Set pose rosservice bash script.
1 r o s s e r v i c e c a l l / set_pose "pose :
2 header :
3 seq : 0
4 stamp :
5 s e c s : 0
6 nsec s : 0
7 frame_id : odom
8 pose :
9 pose :

10 po s i t i o n : {x : X_rts , y : Y_rts , z : 0}
11 o r i e n t a t i o n : {x : 0 , y : 0 , z : Zq_rts , w: Wq_rts}
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12 covar iance : [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,
0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,
0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,
0 . 0 , 0 . 0 ] "

whereXrts and Yrts represent the robot real position directly taken from the tracking
system, and Zqrts andWqrts are the first and last coefficient of the Husky quaternion
orientation always taken from the RTS and suitably modified to match, as shown
above, the orientations of the two reference systems.

• MATLAB-Linux integration: Despite the ROS integration with MATLAB 2019a
granted by the Robotics System Toolbox, it is not possible to use the MATLAB con-
sole to run a Linux script that executes ROS commands, like the one reported in
Listing 5.3. In particular, scripts that function flawlessly when called from the Linux
shell failed to execute when called using the common ![scriptpath] MATLAB syn-
tax. The cause of this issue was concluded in MATLAB itself, that changes the
Linux environment variables whenever it is running, altering therefore the correct
functioning of any script. To overcome such problem, it was decided to modify the
affected scripts to include a series of export instances to reset the environment vari-
ables to the desired values. The listing of a generic script of that kind is provided in
Listing 5.4; where the correct values of the environment variables can be determined
by running the env command within the Linux shell.

Listing 5.4: Environmental variables export example.
1 #!/ bin /bash
2 export LD_LIBRARY_PATH= . . .
3 export ROS_ETC_DIR= . . .
4 export CMAKE_PREFIX_PATH= . . .
5 export ROS_ROOT= . . .
6 export ROS_MASTER_URI= . . .
7 export ROS_VERSION= . . .
8 export ROS_PYTHON_VERSION= . . .
9 export PYTHONPATH= . . .

10 export ROS_PACKAGE_PATH= . . .
11 export ROSLISP_PACKAGE_DIRECTORIES= . . .
12 export PATH= . . .
13 export PKG_CONFIG_PATH= . . .
14 export ROS_DISTRO= . . .
15 #! . . . S c r i p t Body . . .

5.2 PID Controller Results

Once the structure of the simulation program has been modified, as mentioned in Sec-
tion 5.1, obtaining the block diagram representation shown in Figure 5.5, it was possible
to perform the experimental tests whose main results are shown in the following. For each
of the reference trajectories described in Section 4.2, several tests were carried out at in-
cremental speeds, starting from the nominal value of 0.25 m/s up to the most demanding
one of 0.75 m/s to test the rover and controller limits. Each result is therefore compared
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with the relative one deriving from the numerical simulations to draw the final consider-
ations. The PID controller tuning, whose values are shown in Table 5.2, is identical for
each test and was performed on the results deriving from the optimisation carried out on
the discrete model relating to the complex trajectory performed at the nominal speed.
The graphical representation was reserved only for those cases necessary to draw the con-
clusions on the performance of the control law, while the numerical results, together with
their counterparts deriving from the numerical simulations are listed in them entirety in
Table 5.3.

Figure 5.5: PID experimental model block diagram.

Table 5.2: PID gains used in the experimental tests.

Controller Branch Gain Value Gain Value

Position
Linear

KPρ 2.8360 KIρ 0.1146

KPXTE 5.9828 KIXTE 1.9708

Angular KPϑ 4.5073 KIϑ 5.2760× 10−4

Velocity
Linear KPv 0.0372 KIv 0.4769

Angular KPω 0.6498 KIω 0.5481

Feed Forward Both FFρ 1.00 FFω 0.00
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(a) ρ error evolution. (b) XTE evolution. (c) ϑ error evolution.

(d) Linear velocity evolution. (e) Angular velocity evolution.

(f) Trajectory comparison.

Figure 5.6: PID experimental tracking results of a linear trajectory executed at 0.25 m/s.
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(a) ρ error evolution. (b) XTE evolution. (c) ϑ error evolution.

(d) Linear velocity evolution. (e) Angular velocity evolution.

(f) Travelled trajectory comparison.

Figure 5.7: PID experimental tracking results of a linear trajectory executed at 0.50 m/s.
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(a) ρ error evolution. (b) XTE evolution. (c) ϑ error evolution.

(d) Linear velocity evolution. (e) Angular velocity evolution.

(f) Travelled trajectory comparison.

Figure 5.8: PID experimental tracking results of a sinusoidal trajectory executed at
0.25 m/s.
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(a) ρ error evolution. (b) XTE evolution. (c) ϑ error evolution.

(d) Linear velocity evolution. (e) Angular velocity evolution.

(f) Travelled trajectory comparison.

Figure 5.9: PID experimental tracking results of a circumference executed at 0.25 m/s.
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(a) ρ error evolution. (b) XTE evolution. (c) ϑ error evolution.

(d) Linear velocity evolution. (e) Angular velocity evolution.

(f) Travelled trajectory comparison.

Figure 5.10: PID experimental tracking results of a circumference executed at 0.50 m/s.
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(a) ρ error evolution. (b) XTE evolution. (c) ϑ error evolution.

(d) Linear velocity evolution. (e) Angular velocity evolution.

(f) Travelled trajectory comparison.

Figure 5.11: PID experimental tracking results of a complex trajectory executed at
0.25 m/s.

126



5.2 – PID Controller Results

(a) ρ error evolution. (b) XTE evolution. (c) ϑ error evolution.

(d) Linear velocity evolution. (e) Angular velocity evolution.

(f) Travelled trajectory comparison.

Figure 5.12: PID experimental tracking results of a complex trajectory executed at
0.50 m/s.

127



Experimental Results

Table 5.3: PID trajectory tracking experimental results.

Reference Velocity
Simulation Experimental

dratio dhaus [m] drms [m] dratio dhaus [m] drms [m]

Straight line

0.25 m/s 0.992 0.038 0.004 0.993 0.037 0.005

0.50 m/s 0.992 0.078 0.008 0.993 0.074 0.008

0.75 m/s 0.991 0.130 0.016 0.991 0.125 0.014

Circumference

0.25 m/s 0.999 0.013 0.006 0.999 0.015 0.007

0.50 m/s 0.991 0.061 0.023 0.991 0.029 0.012

0.75 m/s 0.990 0.286 0.096 0.910 0.200 0.096

Sinusoidal trajectory

0.25 m/s 0.997 0.044 0.016 1.004 0.036 0.019

0.50 m/s 0.993 0.081 0.013 0.992 0.084 0.013

0.75 m/s 1.001 0.150 0.071 0.993 0.155 0.038

Complex trajectory

0.25 m/s 1.033 0.105 0.034 1.042 0.109 0.032

0.50 m/s 1.029 0.298 0.103 1.038 0.348 0.118

After a first look at the graphical and numerical results, it can be stated that the PID
controller was able, regardless of the goodness of the results, to complete all the simulations
carried out, that is, to perform all the proposed trajectories under different conditions;
thus validating the design of the control algorithm. Analysing the performance instead,
it can be seen how the increase in speed leads to less satisfactory results arriving in some
cases, see Figures 5.12 and 5.23, to be almost unacceptable. This loss of performance is
undoubtedly due to a not very robust design of the controller, which, moving away from
the nominal operating condition, struggles to track the reference trajectory. However,
the limited number of tests leaves room for possible improvements. Further optimisation
through the jDE algorithm, carried out on different trajectories and also considering the
feed-forward gains, could lead to an improvement in the results.

An interesting consideration can be made on the curves representing the Husky ground
truth measured by the motion tracking system. These, representing the most accurate
measurement possible of the rover’s pose, differ from those measured by the on-board
EKF even in the case of linear trajectories in which the angular velocity is practically
zero. A possible reason may be the presence of bias in the modelling of the sensors.
However, since this is not the case, the cause has been identified in a mechanical damage
of one wheel encoder. Since the control system only refers to the feedback generated by
the EKF, this error cannot be corrected.
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5.3 Sliding Mode Controller Results

By applying the same procedure to the SMC architecture, whose final block diagram rep-
resentation and control parameters are defined respectively in Figure 5.13 and Table 5.4,
it was possible to obtain the following results. The graphical representation was reserved
only for those cases necessary to draw the conclusions on the performance of the con-
trol law, while the numerical results, together with their counterparts deriving from the
numerical simulations are listed in them entirety in Table 5.5.

Figure 5.13: SMC experimental model block diagram.

Table 5.4: SMC gains used in the experimental tests.

Gains and Parameters Values Gains and Parameters Values

Q1 1.5756 P1 0.0103

Q2 0.4759 P2 0.4009

k 0.5662 ε 0.1

After a first look at the graphical and numerical results, it can be stated that also
the SMC controller was able to perform all the proposed trajectories under different
conditions; thus validating the design of the control algorithm. Furthermore, the better
performances of this class of more advanced controllers are immediately notable. In
essence, the smoother control action leads to fewer peaks and oscillations in the velocity
profiles and the tracking errors are quickly driven towards zero achieving an optimal
tracking of the reference trajectory at low speed. Moreover, the increase in the reference
speed has an inferior influence on the loss of performance. This can be seen from the
circumference performed at 0.75 m/s, see Figure 5.23, which represents one of the worst
cases of application, whose response is this time widely acceptable.

Regarding the comparison between experimental and simulated results, the close sim-
ilarity of the low-speed responses, see Figure 5.19, demonstrates the reliability of the
mathematical model. As this increases, the fidelity of the model begins to decline. This
is due to the non-linearities that characterise the model, some of which have not been
considered in the mathematical formulation. As the speed at which these problems begin
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to occur is close to the maximum operative of the mobile robot, it is possible to consider
it an acceptable result.

(a) X error evolution. (b) Y error evolution. (c) ϑ error evolution.

(d) Linear velocity evolution. (e) Angular velocity evolution.

(f) Travelled trajectory comparison.

Figure 5.14: SMC experimental tracking results of a linear trajectory executed at 0.25 m/s.
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(a) X error evolution. (b) Y error evolution. (c) ϑ error evolution.

(d) Linear velocity evolution. (e) Angular velocity evolution.

(f) Travelled trajectory comparison.

Figure 5.15: SMC experimental tracking results of a linear trajectory executed at 0.50 m/s.

131



Experimental Results

(a) X error evolution. (b) Y error evolution. (c) ϑ error evolution.

(d) Linear velocity evolution. (e) Angular velocity evolution.

(f) Travelled trajectory comparison.

Figure 5.16: SMC experimental tracking results of a sinusoidal trajectory executed at
0.25 m/s.
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(a) X error evolution. (b) Y error evolution. (c) ϑ error evolution.

(d) Linear velocity evolution. (e) Angular velocity evolution.

(f) Travelled trajectory comparison.

Figure 5.17: SMC experimental tracking results of a circumference executed at 0.25 m/s.
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(a) X error evolution. (b) Y error evolution. (c) ϑ error evolution.

(d) Linear velocity evolution. (e) Angular velocity evolution.

(f) Travelled trajectory comparison.

Figure 5.18: SMC experimental tracking results of a circumference executed at 0.50 m/s.
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(a) X error evolution. (b) Y error evolution. (c) ϑ error evolution.

(d) Linear velocity evolution. (e) Angular velocity evolution.

(f) Travelled trajectory comparison.

Figure 5.19: SMC experimental tracking results of a complex trajectory executed at
0.25 m/s.
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(a) X error evolution. (b) Y error evolution. (c) ϑ error evolution.

(d) Linear velocity evolution. (e) Angular velocity evolution.

(f) Travelled trajectory comparison.

Figure 5.20: SMC experimental tracking results of a complex trajectory executed at
0.50 m/s.
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Table 5.5: SMC trajectory tracking experimental results.

Reference Velocity
Simulation Experimental

dratio dhaus [m] drms [m] dratio dhaus [m] drms [m]

Straight line

0.25 m/s 1.001 0.008 0.005 1.0 0.015 0.004

0.50 m/s 1.0 0.014 0.006 1.002 0.026 0.008

0.75 m/s 1.0 0.044 0.017 1.010 0.027 0.008

Circumference

0.25 m/s 0.998 0.030 0.014 0.994 0.031 0.014

0.50 m/s 1.013 0.069 0.025 0.985 0.077 0.037

0.75 m/s 1.065 0.414 0.261 0.913 0.203 0.115

Sinusoidal trajectory

0.25 m/s 1.004 0.018 0.012 1.003 0.020 0.011

0.50 m/s 1.002 0.017 0.012 1.003 0.023 0.009

0.75 m/s 1.003 0.146 0.061 1.006 0.071 0.038

Complex trajectory

0.25 m/s 1.022 0.070 0.035 1.027 0.087 0.036

0.50 m/s 1.104 0.458 0.238 1.089 0.715 0.211

5.4 Controllers Comparison

In this last section, the two trajectory tracking controllers are compared over the reference
trajectories. The graphical representation was reserved only for the most notable cases,
while the numerical results represented by the cost function defined in eq. 4.18, are listed
in them entirety in Table 5.6. In this table are also represented the percentage changes
of the fitness function results in function of reference speed ∆ and between the different
control structures ε. It is worth noting that for all experimental results, the controllers’
performances were assessed not considering the bending energy ratio because, due to
system noise, its value was not correctly calculated.

Even if both controllers have proven their ability to track a trajectory within the
specified speed range, as demonstrated by the variations of the fitness function the SMC
architecture is superior from every point of view when compared to the PID. Starting
from robustness to speed variations, the general deterioration following an increase in
the reference velocity is always lower than the PID and by analysing the linear and
sinusoidal trajectory the variation between the two limit cases is less than 30% producing
a satisfactory result. Regarding the circumference, even if the test at 0.75 m/s causes a
worsening of the results by more than 60%, it must be considered that it represents one
of the limit cases of application and if compared to the one obtained through the PID, see
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Figure 5.23, it shows the superiority of the control law as it is able to adapt the physical
limits of Husky UGV to the tracking of the trajectory, positioning itself on a circular path
with a lower radius defined by the reaching of the drive torque limits.

(a) X error evolution. (b) Y error evolution. (c) ϑ error evolution.

(d) Linear velocity evolution. (e) Angular velocity evolution.

(f) Travelled trajectory comparison.

Figure 5.21: PID and SMC experimental tracking results comparison for a linear trajectory
executed at 0.75 m/s.
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(a) X error evolution. (b) Y error evolution. (c) ϑ error evolution.

(d) Linear velocity evolution. (e) Angular velocity evolution.

(f) Travelled trajectory comparison.

Figure 5.22: PID and SMC experimental tracking results comparison for a sinusoidal
trajectory executed at 0.5 m/s.
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(a) X error evolution. (b) Y error evolution. (c) ϑ error evolution.

(d) Linear velocity evolution. (e) Angular velocity evolution.

(f) Travelled trajectory comparison.

Figure 5.23: PID and SMC experimental tracking results comparison for a circumference
executed at 0.75 m/s.
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(a) X error evolution. (b) Y error evolution. (c) ϑ error evolution.

(d) Linear velocity evolution. (e) Angular velocity evolution.

(f) Travelled trajectory comparison.

Figure 5.24: PID and SMC experimental tracking results comparison for a complex tra-
jectory executed at 0.25 m/s.

On the other hand, by analysing the extreme case, that is the complex trajectory
performed at 0.5 m/s, it should be specified that during the SMC test a problem that
arose on the stop condition caused the early end of the simulation and the following result
of the maximum deviation from the trajectory, and therefore of the cost function, does
not represent the actual performance of the controller. The result was however reported
for the sake of completeness, but cannot be considered to draw reliable conclusions, which
have to be derived from direct analysis of the graphs shown in Figures 5.12 and 5.20. In
particular, it is noted that the tracking responses are almost similar but both far away
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from what is the reference trajectory. In this case, the wheel actuators are operating at
their limit torque condition, saturating the system. It can therefore be concluded that this
condition exceeds the physical limits of the Clearpath Husky which is unable to accurately
track the proposed trajectory at a constant speed greater than 0.25 m/s in the final part
characterised by tight turns.

Table 5.6: PID and SMC experimental trajectories cost functions comparison.

Reference Velocity
PID SMC

ε
fopt ∆ fopt ∆

Straight line

0.25 m/s 10.9384 −− 10.6583 −− −0.0256

0.50 m/s 11.8707 0.0852 11.1932 0.0502 −0.0571

0.75 m/s 13.1504 0.1078 11.3537 0.0143 −0.1366

∆max 0.2022 0.0653

Circumference

0.25 m/s 10.8903 −− 10.8211 −− −0.0064

0.50 m/s 11.5370 0.0594 14.6738 0.3560 0.2719

0.75 m/s 21.6967 0.8806 18.0112 0.2274 −0.1699

∆max 0.9923 0.6645

Sinusoidal trajectory

0.25 m/s 12.4882 −− 11.3997 −− −0.0872

0.50 m/s 12.5138 0.0020 11.4222 0.0020 −0.0872

0.75 m/s 16.0373 0.2816 14.9295 0.3071 −0.0691

∆max 0.2842 0.2847

Complex trajectory

0.25 m/s 15.2852 −− 15.1786 −− −0.0233

0.50 m/s 27.3486 0.7892 42.6703 1.8112 0.5602

∆max 0.7892 1.8112

Finally, by directly comparing the performance of the controllers concerning the same
tested trajectory, ε parameter, the superiority of the SMC architecture is due, as men-
tioned above, to the smoother control action, see Figure 5.24 and to its insensitivity to
matched uncertainties.
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Chapter 6

Conclusions

The present MSc thesis illustrated the trajectory tracking problem of a 4W-SSMR in a
comprehensive way, going from the definition of its mathematical model, to the design
and development of two different controllers architectures, finishing with their validation
through experimental test on a real robotic mobile platform: the Clearpath Husky. The
two implemented controllers, namely a classic PID and a more advanced SMC, have been
first introduced from their theoretical point of view and then designed also introduc-
ing innovative approaches, that have proven to produce satisfactory results. Numerical
simulations and preliminary experimental tests validated their design, establishing the
controllers’ suitability for WMR trajectory tracking applications. Although these results
have demonstrated to be promising, a more careful analysis has shown that the limited
number of tests performed on the real platform leaves room for further improvements
necessary to obtain a more mature design and more reliable results.

By going more into detail, the heuristic PID tuning approach described in Section 4.3.2
guarantees satisfying tracking performances even though this control technique is limited
about its design point; as the achieved performances have been obtained at the expense of
system robustness to parametric uncertainties, sensors noise and external disturbances. A
trade-off between these two characteristics must be evaluated. On the contrary, the high-
frequency variable structure of the SMC control law, proposed in Section 4.4.3, supported
by its parameters tuning trough the self-adaptive evolutionary algorithm, demonstrated
excellent robustness to matched uncertainness leading at the same time to more satisfying
performances; thus enshrining its superiority over the well known but limited PID.

The preliminary tests carried out at BRI Robotics Testing and Training Area fully
validated the conclusions drawn over the two proposed controller architectures but, as
presumed by the word ’preliminary’, these do not represent the optimum solution and give
way for further improvements. In particular, the adjustment of the control parameters
and a better assessment of the existing correlation between the theoretical and physical
performance limits of the Husky SSMR which occur at high speeds, so that the operation
of the controllers can be faithfully compared in a larger scenario.

The future development of the proposed research should be aimed at making several
improvements by following different branches, obviously starting from the aforementioned
controllers gain refinement. Once the optimum condition is achieved, and the robustness
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problem is completely solved, this gives the possibility to carry out an actual real-time
implementation of the controller embedding the control algorithm into physical hardware,
testing it via Software in the Loop (SIL) or Hardware in the Loop (HIL) simulation and
finally testing it on a WMR. This solution identifies the SMC as the perfect candidate
thanks to its assessed better performances, its insensitivity to matched uncertainties and
its already implemented method of chattering avoidance. A possible parallel develop-
ment could be the improvement of the mathematical model of the SSMR considering its
three-dimensional dynamics, leading to a higher level of accuracy. Moreover, with the
further adoption of the here proposed advanced friction model, the 3D modelling could
solve the uncertainties that occur at wheel-ground interaction level as the result of the
simplifications we have made. Finally, a more in-depth study on the sensors installed, and
the introduction of new ones can lead to a better dead reckoning estimation, for exam-
ple by reducing the odometry drifting of the encoders and IMUs adopting sensor fusion
techniques, and to new abilities such as obstacle avoidance.
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Appendix A

jDE Optimization Algorithm

Differential evolution is a simple but powerful EA1 for performing global optimization
tasks first introduced by Storn in 1997 [73] which gained great popularity diverse fields,
such as mechanical engineering [116,117], power systems [118], signal processing [119] and
communication [120], tanks to its enhanced convergence properties [121], its improved
robustness [122] and its good comprehensibility.

DE can be described as a direct parallel search method which relies on a population
of NP D-dimensional parameter vectors called individuals which encode the candidate
solutions:

X i,j =
{
x1
i,j , . . . , x

D
i,j

}
, for i = 1, . . . , NP and j = 1, . . . , NG (A.1)

where NG is the number of generations.
The initial population should contain uniformly randomized initial individuals for cov-

ering as much as possible the entire search space constrained by the prescribed minimum
and maximum parameter bounds:

Xmin =
{
x1
min, . . . , x

D
min

}
Xmax =

{
x1
max, . . . , x

D
max

} (A.2)

for example, the initial value of the j th parameter of the ith individual at generation
NG = 0 is given by:

xki,0 = xkmin + rand (0,1)
(
xkmax − xkmin

)
, for k = 1, . . . , D (A.3)

where rand (0,1) represents a uniformly distributed random constant in the range [0, 1].
After the initialization, according to [73] the algorithm generates trial parameter vectors
through the succession of three operations: mutation and crossover for generating new

1EAs represent a wide class of stochastic optimization algorithms inspired by biological processes, like
survival of the fittest or genetic inheritance, that allow the adaptability of a population of organisms to
their surrounding environment. Their biggest advantage over other types of optimization approaches is
the only need to know of the objective function to be minimized.
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trial candidates, and selection for determining which among these will survive into the
next generation. At each generation, the fitness of the population is compared with the
one of the mutation-derived trial vectors by means of an objective function fopt. The
vectors giving the minimum value of the cost function move to the next generation, until
a stop criterion is achieved or the final generation is reached. Going into detail of each
operation:

1. Mutation: This operation is carried out by the DE algorithm after the initialization,
and consist in the production of NP mutant vectors V i,j which target each individ-
ual X i,j in the current population. Within a generic NG generation, for each target
vector its associated mutant vector, defined as:

V i,NG =
{
v1
i,NG, . . . , v

D
i,NG

}
, for i = 1, . . . , NP (A.4)

, can be generated via several mutation strategies, some of the most commonly used
are described in [120]. In this thesis, strategy named DE/best/2 has been chosen
due to its ability to improve diversity by producing more trial vectors. This strategy,
evaluates the mutant vector introducing two difference vectors as a perturbation:

V i,j = X best,j + F
{
X ri1,j

−X ri2,j

}
+ F

{
X ri3,j

−X ri4,j

}
(A.5)

for i = 1, . . . , NP and j = 1, . . . , NG. X best,j represents the individual with best
fitness in the population at j th generation and the indices ri1, ri2, ri3, ri4 are mutually
exclusive integers randomly generated once for each mutant vector within the range
[1, NP ]. F is a positive control parameter used for scaling the difference vector.

2. Crossover: After mutation, to each pair of target vector and its corresponding
mutation is applied the crossover operation. This phase generates a trial vector:

U i,j =
{
u1
i,j , . . . , u

D
i,j

}
, for i = 1, . . . , NP and j = 1, . . . , NG (A.6)

defined by the binomial equation:

uki,j =

{
vki,j , if randk (0, 1) ≤ CR or k = krand

xki,j , otherwise
(A.7)

, for i = 1, . . . , NP, j = 1, . . . , NG and k = 1, . . . , D. CR represents the crossover
rate, a user-specified constant in the range [0, 1] which controls the fraction of
parameter taken from mutation; while krand is a randomly integer taken in the
range [1, D]. This operation defines, through the occurrence or not of a specified
condition, which trial vector parameters derive from the corresponding target or
mutant vector. The condition k = krand is introduced only to ensure that the trial
vector will differ from its corresponding target vector by at least one parameter.

3. Selection: This operation is performed after having reinitialized to a random and
acceptable value the trial vector parameters that exceeds the specified bounds and
after having evaluated the objective functions of all trial vectors. After that, the
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selection process consist, for a generic j th generation in the current ith population,
in comparing the fitness function deriving from each trial vector f (U i,j) to the one
of the corresponding target vector f (X i,j). If the fitness of the trial vector is better,
its value replaces the corresponding one in the target vector, gaining the entry in
the population of the next generation:

X i,j+1 =

{
U i,j , if f (U i,j) ≤ f (X i,j)

X i,j , otherwise
(A.8)

Having selected the NP and NG values, which depend on the size of the problem,
it is necessary to identify the remaining control parameters values, namely the mutation
scale factor F , and crossover rate CR. Since the value of these parameters highly affects
the performance of the optimisation algorithm, choosing suitable values generally requires
a time-consuming trial-and-error tuning process. This approach is not appropriate if the
optimisation is required in an automated process, like the one which should be applied in
this thesis. To overcome this issue, a parameter self-adaptive approach, based on [77] and
named jDE, have been proposed. Here, the control parameters F and CR, initialized for
each individual at the same value, are encoded into the individuals and are adjusted by
introducing two new parameters τ1 and τ2. The most suitable individual carries to the
next generations the better parameter which, in turn, are more likely to produce offspring
capable of propagating these F and CR values to the next generations. In this thesis, a
variant of the classic jDE algorithm proposed by Brest is employed, in which if F and CR
are not smaller than a randomly generated number, used for the adaptation process, they
are evaluated using a gradient descent approach instead of being kept unchanged. So, the
factors for the following parent vector can be derived as follows:

Fi,j+1 =


Fl + rand1Fu ,if rand2 ≤ τ1

Fi,j − Fi,jξ j−1
NG ,if rand2 > τ1 ∧ Fi,j+1 ≥ Fl

Fl ,otherwise
(A.9)

CRi,j+1 =


rand3 ,if rand4 ≤ τ2

CRi,j − CRi,jξ j−1
NG ,if rand2 > τ1 ∧ CRi,j+1 ≥ CRmin

CRmin ,otherwise
(A.10)

where ξ is the constant slope gradient, randn, with n = 1, . . . ,4, are uniform random
values in the range [0, 1] and Fu and Fl respectively indicate the upper and lower limits
of the mutation scale factor F . In such a way, a flexible DE scheme is achieved and no
tuning of the control parameters is required.

The choice to use this algorithm has been based on its good convergence performances,
its improved robustness and due to the extensive related work already conducted by the
hosting University. The listing of the proposed algorithm is reported in Algorithm A.1.
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Algorithm A.1 jDE/Best/2 Optimization
Input: NP , NG, τ1, τ2, F bounds, CR bounds
Output: X best

1: Set j ← 0
2: Randomly initialize a population of NP individuals X i,j

3: while stopping criteria is NOT satisfied do
4: procedure Perform mutation to generate NP mutant vectors(V i,j)
5: for i← 1 to NP do
6: Randomly select ri1 /= ri2 /= ri3 /= ri4
7: procedure Randomly generate mutation scale factor parame-

ters(Fi,j+1)
8: for n← 1 to 4 do
9: Randomly generate randn parameter indexes in [0, 1]

10: end for
11: if rand2 ≤ τ1 then
12: Fi,j+1 ← Fl + rand1Fu
13: else if rand2 > τ1 ∧ Fi,j+1 ≥ Fl then
14: Fi,j+1 ← Fi,j − Fi,jξ j−1

NG
15: else
16: Fi,j+1 ← Fmin
17: end if
18: end procedure
19: V i,j ← X best,j + Fi,j

{
X ri1,j

−X ri2,j

}
+ Fi,j

{
X ri3,j

−X ri4,j

}
20: end for
21: end procedure

22: procedure Perform crossover to generate NP trial vectors(U i,j)
23: for i← 1 to NP do
24: procedure Randomly generate crossover rate parame-

ters(CRi,j+1)
25: if rand4 ≤ τ2 then
26: CRi,j+1 ← rand3

27: else if rand4 > τ2 ∧ CRi,j+1 ≥ CRmin then
28: CRi,j+1 ← CRi,j − CRi,jξ j−1

NG
29: else
30: CRi,j+1 ← CRmin
31: end if
32: end procedure
33: for k ← 1 to D do
34: if randk (0, 1) ≤ CRi,j ∨ k ← krand then
35: uki,j ← vki,j
36: else

. Continued on next page
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Algorithm A.1 – Continued from previous page

37: uki,j ← xki,j
38: end if
39: end for
40: end for

41: end procedure
42: procedure Perform selection to choose the next generation NP in-

dividuals(X i,j+1)
43: for i← 1 to NP do
44: Evaluate the objective functions f (U i,j) and f (X i,j)
45: if f (U i,j) ≤ f (X i,j) then
46: X i,j+1 ← f (U i,j)
47: if f (U i,j) < f (X i,j) then
48: X best,j ← f (U i,j)
49: end if
50: else
51: X i,j+1 ← f (X i,j)
52: end if
53: end for
54: end procedure
55: j ← j + 1
56: end while

As can be seen from Algorithm A.1, it seems that the proposed self-adaptive algorithm
has more control parameters than the three of the classic DE; but, analysing it more
carefully, can be seen see that τ1, τ2, ξ, Fl, Fu and CR bounds have all fixed values, so
the user does not need to adjust those additional parameters. This choice is justified by
a study made in [77], in which the algorithm performances have been assessed, through
the use of 23 different benchmark functions, changing the control parameters values. The
results obtained have not shown any significant difference, thus giving validity to this
decision. Considering our application, the chosen fixed control parameters values are
shown in the Table A.1.

Table A.1: jDE control parameters.

Parameters Values Parameters Values

ξ 0.2 Fl 0.1

df 0.001 Fu 1.0

τ1 0.1 CRmin 0.0

τ2 0.1 CRmax 1.0
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It is important to note the choice of mutation scale factor lower limit Fl; if the control
parameter F = 0, the new trial vector will be generated using crossover but no mutation
so, to avoid this perspective, its minimum has been limited to 0.1.
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