
POLITECNICO DI TORINO

Master Degree in Aerospace Engineering

Master Degree Thesis

Modelling and Control
of a Skid-Steering Mobile Robot
for Indoor Trajectory Tracking

Applications

Supervisors

Prof. Giorgio Guglieri

Assistant Prof. Elisa Capello

Candidate

Filippo Arbinolo

251378

Tutor

Assistant Prof. Daniele Sartori
Shanghai Jiao Tong University

April 2020

This thesis was written under the supervision of Assistant Prof. Daniele Sartori
from the Department of Electrical Engineering and Computer Science (EECS) of
the Shanghai Jiao Tong University, China.

The experimental tests were conducted in collaboration with the Shanghai Bei-
Dou Research Institute by the indoor testing facility located in West Hongqiao,
Shanghai, China.

ii

Abstract

The present MSc thesis addresses the problem of modelling and controlling a four-
wheel Skid-Steering Mobile Robot (SSMR) used for indoor trajectory tracking ap-
plications. The industries in need of a simple and robust mobile robot have long
been drawn to SSMR solutions, but their underlying dynamic complexity has re-
peatedly hampered their true potential. As this category of robots is forced to
skid in order to turn, they are characterised by complex wheel-ground interactions,
which primarily exhibit as non-linear time-varying frictional forces. Such phenom-
ena profoundly a�ect the behaviour of an SSMR and are responsible for unreliable
dynamic models and inaccurate motion control systems.

This research work builds on the literature resources currently available and ad-
vances a new modelling scheme containing an innovative friction model. Two trajec-
tory tracking control systems are then presented: a Proportional-Integral-Derivative
(PID) and a Linear Quadratic Regulator (LQR) optimal control. Furthermore, this
research is characterised by the novel use of Arti�cial Intelligence (AI), namely Dif-
ferential Evolution (DE), for optimisation purposes. The self-adapting jDE/best/2
mutation scheme with gradient descent proved to be an undoubtedly e�ective alter-
native to system identi�cation techniques generally employed for unknown physical
parameters estimation. Moreover, DE was applied to get around the traditional
empirical controller tuning methods and, instead, to �nd a global optimum to the
control problem. Despite the control systems still required a minimum degree of
manual tuning, the performances delivered by the DE results outmatched the best
measurements achieved with manual tuning alone.

Ultimately, the promising experimental results acquired at the BeiDou Research
Institute - in Shanghai, China - are presented. They validate the modelling assump-
tions and serve as a proof of concept for the use of DE algorithms for controllers
tuning.

iii

Contents

Abstract iii

List of Figures vii

List of Tables xiv

List of Acronyms xviii

List of Symbols xx

Acknowledgements xxiii

Preface xxiv

1 Introduction 1

1.1 Overview of Unmanned Ground Vehicles 1
1.2 Skid-Steering Control Problem and Contribution 11
1.3 PID Control Related Work and Contribution 12
1.4 LQR Control Related Work and Contribution 14
1.5 Optimisation by Di�erential Evolution 15

1.5.1 Basic Concepts and Formulation 16
1.5.2 Comparison Between DE and Contemporary EAs 20
1.5.3 Self-Adapting DE Algorithms 21

1.6 Trajectory Evaluation Metrics . 21

2 Mathematical Model 25

2.1 Mathematical Premises . 25
2.1.1 Reference Frames . 25
2.1.2 Euler Angles . 26

2.2 Nonlinear Mathematical Model . 28
2.2.1 Kinematic Model . 28
2.2.2 Dynamic Model . 32
2.2.3 Further Simpli�cations . 37

iv

2.2.4 Improved Friction Model . 38
2.2.5 Wheel Torque Controller . 39

2.3 Linear Mathematical Model . 40
2.3.1 State-Space Representation 43

3 Experimental Set-up and Model Tuning 49

3.1 Clearpath Husky . 49
3.1.1 Physical Properties . 49
3.1.2 Onboard Computer and Accepted Commands 51
3.1.3 Sensor Types and Sensor Fusion 52

3.2 Indoor Testing Facility . 53
3.3 Robot Operating System (ROS) . 54

3.3.1 MATLAB Integration . 59
3.4 Simulink Physical Models . 60

3.4.1 Nonlinear Model with Coulomb Friciton 62
3.4.2 Nonlinear Model with the Improved Friction Formulation . . 63
3.4.3 LTI State-Space Model with the Hyperviscous Friction For-

mulation . 64
3.4.4 Sensors Noise Model . 64
3.4.5 External Disturbances . 67
3.4.6 Models Discretisation . 67

3.5 Di�erential Evolution for Unknown Parameters Estimation 68
3.5.1 Code Properties and Structure 68
3.5.2 Sample Trajectories . 72
3.5.3 Objective Function . 74
3.5.4 Optimisation of the Nonlinear Model with Coulomb Friction 74
3.5.5 Optimisation of the Nonlinear Model with the Improved Fric-

tion Formulation . 78
3.5.6 Optimisation of the LTI State-Space Model with the Hyper-

viscous Friction Formulation 81
3.6 Mathematical Models Comparison 84
3.7 Gazebo Simulator . 85

4 Trajectory Tracking Controllers 91

4.1 Introduction to Trajectory Tracking 91
4.1.1 Waypoint Selector Architecture 92
4.1.2 Position Error Evaluation Scheme 94
4.1.3 Sample Trajectories . 96

4.2 Controllers Integration with ROS 97
4.3 PID Control . 99

4.3.1 Introduction to PID Controllers 99
4.3.2 PID Control System Architecture 100

v

4.3.3 Tuning via Di�erential Evolution 104
4.3.4 Simulink Results . 106
4.3.5 Experimental Results . 114

4.4 LQR Controller . 121
4.4.1 Introduction to LQR Controllers 121
4.4.2 LQR Control System Architecture 125
4.4.3 Tuning via Di�erential Evolution 126
4.4.4 Simulink Results . 129
4.4.5 Experimental Results . 137

4.5 Controllers Analysis and Comparison 144

5 Conclusions 147

Bibliography 149

vi

List of Figures

1.1 Examples of modern UVS - From left to right: Northrop Grumman
RQ-4 Global Hawk (UAV); DARPA ACTUV (UMV); Foster-Miller
TALON (UGV) . 2

1.2 Left: William Walter's Elsie - 1950; Right: Johns Hopkins Beast
Model II - 1962 . 3

1.3 Stanford Shakey - Stanford Research Institute (SRI International),
1960 ca. 4

1.4 Stanford Cart - Stanford Advanced Arti�cial Intelligence Laboratory
(SAIL), 1970 ca. 4

1.5 HILARE 1 - LAAS Robotics Group, 1977 6
1.6 Wheeled Mobile Robot Control Scheme 7
1.7 Possible wheel con�gurations: a) 2 wheels b) 3 wheels c) 4 wheels d)

6 wheels . 8
1.8 NASA Curiosity rover . 10
1.9 DE functioning scheme . 16
1.10 DE mutation scheme - Image from S. Das and P.N. Suganthan, Dif-

ferential Evolution: a Survey of the State-of-the-Art, IEEE Transac-
tions on Evolutionary Computation, Vol.15, N.1, February 2011 . . 18

1.11 Example of Di�erential Evolution (DE) applied to the �rst param-
eter vector of the �rst generation of a D-dimensional optimisation
problem. The depicted process is repeated for each element of the
initial population in order to obtain the second generation. 20

1.12 Minimum - or Euclidean - and Hausdor� distances between two tra-
jectories - Image from Ermacora et Al., An Evaluation Framework
for the Deployment of Mobile Robots Performing Real-World Indoor
Autonomous Navigation. 22

2.1 Local and Global reference frames 26
2.2 Generic Coordinate System Rotation 27
2.3 Free Body Kinematics . 29
2.4 Wheel velocities and Instantaneous Center of Rotation (ICR) 29

vii

2.5 Velocity components of a wheel - Image from Kozªowski and Pazder-
ski, Modeling and Control of a 4-wheel skid-steering mobile robot,
Int. J. Appl. Math Comput. Sci., 2004, 477-496 30

2.6 Forces acting on a wheel - Image from Kozªowski and Pazderski,
Modeling and Control of a 4-wheel skid-steering mobile robot, Int. J.
Appl. Math Comput. Sci., 2004, 477-496 34

2.7 Active and resistive forces acting on the vehicle 35
2.8 Block diagram of the improved dry friction model with a zero crossing

detection control scheme . 40
2.9 Hyper viscous friction model - Friction with sign function; friction

with the arctan approximation and ks = 30; linear approssimation
about 0 . 41

3.1 Clearpath Husky A200 geometry - Image from the robot user manual 50
3.2 Husky logic diagram from a generic control input to wheel motion.

Input 2: a new type of control input introduced by this research work. 52
3.3 BeiDou Research Institute - Robotics laboratory by theWest Hongquiao

facility . 53
3.4 Infrared (IR) tracking scheme . 53
3.5 Example of the basic functioning of ROS: two nodes registered to

the Master exhanging data over a topic. 55
3.6 ROS graph of the Husky robot used during tests. The image was

taken while using the Gazebo simulator, hence the presence of a node
named gazebo. 56

3.7 Robot Operating System (ROS) topics and nodes in a Husky robot
- Odometry functions . 58

3.8 ROS topics and nodes in a Husky robot - Control functions - The
highlighted topic will be used to control the Husky platform in the
subsequent chapters. 58

3.9 Inputs and outputs of a Husky rover - Simulink model 60
3.10 Commands �ow of a Husky rover - Simulink model 61
3.11 Wheel Torque Controller of a Husky rover - Simulink model 62
3.12 Husky Plant - Nonlinear model with Coulomb friciton - Simulink

model . 62
3.13 Husky Plant - Nonlinear model with the improved friction formula-

tion - Simulink model . 63
3.14 Block diagram of the improved dry friction model with a zero crossing

detection control scheme . 64
3.15 Husky Plant - LTI State Space formulation - Simulink model 64
3.16 Sensor noise component added to the q vector within the Simulink

model of the SSMR . 66

viii

3.17 EKF dx output reconstruction (continuous time) compared to the
real measured output (discrete time) 66

3.18 External disturbance added to the angular acceleration of the husky
rover - Simulink . 67

3.19 Sample trajectory n.2 commands and odometry measurements . . . 73
3.20 Example of the results achived by smoothing the RTS data 73
3.21 Trajectory 01 - Real vs Simulated - Nonlinear model with Coulomb

friction optimisation run by setting traj 04 as reference. 77
3.22 Trajectory 02 - Real vs Simulated - Nonlinear model with Coulomb

friction optimisation run by setting traj 04 as reference. 77
3.23 Trajectory 03 - Real vs Simulated - Nonlinear model with Coulomb

friction optimisation run by setting traj 04 as reference. 77
3.24 Trajectory 04 - Real vs Simulated - Nonlinear model with Coulomb

friction optimisation run by setting traj 04 as reference. 77
3.25 Trajectory 01 - Real vs Simulated - Optimisation of the nonlinear

model with the improved friction fromulation run by setting traj 04
as reference. 80

3.26 Trajectory 02 - Real vs Simulated - Optimisation of the nonlinear
model with the improved friction fromulation run by setting traj 04
as reference. 80

3.27 Trajectory 03 - Real vs Simulated - Optimisation of the nonlinear
model with the improved friction fromulation run by setting traj 04
as reference. 80

3.28 Trajectory 04 - Real vs Simulated - Optimisation of the nonlinear
model with the improved friction fromulation run by setting traj 04
as reference. 80

3.29 Trajectory 01 - Real vs Simulated - Optimisation of the state-space
model with the hyperviscous friction model run by setting traj 04 as
reference. 83

3.30 Trajectory 02 - Real vs Simulated - Optimisation of the state-space
model with the hyperviscous friction model run by setting traj 04 as
reference. 83

3.31 Trajectory 03 - Real vs Simulated - Optimisation of the state-space
model with the hyperviscous friction model run by setting traj 04 as
reference. 83

3.32 Trajectory 04 - Real vs Simulated - Optimisation of the state-space
model with the hyperviscous friction model run by setting traj 04 as
reference. 83

3.33 dθ/dt acceleration curves - Left: Coulomb friction with numerical
instabilities; Right: improved friction formulation 84

3.34 Trajectory in the XY frame - Run1: pyramid model; Run2: box
model; Run3: cone model - Gazebo Simulator ODE physics engine . 89

ix

3.35 Wheels Speed - Run1: pyramid model; Run2: box model; Run3:
cone model - Gazebo Simulator ODE physics engine 89

3.36 Linear Velocity - Run1: pyramid model; Run2: box model; Run3:
cone model - Gazebo Simulator ODE physics engine 90

3.37 Angular Velocity - Run1: pyramid model; Run2: box model; Run3:
cone model - Gazebo Simulator ODE physics engine 90

4.1 Simulink waypoint selector based on the the Table Lookup blocks . 92
4.2 Parameters measured for each waypoint WPn in relation to its sub-

sequent waypoint WPn+1 . 94
4.3 Simulink position error estimation scheme 96
4.4 Matlab atan2 function - Image from the MathWorks o�cial website

(https://www.mathworks.com/) . 96
4.5 Generic trajectory used to test the trajectory tracking controllers . 97
4.6 ROS Commands Publisher - Simulink 98
4.7 ROS Odometry Subscriber and Trasnformation Block - Simulink . . 98
4.8 Integrator clamping logic - Simulink 101
4.9 PID architecture for trajectory tracking - Simulation set-up 103
4.10 PID simulation results - Linear trajectory at 0.25 m/s - From top

left to bottom right: linear velocity u, angular velocity ω, error eρ,
error ey, error eα, trajectory comparison reference vs. simulated . . 106

4.11 PID simulation results - Linear trajectory at 0.50 m/s - From top
left to bottom right: linear velocity u, angular velocity ω, error eρ,
error ey, error eα, trajectory comparison reference vs. simulated . . 107

4.12 PID simulation results - Circular trajectory at 0.25 m/s and radius
1.5 m - From top left to bottom right: linear velocity u, angular ve-
locity ω, error eρ, error ey, error eα, trajectory comparison reference
vs. simulated . 108

4.13 PID simulation results - Circular trajectory at 0.50 m/s and radius
1.5 m - From top left to bottom right: linear velocity u, angular ve-
locity ω, error eρ, error ey, error eα, trajectory comparison reference
vs. simulated . 109

4.14 PID simulation results - Sinusoidal trajectory at 0.25 m/s - From
top left to bottom right: linear velocity u, angular velocity ω, error
eρ, error ey, error eα, trajectory comparison reference vs. simulated 110

4.15 PID simulation results - Sinusoidal trajectory at 0.50 m/s - From
top left to bottom right: linear velocity u, angular velocity ω, error
eρ, error ey, error eα, trajectory comparison reference vs. simulated 111

4.16 PID simulation results - Generic trajectory at 0.25 m/s - From top
left to bottom right: linear velocity u, angular velocity ω, error eρ,
error ey, error eα, trajectory comparison reference vs. simulated . . 112

x

4.17 PID simulation results - Generic trajectory at 0.50 m/s - From top
left to bottom right: linear velocity u, angular velocity ω, error eρ,
error ey, error eα, trajectory comparison reference vs. simulated . . 113

4.18 PID experimental results - Linear trajectory at 0.25 m/s - From top
left to bottom right: linear velocity u, angular velocity ω, error eρ,
error ey, error eα, trajectory comparison reference vs. simulated vs.
real . 114

4.19 PID experimental results - Linear trajectory at 0.50 m/s - From top
left to bottom right: linear velocity u, angular velocity ω, error eρ,
error ey, error eα, trajectory comparison reference vs. simulated vs.
real . 115

4.20 PID experimental results - Circular trajectory at 0.25 m/s and radius
1.5 m- From top left to bottom right: linear velocity u, angular ve-
locity ω, error eρ, error ey, error eα, trajectory comparison reference
vs. simulated vs. real . 116

4.21 PID experimental results - Circular trajectory at 0.50 m/s and radius
1.5 m- From top left to bottom right: linear velocity u, angular ve-
locity ω, error eρ, error ey, error eα, trajectory comparison reference
vs. simulated vs. real . 117

4.22 PID experimental results - Sinusoidal trajectory at 0.25 m/s - From
top left to bottom right: linear velocity u, angular velocity ω, error
eρ, error ey, error eα, trajectory comparison reference vs. simulated
vs. real . 118

4.23 PID experimental results - Generic trajectory at 0.25 m/s - From
top left to bottom right: linear velocity u, angular velocity ω, error
eρ, error ey, error eα, trajectory comparison reference vs. simulated
vs. real . 119

4.24 PID experimental results - Generic trajectory at 0.50 m/s - From
top left to bottom right: linear velocity u, angular velocity ω, error
eρ, error ey, error eα, trajectory comparison reference vs. simulated
vs. real . 120

4.25 LQR controller inner structure - Simulink 125

4.26 LQR controller architecture - Simulation set-up 128

4.27 LQR simulation results - Linear trajectory at 0.25 m/s - From top
left to bottom right: linear velocity u, angular velocity ω, error eρ,
error ey, error eα, trajectory comparison reference vs. simulated . . 129

4.28 LQR simulation results - Linear trajectory at 0.50 m/s - From top
left to bottom right: linear velocity u, angular velocity ω, error eρ,
error ey, error eα, trajectory comparison reference vs. simulated . . 130

xi

4.29 LQR simulation results - Circular trajectory at 0.25 m/s and radius
1.5 m - From top left to bottom right: linear velocity u, angular ve-
locity ω, error eρ, error ey, error eα, trajectory comparison reference
vs. simulated . 131

4.30 LQR simulation results - Circular trajectory at 0.50 m/s and radius
1.5 m - From top left to bottom right: linear velocity u, angular ve-
locity ω, error eρ, error ey, error eα, trajectory comparison reference
vs. simulated . 132

4.31 LQR simulation results - Sinusoidal trajectory at 0.25 m/s - From
top left to bottom right: linear velocity u, angular velocity ω, error
eρ, error ey, error eα, trajectory comparison reference vs. simulated 133

4.32 LQR simulation results - Sinusoidal trajectory at 0.50 m/s - From
top left to bottom right: linear velocity u, angular velocity ω, error
eρ, error ey, error eα, trajectory comparison reference vs. simulated 134

4.33 LQR simulation results - Generic trajectory at 0.25 m/s - From top
left to bottom right: linear velocity u, angular velocity ω, error eρ,
error ey, error eα, trajectory comparison reference vs. simulated . . 135

4.34 LQR simulation results - Generic trajectory at 0.50 m/s - From top
left to bottom right: linear velocity u, angular velocity ω, error eρ,
error ey, error eα, trajectory comparison reference vs. simulated . . 136

4.35 LQR experimental results - Linear trajectory at 0.25 m/s - From top
left to bottom right: linear velocity u, angular velocity ω, error eρ,
error ey, error eα, trajectory comparison reference vs. simulated vs.
real . 137

4.36 LQR experimental results - Linear trajectory at 0.50 m/s - From top
left to bottom right: linear velocity u, angular velocity ω, error eρ,
error ey, error eα, trajectory comparison reference vs. simulated vs.
real . 138

4.37 LQR experimental results - Circular trajectory at 0.25 m/s and ra-
dius 1.5 m- From top left to bottom right: linear velocity u, angular
velocity ω, error eρ, error ey, error eα, trajectory comparison refer-
ence vs. simulated vs. real . 139

4.38 LQR experimental results - Circular trajectory at 0.50 m/s and ra-
dius 1.5 m- From top left to bottom right: linear velocity u, angular
velocity ω, error eρ, error ey, error eα, trajectory comparison refer-
ence vs. simulated vs. real . 140

4.39 LQR experimental results - Sinusoidal trajectory at 0.25 m/s - From
top left to bottom right: linear velocity u, angular velocity ω, error
eρ, error ey, error eα, trajectory comparison reference vs. simulated
vs. real . 141

xii

4.40 LQR experimental results - Generic trajectory at 0.25 m/s - From
top left to bottom right: linear velocity u, angular velocity ω, error
eρ, error ey, error eα, trajectory comparison reference vs. simulated
vs. real . 142

4.41 LQR experimental results - Generic trajectory at 0.50 m/s - From
top left to bottom right: linear velocity u, angular velocity ω, error
eρ, error ey, error eα, trajectory comparison reference vs. simulated
vs. real . 143

xiii

List of Tables

3.1 ClearPath Husky A200 Speci�cations 50
3.2 Speci�cations of the IR motion tracking camera RTS1000 produced

by Realis . 54
3.3 Test cases employed for the EKF sensor noise analysis 65
3.4 Test cases employed for the EKF sensor noise analysis 66
3.5 Frequency and Sample Time for each signal interfacing with the

Husky rover . 67
3.6 Reference trajectories parameters 72
3.7 Nonlinear model optimisation - jDE con�guration parameters . . . 75
3.8 Nonlinear model optimisation - Final values of the unknown parameters 76
3.9 Nonlinear model optimisation - Objective function terms obtained

by simulating the sample trajectories using the parameters estimated
setting trajectory n.4 as reference case during the optimisation process. 76

3.10 Optimisation of the nonlinear model with the improved friciton for-
mulation - jDE con�guration parameters 79

3.11 Optimisation of the nonlinear model with the improved friciton for-
mulation - Final values of the unknown parameters 79

3.12 Optimisation of the nonlinear model with the improved friciton for-
mulation - Objective function terms obtained by simulating the sam-
ple trajectories using the parameters estimated setting trajectory n.4
as reference case during the optimisation process. 80

3.13 Optimisation of the state-space model with the hyperviscous friction
model - jDE con�guration parameters 81

3.14 Optimisation of the state-space model with the hyperviscous friction
model - Final values of the unknown parameters 82

3.15 Optimisation of the state-space model with the hyperviscous friction
model - Objective function terms obtained by simulating the sample
trajectories using the parameters estimated setting trajectory n.4 as
reference case during the optimisation process. 82

3.16 ODE physics engine main parameters - Gazibo Simulator 88

4.1 PID position control loop properties 101

xiv

4.2 PID velocity control loop properties 102
4.3 PID tuning - jDE con�guration parameters 105
4.4 PID tuning- Gains obtained with DE plus the manually tuned feed-

forward gains . 105
4.5 PID trajectory evaluation metrics - Linear trajectory at 0.25 m/s -

Reference vs. Simulated . 106
4.6 PID trajectory evaluation metrics - Linear trajectory at 0.25 m/s -

Reference vs. Simulated . 107
4.7 PID trajectory evaluation metrics - Circular trajectory at 0.25 m/s

and radius 1.5 m - Reference vs. Simulated 108
4.8 PID trajectory evaluation metrics - Circular trajectory at 0.50 m/s

and radius 1.5 m - Reference vs. Simulated 109
4.9 PID trajectory evaluation metrics - Sinusoidal trajectory at 0.25 m/s

- Reference vs. Simulated . 110
4.10 PID trajectory evaluation metrics - Sinusoidal trajectory at 0.50 m/s

- Reference vs. Simulated . 111
4.11 PID trajectory evaluation metrics - Generic trajectory at 0.25 m/s -

Reference vs. Simulated . 112
4.12 PID trajectory evaluation metrics - Generic trajectory at 0.50 m/s -

Reference vs. Simulated . 113
4.13 PID trajectory evaluation metrics - Linear trajectory at 0.25 m/s -

Simulated vs. Real . 114
4.14 PID trajectory evaluation metrics - Linear trajectory at 0.50 m/s -

Simulated vs. Real . 115
4.15 PID trajectory evaluation metrics - Circular trajectory at 0.25 m/s

and radius 1.5 m - Simulated vs. Real 116
4.16 PID trajectory evaluation metrics - Circular trajectory at 0.50 m/s

and radius 1.5 m - Simulated vs. Real 117
4.17 PID trajectory evaluation metrics - Sinusoidal trajectory at 0.25 m/s

- Simulated vs. Real . 118
4.18 PID trajectory evaluation metrics - Generic trajectory at 0.25 m/s -

Simulated vs. Real . 119
4.19 PID trajectory evaluation metrics - Generic trajectory at 0.50 m/s -

Simulated vs. Real . 120
4.20 LQR tuning - jDE con�guration parameters 127
4.21 LQR tuning- Parameters obtained with DE plus the manually tuned

parameters . 127
4.22 LQR trajectory evaluation metrics - Linear trajectory at 0.25 m/s -

Reference vs. Simulated . 129
4.23 LQR trajectory evaluation metrics - Linear trajectory at 0.25 m/s -

Reference vs. Simulated . 130

xv

4.24 LQR trajectory evaluation metrics - Circular trajectory at 0.25 m/s
and radius 1.5 m - Reference vs. Simulated 131

4.25 LQR trajectory evaluation metrics - Circular trajectory at 0.50 m/s
and radius 1.5 m - Reference vs. Simulated 132

4.26 LQR trajectory evaluation metrics - Sinusoidal trajectory at 0.25
m/s - Reference vs. Simulated . 133

4.27 LQR trajectory evaluation metrics - Sinusoidal trajectory at 0.50
m/s - Reference vs. Simulated . 134

4.28 LQR trajectory evaluation metrics - Generic trajectory at 0.25 m/s
- Reference vs. Simulated . 135

4.29 LQR trajectory evaluation metrics - Generic trajectory at 0.50 m/s
- Reference vs. Simulated . 136

4.30 LQR trajectory evaluation metrics - Linear trajectory at 0.25 m/s -
Simulated vs. Real . 137

4.31 LQR trajectory evaluation metrics - Linear trajectory at 0.50 m/s -
Simulated vs. Real . 138

4.32 LQR trajectory evaluation metrics - Circular trajectory at 0.25 m/s
and radius 1.5 m - Simulated vs. Real 139

4.33 LQR trajectory evaluation metrics - Circular trajectory at 0.50 m/s
and radius 1.5 m - Simulated vs. Real 140

4.34 LQR trajectory evaluation metrics - Sinusoidal trajectory at 0.25
m/s - Simulated vs. Real . 141

4.35 LQR trajectory evaluation metrics - Generic trajectory at 0.25 m/s
- Simulated vs. Real . 142

4.36 LQR trajectory evaluation metrics - Generic trajectory at 0.50 m/s
- Simulated vs. Real . 143

4.37 PID - LQR performance comparison - Values measured experimentally145
4.38 PID - LQR performance comparison, percentage variation taking the

PID as reference - Values measured experimentally 145

xvi

xvii

List of Acronyms

AI Arti�cial Intelligence

CAGR Compound Annual Growth Rate

CoG Center of Gravity

DARPA Defence Advanced Research Projects Agency

DE Di�erential Evolution

DoD Departement of Defense

EA Evolutionary Algorithm

EKF Extended Kalman Filter

EP Evolutionary Programming

ES Evolutionary Strategy

GA Genetic Algorithm

GP Genetic Programming

GPS Global Positioning System

ICR Instantaneous Center of Rotation

IMU Inertial Measurement Unit

IR Infrared

LQR Linear-Quadratic Regulator

LTI Linear and Time-Invariant

MCU Micro Controller Unit

xviii

MIMO Multiple-Input and Multiple-Output

PID Proportional-Integral-Derivative

PSO Particle Swarm Optimisation

RMS Root Mean Square

ROS Robot Operating System

SAR Search and Rescue

SISO Single-Input and Single-Output

SSMR Skid-Steering Mobile Robot

UAV Unamanned Aerial Vehicle

UGV Unamanned Ground Vehicle

UMV Unamanned Maritime Vehicle

UVS Unmanned Vehicles Systems

xix

List of Symbols

A Constraint Vector

a, b, c Mobile robot geometric constants

delay Commands delay

CR Crossover rate

df Objective function relative error threshold

dhaus Hausdor� distance

q̇ UGV global velocity vector

dratio Distance ratio

drms RMS of minimum distances

E Input transformation matrix

ebend Total bending energy

ebend−ratio Total bending energy ratio

E Kinetic energy

e(t) Generic signal error

η Kinematic control input vector

φ, θ, ψ Euler angles [rad]

F (X, Y, Z) Global Coordinate System

f(x, y, z) Local Coordinate System

Fact Active force/torque applied to the system

xx

F Resultant vector of the active forces and torques

FDJ Dinamic friction force/torque

FF Actual friction force/torque

Ff Generic friction force

F Mutation scale factor

FSJ Static friction force/torque

Fx Resulting active force

Fy Resulting resistive force

g Gravitational acceleration: 9.81 m/s2

Γ Active torque and force vector

I Mobile robot moment of inertia [kgm2]

KD PID derivative gain

KPFF PID feedforward proportional gain

KI PID integral gain

KP PID proportional gain

ks Signum approximation accuracy parameter

λ Vector of Lagrange multipliers

M Inertia matrix

m Vehicle mass

Mr Resulting resistive torque

M Resulting active torque

µc Coulomb friction coe�cient

µv Viscous friction coe�cient

N Normal force

NG Number of generations

xxi

NP Number of parameter vectors per population

nr Number of vectors used for mutation

q UGV state vector

R Vector of resultant reactive forces and torque

Rlg Local-global rotation matrix

r E�ective rolling radius

Rx Resulting rolling resistance

S General coordinates transformation matrix

τ1 F adaptation parameter

τ2 CR adaptation parameter

τ Torque control input vector

τwheelmax Torque limits

θ Heading angle

U Potential energy

ux Longitudinal rolling coe�cient

V UGV velocity vector

xxii

Acknowledgements

I wish to thank Prof. Giorgio Guglieri from the Politecnico di Torino and Assistant
Prof. Daniele Sartori from the Shanghai Jiao Tong University, who supervised
the realisation of this work. Their in�nite availability and invaluable direction
supported me throughout the entire research project. I thank Davide Locardi, with
whom I shared the unique experience in Shanghai, and also Gabriele Ermacora and
Manfredi Di Rovasenda for the unhesitating assistance they provided me whenever
needed. Together, they helped to recreate a sense of belonging in a place as far
from home as China.

The past �ve years would not have been possible without the trust, fellowship
and perseverance brought by Alberto, Enrico, Federica, Federico and Francesco,
who I am lucky to call friends. We strived together for what we are now achieving,
and we certainly will for what is to come. Lastly, I would like to thank my parents,
Alberto and Anna Maria, my sister, Costanza, and my grandparents, Filippo and
Rosa Maria, who nourished my passions and inspired me throughout my life.

xxiii

Preface

The present Master thesis is realised within the Department of Mechanical and
Aerospace Engineering (DIMEAS) of the Politecnico di Torino for the ful�lment of
the Master degree in Aerospace Engineering. The research project was conducted
at the Shanghai Jiao Tong University (SJTU) Insitute for Sensing and Navigation
(ISN) and by the BeiDou Research Institute of Shanghai over four months and
with the help of another student from the Politecnico di Torino. The planned
stay in China was abruptly shortened by a month due to an outbreak of COVID-
19, which forced all the institutions to close. Therefore, as clearly evident from
the last chapter, the results here presented do not portray the desired and planned
outcome, as it is believed an extra month of experimental tests would have produced
substantially better results, both in accuracy and meaningfulness.

This project aimed at designing and implementing three control laws used to
track an indoor trajectory with an Unamanned Ground Vehicle (UGV), namely a
Skid-Steering Mobile Robot (SSMR): a traditional Proportional-Integral-Derivative
(PID) control, and two modern controls, namely a Linear-Quadratic Regulator
(LQR) and Sliding Mode Control (SMC). The �rst was meant to serve as a reference
to the other two, more interesting, controllers. However, before their design was
possible, it was necessary to acquire enough knowledge of the vehicle analysed.
Such knowledge was, in the �rst place, the dynamic behaviour of the SSMR. In the
lack of a mathematical description, part of the project was, in fact, its eduction,
a necessary step for faithful computer simulations and theoretical analyses of the
control systems.

This thesis, in particular, focuses on the rover mathematical modelling, and the
design and testing of the PID and LQR controls. The theoretical foundation for
each one of them was derived from existing textbooks and research papers, but
some personal contributions were added. The main ones are, undoubtedly, the
introduction of a novel friction model and the use of Arti�cial Intelligence (AI)
for both system identi�cation and controllers tuning, in the form of a Di�erential
Evolution (DE) algorithm. As explained in the introduction, friction is not only
a complex phenomenon but also the underlying reason why SSMRs can traverse
curved paths. It is therefore not possible to neglect it and, on the contrary, it is
essential to simulate it with the highest possible degree of reality. The model here

xxiv

introduced appears to solve common numerical problems and achieve the desired
faithfulness. The DE algorithms, on the other hand, proved to be an invaluable tool
when working with multivariable problems. Furthermore, as already highlighted by
some recent research papers, the controllers tuning capabilities it provides make it
a fascinating topic to study.

The thesis is structured as follows: Chapter 1 introduces the UGV technology,
the principles of DE and examines the theoretical and practical problems addressed
during this research; Chapter 2 de�nes the three mathematical models - two non-
linear and one linear - conceived starting from the existing publications; Chapter
3 describes the experimental set-up employed, exposes the optimisation process
which let the determination of the unknown parameters present in the mathemati-
cal models, and compares the three to explain which one is better, one last section
analyses Gazebo simulator and shows why it was not used for this research; Chap-
ter 4 presents the mathematical description of the control systems, their tuning
process and the simulation results, which are then compared to the experimental
tests; �nally, Chapter 5 draws the conclusions and suggests possible improvements
for future works.

xxv

Chapter 1

Introduction

1.1 Overview of Unmanned Ground Vehicles

Today's demand for automated, robotic and unmanned systems is primarily driven
by applications that are inherently repetitive, unpleasant or dangerous. Despite
their high cost of acquisition and integration, robotic systems are being employed
by an increasing number of military and commercial realities. One notable example
is provided by robotic arms, or manipulators, which are now widely used in the
world of industrial manufacturing. First introduced in 1961, they now comprise a
market share of 16,2 bln $ with an expected CAGR1 of 14% over the period 2019-
2021 [1]. Their speed and superhuman precision perfectly �t the realm of assembly
lines, but they are characterised by a fundamental disadvantage: lack of mobility.
Mobile robots, on the other hand, address this problem and can �exibly apply their
talents whenever it is most e�ective. At the same time, the possibility to reduce
casualties and increase combat e�ectiveness has always attracted the attention of
the military, which in recent years has shown numerous successful applications of
Unamanned Aerial Vehicle (UAV).

Unmanned Vehicles Systems (UVS) exist in three types (Fig.1.1): the UAV men-
tioned above, operating in the air, Unamanned Maritime Vehicle (UMV), operating
both over and under the water surface, and lastly UGV, operating on land, both
indoors and outdoors. Like many inventions, the earliest known descriptions of
UVS appear to pre-date their development by many centuries, but it was not until
1898 that Nikola Tesla publicly showed the �rst remote control vehicle. It was a
small radio-controlled boat exhibited in Madison Square Garden, New York. A
few years later, in 1904, the Englishman, Jack Kitchen, experimented with similar
technology and a steam-powered launch along the shores of Lake Windermere, and
in 1906 a Spanish mathematician, Leonardo Torres y Quevedo, demonstrated the

1Compound Annual Growth Rate

1

Introduction

remote control of a ship before the King of Spain.

Figure 1.1. Examples of modern UVS - From left to right: Northrop Grumman
RQ-4 Global Hawk (UAV); DARPA ACTUV (UMV); Foster-Miller TALON (UGV)

Although themselves were slowed down by the cancellation of many R&D pro-
grams due to the lack of funds, UAVs have always received the greatest attention
from both the scienti�c community and the �nancial backers, which were often
the military. To better understand it, it is su�cient to study their development
throughout history. The �rst remotely controlled aircraft is believed to be the Rus-
ton Proctor AT developed in 1916 by Archibald Low. It was never considered a
success, as it was �own only a handful of times and often crashed. More interesting
applications of UAVs were designed during World War II. On the one hand, the
USA funded the programs Operation Aphrodite and Anvil, which gave life to the
�Weary Willies�: modi�ed B-17 bombers, renamed BQ-7, remotely controlled from
a nearby manned aircraft. They were used to target bomb-resistant German forti-
�cations, but in the �nal analysis, they were probably more dangerous to the pilot
�ying than they were to the Germans. On the other hand, the Germans were able
to exploit the potential of UAVs to a much greater extent. The V-1 and V-2 �ying
bombs were in fact highly reliable due to their well-designed engines and guidance
systems and were used e�ectively for the whole duration of WWII. [2].

Meanwhile, research and development of UGVs lagged behind presumably for
the same reasons of today: the complexity of the terrain. As in the case of UAVs,
this technology was initially intended for military use. In 1915, Victor Villar and
Sta�ord Talbot, both from the United Kingdom, patented the Land Torpedo. It
was meant to clear a channel through obstacles, such as barber wires found on the
battle�eld. In the 1930s the Soviet Army deployed the TT-26 tanks, commonly
known as �Teletank�. They were the �rst radio-controlled ground vehicles and
were used both during WWII and the Winter War of 1939-1940 against Finland.
Each teletank had to be controlled from another tank, following from a maximum

2

1.1 � Overview of Unmanned Ground Vehicles

distance of 1500m. In 1940, the French engineer, Adolphe Kegresse, built the
Beetle Tank. Its designs fell into the hands of the invading Germans, and the
production of the Goliath Tracked Mine - an alternative name for the same vehicle
- was commissioned to the Carl Borgward Corporation in Bremmen. The company
produced a total of 7'500 units, sacri�cially used as anti-tank, anti-infrastructure or
bridge-demolition devices. Its design was never considered a success, as it embarked
unreliable electric motors - or diesel engines in some cases - travelled very slowly (9
km/h), had a thin armour and reduced ground clearance (11 cm). Furthermore, the
central unit was connected to a small control box via a triple-strand of telephone
wires, which were vulnerable to entanglement and damage [3].

Despite being often overlooked, UGVs were the �rst unmanned system to achieve
full autonomy, as accomplished around 1949 by William Grey Walter, from the
Burden Neurological Institute in Bristol, England [4]. He designed Elmer and Elsie
(Fig. 1.1), known as Machina Speculatrix, two robots able to respond to contact
with other objects and to sense light via phototubes. They relied upon these to
autonomously navigate using pure analogue components: two vacuum tube ampli-
�ers that drove relays to control steering and drive motors. The two independent
motors acted as two nerve cells, allowing the robots to exhibit simple intelligence.
Indeed, Walter developed them to study the complex behaviour of networks of sim-
ple organisms [5]. A decade later, the Johns Hopkins University Applied Physics
Laboratory built the Johns Hopkins Beast (Fig. 1.1), a sophisticated autonomous
vehicle which could roam the University corridors centring itself using sonar to
navigate. It could also locate wall sockets - painted in black over white walls - and
plug itself in whenever it was low on battery [5].

Figure 1.2. Left: William Walter's Elsie - 1950; Right: Johns Hopkins
Beast Model II - 1962

During the late 1960s, Stanford University started to emerge as a pioneer of

3

Introduction

robotics. From 1962 to 1972 the Defence Advanced Research Projects Agency
(DARPA) funded the Stanford Research Institute - now reconstituted into SRI
International - to design a mobile robot system named Shakey [6]. While other
robots would have to be instructed on each individual step for completing a task,
Shakey could receive some general prede�ned commands which were then auto-
matically broken down and executed depending on the world surrounding it. Such
commands were: travelling from one location to another, turning light switches
on and o�, climbing up and down from rigid objects, and pushing movable bodies
around. Each one of them required the ability to perceive and model the environ-
ment and use its information for tasks like planning and route �nding. The project
led to numerous advancements in Arti�cial Intelligence (AI) techniques, such as the
development of STRIPS, an automatic planning and scheduling software useful to
�nd solutions in multidimensional spaces [7], and also in the �elds of path search
and motion planning, with the invention of the A* search algorithm and the vis-
ibility graph method. Shakey carried a television camera, an optical range-�nder
in a movable �head� and some bump sensors (Fig.1.3). The whole sequence of
data processing and command de�nition was carried out on an external mainframe
computer, at the time almost as big as a room.

Figure 1.3. Stanford Shakey - Stan-
ford Research Institute (SRI Interna-
tional), 1960 ca.

Figure 1.4. Stanford Cart - Stanford
Advanced Arti�cial Intelligence Labora-
tory (SAIL), 1970 ca.

From around 1960 to 1980, the Stanford Arti�cial Intelligence Laboratory (SAIL)

4

1.1 � Overview of Unmanned Ground Vehicles

worked on a long-term project known as Stanford Cart (Fig.1.4) [8]. The four-
wheeled robot took many shapes, as it started as a moon rover and ended up
being an autonomous vehicle. Similarly to Shakey, a computer program drove Cart
through cluttered spaces, gaining its knowledge of the world entirely from images
broadcasted by the on-board TV system. It planned an obstacle-avoiding path to
the desired destination on the basis of a model built with this information. The
plan changed as the Cart perceived new obstacles on its journey. The system was
reliable for short runs, but slow: it moved 1 m every 10 to 15 minutes, in lurches.
It is interesting to point out that the rover system was designed with maximum
mechanical and control system �exibility to support a wide range of research in
perception and control: it was a precursor of today's robots for scienti�c research.

Meanwhile, the �eld of mobile robotics came to be split into two branches. Up
to that point, wheels were the only feasible means of locomotions, but with Space
General Corporation walking machines of the early 1960s, and the General Electric
quadruped of 1968, it became clear that legged designs were possible [9]. Since
then, the desire to experiment on increasing levels of autonomy prompted a num-
ber of institutions to �nance research programs in the �eld of legged robotics with
a focus on arti�cial intelligence and behaviour-based designs. Among these, it is
worth mentioning the Massachusetts Institute of Technology (MIT) which in 1989
developed Genghis [10], a six-legged, insect-like robot, and the Waseda University
in Japan, which in 1984 created Wabot-2, one of the earliest anthropomorphic -
or humanoid - robots, able to interact with a human, read a musical score and
play tunes on keyboard instruments [11]. Nowadays, the development gap between
wheeled and legged mobile robotics is still huge, for legged robots still su�er from
huge limitations: they only achieve slow speeds, are challenging to build and re-
quire complex control algorithms. Wheeled robotics, on the other hand, has kept
delivering signi�cant results since the early achievements of Cart and Shakey. It is
currently the most popular locomotion mechanism.

Picking up from their technical legacy, in 1977 the LAAS robotics group in
Toulouse, France, started working on HILARE 1 (Fig.1.5), a modular robot used
for experimental support [12]. It was a blend of AI, computer science, control the-
ory and instrumentation. It served as a test-bed for a variety of problems in the
domains of perception, learning, decision-making and communication. Its modu-
larity allowed for incremental changes, which then stemmed into HILARE 2 and
HILARE 2bis, a trailer-pulling wheeled robot eventually built in 1992 [13]. The
works based on HILARE helped to consolidate what are today's subsystems of any
mobile wheeled robot [14]:

� Power

� Communication

� Human-Robot Interaction

5

Introduction

Figure 1.5. HILARE 1 - LAAS Robotics Group, 1977

� Health Maintenance

� Locomotion

� Autonomous Behaviour

� Planning

� Perception

� Behaviours and Skills

� Navigation

� Learning and Adaptation

Clearly, mobile robots are intended for much more than just moving from one
point to another, but when it comes to governing their motion, the standard control
scheme is the one shown in Fig. 1.6, which is an exempli�ed version of what
is presented in [15]. Motion control is the combination of path execution and
actuation. In the case of wheeled robots, research focuses on three main areas:
manoeuvrability, controllability and stability.

They are all a�ected by the combination of two physical properties: wheel types
and geometry. Unlike automobiles, which are primarily designed for a highly stan-
dardised environment (the road network), mobile robots are designed for appli-
cations in a wide variety of situations. Automobiles all share similar wheel con-
�gurations because there is only one region in the design space that maximises
manoeuvrability, controllability and stability for their standard environment: the

6

1.1 � Overview of Unmanned Ground Vehicles

paved roadway. However, there is no single wheel con�guration that maximises
these qualities for the variety of environments faced by di�erent mobile robots.
This is the reason why there is a signi�cant number of wheel con�gurations for
mobile robots. In fact, few robots use the Ackermann wheel con�guration of the
automobile because of its poor manoeuvrability, with the exception of the ones
designed for road systems.

Figure 1.6. Wheeled Mobile Robot Control Scheme

Wheels are generally of four types: standard, castor, Swedish and spherical. The
last two o�er more degrees of freedom but are more di�cult to produce. The total
number of wheels employed directly a�ects the overall con�guration. Convention-
ally, static stability is achieved with a minimum of three wheels and the robot's
centre of gravity within the triangle described by them. However, most designs em-
ploy two, three, four or six wheels. Furthermore, taking into account the presence,
or lack thereof, of a steering system, it is possible to obtain the designs depicted in
Fig. 1.7.

When it comes to manoeuvrability, there are robots that can move in any direc-
tion (x, y) at any time. Clearly, it requires the use of either Swedish or spherical
wheels. Other robots can do the same but �rst rotating on their vertical axis, some-
times without even changing their ground footprint, as in the case of two-wheel dif-
ferential drive vehicles employing standard wheels. The less manoeuvrable designs
are those using the Ackermann steering, which has a turning diameter higher than
the vehicle itself.

Generally, there is a reverse correlation between manoeuvrability and controlla-
bility: omnidirectional robots are by far the most di�cult to control. In order to
understand the statement above, it is useful to imagine what is required to drive
a robot in a straight line: in the case of an Ackermann system it is su�cient to

7

Introduction

Figure 1.7. Possible wheel con�gurations: a) 2 wheels b) 3 wheels c) 4
wheels d) 6 wheels

centre and lock the wheels in position; di�erential drive systems2 require that the
driving motors follow the same velocity pro�le, a di�cult feat due to di�erences
in the motors, in the wheels and in the underlying terrain. The di�erential drive
is used in the absence of a steering system, but they are often constrained to a
type of steering known as skid-steering. Skid-steering is analogous to the tracked
slip used by tanks, and when it is used in loose terrains, it dramatically increases
manoeuvrability, with a detrimental e�ect on controllability. This type of design
will be further analysed in Section 1.2.

For the purpose of this work, it is necessary to introduce another block from the
control scheme depicted in Figure 1.6: perception. The perception of the real-world
environment takes place in the following order:

� Sensing

� Information Extraction and Interpretation

As the name suggests, the sensory part of a robot depends on its sensors, which
in turn depend on the robot applications. The most common are: wheel encoders,
Inertial Measurement Unit (IMU), Global Positioning System (GPS), radar, LIDAR

2Di�erential drive systems have mechanisms that can drive each wheel independently.

8

1.1 � Overview of Unmanned Ground Vehicles

and sonar; an in-depth review of such systems is provided by [16]. Statistical sensor
fusion techniques, such as Kalam �ltering, are then employed to merge multiple
sensor readings and obtain estimates more accurate than one single measurement
alone. Without sensor fusion, Simultaneous Localisation and Mapping (SLAM)
techniques would not be possible. SLAM, in particular, is a challenging area of
application of high-dimensional nonlinear �ltering problems [17], but it is also one
of the building blocks of autonomous navigation. On the other hand, dead reckoning
is used when there is no need for autonomy, that is when map building and path
planning can be performed o�ine, prior to the deployment of the robot. Dead
reckoning is the process of determining one's position, uniquely using information
about its initial conditions, speed and acceleration. It does not correct its errors
using external world observations - for instance, via radar, LIDAR, GPS - but with
well-tuned sensor fusion algorithms, it can be a good starting point for experimental
purposes.

From what has been said about mobile robotics, it is easy to realise that the
design process involves the integration of many bodies of knowledge. No mean
feat, this makes mobile robotics a �eld as interdisciplinary as there can be. Up to
the early 2000s, however, it was extremely di�cult to �nd experts who were also
willing to deal with the complex software infrastructures used by robots. In 2007,
Willow Garage funded a project of the University of Stanford which was born from
the desire to create a universal robotic framework that aimed at standardising and
simplifying the complex interface with robots. It came to be known as ROS, and
it now a vast collection of tools, libraries and conventions which are natively sup-
ported by more than 80 commercial robots. Without ROS, its counterparts, cheap
technology and advances in miniaturisation, sensors, computer processing, signal
and image processing, communications techniques and material science, robotics
would not have progressed as much as it has done in the past �ve decades. Today's
applications of Unmanned Ground Vehicles span several industries; some notable
examples are:

� Self-driving Cars: Waymo, Uber, BMW

� Industrial Automated Guided Vehicles (AGVs): Siemens SIMATIC, Comau
Agile1500

� Mine exploration: Carnegie Mellon Groundhog, Komatsu 930E-AT

� Outdoor exploration: Clearpath Warthog, Leo Rover

� Search and Rescue (SAR): VIEW-FINDER Project, ICARUS SUGV, ICARUS
LUGV

� Fire �ghting: Thermite RS-1, Shark Robotics COLOSSUS

� Volcanology: Carnegie Mellon Dante II, NASA Volcano-bot

9

Introduction

� Home appliances: iRobot Roomba, Husqvarna Automower.

� Hospital and nursing: HelpMate, Care-O-bot

� Space exploration: NASA Curiosity (Fig.1.8), CNSA Yutu

� Military: USMC Gladiator TUGV, Israel Defense Forces Guardium, Foster-
Miller TALON

Figure 1.8. NASA Curiosity rover

10

1.2 � Skid-Steering Control Problem and Contribution

1.2 Skid-Steering Control Problem and Contribu-
tion

Many of today's UGVs employ skid-steering mechanisms due to their simplicity,
robustness and manoeuvrability, even in the roughest terrains. SAR, defence, out-
doors exploration and household services are only some of its �elds of application,
but most of the systems deployed are teleoperated and have limited or no au-
tonomous functions [18]. This choice can be explained analysing the mechanical
behaviour of a SSMR: SSMRs, as their name suggests, do not have a steering
mechanism and are thus able to follow curved paths by driving their wheels at
di�erent speeds, resulting in a sliding motion. Sliding, in turn, has some signi�cant
implications on both modelling and control.

Since skidding is the underlying physical e�ect that makes a SSMR steer, mod-
elling this type of vehicle is extremely di�cult. Despite being widely adopted in the
�eld of robotics, pure kinematic models with pure-rolling and no-slip hypotheses are
not su�cient to determine the response of the mobile robot to a set of inputs [19].
Such models have been extensively studied over the past two decades, particularly
for two-wheel di�erential-drive mobile robots, which allow for a simplifying assump-
tion without loss of generality: a nonholonomic constraint of the zero-later velocity
of the wheel contact points. For SSMRs, however, nonzero wheel lateral velocity
is allowed, and the zero-velocity constraint is no longer valid. A faithful dynamic
model, however, assumes the perfect knowledge of any wheel-ground interaction
to compute the exact value of all friction forces. The time-varying friction forces
depend extensively on the underlying soil, on the wear state of the rubber wheels
and on a signi�cant number of parameters which can not be accurately predicted
beforehand.

The degree of uncertainty about the wheel-ground friction forces, makes the pre-
diction of the vehicle ICR nearly impossible. Knowing the exact position of the
ICR is, in turn, essential to design robust control schemes and to obtain accurate
dead reckoning estimates, which would otherwise deteriorate when wheel slip in
non-negligible. Many present SSMR applications rely on external localisation mea-
surements (GPS, LIDAR, radar, etc.) to correct dead recking readings. There are
cases, however, that do not allow for correction. One example is provided by Mars
Exploration Rovers, which exhibited considerable wheel slips [20][21].

In recent years some research studies tried to address the aforementioned prob-
lems. [22] proposed to limit the longitudinal position of the ICR - that is the x
coordinate with respect to the local coordinate system, see Chap. 2 - to the wheel-
base, in order to rule out all the cases of uncontrolled skidding. The obtained model
was then used to design a nonlinear controller following the dynamic feedback lin-
earization paradigm; robustness what only demonstrated for straight paths. [23]
built on such results and extended them to a time di�erentiable and time-varying

11

Introduction

control scheme based on Dixon's kinematic controller [24] and the strategy of forc-
ing some transformed states to track an exogenous exponentially decaying signal
produced by a tunable oscillator. They also described friction as a superposition
of Coulomb and viscous friction but left the ICR to be supposed beforehand. [25]
advanced a kinematic model based on a new set of parameters which can be ob-
tained experimentally by employing a simple laser scanner. This method allows to
evaluate the position of the ICR but may result too costly for real-time motion con-
trol and dead reckoning. Indeed, most advanced control solutions are often deemed
unfeasible for real-time applications, like the slip-aware model predictive optimal
control of [26]. Some simpler solutions came in the form of adaptive controllers
[27], PI controllers [28][29], Proportional-Integral-Derivative (PID) controllers and
LQR control laws [30], all of which were limited to slow-speed applications.

This thesis thus proposes a new modelling scheme based on the friction model
presented by Borello e Dalla Vedova [31], which is ideally suited for accurate model-
based simulations. The problem related to the exact knowledge of the ICR position
is addressed by applying some simplifying assumptions to the model, expecting the
control system to compensate for unpredicted dynamical behaviours. Furthermore,
the nonlinear mathematical model is simpli�ed assuming low-speed bi-dimensional
applications - in other words, the SSMR will be constrained to planar motion only
- and its unknown parameters are determined by means of a DE algorithm. Two
reliable and straightforward trajectory tracking control schemes are then proposed:
a PID controller and an optimal Linear-Quadratic Regulator (LQR) controller, both
tuned using the same DE algorithm employed for system identi�cation.

1.3 PID Control Related Work and Contribution

PID controllers are still widely used for mobile robots motor control and for in-
dustrial systems due to their good performance in a wide range of operating con-
ditions, their straightforward architecture and the overall familiarity in the �eld of
control systems [32]. However, its limited capability in scenarios which present non-
linearities, external disturbances and time-varying parameters, forces the control
system engineer to choose a compromise between system robustness and perfor-
mance.

Over the years various design methods3 have been proposed to determine the
PID controller parameters. Some methods use information about the open-loop
step response, e.g. the Coon-Cohen reaction curve method [33], e.g. the Ziegler-
Nichols frequency response method [34] or the gain-phase margin approach [35].
These simple tuning laws are often employed by commercial auto-tuner algorithms.

3With the term design method it is meant the determination of the three parameters of the
controller which are the proportional, integral, and derivative gains.

12

1.3 � PID Control Related Work and Contribution

However, since they all rely on very little information about the dynamic behaviour
of the system, the results achieved which such methods are often unsatisfactory. For
example, the Ziegler-Nichols method may give high overshoots, highly oscillatory
dynamics, and long settling times for high-order systems; the Coon-Cohen method,
on the other hand, is only valid for systems having S-shaped step responses of the
plant, although it has been widely used as a heuristic method. Evolutions of these
methods have been proposed with the promise of better results. It is the case of
the Åström-Hägglund phase margin method [36] and the re�ned Ziegler-Nichols
method [37]. However, in some circumstances, these methods do not produce ade-
quate closed-loop responses, as in the presence of large time delays which produce
oscillatory results. The major limit of these methods is the necessity to express the
plant using a transfer function. To overcome these limitations, various methods
have been developed to obtain optimal PID parameters, ranging from conventional
pole placement [32] to a variety of AI techniques such as Arti�cial Bee Colony
(ABC) optimisation algorithms [38], Simulated Annealing (SA), Population-Based
Incremental Learning (PBIL), Particle Swarm Optimisation (PSO), Genetic Algo-
rithm (GA) and Di�erential Evolution (DE) [39].

Recently, GA has been widely adopted in the search for optimal PID parameters
thanks to its ease of implementation and its high adaptability, as demonstrated
in [40]. [41] applied GA to derive the optimal gains of a PID controller used in a
trajectory tracking application, thus demonstrating its improved performance when
compared to conventional tuning methods when it comes to controller precision
and convergence speed. Still, some studies have highlighted shortcomings in the
performance of GAs, which often show premature convergence, loss of best solution
and no assurance of global optimum [42].

GAs limitations are overcome by DE algorithms, which are designed to meet the
requirement of the practical minimisation technique [43]. [44] studied the perfor-
mance of DE, GA and PSO in the optimisation of a PID controller used to control
the position of a manipulator, concluding that DE is generally more robust than
other methods. [45] applied DE to tune the PID trajectory tracking controller used
on a quadrotor. The simulation results show that the controlled system has a sat-
isfactory response and that it is able to deal with the aircraft coupled dynamics,
thus demonstrating the e�ectiveness of the proposed optimisation method.

The method illustrated in this text relies on a cascade multi-loop structure: an
inner loop controls the velocity of the vehicle, an outer loop its position. The inner
loop also presents two feedforward proportional gains which improve the velocity
tracking. A total of ten gains will be tuned using a jDE algorithm with gradient
descent, whose search boundaries were set after an initial trial and error analysis of
the system to rule out any combination of values which yields unstable behaviours.

13

Introduction

1.4 LQR Control Related Work and Contribution

In the realm of state variable feedback systems, and in particular in the �eld of
optimal control, LQR controllers are among the most known and used. The hall-
mark of the LQR is its simplicity and ease of use, only possible, however, when
all the system state variables can be fed to the controller, and the plant dynamics
can be linearised. As all optimal controls, in contrast to the classic PID, its design
depends on the de�nition of a range of weights - or performance indices - a�ecting
the cost function the controller is meant to minimise. The use of such parameters
makes the controller tuning much more intuitive and understandable, as each one
of them is relatable to a physically measurable parameter.

In the �eld of robotics, many research papers focus on the long-standing problem
of the two-wheeled self-balancing robot, a modern version of the inverted pendulum:
a nonlinear strongly coupled problem. [46] and later [47] proved the e�ectiveness
of an LQR control system, by linearising the plant around an operating point. The
latter, in particular, presents a comparison between LQR and PID, concluding that
the optimal control is not only signi�cantly simpler to implement, but also produces
better results. Further applications range from humanoid control to manipulators
operation.

When it comes to trajectory tracking for nonholonomic systems, [48] uses an
iterative LQR (ILQR) by iteratively linearising the plant of a two-wheeled robot
around a nominal trajectory and then computing a local optimal feedback control
law. [49] applied an LQR to solve the trajectory tracking problem of a simple two-
wheeled robot, while [50] achieved similar results with a car-like robot. Most of the
research work, however, focuses on aerial drones, as in the case of [51] and [52] who
worked on trajectory tracking with quadrotors.

Despite being easier to tune, LQRs require the control system engineer to choose
some weights which a�ect the performance of the system. In recent year, with the
surge of AI, many pieces of research tried to apply its methods to tune LQRs.
Vishal and Ohri [53] applied a GA to successfully tune the pitch control system of
an aircraft, while Assahubulkah� et al. [54] researched the use of PSO for the same
matter.

Due to the well-known advantages of LQR control systems and the superior op-
timisation performances of DE algorithms, it is here proposed a trajectory tracking
control system based on the former and tuned with the latter. Integral action is
also added to reduce any residual steady sate error on the longitudinal coordinate
of the rover. In order to apply the linear controller to the remarkably nonlinear
vehicle here analysed, its dynamics is linearised around an equilibrium point, and
the result is used to derive a state-space model. Once the optimal gain matrix
is obtained by solving the Riccati equation, the control system is tested on the
nonlinear description of the SSMR with successful results.

14

1.5 � Optimisation by Di�erential Evolution

1.5 Optimisation by Di�erential Evolution

The following paragraphs will introduce the topic of DE, as it is a useful optimi-
sation tool which was extensively used throughout the whole research work here
discussed. Indeed, its applications will range from unknown model parameters
estimation to controllers tuning.

To solve complex computational problems, researchers have long been looking
into nature for inspiration. Optimisation is at the heart of many natural processes,
very much like the Darwinian evolution itself. Through millions of years, every
species had to adapt its physical structure to survive the environments it inhab-
ited. The observation of the underlying relation between optimisation and biological
evolution led to the development of an important paradigm of AI for performing
complex search and optimisation: the evolutionary computing techniques. Evolu-
tionary computation uses iterative progress, such as growth or development in a
population. Such population is then selected in a guided random search using par-
allel processing to achieve the desired end. From when they were �rst conceived,
Evolutionary Algorithms (EAs) stemmed into a number of di�erent representa-
tives of the �eld of nature-inspired metaheuristics. Nowadays, the most common
evolutionary methods are: GAs, Evolutionary Programming (EP), Evolutionary
Strategies (ESs), Genetic Programming (GP) and DE.

The DE algorithms emerged as a very competitive form of evolutionary algo-
rithms after the �rst technical report on the matter was written in 1995 by [43].
DE were able to di�erentiate from other EAs for the following reasons:

� Compared to most EAs, DE is much more simple and straightforward to im-
plement. The simplicity of the code is important for users who are not expert
programmers and who are looking for ease of use. It is necessary to point out
that when compared to the easy-to-code optimisation algorithm named Parti-
cle Swarm Optimisation (PSO), DE has better performances over a variety of
problems [55].

� The performance of DE in terms of accuracy, convergence speed, and robust-
ness makes it appealing to various real-world optimisation problems, where
the end goal is to �nd an approximate solution in a reasonable amount of
computational time.

� The number of control parameters is minimal: Cr (cross-over rate), F (dif-
ference vector scaling factor) and NP (population size) in classical DE. The
e�ects of these parameters are well known, and simple rules exist to improve
the performance of the algorithm without any serious computational burden.

15

Introduction

1.5.1 Basic Concepts and Formulation

Before dealing with the mathematical formulation of DE algorithms, it is necessary
to understand their purpose.

Many scienti�c and engineering disciplines often face search and optimisation
problems. Optimisation, in this sense, means �nding the best solution of a problem
within the given constraints. The aim is to �nd a set of system parameters values
for which the system performance will be the best under some given conditions.
Usually, the parameters governing the system are represented by a vector X =[
x1, x2, . . . , x

T
D

]
; in the case of real parameters optimization each parameter xi is a

real number. To measure how good is the system performance, an objective function
- or �tness function - is designed. The task of the optimisation is therefore to search
for the parameter vector X∗ which minimises an objective function f(X)(f : Ω ⊆
RD → R), i.e. f(X∗) < f(X) for all X ∈ Ω, where Ω is a non-empty large �nite
set serving as the domain of the search. For unconstrained optimization problems
Ω = RD. Typically, optimisation probelms are complicated by the existance of non-
linear objective functions with multiple local minima. A local minimum fl = f(Xl)
may be de�ned as ∃ε > 0∀X ∈ Ω : ||X − Xl|| < ε ⇒ fl ≤ f(X), where ||.|| is a
p-norm distance measure.

Figure 1.9. DE functioning scheme

DE in particular is a real parameters optimisation algorithm which is composed
by four steps, some of which are iteratively repeated throughout the overall opti-
misation process (Fig. 1.9):

1. Initialisation of the Parameter Vectors

2. Mutation with Di�erence Vectors

3. Crossover

4. Selection

Each step is discussed in the upcoming paragraphs. Lastly, for the sake of
clarity, it is necessary to introduce some notation; in the �eld of DE in particular,
the following terms are commonly accepted:

16

1.5 � Optimisation by Di�erential Evolution

� Target vector: a parent vector from the current generation.

� Donor vector: a mutant vector obtained through di�erential mutation.

� Trial vector: an o�spring formed by recombining the donor with the target
vector.

Initialisation of the Parameters Vectors

As DE searches for a global optimum point in a D-dimensional real parameter space
RD, it starts with a randomly initiated population of NP D-dimensional parameter
vectors. Each vector, also known as genome or chromosome, forms a candidate
solution to the multidimensional optimization problem. Subsequent generations
are denoted by G = 0,1, . . . , Gmax and, since the paramters vectors are likely to
change over di�erent generations, the following notation is used to represent the
i− th vector of the population at the current generation:

Xi,G =
[
x1,i,G, x2,i,G, . . . , xD,i,G

]
For each parameter of the problem, there may exists limitations to its magnitude,

often related to physical components that have real-life constraints. For instance,
if a parameters expresses a length, it can not be negative. The initial population
- G = 0 - should then cover this range as evenly as possible. It can be achieved
by uniformly randomizing individuals within the search space constrained by the
prescibed minimum and maximum bound: Xmin =

[
x1,min, x2,min, . . . , xD,min

]
and

Xmax =
[
x1,max, x2,max, . . . , xD,max

]
. Consequently, the j-th component of the i-th

vector can be written as:

xj,i,0 = xj,min + randi,j[0,1] · (xj,max − xj,min)

where randi,j[0,1] is a randomly generated number between 0 and 1, independently
evaluated for each component of the i-th vector.

Mutation with Di�erence Vectors

While in biological terms mutation denotes a sudden change in the gene character-
istics of a chromosome, in the context of evolutionary algorithms, it is also regarded
as a change or perturbation induced by a random element.

Considering one of the simplest forms of DE-mutation, to create the donor vector
for each i -th target vector from the current population, three distinct parameter
vectors - e.g. Xri1

, Xri2
and Xri3

- are sampled randomly from the current popu-
lation. The indices ri1, r

i
2, and r

i
3 are mutually exclusive integers randomly chosen

from the range [1, NP]. These indices are randomly generated for each mutant
vector. After the three vectors are chosen, the di�erence between any two of them

17

Introduction

is evaluated and scaled by a scalar quantity F . The scaled di�erence is then added
to the unused third vector, thus obtaining the donor vector Vi,G (Fig. 1.10). In
mathematical terms:

Vi,G = Xri1,G
+ F · (Xri2,G

−Xri3,G
)

Figure 1.10. DE mutation scheme - Image from S. Das and P.N. Suganthan,
Di�erential Evolution: a Survey of the State-of-the-Art, IEEE Transactions on
Evolutionary Computation, Vol.15, N.1, February 2011

Crossover

After generating the donor vector via mutation, crossover takes care of enhancing
the diversity of the population. Notably, the donor vector exchanges its components
with the target vector Xi,G to form the trial vector Ui,G=[u1,i,G,u2,i,G,...,uD,i,G]. DE
algorithms usually employ one of two kinds of crossover methods: exponential, or
two-point modulo, and binomial, or uniform.

Exponential crossover requires an integer n to be chosen among the numbers
[1, D]. It serves as a starting point in the target vector, from where the crossover
starts. Likewise, the parameter L is chosen from the same range of values. L
denotes the number of components the donor vector actually exchanges with the
target vector. The trial vector is then obtained as:

18

1.5 � Optimisation by Di�erential Evolution

uj,i,G = vj,i,G for j = 〈n〉D, 〈n+ 1〉D, . . . , 〈n+ L− 1〉D
xj,i,G for all otherj ∈ [1, D]

where 〈〉D denotes a modulo function with modulus D. The integer L, on the other
hand, is chosen from the range [1, D] according to the following pseudo-code:

1 L = 0;
2 while (rand(0,1) ≤ Cr) AND (L ≤ D) do
3 L = L+1;
4 end

Cr is known as crossover rate and it is a control parameter of a DE algorithm,
like the aforementioned F .

Binomial crossover is performed on each of the D variable whenever a randomly
generated number between 0 and 1 is less than or equal to the crossover rate Cr.
In this case, the number of parameters inherited from the donor vector has a nearly
binomial distribution. In mathematical terms:

uj,i,G =

{
vj,i,G if (randi,j[0,1] ≤ Cr or j = jrand)

xj,i,G otherwise

where randi,j[0,1] is, once again, an evenly distributed random number, which
is evaluated for each j−th component of the i−th parameter vector. jrand ∈
[1,2, . . . , D] is a randomly chosen index, which ensures that Ui,G gets at least one
component from Vi,G.

Selection

To keep the population size constant over subsequent generations, the next �nal
step of the algorithm is given by a selection process which determines whether the
trial vector is carried over to the next generation. The selection operation can be
written as:

Xi,G+1 = Ui,G if f(Ui,G) ≤ f(Xi,G)

= Xi,G if f(Ui,G) > f(Xi,G)

where f(X) is the objective function to be minimised. In other words, if the new
trial vector yields an equal or lower value of the objective function, it replaces the
corresponding target vector in the next generation. In the other case, the target is
kept in the population. Hence, the population either improves with respect to the
objective function, or it remains the same, but it never worsens.

After selection, and with the new target vectors de�ned, the process is iterated
until any of the following cases is satis�ed:

19

Introduction

� The number of generation reaches the prede�ned maximum number of itera-
tions Gmax

� The best �tting element of the population does not signi�cantly improve its
�tness over successive iterations. In other words, two subsequent generations
produce a realtive di�erence in the objective function which is smaller than a
given threshold.

� The objective function reaches a prede�ned target value.

The overall DE process is summarised in Fig. 1.11

Figure 1.11. Example of DE applied to the �rst parameter vector of the �rst gen-
eration of a D-dimensional optimisation problem. The depicted process is repeated
for each element of the initial population in order to obtain the second generation.

1.5.2 Comparison Between DE and Contemporary EAs

Once the functioning scheme of DE is clear, it is interesting to see how it com-
pares to other contemporary EAs for real parameter optimisation. Structuring the
comparison like the algorithm functioning scheme:

� Mutation: DE signi�cantly di�ers from algorithms like ES and EP for the
fact that it mutates the base vector with scaled population-derived di�erence
vectors. As the generations pass, these di�erences tend to adapt to the natural
scaling of the problem. For example, if the population becomes compact in
one variable but remains widely dispersed in another, the di�erence vectors

20

1.6 � Trajectory Evaluation Metrics

sampled will be small in the former variable and large in the latter. Such
automatic adaption signi�cantly improves the convergence of the algorithm
[56].

� Crossover: both DE and ES employ crossover to create a single trial vector,
while most GAs recombine two vectors to produce two trial vectors.

� Selection: Unlike GAs that select parents based on their �tness, both ES and
DE treat all individuals equally. In other words, each has an equal chance of
being selected as a parent. In ES, each individual has the same chance of being
selected when it comes to mutation, while DE randomly picks the base vectors,
too. During the selection process, when an algorithm keeps the best-so-far
solution, it is possible to talk about elitism, a characteristic that plays a major
role in the convergence to a global optimum within some given computational
time constraints. DE has a survivor scheme which di�ers from any other,
because instead of ranking the combined population and choosing the �rst best
�tting trial vectors, it employes a one-to-one competition scheme, where each
parent vector only competes against its o�spring. Parent-o�spring competition
has a superior ability to maintain population diversity when compared with
ranking or tournament selection, where elites and their o�spring may dominate
the population rapidly.

1.5.3 Self-Adapting DE Algorithms

Recently, the �eld of DE witnessed some major breakthroughs that allowed it to
emerge among other optimisation strategies. One of them was brought by the
introduction of self-adapting algorithms. In the �rst paragraphs of this section,
it was remarked how simple it is to set-up DE due to the presence of only three
control parameters, which are kept �xed throughout the entire evolutionary process.
Finding their optimal values, however, is not an easy task. Moreover, as evolution
proceeds, the population of DE may move through di�erent regions in the search
space, where certain strategies associated with a speci�c parameter setting may
be more e�ective than others. To overcome such inconvenience, researchers have
actively investigated the adaptation of parameters and operators used in DE. The
two most relevant solutions for this matter are the SaDE algorithm [57] and jDE
[58]. The latter will be used throughout this text due to its good convergence
performances [57] and due to the associated extensive work already conducted by
the hosting University, the Shanghai Jiao Tong University.

1.6 Trajectory Evaluation Metrics

The last section introduced the concept of the objective function as a mean to
measure the performance of a system and to assess the result of an optimisation

21

Introduction

process. It is now necessary to illustrate its most fundamental constituents to
understand its structure.

Since this research focuses on trajectory tracking problems, it follows that the
objective function applied throughout this text will be purely based on the geo-
metrical and physical properties of a trajectory. Each of its constituing metrics is
the result of a comparison between any two trajectories, which most of the time
are an ideal trajectory - the one the rover should follow - and a real trajectory -
the one actually traversed. The proposed metrics are also a valid tool to compare
the performance of di�erent trajectory tracking controllers. Thanks to the work of
[59], the employed metrics referred to two sample trajectories trajA and trajB are:

� Distance ratio: the distance ratio dratio is de�ned as the ratio between the
length of two di�erent trajectory:

dratio =
dB
dA

� Hausdor� distance: the Hausdor� distance dhaus is a metric that measures
the maximum of all the distances from a point in one set to the closest point
in the other set [60]. In this case a set is a trajectory. It is often employed in
image matching and handwriting recognition applications. In mathematical
terms:

dhaus(A,B) = max{min d(a, b)} , a ∈ A , b ∈ B

where d in the Euclidean distance, a are all the point in the subset A, and b
are all the points in the subset B. A graphic example is provided in Fig. 1.12.

Figure 1.12. Minimum - or Euclidean - and Hausdor� distances between two
trajectories - Image from Ermacora et Al., An Evaluation Framework for the De-
ployment of Mobile Robots Performing Real-World Indoor Autonomous Navigation.

22

1.6 � Trajectory Evaluation Metrics

� RMS of the minimum distances: the Root Mean Square (RMS) of the
minimum distances drms is a metric that evaluates the overall separation of
two trajectories. It di�ers from the Hausdor� distance for it does not con-
sider the maximum separation but the root mean square of all the available
measurements, that is:

drms = RMS{min d(a, b)} , a ∈ A , b ∈ B

where d in the Euclidean distance, a are all the point in the trajectory A, and
b are all the points in the trajectory B.

� Total bending energy: the total bending energy ebend measures the e�ciency
of a trajectory, in terms od how much �curvy� it is. If ci is the local curvature
along the descrete trajectory of n elements, the total bending energy is de�ned
as [61]:

ebend =
n∑
i=0

c2i dTi

� Total bending energy ratio: the total bending energy radio ebend−ratio de-
rives from the metric above, and for the two sample trajectories trajA and
trajB it is:

ebend−ratio =
ebendB
ebendA

23

24

Chapter 2

Mathematical Model

The mathematical model on a SSMR is de�ned by three sets of di�erential equa-
tions that govern its dynamics. They describe the forces and moment acting on
the robot and its consequential orientation with respect to an inertial reference
frame. In this chapter, a 2D nonlinear model is presented along with its lineariza-
tion and state-space representation. As any SSMR model, the one here presented
is decoupled into an independent kinematic model and a dynamic model. The non-
holonomic1 constraint of the vehicle is accounted to obtain the kinematic model.
It is derived using the chassis geometrical properties and a transformation between
the coordinate systems. The dynamical properties are derived using the Lagrange-
Euler equations. As already mentioned in the previous chapter, one of the main
goals of the model is to represent the friction forces acting on the robot wheels
faithfully. In this regard, the model is simpli�ed to better �t the test vehicle used
for experimental tests - the Clearpath Husky A200 - and an alternative friction
model is presented.

2.1 Mathematical Premises

2.1.1 Reference Frames

A reference frame is a set of axes employed as a coordinate system to represent the
position and orientation of a dynamic system; in this case, the robot. In mobile
robotics, in particular, it is common to use two sets of reference frames: the local
- or body - reference frame f(x, y, z) and the global - or �xed - reference frame

1A nonholonomic system is a system whose state depends on the path taken in order to achieve
it. In other words, it is a system in which there is a continuous closed circuit of the governing
parameters, by which the system may be transformed from any given state to any other state.
Such a system is described by a set of parameters subject to di�erential constraints [62].

25

Mathematical Model

F (X, Y, Z).

Local Reference Frame

The local reference frame f(x, y, z) is a non-inertial Cartesian reference frame orig-
inating from the robot Center of Gravity (CoG) (Fig. 2.1). Its axes are de�ned as
follows: the x axis lies on the robot plane of symmetry, and it is directed towards its
nose; the y axis is parallel to the ground and points left; the z axis points upward
to complete the right-handed coordinate system. The robot moments of inertia
calculated in this reference frame do not change during its motion.

Global Reference Frame

The global reference frame F (X, Y, Z) is an inertial Cartesian reference frame orig-
inating from a �xed point in space (Fig. 2.1). Its axes are de�ned as follows: the
X and Y axes lie on a plane parallel to the ground, and the Z axis points upward
to complete the right-handed coordinate system. The robot moments of inertia
calculated in this reference frame do change during its motion.

Figure 2.1. Local and Global reference frames

2.1.2 Euler Angles

The Euler angles are three angles - Φ, Θ, Ψ - used to represent the orientation of a
rigid body, and consequently its mobile frame of reference, with respect to a �xed
coordinate system. The composition of rotations expressed by this set of angles is

26

2.1 � Mathematical Premises

always su�cient to reach any target frame. Considering for instance two coordinate
systems F1(X1, Y1, Z1) and F2(X2, Y2, Z2) in Fig. 2.2, the sequential rotations of
magnitude Φ1, Θ1, Ψ1 will align F2 to F1.

Figure 2.2. Generic Coordinate System Rotation

Similarly, Euler angles can also be used to transform the components of a generic
vector between two reference frames by means of simple rotations. Assuming that
[FX1 , FY1 , FZ1]

T is a generic vector in the F1 coordinate system , the mathematical
relationship with the corresponding vector [FX2 , FY2 , FZ2]

T in the F2 coordinate
system is: FX2

FY2
FZ2

 = ΦΘΨ

FX1

FY1
FZ1

 = R21

FX1

FY1
FZ1

where R21 is the complete transformation matrix and Φ,Θ, Ψ are the elementary
rotation matrices:

Φ =

cosΦ −sinΦ 0
sinΦ cosΦ 0

0 0 1

 ,Θ =

 cosΘ 0 sinΘ
0 1 0

−sinΘ 0 cosΘ

 ,Ψ =

1 0 0
0 cosΨ −sinΨ
0 sinΨ cosΨ

Since the elementary matrices are orthogonal, also R21 is orthgonal, so R21

−1 =
R21 = R21

T . This allows to de�ne the inverse transformation as:FX1

FY1
FZ1

 = RT
21

FX2

FY2
FZ2

27

Mathematical Model

Global-Local Transformation

Based on the theoretical aspects highlighted above, it is possible to project the local
reference frame f(x, y, z) onto the global reference frame F (X, Y, Z) by means of a
single rotation of magnitude θ about the z axis. In terms of Euler angles:

Φ = θ

thus the rotation matrix tying the local and the global reference frame is:

Rlg =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 (2.1)

2.2 Nonlinear Mathematical Model

The following section will analyse the generalised nonlinear mathematical model
of a four-wheel SSMR, building on the premises exposed in Chap. 1.2. Further
simplifying assumptions are introduced in the last part of the chapter. As already
mentioned, the model is decoupled into kinematics and dynamics. According to
the conclusions expressed in Section 1.2, the following assumptions are considered
without loss of generality:

1. The CoG of the robot is �xed and lies on its longitudinal plane of symmetry
xz.

2. The vehicle is rigid and moves on a horizontal plane.

3. The robot four wheels are always in contact with the ground surface.

4. There is only one point of contact between the wheels and the ground.

5. The maximum vehicle speed is below 1 m/s.

6. The longitudinal wheel skidding is neglected.

7. The tire lateral force is a function of its vertical load.

2.2.1 Kinematic Model

Allowing that the SSMR is constrained to planar motion, it is possible to de�ne
the state vector describing the generalised coordinated of the robot2 and the body
velocity vector, namely q = [X, Y, θ] and V = [vx, vy, ωz]

T , with vx, vy and ωz the

2I.e. the CoG position, X and Y, and the orientation θ with respsect to the inertial frame.

28

2.2 � Nonlinear Mathematical Model

longitudinal, lateral and angular velocity, respectively (Fig.2.3). From the local
velocity vector, it is possible to derive the global velocity vector3 q̇ = [Ẋ, Ẏ , θ̇]T by
means of a simple rotation, obtained with the rotation matrix introduced in Eq.
2.1:

q̇ =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

V = RlgV (2.2)

Figure 2.3. Free Body Kinematics Figure 2.4. Wheel velocities and ICR

Eq. 2.3 does not impose any restriction on the robot movement since it describes
free-body kinematics only. Hence, it is necessary to analyse the relationship between
the speed of the wheels and the overall local velocity of the robot, neglecting, for
the sake of simplicity, the thickness of the wheels, assuming they are in contact
with the ground at points Pi (Fig.2.5), and assuming that they are rotating with
angular velocity ωi(t), where i = 1, . . . ,4 represents the i -th wheel. Since skid-
steering robots generally move at non-zero lateral velocity viy, wheels are tangent
to the path only when ω = 0, i.e., when the robot moves on a straight line.

As we neglect any longitudinal slip between the wheels and the surface, according
to this assumption based on the work of [63], the following relation can be developed:

vix = riωi

3Assumin planar motion, the relationship θ̇ = ωz is veri�ed.

29

Mathematical Model

where vix is the longitudinal component of the total velocity vi of the i-th wheel
expressed in the local frame f and ri denotes the so-called e�ective rolling radius
of the wheel4.

Considering the scheme in Fig. 2.4, it is possible to express the following rela-
tionship between the position of the ICR, that lies within the range (−a; b), and
the local velocity vector components with respect to the local frame:

||vi||
||di||

=
||V ||
||dc||

= |ωz| (2.3)

Figure 2.5. Velocity components of a wheel - Image from Kozªowski and Pazderski,
Modeling and Control of a 4-wheel skid-steering mobile robot, Int. J. Appl. Math
Comput. Sci., 2004, 477-496

where || · || represents the Euclidean norm. De�ning the ICR coordinates in the
local frame as

ICR(xICR, yICR) = (−dxc,−dyc)

it is possible to rewrite Eq. 2.3 as

vx
yICR

= − vy
xICR

= ωz (2.4)

Furthermore, the coordinates between the ICR and the i -th wheel satisfy the
following relationships:

4It corresponds to the ratio between the linear velocity of the wheel centre and its angular
velocity

30

2.2 � Nonlinear Mathematical Model

d1y = d4y = dcy + c

d2y = d3y = dcy − c
d1x = d2x = dcx + b

d3x = d4x = dcx − a

(2.5)

The relationship among wheel velocities can be obtained from Eqs. 2.3 and 2.5:

vL = v1x = v4x
vR = v2x = v3x
vF = v1y = v2y
vB = v3x = v4y

(2.6)

where:

� vL and vR represent the longitudinal velocities of the left and right wheels

� vF and vB represent the lateral velocities of the front and rear wheels.

Combining Eqs. 2.3 - 2.6, it is possible to obtain the relationship between the
wheel and the robot velocities:

vL
vR
vF
vB

 =

1 −c
1 +c
0 −xICR + b
0 −xICR − a

[vxωz
]

(2.7)

Moreover, considering for each wheel the same e�ective radius ri = r, from Eqs.
2.2.1 and 2.6, it is possible to write:

ωw =

[
ωL
ωR

]
=

1

r

[
vL
vR

]
(2.8)

where ωL and ωR are the left and right wheels velocity, respectively. Finally, it
is possible to derive a relationship between the angular velocity of the wheels and
the robot velocity vector; using Eqs. 2.7 and 2.8 it is possible to introduce a new
control input at kinematic level η ∈ R2:

η =

[
vx
ωz

]
= r

[
ωl+ωr

2−ωl+ωr
2c

]
(2.9)

In order to complete the kinematic model of the SSMR, a velocity constraint
must be introduced:

vy + xICRωz = 0 (2.10)

31

Mathematical Model

This constraint was �rst intrduced by [22] and it is a nonintegrable equation that
imposes the null motion along the local y direction. In other words it represents a
non-holonomic constraint which can be rewritten in the Pfa�an form. Introducing
the constraint vector A ∈ R3×2 we can write:[

−sinθ cosθ xICR
] [
Ẋ Ẏ θ̇

]T
= A(q)q̇ = 0

Since the generalised velocity vector q̇ is always in the null space of A, intro-
ducing a general coordinate transformation matrix S ∈ R3×2 we can write:

q̇ = S(q)η (2.11)

where

ST (q)AT (q) = 0 (2.12)

and

S(q) =

 cosθ xICRsinθ
sin(θ) −xICRcosθ

0 1

 (2.13)

Since dim(η) = 2 < dim(q) = 3, eq. 2.11 describes the kinematics of an under-
actuated robot.

The adoption of the angular velocity ω as a control input instead of vy as ini-
tially proposed by [22], happens to be more convenient as it does not require the
knowledge of the yICR variable, which can not be evaluated but experimentally.

2.2.2 Dynamic Model

As highlighted by [22], the dynamic properties of a SSMR play a signi�cant role in
its motion. When on curved paths, due to the interactions between its wheels and
the ground, reactive forces are much greater than inertial forces. When compared
to a vehicle with pure rolling assumptions, a SSMR is thus much more a�ected by
dynamic e�ects. In this chapter, it is therefore presented a dynamic model useful
for control and simulation purposes.

The dynamic model of a common SSMR can be derived using the Euler-Lagrage
principle with Lagrange multipliers to take the non-holonomic constraint into ac-
count. The Euler-Lagrange equation is:

Γ =
d

dt

∂L
∂q̇
− ∂L
∂q

where Γ denotes the active torques and forces vector without considering any ex-
ternal force. L = E − U is the Lagrangian of the system, which is de�ned as the
sum of its kinetic and potential energy. Since the robot considered is constrained to

32

2.2 � Nonlinear Mathematical Model

planar motion, the total potential energy U is equal to zero; hence the Lagrangian
is equal to the kinetic energy of the robot:

L(q̇,q) = E(q̇, q)

Neglecting the kinetic energy of the wheels for sake of simplicity, the following
equation describes the kinetic energy of the vehicle:

E =
1

2
mvTv +

1

2
Iω2

z (2.14)

where I is the moment of inertia of the robot about its CoG. Since

vTv = v2x + v2y = Ẋ2 + Ẏ 2

equation 2.14 can be rewritten as

E =
1

2
m(Ẋ2 + Ẏ 2) +

1

2
Iθ̇2

The inertial forces can be obtained from the time derivative of the partial deriva-
tive of the kinetic energy:

d

dt

∂E

∂q̈
=

mẌmŸ
Iθ̈

 = Mq̈ (2.15)

where M ∈ R3×3 denotes the constant, diagonal, positive de�nite inertia matrix:

M(q) =

m 0 0
0 m 0
0 0 I

Before deriving the resistive forces, it is necessary to introduce the wheel-ground

interaction, with reference to Fig. 2.6. The active and reactive forces, respectively
Fxi and Ni are functions of the wheel torque and the gravity load; in addition Fxi
is linearly depended on the wheel control input τi:

Fxi =
τi
r

(2.16)

According to [63], it is assumed that the vertical load Ni acts from the surface
of the wheels. Neglecting additional dynamic properties like the kinematic energy
of the wheels, refering to Fig. 2.7 it is possible to obtain the following equilibrium
equations:

33

Mathematical Model

Figure 2.6. Forces acting on a wheel - Image from Kozªowski and Pazderski, Mod-
eling and Control of a 4-wheel skid-steering mobile robot, Int. J. Appl. Math
Comput. Sci., 2004, 477-496

N4a = N1b

N2b = N3a
4∑
i=1

Ni = mg

wherem and g are, respectively, the vehicle mass and the gravitational acceleration.
If the SSMR has longitudinal symmetry, then

N1 = N2 =
a

2(a+ b)
mg

N3 = N4 =
b

2(a+ b)
mg

(2.17)

Assuming that Rxi derives from the rolling resistant moment τri, it can be re-
garded as pure rolling resistance. Fyi, on the other hand, is the lateral reactive
force, which, based on [22], can be regarded as a friction force. Due to the fact that
friction is a highly nonlinear phenomenon which depends on a wide range of vari-
ables, modelling its behaviour is considered an extremely daunting task. Therefore,
friction Ff is often simpli�ed as a superposition of Coulomb and viscous friction:

Ff (v) = µcN sgn(v) + µvv

where N is the force perpendicular to the surface, and µc and µv are the Coulomb
and viscous coe�cients, respectively. Since the mobile robot maximum velocity v is

34

2.2 � Nonlinear Mathematical Model

relatively low, especially during lateral skidding, it is possible to neglect the viscous
term µvv due to the relation µcN >> µvv, thus simplifying the model.

Figure 2.7. Active and resistive forces acting on the vehicle

Based on the previous considerations, the longitudinal rolling resistance and the
lateral friction force can be rewritten as:

Rxi = uxmg sgn(vxi)

Fyi = µcmg sgn(vyi)
(2.18)

where ux is the longitudinal rolling coe�cient. It is now possible to write the result-
ing rolling resistance Rx, the resulting friction force Fy and the resistive moment
Mr around the CoG with respect to the local reference frame f(x, y, z):

Rx(q̇) =
4∑
i=1

Rxi(vxi)

Fy(q̇) =
4∑
i=1

Fyi(vyi)

Mr(q̇) = b
∑
i=1,2

Fyi(vyi)− a
∑
i=3,4

Fyi(vyi) + c

(∑
i=2,3

Rxi(vxi)−
∑
i=1,4

Rxi(vxi)

) (2.19)

The resistive forces can then be merged in the resultant resistive forces vector
R ∈ R3:

35

Mathematical Model

R(q̇) =

Rx(q̇)cosθ − Fy(q̇)sinθ
Rx(q̇)sinθ + Fy(q̇)cosθ

Mr(q̇)

 (2.20)

Moving to the forces generated by the robot actuators, it is possible to write
their resultants as active force Fx and active torque M :

Fx =
4∑
i=1

Fxi

M = c

(∑
i=2,3

Fxi −
∑
i=1,4

Fxi

) (2.21)

which can be rewritten in the global reference frame as the vector of the active
forces F ∈ R3

F =

FxcosθFxsinθ
M

 (2.22)

Introducing a new control input vecotr τ ∈ R2, which now depends on the active
torques:

τ =

[
τL
τR

]
=

[
τ1 + τ4
τ2 + τ3

]
(2.23)

and combining eq. 2.23 with Eqs. 2.16, 2.21 and 2.22, it is possible to write the
active forces vector as:

F = E(q)τ (2.24)

where E ∈ R3×2 is the input transformation matrix de�ned as

E(q) =
1

r

cosθ cosθ
sinθ sinθ
−c +c

A dynamic model can be obtained from Eqs. 2.15, 2.20 and 2.24:

M(q)q̈ + R(q̇) = E(q)τ

The system has yet to include the kinematic constraint introduced in the previ-
ous section. It is thus necessary to impose a Lagrange multiplier λ [22], obtaining:

M(q)q̈ + R(q̇) = E(q)τ + AT (q)λ (2.25)

36

2.2 � Nonlinear Mathematical Model

To eliminate the unknown Langrange multiplier, it is possible to left multiply
2.25 by the matrix ST (q) de�ned in eq. 2.13 and use the kinematic constraint in
eq. 2.12 to rewrite the dyanmic model in generalised coordinates q :

ST (q)M(q)q̈ + ST (q)R(q̇) = ST (q)E(q)τ (2.26)

For control purposes, it is more convenient to express 2.26 in terms of the local
velocity vector η. After taking the time derivative of 2.11, it is possible to write:

q̈ = Ṡ(q)η + S(q)η̇

and replacing it in 2.26, the dynamic equations �nally become:

Mη̇ + Cη + R = Eτ (2.27)

where:

M = ST (q)M(q)S(q)

C = ST (q)M(q)Ṡ(q)

R = ST (q)R(q̇)

E = ST (q)E(q)

(2.28)

The dynamic model here obtained will be regarded, from now on, as the nonlin-
ear model with Coulomb friction.

2.2.3 Further Simpli�cations

In order to lower the complexity of the mathematical model without signi�cant
impacts on its accuracy, some further assumptions were applied to the nonlinear
description:

1. The SSMR has a total of two planes of symmetry: the xy plane and the xz
plane. Its CoG consequently lies by their intersection. Such an assumption
is valid, considering the geometry of the mobile robot introduced in the next
chapter. It follows that:

� In terms of geometry it is possible to write that a = b (Fig.2.3).

� Considering Eq. 2.17, it is possible to write N1 = N2 = N3 = N4.

2. The position of the longitudinal coordinate of the ICR - xICR - is known.
In particular xICR = 0, which means it lies on the CoG. Such hypothesis is
reasonable if applied contextually to the previous one and the assumptions
introduced in Sec. 2.2. It implies that:

37

Mathematical Model

� Eq. 2.10 becomes vy = 0, i.e. the vehicle has zero lateral acceleration and
zero net force along its local y axis.

3. The resistive torque generated by the rolling resistance in Eq.2.19 is negligible.

4. The wheels on each side of the robot move at the same speed. Such assumption
is particularly valid for the SSMR used during the experimental tests, as it has
a mechanical link bewtween the wheels lying on each of its sides. Therefore:

� τ1 = τ4 = τL and τ2 = τ3 = τR, hence, referring to Eq. 2.16, Fx1 = Fx4
and Fx2 = Fx3.

� It is possible to introduce two new variabiles: FxL = Fx1 +Fx4 and FxR =
Fx2 + Fx3.

Another signi�cant e�ect of these assumptions is that it is no longer required
to compute the forces acting on each wheel, but it is possible to evaluate them
two at a time. The simpli�cations here listed lead to a more straightforward and
computationally lighter formulation of the nonlinear model. Later in this text,
it is compared to the initial model with outstanding results. The quality of the
simpli�ed formulation led to it being used as the starting point for the linearization
process.

2.2.4 Improved Friction Model

Due to the nature of the movement of a generic SSMR, it was decided to implement
an innovative dry friction model which compared to the classical static models, like
Karnopp or Quinn, signi�cantly improves both the accuracy and the stability of
any numerical simulation. Besides, faithful modelling is useful to avoid steady-state
errors, limit cycles and unsafe behaviours of a control system built upon it. Indeed,
when friction is the only nonlinear phenomenon, its knowledge allows for system
linearization by compensation methods [64].

The model employed, which is based on the work of [31], o�ers the following
advantages:

� It estimates the sign of the resistive force, based on the sign of the body
velocity.

� It distinguishes between any adherence and dynamic condition. It allows for
two distinct friction forces to be used: a stiction, or static friction force FSJ ,
and a dynamic friction force FSD.

� It evaluates the stopping of a body previously in motion.

� It correctly estimates the breakaway condition a body which is initially in a
standstill position.

38

2.2 � Nonlinear Mathematical Model

� A body in a standstill position is correctly kept in such condition.

� It takes into account the presence of any end-stops, considering a completely
inelastic collision.

Its mathematical formulation is:

FF =

−Fact if v = 0 ∧ |Fatt| ≤ FSJ

−sgn(Fact) · FSJ if v = 0 ∧ |Fatt| > FSJ

−FDJ if v /= 0

(2.29)

where Fact is the active force to which friction opposes, while FSJ and FDJ are the
static and dynamic friction forces, respectively. They are supposed to only depend
on the weight of the robot, and can be written as:

FSJ = µs ·N
FDJ = µd ·N

(2.30)

where µs is the static friction coe�cient, µd is the dynamic friction coe�cient, and
N is the normal force acting between the two sliding bodies. In this case, it would
be the wheel load as expressed in eq. 2.17.

In order to avoid the numerical instability of a Karnopp-like model, the simula-
tion block which implements the friction model includes a zero crossing detection
algorithm which sets the body velocity to zero whenever it senses a sign change in
the linear or angular velocity of the body during two consecutive integration steps:

v(ti+1) = 0 if v(ti+1)v(ti) ≤ 0

θ̇(ti+1) = 0 if θ̇(ti+1)θ̇(ti) ≤ 0
(2.31)

Whenever the imposed stop happens to be incorrect, the disequilibrium of the
active and resistive forces - or torques - would cause the system to overcome the
breakaway force and restore its motion within one timestep. Such control repre-
sents the major distinction between the more common friction models listed at the
beginning of this section. A block diagram of the model is represented in Fig. 2.8

The model obtained combining the assumptions in Sec. 2.2.3 with the friction
model here presented will be regarded, from now on, as the nonlinear model with
the improved friction formulation.

2.2.5 Wheel Torque Controller

To fully simulate the behaviour of a SSMR, it is necessary to know the relationship
between the kinematic control input - Eq. 2.9 - and the wheel torque control input

39

Mathematical Model

Figure 2.8. Block diagram of the improved dry friction model with a zero
crossing detection control scheme

- Eq. 2.23. In fact, as later con�rmed in Sec. 3.1, such type of mobile robot only
accepts kinematic inputs which are then translated into wheel torque commands by
its own torque control system loaded in an onboard Micro Controller Unit (MCU).
For sake of simpli�cty, and lacking further information, the robot was supposed to
possess a basic proportional controller which operates by the following contro law:[

τl
τr

]
= Kpτ · e (2.32)

where Kpτ is the proportional gain of the control system and e is the error vector
obtain comparing the actual wheel speeds to the commanded speeds, which are
both obtained using Eq. 2.9: [

el
er

]
=

[
ωlcmd − ωlact
ωrcmd − ωract

]
where ωl/rcmd are the commanded wheel velocities and ωl/ract are the actual veloci-
ties.

2.3 Linear Mathematical Model

The nonlinear equations of motion have general validity within all operating condi-
tions. They provide a powerful tool for studying the performance and the dynamic
behaviour of a SSMR. In some occasions, however, the accuracy provided by the
nonlinear model might not be necessary, and a more straightforward mathemati-
cal formulation would be preferable. Such simpli�cation is achievable linearising
the governing equations. For this purpose, the linearisation was carried out on
the nonlinear model with the simplifying assumptions introduced in Sec. 2.2.3 but
without the improved friction model presented in Sec. 2.2.4, as it is not suitable

40

2.3 � Linear Mathematical Model

for the process later presented. In the model chosen, friction forces are the only
nonlinearities of the system. However, due to the presence of a signum function,
which has a discontinuous �rst derivative, the Jacobian linearization is not possible
about a speci�c operating point near zero. As a solution, a signum function can be
approximated using an arctangent function as proposed by [23]:

sgn(x) =
2

π
arctan(ksx) (2.33)

where ks � 1 is a constant which determines the approximation accuracy according
to the relation

lim
ks→∞

2

π
arctan(ksx) = sgn(x) (2.34)

Figure 2.9. Hyper viscous friction model - Friction with sign function; friction
with the arctan approximation and ks = 30; linear approssimation about 0

Substituting 2.33 into 2.18, it is possible to write:

Rxi = uxNi
2

π
arctan(ksxvxi)

Fyi = µcNi
2

π
arctan(ksyvyi)

(2.35)

and their Taylor expansion about an equilibrium point given by vxi and vyi :

Rxi ≈ Rxi(vxi) +
∂R

∂vxi

∣∣∣
vxi=vxi

δvxi + higher order terms

Fyi ≈ Fyi(vyi) +
∂F

∂vyi

∣∣∣
vyi=vyi

δvyi + higher order terms
(2.36)

41

Mathematical Model

knowing that the deviation variables are:

δvxi = vxi − vxi
δvyi = vyi − vyi

(2.37)

Neglecting higher order terms and evaluating the partial derivatives:

Rxi = Rxi(vxi) + uxNi
2ksx

π(1 + (ksxvxi)2)
δvxi

Fyi = Fyi(vyi) + µcNi
2ksy

π(1 + (ksyvyi)2)
δvyi

(2.38)

Choosing as equilibrium point vxi = vyi = 0, then Rxi(vxi) = Fyi(vyi) = 0
as there is no friction at zero velocity. Furthermore it is possible to rewrite the
deviation variables as δvxi = vxi and δvyi = vyi. Substituting into eq. 2.37 and
rearranging the terms:

Rxi =
2

π
ksxuxNivxi

Fyi =
2

π
ksyµcNivyi

(2.39)

Renaming Kui = 2
π
ksxux and Kyi = 2

π
ksyµc, it is possible to rewrite eq. 2.39 in

a simpler form:

Rxi = Ni ·Kui · vxi
Fyi = Ni ·Kyi · vyi

(2.40)

The mathematical formulation just obtained is analogous to what is generally
known as hyperviscous friction model [31]. It presumes that, within the range of
application, viscous e�ects dominate on any other form of resistance. The deriving
resistive forces are thus linearly dependent on the vehicle speed. Kui and Kyi

are, therefore, two viscous friction coe�cients, which refer to the robot forward
and lateral motion, respectively. The graphical representation of such a model is
depicted in Fig. 2.9.

42

2.3 � Linear Mathematical Model

2.3.1 State-Space Representation

Two approaches are available for the analysis and the design of a feedback control
system. The �rst is known as classical, or frequency-domain technique, which is
based on converting a system's di�erential equations to transfer functions, thus
generating a mathematical model of the system that algebraically relates a repre-
sentation of the output to a representation of the input. The second, more modern
approach is known as the state-space approach, which provides the dynamics as a
set of coupled �rst-order di�erential equations in a set of internal variables known
as state variables, together with a set of algebraic equations that combine the
state variables into physical output variables. It is a uni�ed method for modelling,
analysing, and designing a wide range of systems, including nonlinear, time-varying,
Multiple-Input and Multiple-Output (MIMO) systems. The state-space approach
was therefore chosen to represent the linear model of a SSMR with multiple inputs.
It also proves to be necessary for the design of the LQR proposed later in this text.

De�nition of System State

The concept of state of a dynamic system refers to a minimum set of variables,
known as state variables, that fully describes the system and its response at any
given set of inputs. In particular, a state-determined system model has the char-
acteristic that, citing [65], �A mathematical description of the system in terms of
a minimum set of variables xi(t), i = 1, . . . , n, together with knowledge of those
variables at the initial time t0 and the system inputs for time t ≥ t0, are su�cient
to predict the future system state and outputs for all time t ≥ t0�.

The State Equations

In the standard form of state equations, the mathematical description of the system
is expressed as a set of n coupled �rst-order ordinary di�erential equations, known
as state equations, in which the time derivative of each state variable is expressed
in terms of state variables x1(t), . . . , xn(t) and the system inputs u1(t), . . . , un(t).
In the general case the form of the n state equations is:

ẋ1 = f1(x,u, t)

ẋ2 = f2(x,u, t)

... =
...

ẋn = fn(x,u, t)

where ẋi = dxi/dt and each of the functions fi(x,u, t) , (i = 1, . . . , n) may be a
general nonlinear, time varying function of the state variables, the system input,
and time.

43

Mathematical Model

Limiting the attention to systems that are Linear and Time-Invariant (LTI), the
previous equations become a set of n coupled �rst-order linear di�erential equations
with constant coe�cients. For a LTI system of order n and with r inputs:

ẋ1 = a11x1 + a12x2 + . . .+ a1nxn + b11u1 + . . .+ b1rur

ẋ2 = a21x1 + a22x2 + . . .+ a2nxn + b21u1 + . . .+ b2rur
...

ẋn = an1x1 + an2x2 + . . .+ annxn + bn1u1 + . . .+ bnrur

where aij and bij are constant that describe the system. The previous equation can
be written compactly in a matrix form:

d

dt

x1
x2
...
xn

 =

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
an1 an2 . . . ann

x1
x2
...
xn

+

b11 . . . b1r
b21 . . . b2r
...

...
bn1 . . . bnr

u1...
ur

which can be summarised as:

ẋ = Ax + Bu (2.41)

where the state vector x is a vector of length n, the input vector u is a column
vector of length r, A is n× n square matrix of the constant coe�cients aij, and B
is an n× r matrix of the coe�cients bij that weight the inputs.

Output Equations

A system output is de�ned to be any system variable of interest. A description the
system in terms of a set of state variables does not necessarily include all of the
variables of direct engineering interest. An important property of the linear state
equation description is that all system variables may be represented by a linear
combination of the state variables xi and the system inputs ui. An arbitrary ouput
variable in a system of order n with r inputs may be written:

y(t) = c1x1 + c2x2 + . . .+ cnxn + d1u1 + . . .+ drur

where the ci and the di are constant. If a total of m system variables are de�ned
as outputs, then:

ẏ1 = c11x1 + c12x2 + . . .+ c1nxn + d11u1 + . . .+ d1rur

ẏ2 = c21x1 + c22x2 + . . .+ c2nxn + d21u1 + . . .+ d2rur
...

ẏn = cm1x1 + cm2x2 + . . .+ xmnxn + dm1u1 + . . .+ dmrur

44

2.3 � Linear Mathematical Model

or in matrix form:
y1
y2
...
yn

 =

c11 c12 . . . c1n
c21 c22 . . . c2n
...

...
cm1 cm2 . . . cmn

x1
x2
...
xn

+

d11 . . . d1r
d21 . . . d2r
...

...
dm1 . . . dmr

u1...
ur

which can be summarised as:

y = Cx + Du

where y is a column vector of the output variables yi(t), C is an m×n matrix of the
constant coe�cients cij that weight the state variables, and D is an m×r matrix of
the constant coe�ent dij, that weight the system inputs. For many physical system,
including the one here analysed, D is a null matrix, and the output equation reduces
to a simple weighted combination of the state variables:

y = Cx (2.42)

State Space Model for a SSMR

From Eqs. 2.41 and 2.42, it is cleat that for an LTI system, the goal is to to write
a set of equations in the form:

ẋ = Ax + Bu

y = Cx
(2.43)

In order to do so it is useful to follow the notation just introduced. Eq. 2.9 can
be rewritten as:

u =

[
u1
u2

]
=

[
vx
ωz

]
= r

[
ωl+ωr

2−ωl+ωr
2c

]
Solving for ωl and ωr, the wheel speeds are then:

ωl = u1 − c u2
ωr = u1 + c u2

Using Eq. 2.32 and 2.9, which is a relationship valid for SSMR kinematics as well,
it is possible to write:

τl = Kpτ (u1 − c u2 − ẋ+ c θ̇)

τr = Kpτ (u1 + c u2 − ẋ− c θ̇)
(2.44)

45

Mathematical Model

Building from the assumptions and the linearization proposed in Sec. 2.3, the
generalised equations of the rover become:

ẍ =
1

m
(FxR + FxL −Rx)

θ̈ =
1

I
[(FxR − FxL) c−Mr]

or rather:

ẍ =
1

m

[
1

r
(τR + τL)− ẋmgKu

]
θ̈ =

1

I

[
c

r
(τR − τL) c− θ̇mgKyc

]
Finally, substituting Eq. 2.44:

ẍ = ẋ

(
− 2

Kpτ

rm
−mgKu

)
+ 2

Kpτ

rm
u1

θ̈ =
1

I

[
θ̇

(
− Kpτ t

2

2r
−mgKyc

)
+
Kpτ t

2

2r
u2

] (2.45)

It is now possible to select a set of state variables called phase variables, where each
subsequent variable is de�ned as the derivative of the previous state variable. In
this case:

x1 = x→ ẋ1 = x2

x2 = ẋ→ ẋ2 = ẍ

x3 = θ → ẋ3 = x4

x4 = θ̇ → ẋ4 = θ̈

Substituting in Eq. 2.45 and converting to matrix form:

ẋ1
ẋ2
ẋ3
ẋ4

 =

0 1 0 0

0 −2Kpτ
rm
−mgKu 0 0

0 0 0 1

0 0 0 1
I

(
− Kpτ t

2

2r
−mgKyc

)

x1
x2
x3
x4

+

0 0

2Kpτ
rm

0
0 0

0 Kpτ t
2

2Ir

(2.46)

46

2.3 � Linear Mathematical Model

Since the output variables required by the control system are the same state
variables included in the vector x, the output equations can be simply written as:

y1
y2
y3
y4

 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

x1
x2
x3
x4

 (2.47)

Eq. 2.46 and 2.47 can be �nally written in a more compact form that is equivalent
to the one presented in Eq. 2.43:

ẋ = Ax + Bu

y = Cx

From Eq. 2.46 it is possible to see that the e�ects of the two control inputs are
decoupled: the input u1 only a�ects the linear motion of the rover, while the input
u2 only a�ects its angular response. In other words, the assumptions made in Sec.
2.2.3, upon which the whole linear formulation is constructed, allowed to shift from
a MIMO system to two decoupled Single-Input and Single-Output (SISO) systems.
Such property is essential for a more straightforward analysis of the control system.

47

48

Chapter 3

Experimental Set-up and

Model Tuning

This chapter introduces the experimental set-up and describes the model tuning
process necessary to faithfully simulate the behaviour of the testing platform: the
Cleapath Husky A200. An overview of the testing facility of the BeiDou Research
Institute in Shanghai is presented as well. A brief explanation is dedicated to
ROS, to better understand how the robot was controlled during the experimen-
tal tests. Furthermore, this chapter features an innovative parameter estimation
method based on a class of evolutionary algorithms named Di�erential Evolution
Algorithms. The last pages are dedicated to the accuracy analysis of one of the
most common robotics simulators: Gazebo Simulator. Its conclusions explain why
it was decided not to use it for this research.

3.1 Clearpath Husky

Husky A200, by Clearpath Robotics Inc., is the SSMR used as the testing platform.
It is a four-wheel di�erential drive unmanned ground vehicle customizable with a
wide variety of research payloads. Due to its rugged construction and high torque
drivetrain, it is often used for outdoor exploration. Moreover, it is fully supported
in ROS thanks to community-driven Open Source code. It is therefore able to
receive the user control commands either via remote or via an onboard computer.

3.1.1 Physical Properties

The robot geometry is as represented in Fig. 3.1. With a length of 0,99 m, a width
of 0,67 m, a height of 0,39 m and a 20 Ah lead-acid battery pack (VRLA), the
robots weights little over 73 kg (Tab. 3.1). Its right and left pairs of wheels are

49

Experimental Set-up and Model Tuning

mechanically linked, and each pair is actuated by an electric motor. The motor
speci�cations, however, were not made available by the producer.

Figure 3.1. Clearpath Husky A200 geometry - Image from the robot user manual

mass kg 73,30
length m 0,99
width m 0,67
height m 0,39
track width m 0,55
I moment of inertia around z kg m2 2,16
max linear speed m/s 1,00
max angular velocity rad/s 2,00

Table 3.1. ClearPath Husky A200 Speci�cations

50

3.1 � Clearpath Husky

3.1.2 Onboard Computer and Accepted Commands

The platform can be controlled in two ways:

� Remote: via a Logitech controller which can output linear and angular velocity
commands.

� Onboard Computer: it is possible to use the ROS middleware to give com-
mands at di�erent levels of autonomy.

The onboard computer used during the experimental tests ran on Linux 18.04
LTS and used ROS Melodic Morenia as middleware. The joystick and the com-
puter combined can output two native command types plus a third one which was
implemented as part of the research work:

1. Linear and angular velocity: in this case, the robot has no autonomy and
uses a control system to regulate the wheel speeds. This command is the only
type of command which can be generated by a remote.

2. Target pose: it is possible to communicate a target pose1 and let the robot
navigate autonomously in a known environment. If the sensors allow it, the
robot can also navigate in an unknown environment as well, by mapping its
surrounding area. Once the robot localises itself, it autogenerates sequential
intermediate target poses and the corresponding speed commands necessary to
reach them. The commands are eventually fed to the low-level wheel control
system.

3. Reference trajectory: not supported natively, this type of input can be
interpreted only thanks to the control systems developed during this research
activity. Once the trajectory has been read, the robot is then able to parse
it into successive poses and feed them to an underlying control system. This
enhancement is better analysed during the following chapters.

Each input enters the system at di�erent stages of the control �ow. Starting
from the �rst one, each control grants the robot an increasing degree of autonomy.
A schematic representation of the enhanced control �ow is available in Figure. 3.2.

It is important to point out that the trajectory control systems presented later,
only a�ect the position and velocity control layers. Indeed, a built-in MCU is in
charge of:

� Converting the robot reference velocities into wheel speeds

1A pose di�ers from a �position� for, apart from indicating a point in space, it also contains
information about its orientation. Following the conventions of Chap. 2, a pose can be expressed
as a vector of three elements. E.g. pose =

[
X Y θ

]
51

Experimental Set-up and Model Tuning

� Actuating the wheels using the electric motors

� Controlling the wheel speeds

Since the MCU internal functioning and parameters were not made available to
the public, a system identi�cation method is proposed in the next chapters.

Figure 3.2. Husky logic diagram from a generic control input to wheel motion.
Input 2: a new type of control input introduced by this research work.

3.1.3 Sensor Types and Sensor Fusion

The Husky used for the experimental tests had only two sensors:

� UM6 Orientation Sensor (CH Robotics LLC): an IMU sensor that provides
information about the robot spacial orientation expressed in quaternions, its
angular velocity and its linear acceleration.

� Wheel Encoders: they provide information about the robot velocity and
incremental movement. Each encoder has a precision of 78'000 ticks/m.

The data generated by the two sensors is then fed to an Extended Kalman
Filter (EKF), the nonlinear variant of the Kalman �lter. It is used to estimate
the position of the robot by knowing the previous state, the applied input and
the sensor measurements. Without it, the dead-reckoning measurements would
be severely compromised by the skid-steering phenomenon. The EKF relies on
the robot localization packagae, a ROS stack speci�cally developed by Clearpath
Robotics. For the purpose of this work, the EKF parameters were left as default.

52

3.2 � Indoor Testing Facility

3.2 Indoor Testing Facility

The indoor testing facility at the West Hongqiao division of the BeiDou Research
Institute of Shanghai is a 500 m2 space dedicated to robotics applications (Fig.
3.3). The facility is overlooked by 62 Infrared (IR) motion tracking cameras which
measure the movement of any set of markers, allowing to asses the response of a
robot with sub-millimetric precision. Fig. 3.4 shows the underlying functioning
of any IR tracking system: the cameras emit beams in the IR spectrum and mea-
sure what is bounced back by the markers. The information measured by every
camera is then processed to output the �nal result. In the case of the BeiDou
Research Institute, the cameras were the RTS 1000 produced by Realis, a Chinese
company specialised in tracking systems (Tab. 3.2) while the markers were four
retro-re�ectors mounted on the four corners of the Husky rover.

Figure 3.3. BeiDou Research Institute - Robotics laboratory by the West
Hongquiao facility

Figure 3.4. Infrared (IR) tracking scheme

53

Experimental Set-up and Model Tuning

Image Resolution 1280x1024 @ 210 FPS
AOV 58° x 48°
LED 14 high-power LEDs RTS1000
Measurement Frequency 4.8 ms
Maximum Distance of the Object 13 m

Table 3.2. Speci�cations of the IR motion tracking camera RTS1000
produced by Realis

3.3 Robot Operating System (ROS)

ROS, as introduced in Chap. 1, is a tool-based peer-to-peer framework that helps
develop and deploy robotics software solutions. The following paragraphs introduce
the most basic concepts of ROS in order to enable the reader to better understand
how the proposed control systems interact with the Husky robotic platform.

Excluding more advanced elements like services and actions, the most funda-
mental building blocks of ROS are:

� Nodes: nodes are executables written in Python or C++. Thanks to ROS
they can communicate with other nodes. This feature allows them to produce
complex behaviours starting from simple functionalities.

� Topics: topics are named buses over which nodes exchange data. Topics have
anonymous publish/subscribe semantics, which decouples the production of
information from its consumption. In general, nodes are not aware of whom
they are communicating with. Instead, nodes that are interested in data sub-
scribe to the relevant topic; nodes that generate data publish to the relevant
topic. There can be multiple publishers and subscribers to a topic. Lastly,
topics are intended for unidirectional, streaming communication.

� Messages: a message is a simple data structure, comprising typed �elds.
Nodes communicate with each other by publishing messages on topics.

It is thus possible to imagine a robot as a graph comprised of nodes exchanging
messages over prede�ned topics. The example in Fig. 3.5 shows an example of
an elementary node interaction. The uppermost element, the ROS Master, can be
simply described as a software process that gives di�erent nodes all the information
required to exchange information between each other. Once the nodes have located
themselves through the Master, the connection switches to peer-to-peer. In other
words, nodes directly communicate with each other without relying on any external
piece of software.

One more ROS feature to introduce is called tf. tf is a package that lets the user
keep track of multiple coordinate frames over time. It maintains the relationship

54

3.3 � Robot Operating System (ROS)

Figure 3.5. Example of the basic functioning of ROS: two nodes registered to the
Master exhanging data over a topic.

between coordinate frames in a tree structure bu�ered in time and lets the user
transform points and vectors between any two coordinate frames at any desired
point in time. It is therefore essential to correctly read the data coming from
sensors located at di�erent points of the robots. Fig. 3.6 shows the complete ROS
graph of the Husky robot used for experimental purposes. It is possible to notice
numerous processes that stream their data to a tf node in order to express any
physical quantity with respect to the local body frame of the robot.

Focusing on the software running the Husky itself, the odometry and control
functions are implemented in the same fashion of any other piece of software within
ROS: they are based on a number of interconnected nodes. The understanding of
their structure is a prerequisite for appreciating of the proposed control system,
later in this thesis. The odometry stack functions as shown in Fig. 3.7, that is:

1. Two di�erent nodes read the encoders and IMU data, respectively. They are
named husky_node and imu_filter_madgwick.

2. Their outputs are sent over the topics husky_velocity_controller/odom and
imu/data and read by the node ekf_localization_node, which is in charge
of fusing the sensors data.

3. The EKF node outputs are then transmitted over the odometry/filtered

topic.

55

Experimental Set-up and Model Tuning

Figure 3.6. ROS graph of the Husky robot used during tests. The image was taken
while using the Gazebo simulator, hence the presence of a node named gazebo.

56

3.3 � Robot Operating System (ROS)

On the other hand, the command stack in Fig. 3.8 follows this scheme:

� The commands - linear and angular velocity - can be publishished on four
di�erent topics:

� joy_teleop/cmd_vel - Joystick teleoperation input - Priority 10

� twist_marker_server/cmd_vel - Interactive marker (pose) input through
RViz2 - Priority 8

� move_base/cmd_vel - Autonomous movement input from the husky_navigation
package. - Priority 2

� cmd_vel - Miscellaneous external input. It it the topic that will be later
used to control the Husky - Priority 1

� The node twist_mux receives the commands and, if more than one source is
available, it will output the one with the highest priority.

� twist_mux outputs the �nal command on the topic husky_velocity_controller/cmd_vel
which is then fed to the wheel controller on the integrated MCU.

The actual movement of the rover measured by the IR tracking system is pub-
lished on the /vrpn_client_node/husky/pose topic.

2RViz, abbreviation for ROS visualization, is a 3D visualization tool for ROS. It allows the user
to view the simulated robot model, log sensor information from the robot's sensors, and replay
the logged sensor information.

57

Experimental Set-up and Model Tuning

Figure 3.7. ROS topics and nodes in a Husky robot - Odometry functions

Figure 3.8. ROS topics and nodes in a Husky robot - Control functions
- The highlighted topic will be used to control the Husky platform in the
subsequent chapters.

58

3.3 � Robot Operating System (ROS)

3.3.1 MATLAB Integration

It is worth mentioning that despite the ROS integration with MATLAB 2019a with
the Robotics System Toolbox, it is not possible to use the MATLAB console to run
a Linux script that executes ROS commands, a bene�cial functionality indeed. In
particular, scripts that function �awlessly when called from the Linux shell fail to
execute when called using the common ![script path] syntax within MATLAB.
It was concluded that the cause of this issue is MATLAB itself, that changes the
Linux environment variables whenever it is running, therefore altering the correct
functioning of any script. To overcome such problem, it was decided to modify the
a�ected scripts to include a series of export instances to reset the environment
variables to the desired values. The pseudo-code of a generic script of that kind is
provided for future references; the correct values of the environment variables can
be determined by running the env command within the Linux shell.

1 #!/bin/bash
2 export LD_LIBRARY_PATH=...;
3 export ROS_ETC_DIR=...;
4 export CMAKE_PREFIX_PATH=...;
5 export ROS_ROOT=...;
6 export ROS_MASTER_URI=...;
7 export ROS_VERSION=...;
8 export ROS_PYTHON_VERSION=...;
9 export PYTHONPATH=...;

10 export ROS_PACKAGE_PATH=...;
11 export ROSLISP_PACKAGE_DIRECTORIES=...;
12 export PATH=...;
13 export PKG_CONFIG_PATH=...;
14 export ROS_DISTRO=...;
15 Script body;

59

Experimental Set-up and Model Tuning

3.4 Simulink Physical Models

In the chapter dedicated to the mathematical description of the SSMR - Chap. 2
- three variants were proposed:

1. The nonlinear model with the Coulomb friciton model.

2. The nonlinear model with the improved friction formulation.

3. The LTI state-space model with the hyperviscous friction formulation.

In the following paragraphs, each one of them is converted into a Simulink model,
upon which the optimisation processes were based. The same models are used to
simulate the behaviour of the controllers later proposed. The possibility to rely on
faithful simulations proves to be essential to avoid many trial and error operations
and, consequently, for a swift deployment of the control systems.

All models, independently from their underlying mathematical formulation, share
some commonalities. The �rst is the Input-Output scheme shown in Fig. 3.9, no-
tably:

� Inputs

� u_cmd - linear velocity command
� omega_cmd - angular velocity command

� Outputs

� q[X, Y, theta] - robot pose in the global reference frame
� dq[dX, dY, dtheta] - robot velocity vector in the global reference frame
� eta[dx, dtheta] - robot velocity vector in the local reference frame

Figure 3.9. Inputs and outputs of a Husky rover - Simulink model

Fig. 3.10 depicts the inside structure of the block shown in Fig. 3.9. The
physical models later introduced, only di�er for the Husky Plant block. Instead,
the common blocks are:

60

3.4 � Simulink Physical Models

� Saturation Blocks - one for each command, they limit the upper and lower
values of u_cmd and omega_cmd. For the Husky rover these values are:
u_cmd ∈ [−1,+1]m/s and omega_cmd ∈ [−2,+2] rad/s.

� Delay Blocks - one for each command, they simulate the delay introduced
by the internal processing units during the transmission and conversion of the
inputs. Their entity will be discussed in Sec. 3.5.

� Wheel Torque Controller - as introduced in Sec. 2.2.5, this block will
simulate the feedback control loop that converts the velocity inputs into wheel
torque commands and regulates them, too.

Figure 3.10. Commands �ow of a Husky rover - Simulink model

The wheel torque controller in Fig. 3.11 is comprised of two branches, both based
on the equations presented in Sec. 2.2.5. The top branch processes the reference
velocities that are the command signals after they passed through the saturation
and delay blocks. The lower branch converts the robot velocity vector in the local
reference frame into actual wheel speeds. The di�erence between the two branches
outputs an error value which is then fed to a pure proportional gain. Its output, in
turn, is saturated to simulate the mechanical limits of the wheel electric motors.

61

Experimental Set-up and Model Tuning

Figure 3.11. Wheel Torque Controller of a Husky rover - Simulink model

3.4.1 Nonlinear Model with Coulomb Friciton

The model in Fig. 3.12 corresponds to the block-diagram representation of Eq.
2.28. The structure is self-explanatory, as all the relevant matrices can be clearly
seen.

Figure 3.12. Husky Plant - Nonlinear model with Coulomb friciton - Simulink model

62

3.4 � Simulink Physical Models

3.4.2 Nonlinear Model with the Improved Friction Formula-

tion

In Fig. 3.13 it is possible to see the block-diagram of the nonlinear dynamic model
based on the improved friction formulation. The upper branch, in green, evaluates
the longitudinal dynamics of the vehicle, while the lower branch, in blue, computes
the lateral-directional dynamics of the rover related to its rotation θ around the
CoG.

Figure 3.13. Husky Plant - Nonlinear model with the improved friction
formulation - Simulink model

The orange block contains the improved friction model and has the same struc-
ture reported in Fig. 3.14. Its inputs are:

1. V elocity − StatePort : The velocity of the rover, in this case θ̇, computed by
the state port of the integrator between θ̈ and θ̇. Using the integrator standard
output, the simulation would incur into an algebraic loop, a computation error
that stops the program. Its sign change detector is used to set the value of θ̇
to zero.

2. V elocity : The standard output of the integrator described above.

3. F_act : The resultant of the active forces.

63

Experimental Set-up and Model Tuning

Figure 3.14. Block diagram of the improved dry friction model with a zero
crossing detection control scheme

3.4.3 LTI State-Space Model with the Hyperviscous Friction

Formulation

The block diagram in Fig. 3.15 represents the LTI state-space formulation expressed
in Sec. 2.3. It relies on the default State-Space block. All that lies after the
demultiplexer is needed to shift from the local reference frame to the global reference
frame.

Figure 3.15. Husky Plant - LTI State Space formulation - Simulink model

3.4.4 Sensors Noise Model

As presented in Sec. 3.1, the Clearpath Husky used for experimental tests relied on
�ve sensors - four wheel encoders and one IMU - whose data was interpreted and

64

3.4 � Simulink Physical Models

merged by an EKF. The EKF output, like any other sensor's, is a�ected by noise.
The analysis of the nature of the noise is a discipline by itself and is, therefore,
outside of the scope of this thesis. It is useful, however, to address its modelling,
as noise can severely impact the performance of a controller. Taking, for instance,
a PID controller, the derivative gain, if not tuned accounting for noise, can bring
the system to unstable behaviours when tested in a real scenario.

To understand the properties of the noise a�ecting the EKF of the Clearpath
Husky employed, its output was measured in di�erent scenarios and then replicated
via Matlab and Simulink. The conditions the robot was tested at are listed in
Tab. 3.3 and were used to determine the noise component a�ecting the quantities
contained in the q[X, Y, theta] and eta[dx, dtheta] vectors. The dq vector was not
considered as it is not used by the control system, and its modelling is therefore
unrequired.

Test Case N. cmd_u cmd_omega

1 0.25 0
2 0.50 0
3 0 0.25
4 0 0.50

Table 3.3. Test cases employed for the EKF sensor noise analysis

Each test case was processed in MATLAB as follows:

� The measurements are converted into a timeseries objects

� Each timeseries is �ltered with an highpass �lter (highpass command) to retain
only the noise component of the signal.

� The noise variance (var command) is evaluated.

The variances are then used to set up the Simulink random number blocks whose
output is summed to the original signals to replicate their noise component, as in
the example in Fig. 3.16.

Tab. 3.4 sums up the the variances obtained by applying, for each physical
measure, a hipass �lter with the following settings:

� Fpass - Passband frequency - 10 Hz

� Steepness - Transition band steepness - 0.85

� Stopband Attenuation - 60 dB

An example of the results achieved with the signal dx is presented in Fig. 3.17.

65

Experimental Set-up and Model Tuning

Figure 3.16. Sensor noise component added to the q vector within the
Simulink model of the SSMR

Paramter Variance

dx 5.0115e-05
dtheta 3.5298e-05
X 8.8786e-06
Y 7.9259e-12
theta 1.2941e-08

Table 3.4. Test cases employed for the EKF sensor noise analysis

Figure 3.17. EKF dx output reconstruction (continuous time) compared to the
real measured output (discrete time)

66

3.4 � Simulink Physical Models

3.4.5 External Disturbances

The external disturbances acting on the Husky rover during experimental tests
within a laboratory environment are minimal. Despite that, they were included
in the Simulink models to test the control systems better. The disturbances were
chosen so that they a�ected the angular accelerations of the rover. They were
simulated including a random number block, whose output was summed to the θ̈
acceleration (Fig. 3.18). The variance of the block was set to 25, a value determined
by trial and error.

Figure 3.18. External disturbance added to the angular acceleration of
the husky rover - Simulink

3.4.6 Models Discretisation

The mathematical models implemented in Simulink were discretised so that they
could simulate the real behaviour of the Husky rover. In order to do that, Zero-
Order Hold (ZOH) blocks were used. A ZOH holds its input for the sample period
speci�ed; in the case of the Husky, there were multiple signals which were trans-
mitted or received at di�erent frequencies, as shown in Tab. 3.5.

Signal Frequency [Hz] Sample Time [s]

RTS 120 0.008
EKF 50 0.020
Command Input 20 0.050

Table 3.5. Frequency and Sample Time for each signal interfacing
with the Husky rover

67

Experimental Set-up and Model Tuning

3.5 Di�erential Evolution for Unknown Parameters
Estimation

Section 1.5 introduces the topic of optimisation processes based on Di�erential Evo-
lution algorithms, a class of Evolutionary Algorithms, which in turn represent one
of the main branches of AI. The following subchapter presents how the jDE/best/2
with gradient descent self-adapting variant of such algorithms were used to deter-
mine the unknown parameters present in the mathematical formulations introduces
so far. The underlying idea behind this process is:

� A real Husky rover was controlled with a sequence of known commands. As
it was tested in the laboratory environment presented in Sec. 3.2, its exact
response was tracked and measured with the IR system.

� A DE algorithm was designed so that, by executing numerous Simulink simu-
lations, it could experiment with di�erent values of the unknown parameters
until the simulated behaviour would mimic the real one.

By doing so, and by testing the results on more than one sample trajectory, it was
possible to �nd the combination of unknown physical parameters which guarantees
the most faithful simulation model, given the mathematical premises it is based
upon. Certainly, the single parameters are not exact by themselves, but their
combination is. Furthermore, this type of optimisation, which aims at replicating
a real, measured, result, allows to include in the output parameters the e�ects
of other nearly exact or totally unaccounted physical quantities, if not of entire
dynamic e�ects.

3.5.1 Code Properties and Structure

The self-adapting DE algorithm employed, �rst proposed by [58], is known as jDE
or, more speci�cally, jDE/best/2 with gradient descent. It is used throughout this
text due to its good convergence performances [57], its improved robustness [66]
and due to the extensive work already conducted by the hosting University, the
Shanghai Jiao Tong University.

jDE codes, in general, follow a self-adaptation scheme in which the control pa-
rameters F and CR are encoded into the individual members of a population and
are adjusted by introducing two new parameters, τ1 and τ2. Initially, F and CR
values of each individual are known and identical. A random number rand is then
uniformly generated in the range [0,1]. If rand < τ1, the F value is reinitialised
to a new value in its prede�ned range of [0.1,1.0]; otherwise, it is kept unchanged.
A similar process is valid for CR, which is compared to the parameter τ2 and is,
eventually, reinitialised to the range [0,1]. This research in particular, employed a
variant of the classic jDE algortim, in which, if F or CR are not smaller than the

68

3.5 � Di�erential Evolution for Unknown Parameters Estimation

randomly generated number, they are evaluated using a gradient descent instead
of being kept unchanged. In mathematical terms, the jDE scheme with gradient
descent can be expressed as:

FiG+1
=

Fmin + Fmax · rand(2) if rand(1) ≤ τ1

FiG − FiG · slp · (ng − 1)/ngmax if rand(1) > τ1 and FiG+1
≥ Fmin

Fmin in any other case

CRiG+1
=

rand(3) if rand(4) ≤ τ2

CRiG − CRiG · slp · (ng − 1)/ngmax if rand(4) > τ2 and CRiG+1
≥ CRmin

CRmin in any other case

where slp is the constant slope gradient, ng is the generation currently evaluated,
and ngmax is the maximum number of generations the algorithm is limited to.

The notation best/2, on the other hand, refers to the mutation scheme presented
by [67]:

Vi,G = Xbest,G + F · (Xri1,G
−Xri2,G

) + F · (Xri3,G
−Xri4,G

)

where the indices ri1, r
i
2, r

i
3, r

i
4 are mutually exclusive integers randomly generated

within the range [1, NP]. That is to say that the mutation scheme creates a donor
vector starting from four randomly selected vectors from the current population.

The code was written in MATLAB and divided into a main �le and two sub-
functions to allow faster ricon�guration:

� main: intialise all the required parameters

� jDE_best_2_desc: executes all the mutation, crossover and selection pro-
cesses based on the parameters set in the main �le.

� eval_obj_fun: receives the parameter vector from the jDE/best/2 func-
tion, uses it to run a simulation in Simulink, evaluates the resulting objective
function and returns it to the jDE function for the selection process.

69

Experimental Set-up and Model Tuning

The main �le has the following structure:

1 Import the reference trajectory and the commands used to generate it;
2 Set the SSMR known properties, the initial conditions, the Simulink solver

parameters;
/* Initialise the jDE algorithm */

3 Set the unknown parameters as global variables and declare their search
bounds;

4 Set the objective function weigths;
5 Set the population number parameter NP ;
6 Set the maximum number of generations n_gen;
7 Set the intial scale factor F ;
8 Set the initial cross-over rate CR;
9 Set the obj fun relative error threshold for optimisation stop df ;
/* Run the optimisation */

10 Call the jDE_best_2_desc function to run the optimisation process;
11 Save and print the optimisation results;

Algorithm 1: Main File - Data Initialisation and Results Output

The MATLAB function eval_obj_fun, which receives the simulation parameters
from the jDE optimiser, runs Simulink and computes the objective function, has
the following structure:

1 Receive the parameter and trial vectors from the jDE_best_2_desc
function;

2 Run the Simulink simulation using the new input parameters;
3 Parse the results;
4 for each point of the reference trajectory do
5 for each point of the simulated trajectory do
6 Evaluate the distance between each point dist_traj(i);
7 end
8 end
9 Evaluate the RMS of dist_traj(i);

10 Evaluate di maximum of dist_traj(i) - i.e. Housdor� distance ;
11 Evaluate the bending energy ; /* if needed */

12 Evaluate the objective function;
13 Return the objective function result;
Algorithm 2: eval_obj_fun - Simulink simulations and objective function
evaluation

70

3.5 � Di�erential Evolution for Unknown Parameters Estimation

On the other hand, the jDE function called at line 10 of the main is:

1 Receive the input parameters from the main;
2 Initialise the jDE parameters: τ1, τ2, Fbound, CRbound, slp, nr, nX;
3 Initialize the �rst parameter vector Xinit;
4 for each parameter to be optimised do
5 Xinit(i, :) is a randomly selected value within the search boundaries;
6 end
/* Run the optimisation process */

7 while number of generations ≤ n_gen AND relative di�erence between the
obj function of two subsequent generations ≤ df do

8 for each element of the population do
9 Find four random indexes within NP ;

10 Evaluate randF : two random numbers in the range Fbound;
11 if randF (1) ≤ τ1 then
12 Evaluate F using randF (2) else
13 Evaluate F using the slope descent with gradient slp;
14 end
15 end
16 De�ne the mutant vector using F and the four selected parameter

vectors;
17 end
18 for each element of the population do
19 Evaluate randCR : two random numbers in the range CRbound;
20 if randCR(1) ≤ τ2 then
21 Evaluate CR using randCR(2) else
22 Evaluate CR using the slope descent with gradient slp;
23 end
24 end
25 Build a trial vector;
26 end
27 for each element of the population do
28 Call the external function eval_obj_fun to test both the sample

vector and the trial vector within Simulink ;
29 if the objective function improves using the trial vector then
30 Keep the trial vector;
31 Evaluate the relative improvement of objective function;
32 end
33 end
34 end

Algorithm 3: jDE_best_2_desc - Optimisation process with gradient de-
scent

71

Experimental Set-up and Model Tuning

3.5.2 Sample Trajectories

Four reference trajectories were tested in the BeiDou Research Institute robotics
laboratory by creating a simple ROS node in Python that executed a prede�ned
series of commands. In particular, as the greatest interest regards the dynamic
e�ects which arise during steering, it was decided to command constant linear
velocity and, when the rover had reached its target speed, angular velocity, too. In
particular, the angular velocity command followed a sinewave, of which amplitude
and frequency were changed to obtain di�erent sample trajectories. At higher
frequencies or amplitudes, in fact, nonlinear e�ects become more evident, and the
vehicle response changes signi�cantly. The parameters of the four trajectories are
listed in Tab. 3.6 and a graphical example of the commands provided for trajectory
number 2 is present in Fig. 3.19.

The rover position was measured by the IR tracking system and its data, together
with the rover internal measurements, were registered using the rosbag functionality
provided by ROS. The rosbag was then processed in MATLAB: it was cropped
and smoothed, to remove some sensors' noise. The smoothing process relied on
the native smoothdata function, using a Gaussian-weighted moving average with a
SmoothingFactor of 0.01. The SmoothingFactor is a parameter that determines the
size of the window considered by the algorithm at each data point: a greater value
produces a greater smoothing. In the cases here presented, a very low number was
adopted to remove only the underlying sensor noise. It was concluded that more
intense smoothing would have cut through some important parameters variations.
An example of the low impact smoothing applied is visible in Fig. 3.20.

Trajectory u_cmd [m/s] omega_cmd [rad/s] f [Hz] A [m]

1 0.5 A · sin(ωt) 0.50 1.00
2 0.5 A · sin(ωt) 0.25 0.25
3 0.5 A · sin(ωt) 0.25 0.50
4 0.5 A · sin(ωt) 0.25 0.75

Table 3.6. Reference trajectories parameters

72

3.5 � Di�erential Evolution for Unknown Parameters Estimation

Figure 3.19. Sample trajectory n.2 commands and odometry measurements

Figure 3.20. Example of the results achived by smoothing the RTS data

73

Experimental Set-up and Model Tuning

3.5.3 Objective Function

For the optimisation of the physical models of the Husky rover, it was chosen to
employ the following quantities:

� drms - The RMS of the distances between the sample trajectory and the sim-
ulated trajectory. The more similar the two trajectories - i.e. the greater the
accuracy of the mathematical model - the closer drms should be to zero.

� dhaus - The Hausdor� distance between the sample trajectory and the simu-
lated trajectory. As in the case of the RMS, it should tend to zero.

� dratio - The ratio between the simulated trajectory and the sample trajectory.
In a perfect simulation, it is equal to 1.

They were combined to form the following function:

f = Krms · drms +Khaus · dhaus +Kdratio · dratio (3.1)

A rigorous description of the single elements of the function is provided in Sec. 1.6.

3.5.4 Optimisation of the Nonlinear Model with Coulomb

Friction

In the nonlinear model with the Coulomb friction formulation the following param-
eters had to be determined:

� KPτ - Wheel torque controllers proportional gain

� ux - Rolling resistance coe�cient

� µc - Coulomb friction coe�ent between the wheels and the ground along y.

The linear and angular velocity command delays - delayu and delayω respectively
- were manually determined by observing the response curves of the rover. The
maximum torque generated by the electric motors, instead, was found using the
Husky speci�cations published by Clearpath Robotics Inc.

The con�guration parameters in Tab.3.7 were used to run the optimisation cy-
cles. The objective function weigths were adjusted until they guaranteed the best
results, as well as the parameters search boundaries which were gradually reduced
to ensure faster convergence. By instructing the DE algorithm to replicate the
fourth trajectory described in Tab. 3.6, as it represented the most common case of
application of the rover, the results in Tab. 3.8 were achieved after 1500 iterations,
that is after 30 generations. The parameters were then tested on the other three
sample trajectories - 1,2 and 3 - giving the results in Tab. 3.9 and depicted in Fig.
3.21, 3.22, 3.23 and 3.24.

Comparing the results, it appears that:

74

3.5 � Di�erential Evolution for Unknown Parameters Estimation

� The reference trajectory - trajectory number 4 - is simulated with a high degree
of realism. Not only can be seen in Fig. 3.24 but also in its objective function
coe�cients. As a matter of fact, drms and dhaus have an order of magnitude of
10−2, while dratio shows that the simulation length is only 3.12% longer that
the real trajectory. It is deemed to be a satisfactory result.

� Trajectory number 1 is, by far, the one that most diverges from reality. The
main reasons are two: �rst, it is the case with the higher frequency and am-
plitude of the angular velocity command, which means it is the case with the
greatest nonlinearities; second, it was concluded that the motor engines out-
put slightly di�erent torque, leading to some unpredicted behaviours, almost
invisible in the other, more linear trajectories. It will be more evident while
analysing the trajectory controllers.

Parameter Description Value

Finit F initial value 0.75
Fbound F adaptation boundaries [0.10,0.90]
CRinit CR initial value 0.80
CRbound CR adaptation boundaries [0.00,1.00]
τ1 F adaptation parameter 0.10
τ2 CR adaptation parameter 0.10
nr Number of vectors used for mutation 4
slp Gradient descent slope 0.20
df Stop condition - relative improvement of the obj f. 0.001
NP Population size 50
ngen Maximum number of generations 300
Krms Objective function weight for drms 20
Khaus Objective function weight for dhaus 8
Kdratio Objective function weight for dratio 5
steptime Simulink �xed step time 0.001 [s]

Table 3.7. Nonlinear model optimisation - jDE con�guration parameters

75

Experimental Set-up and Model Tuning

Parameter Description Search Boundaries Result

delayu Linear vel. cmd. delay - 0.22 [s]
delayω Angular vel. cmd. delay - 0.22 [s]
τmaxwheel Max and min wheel torque - ± 7 [Nm]
ux Rolling resistance coe�. [0.00, 0.10] 0.0727 [m]
µc Coulomb friction coe�. - y [0.10, 0.20] 0.0254
KPτ Wheel torque proportional gain [20.00,100.00] 56.75

Table 3.8. Nonlinear model optimisation - Final values of the unknown parameters

Trajectory drms [m] dhaus [m] dratio

1 0.1416 0.3726 0.9666
2 0.0217 0.1039 1.0408
3 0.0252 0.0557 0.9998
4* 0.0146 0.0250 1.0312
*reference trajectory used with jDE

Table 3.9. Nonlinear model optimisation - Objective function terms obtained by
simulating the sample trajectories using the parameters estimated setting trajec-
tory n.4 as reference case during the optimisation process.

76

3.5 � Di�erential Evolution for Unknown Parameters Estimation

Figure 3.21. Trajectory 01 - Real
vs Simulated - Nonlinear model with
Coulomb friction optimisation run by
setting traj 04 as reference.

Figure 3.22. Trajectory 02 - Real
vs Simulated - Nonlinear model with
Coulomb friction optimisation run by
setting traj 04 as reference.

Figure 3.23. Trajectory 03 - Real
vs Simulated - Nonlinear model with
Coulomb friction optimisation run by
setting traj 04 as reference.

Figure 3.24. Trajectory 04 - Real
vs Simulated - Nonlinear model with
Coulomb friction optimisation run by
setting traj 04 as reference.

77

Experimental Set-up and Model Tuning

3.5.5 Optimisation of the Nonlinear Model with the Im-

proved Friction Formulation

In the nonlinear model with the improved friction formulation the following param-
eters had to be determined:

� KPτ - Wheel torque controllers proportional gain

� ux - Rolling resistance coe�cient

� µs - Static friction coe�ent between the wheels and the ground along y.

� µd - Dinamic friction coe�ent between the wheels and the ground along y.

The commands delays, as well as the maximum wheel torque, were kept identical
to the previous case. The con�guration parameters in Tab.3.10 were used to run
the optimisation cycles. The objective function weights were adjusted until they
guaranteed the best results, as well as the parameters search boundaries which were
gradually reduced to ensure faster convergence. By instructing the DE algorithm
to replicate the fourth trajectory described in Tab. 3.6, as it represented the most
common case of application of the rover, the results in Tab. 3.11 were achieved
after 2500 iterations, that is after 50 generations. The parameters were then tested
on the other three sample trajectories - 1,2 and 3 - giving the results in Tab. 3.12
and depicted in Fig. 3.25, 3.26, 3.27 and 3.28.

The considerations made in the previous case are still valid. It is worth noting
though that the search boundaries of µs and µd had to be chosen so that they didn't
overlap, as it avoided numerical problems during the simulations.

78

3.5 � Di�erential Evolution for Unknown Parameters Estimation

Parameter Description Value

Finit F initial value 0.75
Fbound F adaptation boundaries [0.10,0.90]
CRinit CR initial value 0.80
CRbound CR adaptation boundaries [0.00,1.00]
τ1 F adaptation parameter 0.10
τ2 CR adaptation parameter 0.10
nr Number of vectors used for mutation 4
slp Gradient descent slope 0.20
df Stop condition - relative improvement of the obj f. 0.001
NP Population size 50
ngen Maximum number of generations 300
Krms Objective function weight for drms 20
Khaus Objective function weight for dhaus 8
Kdratio Objective function weight for dratio 5
steptime Simulink �xed step time 0.001 [s]

Table 3.10. Optimisation of the nonlinear model with the improved friciton for-
mulation - jDE con�guration parameters

Parameter Description Search Boundaries Result

delayu Linear vel. cmd. delay - 0.22 [s]
delayω Angular vel. cmd. delay - 0.22 [s]
τmaxwheel Max and min wheel torque - ± 7 [Nm]
ux Rolling resistance coe�. [0.05, 0.20] 0.1282 [m]
µs Static friction coe�. - y [0.08, 0.15] 0.0972
µd Dynamic friction coe�. - y [0.00, 0.07] 0.0409
KPτ Wheel torque proportional gain [60.00,120.00] 118.04

Table 3.11. Optimisation of the nonlinear model with the improved friciton for-
mulation - Final values of the unknown parameters

79

Experimental Set-up and Model Tuning

Trajectory drms [m] dhaus [m] dratio

1 0.1420 0.3720 0.9668
2 0.0222 0.1049 1.0411
3 0.0252 0.0561 1.0000
4* 0.0145 0.0255 1.0403
*reference trajectory used with jDE

Table 3.12. Optimisation of the nonlinear model with the improved friciton
formulation - Objective function terms obtained by simulating the sample tra-
jectories using the parameters estimated setting trajectory n.4 as reference case
during the optimisation process.

Figure 3.25. Trajectory 01 - Real vs Simu-
lated - Optimisation of the nonlinear model
with the improved friction fromulation run
by setting traj 04 as reference.

Figure 3.26. Trajectory 02 - Real vs Simu-
lated - Optimisation of the nonlinear model
with the improved friction fromulation run
by setting traj 04 as reference.

Figure 3.27. Trajectory 03 - Real vs Simu-
lated - Optimisation of the nonlinear model
with the improved friction fromulation run
by setting traj 04 as reference.

Figure 3.28. Trajectory 04 - Real vs Simu-
lated - Optimisation of the nonlinear model
with the improved friction fromulation run
by setting traj 04 as reference.

80

3.5 � Di�erential Evolution for Unknown Parameters Estimation

3.5.6 Optimisation of the LTI State-Space Model with the

Hyperviscous Friction Formulation

In the LTI state space formulation with the hyperviscous friction formulation the
following parameters had to be determined:

� KPτ - Wheel torque controllers proportional gain

� Ku - Longitudinal motion viscous coe�cient

� Ky - Lateral motion viscous coe�cient

The commands delays, as well as the maximum wheel torque, were kept identical
to the �rst case presented. The con�guration parameters in Tab.3.13 were used to
run the optimisation cycles. The objective function weights were adjusted until they
guaranteed the best results, as well as the parameters search boundaries which were
gradually reduced to ensure faster convergence. By instructing the DE algorithm
to replicate the fourth trajectory described in Tab. 3.6, as it represented the most
common case of application of the rover, the results in Tab. 3.14 were achieved after
5750 iterations, that is after 115 generations. The parameters were then tested on
the other three sample trajectories - 1,2 and 3 - giving the results in Tab. 3.15 and
depicted in Fig. 3.29, 3.30, 3.31 and 3.32.

The considerations made in the �rst case presented are still valid.

Parameter Description Value

Finit F initial value 0.75
Fbound F adaptation boundaries [0.10,0.90]
CRinit CR initial value 0.80
CRbound CR adaptation boundaries [0.00,1.00]
τ1 F adaptation parameter 0.10
τ2 CR adaptation parameter 0.10
nr Number of vectors used for mutation 4
slp Gradient descent slope 0.20
df Stop condition - relative improvement of the obj f. 0.001
NP Population size 50
ngen Maximum number of generations 300
Krms Objective function weight for drms 20
Khaus Objective function weight for dhaus 8
Kdratio Objective function weight for dratio 5
steptime Simulink �xed step time 0.001 [s]

Table 3.13. Optimisation of the state-space model with the hyperviscous friction
model - jDE con�guration parameters

81

Experimental Set-up and Model Tuning

Parameter Description Search Boundaries Result

delayu Linear vel. cmd. delay - 0.22 [s]
delayω Angular vel. cmd. delay - 0.22 [s]
τmaxwheel Max and min wheel torque - ± 7 [Nm]
Ku Longitudinal motion viscous coe�. [0.01, 0.03] 0.0277
Ky Lateral motion viscous coe�. [0.00, 0.03] 0.0298
KPτ Wheel torque proportional gain [80.00,300.00] 229.58

Table 3.14. Optimisation of the state-space model with the hyperviscous friction
model - Final values of the unknown parameters

Trajectory drms [m] dhaus [m] dratio

1 0.1427 0.3793 0.9641
2 0.0154 0.0677 1.0382
3 0.0176 0.0451 0.9972
4* 0.0150 0.0269 1.0285
*reference trajectory used with jDE

Table 3.15. Optimisation of the state-space model with the hyperviscous fric-
tion model - Objective function terms obtained by simulating the sample tra-
jectories using the parameters estimated setting trajectory n.4 as reference case
during the optimisation process.

82

3.5 � Di�erential Evolution for Unknown Parameters Estimation

Figure 3.29. Trajectory 01 - Real vs Sim-
ulated - Optimisation of the state-space
model with the hyperviscous friction model
run by setting traj 04 as reference.

Figure 3.30. Trajectory 02 - Real vs Sim-
ulated - Optimisation of the state-space
model with the hyperviscous friction model
run by setting traj 04 as reference.

Figure 3.31. Trajectory 03 - Real vs Sim-
ulated - Optimisation of the state-space
model with the hyperviscous friction model
run by setting traj 04 as reference.

Figure 3.32. Trajectory 04 - Real vs Sim-
ulated - Optimisation of the state-space
model with the hyperviscous friction model
run by setting traj 04 as reference.

83

Experimental Set-up and Model Tuning

3.6 Mathematical Models Comparison

Comparing the results obtained with the three mathematical models, it is clear that
they are very similar to each other. None of the models can correctly represent the
�rst trajectory but, as already explained, that is due to unaccounted nonlinearities
and wheel motor imperfections. As expected, despite having unknown parameters
in common - e.g. the wheel torque proportional gain - their optimised value changes
from case to case, as the DE algorithm looks for the best suitable combination of
parameters, instead of their isolated exact values.

The linear model appears to be a �tting simpli�cation of the nonlinear counter-
parts. It was therefore used to assess the initial response of the proposed controllers
and to design the LQR controller in particular, whose mathematical description re-
quires the system to be expressed in state-space. The nonlinear models, on the
other hand, are required for accurate simulations. Comparing their outputs in
terms of XY coordinates is not enough to asses which one is better: the most con-
siderable di�erences can be appreciated by looking at the acceleration curves and
the simulation time. Referring to Fig. 3.33, it possible to notice that the dθ/dt
acceleration curves signi�cantly di�er from one model to the other: the Coulomb
friction model exhibits numerical artefacts, while the improved friction model is
much more faithful and includes the stiction phenomenon, too. Regarding the sim-
ulation time, since the Coulomb friction model is signi�cantly more complex, it
requires more time to be executed. Taking trajectory number four as reference, the
model took on average it takes 2,75 seconds to simulate, while its counterpart, with
all its simplifying assumptions, only took about 0,70 seconds. A reduction of 74%
is of great importance when the simulation has to be repeated numerous times, as
in the case of the trajectory tracking controllers optimisation via jDE.

Given all the considerations above, only the LTI and the nonlinear model with
the improved friction formulation were used to design and test the controllers.

Figure 3.33. dθ/dt acceleration curves - Left: Coulomb friction with numerical
instabilities; Right: improved friction formulation

84

3.7 � Gazebo Simulator

3.7 Gazebo Simulator

Gazebo simulator, frequently used by the robotics community, was initially thought
to be the best simulation environment to test the trajectory controllers with. In fact,
it relies on popular physics engines, natively supports the Husky model developed
by Clearpath Robotics, and can interface with Simulink via ROS. After thorough
analyses and repeated attempts, however, it was concluded that its outputs were
far o� from reality, an issue not easily mended. This section o�ers a brief overview
of the tests and consequent unsatisfactory results, which contributed to the �nal
decision to replicate the model within Simulink and abandon Gazebo fully. The
considerations here presented are only valid for Gazebo 9 and ROS Melodic.

Gazebo 9 supports four physics engine: ODE, Bullet, Simbody and DART.
However, only one of them is compatible with ROS: ODE, which, not so coinci-
dentally, is the default engine and also the most outdated. The creator's website
(www.ode.org) de�nes ODE as �an open-source, high-performance library for simu-
lating rigid body dynamics� with applications ranging from games to 3D animation
tools and industrial simulators. At �rst, the only con�guration deemed necessary
was related to the ground-wheel friction coe�cients, that had to replicate the test-
ing facility conditions. Initial tests highlighted deeper problems, only solvable by
thoroughly studying the user manual. This resulted in the selection of the param-
eters whose tuning would have impacted the robot dynamics the most:

� iters - The number of iterations for each simulation step. A higher number
produces greater accuracy at a performance cost.

� max_step_size - Maximum time step size at which every system in the sim-
ulation can interact with the states of the world.

� contact_surface_layer - The depth of the surface layer around all geometry
objects. Contacts are allowed to sink into the surface layer up to the given
depth before coming to rest.

� contact_max_correcting_velocity - The maximum correcting velocities al-
lowed when resolving contacts.

� max_contacts- Maximum number of contacts allowed between two entities.
In this case, wheels and ground.

� friction_model - The type of friction model used by ODE; it can be a pyra-
mid, box or cone model.

� cfm - Constraint force mixing parameter; used to smooth the contact between
two surfaces.

85

Experimental Set-up and Model Tuning

� Friction Coe�cients - namely mu and mu_2. The �rst determines the friction
force along the �rst direction of the pyramid model, determined by the pa-
rameter fdir1, while the second along the direction perpendicular to fdir1.

As the detailed explanation of each parameter would be outside the scope of
this thesis, the reader is advised to refer to the online documentation for further
information.

The parameters were tested by means of MATLAB, which allowed to e�ortlessly
recon�gure Gazebo, to output a prede�ned set of commands and to post-process
the data recorder by ROS. The code was structured, as shown below:

1 Run a Linux script that opens Gazebo and executes all the launch �le
required;

2 Run a Linux script that resets the Husky pose and velocity;
3 Get from the user the commands to test (cmd_u and cmd_omega);
4 for i = 1:number of test cases do
5 Execute the script that loads the parameters of the i-th case;
6 Create a ROS publisher;
7 Create a ROS Service Client;
8 Execute the script that starts a rosbag;
9 for j = 1:(cmd duration × cmd frequency) do
10 Create a ROS message with the required cmd_u;
11 Create a ROS message with the required cmd_omega;
12 Publish the commands via the ROS publisher;
13 Wait for the duration of the commands (1/cmd frequency) ;
14 end
15 Create a ROS message with cmd_u = cmd_omega = 0;
16 Stop the rover by publishing the previous cmd;
17 Call the ROS Service Client that calls the

/gazebo/get_physics_properties service;
18 Parse its output to read the Gazebo con�guration parameters;
19 Stop and save the rosbag;
20 end
21 Shutdown ROS;
22 Close Gazebo;

Algorithm 4: MATLAB algorithm to test Gazebo parameters
The scripts used to switch between physics pro�le relied on the command:

gz physics --profile [preset_name]

The �eld preset_name is related to the preset coded into the world �le launched
by husky_empty_world.launch or any other launch �le within the husky_gazebo
package. The XML world �le, in turn, was structured as follows:

86

http://ode.org/wiki/index.php?title=Manual

3.7 � Gazebo Simulator

<?xml version="1.0" ?>
<sdf version='1.6'>
<world name='default'>
<model name='ground_plane'>
<link name='link'>
<collision name='collision'>
<surface>
<friction>
<ode>
<mu>0.250000</mu>
<mu2>0.150000</mu2>

</ode>
</friction>

</surface>
</collision>

</model>

<physics name='preset1' default='1' type='ode'>
<max_step_size>...</max_step_size>
<real_time_update_rate>...</real_time_update_rate>
<max_contacts>...</max_contacts>
<ode>
<solver>
<type>quick</type>
<iters>...</iters>
<sor>...</sor>
<friction_model>...</friction_model>

</solver>
<constraints>
<contact_surface_layer>...</contact_surface_layer>
<contact_max_correcting_vel>...</contact_max_correcting_vel>
<cfm>...</cfm>
<erp>...</erp>

</constraints>
</ode>

</physics>

<physics name='preset2' default='0' type='ode'>...</physics>
<!−−other physics presets−−>

</world>
</sdf>

Tab. 3.16 shows the combination of parameters that better represented the
experimental observations.

Despite the attempts, it was not possible to achieve satisfactory results, as the

87

Experimental Set-up and Model Tuning

Parameter Value

iters 400
max_step_size 0.001 (default)
contact_surface_layer 0.001 (default)
contact_max_correcting_velocity 100
max_contacts 20 (default)
friction_model cone
cfm 0 (default)
mu 0.25
mu2 0.15

Table 3.16. ODE physics engine main parameters - Gazibo Simulator

examples provided in Fig. 3.34 to 3.35. They show the measured response of the
rover to the same inputs used to test trajectory number 3 (Tab. 3.6), which should
produce a sinewave in the XY plane, preceded by a straight path.

The tests were conducted using the parameters presented in Tab. 3.16 and
the three runs di�er for the friction model employed: pyramid (default), box and
cone model. The time axes shouldn't be taken as reference as they present some
problems which couldn't be addressed at the time of the experiments.

Analysing the responses, it is evident that:

� Despite being approximations of the same physical description, the three fric-
tion model give very di�erent results.

� The box friction model is, by far, the worst. The other two models are far o�
from reality, too, and produce very unreliable results.

� Even though the weel speeds are identical in modulus and opposite in sign, at
some point during run 1 and 2, the simulated robot drives in a straight line. A
behaviour which is not physically possible unless some external disturbances
had arisen. This is clearly not the case of the simulation here reported.

� The angular velocity �uctuations with respect to the reference signal (Fig.
3.37) follow an unusual pattern and are accompanied by sudden linear accel-
erations. It is possible to see that in this cases the linear velocity is greater
than the reference speed of about 40-50%.

These phenomena are far from the real response witnessed and measured in the
laboratory environment. Not being able to solve such type of issues, it was con-
cluded that replicating the mathematical model of the vehicle within the MATLAB-
Simulink suite would have been best.

88

3.7 � Gazebo Simulator

Figure 3.34. Trajectory in the XY frame - Run1: pyramid model; Run2: box
model; Run3: cone model - Gazebo Simulator ODE physics engine

Figure 3.35. Wheels Speed - Run1: pyramid model; Run2: box model; Run3:
cone model - Gazebo Simulator ODE physics engine

89

Experimental Set-up and Model Tuning

Figure 3.36. Linear Velocity - Run1: pyramid model; Run2: box model; Run3:
cone model - Gazebo Simulator ODE physics engine

Figure 3.37. Angular Velocity - Run1: pyramid model; Run2: box model; Run3:
cone model - Gazebo Simulator ODE physics engine

90

Chapter 4

Trajectory Tracking

Controllers

This chapter presents the achievements related to the design and testing of two
trajectory tracking controllers: one based on PID components and the other on a
single LQR. The �rst sections introduce the topic of trajectory tracking, comparing
it to its closest relative, path-following, and showing how a trajectory can be fed
to a control system. A brief overview of the control system integration with ROS
is then presented. The �nal section is dedicated to the PID and LQR controller,
respectively, describing their mathematical properties, the tuning process based on
DE, the Simulink results and, �nally, the experimental measurements. It is worth
remembering that the experimental results here presented are incomplete, for the
same reasons highlighted at the beginning of this text: this research was abruptly
stopped by an outbreak of COVID-19 in mainland China at the end of January
2020. Therefore, the last and most promising computer simulations related to the
LQR couldn't be tested on the real rover.

4.1 Introduction to Trajectory Tracking

As the terms "trajectory" and "path" are often misused, it is deemed necessary to
cast some light on the topic. A path is a series of subsequent points in space, also
known as waypoints. A trajectory, on the other hand, is identical to a path but
for the presence of time in its de�nition: on a plane, every point of a trajectory
is determined by three coordinates, two spatial (x, y) and one temporal (t). Path-
following is therefore employed in scenarios where time is irrelevant to the mission,
and precise spacial movements are favoured. Generally, a path-following control
system works with one waypoint at a time and aims at the subsequent waypoint
when the vehicle is at a certain range from the target. Similarly, in the case of a
trajectory, the waypoints are fed singularly, but the switch from one to the other

91

Trajectory Tracking Controllers

doesn't occur when certain proximity is achieved, but when the mission time is
greater than the target temporal coordinate.

4.1.1 Waypoint Selector Architecture

The waypoint selection scheme just introduced was �rst developed in MATLAB
- see Algorithm 5 - and then implemented in Simulink. Instead of solely feeding
the known trajectory waypoints imported from a xlsx or CSV �le, it was decided
to linearly interpolate the X, Y and t coordinates each time the control systems
operates. Doing so, the control system acquires a di�erent target for each control
cycle, thus preventing the position error from oscillating excessively. This solution
proved to smooth the overall behaviour of the controllers.

The proposed algorithm can be easily used in ROS by converting it in C++ or
Python. However, having the possibility of using Simulink, the latter was used to
implement the interpolation, selection and stopping functionalities. The �rst two
rely on the native Table Lookup blocks; the latter on a custom function block which
contains lines 13 to 16 of the pseudo-code presented. Fig. 4.1 shows the Simulink
block diagram as described.

Figure 4.1. Simulink waypoint selector based on the the Table Lookup blocks

92

4.1 � Introduction to Trajectory Tracking

1 Import a series of waypoints from an xlsx or CSV �le;
/* Waypoints parsing */

2 if the waypoints don't include a time coordinate then
3 Ask the user a reference velocity;
4 for each waypoint do
5 Evaluate the time coordinate so that the average constant velocity

required to move from the previous waypoint to the one considered
is equal to the reference velocity input by the user;

6 end
7 end
8 for each waypoint do
9 Evaluate the angle φ of the segment that connects the current waypoint

to the next one;
10 end

/* Select the waypoint to feed to the control system */

11 while stopCondition != 1 do
12 t = mission time;
13 if t == tlastWaypoint then
14 Select the last waypoint as target;
15 stopCondition = 1;
16 end
17 else
18 Find two waypoints WPn(Xn, Yn, tn) and WPn+1(Xn+1, Yn+1, tn+1)

so that tn ≤ t < tn+1;
19 Linearly interpolate the X,Y and t coordinate between the two

selected waypoints;
20 end
21 Feed the result to the control system;
22 end

Algorithm 5: Waypoint selection algorithm

93

Trajectory Tracking Controllers

4.1.2 Position Error Evaluation Scheme

Downstream of the waypoint selector lies another block shared by the two control
system: a position error evaluation block. Re�erring to Fig. 4.2, �ve geometric
quantities are introduced:

� ρ - The distance vector between the vehicle CoG to the next waypoint WPn.
In particular

|ρ| =
√

∆X2 + ∆Y 2

where ∆X is the distance between the vehicle and WPn along the X axis and
∆Y is the equivalent along the Y axis.

� β - The angle between the ρ vector and the local x axis.

� α - The angle between the x axis and the segment connecting the target
waypoint WPn to the one after it WPn+1.

� φ - The angle between the global X axis and the segment connecting the target
waypoint WPn to the one after it WPn+1.

� ∆y - The distance between the vehicle CoG and the next waypointWPn along
the y local axis.

Figure 4.2. Parameters measured for each waypoint WPn in relation to its
subsequent waypoint WPn+1

The following relationships are valid:

94

4.1 � Introduction to Trajectory Tracking

β = tan−1

(
∆Y

∆X

)
− θ

α = θ − φ
∆y = ρsinβ

(4.1)

These de�nitions are now useful to de�ne the three errors the control systems
work with:

eρ = ρ

ey = ∆y

eα = α

(4.2)

where ey is used to orient the vehicle so that it reaches the next target in the shortest
time possible, while eα is used to align the vehicle to the trajectory. By only using
the latter, the robot risks to travel parallel to the trajectory without never reaching
it, while just by only using ey the control becomes very unresponsive when the
distance to WPn is minimal. It is worth mentioning that it was decided to use
∆y instead of an angular parameter because the latter, on the contrary, oscillates
excessively as ρ lessen in magnitude.

Fig. 4.3 presents the Simulink implementation of the position error scheme,
whose outputs are used di�erently depending on the type of controller employed.
The scheme has two peculiarities:

� The yawToTarget block contains a custom function that evaluates β (Eq. 4.1)
relying on the four-quadrant inverse tangent atan2 function that avoids in-
curring in a discontinuity when evaluating the angle. In particular, while the
atan function evaluates the angle in the range [−π

2
,+π

2
], atan2 does it in the

range [−π,+π], as shown in Fig. 4.4.

� eα is controlled by a switch which zeroes its output whenever the robot is fur-
ther that 0.4 meters from its next waypoint. This solution was implemented to
help the robot approach the trajectory in the shortest time possible whenever
it is disaligned.

95

Trajectory Tracking Controllers

Figure 4.3. Simulink position error estimation scheme

Figure 4.4. Matlab atan2 function - Image from the MathWorks o�cial website
(https://www.mathworks.com/)

4.1.3 Sample Trajectories

The control systems later introduced were tested on four types of trajectories:

1. Straight line

2. Circumference

3. Sinusoidal trajectory

4. Generic trajectory (Fig. 4.5)

The generic trajectory, provided by the research team at the Shanghai Jiao Tong
University, was empirically obtained by measuring the movement of a real Husky

96

4.2 � Controllers Integration with ROS

rover in the same laboratory environment employed for this research. Its curves
are therefore known to be practicable by the analysed rover.

Figure 4.5. Generic trajectory used to test the trajectory tracking controllers

4.2 Controllers Integration with ROS

Whenever the control systems have to be tested on the real Husky rover, the math-
ematical model of the SSMR has to be replaced by the real vehicle. Therefore, the
control inputs have to be commanded to the rover, and its sensors feedback has to
be received and parsed. As introduced in Sec. 3.3, it is all possible thanks to ROS
and the Matlab-Simulink-ROS integration via the MathWorks ROS Toolbox. The
interface is based on the simplest ROS components: publishers and subscribers. In
particular, the following were implemented:

� Command velocity publisher: It generates a message of type geome-
try_msgs/Twist sampled at 20 Hz. The message is then compiled via the
Bus Assignment block which assigns the commands u_cmd and omega_cmd
to the arguments Linear.X and Angular.Z . The message is then published on
the /cmd_vel topic (Fig. 4.6).

� Odometry subscriber: It received the output of the EKF via a message
of type nav_msgs/Odometry sampled at 120Hz. The subscriber picks the
message from the /odometry_�ltered topic and parses the results via a bus se-
lector (4.7). The angular information, provided in quaternions, is transformed
to Euler angles via the quat2eul function.

97

Trajectory Tracking Controllers

Figure 4.6. ROS Commands Publisher - Simulink

Figure 4.7. ROS Odometry Subscriber and Trasnformation Block - Simulink

� RTF subscriber: It receives the IR measurements in the global reference
frame. Similarly to the odometry subscriber, it receives a geometry_msgs/PoseStamped
message sampled at 120Hz. The message is picked from the /vrpn_client_node/husky/pose
topic. Its angular information has to be converted from quaternions to Euler
angles in the same way of the EKF output.

The correct functioning of the interface requires three expedients:

� Real time implementation: a Simulation Pace Block had to be added in
order to run Simulink in real-time and output the commands at the correct
frequency. The result was nearly exact, as the pace error over a 30 seconds
test was in the order of 10−2 seconds.

� RTS and EKF initialisation: the RTS and EKF reference frames had to be
aligned at the beginning of every test in order to compare the results easily.
The RTS initial condition was subtracted to each subsequent reading, while
the EKF was manually set to zero using the set_pose service available in ROS.

� RTS angular continuity: the RTS has a 2π discontinuity between −π and
π. The discontinuity was removed by means of an algorithm developed within
MATLAB.

98

4.3 � PID Control

4.3 PID Control

4.3.1 Introduction to PID Controllers

The PID control technique was �rst developed in the 20th century for automatic
ship steering. The �rst theoretical formulation by [68] was published in 1922 and
was successfully applied to U.S. Navy ships. The early mechanical implementation
soon led to electronic analogue controllers that determined the success of PIDs
in industrial applications. Their simplicity and straightforward implementation
contributed to their popularity in many di�erent �elds, including aviation and
robotics.

The underlying principle of PIDs is the regulation of a feedback signal, in par-
ticular of the error between the measured and the desired state. The PID gains
adjust the control action uc(t) according to the properties of the error signal e(t).
The most basic form of PID used a simple proportional gain KP which determines
the control action as

uc(t) = KP e(t)

The adoption of such a simple control is limited by the possibility of incurring
in steady-state error in response to a constant reference and a constant disturbance
the controller is, by de�nition, unable to reject. Furthermore, an excessively large
value of KP might lead to instability, in particular with high-order systems.

In order to eliminate the steady state error the integral gain KI is commonly
adopted to support the proportional action. Its contribution is proportional - by
a KI factor - to the integral of the error from the initial time to the considered
instant of time t:

uc(t) = KI ·
∫ t

0

e(t)dt

The integral contribution has the advantage of taking into account the past val-
ues of the error. For this reason, it is possible to have a control action di�erent
from zero, also when the error is zero. The addition of the integral term to a
simple proportional controller improves the tracking of the steady-state response.
The drawback of increasing KI is a slower response for equal overshoot or a rise
in overshoot for an unchanged response velocity. Furthermore, when an integral
controller outputs a control action which is greater than the upper or lower satura-
tion bounds of the actuator or motor that has to execute it, the system incurs in a
phenomenon known as windup: the integral of the error keeps rising although the
system is limited by its physical properties, resulting in a disproportional control
action output by the integral control, thus altering the correct functioning of the
control system. Such drawback can be easily overcome employing and anti-windup

99

Trajectory Tracking Controllers

device that limits the integral output whenever the controlled system reaches a
saturation point.

Finally, a derivative term is added to improve the stability of the system by
increasing the damping of the response thanks to an anticipatory behaviour. The
rate of change of the signal is used so that its contribution to the total control
action is proportional to the gain KD:

uc(t) = KD ·
de(t)

dt

As previously mentioned in Sec. 3.4, the derivative contribution is susceptible to
sensor noise which transfers to the error signal. Due to its nature, high-frequency
noise, when derived, yields signi�cantly high values, which, when multiplied by
KD, produce a disproportionate control signal that could o�set the overall system
stability. For this reason, derivative control is often coupled with a lowpass �lter.

The sum of the three contibutrions yields the proportional-integral-derivative
controller, a linear combination of the error, its integral and its derivative in time:

uc(t) = Kp · e(t) +KI ·
∫ t

0

e(t)dt+KD ·
de(t)

dt
(4.3)

or, in the frequency domain:

UC(s) = KP +
KI

s
+KD · s (4.4)

4.3.2 PID Control System Architecture

The PID control system shown in Fig. 4.9 is composed of two cascade loops: an
outer position control loop, and an inner velocity control loop. The whole system
was �rst conceived in continuous time and then discretised as presented in Sec. 3.4.
The position control loop was set to operate at 120 Hz, like the EKF, while the
inner loop was limited to 20 Hz, as the Husky discards any command at higher
frequencies. Furthermore, it is worth mentioning that, whenever an integral gain
is employed, a clamping anti-windup mechanism is applied. Its logic structure is
shown in Fig. 4.8 , and can be summarised as: it stops integration when the sum
of the PID components exceeds the output limits and the integrator output and
PID input have the same sign; it resumes integration when the sum of the PID
components exceeds the output limits and the integrator output and PID input
have opposite sign.

Position Control Loop

The position control loop converts position information to reference velocities, re-
lying on the position feedback of the EKF, then processed by the position error

100

4.3 � PID Control

Figure 4.8. Integrator clamping logic - Simulink

block described in Sec. 4.1 and three PI controllers. The position error block takes
as inputs the q[X, Y, θ] vector - the real position of the Husky - and the desired
position vector qd[Xd, Yd, θd], which is output by the waypoint selector block. It
then outputs the three errors eρ, ey and eα, which are fed to one proportional-
integral block each, namely ρ − PID, y − PID and α − PID. In particular, the
reference commands of the last two are summed to yield the reference command
ωref = ωref1 +ωref2. Each PI block works in discrete time, includes a saturator, an
anti-windup system and has the traditional parallel con�guration (Tab. 4.1.

Controller Gains Saturation Bounds Input Output

ρ− PID KPρ, KIρ [+1, -1] eρ uref
y − PID KPy, KIy [+inf, -inf] ey ωref1
α− PID KPα, KIα [+inf, -inf] eα ωref2

Table 4.1. PID position control loop properties

The following equations are therefore valid:

uref = KPρ · eρ +KIρ ·
∫ t

0

eρ · dt

ωref =

[
KPy · ey +KIy ·

∫ t

0

ey · dt
]

+

[
KPα · eα +KIα ·

∫ t

0

eα · dt
]

Velocity Control Loop

The velocity control loop receives as feedback the robot velocities in the local ref-
erence frame - eta[dx, dω] - and subtracts it to the reference velocities generated
by the position control loop. The resulting errors - eu and eω - are processed by
one PI block each, u − PID and ω − PID. Their outputs are then summed to
two feedforward branches - one for u, FFu, and one for omega, FFω - that mul-
tiply the reference signal by a static gain. This solution was adopted to increase

101

Trajectory Tracking Controllers

the responsiveness of the inner loop, which shall have a faster dynamic behaviour
that the outer, and improve the overall performance. As in the previous case, the
controllers properties are summarised in Tab. 4.2, where ucmd = ucmd1 + ucmd2 and
ωcmd = ωcmd1 + ωcmd2.

Controller Gains Saturation Bounds Input Output

u− PID KPu, KIu [+inf, -inf] eu ucmd1
ω − PID KPω, KIω [+inf, -inf] eω ωcmd1
FFu KPFFu - uref ucmd2
FFω KPFFω - ωref ωcmd2

Table 4.2. PID velocity control loop properties

In mathematical terms:

ucmd = [KPu · eu +KIu ·
∫ t

0

eu · dt] +KPFFu · uref

ωcmd = [KPω · eω +KIω ·
∫ t

0

eω · dt] +KPFFω · ωref

102

4.3 � PID Control

Figure 4.9. PID architecture for trajectory tracking - Simulation set-up

103

Trajectory Tracking Controllers

4.3.3 Tuning via Di�erential Evolution

As introduced in Chap. 1, the ten gains of the PID control system were tuned using
the same DE algorithm employed for the determination of the unknown parameters
of the mathematical models. Due to the increased complexity of the optimisation
problem, the approach here employed varied slightly. In fact, before running the
DE process, the linear model of the system was used to easily determine the search
boundaries of each gain, therefore removing from the search space all the cases
that would have led to system instability. Once such ranges were established, the
optimisation was run on the nonlinear model with all the measured delays, sensors
noise and external disturbances. The objective function had a similar structure to
the one presented in Sec. 3.5 but for an extra parameter: the bending energy ratio
introduced in Sec. 1.6. It was added to favour the results that better replicated
the curve of the reference trajectory and that had the least oscillatory motion. The
function therefore became:

f = Krms · drms +Khaus · dhaus +Kdratio · dratio +Kebratio · ebend−ratio

where the gains were chosen for the balanced results they produced during the
initial tests of the algorithm.

The DE optimiser compared the simulated trajectory to the reference trajectory,
always using the generic trajectory in Sec. 4.1.3 as a test case. The other three
trajectories were simply used to check the results in di�erent scenarios. The most
promising optimisation results were achieved using the parameters listed in Tab 4.3
and are presented in Tab. 4.4. It is worth noting that the feedforward gains were
set manually before the optimisation process.

104

4.3 � PID Control

Parameter Description Value

Finit F initial value 0.75
Fbound F adaptation boundaries [0.10,0.90]
CRinit CR initial value 0.80
CRbound CR adaptation boundaries [0.00,1.00]
τ1 F adaptation parameter 0.10
τ2 CR adaptation parameter 0.10
nr Number of vectors used for mutation 4
slp Gradient descent slope 0.20
df Stop condition - relative improvement of the obj f. 0.001
NP Population size 100
ngen Maximum number of generations 150
Krms Objective function weight for drms 100
Khaus Objective function weight for dhaus 15
Kdratio Objective function weight for dratio 10
Kebratio Objective function weight for ebend−ratio 10
steptime Simulink �xed step time 0.001 [s]

Table 4.3. PID tuning - jDE con�guration parameters

Control
Loop

Parameter
Search
Range

Optimised
Value

Final
Value

Position

KPρ [0,6] 2.836 =
KIρ [0,2] 0.115 =
KPy [0,6] 5.983 =
KIy [0,2] 1.971 =
KPα [0,6] 4.507 =
KIα [0,2] 5.276e-04 =

Velocity

KPu [0 2] 0.037 =
KIu [0 2] 0.477 =
KPω [0 2] 0.650 =
KIω [0 2] 0.548 =
KPFFu - - 1
KPFFω - - 0

Table 4.4. PID tuning- Gains obtained with DE plus the manually
tuned feedforward gains

105

Trajectory Tracking Controllers

4.3.4 Simulink Results

Linear Trajectory - Case 1

Linear trajectory generated imposing an average linear velocity of 0.25 m/s.

Figure 4.10. PID simulation results - Linear trajectory at 0.25 m/s - From top
left to bottom right: linear velocity u, angular velocity ω, error eρ, error ey, error
eα, trajectory comparison reference vs. simulated

dhaus drms dratio
0.0167 0.0055 0.9985

Table 4.5. PID trajectory evaluation metrics - Linear trajectory at 0.25 m/s
- Reference vs. Simulated

106

4.3 � PID Control

Linear Trajectory - Case 2

Linear trajectory generated imposing an average linear velocity of 0.50 m/s.

Figure 4.11. PID simulation results - Linear trajectory at 0.50 m/s - From top
left to bottom right: linear velocity u, angular velocity ω, error eρ, error ey, error
eα, trajectory comparison reference vs. simulated

dhaus drms dratio
0.0729 0.0073 0.9933

Table 4.6. PID trajectory evaluation metrics - Linear trajectory at 0.25 m/s
- Reference vs. Simulated

107

Trajectory Tracking Controllers

Circular Trajectory - Case 1

Circular trajectory generated imposing an average linear velocity of 0.25 m/s and
a radius of 1.5 m.

Figure 4.12. PID simulation results - Circular trajectory at 0.25 m/s and radius
1.5 m - From top left to bottom right: linear velocity u, angular velocity ω, error
eρ, error ey, error eα, trajectory comparison reference vs. simulated

dhaus drms dratio
0.0130 0.0060 0.9987

Table 4.7. PID trajectory evaluation metrics - Circular trajectory at 0.25 m/s
and radius 1.5 m - Reference vs. Simulated

108

4.3 � PID Control

Circular Trajectory - Case 2

Circular trajectory generated imposing an average linear velocity of 0.50 m/s and
a radius of 1.5 m.

Figure 4.13. PID simulation results - Circular trajectory at 0.50 m/s and radius
1.5 m - From top left to bottom right: linear velocity u, angular velocity ω, error
eρ, error ey, error eα, trajectory comparison reference vs. simulated

dhaus drms dratio
0.0130 0.0060 0.9987

Table 4.8. PID trajectory evaluation metrics - Circular trajectory at 0.50 m/s
and radius 1.5 m - Reference vs. Simulated

109

Trajectory Tracking Controllers

Sinusoidal Trajectory - Case 1

Sinusoidal trajectory generated imposing an average linear velocity of 0.25 m/s.

Figure 4.14. PID simulation results - Sinusoidal trajectory at 0.25 m/s - From
top left to bottom right: linear velocity u, angular velocity ω, error eρ, error ey,
error eα, trajectory comparison reference vs. simulated

dhaus drms dratio
0.0620 0.0196 1.0003

Table 4.9. PID trajectory evaluation metrics - Sinusoidal trajectory at 0.25
m/s - Reference vs. Simulated

110

4.3 � PID Control

Sinusoidal Trajectory - Case 2

Sinusoidal trajectory generated imposing an average linear velocity of 0.50 m/s.

Figure 4.15. PID simulation results - Sinusoidal trajectory at 0.50 m/s - From
top left to bottom right: linear velocity u, angular velocity ω, error eρ, error ey,
error eα, trajectory comparison reference vs. simulated

dhaus drms dratio
0.0782 0.0124 0.9935

Table 4.10. PID trajectory evaluation metrics - Sinusoidal trajectory at 0.50
m/s - Reference vs. Simulated

111

Trajectory Tracking Controllers

Generic Trajectory - Case 1

Generic trajectory generated imposing an average linear velocity of 0.25 m/s.

Figure 4.16. PID simulation results - Generic trajectory at 0.25 m/s - From top
left to bottom right: linear velocity u, angular velocity ω, error eρ, error ey, error
eα, trajectory comparison reference vs. simulated

dhaus drms dratio
0.1074 0.0331 1.0339

Table 4.11. PID trajectory evaluation metrics - Generic trajectory at 0.25
m/s - Reference vs. Simulated

112

4.3 � PID Control

Generic Trajectory - Case 2

Generic trajectory generated imposing an average linear velocity of 0.50 m/s.

Figure 4.17. PID simulation results - Generic trajectory at 0.50 m/s - From top
left to bottom right: linear velocity u, angular velocity ω, error eρ, error ey, error
eα, trajectory comparison reference vs. simulated

dhaus drms dratio
0.3417 0.0959 1.0274

Table 4.12. PID trajectory evaluation metrics - Generic trajectory at 0.50
m/s - Reference vs. Simulated

113

Trajectory Tracking Controllers

4.3.5 Experimental Results

Linear Trajectory - Case 1

Linear trajectory generated imposing an average linear velocity of 0.25 m/s.

Figure 4.18. PID experimental results - Linear trajectory at 0.25 m/s - From top
left to bottom right: linear velocity u, angular velocity ω, error eρ, error ey, error
eα, trajectory comparison reference vs. simulated vs. real

dhaus drms dratio
0.0033 0.0017 0.9995

Table 4.13. PID trajectory evaluation metrics - Linear trajectory at 0.25
m/s - Simulated vs. Real

114

4.3 � PID Control

Linear Trajectory - Case 2

Linear trajectory generated imposing an average linear velocity of 0.50 m/s.

Figure 4.19. PID experimental results - Linear trajectory at 0.50 m/s - From top
left to bottom right: linear velocity u, angular velocity ω, error eρ, error ey, error
eα, trajectory comparison reference vs. simulated vs. real

dhaus drms dratio
0.0108 0.0040 0.9994

Table 4.14. PID trajectory evaluation metrics - Linear trajectory at 0.50
m/s - Simulated vs. Real

115

Trajectory Tracking Controllers

Circular Trajectory - Case 1

Circular trajectory generated imposing an average linear velocity of 0.25 m/s and
a radius of 1.5 m.

Figure 4.20. PID experimental results - Circular trajectory at 0.25 m/s and radius
1.5 m- From top left to bottom right: linear velocity u, angular velocity ω, error
eρ, error ey, error eα, trajectory comparison reference vs. simulated vs. real

dhaus drms dratio
0.0031 0.0016 0.9994

Table 4.15. PID trajectory evaluation metrics - Circular trajectory at 0.25 m/s
and radius 1.5 m - Simulated vs. Real

116

4.3 � PID Control

Circular Trajectory - Case 2

Circular trajectory generated imposing an average linear velocity of 0.50 m/s and
a radius of 1.5 m.

Figure 4.21. PID experimental results - Circular trajectory at 0.50 m/s and radius
1.5 m- From top left to bottom right: linear velocity u, angular velocity ω, error
eρ, error ey, error eα, trajectory comparison reference vs. simulated vs. real

dhaus drms dratio
0.0231 0.0056 1.0006

Table 4.16. PID trajectory evaluation metrics - Circular trajectory at 0.50 m/s
and radius 1.5 m - Simulated vs. Real

117

Trajectory Tracking Controllers

Sinusoidal Trajectory - Case 1

Sinusoidal trajectory generated imposing an average linear velocity of 0.25 m/s.

Figure 4.22. PID experimental results - Sinusoidal trajectory at 0.25 m/s - From
top left to bottom right: linear velocity u, angular velocity ω, error eρ, error ey,
error eα, trajectory comparison reference vs. simulated vs. real

dhaus drms dratio
0.0192 0.0048 0.9988

Table 4.17. PID trajectory evaluation metrics - Sinusoidal trajectory at
0.25 m/s - Simulated vs. Real

118

4.3 � PID Control

Generic Trajectory - Case 1

Generic trajectory generated imposing an average linear velocity of 0.25 m/s.

Figure 4.23. PID experimental results - Generic trajectory at 0.25 m/s - From
top left to bottom right: linear velocity u, angular velocity ω, error eρ, error ey,
error eα, trajectory comparison reference vs. simulated vs. real

dhaus drms dratio
0.0392 0.0118 0.9832

Table 4.18. PID trajectory evaluation metrics - Generic trajectory at 0.25
m/s - Simulated vs. Real

119

Trajectory Tracking Controllers

Generic Trajectory - Case 2

Generic trajectory generated imposing an average linear velocity of 0.50 m/s.

Figure 4.24. PID experimental results - Generic trajectory at 0.50 m/s - From
top left to bottom right: linear velocity u, angular velocity ω, error eρ, error ey,
error eα, trajectory comparison reference vs. simulated vs. real

dhaus drms dratio
0.4569 0.1014 0.9918

Table 4.19. PID trajectory evaluation metrics - Generic trajectory at 0.50
m/s - Simulated vs. Real

120

4.4 � LQR Controller

4.4 LQR Controller

4.4.1 Introduction to LQR Controllers

The Linear Quadratic Regulator (LQR), an important part of the solution of the
Linear-Quadratic-Gaussian (LQG) problem, is a type of optimal control which op-
erates a dynamic system at minimum cost whenever the system is described by a
set of linear di�erential equations and the cost function is described by a quadratic
function. As the de�nition suggests, the LQR, like optimal control systems in gen-
eral, are designed to minimise the performance indices of the system. Therefore,
the performance indices - or �gures of merit - are the only design parameters which
require to be set up. Unlike PIDs, the design of an optimal controller does not
require to tune parameters which don't have any physical meaning, allowing for an
automated design procedure.

For the derivation of the LQR, it is assumed the plant is written in state-space
form ẋ = Ax + Bu, and that all of the n states are available for the controller, a
case de�ned as full-state feedback. The feedback gain is a matrix K, implemented
as u = −K(x− xdesired). The system dynamics are then written as:

ẋ = (A−BK)x+BKxdesired

where xdesired represents the vector of desired states and serves as the external input
to the closed-loop system. The A-matrix of the closed-loop system is (A−BK) and
the B-matrix of the closed-loop is BK. It is now necessary to introduce a general
procedure for solving optimal control problems which will then be specialised for
the LQR.

The problem for a �xed end time tf is stated as:

choose u(t) to minimise J = ψ(x(tf)) +

∫ tf

t0

L(x(t), u(t), t)dt

subject to ẋ = f(x(t), u(t), t)

x(t0) = x0

where ψ(x(tf), tf) is the terminal cost ; the total cost J is a sum of the terminal cost
and an integral along the way. It is assumed that L(x(t), u(t), t) is nonnegative.
The �rst step is to augment the cost using a costate vector λ(t):

J = ψ(x(tf)) +

∫ tf

t0

(L+ λT (f − ẋ))dt

where λ(t) can be anything desired, as it multiplies f − ẋ = 0. Along the optimum
trajectory, variations in J and hence J should vanish. This follows from the fact
that J is chosen to be continuous in x, u, and t. The variation can be written as:

121

Trajectory Tracking Controllers

δJ = ψxδx(tf) +

∫ tf

t0

[
Lxδx+ Luδu+ λTfxδx+ λtfuδu− λT δẋ

]
dt

where subscripts denote partial derivatives. The last term can be evaluated using
integration by parts as

−
∫ tf

t0

λT δẋdt = −λT (tf)δx(tf) + λT (t0)δx(t0) +

∫ tf

t0

λ̇T δxdt

and thus

δJ =ψx(x(tf)δx(tf)) +

∫ tf

t0

(Lu + λTfu)δudt+∫ tf

t0

(Lx + λTfx + λ̇T)δxdt− λT (tf)δx(tf) + λT (t0)δx(t0)

The last term is zero, since it is not possible to change the intial condition of
the state by varying something later in time: it is a �xed value. This way of
writing J makes it clear that there are three components of the variation that must
independently be zero, since it possible to vary any of x, u or x(tf):

Lu + λTfu = 0

Lx + λTfx + λ̇T = 0

ψx(x(tf))− λT (tf) = 0

The second and third requirements are met by explicitly setting

λ̇T = −Lx − λTfx
λT (tf) = ψx(x(tf))

The evolution of λ is given in reverse time, from a �nal state to the initial.
Hence it is clear the primary di�culty of solving optimal control problems: the
state propagates forward in time, while the costate propagates backwards. The
state and the costate are coordinated through the above equations. Many solutions
rely on numerical methods, where the simplest approach is the gradient method.
In the case of the LQR with zero terminal cost, it is possible to set ψ = 0 and

L =
1

2
xTQx+

1

2
uTRu (4.5)

where the requirement that L ≥ 0 implies that both Q and R are positive de�nite.
In the case of linear plant dyamics, it is possible to write:

122

4.4 � LQR Controller

Lx = xTQ

Lu = uTR

fx = A

fu = B

so that

ẋ = Ax+Bu

x(t0) = x0

λ̇ = −Qx− ATλ
λ(tf) = 0

Ru+BTλ = 0

Since the system is linear, it is possible to say that λ = Px. Inserting this into
the λ̇ equation, and then using the ẋ equation, and a substitution for u, then:

PAx+ ATPx+Qx− PBR−1BTPx+ Ṗ = 0

This has to hold for all x, in fact it a matrix equation, thematrix Riccati equation.
The steady state solution satis�es:

PA+ ATP +Q− PBR−1BTP = 0

This equation is the matrix algebraic Riccati Equation (MARE), whose solution
P is needed to compute the optimal feedback gainK. The MARE is easily solved by
standard numerical tools in linear algebra. Furthermore, the equationRu+BTλ = 0
gives the feedback law

u = −R−1BTPx

Referring to Sec. 2.3, where the state vector x = [x, ẋ, θ, θ̇]T and the command
vector u = [vx, ωz]

T are introduced, it is possible to say that the matrices of the
cost function shown in Eq. 4.5 are of the form:

Q =

Q11 0 0 0
0 Q22 0 0
0 0 Q33 0
0 0 0 Q44

R =

[
R11 0
0 R22

]
123

Trajectory Tracking Controllers

where the elements of Q represent the how much the error of the respective element
of the state vector has to be reduced, and the elements of R represent the actuation
e�ort: the higher the value, the more responsiveness - and therefore power - the
system will require from the actuators.

124

4.4 � LQR Controller

4.4.2 LQR Control System Architecture

The LQR controller in Fig. 4.26, in contrast the PID here presented, is based
on a single control loop. The system was �rst conceived in continuous time and
then discretised as presented in Sec. 3.4. The position vector q[X, Y, θ] is fed to
the already introduced position error block which, jointly, received the reference
waypoint from the waypoint selector block. The position error block now only has
two outputs: erho and eθ. Its mode of operation is identical to what has already
been introduced, but the y error and the α error are combined before the output:

eθ = Kα · eα +Ky · ey
Ky and Kα were introduced to allow for greater �exibility during the design

process.
The error eρ follows two parallel branches, used to sum itself to the output of

an integral block (with an anti-windup mechanism), necessary the eliminate any
steady state error. The state variables related to the vehicle speed - ẋ and θ̇ - are,
instead, directly fed to the LQR block. Within the LQR block, the input state
vector is multiplied by the optimal gain matrix K previously evaluated in Matlab,
and its ouputs are saturated to avoid exceding the vehicle maximum input limits
(Fig.4.25). Due to its structure, this LQR control system relies on the following
parameters:

� Kα - eα weight

� Ky - ey error weight

� KIρ - Integral action gain acting on eρ

� K optimal feedback gain matrix based on the Q and R matrices of the LQR

Figure 4.25. LQR controller inner structure - Simulink

125

Trajectory Tracking Controllers

4.4.3 Tuning via Di�erential Evolution

Despite being an optimal control, thus based on an array of physics-related parame-
ters, LQR too needs to be tuned. As with the previously introduced PID, the same
DE algorithms employed for unknown model parameters estimation were adapted
to �nd an optimal con�guration of the controller. In this case, the parameters
which had to be found were the six matrix elements of Q and R; the other three
gains shown in the previous section were set manually to allow for some �ne-tuning.
The optimisation algorithm was modi�ed so that it used the state-space description
of the Husky rover to �nd the optimal gain matrix K supposing a set of Q and R
indices. The K matrix was then tested with the nonlinear model with the improved
friction formulation. The objective function used to compare the results was:

f = Krms · drms +Khaus · dhaus +Kdratio · dratio +Kebratio · ebend−ratio +KuRMS
· uRMS

where uRMS = RMS(ẋ)/uref and uref is the average speed necessary to complete
the reference trajectory. This parameter was introduced to penalise results which
showed oscillatory behaviours in the ẋ variable. As for the PID, the gains were cho-
sen for the balanced results they produced during the initial tests of the algorithm.

Tab. 4.20 sums up the parameters used to run the DE algorithm, while Tab.
4.21 shows all the parameters necessary to run the controller, including the ones
found via DE. It is worth remembering that the results later presented were mea-
sured by employing the manually tuned paramters, as it was not possible to
experimentally test the ones found via optimisation.

126

4.4 � LQR Controller

Parameter Description Value

Finit F initial value 0.75
Fbound F adaptation boundaries [0.10,0.90]
CRinit CR initial value 0.80
CRbound CR adaptation boundaries [0.00,1.00]
τ1 F adaptation parameter 0.10
τ2 CR adaptation parameter 0.10
nr Number of vectors used for mutation 4
slp Gradient descent slope 0.20
df Stop condition - relative improvement of the obj f. 0.001
NP Population size 50
ngen Maximum number of generations 300
Krms Objective function weight for drms 100
Khaus Objective function weight for dhaus 15
Kdratio Objective function weight for dratio 10
Kebratio Objective function weight for ebend−ratio 10
KuRMS

Objective function weight for uRMS 50
steptime Simulink �xed step time 0.01 [s]

Table 4.20. LQR tuning - jDE con�guration parameters

Parameter Search Bounds Optimised Value Manual Tuning Value

Q11 [2.00 , 5.00] 4.06 1.80
Q22 [0.00 , 0.05] 0.02 0.30
Q33 [5.00 , 15.00] 10.48 3.00
Q44 [0.00 , 0.10] 0.00 0.80
R11 [0.30 , 0.70] 0.44 0.50
R22 [0.40 , 0.90] 0.76 0.60
Kα - 1.000 0.90
Ky - 0.900 1.00
KIρ - 0.01 0.01

Table 4.21. LQR tuning- Parameters obtained with DE plus the man-
ually tuned parameters

127

Trajectory Tracking Controllers

Figure 4.26. LQR controller architecture - Simulation set-up

128

4.4 � LQR Controller

4.4.4 Simulink Results

Linear Trajectory - Case 1

Linear trajectory generated imposing an average linear velocity of 0.25 m/s.

Figure 4.27. LQR simulation results - Linear trajectory at 0.25 m/s - From top
left to bottom right: linear velocity u, angular velocity ω, error eρ, error ey, error
eα, trajectory comparison reference vs. simulated

dhaus drms dratio
0.0516 0.0073 0.9952

Table 4.22. LQR trajectory evaluation metrics - Linear trajectory at 0.25
m/s - Reference vs. Simulated

129

Trajectory Tracking Controllers

Linear Trajectory - Case 2

Linear trajectory generated imposing an average linear velocity of 0.50 m/s.

Figure 4.28. LQR simulation results - Linear trajectory at 0.50 m/s - From top
left to bottom right: linear velocity u, angular velocity ω, error eρ, error ey, error
eα, trajectory comparison reference vs. simulated

dhaus drms dratio
0.1209 0.0109 0.9888

Table 4.23. LQR trajectory evaluation metrics - Linear trajectory at 0.25
m/s - Reference vs. Simulated

130

4.4 � LQR Controller

Circular Trajectory - Case 1

Circular trajectory generated imposing an average linear velocity of 0.25 m/s and
a radius of 1.5 m.

Figure 4.29. LQR simulation results - Circular trajectory at 0.25 m/s and radius
1.5 m - From top left to bottom right: linear velocity u, angular velocity ω, error
eρ, error ey, error eα, trajectory comparison reference vs. simulated

dhaus drms dratio
0.0372 0.0286 1.0165

Table 4.24. LQR trajectory evaluation metrics - Circular trajectory at 0.25 m/s
and radius 1.5 m - Reference vs. Simulated

131

Trajectory Tracking Controllers

Circular Trajectory - Case 2

Circular trajectory generated imposing an average linear velocity of 0.50 m/s and
a radius of 1.5 m.

Figure 4.30. LQR simulation results - Circular trajectory at 0.50 m/s and radius
1.5 m - From top left to bottom right: linear velocity u, angular velocity ω, error
eρ, error ey, error eα, trajectory comparison reference vs. simulated

dhaus drms dratio
0.0583 0.0483 1.0237

Table 4.25. LQR trajectory evaluation metrics - Circular trajectory at 0.50 m/s
and radius 1.5 m - Reference vs. Simulated

132

4.4 � LQR Controller

Sinusoidal Trajectory - Case 1

Sinusoidal trajectory generated imposing an average linear velocity of 0.25 m/s.

Figure 4.31. LQR simulation results - Sinusoidal trajectory at 0.25 m/s - From
top left to bottom right: linear velocity u, angular velocity ω, error eρ, error ey,
error eα, trajectory comparison reference vs. simulated

dhaus drms dratio
0.0590 0.0218 1.0033

Table 4.26. LQR trajectory evaluation metrics - Sinusoidal trajectory at 0.25
m/s - Reference vs. Simulated

133

Trajectory Tracking Controllers

Sinusoidal Trajectory - Case 2

Sinusoidal trajectory generated imposing an average linear velocity of 0.50 m/s.

Figure 4.32. LQR simulation results - Sinusoidal trajectory at 0.50 m/s - From
top left to bottom right: linear velocity u, angular velocity ω, error eρ, error ey,
error eα, trajectory comparison reference vs. simulated

dhaus drms dratio
0.1272 0.0178 0.9906

Table 4.27. LQR trajectory evaluation metrics - Sinusoidal trajectory at 0.50
m/s - Reference vs. Simulated

134

4.4 � LQR Controller

Generic Trajectory - Case 1

Generic trajectory generated imposing an average linear velocity of 0.25 m/s.

Figure 4.33. LQR simulation results - Generic trajectory at 0.25 m/s - From top
left to bottom right: linear velocity u, angular velocity ω, error eρ, error ey, error
eα, trajectory comparison reference vs. simulated

dhaus drms dratio
0.1297 0.0314 1.0170

Table 4.28. LQR trajectory evaluation metrics - Generic trajectory at 0.25
m/s - Reference vs. Simulated

135

Trajectory Tracking Controllers

Generic Trajectory - Case 2

Generic trajectory generated imposing an average linear velocity of 0.50 m/s.

Figure 4.34. LQR simulation results - Generic trajectory at 0.50 m/s - From top
left to bottom right: linear velocity u, angular velocity ω, error eρ, error ey, error
eα, trajectory comparison reference vs. simulated

dhaus drms dratio
0.4454 0.1123 1.0417

Table 4.29. LQR trajectory evaluation metrics - Generic trajectory at 0.50
m/s - Reference vs. Simulated

136

4.4 � LQR Controller

4.4.5 Experimental Results

Linear Trajectory - Case 1

Linear trajectory generated imposing an average linear velocity of 0.25 m/s.

Figure 4.35. LQR experimental results - Linear trajectory at 0.25 m/s - From top
left to bottom right: linear velocity u, angular velocity ω, error eρ, error ey, error
eα, trajectory comparison reference vs. simulated vs. real

dhaus drms dratio
0.0047 0.0020 1.0002

Table 4.30. LQR trajectory evaluation metrics - Linear trajectory at 0.25
m/s - Simulated vs. Real

137

Trajectory Tracking Controllers

Linear Trajectory - Case 2

Linear trajectory generated imposing an average linear velocity of 0.50 m/s.

Figure 4.36. LQR experimental results - Linear trajectory at 0.50 m/s - From top
left to bottom right: linear velocity u, angular velocity ω, error eρ, error ey, error
eα, trajectory comparison reference vs. simulated vs. real

dhaus drms dratio
0.0158 0.0088 0.9979

Table 4.31. LQR trajectory evaluation metrics - Linear trajectory at 0.50
m/s - Simulated vs. Real

138

4.4 � LQR Controller

Circular Trajectory - Case 1

Circular trajectory generated imposing an average linear velocity of 0.25 m/s and
a radius of 1.5 m.

Figure 4.37. LQR experimental results - Circular trajectory at 0.25 m/s and ra-
dius 1.5 m- From top left to bottom right: linear velocity u, angular velocity ω,
error eρ, error ey, error eα, trajectory comparison reference vs. simulated vs. real

dhaus drms dratio
0.0117 0.0069 1.0035

Table 4.32. LQR trajectory evaluation metrics - Circular trajectory at 0.25 m/s
and radius 1.5 m - Simulated vs. Real

139

Trajectory Tracking Controllers

Circular Trajectory - Case 2

Circular trajectory generated imposing an average linear velocity of 0.50 m/s and
a radius of 1.5 m.

Figure 4.38. LQR experimental results - Circular trajectory at 0.50 m/s and ra-
dius 1.5 m- From top left to bottom right: linear velocity u, angular velocity ω,
error eρ, error ey, error eα, trajectory comparison reference vs. simulated vs. real

dhaus drms dratio
0.0221 0.0070 1.0057

Table 4.33. LQR trajectory evaluation metrics - Circular trajectory at 0.50 m/s
and radius 1.5 m - Simulated vs. Real

140

4.4 � LQR Controller

Sinusoidal Trajectory - Case 1

Sinusoidal trajectory generated imposing an average linear velocity of 0.25 m/s.

Figure 4.39. LQR experimental results - Sinusoidal trajectory at 0.25 m/s - From
top left to bottom right: linear velocity u, angular velocity ω, error eρ, error ey,
error eα, trajectory comparison reference vs. simulated vs. real

dhaus drms dratio
0.0230 0.0063 0.9990

Table 4.34. LQR trajectory evaluation metrics - Sinusoidal trajectory at
0.25 m/s - Simulated vs. Real

141

Trajectory Tracking Controllers

Generic Trajectory - Case 1

Generic trajectory generated imposing an average linear velocity of 0.25 m/s.

Figure 4.40. LQR experimental results - Generic trajectory at 0.25 m/s - From
top left to bottom right: linear velocity u, angular velocity ω, error eρ, error ey,
error eα, trajectory comparison reference vs. simulated vs. real

dhaus drms dratio
0.0413 0.0095 0.9896

Table 4.35. LQR trajectory evaluation metrics - Generic trajectory at 0.25
m/s - Simulated vs. Real

142

4.4 � LQR Controller

Generic Trajectory - Case 2

Generic trajectory generated imposing an average linear velocity of 0.50 m/s.

Figure 4.41. LQR experimental results - Generic trajectory at 0.50 m/s - From
top left to bottom right: linear velocity u, angular velocity ω, error eρ, error ey,
error eα, trajectory comparison reference vs. simulated vs. real

dhaus drms dratio
0.1735 0.0497 1.0484

Table 4.36. LQR trajectory evaluation metrics - Generic trajectory at 0.50
m/s - Simulated vs. Real

143

Trajectory Tracking Controllers

4.5 Controllers Analysis and Comparison

Looking at both the simulations and the experimental results, it is possible to
extrapolate some trends. This brief analysis regards both the vehicle modelling
and then the performance of the control systems. Regarding the SSMR model, it
is possible to state that:

� The mathematical model shows a high level of �delity to what was measured
experimentally. The higher the speed of the manoeuvres, to less faithful the
model becomes. Such behaviour can be clearly seen in the trajectory tra-
versed at 0.50 m/s with tight corners. The phenomenon can be traced back
to the nonlinearity of the model: not all the nonlinearities were included in
the �rst place in the mathematical formulation, while others were removed by
assumptions. It is possible to consider it an acceptable result, as the speed at
which the model signi�cantly diverges from the real scenario is very close to
the maximum operative speed of the rover.

� The model did not take into account sensors biases. When comparing the
RTS measurements - which ought to be the most reliable - it is evident that,
even in straight trajectories, what is measured by the onboard EKF diverges
from the measurement of the tracking system. It is supposed to be caused by
mechanical damage of the wheel encoders. As the control system only relies on
the feedback of the EKF, such divergence can not be measured and corrected.

Moving on to the control systems, it is possible to conclude that:

� The PID control system is able to easily execute all the trajectories it was
tested with. The least satisfactory results were registered with the generic
trajectory, especially at 0.50 m/s. It was concluded that the vehicle is physi-
cally unable to move along the provided trajectory at speeds higher than 0.25
m/s: at 0.50 m/s the wheel actuators were ofter operating at their maximum
torque. In other words, the system reached a saturation point. More precise
tracking can be achieved by imposing a so-called lookahead distance: instead
of aiming at reducing the eρ error to zero, the control system is set to settle
at a value greater than zero. Looking at the trajectory run at 0.25 m/s, the
average eρ is approximately 0.05 m; it was measured that by imposing a looka-
head distance of 0.1 m the vehicle is able to traverse the entire trajectory with
a signi�cantly higher degree of geometrical precision. Of course, this type of
solutions impacts of what is the main goal of trajectory tracking: reaching the
desired waypoints at an exact instant in time.

� The LQR control system shows similar behaviour to the PID and all the con-
siderations proposed above are valid for it as well. The overall precision and
stability of the LQR is worse than what was achieved with the PID but this is

144

4.5 � Controllers Analysis and Comparison

due to the abrupt stop of the research: further computer simulations proved
that the optimised control system had a signi�cant margin of improvement
when compared to the one tested with the manually tuned parameters. The
improved results, however, couldn't be tested experimentally. The greatest
di�erence between the two control system lies in their degree of complexity:
while the PID requires two cascade control loop for a total of twelve parame-
ters to be tuned, the LQR only needs one close loop for a total of six unknown
parameters, much more easily identi�able.

The last comment pertains to the IR tracking system. Despite being able of
very high precision, it is believed that either the disposition of the emitters or
the disposition of the markers was not optimal, as it is possible to notice some
unpredicted oscillations in the measurements collected via the IR system. Such
oscillations are not classi�able as noise and are physically impossible: they do not
represent the real movement of the robot.

PID LQR
dhaus drms dratio dhaus drms dratio

Linear 0,25 m/s 0,0033 0,0017 0,9995 0,0047 0,0020 1,0002
Linear 0,50 m/s 0,0108 0,0040 0,9994 0,0158 0,0088 0,9979
Circular 0,25 m/s 0,0031 0,0016 0,9994 0,0117 0,0069 1,0035
Circular 0,50 m/s 0,0231 0,0056 1,0006 0,0221 0,0070 1,0057
Sinusoidal 0,25 m/s 0,0192 0,0048 0,9988 0,0230 0,0063 0,9990
Generic 0,25 m/s 0,0392 0,0118 0,9832 0,0413 0,0095 0,9896
Generic 0,50 m/s 0,4569 0,1014 0,9918 0,1735 0,0497 1,0484

Table 4.37. PID - LQR performance comparison - Values measured experimentally

PID LQR
dhaus drms dratio dhaus drms dratio

Linear 0,25 m/s - - - +42,42 % +17,65 % +0,07 %
Linear 0,50 m/s - - - +46,29 % +120,00 % -0,15 %
Circular 0,25 m/s - - - +277, 42 % +331,25 % +0,41 %
Circular 0,50 m/s - - - -4,33 % +25,00 % + 0,51 %
Sinusoidal 0,25 m/s - - - +34,86 % +34,88 % +0,02 %
Generic 0,25 m/s - - - +5,36 % -19,49 % + 0,65 %
Generic 0,50 m/s - - - -62,03 % -50,98 % +5,70 %

Table 4.38. PID - LQR performance comparison, percentage variation taking the
PID as reference - Values measured experimentally

145

146

Chapter 5

Conclusions

The present MSc thesis illustrates the trajectory tracking problem for a four-wheel
SSMR, starting from the eduction of its mathematical model, to the design, sim-
ulation and testing of two di�erent controllers, conceived for a real robotic mobile
platform: the Clearpath Husky A200. Two mathematical models are compared,
and the best one is linearised about an equilibrium point. The unknown physical
parameters are determined using a type of AI: Di�erential Evolution. The theo-
retical foundation of the two controllers, namely a PID and an LQR, is introduced
before their architecture de�nition. Furthermore, they are tuned employing a DE
algorithm, and their numerical simulations are compared to experimental results.
Despite being promising, the limited time available for testing left room for im-
provement. More mature and reliable results, therefore, appear to be possible.

The results obtained demonstrate that the mathematical models described in
Chapter 2, whose unknown parameters are determined in Chapter 3, are reliable
when used to simulate conditions of limited skidding. The PID controller presented
in Chapter 4 proved to guarantee satisfying tracking performances, and the tuning
process via DE resulted in the e�ortless determination of ten gains which granted
the achievement of a global optimum with respect to the selected objective func-
tion. However, the tracking performance of the PID was obtained at the expense
of system robustness to parametric uncertainties, sensor noise and external distur-
bances. A trade-o� between these two characteristics must be evaluated. On the
other hand, the DE tuning results of the LQR controller introduced in Chapter 4
could not be tested experimentally due to the interruption of the project. The tests
conducted on its manually tuned parameters were too oscillatory but demonstrated
how much easier it is to tune an optimal control.

Future developments of the proposed research could aim at concluding the tun-
ing and testing phases of the controllers. Satisfactory results could allow for the
coding of the control system on an MCU and more re�ned tests thereof. Further
improvements could be made to the DE tuning algorithm, whose objective func-
tion could include new parameters related to time instead of geometry and therefore

147

Conclusions

obtain better controller performances. While in the present research some manual
tuning was still required - for instance, the feedforward gains of the PID - more in-
depth analyses could lead to a fully automated tuning process, whose output can be
used straight away. The mathematical model can still be developed to discard the
bidimensional assumption and account for dynamics which involve the vertical axis.
Such improvement would lead to the computation of the exact weight distribution
on the four wheels and, consequently, of better wheel-ground interactions estima-
tion. The LQR could be improved by iteratively linearising the system about the
instantaneous operating condition and by continuously computing the optimal gain
matrix. Lastly, an in-depth study of the sensory component of the vehicle could
lead to better dead reckoning estimations on di�erent types of surface; more sensors
could also be introduced in the control loop to enhance the robot capabilities, like
obstacle avoidance.

148

Bibliography

[1] McKinsey&Company, �Industrial robotics: Insights into the sector's future
growth dynamics,� July 2019.

[2] H. R. Everett, Unmanned systems of World Wars I and II. Intelligent robotics
and autonomous agents, Cambridge, Massachusetts: The MIT Press, 2015.

[3] A. Finn and S. Scheding, Developments and Challenges for Autonomous Un-
manned Vehicles, vol. 3 of Intelligent Systems Reference Library. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2010.

[4] W. G. Walter, �An Imitation of Life,� Scienti�c American 182, pp. 42�45, 1950.
[5] X. Chen, Y. Chen, and J. Chase, �Mobiles Robots - Past Present and Future,�

tech. rep., University of Canterbury, New Zealand, Department of Mechanical
Engineering, 2009.

[6] N. J. Nilsson, �Shakey the Robot,� tech. rep., SRI International Menlo Park
CA, Apr. 1984.

[7] R. E. Fikes and N. J. Nilsson, �Strips: A new approach to the application of
theorem proving to problem solving,� Arti�cial Intelligence, vol. 2, pp. 189�
208, Dec. 1971.

[8] H. P. Moravec, �The Stanford Cart and the CMU Rover,� in Autonomous
Robot Vehicles (I. J. Cox and G. T. Wilfong, eds.), pp. 407�419, New York,
NY: Springer New York, 1990.

[9] M. F. Silva and J. Tenreiro Machado, �A Historical Perspective of Legged
Robots,� Journal of Vibration and Control, vol. 13, pp. 1447�1486, Sept. 2007.

[10] C. Angle, Genghis, a six legged autonomous walking robot. Doctoral Disserta-
tion, Massachusetts Institute of Technology, 1989.

[11] I. Kato, S. Ohteru, K. Shirai, T. Matsushima, S. Narita, S. Sugano,
T. Kobayashi, and E. Fujisawa, �The robot musician `wabot-2' (waseda robot-
2),� Robotics, vol. 3, pp. 143�155, June 1987.

[12] G. Giralt, R. Sobek, and R. Chatila, �A multi-level planning and navigation
system for a mobile robot: a �rst approach to HILARE,� in Proceedings of
the 6th international joint conference on Arti�cial intelligence - Volume 1,
IJCAI'79, (Tokyo, Japan), pp. 335�337, Morgan Kaufmann Publishers Inc.,
Aug. 1979.

[13] S. Sekhavat, F. Lamiraux, J. Laumond, G. Bauzil, and A. Ferrand, �Motion

149

Bibliography

planning and control for Hilare pulling a trailer: experimental issues,� in Pro-
ceedings of International Conference on Robotics and Automation, vol. 4, (Al-
buquerque, NM, USA), pp. 3306�3311, IEEE, 1997.

[14] N. R. C. (U.S.) and N. R. C. (U.S.), eds., Technology development for Army
unmanned ground vehicles. Washington, D.C: National Academies Press, 2002.
OCLC: ocm51746797.

[15] R. Siegwart and I. R. Nourbakhsh, Introduction to autonomous mobile robots.
Intelligent robots and autonomous agents, Cambridge, Mass: MIT Press, 2004.

[16] C. Ilas, �Electronic sensing technologies for autonomous ground vehicles: A
review,� in 2013 8TH INTERNATIONAL SYMPOSIUM ON ADVANCED
TOPICS IN ELECTRICAL ENGINEERING (ATEE), (Bucharest, Romania),
pp. 1�6, IEEE, May 2013.

[17] F. Gustafsson, Statistical sensor fusion. Studentlitteratur, 2010.
[18] J. Pentzer, S. Brennan, and K. Reichard, �Model-based Prediction of Skid-steer

Robot Kinematics Using Online Estimation of Track Instantaneous Centers of
Rotation: Model-based Prediction of Skid-steer Robot Kinematics,� Journal
of Field Robotics, vol. 31, pp. 455�476, May 2014.

[19] G. Anousaki and K. Kyriakopoulos, �A dead-reckoning scheme for skid-steered
vehicles in outdoor environments,� in IEEE International Conference on
Robotics and Automation, 2004. Proceedings. ICRA '04. 2004, (New Orleans,
LA, USA), pp. 580�585 Vol.1, IEEE, 2004.

[20] D. M. Helmick, S. I. Roumeliotis, Y. Cheng, D. S. Clouse, M. Bajracharya,
and L. H. Matthies, �Slip-compensated path following for planetary exploration
rovers,� Advanced Robotics, vol. 20, pp. 1257�1280, Jan. 2006.

[21] A. Angelova, L. Matthies, D. Helmick, and P. Perona, �Slip Prediction Using
Visual Information,� in Robotics: Science and Systems II, Robotics: Science
and Systems Foundation, Aug. 2006.

[22] L. Caracciolo, A. de Luca, and S. Iannitti, �Trajectory tracking control of
a four-wheel di�erentially driven mobile robot,� in Proceedings 1999 IEEE
International Conference on Robotics and Automation (Cat. No.99CH36288C),
vol. 4, (Detroit, MI, USA), pp. 2632�2638, IEEE, 1999.

[23] K. Koz\lowski and D. Pazderski, �Modeling and control of a 4-wheel skid-
steering mobile robot,� International journal of applied mathematics and com-
puter science, vol. 14, pp. 477�496, 2004.

[24] W. E. Dixon, D. M. Dawson, E. Zergeroglu, and A. Behal, Nonlinear Control
of Wheeled Mobile Robots, vol. 262 of Lecture Notes in Control and Information
Sciences. London: Springer London, 2001.

[25] Y. Wu, T. Wang, J. Liang, J. Chen, Q. Zhao, X. Yang, and C. Han, �Ex-
perimental kinematics modeling estimation for wheeled skid-steering mobile
robots,� in 2013 IEEE International Conference on Robotics and Biomimetics
(ROBIO), (Shenzhen, China), pp. 268�273, IEEE, Dec. 2013.

[26] V. Rajagopalan, C. Mericli, and A. Kelly, �Slip-aware Model Predictive optimal

150

Bibliography

control for Path following,� in 2016 IEEE International Conference on Robotics
and Automation (ICRA), (Stockholm), pp. 4585�4590, IEEE, May 2016.

[27] J. Yi, D. Song, J. Zhang, and Z. Goodwin, �Adaptive Trajectory Tracking Con-
trol of Skid-Steered Mobile Robots,� in Proceedings 2007 IEEE International
Conference on Robotics and Automation, (Rome, Italy), pp. 2605�2610, IEEE,
Apr. 2007.

[28] J. Cerkala and A. Jadlovská, �NONHOLONOMIC MOBILE ROBOT WITH
DIFFERENTIAL CHASSIS MATHEMATICAL MODELLING AND IMPLE-
MENTATION IN SIMULINKWITH FRICTION IN DYNAMICS,� Acta Elec-
trotechnica et Informatica, vol. 15, pp. 3�8, Sept. 2015.

[29] S. Jeon and W. Jeong, �The Stable Trajectory Tracking Control of a Skid-
Steered Mobile Platform with Dynamic Uncertainties,� International Journal
of Advanced Robotic Systems, vol. 12, p. 122, Sept. 2015.

[30] J. Majumdar, S. C Gupta, and B. Prassanna Prasath, �Linear and Non-Linear
Control Design of Skid Steer Mobile Robot on an Embedded,� IAES Interna-
tional Journal of Robotics and Automation (IJRA), vol. 7, p. 185, Sept. 2018.

[31] L. Borello and M. Dalla Vedova, �Dry Friction Discontinuous Computational
Algorithms,� in International Journal of Engineering and Innovative Technol-
ogy (IJEIT), vol. 3, Feb. 2014.

[32] R. C. Dorf and R. H. Bishop, Modern control systems. Hoboken: Pearson,
thirteenth edition ed., 2016.

[33] G. Cohen, �Theoretical consideration of retarded control,� Trans. Asme,
vol. 75, pp. 827�834, 1953.

[34] J. G. Ziegler and N. B. Nichols, �Optimum settings for automatic controllers,�
trans. ASME, vol. 64, no. 11, 1942.

[35] W. K. Ho, C. C. Hang, and L. S. Cao, �Tuning of PID controllers based on
gain and phase margin speci�cations,� Automatica, vol. 31, no. 3, pp. 497�502,
1995. Publisher: Elsevier.

[36] K. J. \AAström and T. Hägglund, �Automatic tuning of simple regulators with
speci�cations on phase and amplitude margins,� Automatica, vol. 20, no. 5,
pp. 645�651, 1984. Publisher: Elsevier.

[37] C. C. Hang, K. J. \AAström, and W. K. Ho, �Re�nements of the
Ziegler�Nichols tuning formula,� in IEE Proceedings D (Control Theory and
Applications), vol. 138, pp. 111�118, IET, 1991. Issue: 2.

[38] R. S. Ali, A. A. Aldair, and A. K. Almousawi, �Design an optimal PID con-
troller using arti�cial bee colony and genetic algorithm for autonomous mo-
bile robot,� International Journal of Computer Applications, vol. 100, no. 16,
pp. 8�16, 2014.

[39] P. B. de Moura Oliveira, �Modern heuristics review for PID control optimiza-
tion: A teaching experiment,� in 2005 international conference on control and
automation, vol. 2, pp. 828�833, IEEE, 2005.

[40] P. �uster and A. Jadlovská, �Tracking trajectory of the mobile robot Khepera II

151

Bibliography

using approaches of arti�cial intelligence,� Acta Electrotechnica et Informatica,
vol. 11, no. 1, pp. 38�43, 2011. Publisher: De Gruyter Open Sp. z oo.

[41] A. Alouache and Q. Wu, �Genetic Algorithms for Trajectory Tracking of Mobile
Robot Based on PID Controller,� in 2018 IEEE 14th International Conference
on Intelligent Computer Communication and Processing (ICCP), pp. 237�241,
IEEE, 2018.

[42] C. Kumar and T. Alwarsamy, �Solution of economic dispatch problem using
di�erential evolution algorithm,� International Journal of Soft Computing and
Engineering, vol. 1, no. 6, pp. 236�241, 2012.

[43] R. Storn and K. Price, �Di�erential evolution�a simple and e�cient heuristic
for global optimization over continuous spaces,� Journal of global optimization,
vol. 11, no. 4, pp. 341�359, 1997.

[44] V. Pano and P. R. Ouyang, �Comparative study of ga, pso, and de for tuning
position domain pid controller,� in 2014 IEEE International Conference on
Robotics and Biomimetics (ROBIO 2014), pp. 1254�1259, IEEE, 2014.

[45] W. Wang, X. Yuan, and J. Zhu, �Automatic PID tuning via di�erential evolu-
tion for quadrotor UAVs trajectory tracking,� in 2016 IEEE Symposium Series
on Computational Intelligence (SSCI), pp. 1�8, IEEE, 2016.

[46] L. Sun and J. Gan, �Researching of two-wheeled self-balancing robot base on
LQR combined with PID,� in 2010 2nd International Workshop on Intelligent
Systems and Applications, pp. 1�5, IEEE, 2010.

[47] A. N. K. Nasir, M. A. Ahmad, and R. R. Ismail, �The control of a highly non-
linear two-wheels balancing robot: A comparative assessment between LQR
and PID-PID control schemes,� World Academy of Science, Engineering and
Technology, vol. 70, pp. 227�232, 2010.

[48] H.-j. Zhang, J.-w. Gong, Y. Jiang, G.-m. Xiong, and H.-y. Chen, �An itera-
tive linear quadratic regulator based trajectory tracking controller for wheeled
mobile robot,� Journal of Zhejiang University SCIENCE C, vol. 13, no. 8,
pp. 593�600, 2012. Publisher: Springer.

[49] A. Abbasi and A. J. Moshayedi, �Trajectory Tracking of Two-Wheeled Mobile
Robots, Using LQR Optimal Control Method, Based On Computational Model
of KHEPERA IV,� Journal of Simulation and Analysis of Novel Technologies
in Mechanical Engineering, vol. 10, pp. 41�50, Jan. 2018. Publisher: Islamic
Azad University, Khomeinishahr Branch.

[50] F. Lin, Z. Lin, and X. Qiu, �LQR controller for car-like robot,� in 2016 35th
Chinese Control Conference (CCC), pp. 2515�2518, July 2016. ISSN: 1934-
1768.

[51] X. Heng, D. Cabecinhas, R. Cunha, C. Silvestre, and X. Qingsong, �A trajec-
tory tracking LQR controller for a quadrotor: Design and experimental eval-
uation,� in TENCON 2015-2015 IEEE Region 10 Conference, pp. 1�7, IEEE,
2015.

152

Bibliography

[52] I. D. Cowling, J. F. Whidborne, and A. K. Cooke, �Optimal trajectory plan-
ning and LQR control for a quadrotor UAV,� in International Conference on
Control, 2006.

[53] Vishal and J. Ohri, �GA tuned LQR and PID controller for aircraft pitch con-
trol,� in 2014 IEEE 6th India International Conference on Power Electronics
(IICPE), pp. 1�6, Dec. 2014. ISSN: 2160-3170.

[54] M. Assahubulkah�, Y. Md. Sam, A. Maseleno, and M. Huda, �LQR Tuning by
Particle Swarm Optimization of Full Car Suspension System,� International
Journal of Engineering & Technology, vol. 7, p. 328, Apr. 2018.

[55] J. Vesterstrom and R. Thomsen, �A comparative study of di�erential evolu-
tion, particle swarm optimization, and evolutionary algorithms on numerical
benchmark problems,� in Proceedings of the 2004 Congress on Evolutionary
Computation (IEEE Cat. No. 04TH8753), vol. 2, pp. 1980�1987, IEEE, 2004.

[56] S. Das and P. N. Suganthan, �Di�erential Evolution: A Survey of the State-of-
the-Art,� IEEE Transactions on Evolutionary Computation, vol. 15, pp. 4�31,
Feb. 2011.

[57] A. K. Qin, V. L. Huang, and P. N. Suganthan, �Di�erential evolution algorithm
with strategy adaptation for global numerical optimization,� IEEE transactions
on Evolutionary Computation, vol. 13, no. 2, pp. 398�417, 2008. Publisher:
IEEE.

[58] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, �Self-adapting
control parameters in di�erential evolution: A comparative study on numerical
benchmark problems,� IEEE transactions on evolutionary computation, vol. 10,
no. 6, pp. 646�657, 2006. Publisher: IEEE.

[59] G. Ermacora, D. Sartori, L. Pei, and W. Yu, �An Evaluation Framework for
the Deployment of Mobile Robots Performing Real-World Indoor Autonomous
Navigation,�

[60] E. Saggini, E. Zereik, M. Bibuli, G. Bruzzone, M. Caccia, and E. Ricco-
magno, �Performance Indices for Evaluation and Comparison of Unmanned
Marine Vehicles' Guidance Systems,� IFAC Proceedings Volumes, vol. 47, no. 3,
pp. 12182�12187, 2014.

[61] N. D. Munoz Ceballos, J. Alejandro, and N. Londono, �Quantitative Perfor-
mance Metrics for Mobile Robots Navigation,� in Mobile Robots Navigation
(A. Barrera, ed.), InTech, Mar. 2010.

[62] G. R. Jensen and S. G. Krantz, eds., 150 years of mathematics at Washing-
ton University in St. Louis: sesquicentennial of mathematics at Washington
University, October 3-5, 2003, Washington University, St. Louis, Missouri.
No. 395 in Contemporary mathematics, Providence, R.I: American Mathe-
matical Society, 2006. OCLC: ocm62408845.

[63] H. B. Pacejka and I. Besselink, Tire and vehicle dynamics. Engineering Auto-
motive engineering, Amsterdam: Elsevier/Butterworth-Heinemann, 3. ed ed.,
2012. OCLC: 796260687.

153

Bibliography

[64] H. Olsson, K. Åström, C. Canudas de Wit, M. Gäfvert, and P. Lischinsky,
�Friction Models and Friction Compensation,� European Journal of Control,
vol. 4, pp. 176�195, Jan. 1998.

[65] D. Rowell, �State-Space Representation of LTI Systems,� MIT - 2.14 Analysis
and Design of Feedback Control Systems, p. 18, 2004.

[66] F. Neri and V. Tirronen, �Recent advances in di�erential evolution: a sur-
vey and experimental analysis,� Arti�cial Intelligence Review, vol. 33, no. 1-2,
pp. 61�106, 2010. Publisher: Springer.

[67] R. Mallipeddi, P. N. Suganthan, Q.-K. Pan, and M. F. Tasgetiren, �Di�erential
evolution algorithm with ensemble of parameters and mutation strategies,�
Applied soft computing, vol. 11, no. 2, pp. 1679�1696, 2011. Publisher: Elsevier.

[68] N. Minorsky, �Directional stability of automatically steered bodies,� Journal
of the American Society for Naval Engineers, vol. 34, no. 2, pp. 280�309, 1922.
Publisher: Wiley Online Library.

154

	Abstract
	List of Figures
	List of Tables
	List of Acronyms
	List of Symbols
	Acknowledgements
	Preface
	Introduction
	Overview of Unmanned Ground Vehicles
	Skid-Steering Control Problem and Contribution
	PID Control Related Work and Contribution
	LQR Control Related Work and Contribution
	Optimisation by Differential Evolution
	Basic Concepts and Formulation
	Comparison Between DE and Contemporary EAs
	Self-Adapting DE Algorithms

	Trajectory Evaluation Metrics

	Mathematical Model
	Mathematical Premises
	Reference Frames
	Euler Angles

	Nonlinear Mathematical Model
	Kinematic Model
	Dynamic Model
	Further Simplifications
	Improved Friction Model
	Wheel Torque Controller

	Linear Mathematical Model
	State-Space Representation

	Experimental Set-up and Model Tuning
	Clearpath Husky
	Physical Properties
	Onboard Computer and Accepted Commands
	Sensor Types and Sensor Fusion

	Indoor Testing Facility
	Robot Operating System (ROS)
	MATLAB Integration

	Simulink Physical Models
	Nonlinear Model with Coulomb Friciton
	Nonlinear Model with the Improved Friction Formulation
	LTI State-Space Model with the Hyperviscous Friction Formulation
	Sensors Noise Model
	External Disturbances
	Models Discretisation

	Differential Evolution for Unknown Parameters Estimation
	Code Properties and Structure
	Sample Trajectories
	Objective Function
	Optimisation of the Nonlinear Model with Coulomb Friction
	Optimisation of the Nonlinear Model with the Improved Friction Formulation
	Optimisation of the LTI State-Space Model with the Hyperviscous Friction Formulation

	Mathematical Models Comparison
	Gazebo Simulator

	Trajectory Tracking Controllers
	Introduction to Trajectory Tracking
	Waypoint Selector Architecture
	Position Error Evaluation Scheme
	Sample Trajectories

	Controllers Integration with ROS
	PID Control
	Introduction to PID Controllers
	PID Control System Architecture
	Tuning via Differential Evolution
	Simulink Results
	Experimental Results

	LQR Controller
	Introduction to LQR Controllers
	LQR Control System Architecture
	Tuning via Differential Evolution
	Simulink Results
	Experimental Results

	Controllers Analysis and Comparison

	Conclusions
	Bibliography

