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Abstract 
 

 

This thesis is part of a collaboration between Politecnico di Torino and Royal 

Melbourne Institute of Technology RMIT. The developed project was carried out at 

the Bundoora East campus in collaboration with THALES Australia and Northrop 

Grumman Corporation. This project aims to analyse the potential integration of 

Facial Expression monitoring within a sensor network to evaluate in real time the 

cognitive state of ATM and one-to-many UAS operators. ATM operators perform a 

safety-critical work in which it is essential that the situation awareness is not lacking 

and the workload is not excessive. Most accidents in the aviation field are due to 

human error so monitoring the cognitive state of the operators would lead to increase 

the efficiency of air traffic and the safety of operations. 

 Currently, the Federal Aviation Authority (FAA) has mandated that remote 

pilots or visual observers are only allowed to operate or command one Unmanned 

Aerial Vehicle (UAV) at any time (14 CFR 107.35), so current UAS operations require 

multiple human operators to manage one UAV, known as ‘many-to-one’ operations. 

This research therefore aims to analyze the possibility of managing multiple UAVs 

with a single operator through a system in which the trusted autonomy is based on a 

bio-sensing network.  

These technologies are also fundamental for the development of Single Pilot 

Operations (SPO), which in recent years have been studied in order to have 

passenger aircrafts with only one pilot. 

The sensor network allows to monitor in real time the operator in order to 

evaluate the cognitive state and adapt the level of automation of the software 

according to the latter. It is composed of several sensors that monitor different 

features in order to give greater reliability. The to date monitored parameters are: 

Breathing Rate, Blink Rate, Visual Entropy, Heart Rate, EEG which are used to 

define a parameter: the workload. The objective of this research is to evaluate a 

potential relationship between workload variation and facial contractions and to form 

the basis for a potential inclusion of Facial Expression monitoring in the sensor 

network. 

FE have been studied for many years to assess emotional state but little research 

has been done so far to assess cognitive state and workload. Through ATM and OTM 

experiments the psycho-physiological response of the operators has been evaluated 

and various types of analysis have been carried out to find correlation between the 

variation of the workload and the physiological response. 

These studies have been carried out in aerospace field for ATM, OTM and SPO 

applications but they can be applied in many other fields such as automotive. 
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Introduction 

This Thesis project has been carried out in collaboration with THALES 

Australia and Northrop Grumman Corporation for the development of 

Psychophysiological-Based Integrity Augmentation (PBIA) systems in Air traffic 

Management (ATM) and One-To-Many (OTM) operations for Unmanned Aircraft 

System (UAS) to fulfil the evolving aircraft certification requirements and future 

goals in aeronautic and defence field. 

The interaction between human and machine has always been a field of strong 

research to support humans, reduce the probability of accidents and optimize 

effectiveness and efficiency of operations. The objective is to have the machine 

perform repetitive operations and thanks to the machine learning and artificial 

intelligence, it is increasingly possible to entrust the machines with the task of 

reasoning. Obviously, however, it is necessary to have the presence of human as a 

supervisor. In particular fields such as Air Traffic Management (ATM) and One-To-

Many (OTM) operations, automation support is essential to increase traffic capacity 

and support human operators in their duties. In fact, the constant growth of air 

traffic has generated an increasing need to support the ATM operators(ATMo) with 

adaptable human-machine interfaces which can reduce their workload so as to 

increase not only the efficiency but also the safety of air traffic. Furthermore in 

recent years the trend towards Single Pilot Operations(SPO) has become more and 

more evident leading to the need to have systems that monitor the pilot during 

operations because it is no longer present the second pilot, this replacement of the 

second pilot by a machine obviously implies the need to create monitoring systems 

that allow a high level of integration and reasoning by the machine itself. 

However, the rapid advancement of the technology has also led to an increase in 

the stress of operators who find themselves operating in a complex work systems in 

which they must adapt their decision making and performance in the face of more 

and more dynamic and ever-changing environments.  

The controllers are responsible for managing different zones like control and 

approach areas in a complex mixture of air traffic from commercial, general, 

corporate, and military aviation. There's no need to point out that their role is vital to 

maintaining air traffic under its jurisdiction in a safe and timely manner. In spite of 

technical improvements in aircraft performance, and ATM facilities and their 

operational betterment, aircraft accidents continue to occur. If Air Traffic 

Management organizations are to meet future demand safely, better models of 

controller workload are needed to manage concurrent task demands, time pressure, 

and tactical constraints that operators are supposed to fulfil. It is known that the 

major cause of air accidents and incidents is the human error, within this category it 

can be said that a large part of these accidents and incidents are attributable to 

negative factors associated with cognitive load, such as fatigue and stress. This 

factors can severely impact pilots, ATMo and OTM operators performance, 

potentially compromising the ability to accomplish their duties thereby representing 

risks to flight safety. It is reported that approximately 80% of all aircraft accidents 

are results of human error. Human error, rather than technical failure, now 

represents the greatest threat to system reliability and safety in socio-technical 

systems like aviation. So the goal is to increase the reliability of the ‘human’ who is 

the main decision-maker and in the future will be more and more helped by 
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machines. For efficient aircraft operations, including flight safety enhancement, 

delay reduction, and fuel usage improvements, the leading agencies in aviation such 

as the Federal Aviation Administration (FAA), International Civil Aviation 

Organization (ICAO), and EUROCONTROL are actively establishing policy and 

criteria governing all aviation activities. Their goals are to improve navigation aids, 

airspace management, ATM and airport operations, emergency aircraft handling and 

human factor aspects.[1]  

The new frontier of human-machine interaction is a human monitoring systems 

which capture and analyze psycho-physiological parameter in real-time like gaze, 

blink-rate, heart-rate, prefrontal lobe oxygenation, brain waves, neuro-physiological 

signals and others. The outcomes of all these sensors are gather to evaluate the 

cognitive states of the operators. Numerous studies carried out on the monitoring of 

these psycho-physiological parameters have demonstrated the potential applicability 

of these systems and the need of further research to better understand the 

physiological responses of operators performing safety-critical operations. [1-12] 

Hence had been developed a Sensor Network composed by many devices that 

communicate with each other to extrapolate the cognitive features of the operator 

instant by instant like mental workload (MWL), attention, situation awareness(SA) 

and fatigue. The workload is the most related to human-machine system adaptation, 

therefore it’s one of the most studied especially in the aerospace field. Workload 

varies as a function of task demands placed on the human operator and the capacity 

of the operator to meet those demands.  For example, research to date has shown that 

the blink rate is one of the most effective measures of mental workload and it has 

been proven to decrease with the growth of MWL. Electroencephalography (EEG), as 

a physiological measure of the momentary functional state of cerebral structures, 

provides information on inattention and high cognitive workload. The real-time 

monitoring will be carried out adopting a combination of wearable and remote devices 

such as eye-tracking systems and face micro-expression detection cameras[13, 14] 

All airlines are pressing for more and more aircraft to be operated at the same 

time, of course, without jeopardising the safety of operations. It is unthinkable to 

create a static model to help controllers because ATM operations are difficult to 

predict because of unexpected traffic increases, severe weather, malfunctioning of 

equipment, and so on. This leads to the need to have high levels of efficiency and 

automation of the ATM facilities.[15] 

As aforementioned, the Air Traffic Management operator (ATMo) can have 

significant variations in workload during the day and it has to be avoided that the 

overall workload raise beyond his capabilities. Additionally, more the oscillation in 

WL is and more the operator could experiment fatigue and stress. New automation 

support features have been studied to create an environment in which human and 

machine work in synergy and the latter adapts to the workload levels perceived by 

the operator so that the human can have a quite constant workload during his 

working day. It is necessary to specify that the level of automation must not be 

unreasonably high because it would lead to a loss of ATMo’s situational awareness. 

Generally, ATMo’s performance in decision making degrades when operational 

complexity increases due to environmental difficulties or unfamiliarity with the 

situation.  

In the field of Human Factor engineering, therefore, great efforts are being made to 

have more and more efficient Human-Machine Interfaces and Interactions (HMI2) 

and in recent years the innovative concept of Cognitive HMI2 (CHMI2) has become 

more and more studied. In the latter the interaction between human and machine is 
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focused on , and managed in function of, the cognitive state of the operator. 

Numerous sensor monitor the operator’s psycho-psysiological parameters such as 

heart activity, gaze patterns, brain evoked potential, EEG/fNIRS, Blink Rate and 

Visual Entropy with the aim of determining in real time the cognitive state of the 

operator and adapt the level of automation, the graphical interface and whatever is 

deemed necessary to optimize the efficiency of the latter and reduce potentially 

disastrous distractions. [12, 16-19] 

All the sensors mentioned above are affected by background noise, measurement 

uncertainties propagation, disturbances and the main issue is that each person is 

different so sensor outcomes are hardly interpretable. Consequently the adoption of 

different sensors which operate in a network is both a natural and necessary 

evolution to effectively exchange, synchronise and process measurement data within 

a customisable operational network architecture composed by multiple monitoring 

devices that can communicate with each other. From this need comes therefore the 

object of this research that integrate in the sensor network a further element: Micro-

Facial Expression Detection and Analysis. [18] 
According to research conducted so far and available in the literature, no studies 

have yet been done on the cognitive states analysis through facial micro-expressions 

(FE). FE have been studied in the psychological field for many years, a close 

relationship between emotions and FE has already been found and demonstrated but 

no research has been done on the relationship between Facial Expressions and 

cognitive load, especially for aerospace purposes in HMI2, CHMI2 in ATM and OTM 

operations. The cognitive state is composed by various vairables and in particular 

this work is focused on Workload evaluation. Needless to say that this study is 

conducted in the aeronautic field but could be applied in a wide range of environment 

like space[18, 20] and automotive, to improve safety and security. [21] 

Figure 1 shows the top level structure of the developed sensor network. 

 

 

 

Figure 1: Sensor Network Structure 
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Following an extensive literature review and in line with the objectives of the 

research project of which this thesis was part, the following research questions have 

been defined: 

 How do the ATM/OTM operator FE vary under different operational 

conditions? 

 Are FE monitored data in accordance with Taskload? 

 Are FE monitored data in accordance with other Sensors recordings? 

 Can the FE monitoring be integrated in the Sensor Network? 

Various models of mental Workload's definition have been evaluated in order to 

choose the model that best reflects the research objectives. The approach to 

experimental verification involves the decomposition of the research questions into 

smaller, individually testable hypotheses each with its own assumptions, conditions 

and theoretical predictions.  

Figure 2 shows the adopted research methodology and the four main objectives of this 

research. Six OTM and one ATM experiments were conducted to assess the 

relationship between FE and Workload. This evaluation can be divided into two main 

approaches: 

 The FE-Workload correlation through objective parameters such as the Taskload 

and the FE-Workload correlation through biometric analysis conducted by the other 

sensors of the sensor network. These evaluation have the goal to evaluate the 

potential ability of the FE to provide useful parameters for workload definition and 

thus evaluate the potential integration of the FE sensing system in the sensor 

network. This integration must consider that each individual has a different 

physiological response to stimuli, which is why the ultimate objective of this research 

is to define an empirical protocol of FE sensing adaptation to the operator. 

 

Figure 2: Research Methodology 
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1 Facial Expressions 

Studies on Facial Expression(FE) and their link to emotional states started over a 

hundred years ago (Darwin, 1872/1998) and the first in-depth study was carried out 

by E. A. Haggard e K. S. Isaacs in 1966 for the analysis of non-verbal behaviour in 

psychotherapy. Based on the work of the Swedish anatomist Carl-Herman Hjortsjö, 

Paul Ekman and Wallace V. Friesen developed one of the most influential methods to 

objectively code facial behaviour in 1978, which was further fine-tuned in 2002. These 

studies have been carried out in the psychological field to understand the bodily 

reactions induced by emotions but in recent years other research had been carried 

out to study the relationships between FE and other non-emotional aspects such as 

frustration and cognitive states. It is essential to point out that what are called Facial 

Expressions tend to be voluntary and easily visible because they are part of non-

verbal communication. When human beings relate to themselves they use them 

consciously such as smiling end winking. The Facial Micro-Expressions (FME) are 

different, they are involuntary and generally are unaware contractions of the facial 

muscles. The magnitude of muscle contraction is very small so only a careful and 

trained eye can perceive them or, as in our case, a specific software which uses image 

processing algorithms and a high-resolution camera. MFEs reveal unconscious 

aspects of which the subject is sometimes not even aware or does not want to show 

through the so-called lapses. For this reason, MFEs are also used to discover lies. 

[22]. 

It is also important to note that mood and emotion are different states. The mood 

is an emotional state that can last up to hours or days whereas the emotion can last 

even a few milliseconds such as a shock or disgust for an image that we have seen.  

Ekman's neurocultural theory defines basic emotions, genetically determined, 

universally diffused and distinct from each other on a physiological and psychological 

level: anger, fear, disgust, contempt, joy, sadness, surprise. Each would have a 

particular pattern of facial behaviour, conscious experience, physiological basis and 

cognitive functions. For this reason, the meaning of facial expression would not 

change depending on the context in which it is perceived. It has also been 

demonstrated that in different groups of subjects belonging to very different cultural 

environments there are the same mimic patterns for the expression of emotions and 

the process of decoding presents a wide margin of homogeneity in different cultures. 

[23] 

Our face is one of the most complex signal systems available to us. It includes 

over 40 structurally and functionally autonomous muscles which can be triggered 

independently of each other. The facial muscular system is the only place in our body 

where muscles are not only attached to the bone and facial tissue (other muscles in 

the human body connect to two bones) but also to facial tissue only such as the 

muscle surrounding eyes or lips. This makes the facial movements more 

unpredictable and ‘noisy’ because they don’t generate a physical displacement of 

another bone (for example, contraction of the biceps that acting on humerus and 

radius/ulna generates the flexion of the forearm in a controlled, geometrically 

determinable and easily repeatable way). 

Humans are able to produce thousands of slightly varying sets of facial expressions – 

however, there is only a small set of distinctive facial configurations that almost 

everyone associates with certain emotions, irrespective of gender, age, cultural 

background and socialization history. 
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The Facial Action Coding System (FACS; Ekman & Friesen, 1978; Ekman, Friesen, & 

Hager, 2002) represents a fully standardized classification system of facial 

expressions based on anatomic features. FACS itself is descriptive and includes no 

emotion-specified descriptors. Hypotheses and inferences about the emotional 

meaning of facial actions are extrinsic to FACS. Furthermore, FACS is the most 

comprehensive, psychometrically rigorous, and widely used method of Facial 

expressions in which they are a combination of elementary components called Action 

Units (AUs). AUs are anatomically related to the contractions of specific facial 

muscles and they are identified by a number (AU1, AU2, etc.). All facial expressions 

can be broken down into their constituent AUs. Assumed that facial expressions are 

“words”, AUs are the “letters” that make up those words. Figure 3 shows the main 

AUs that are used in facial expression detection software. 

 

 

Figure 3: FACS Action Units 

 

AUs can occur either singly or in combination. When AUs occur in combination 

they may be additive, in which the appearance of each action unit is independent or 

non-additive, in which they modify each other’s appearance. An example of an 

additive combination in FACS is AU1+AU2, which often occurs in surprise. An 

example of a non-additive combination is AU1+AU4. 

An applicable approach is the frequency of co-occurrence i.e. assessing the AUs 

that usually appear together as a single event. Analyses made from past research on 
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reliability for occurrence/non-occurrence ([24]) are reported in the Experiments 

Chapter  and they have been used to define the adopted data filter. It also addresses 

the problem that some action units may linger and merge into the background(ex. 

slight but persistent presence of AU12) or can be permanent or transient. 

Examples of permanent features are the lips, eyes, and any furrows that have 

become permanent with age. Transient features include facial lines and furrows that 

are not present in a neutral face but appear with facial expressions. Thanks to the 

Action Unit coding three categories can be defined: 

 Macro-expressions or Facial Expressions: typically last between 0.5 - 

4 seconds, they can be easily seen and occur in daily interactions. 

 Micro-expressions last less than half a second, occur when trying to 

consciously or unconsciously conceal or repress the current emotional 

state.  
 Subtle expressions: associated with the intensity and depth of the 

underlying emotion. Unlike micro-expressions, they are associated with 

the intensity of the emotion that is occurring and not with the length of 

time that they occur, the intensity of these facial actions constantly varies. 

Subtle expressions denote any onset of a facial expression where the 

intensity of the associated emotion is still considered low.  

 

Because of its importance to the study of emotion, and recently cognitive states, 

several observer-based systems of facial expression measurement have been 

developed.  

Usually, many facial expression recognition software, don't capture all the AUs 

because of the non-additive property which can lead to measurement uncertainties or 

errors. For example, especially in our case, it is better to have the AUs related to lid 

and brow (AU1-AU7) clearly defined and don’t capture AU41-46 (squint, blink, wink) 

which are very similar and capture them with a specific eye-tracking sensor. In fact, 

as it will be detailed below, the adopted software does not give the possibility to 

monitor all the AU but the main and universally recognized in other coding systems 

and that still allow to make a complete analysis. It can therefore be summarized as 

follows: 

 Facial behaviour occurs not continuously but rather as episodes (events) 

that typically manifest themselves as discrete events. 

 Action units that occur together are related in some way and form an 

event. AU 1+2+5 is an example of action units that frequently co-occur. 

 The consequence of dimensional accounts is that linear transitions from 

one expression to another will be accompanied by characteristic changes in 

identification. Any transition between expressions lying at opposite points 

in the emotion space will need to pass through a neutral expression. For 

example, a transition from a happy face to an angry face will need to pass 

through a neutral face. Whereas transitions between expressions which do 

not involve entering the region of another emotion can be relatively 

abrupt.[25] 

 

It’s therefore evident that many studies have already been done on the relationship 

between MFE and emotions and very few on cognitive states. Some efforts have been 

made but they are limited to empirical and conceptual analysis and they are not 

satisfactory and useful in the engineering field. For this reason, in order to analyse 

the relationship between MFE and cognitive state, the first approach adopted is to 
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study the AUs that come together during an emotional state and then relate these 

AUs events to a particular cognitive state. In Figure 4 and Figure 5 are and reported 

the AUs related to emotional states ([26]). 

 

 

Figure 4: Action Units and Emotions 1.1[26] 
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Figure 5: Action Units and Emotions 1.2[26] 
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It can be seen that there are not only reported the 7 primary emotions but also 

the secondary ones which can be defined as primary ones strained by personal 

experience. In fact, personal experience has a key role in the cognitive state. Gross 

proposed five emotional regulation strategies and one of them is ([5]):  

 

‘Cognitive change means change the understanding of emotional events and the cognition 

of the personal significance of the emotional time’ 

 

From the literature review carried out, the key contents that have been selected 

as a starting point to analyse the data and achieve the purpose of the research are 

reported [27-32]: 

 Numerous studies of the correlations between facial expressions and learner 

emotions have identified a link between confusion and AU4, which is the 

“Brow Lowerer” movement. Thus, confusion may function as an essential 

intermediary state on the path of deep learning. 

 Flow e Confusion are strictly related to problem-solving.   

 Positive emotional expressions: AU 12 had to receive a lower intensity rating 

(2 to 5) if it co-occurred with AU 6, whilst AU 12 had to receive a bit higher 

rating (3 to 5) if it doesn’t appear with AU 6.  

 AU 23 and AU 24 are both controlled by the same muscle and co-occur 

frequently. 

 Negative emotional expressions were defined by the absence of AU 12 and the 

presence of at least one of the following AUs: 1+4(pulling the medial portion of 

the eyebrows upwards and together), 9, 10, unilateral 14, 15 and 20.  

 

But not all the negative emotions generate a reduction in cognitive state. For 

example, certain negative emotions, such as confusion, can have a beneficial effect 

because when the subject experiences a state of confusion he/she becomes aware of 

the extent of the problem and start to think in order to resolve troublesome impasses. 

The effectiveness of problem-solving in promoting learning at deeper levels of 

comprehension can also be attributed to the deployment of key cognitive and meta-

cognitive processing: 

 

 happiness and delight when tasks are completed 

 eureka moments when challenges are unveiled and major discoveries 

are made, and flow-like states when they are so engaged in problem 

solving that time and fatigue disappear. 

 

Figure 6 briefly explain what these emotions mean. 
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Figure 6: Definition of affective states[33] 

 
 

According to the experiments available in the literature only some emotions can 

be related to cognitive load.[34] 

These emotions don’t occur in the same frequency during cognitive load tests. 

Figure 7 shows that boredom, confusion, curiosity and frustration appear more 

frequently instead sporadic emotions are anxiety and happiness. Finally, the other 

emotions like anger, contempt, disgust, eureka, fear, sadness and surprise appear in 

exceptional cases and they can’t be strictly related to a specific cognitive load.  

 

Figure 7: Frequency of appearance of emotions[33] 
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N is the number of students that experienced the state at least once. P is the 

proportion of students that experienced the state at least once. So the 90% of the 

subjects has experienced the first 4 emotions. 

Furthermore anger, anxiety, boredom, confusion, curiosity, disgust and 

frustration are the more persistent emotions. Persistence means how much an 

emotion that occurs at an instant t persists even at an instant t+1 during a cognitive 

effort. 

Boredom is a state that is alleviated when a new problem is presented. On the 

other hand, confusion and curiosity are most frequently observed in the midst of 

problem-solving, followed by the presentation of a new problem. Frustration and 

happiness are another pair of affective states with similar occurrence patterns and 

rarely occurred during the process of deriving a solution to the problem. These 

affective states seem to be complementary to confusion and curiosity in that they 

occur after the resolution has been reached. Consequently, confusion and curiosity 

appear to be related to the problem-solving process, while frustration and happiness 

are related to the problem-solving outcome (or product). Furthermore, boredom 

induces shorter response time unlike confusion.  

Some research on frustration has proved useful data [35]. In fact, this emotional state 

can be strictly related to the alteration of a cognitive process, triggering negative 

effects, especially with regard to workload or attention. Reducing frustration during 

the performance of ATC tasks is an important step towards improving Ait Traffic 

safety. 

Studies from Human Computer Interaction (HCI) linked frustration to increased 

facial muscle movement in the eye brow and mouth area([30, 35, 36]). 

In addition, a recent study investigating facial activity of frustrated drivers found 

that muscles in the mouth region (e.g., tightening and pressing of lips) were more 

activated when participants were frustrated compared to a neutral affective state. 

The 5 most frequent AU during cognitive efforts in which appear frustration and 

learning gains are AUs 1, 2, 4, 7, and 14. Upper face movements are predictive of 

learning, engagement and frustration while mouth dimpling is a positive predictor of 

learning and self-reported performance. 

In general, it can be said that AU1 (inner brow raising) and AU2 (outer brow 

raising) are related to frustration, whilst AU4 (brow lowering) and AU7 (eyelid 

tightening) are related to confusion. It’s further necessary to say that AU4 introduces 

a conflicting movement of the brow that may impact the detection of the expression.  

The correlations found between AUs and frustration are now listed in summary 

form: 

 Brow lowering (average) intensity (AU4) positive predict frustration. AU4 

has been correlated with confusion in prior research [37] and interpreted 

as a thoughtful state in other research [27, 38]. 

 A lesser sense of being hurried or rushed is predicted by a reduction of the 

AU2 frequency. 

 Action Unit 14 (mouth dimpling) was positively correlated with both 

frustration and learning gain. [39] [35] and performance is positively 

predicted by AU14 frequency. 

 AU2 frequency and intensity is a positive predictor of frustration 

It can be deduced that AU4 and/or AU14 better represent a thoughtful and 

contemplative state. [38] 
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2 State of the Art: The relation between 

Human and Machine 

In this chapter will be explained the starting point for understanding the 

interaction between human and machine to create a global view of the problem that 

will be analysed and provide the necessary awareness to understand all aspects to be 

taken into account in a human-machine interface.  

The interaction between man and machine has been studied for many years and 

while on one hand, it is easy to predict the response of a machine and change it in 

function of needs, on the other hand, it is very difficult to model the response of man 

that is very complex and unpredictable. 

Many efforts have been made so far and researches continue to be carried out on 

human cognitive processes because the dozens of factors involved make it very 

difficult to predict the responses of human behaviour and, above all, it is often not 

even easy to monitor them because they are affected by disturbances especially if 

monitored by wearable sensors.  For this reason, this research work has been focused 

on facial micro-expressions, a rapidly developing field in which many types of 

research have been carried out in the psychological field since the seventies, but in 

the aerospace engineering field, no FE cognitive analysis has been carried out so far. 

One of the great advantages of facial micro-expressions is that it has been shown that 

they can be catalogued and assumed to be constant with age, ethnicity, cultural and 

social spheres. Therefore FE monitoring can be performed using non-wearable 

sensors, which are therefore less affected by disturbances and, above all, they do not 

bother the operator both physically and cognitively. 

An important aspect of the interaction between man and machine is that as much 

as possible the machine must adapt to man and not vice versa. Asking an ATMo with 

years of experience to change its habits or to wear monitoring equipment could lead 

to an increase in stress (distress not eustress) of the latter and thus go against what 

is the objective of monitoring. So another potential winning aspect emerges, the 

hardware required for monitoring is very simple and economical because a simply 

camera is required.  

Now the real evaluated scenarios will be presented, such as ATM, SPO, OTM to 

figure out the research study approach. 

Controlled airspace is divided into sectors. An en-route sector is a region of airspace 

that is typically situated at least 48 kilometres far from an airport for which an 

associated ATCo has responsibility. ATCos have to accept aircraft into their sector; 

check aircraft; issue instructions, clearances, and advice to pilots; and hand aircraft 

off to adjacent sectors or airports. The radar screen displays characteristics of the 

sector (e.g., boundaries and airways), the spatial position of aircraft, and vital flight 

information (identifiers, altitude, speed, flight destination). When the aircraft leaves 

the airspace assigned to the ATCo, control of the aircraft passes on to ATCo 

controlling the next sector (or to the tower ATCo). As is typical in many real-world 

complex systems, this environment imposes multiple concurrent demands on the 

operator.[13]  One goal of workload modelling is to allow ATC providers to predict 

workload levels ahead of time in order to allow them to adopt workload management 

strategies. For example, this may include splitting a sector or introducing flow 

restrictions. However, to date, dynamic density metrics have been unable to 
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accurately predict ATCo workload ahead of time (Kopardekar & Magyarits, 2003; 

Majumdar & Ochieng, 2002; Masalonis, Callaham, & Wanke, 2003).  

It can therefore be deduced that the task demand is very much linked to the 

workload, thereafter will be explained how workload could be assumed as a number 

of task function. 

Currently in commercial transport the flight crew is composed of a Pilot Flying 

(PF) and a Pilot Non-Flying (PNF). The presence of both has always been considered 

fundamental because in case of distraction, fatigue or illness of one of the two, the 

second can intervene both in flight and on the ground. In this way, what can be called 

'shared between human responsibility' has always been guaranteed the safety of air 

traffic. The new frontier is to eliminate one of these two crucial elements and this 

obviously requires a great deal of effort to be able to guarantee the same level of 

safety supporting enhanced synergies between the human and the avionics systems. 

These synergies yield significant improvements in the overall performance and safety 

levels.  In this way the primary duty of the single on board pilot (PF) is still 

controlling the aircraft. It is necessary to point out that this would involve not only 

assisting the human more while is flying but also on the ground because also the 

Airline Operations Centre (AOC) should manage more tasks. 

In case of emergency, AOC operators upgrade their roles to ground-based first 

officers, who assist the on board pilot by real-time voice coordination with the FD and 

control of the aircraft through the HMI2 in the ground workstation. A novel 

Cognitive Pilot-Aircraft Interface (CPAI) concept, which introduces adaptive 

knowledge-based system functionalities to assist single pilots in the accomplishment 

of mission-essential and safety-critical tasks in modern commercial transport 

aircraft. The CPAI working process is subdivided in three separate stages: sensing, 

estimation and reconfiguration. The level of automation can be adapted based on the 

operator’s workload monitored on real-time detection of the pilot’s physiological and 

cognitive states allowing the avoidance of pilot errors and supporting enhanced 

synergies between the human and the avionics systems. Moreover, it is not only 

important the system adaptation but also the alerting system because an alone pilot 

in an alerting situation could react in an unsafe way if alerting system saturates 

his/her cognitive and stress management skills. 

Consequently, the transition to SPO require substantial increases in automation 

support both in the flight deck and on the ground as well as significant changes in 

the roles and responsibilities of pilots and Air Traffic Management (ATM) operators. 

Suitable mathematical models are introduced to estimate the mental demand 

associated to each piloting task and to assess the pilot cognitive states.  

 In particular, the primary duties of pilots are progressively shifting towards 

supervisory roles, intervening only when necessary. 

“The consensus among research and operational communities is that it is important to understand the 

factors that drive mental workload if they are to improve airspace capacity .” 

(Christien, Benkouar, Chaboud, & Loubieres, 2003; Majumdar, Ochieng, McAuley, Lenzi, & Lepadatu, 

2004).  

Subsequently, the so far carried out studies on cognitive states analysis with 

wearable and remote sensors will be presented.  
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2.1 Human Machine Interface Interaction 

Adaptive Human-Machine Interfaces and Interactions (HMI2) are closed-loop cyber-

physical systems comprising a network of sensors measuring human, environmental 

and mission parameters, in conjunction with suitable software for adapting the HMI2 

(command, control and display functions) in response to these real-time 

measurements. [40, 41] 

According to what has been said so far, it is clearly deductible that a real-time 

monitoring is necessary to take into consideration the dynamic variations in cognitive 

task loads. Cognitive HMI2 are a particular subclass of HMI2 systems, which support 

dynamic HMI2 adaptations based on the user’s cognitive state. Therefore, it is 

necessary that the System can independently decipher the cognitive signals and 

adapt its level of automation. At this point, it is necessary to make a brief incision on 

two concepts: Automation and Autonomy.  

Automation is the ability of a system to perform well-defined tasks without human 

intervention using a fixed set of “hard-coded” rules/algorithms to produce predictable, 

deterministic results. The automated tasks may be sub-tasks of a larger activity that 

involves human intervention—in which case, the overall activity is only partially 

automated to a lesser or greater degree. [3, 42] 

Autonomy is the ability of a system to perform tasks without human intervention 

using methods, usually emergent, that arise from its interaction with the external 

environment. Such behaviours include reasoning, problem solving, goal-setting, self-

adaptation/organisation, and machine learning, and may not be deterministic. In our 

context, the degree of autonomy exhibited by the system has to be dynamically 

variable. 

Autonomous systems are distinguished from highly automated systems by their 

ability to respond to the environment and adapt their behaviour without being 

explicitly programmed to do it. Being non-algorithmic, they are often implemented 

using heuristics and non-deterministic AI techniques such as machine learning , deep 

neural networks, fuzzy logic, and genetic algorithms.  

 

 

Table 1: Automation and Autonomy feature ([43]) 
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During the development of a closed loop monitoring system it is important to consider 

some key aspects for a correct evaluation of the parameters: 

 Distinction and characterization between normal and atypical operations. 

 Qualitative and quantitative model for the definition of biometric parameters 

such as attention, mental workload, fatigue for: 

o Support real-time decision-making in high-stress dynamic conditions 

o Dynamic reallocation of functions between humans and machines 

 Definition of a graphic interface that makes the operator aware of the level of 

automation of the software so the human knows what the software is doing. 

Therefore, an important aspect is not only to help the operator adapting the level of 

automation but also to make him aware of the levels of workload, fatigue and 

situation awareness because often humans are not aware of what they are 

experiencing so, for example, if they are affected by a lack in situation awareness, 

making them aware about it can already go to solve the partially situation without 

necessarily having to increase or adapt too much the autonomy of the software.[44, 45]  

Current HMI2 are static, obviously represent an important help for the operator but 

given the future forecasts of the evolution of the aeronautical and aerospace field  

these new roles require a corresponding evolution in the HMI2. Additionally, as part 

of the Technology Horizons project, the United States (US) Air Force identified that 

natural human capacities and advanced technologies become increasingly 

mismatched and humans will be the weakest component in the generalised processes 

and systems by 2030. [12]  

 Developments in wearable and remote sensing technologies led to the development of 

sensors with a high enough reliability to be implemented in a sensor network and 

they are now a strong object of study. [2] 

The switch from static HMI2 to CHMI2 is therefore a necessary consequence. 

Furthermore the cognitive state is the set of all those factors that can be considered 

also closely related to the emotional state. For this reason the research conducted so 

far on detecting the emotional state through MFE had been used as a starting point.  

 

2.2 CHMI2 architecture 

For the determination of the cognitive state, many factors must be taken into 

account, both personal factors related to the emotional state and objective ones such 

as the task load. The final objective is to determine the cognitive load of the operator 

that in the simplest and most intuitive form can be defined as: 

                          (2.1) 

It is a function of: Mental Workload or Workload (WL) as explained in the 

following chapter, Attention (A), Situation Awareness (SA), Fatigue (Fa) ,Frustration 

(Fr), Emotional state (E) and Env which is the environment that obviously plays also 

a key role. This research is focused on the evaluation of Workload, we have taken into 

account the environment as a source of possible measurement errors by the sensors 

without considering its influence on the cognitive load. 

Two ways of analysis have been pursued, the first is the evaluation of cognitive 

state through the Workload using objective parameters such as Taskload or number 

of aircraft, the second is the evaluation of cognitive state through biometric 
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evaluations of the sensors that make up the sensor network referring to studies 

carried out by us and available in the literature. 

It is therefore essential to perform a Task Analysis to highlight the number and 

difficulty of tasks during the execution of operations. Kirwan and Ainsworth’s A 

Guide to Task Analysis (Kirwan and Ainsworth 1992) provides a good reference on 

performing a task analysis. The types of Task Analysis are now briefly presented, 

which will be taken up later in Experiments Chapter 

 

2.2.1 Tasks Analysis  

Tasks Analysis (TA) is a necessary and fundamental procedure to define the 

workload of the operator and therefore to understand how to develop the software 

interface, the Level of Automation (LOA) and then how to implement the monitoring 

carried out by the sensor network and its influence on the system. The first step to 

write a TA is to allocate tasks in a list according to their level of criticality through 

Hierarchical Task Analysis (HTA). 

The HTA is a means of systematically defining tasks and functions from the 

user's perspective to organize them in a hierarchal manner. 

Task procedures can be summarized in three levels: 

 User level: it's the top level task referred to what the operator has to do 

without defining yet how and when to do it. 

 Platform level: are the procedures imposed by the interface. Obviously the 

interface must be created in such a way to make intuitive and ergonomic 

the execution of tasks (click, pull-down menus, typing). This level is also 

generic in that many different high-level goals can be accomplished using 

various combinations of low-level procedures. 

 Application level: this is the level that have the greatest impact. The 

development of the system determines what information are shown on the 

screen and which are more or less visible so how the operator performs the 

low-level interface procedures to accomplish top-level goals.  

The Hierarchal task analysis can therefore summarized as follow: 

1. Identify goals 

2. List the step that the operator have to perform to accomplish goals 

3. Improve the procedures(sequence of steps) 

Block diagrams are commonly used to represent the top-down relationships between 

objectives and tasks. 

Top-level objectives are decomposed into lower-level sub-objectives, which can 

themselves be decomposed into lower-level tasks and subtasks. A task is usually 

broken down into the sequence of actions that need to be performed to accomplish it 

in a systematic and sequential manner. The sequence of actions that is created to 

perform a task can be evaluated in a more or less coarse way depending on key 

factors such as complexity or criticality of the task, the impact of a particular design 

on the human-machine interaction or the risk of human error. 

The drafting of the task hierarchy allows to have a first workload estimation. [46]  

Subsequently, the tasks must also be evaluated according to their criticality so 

their impact on the safety of operations, this analysis is carried out through what is 

called Critical Task Analysis (CTA). 
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A CTA is specified by the Federal Aviation Authority (FAA) as an approach for 

evaluating the human factors involved in mission-critical tasks when 

designing/implementing a system. CTA involves the application of task analysis 

techniques to tasks critical to safety, integrity, and environment, to facilitate the 

identification of uncontrolled or poorly controlled error risk. Identifying critical tasks 

is the key to deciding when the operator has to be more monitored and setting the 

thresholds of software autonomy. The process of critical task analysis is similar to 

cognitive task analysis, tasks are represented through tables or diagrams to show 

which are most affected by performance-influencing factors and to improve the 

awareness of failure modes. This analysis is done a priori before developing a system 

and then verified with the aim of improve performance and minimize risk. Figure 1 

shows what are the key parameters to consider when performing a CTA. 

 

 

Figure 8: Content requirements for a Critical Tasks Analysis Report 

 

2.2.2 Cognitive Task Analysis 

The greater the number and complexity of tasks, the greater the importance of 

understanding what is the mental process that must be implemented to perform a 

task. As previously mentioned the experience plays a key role and also the training 

because for example in air traffic control the operator knows specific procedures to be 

implemented to perform tasks but when the tasks repetitiveness is excessive a 

reduction of the situation awareness occurs or on the contrary when a new problem 

happen this leads to a sudden increase of workload because the process of 

understanding the problem and determining the solution requires more effort. In 
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fact, in the following chapters it will be explained in detail what is meant by 

workload as a variable that also takes into account the cognitive effort required to 

perform a task. It’s necessary to point out that a key factor is not only the number of 

tasks but also how much memory is required from the operator (information that the 

operator must keep in mind) and the process of understanding and processing a 

solution. 

This analysis can start with a list of activities, such as one obtained from a gross 

task analysis (Miller 1953), which describes the top-level tasks, relevant sub-tasks 

and user control actions. This list is developed with the aim of defining the operator's 

mental process by understanding the succession of information managed to 

determine a decision-making strategy. This approach is also useful to determine the 

requirements specifications that can be used to define or improve the software 

interface at platform level and application level. 

One of the outputs of the cognitive task analysis is the decision ladder 

(Rasmussen 1976), describing the information processing activities involved at each 

stage of the decision process.  

The cognitive task analysis is ultimately used to drive the systems-level definition 

of the related human factors requirements. 

Once the tasks list has been drawn up and the cognitive tasks analysis has been 

carried out, the interaction between Human and machine must be specifically 

evaluated in order to define the decision authority shared between both the human 

operator and automated system. Obviously the objective is that the tasks are carried 

out safely and efficiently at any level of complexity required.  

Endsley (1987) developed a LOA hierarchy in the context of the use of expert 

systems to supplement human decision making. This list has been developed 

precisely those operating environments in which a system provides information to an 

operator who has to perform certain tasks at the established automation level. There 

is therefore an interaction between Human and machine on four domains that can be 

performed to different degrees by human or software: Monitoring, Generating, 

Selecting, Implementing. The first stipulated list was composed of five levels and was 

later expanded to 10 to better consider psychomotor tasks required during real-time 

control, aircraft piloting, advanced manufacturing and tele-operations. ([47]). The 10 

levels of automation are therefore presented: 

 

Monitoring (M), Generating(G), Selecting(S), Implementing(I) 

I. Manual Control (MC): The operator performs all tasks M,G,S and I so the 

level of automation is null.  

II. Action Support (AS): The operator is assisted by the system only for certain 

operations such as M and I while human control actions are required for G 

and S. 

III. Batch Processing (BP): the human generates and selects the options to be 

performed and they are autonomously carried out by the system(automated 

implementation). 

IV. Shared Control (SHC): is the first level where even the system generates 

possible decision options and the operator can select one of them or generate 

his or her own options. The selecting role is still fully carried out by the 

Human. 

V. Decision Support (DS): From this level the implementation is carried out by 

the system. This is the typical level that characterizes the  decision support 
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systems that provide option guidance which can selected or not by the 

operator. 

VI. Blended Decision Making (BDM): Is the first level where also the selecting 

is partly done by the computer and the operator can approve the generated 

selected option or select others from a list generated by the system. 

VII. Rigid System (RS):  This level is representative of a system that presents 

only a limited set of actions to the operator. The operator’ s role is to select 

from among this set. 

VIII. Automated Decision Making (ADM): From this level also the selecting role 

is carried out by the system which selects the best option to implement. 

Represents the autonomous decision making. 

IX. Supervisory Control (SC): At this level the system generates options, selects 

the option to implement and carries out that action. As the name of the level 

says, the Human is only supervisor. From this level on, in particular, problems 

may arise in reducing situation awareness and therefore the need for 

monitoring the cognitive state. 

X. Full Automation (FA): this level, the system carries out all actions. Also the 

monitoring is done by the computer and the human can not intervene so it is 

completely out of the control loop. This level is used in systems where errors 

do not compromise safety and therefore human processing is not deemed to be 

necessary. 

As previously mentioned, the level of automation must be chosen with care and 

adapted not only to the number and difficulty of tasks but also to the type of person 

because a too high level of automation could lead to boredom phenomena and 

therefore a reduction in arousal that greatly affects performance.  

A dynamic tasks allocation based on a continuous assessment of the human 

cognitive states and the estimated task mental demand associated with 

environmental and operational conditions is therefore needed. 

The tasks allocation has also to take into account the environmental and 

operational external conditions such as, in ATM and airlines constraints aircraft 

velocity, position and attitude. All of them affect the human performance 

significantly so the CHMI2 shall consider these parameters in real time with a very 

short delay time between appearance and system response. 

The relationship between performance and arousal levels was first described by 

Yerkes and Dodson (1908), in what is now called the Yerkes-Dodson law, showed in 

Figure 9. It states that a high level of arousal can enhance performance on an easy 

task, but on a difficult task performance is an inverted U-shaped function of arousal 

the more difficult the task is, the lower the arousal level at which performance peaks. 

([48]) At the same time an excessive arousal leads to a reduction in situation 

awareness so a decrease in the number of monitored cues.  
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Figure 9: Yerkes-Dodson law 

 

A CHMI2 system must therefore monitor in real time the human physiological 

and cognitive states in order to adapt the automation level to reach three main goals: 

minimise the cognitive load of the human operator, enhance the situational 

awareness of the human operator, minimise reliance on human memory for any task 

and system operating procedure. In case of unsatisfactory performance, the system 

must warn the operator providing caution or warnings. Therefore, a CHMI2 system 

can monitor the Human-environment situation awareness between the operator and 

the tasks he/she has to perform and at the same time provide Human-Human 

situation awareness and make the operator aware on his/her cognitive state through 

warnings. 

Traditional alerting involves visual and auditory cues and usually the forms of 

alerting are fixed. However, studies in this regard have shown that stressed 

individual tends to focus more on solving a task that he or she considers a priority 

and neglects to attend to other important information or tasks. This phenomenon is 

called Attention Tunnelling and usually even if people are very experienced and 

trained can not realize that they have entered into this condition and may not even 

notice the warnings or alerts that are presented because they are used to those 

modes. So adaptive alerting can be designed to prevent such occurrences. Typically, 

people cannot avoid or solve this and similar problems by themselves so adaptive 

alerting can be designed to prevent such occurrences; for example integrating haptic 

cues. 

Once defined the mode of evaluation of the cognitive state and the levels of 

automation of a system, the CMHI2 design requirements are now analyzed.  

During the monitoring of physiological and cognitive states in real time the main 

goal is to minimize the cognitive load of the human operator and enhance the 

situational awareness. The key aspects to accomplish this goals are:  

 minimize reliance on human memory for any task and system operating 

procedure; 

 clear features and unambiguous display formats and functions of system 

modes and sub-modes 

Moreover, being aware that these technologies will continue to evolve and must 

be adapted to the environment in which they are applied, it is essential to structure 
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the system with a modular architecture allowing the accommodation of additional 

input parameters, cognitive state variables, new formats and functions. 

It is therefore clear that the process of using a sensor network for monitoring 

physiological features is developed starting from the detection of biometric 

parameters to estimate the cognitive state and then take measures to correct the 

level of automation or warning according to a defined model. The purpose of this 

analysis is not to define the mode of adaptation of the software so we focused on the 

previous steps, from sensing to the definition of cognitive states and in particular the 

workload.  

The typical structure of a CHMI2 system is now presented, which can be divided 

into three layers: sensing, cognitive states estimation and adaptation. [17] [16]   

 Sensing: retrieves environmental/operational observables and biometric 
measurable. This level can be divided into actual sensing in which numerous 

sensors detect parameters such as blink ratio, brain frequencies or Facial 

Expression and extraction in which the raw detected data are processed to 

identify and extract meaningful variables. 

  Cognitive states estimation: In this layer the sensor data are interpreted to 

define the cognitive states in real time. This layer is the one on which this 

research has focused, in which the relationship between the data collected by 

the sensors has been analyzed to verify the possible integration of FE in the 

network. 

 Adaptation: the integration of the sensor network in the system to close the 

loop and modify the system interface on the estimation of the cognitive state 

made in the classification layer to optimize the human-machine teaming 

effectiveness. It can be made by simple haptic alerts, triggered by excess or 

undesirable cognitive states, or can involve in more complex interactions 

where adaptive levels of decision support and assistance is rendered to the 

operator through well-defined decision logics. 

 

Figure 10: CHMI2 structure 
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3 The Sensing layer 

The first task of the system is performed by the sensing layer that monitors in real 

time the operator’s various parameters. The sensing layer comprises the hardware 

(sensors and systems) for acquiring the data as well as the software to pre-process 

the data.  

Rubio’s list of criteria is commonly used to evaluate the suitability of the measured 

parameters: 

 Sensitivity: the ability of the parameter to detect changes in the operator’s 

cognitive states. 

 Diagnosticity: the ability of the parameter to discern the reason for the 

changes in these states. 

 Selectivity: the sensitivity of the parameter in relation to a particular state 

(i.e. a parameter which is sensitive to changes in multiple cognitive states is 

not selective). 

 Intrusiveness: the required amount of interference imposed on the operator to 

obtain the parameter. 

 Reliability: the consistency of the parameter in reflecting the cognitive state of 

the operator. 

 Implementation requirements: the time, hardware and software requirements 

for identifying the parameter. 

 

Sensors can be divided into two main categories, wearable and remote sensors. 

The first ones require the operator to wear the sensor and this generates positive and 

negative aspects. Wearable sensors allow the biometric parameters of the operator to 

be directly observed. However, they can also induce a sense of discomfort or unease, 

thereby resulting in potentially corrupted measurements. 

This aspect is essential because monitoring has not to lead to a counterproductive 

aspect such as increased frustration or reduced comfort that could severely affect 

cognitive states. Remote sensors such as the Gazepoint GP3 and Open Face have the 

great advantage that they are transparent to the operator that is not aware of being 

monitored, the negative side is that during the execution of tasks the operator can 

rotate the head or generally move the body over the sensors field of view. Eye 

tracking data and observations on the operator behavior and facial expression are 

particularly important to develop the specific CHMI2 knowledge base.  

These aspects, in relation to Open Face, will be discussed in Performance 

evaluation chapter. Wearable sensor are now presented. 

 

 

 

 

 

 

 



24 

 

3.1 Cardiorespiratory sensor 

The monitoring of cardiorespiratory parameters has been conducted using the Zephyr 

Bioharness 3 showed in Figure 11. 

 

Figure 11: Zephyr Bioharness 3 

 

Two devices are installed on the side strap: the Heart Rate and Breathing Rate 

sensor. The raw monitored data are stored in a internal memory or can be 

transmitted to an external receiver to allow the real time evaluation without using 

uncomfortable cables. Further processing is performed to extract the 

cardiorespiratory features. This device allows to monitor a large number of data such 

as: inter-beat interval RR, Heart Rate HR, Standard deviation of NN intervals, Root 

Mean Square of Successive NN Differences, Percentage of successive NN pairs that 

differ by more than x milliseconds, Low Frequency component of HRV, High 

Frequency component of HRV, Minor axis of Poincaré plot(SD1), Major axis of 

Poincaré plot(SD2). It is necessary to note that this sensor has been designed for 

sports use but it has an acceptable accuracy for our purposes. The most related 

parameters to the cognitive state are presented in Table 2:  
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Parameter 
Frequency (Hz) Range 

(BPM/ms) 

Accuracy Unit 

Heart Rate 
250 0-240 (±2 BPM) Beats per 

minute 

Heart Rate 

Variability 

250 0-280 (±1 ms) millisecond 

Breathing Rate 
18 0-120 (±3 BPM) Breath per 

minute 

Table 2: Bioharness monitored features 

The accuracy is referred to a static activity like in the analyzed scenario. 

The instantaneous Heart Rate is described in units of beats per second as follow: 

 
   

  

  
 (3.1) 

RR or inter-beat interval is the output of the sensor and means the time between 

two consecutive heart beats. The heart rate is usually described in beats per minute 

and can be derived by counting the number of RR peaks within a 60-second window 

which occur at discrete intervals between 800ms-1500ms. The obtained signal is very 

variable and assumes a step trend so usually to analyze and compare it with other 

sensors it is made smoother by applying a moving mean window with an amplitude 

varying between 5 and 10 seconds depending on the type of analysis and the sensor 

with which the Heart Rate is related. 

Many other parameters can be defined by evaluating the Heart Rate Variability. 

These parameters can be classified into geometric, time and frequency domains. The 

main geometrical features by converting RR intervals into geometric plots are now 

presented: 

                              short term HRV characteristics (3.2) 

                              long term HRV characteristics (3.3) 

n: sample window set at 30 seconds. 

 

Minor axis of Poincaré plot SD1 and Major axis of Poincaré plot SD2 are obtained 

displaying the correlation between consecutive RR intervals where RR(i) is plotted on 

the x axis whereas RR(i+1) on the y axis. A Poincaré plot is a type of 

recurrence plot used to quantify self-similarity in processes into a higher-dimensional 

state space. The obtained points assume an elliptical distribution as shown in Figure 

12. 

 



26 

 

 

Figure 12: Poincare plot analysis 

 

The x and y coordinates of the ellipse are given by the parametric equation:  

 
 
       

                 

                
   

          

          
   

       
         

         
(3.4) 

 

The main three feature in the time domain are the percentage of successive RR pairs 

that differ by more than x milliseconds (pNNx): 

 
     

                          

   
 

(3.5) 

The root mean squared difference of successive RR intervals (RMSSD): 

 

       
 

   
            

 
   

   
 (3.6) 

The standard deviation of RR intervals (SDNN): 

 

      
 

   
             

 
 

   
 (3.7) 
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The Spectrum Power Density (PSD)      of the RR interval in a given RR time series, 

divided in 4 bands, is used to analyse data in the frequency domain [49]: 

 Ultra-Low Frequency (ULF) (     Hz to      Hz)  

 Very-Low Frequency (VLF) (     Hz to 0.04 Hz) 

 Low Frequency (LF) (0.04 Hz to 0.15 Hz)  

 High Frequency (HF) (0.15 Hz to 0.4 Hz) 

The frequencies of greatest interest that have been evaluated are HF and LF because 

they represent respectively the heart’s control of the sympathetic and 

parasympathetic branches of the autonomic nervous system. Sympathetic system is 

traditionally described as a component that performs an attack/fugue function and is 

related to HF. The parasympathetic system is responsible for rest and digestion 

responses, i.e. all activities that occur when the body is at rest and is related to LF. 

          
      

      

 
(3.8) 

          
      

      

 
(3.9) 

A cognitive effort or in general mental activities induce an increase of LF power in 

proportion to the HF band so the ratio: 

 
   

  

  
 

(3.10) 

Can be an indicator of the mental strain. 

3.2 Brain waves sensor 

The monitoring of brain waves is done through a portable device called actiCAP 

Xpress which is designed for real time processing. In fact the collected data are sent 

to the BrainVision Recording software which can be interfaced with other software 

tools like C++ o Matlab. 

 Figure 1 shows how the cap is made. An elastic helmet allows to easily wear the 

device on which are installed several electrodes (16 active electrodes, one ground 

electrode and one reference electrode). The electrodes do not require conductive 

pastes because they contain low noise preamplifiers with a high precision. 
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Figure 13: Electrode cap actiCAP Xpress 

The sample rate is 2000 Hz, the measurement range is from -410 mV to 410mV 

with a resolution of ± 0.05 μV. The brain waves can be divided into 5 main groups: 

Delta, Theta, Alpha, Beta, Gamma. Research conducted on brain waves has shown a 

close relationship between some brain waves and cognitive states such as workload, 

attention, engagement and fatigue so it was chosen to monitor the following 3 

features[50] [51] [43]: 

 

Alpha (αF, αC, αP:): characterized by a frequency ranging from 8 to 13.9 hertz, they 

are typical of moments before falling asleep and can be divided in lower and upper 

alpha. 

Theta (θF, θC, θP ): range from 4 to 7.9 hertz, characterize stages 1 and 2 of NREM 

sleep and REM sleep. 

Beta (βF, βC, βP ): ranging from 14 to 30 hertz, are recorded in a waking subject, 

during intense mental activity. They can be divided in low, middle and high wave. 

 

All of them are captured in the frontal, central and parietal sections of the brain. 

A useful parameter that allows to relate these waves is the EEG index, defined as: 

 
          

      
      

 
       
   

   

       
    

   

 (3.11) 

The EEG index is calculated at each 5 second interval and the a linear detrending 

is applied. These pre-processed data are then filtered by a 50Hz notch filter, a band-

pass filter and finally the Power Spectrum Density(PSD) is obtained. The obtained 

filtered sample is then integrated over different frequency intervals to determine the 

band power. Once all channels have been processed, the band powers of specific 

channels are summed and then divided to derive the EEG index. 
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3.3 Eye sensor 

The sensor used to monitor eye parameters is the GP3 Eye Tracker. This sensor is 

a desk-mounted remote eye-tracker that provides numerous data such as raw eye 

tracking, blink rate and fixation. Being a remote sensor has the advantage of not 

being invasive to the operator, it is easy to install and can be mounted on the screen 

without affecting the operator's visibility on the monitor as shown in Figure 14. The 

sensor is a single hardware device composed by an infrared camera and an 

illuminator that send the raw monitored data to a computer via a simple USB port. 

Data are then processed by a dedicated software, the Gazepoint control software.  

 

Figure 14: GP3 Eye Tracker installation 

 

The stated tracking accuracy of the GP3 is between 0.5 to 1 degrees. 

The two main features in the eye tracing studies are pupillometry and gaze 

features. Pupillometry is the science that studies the variation of pupil size and 

recent studies ([52]) have shown a correlation between the difficulty of the tasks 

performed by the operator and the pupil radius, in fact it is known as the pupil size 

varies as a function of illumination but this is a phenomenon that occurs at a low 

frequency (0.1Hz-2Hz). If instead the variation of the pupil radius is analysed at high 

frequency (2Hz-6Hz) it can be seen that it is related to the variation of cognitive 

states. Studies have been carried out on this subject that have highlighted this 

relationship but mathematical models that can generalize typical behaviour to all 

individuals are not yet available in the literature. Other parameters that have been 

analyzed in the field of pupillometry are eye closure and blink rate.  

The parameter who describe the pupil dilatation is the dilation spectral power      
which is a function of the power spectral density estimate of the pupil radius time 

series     : 

 
             

(3.12) 

     is the area under the PSD. Figure 15 shows the pupil radius detection 

accomplished by the sensor. 
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Figure 15: Pupil radius detection 

 

When the human eye has to go to look at a monitor or read a text, it makes 

sudden movements of the eyeball by dwelling in places called saccades. In fact, even 

if you think that while scrolling through a text our eye reads every single letter in the 

text, it is not so. Figure 16 shows an example to explain the phenomenon. 

 

Figure 16: Saccades pattern 

 

Eyes fix (fixation) a row and skim it in certain points (saccades) along it that vary 

according to the individual. A trained reader needs fewer saccades to read a row than 

an occasional reader. So the process works as follows: once the row is fixed certain 

points called saccades are selected and thanks to peripheral vision the brain uses its 

self-correction ability dictated by experience to interpret/estimate what is written 

around the saccade. The difference between saccades and fixations is that the former 

are higher frequency eye movements from one fixation to the next, usually lasting 20 

ms to 200 ms.  

Gazepoint GP3 identifies fixations based on the separation of groups of gaze 

points, if the dispersion (D) of the detected gaze points of the group overcome a given 

threshold it means that a new fixation appear. [53] 

 The sensor span consecutive data points along x and y axing into sliding window 

of typically 100ms to check for fixations.  

               
             

  (3.13) 
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Where x and y are the coordinates for the gaze points within the window. If D lies 

below a given threshold Dmax, a fixation is registered and the window expands until 

the dispersion is calculated to exceed Dmax. Dmax is usually derived from gaze angles 

between 2° to 3°. In the conducted experiments the operator distance from the 

desktop is about 0.6m, this determines a range of Dmax between 21mm and 31mm. 

The gaze path randomness can be measured by three parameters: Nearest 

Neighbour Index (NNI), the explore/exploit ratio and the Visual Entropy(H). The 

Visual Entropy computes the randomness based on gaze transitions between 

predefined Regions of Interest (ROI). [54]   

H is determined from gaze transitions between different ROI, the number (or 

probability) of these transitions are typically represented in a n-by-m matrix.  

 
                                    

 

   

 

   

 (3.14) 

H is a function of the probability of fixation   where    and     are respectively the 

previous and present fixation region. The more random is the fixation path the 

higher is H, on the contrary, during a cognitive effort the operator focus on a 

particular task so the H value decrease. 

Among all these parameters Visual Entropy and Blink Rate have been thoroughly 

analyzed because is firmly proved their relationship with the cognitive load. The 

relationship between VE,BR and MFE has been therefore analyzed. 

Blink Rate(BR) is known as one of the most effective measures of mental 

workload and it has been shown that increasing mental workload leads to decreasing 

blink rates ([11]). As will be seen in the following chapters, the relationship between 

BR and MFE has been studied because Open Face and GP3 monitor completely 

different parameters but the physiognomy of facial muscles causes eyelid contraction 

to induce disturbances on the rhinolabial muscle and the sides of the mouth that can 

be interpreted by Open Face software as disturbances. In the same way, however, 

these two software can work in synergy to increase the reliability of the 

interpretation of psychophysiological parameters. For example, if a cognitive state 

detected by GP3 is also proven by Open Face it means that the detection is verified 

and the warning and automation management system can react accordingly. 
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4 Cognitive state and Workload 

Studies in workload started as early as 1930, but evaluated tasks mostly had a 

physical component that required the manipulation of machines (Sheridan, Simpson 

1979). The advent of computers and the increase of automation in workplaces, had 

led to a more and more difficult definition of the workload, especially in HMI2. Even 

though there is no universally accepted definition of mental workload (Cain 2007), if 

it is considered at a top-level, it refers to the measurement of the mental processing 

demands placed on a person during the performance of a task (Gopher, Donchin 

1986) but if analyzed at a deeper level the most difficult component to consider and 

model is the chain of relationships that determines how the performance of a task 

according to an individual cognitive process affects the occurrence of other tasks and 

then the mental processes to solve them. For this reason the workload has been more 

and more evaluated as a close loop.[55] The general psychological model identifies 

three main stages(Johnson, Proctor 2004): 

1. Perception 

2. decision making/response selection  

3. response programming/execution 

When the human being has to perform demanding physical and/or mental tasks 

his cognitive state varies and many parameters such as fatigue, situational 

awareness, attention, memory and trust come into play.[56] As already mentioned, 

the objective of the sensor network is to monitor the cognitive state in order to define 

an objective parameter that can be implemented in an adaptation model of the 

automated system, the Workload (WL). ATCOs’ workload is one of the most 

important factors determining the maximum airspace occupancy in today’s 

operations (Majumdar & Ochieng, 2007).  

Because the controller’s job is primarily related to cognition and information 

processing, this term generally refers to the mental workload needed to accomplish 

tasks. [1] The most used and validated theories so far assume that tasks require the 

allocation of the operator’s attentional resources for efficient execution, and that the 

operator workload reflects the overall level of demand for those resources (Wickens, 

Mavor, and McGee 1997) .  

So, What Workload means?  There are many possible definitions but at a top-level 

it can be said: 

 

‘Workload is the difference between the required capacity and the available 
capacity of a human operator for executing tasks demands’ 

(Gopher & Donchin, 1986; Moray,1979) 

 

In this chapter will therefore analyze some of the methodologies to evaluate the 

workload. Many studies have been carried out in order to first of all give a definition 

of Workload by evaluating what are the factors that influence it. Casali and Wierwille 

(1983) noted, mental workload must be inferred as it cannot be directly observed [48]. But the 
technologies available to date have paved the way for a new approach to WL evaluation. 
Most of the developed methods and models adopted in the past are subjective, they 

consist on giving a test to the analyzed subject at the end of the experiment or during 

the session.. However, this approach is not applicable to an adaptive system whose 
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purpose is to make an online evaluation in real time but it is fundamental to 

understand the methodology of analysis and which parameters have to be considered.  

The task demand can be considered as a fundamental workload evaluation 

parameter,  but an evaluation time window for mental demand has to be defined. 

This means don’t has to be considered only tasks that are performed or are pending 

at a given time because it may happen that some tasks are not seen or the operator is 

aware that they have to be performed but are not priority tasks so he/she will 

perform them later. This last case is the one in which the mental demand is greater 

because the operator is asked to keep in mind a lot of information and can run into 

the saturation of his mnemonic capacity leading to the worst scenario, the operator 

forgets to perform them (excessive WL). In ATM the factors that greatly influence the 

mental demand are Dynamic complexity factors such as aircraft count, traffic 

density, and proximity measures between pairs of aircraft. Elements to consider but 

which have a lower weight instead are for example aircraft transition factors, 

reflecting an aircraft’s change in vertical and/or lateral position, speed, and heading.  

But not only high levels of workload can lead to situations that reduce the safety, 

but this is not the case. Low workload is almost as crucial as high workload levels. 

This is because an excessive reduction of WL can lead to boredom, distractions, 

reduced vigilance and attention that result in slower response times, poor decision 

making, loss of situation awareness, change in decision criteria and a failure to detect 

relevant signals. In the case of Air Traffic Control the operator must perform two 

main operations which are: 

1. Ensure that aircraft under jurisdiction adhere to International Civil Aviation 
Organization (ICAO) mandated separation standards  

2. Ensure that aircraft reach their destinations in an orderly and expeditious manner. 
These goals require the ATCO to perform a variety of tasks, including monitoring air 
traffic, anticipating loss of separation (i.e., conflicts) between aircraft, and intervening to 
resolve conflicts and minimize disruption to flow. [57, 58] 

To evaluate Workload in an interactive and adaptive environment it is necessary 

to consider some fundamental effects that may occur: 

 difficulty insensitivity: performance degradation is not directly proportional to the 
difficulty level of the task. (Kantowitz, Knight 1976). 

 perfect-time sharing: it occurs when two tasks do not affect each other when 
performed together (e.g., Schumacher et al. 2001).  

 structural alteration: happens when the performance of one task depends on the 
response of another. 

These effects show that the same task can demand different resources depending 

on the operating conditions both at a given time t and how previous tasks were 

performed. These and other findings have led to the development of the concept of 

multiple resources (Wickens model). 

All WL evaluation methods can be grouped into three categories: physiological, 

performance-based and subjective. [48] 

Subjective ratings have been used to obtaining feedback from the operator on 

his/her self-assessed performance, to evaluate the flight handling qualities (Cooper-

Harper scale (1969)) or interface usability. They are the most commonly used because 

they are cheap, direct and easy to use but the base their evaluation un a quite strong 

assumption. They assume that operators can reliably rate several aspects of the 
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tasks. Two of the most popular ones are the NASA Task Load Index or NASATLX 

and the Subjective Workload Assessment Technique or SWAT. 

Performance-based measures asses mental workload through task performance. 

The base assumption in these models in that as workload increases, time to complete 

tasks and errors increase as well while accuracy decrease (Huey, Wickens 1993). 

Therefore, it is possible to assess workload by tracking performance in a task with 

different difficulty levels.  

However performance can not be affected even if the workload is high thanks to 

strategy adjustments, the major performance drop occur usually under too high and 

too low workload. For this reason, a secondary-task methodology is often used, the 

emphasis is on the secondary task and the degradation in performance measured in 

the primary task(loading task technique). The goal of the secondary task is to use up 

the resources left over by the primary task and they are carried out at the same time 

as the primaries and the time-sharing effect is measured. 

Physiological and psychological measures have also been used to empirically 

determine operator performance (Kramer 1991; NATO 2004), and include measures 

of heart activity, brain evoked potential, and gaze patterns. [46] 

Some of the most common and used models are now briefly reported to evaluate the 
workload analysis benchmarks. 
 

4.1.1 NASA-TLX 

The NASA requires people to rate the task from low to high on each of six scales: 

mental demand(MD), physical demand(PD), temporal demand(TD), performance(OP), 

effort(EF) and frustration(FR) level. A weighting process takes the individual 

differences between the scales into account to compute an overall workload score. Il 

punteggio del WL viene determinato attraverso weighting scales and is used 

extensively in aviation research. . The following formula is used to calculate mean 

workload scores. 

 

                                                                   
                 +                 +                   

 

 These weights are asked questions to the operator as a result of a test so there 

are many disadvantages: reliance on memory, the task variability effect (people tend 

to use the whole rating scale, independently of the stimulus range), susceptibility to 

operators’ bias (Johnson, Proctor 2004). Finally, the method has been criticized 

because it considers emotional aspects (frustration and anxiety) that are very hard to 

weight. In fact often when the NASA-TLX method is used the weighting steps are 

skipped and the average or sum of all ratings are taken into account. This method 

can therefore be a starting point, but since the rating is given after the task is done, 

it doesn't allow the WL evaluation in real time. Other subjective methods are: the 

Subjective Workload, the Visual, Auditory, Cognitive, Psychomotor method, the 

Workload Index method, the Multiple Resource Questionnaire, the Defence Research 

Agency Workload Scale.[1, 20, 59] 
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4.1.2 Wickens model 

The Multiple Resources Theory or commonly known as Wickens model is one of the 

most influential theories to evaluate performance analyzing the relationship between 

WL and tasks. It has been validated neuro-physiologically and often used as a 

guideline by human factors designers to define the tasks of a system. It is developed 

in three dimensions and the first one is made up of two information processing 

stages: resources involved with perceptual-cognitive activity are functionally different 

from those related to response processes (Wickens 1991). For example perceptual-

cognitive tasks like reading and voice comprehension can be easily time-shared with 

simple physical movements like pressing a button. The second dimension is related to 

perception, cognition and response, which are not shared and are in fact associated 

with different cerebral hemispheres. It refers to the resources used in processing 

spatial (manual responses like using a stick or a mouse usually involve spatial codes) 

and verbal codes (ATC radio).[48] 

The third dimension consists of the different perceptual (visual or auditory) 

modalities. This level refers to the already verified concept that attending both visual 

and auditory sources is easier than manage two simultaneous auditory or visual 

messages. This issue was demonstrated by Latorella (1999) who showed in a 

simulated flight deck that, during visual tasks, auditory interruptions are more 

disruptive than visual interruptions. This is because it is easier for the human to 

store visual than auditory information so when an auditory information is presented 

the operator tend to give more attention to it, at the expense of other concurrently 

presented visual stimuli. Modality dimension has been criticised in recent years but 

such an in-depth analysis is not the goal of this research. 

 The fourth dimension corresponds to the focal and ambient visual channels. Focal 

vision is required for pattern/object recognition and high acuity perception, whereas 

ambient vision is involved in orientation and movement perception of oneself. [60, 61] 

For this reason, numerous researches have been carried out on the relationship 

between gaze and workload and an eye tracking device has been inserted in the 

sensor network. 

4.1.3 Sperandio Model  

A well known model was developed by Sperandio (1971) who conducted several 

studies on air traffic controllers with the aim of determining the cognitive processes 

adopted by operators and the fundamental parameters to define the Workload. For 

this reason many researches made so far refer to Sperandio's model which is 

particularly suitable to evaluate the relationship between task demand and 

workload. In fact the adopted strategies by Air Traffic Control Operators (ATCOs) 

can vary widely from individual to individual because they are in function of skills, 

training, experience, fatigue.[62] In function of that it is very useful to have a method 

to quantify the skills level of the ATCOs, this can be done through simulator tests 

with the purpose not only to train them but also to determine/monitor their skills 

level.  

Figure 17 shows the Sperandio’s model structure(1971). It proposed that ATCo 

strategy is an intervening variable between task demand and the work achieved. 

This means that the process cannot be considered as a single feedback loop, but two 

feedback loops are necessary, one related to the variation of the mental workload 

according to the applied solving strategies and the second related to the tasks 

sequence.  
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The first takes into account the variation of the mental workload according to the 

adopted strategy to accomplish tasks (primarily resource management), the adopted 

strategy in turn affects the needed/applied work methods in the forthcoming cycle. 

The second cycle, on the other hand, takes into account the fact that the tasks cycle 

are a function of how the the previous task was performed. A time delay has to be 

considered for those tasks that can be 'paused' for a while as explained above. 

Sperandio emphasized that it is the change in workload, not the change in task 

demand, that explains the change in strategy. [13] The latter depends on three 

factors: individual characteristics(training, motivation, age, health, etc.), task 

characteristics (i.e., its requirements, including work conditions) and workload levels. 

 

 

 

Figure 17: Sperandio's model 

 

Studies conducted by Sperandio show that tasklaod is the fundamental parameter 

to define the workload but it is conditioned by the adopted strategy which in turn 

depends on training and experience. Figure 18 shows how the task demand is directly 

proportional to the workload but the use of successively more economical strategies 

  ,            determines the reduction of the slope of the curve. From this model it 

can be assumed that the Task demand determines about the ¾ of the Workload. 

 

Figure 18: Regulation of Workload by the use of different strategies [62] 
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4.1.4 Adopted model and considerations 

As could be understood there are various methods and approaches to determine the 

Workload and there are even different definitions of the latter. The hardest part in 

workload evaluation and assessment is that human factors play a significant role as 

experience, fatigue, concentration and others purely personal factors related to the 

specific operator. In general, however, could be assessed that the relationship 

between task demand and workload depends on the capacity of the controllers to 

select priorities, manage their cognitive resources, and regulate their own 

performance. 

Analyzing the above mentioned models and other studies ([1, 13, 15, 63-65]) it can 

therefore be concluded that they consider Taskload and strategy development as 

fundamental parameters for the WL evaluation. So the adopted method to evaluate 

the workload in our experiments assess the cognitive state with a task-base measure. 

A simple definition like Taskload = Workload is incorrect because neglect the 

component related to the strategy, so it can say that the 70%/80% of the Workload is 

defined by Taskload. It is expected that the greater the skills and experience of the 

operator, the more stable and repeatable is the physiological response monitored by 

the sensor network. The experiments conducted in our laboratory have demonstrated 

this assumption because, as will be explained in the following chapters, an individual 

with training and experience in air traffic shows a trend of AU much more similar to 

the Taskload trend than a neophyte one. 

Our experiments were conducted on six individuals and they show that an 

operator who has air traffic training and therefore adopts well-defined traffic 

management strategies also has a greater awareness of how to monitor the situation 

and manage it. This obviously reflects on the physiological response, between the six 

subjects analysed 'Alex', the one with more experience, is taken as a reference. His 

facial expressions response follow a given Taskload trend with a much greater 

repetitiveness than for example 'Nicha' who has less experience and shows a more 

random trend of her biological parameters.  

In conclusion, consistent with the models and studies available in literature, in this 

research, we adopted a simplified one-loop model in which the benchmark is the 

Taskload, in particular the secondary tasks. The adopted model takes as reference 

the Sperandio one and is shown in Figure 19. 

 

 

Figure 19: WL objective assessment model 

 

In Experiments chapter will be explained how these secondary tasks are assessed. 
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5 The Software: Open Face 

Face representations need to be resilient to intrapersonal image variations such 

as age, make-up, styling but capture interpersonal image variations between 

different people. For this reason, the first feature that a software for the FME 

recognition and analysis must have is a good ability to distinguish the characteristic 

features of the subject from those due to age. 

Facial Expression detection software usually work developing  three main steps: 

 Face detection: The position of a face is found in a video frame or image. 

 Facial landmark detection and registration: Within the detected face, 

facial landmarks such as eyes and eye corners, brows, mouth corners, the 

nose tip etc. are detected. It’s like an invisible virtual mesh that is put onto 

the face of the respondent to model the main feature through geometrical 

shapes defined by points. Whenever the respondent’s face moves or changes 

expressions, the face model adapts and follows instantaneously. 

 Facial expression and emotion classification: Once the simplified face 

model is available, position and orientation information of all the key features 

is fed as input into classification algorithms which translate the features into 

Action Unit codes. 

 

 The adopted software is Open Face, an open-source tool that allows analyzing the 

MFE by dividing them into Action Units (AU). Many tools for AU  recognition are 

available but most of them have prohibitive cost, unknown algorithms, and often 

unknown data training. [66, 67] Furthermore, considering that the ultimate goal of 

this research is to be able to apply the study of MFE in various aerospace 

environments some tools have been avoided because they can be used only on a single 

machine. The software is cross-platform and has been tested on Windows, Ubuntu 

and Mac OS X. Finally, and most importantly, commercial products may be 

discontinued resulting in poor data repeatability due to lack of product transparency 

(this is illustrated by the recent unavailability of FACET). Today’s top-performing 

face recognition techniques are based on convolutional feed-forward neural networks 

and Facebook’s DeepFace and Google’s FaceNet([68],[69]) are the best available on 

the market but belong to the category just mentioned because they have a prohibitive 

cost. It was therefore chosen Open Face because it offers levels of accuracy very 

similar this two private state-of-the-art tools but is open source and the code (C++) is 

easily accessible and editable. 

Given an input image with multiple faces, face recognition systems typically first 

run face detection to isolate the faces. Each face is pre-processed and then a low-

dimensional representation (or embedding) is obtained. A low-dimensional 

representation is important for efficient classification to avoid too long processing 

times that would not allow real time analysis.  

A simple Conditional Local Neural Fields (CLNF) is used for landmark detection 

and tracking. CLNF is mainly composed by two elements: Point Distribution Model 

(PDM) which captures 68 landmark shape variations; patch experts which capture 

local appearance variations of each landmark.[70]  

A Three layer Convolutional Neural Network(CNN) is used as a validation step to 

predict the expected landmark detection error. 

Figure 20 shows the operational block diagram of Open Face. 
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Figure 20: Open Face operational block diagram 

 

The CNN is needed especially to track a face over a long period of time and to follow 

it if the monitored person move in front of the camera or goes out of sight. The PDM 

is trained on two data set called Labeled Face Parts in the Wild (LFPW,[71]) and 

Helen and it models the location of facial feature points in the image using 34 non-

rigid and 6 rigid shape parameters. 28 sets of patch experts are obtained training 

them for different views. This allows to identify the main points despite variations in 

pose, lighting, expression, hairstyle, subject age, subject ethnicity, partial occlusion of 

the face, camera type, image compression, resolution, and focus.  

The Constrained Local Neural Field model is now briefly presented. 

5.1 Constrained Local Neural Field  

The model is based on Local Neural Field patch expert which learns the 

nonlinearities and spatial relationships between pixel values and the probability of 

landmark alignment. The LNF can capture the relationship between pixels whether 

they're near or far from each other and using a neural network layer can capture 

complex non-linear relationships between pixel values and the output. The patch 

expert (also called local detectors), has to capture the spatial similarity gk  (pixels 

nearby should have similar alignment probabilities) and the sparsity lk obtaining the 

peaks number in the evaluated area. The sparsity is forced to have only one peak in 

the area in which the patch expert is evaluated. In  Figure 1 the structure of the LNF 

is represented, consisting of observed input variables X = {x1, x2, . . . , xn} , xi ∈ Rm 

is a vectorised pixel intensity in the patch expert support region (e.g. m = 121 for an 

11 × 11 support region). Y = {y1, y2, . . . , yn} is a set of output variables that has to be 

predicted yi ∈ R expressing the probability that a patch is aligned, and n is the area 

in which the patch expert is evaluated. 
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Figure 21: LNF structure 

 

 

The probability density: 

 
       

       

       
  

  

 (5.1) 

Affect the model that is a conditional probability distribution. The potential function 

is: 

         
                        

                      
              (5.2) 

Where  ,  ,   e   are the vertex weight, they are learned and used for inference 

during testing. Three potentials types are defined: vertex features    and edge 

features   ,   : 

                          
  (5.3) 
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The neural network is therefore composed of one layer, the input    are connected to 

the scalar output    through a neural layer (θ) and the vertex weights. 

The terms of the equations are now described: 

    is the weight vector for a particular neuron k, it can be thought of as a set 

of convolution kernels that are applied to an area of interest. 

 The vertex weight    for vertex feature    represents the reliability of the kth 

neuron (convolution kernel).  

 Similarities between observations   and    are represented by the edge 

feature gk. 

 Sparsity constraint between observations    and     are represented by the 

edge features     
 The neighbourhood measure S(  ) points out where the smoothness is to be 

enforced (S(  ) = 1 if i and j are direct (horizontal/vertical), otherwise 0)  

 The neighbourhood measure S(  ) points out the regions where sparsity 

should be enforced(1 only when two nodes i and j are between 4 and 6 edges 

apart). 

 

Once the neural network architecture is defined and implemented it has to be trained 

to estimate the parameters {α, β, γ, Θ} using a sequence of input    and known 

outputs variables    from a database. The training goal is to find the  {α, β, γ, Θ} 

values that maximise the conditional log-likelihood of LNF on the training sequences: 

               
             (5.7) 

                                        (5.8) 

After a few mathematical passages, converting equation 8 into a multivariate 

Gaussian form and using the partial derivatives of the log P(y|X) the training 

samples can be obtained sampling an image at various locations. 

It is useful to train the model not only with a dataset of different faces but also with 

different views in fact the training has been done in separate set of patch experts for 

seven views and four scales obtaining 28 sets. This allow the software to track faces 

with out of plane motion and to model self-occlusion caused by head rotation. It is 

therefore important to note that every facial expression analysis tool uses a different 

database. This is the reason why giving the same inputs to two different software 

slightly different outputs can be obtained and it is essential to know the reference 

databases of the adopted software. 

In addition, another key parameter that greatly affects the landmark detection and 

tracking is the resolution and the multi-scale patch experts allow to enhance the 

precision and the software applications. Dlib library  face detector is used to initialize 

the CLNF model for the 68 facial landmarks. Figure 22 present the Open Face 

landmark detection. 
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Figure 22: Landmark Detection 

 

5.2 Action Unit detection 

Open Face AU detection is based on a recent state-of-the-art AU recognition 

framework([72],[73]). The software also allows head pose and eye gaze estimation but 

for our applications we have not used this software to detect these parameters but 

dedicated sensors integrated in the network which have a greater accuracy; they will 

be presented in the following chapters. 

People has their own facial expressiveness and of course their own facial geometry so 

it is essential that the software is calibrated to the monitored person. The two 

fundamental parameters are the intensity of the AU and how much the software is 

able to detect its presence. This fundamental step is done through a training on 

combined datasets, one for the presence and another for the intensity of the AU, 

using the distance to the hyperplane of the trained Support Vector Machine (SVM) 

model as a feature for an SVR regressor. This results in a single, with better 

performance, predictor based on two datasets which uses a linear kernel SVM for the 

AU presence prediction and a linear kernel Support Vector Regressor(SVR) for AU 

intensity.  Kernel methods map the data into higher dimensional spaces in the hope 

that in this higher-dimensional space the data could become more easily separated or 

better structured. The Linear Kernel is the simplest kernel function. It is given by 

the inner product <x,y> plus an optional constant c. 

             (5.9) 

For further information on the adopted mathematical models, please refer to [43, 72-

74]. 

Finally, a 112 x 112 pixel image of the face with 45 pixel interpupilary distance is 

obtained from the extracted facial features. Once the landmarks are detected they are 

compared to the frontal landmarks of a neutral expression using a similarity 

transform and the feature dimensionality is reduced using a Principal Component 

Analysis(PCA) model trained on a FE dataset obtaining the final software output, the 

AU intensity. The entire process is completely automatic and it doesn’t need 

calibration. The automatic coding is accomplished much more objectively than 
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manual coding where humans, particularly novice coders, tend to interpret the 

activation of an Action Unit in concert with other Action Units, which significantly 

alters the results.  

Now it is concretely presented how the software has been used and what are the 

characteristic parameters. 

 

 

5.3  Software Interface 

Once the software has been opened, the measurement can be made by pressing 

the start/stop logging button. The face is identified through a Facial Landmark 

Detection that identifies the parts of the face through the differences between one 

pixel and the other so the higher is the camera resolution the better will be the 

landmark detection. This system centring method uses both eye gaze and landmarks 

so the more the gaze is turned towards the camera the higher is the accuracy of the 

facial feature detection. As already mentioned The Facial Action Unit System (FACS) 

consists of 64 Action but not all of them can be detected by the software. 
 

 

 

Figure 23: Software interface 

 

Figure 24 shows the AU intensity, it can vary from 0 to about 5 if the AU is 

captured. Instead for those not captured the software generates by default the value -

999. The column 'SYSTIM' represents the time of the computer clock, useful for the 

synchronization with other sensors especially because the used webcam records with 

non constant FPS so the time correlation with other sensors could be harder without 

a clock counting. 
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Figure 24: Open Face outputs 

 

The ‘CONFIDENCE’ can vary from 0 to 98.3 and usually is higher of 70%, if the 

monitored subject makes abrupt movements of the head or excessive rotations, the 

confidence can drop rapidly so that the data in that interval of time are no longer 

acceptable. Data of  the main facial features are also provided from column 4 to 

column 9 if a raw analysis is needed. Experience has shown that usually the 

confidence is 98.3% during the 93/95% of the recording time during testing but if the 

subject wears glasses the medium confidence can drops to 88%. 

According to what has been said so far the two main parameters that must be 

taken into account when using the software are: 

 Framerate: The camera should have a stable framerate of 10 fps or 

higher 

 Resolution: The resolution of the video should be at least 640 x 480 

pixels. 

Some cameras might dynamically adjust the frame number dependent on lighting 

conditions (they reduce the frame rate to compensate for poor lighting, for example). 

The original software does not allow to start and end the recording at will so a 

button had been added to better manage the recording sessions during the 

experiments. When the recording is finished, the output of the processed data is 

saved as CSV so that they can be analyzed in post-processing. The software outputs 

have been evaluated with Matlab 2019a remembering that the ultimate goal is the 

evaluate FE in real time so the developed script, as  will be presented in the following 

chapters, have always had as focus the implementation in real time in the sensor 

network. 
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6 Performance evaluation 

The performance analysis is a fundamental aspect in order to be able to correctly 

evaluate the experimental data. Obviously, in the biometrical sensing, there are 

many disturbances that could affect sensors. [75] Here are reported those that take 

into account the most incisive variables: blink rate, head rotation and shifting. Each 

evaluation is based on three experiments on the same subject. 

Figure 25 shows the adopted camera, a off-the-shelf webcam Logitech C270. 

 

Figure 25: Webcam Logitech C270 

 

Open Face does not require special types of cameras so a mid-level off-the-shelf 

camera that meets the software requirements was used.  

Technical specifications are reported in Table 3. 

 

Max Digital Video Resolution 1280 x 720 / 30 fps 

Computer Interface USB 2.0, 4 pin USB Type A 

Focus type Fixed focus 

Lens technology standard 

FoV 60° 

SYSTEM REQUIREMENTS DETAILS 

OS Required Microsoft Windows 7, Microsoft Windows 

Vista, Microsoft Windows XP SP2 or later 

Processor Speed 1 Hz 

Min RAM Size 512 MB 

Min Hard Drive Space 200 MB 

Table 3: Technical specifications 
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Open Face does not provide any specification on how the confidence level is 

computed so different experiments had been conducted to evaluate the parameters 

that affect the confidence. 

The software uses glance as the main parameter of face centering so three 

experiments have been conducted to verify if a disturb such as a high blink ratio 

reduces the confidence of the software. Table 4 shows that the confidence remains 

equal to the maximum value in all conditions so the CNN used by the software is not 

affected by this disturb. Moreover the lighting conditions between one experiment 

and the other have been changed causing a different FPS of the camera but also in 

this case Open Face maintains the maximum confidence. 

 

Blinkrate Experiment 1 Experiment 2 Experiment 3 

LOW C:    98.3 C:     98.3 C:     98.3 

FPS:      22.2 FPS:    24.9 FPS:  23.8 

NORMAL C:    98.3 C:     98.3 C:     98.3 

FPS:      22.1 FPS:    25.5 FPS:24.2 

HIGH C:    98.3 C:     98.3 C:     98.3 

FPS:      22.6 FPS:    24.4 FPS:23.8 

Table 4: C: confidence, FPS: Frame Per Second 

 

A parameter that affects the confidence are glasses, in fact if the subject wears 

glasses the confidence drops from  7% to 10% . 

Another important aspect is the environment, during a general video recording 

many parameters may vary such as room lighting and therefore corrective actions on 

gamma, contrast and dynamic range could be needed. In case of high illumination 

there is the risk of losing details of the recorded face due to the dynamic range but, as 

explained in the previous chapter, Open Face adopts a CNN that compares the 

brightness of the pixels and evaluates the Landmark detection in black and white 

just to avoid dynamic range problems. Different scenarios have been evaluated to 

understand the variability of the software confidence as the lighting level and the 

position of the light source vary. In normal lighting conditions the confidence is 98%, 

the worst case is when the light source is positioned under the face of the subject and 

leads to a confidence reduction of 7% (91%). It can therefore be concluded that it is 

not necessary to edit the video recordings that are analyzed by the Software because 

the confidence reduction is acceptable and above all it occurs in a non-real condition 

because the light source in the room is from the top and provides a constant 

brightness. 
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6.1 Backwards and forwards movement 

In this chapter forward (AU57) and backward(AU58) head movements are evaluated, 

these movements are made remaining within the Field of View of the camera (FoV) 

which is geometrically defined by a vertical and a horizontal component: 

 

Figure 26: Geometric method for determining camera's FoV 

 

Horizontal FoV (HFOV) and Vertical FoV (VFOV) are calculated using the 

equations given below. 

            
  
   

  (6.1) 

            
  
  
  (6.2) 

   and    are respectively the horizontal and vertical dimension of the face. These 

parameters are the dimension of the face along y-axis and z-axis in the adopted 

reference system as reported in Figure 27.  Table 5 shows the typical head 

anthropometry values for adult men and women, the average value is adopted in the 

previous formula. 

 Men Women Mean value 

   (cm) 15.2 14.4 14.8 

       20.9 19.8 20.35 

Table 5: Typical Head Anthropometry 

 

Considering the 60° FoV of the camera the minimum distances     12.8 cm and 

           are obtained. These values allow to evaluate the uncertainty in the 

measured FOV through propagation of uncertainty given by the equation: 

     
   

   
 
 
    

  
  
 
   

     
 
  
 
 

 

 (6.3) 
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Where: 

 l : dimension of the face. 

 d : distance between the camera and the face. 

    : uncertainty associated with the measurement of the face from 

anthropometry databases,          . 

    :  uncertainty associated with the measurement of the distance,    
      . 

     : covariance between the measured distance and length, assumed equal 

to zero to have a conservative value of     . 

A              and              were obtained.  

Therefore d= 20cm is assumed as a conservative value as minimum distance from 

the camera. This value represents the operating limit of the camera but it have never 

been reached during the experiments because the closest distance the operator can 

reach to see the screen in focus even if He/She focuses only one point and loses the 

global vision of the monitor is 35cm. 

 

 

Figure 27: Adopted Reference System 

 

Three experiments have been conducted. During the first 5 seconds of the 

experiment the subject remained neutral and relaxed to give the software time to 

calibrate at a distance of 110 cm. Then the operator approached the face to the 

camera progressively until it reached the closest distance that allowed him to get a 

good view of the screen (35cm) and remained in that position for 5 seconds. 

The AUs trend had been approximated by a second-degree polynomial to clearly 

show the trend over time. Figure 28 shows the AUs trend for different face areas. 
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Figure 28:  Forward, geometrical parameter 

 

 

Figure 29: Forward, Action Unit 

 

It can be therefore concluded that the parameters browup, eyewiden 

AU1,AU2,AU15 are strongly influenced by the distance from the camera. When the 

operator exceeds about 45 cm of distance from the camera the values undergo a 

significant increase. This phenomenon, however, is not a problem in operational life 

because the confidence always remains equal to the maximum value and the operator 

can make movements of the head but will hardly make a movement along the x-axis 

of 60 cm, typical movements can reach a maximum of 20cm. The same considerations 

can be applied on the ‘moving away from the camera’ experiment. In this case, the 

operator was initially at a distance of about 35 cm from the camera and then moved 

away up to about 130 cm. Again, he was neutral and relaxed for 5 seconds at the 

beginning and 5 seconds at the end. Figure 30 and Figure 31 show that moving away 

from the camera involves a considerable variation in the parameters, but in real-life 

conditions this occurs only in sporadic cases.  
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Figure 30: Backward, geometrical parameter 

 

 

Figure 31: Backward, Action Unit 

  

Nose-wrinkle, AU2, AU6, AU12 and AU15 are characterized by a peak (positive 

or negative) at about 80/90 cm from the camera. This phenomenon is due to the 

geometric shapes adopted by the software to model the features of the face. Also in 

this case the confidence remains constant at the maximum value. It can be therefore 

deduced that when this system will be integrated in the sensor network, an outlier 

rejection is needed. If the distance of the operator is between 45cm and 100 cm from 

the camera the results are reliable, instead if the operators is outside this range the 

FE parameters has to be rejected. Finally the distance thresholds must be adjusted 

according to the adopted workstation (distance camera-operator, monitor size, chair 

height,..) 
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6.2 Rotation 

6.2.1 X axis 

The phenomenon of rotation of the head around the X axis (AU55 – AU56) is an 

unconscious attitude that the humans adopt when they are focused on something 

and, especially when the auditory apparatus is involved, they tend to rotate the head 

to the right (positive rotation around the X axis). In this section this phenomenon is 

analyzed to evaluate potential interferes with the precision of the software. In these 

experiments as well the operator has been motionless for five seconds before starting 

to rotate the head gradually from 0 degree (nose aligned with the Z axis) and reached 

the maximum rotation (about 60 degree referred to Z) and remained in that position 

for 5 seconds. A second experiment was carried out starting from the head at 

maximum rotation(+60°) and then moving from 0 degree and bringing it to maximum 

extension to the opposite side(-60°). In these experiments the confidence is still 

constant and equal to the maximum value so there are no uncertainties of 

measurement but as showed in Figure 32, there is a considerable variation of some 

parameters. Therefore it is possible to define a band of ±20 degree (marked in the 

figure)  in which FEs detection is affected by a reasonable variation. This assumption 

is not stringent because it is very rare, even in situations of extreme concentration, 

that the head is rotated more than 20 degrees, typical values are around 5°/10°. 
 

 

Figure 32: Dx to Sx complete rotation 

 

6.2.2 Z axis 

The head rotations around the Z axis (AU51-AU52)  involve the greatest error of 

evaluation because the software determines the geometry of the face using the pupils 

as a centering system so a rotation of the head around Z leads to a distortion of these 

geometries and a darkening of a part of the face, which never happens in the cases 

analyzed so far. In this case the threshold is not referred to value of FE but is related 

to the confidence of the software. The rotation of the head involves a reduction of the 

confidence on the data provided by OF for angles higher than about 35°. Two cases 

may occur, the first is a head rotation keeping the gaze at the monitor, in this case 

the software captures the pupil, it centers itself and the confidence remains equal to 
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the maximum value up to 50/60° of rotation.  If, on the other hand, the operator looks 

away from the monitor, a reduction in confidence already appears at 35°. Both cases, 

however, do not show particular criticality because usually an operator does not 

rotate more than 15°/20° even if two or three paired screen has to be monitored. If 

there are more monitor and therefore the operator often has to rotate the head widely 

around the Z axis, it is possible to install a system with more than one camera 

selecting the one that shows more confidence. 

6.3 Blink Rate 

Open Face is developed to don’t be affected by the blink ratio, however, the face 

muscles used to blink are numerous and can trigger disturbances to other areas of 

the face, so an excessive blink rate can disrupt the AU monitoring. 

To analyze the influence of the blink rate (BR) on the output values of the 

software, three experiments had been conducted considering three different cases: 

low, normal and high blink rate. In these experiments the monitored subject tried to 

remain the most impassive to the camera by simply fixing the camera and varying 

the blink rate.  The NormalBR condition is the resting condition with typical BR 

values(10blink/minute), without external disturbances and has been taken as a 

reference. The low blink ratio is evaluated using the gived equation below: 

                                         (6.4) 

In Figure 33, Figure 34 and Figure 35 this formula is plotted, each bar represents 

the average variation over time of each FE(      ) whilst the stem graph represents 

the maximum value reached by this FE in time. If the subject concentrates on not 

blinking this would induce unnatural contractions especially of the lower eyelid so 

the subject was asked just to focus on the camera to experience attention tunnelling. 

As it can be seen from figures, the comparison between LowBR and NormalBR 

indicates that the AU 15 and AU17 are always influenced by the blink rate. This 

phenomenon is not a measurement error but a verification of the correctness and 

precision of the software because when the subject focuses on a point reducing the BR 

a lightly contraction the upper and lower eyelids appear and this induce as an 

involuntary effect, due to facial anatomy, a slight contraction of the muscles of the 

corners of the lips and an upward pushing of the chin that is captured by the 

software. 

It is demonstrated that a reduced blink rate value indicates an increase in 

attention that can lead to attention tunnelling and this experiment denote that 

mouth AUs like AU15, AU17 and AU25 could be evaluated to provide a new 

parameter to monitor attention tunnelling.  
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Figure 33: Exp1. Low to Normal BR comparison 

 

 

Figure 34: Exp2. Low to Normal BR comparison 

 

 

Figure 35: Exp3. Low to Normal BR comparison 
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AU2 and AU4 show different magnitude in the three experiments because they 

are related to the eyebrow but it can be deducted that they are not affected by the 

BR. So the change in the average value of these AUs during the test session can be 

due to a variation of concentration and tiredness levels.  It can be therefore concluded 

that the only FE that are influenced by BR are AU15 and AU17 whilst the other AU 

undergo a minimal variation that is not attributable to the variation of BR.  

The table below shows  %       for AU15 and AU17: 

 

%         
         

       
     (6.5) 

 

That is the percentage change of AU15 and AU17 from their maximum value. 

 

%NormalBR-LowBR Exp1 Exp2 Exp3 

AU15 38.07 31.93 31.85 

AU17 48.69 21.65 24.8 

Table 6: AU15/17 Normal to Low BR 

 

In the first experiment the BR influences up to 49% the value of AU captured by 

the software. So to be able to use these AU in the monitoring of the cognitive state is 

absolutely necessary an integration with the eye-tracker.  

The monitoring of these AUs can be embedded in the sensor network as an eye 

tracking data verification. If the eye sensor software shows an increase in the blink 

rate and also AU15 and AU17 show an increasing value, an attention tunnelling 

event could be confirmed.  

 

The HighBR is now evaluated, these experiments are conducted in the same way 

as the Low BR and in all of the the confidence is constantly at its maximum value of 

98.3%: 

 

                                          (6.6) 
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Figure 36: Exp1. High to Normal BR comparison 

 

 

 

Figure 37: Exp2. High to Normal BR comparison 

 

 

Figure 38: Exp3. High to Normal BR comparison 
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Again, the dependency between BR and AU15 and AU17 can be seen. As expected 

an increase in BR induces a greater stress of the eyebrow muscles which then 

determines greater variation of AU1, AU2 and AU4. These values cannot be directly 

traced back to BR because their variation is random both in module and in sign. 

  

%NormalBR-HighBR  Exp1 Exp2 Exp3 

AU15 38.25 28.02 29.22 

AU17 47.74 17.88 18.36 

Table 7: AU15/17 Normal to High BR 

Finally, it can be noted that, as expected, a higher BR induces 'noise' on the AU 

connected to the eyebrows but the percentage variation of AU15 and AU17 is less 

than in the case of LowBR. This phenomenon can be explained as follows: the 

reduction of BR induces a slight prolonged contraction of the eyelid which in turn 

generates greater influence on chin and lips corners. On the contrary, a HighBR 

produces a more frequent and intense but short-lived muscle effort. This leads to a 

greater stress in the area near the eyes (upper face) but it hardly propagates in the 

lower face.  

 

6.3.1 Outlier rejection 

The outlier rejection method is therefore defined tanks to these experiments. 

Outlier is a data point that differs significantly from other observations. An outlier 

may be due to variability in the measurement or it may indicate experimental error. 

This can happen if the confidence has a drop so the Landmark detection is not 

correctly performed. A confidence level higher than 80% means that the landmarks 

are properly detected so they follow the face contractions and an outlier cannot occur. 

The minimum confidence threshold accepted is therefore set at 80%. Some geometric 

errors of contraction intensity may occur for a confidence between 80% and 90% but, 

as it will be explained in the OTM experiments chapter, the data  that are over 80% 

are then filtered and mediated with a sliding window that allows to mitigate small 

detection inaccuracies. 

In conclusion, data rejection thresholds are: 

 

 Operator’s distance from the camera between 45cm and 100cm 

 Maximum rotation around X axis <20° 

 Maximum rotation around Z axis <35° 

 

As previously mentioned it is difficult that these thresholds are exceeded in fact 

in all the OTM experiments they have never been exceeded.  
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7 Experiments 

The human-factors engineering research was conducted in the Royal Melbourne 

Institute of Technology (RMIT) Aerospace Intelligent and Autonomous Systems 

(AIAS) lab. Research at RMIT AIAS lab is primarily focused on the design and 

development of military and civil aerospace HMI2 to enable safer and more efficient 

operations. Operational and technological evolutions in the aerospace field impose an 

increasing cognitive demand on the operator that must be mitigated with an 

adaptation of the level of automation, this auto-calibration of the system, however, 

must have an excellent level of reliability in order not to compromise safety. The 

experiments conducted therefore aim to analyze the trusted autonomy of a system 

that uses psycho-physiological parameters to adapt the level of automation. A trusted 

autonomy system must be able to adapt to both the task requirements as well as the 

human user's needs. 

Informed consent for both study participation and publication of pictures was 

obtained from all the subjects after the explanation of the study. The experiment was 

conducted following the principles outlined in the Declaration of Helsinki of 1975, as 

revised in 2000.  

The study protocol received the favourable opinion and approval by RMIT’s 

University College Human Ethics Advisory Network (CHEAN) (ref: CHEAN A 

201710-02-17).  All respondents consented to participate by completing the online 

study.  Only aggregate information has been released while no individual information 

was or will be diffused in any form. 

The adopted protocol for the experiments that will be presented was defined by a 

team that started a research before this thesis project became part of the main 

project (ASEHAPP 72-16, ASEHAPP 111-16). I contributed to the team activity on 

Terminal Manoeuvring Area Scenario ATCo-in-the-loop experiment collaborating 

with THALES Australia.[76, 77] 

 The analyses performed also aim to define a new protocol for future experiments 

in which FE analysis will be introduced in the sensor network. 

7.1 OTM experiments: Bushfire-fighting 

As widely explained in the previous chapters, physiological sensing allows to 

evaluate the cognitive state of the operator in order to optimize the cognitive 

HMI2(CHMI2) which is based on Concept of Operations (CONOPS) addressing the 

one-to-many mode of operations for surveillance and bushfire-fighting. [78] 

Unmanned Aircraft Systems (UAS) provide new opportunities for cost-efficient, 

persistent airborne surveillance for a wide field of application ranging from military 

reconnaissance a monitoring and industrial inspection. 

This research therefore aims to analyze the possibility of managing multiple 

UAVs with a single operator through a system in which the trusted autonomy is 

based on a bio-sensing network. This CHMI2-based network operates on a single 

operator Ground Control Station(GCS) that has been prototyped and tested in a 

number of experimental studies. Sensors and simulators usually came as 

commercial-off-the-shelf products, requiring the development of suitable interfaces to 

support their integration within the laboratory network. 
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 The data monitored by the sensors are collected and processed by a centralised 

server (HFE-Lab server). Each sensor has a dedicated client, which performs the data 

pre-processing before sending the processed data to the server. A key aspect for the 

monitoring of psycho-physiological parameters is the synchronization of data so the 

data server synchronizes incoming data from the different clients being hosted and 

facilitates the exchange of data between these clients. 

Australia is affected every year by numerous bushfires that have devastating 

impacts on the environment and community. A UAS monitoring system could prevent 

and contain them informing fire fighters if a new bushfire is detected or provide 

location and size of bushfires already active flying over regions that would otherwise 

be unsafe for manned aircraft. For this reason a UAS simulator has been developed 

in order to analyze a scenario of applicability of an CHMI2 system based on CONOPS 

for One-to-Many operations according to the Australian Incident Management Team 

which identified several UAV applications, which included fire perimeter mapping 

information, night exploring, as well as improving communications and the safety of 

ground personnel. The main goal is to support both ground and airborne fire-fighting 

teams so the UAS operator (UASo), managing multiple UAV teams, can play the role 

of tactical coordinator to detect, monitor, localize and characterize fires in the 

operator’s Area of Responsibility (AOR). The UAS operator task is to detect and 

monitor fires providing geographic location, size, intensity, rate of spread and 

distance from objects of interest(roads, other fires, buildings) to both ground and 

airborne fire-fighting elements. 

Relevant tasks and their coordination are illustrated in Figure 39. 

The UASo has to plan and monitor the status of each UAV team. Mission 

planning entails assigning specific tasks to each UAV team and conducting path 

planning to maximize task performance. Tasks can be primary or secondary 

including area search, fire perimeter mapping, monitor available fuel and 

performance of on-board Control, Navigation and Surveillance (C/N/S) systems. The 

UASo is also responsible to process data from UAV teams and provide them to fire-

fighters such as: fire presence, perimeter location, size, front velocity and spread 

location, and fire threat level(from 1 to 5 in function of fire intensity and the fire’s 

proximity to objects of interest) 

 

 

Figure 39: Task flowchart for the tactical coordination 
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7.1.1 GCS interface 

The UASo performs supervisory tasks and higher-level decision making through 

GCS which implements aviation, navigation, communication and managing 

functionalities. The UASo manages the UAV teams by allocating tasks in the 

investigated AOR and monitors the task performance and system status of the team. 

Figure 3 shows the six interfaces of the GCS display on which the UASo has to 

operate. The main feature are now described: 

 the Tactical Map in the center of GCS display provides layers of geo-spatial 

information  and allows the AUSo to selects different UAV, makes 

modifications to team boundaries or platform trajectories, reviews sensor data, 

or adds information tags. 

 The Team Management Panel allows to select teams and display relevant 

information on team assets in the form of glyphs. The UASo can select the 

team assets which can be active(actively managed by the human operator) or 

passive(outside of the human operator’s command authority) and choose 

available task perform. 

 The Platform Management Panel provides information on individual UAV for 

a selected team platforms, such as fuel and health status. The of review past 

sensor feed or the activation of different sensors for tele-operation can be 

managed. 

 The Task Planning Panel provides support for automated path planning. The 

UASo can adjust some parameters to accomplish a task which are fed into a 

path planning algorithm which automatically computes feasible paths for each 

platform in the UAV team. 

 The Messaging Interface lows the UASo to communicate with fire-fighters and 

in general all agents involved in the mission. 

 The Task Management Panel  is used to coordinate tasks between different 

teams, each bar represents a team task, tasks can have different level of 

urgency, a task color-coded in amber requires more attention from the UASo. 
 

Team
Management

Platform
Management

Task
Management

Tactical
Map

Task
Planning

Messaging

 

Figure 40: GCS Interface 
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The HMI2 system has to regulate the level of automation according to four aspect: 

information, task, team and path planning so relative mechanisms of adaptation are 

defined: 

 The Information Management adaptation help the UASo to maintain an 

appropriate situational awareness on UAV teams and relative tasks. 
 

 The Task Management adaptation tracks progresses and performances of 

all the tasks to help the operator identify the more relevant ones and to 

prioritize them to maximize the mission performance.  
 

 The Team Management adaptation helps the operator to develop the 

optimal UAV team configuration, tasks assignment or re-allocation of 

UAVs and tasks. 
 

 The Path Planning adaptation supports to generate or modify the optimal 

UAV team path to improve the efficiency of tasks achieving. 
 

7.1.2 Test Scenario 

Test participants assume the role of UASo of the system described above. The 

primary task of the mission is to find and localize any bushfires within the Area of 

Responsibility (AOR), whereas the secondary tasks are to maximize the search area 

coverage, to ensure that the UAV fuel levels, as well as navigation and 

communication performance are within serviceable range. The main AOR can be 

divided into smaller search regions (Team Areas) as shown in Figure 41. So-called 

because each Area is assigned to a UAV Team. 

 

Figure 41: AOR partitioning 

The UAV payload could be composed of a sensor (lidar) and/or a passive sensor 

(IR). The first one provides excellent range but a narrow field of view, it must be fired 

towards a ground receiver to measure the CO2 concentration of the surrounding 
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atmosphere. The number of receiver in the AOR is limited so the operator has to 

manage when it is usable. To cover instead a larger field of view the Infra Red (IR) 

can be used, it doesn’t require the use of a ground receiver but it has a smaller range. 

The different tasks are now described and defined: 

Primary Tasks 

 Bushfires detection and tracking 

o At the beginning of the scenario bushfires are initialised and some 

spot fires can be created during the mission. The fire propagation is 

in function of the settled environmental conditions. 

o Maintain a constant visual coverage on the fire front 

Secondary Tasks 

 Sensor coverage maximization  

o Sensor coverage over the AOR is tracked in terms of revisit time, each 

scenario lasts 30 minutes so a revisit time longer than 30 minutes means 

that the area was no covered at all. Three covering measures can be 

related to the active sensor, the passive sensor or both. 

o Maintain a serviceable level of navigation and communication performance 

 

 Navigation level and communication performance 

o These two parameters have to be maintained at a serviceable level 

 

 Serviceable level of fuel 

o UAVs with low fuel need to be sent back to base, where they will undergo 

refuelling 

Figure 42 shows the secondary tasks boundaries classification. 

 

Figure 42: Secondary Tasks boundary classification 
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As described in Cognitive state and Workload chapter the most reliable and 

commonly used parameter to provide an objective and continuous measure of 

Workload is the Taskload. Secondary tasks are not critical to the detection of fires, 

but they are strictly related to mission performance. Secondary tasks are used 

because primary tasks are general and difficult to quantify. As the number of UAVs 

increases, the information that needs to be managed, monitored and planned 

increases which are mostly dictated by secondary tasks. Moreover the management of 

these tasks can easily refer to Sperandio's model for Workload evaluation because 

each operator chooses his own work method that determines feedback loops 1 and 2 

as shown in Figure 17: Sperandio's model. 

The Taskload is then defined as a weighted count of the number of pending 

secondary tasks from the UAV flight logs (i.e., system maintenance tasks). Each 

pending task for each UAV is assigned a score that can vary from 0 (best situation 

where the operator doesn't have to do adjustments) to 6 (performances are poor so the 

operator has to manage all the secondary tasks).  

 

Pending secondary tasks Score 

Poor navigation performance (accuracy above 25m): 

Adequate navigation performance (accuracy between 10m and 25m): 

Excellent navigation performance (accuracy below 10m) 

+1 

+0.5 

+0 

Poor communication performance (comm strength below 50%): 

Adequate communication performance (comm strength between 50% to 70%): 

Excellent communication performance (comm above 70%): 

+1 

+0.5 

+0 

Critically low fuel (fuel needed to return to base less than 1.5x of fuel on board): 

Low fuel (fuel needed to return to base between 1.5x and 2x of fuel on board): 

Adequate fuel (fuel needed to return to base more than 2x of fuel on board): 

+1 

+0.5 

+0 

Autopilot mode in hold: 

Autopilot mode off: 

+1 

+0 

UAV not assigned into a team: 

UAV is assigned into a team: 

+1 

+0 

UAV does not have any sensor active: 

UAV does have any sensor active: 

+1 

+0 

Table 8: Secondary tasks rating 

Table 9shows the various phases of which the experiment is composed: calibration 

phase, phase 1, phase 2, phase 3 and final debriefing. During the calibration phase 

the monitored participant rest for 5 minutes, this phase is used to collect data that 

will be used for the calibrating the CHMI2 baseline for phase 1. 

The test case for each participant comprises a single scenario of 30 minutes 

composed by three phases of 10 minutes. 
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In Phase 1, 3 UAVs monitor the Team Area(TA) closest to the base so TA 1, after 

the Area has been searched, or when the mission transits to Phase 2 (whichever 

occurs first) the 3 UAVs are directed towards TA 2 and TA 3 new UAVs can monitor 

TA 1 

After Area 2 has been searched, the operator repeats the same strategy with Area 

3, moving 6 UAVs (3 in TA 1 and 3 in TA 2) to Area 2 and Area 3 so Area 1 can be 

monitored by 3 new UAVs. To allow the system to exploit some automated features 

described above each UAVs Team should be assigned to the corresponding Area (i.e., 

Team 1 for TA 1, Team 2 for TA 2, etc.). During phase 2 and phase 3, a change in 

environmental conditions would affect the navigation and communications 

performance of the UAVs, possibly requiring additional re-planning to satisfy 

operational requirements. UAVs can be selected out of a common pool comprising 4 

UAVs with an active sensor, 4 UAVs with a passive sensor and 4 UAVs with a 

combination of active and passive sensors. 

Pre-experiment 
logging 

Phase 1 Phase 2 Phase 3 Post-experiment 
logging 

5 mins 10 mins 10 mins 10 mins 5 mins 

Rest condition Cognitive load 
stimulation 

Cognitive load 
stimulation 

Cognitive load 
stimulation 

Rest condition 

Relaxed posture with 
open or closed eyes 

3 UAV Adding 3 UAV 

6 UAV managed 

Env change 

Adding 3 UAV 

9 UAV managed 

Env change 

Relaxed posture with 
open or closed eyes 

Table 9: Test procedure for each participant. 

 

7.1.3 Assumptions 

The definition of movement patterns and variation of drone parameters has been 

modelled with assumptions that are not expected to affect the validity of the proposed 

offline training and online adaptation techniques. The purpose of the test cases is to 

verify the CHMI2 system so these assumptions have been made so that the tests are 

predictable and repeatable. The system has been developed with a modular 

architecture so that in case the potential validity of the FE monitoring is 

demonstrated also this sensor can be inserted in the sensor network. 

The assumptions and simplified model in the test scenario are:  

 Kinematic model. Lateral/vertical acceleration and yaw rate over time are 

integrated to propagate the UAVs position based on their groundspeed, 

climb rate and heading The pitch and roll are not accounted for in this 

kinematic model. 

 

 Power/fuel usage model. A fixed endurance is assumed (e.g, 10 hrs), the 

power consumption is calculated on the time-in-flight. The refuel time is 

fixed (e.g, 1hr). Payload power usage is settled as a percentage of the total 

power. Aircraft which run out of fuel while in flight are considered ‘lost’. 

 

 Fire and CO2 model propagation. Th area is divided in cells and for each 

one the rate and direction of fire spread is derived from models in the 

literature which account for vegetation type, terrain slope, wind speed, 
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temperature and humidity. The CO2 concentration (to be detected by lidar) 

in each cell is assumed to vary between a range of values. The CO2 

concentration is assumed constant in each cell. The IR camera is able to 

detect if a given cell is burning, not burning or burnt. 

 

 Communication model. the strength of the communications link between a 

UAV and the GCS is calculated by a logistic regression model (from 90% at 

25km at GCS distance to 10% at 55km) 

 

 

7.2 Experiment activities 

The test activities took place over the course of 2 weeks, starting from 12 

December 2019 and involved 6 participants (5 male; 1 female). The participants were 

Aerospace students at RMIT University and were selected based on their prior 

experience in aviation and aerospace engineering. Owing to a lack of familiarity with 

the HMI functions and the bushfire fighting scenario, participants had to undertake 

2 hours familiarization training. During the familiarization training a pre-monitoring 

was made to evaluate the possible HMI2 adaptation methods. After the 

familiarization the participants were asked to wear two physiological sensors: the 

Bioharness strap, EEG cap. Then the calibration of remote sensors such as GP3 eye 

tracker and FE system took place and the experiment can starts. Participants 

initially rested for 5 minutes (to collect rest-state data) before starting the scenario, 

which was a 30-minute exercise comprising 3 back-to-back phases of increasing 

difficulty. When Phase 3 is over Participants are asked to relax for 5 minutes while 

sensors keep logging so two comparable resting state are obtained, one pre-

experiment and another post-experiment. Subsequently, participants provided 

subjective ratings for their workload and situational awareness in each of the three 

phases.  

One of the participants could not fit the Cardiorespiratory sensor. 
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8 Online and offline analysis 

This chapter presents the adopted mathematical methods in the data analysis and 

the considerations made in pre-processing.  

First of all it is necessary to consider that during these experiments the operator 

wore various sensing devices and was aware of being monitored also by remote 

sensors, these factors can influence the naturalness of the subject's behavior. 

Monitoring was carried out on subjects with a different cultural background: Italian, 

Indian, Chinese, Thai, Australian so this analysis also evaluates the independence of 

the biometrical features from the cultural background. The subject’s age vary 

between 24 and 36. 

First and foremost, it is essential to define that two main types of errors can occur 

during tests: Type I and Type II. Type I errors or false positives occur when a 

condition is detected that does not actually appear in the test, an example in 

computer science is an antivirus that mistakenly considers a harmless program 

harmful, generating a false alarm. A Type II  or false negative is an error in which a 

test result improperly indicates no presence of a condition (the result is negative), 

when in reality it is present. In statistical hypothesis testing a type I error is the 

rejection of a true null hypothesis, while a type II error is the non-rejection of a false 

null hypothesis. 

The null hypothesis    is a general statement or default position that indicates 

that no particular variations have occurred within the analyzed data, or for example 

there are no relationships between two phenomena or variables. The null hypothesis 

is generally assumed to be true until evidence. If the null hypothesis is rejected an 

alternative hypothesis    is accepted which usually represents all other assumptions 

about the parameter not specified by the null assumption. 

Initially a data analysis was carried out in relation to emotions as the only 

research available in the literature studied the relationship between groups of AUs 

and emotional states. This analysis was carried out by analyzing the AUs in half 

second time windows to highlight potential relationships with the Taskload and other 

sensors. Following numerous tests it was found that this approach did not provide 

satisfactory and repeatable results especially because the amplitude or frequency of 

the AUs was analyzed as an event. An AUs event represents an emotional state that 

involves the contraction of two or more AUs simultaneously. However, this 

contraction is too variable from person to person and is greatly influenced by various 

factors such as sleep and environment. In fact, each person feels the working 

environment in a different way and this can lead to a variation in the amount of 

contractions. For example, a person who is subject to stress at work or lives in a more 

serious environment may be unconsciously led to reduce the amplitude of FE than at 

home. In addition, a different mood (see chapter FE) influences the FE response to 

stimuli. For these reasons this approach has been abandoned and another method 

has been evaluated. The underlying pre-contraction of facial muscles in a time 

window up to 120 seconds. This data analysis method is now reported for OTM and 

ATM experiments. 

The frequency of facial micro-expressions was also analyzed. A relationship was 

sought between the number of contractions that occur in a few seconds' time window 

and the workload. Also in this case the results are very noisy and although in some 

cases they show potential relationships in general they are not reliable and do not 

give results with good repeatability. For this reason also this method of data analysis 
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has been abandoned demonstrating that it is not a viable way using the open-source 

software available today and the knowledge you have about facial micro-expressions. 

8.1 Filtering 

The measured data by Open Face are filtered with a low-pass filter whose cut-off 

frequency has been determined based on studies available in the literature. 

The carried out studies on the determination of the time window size necessary to 

detect an Action Unit. These tolerance windows represent the temporal precision 

with which action units are comprehensively coded. The parameter kappa k is 

evaluated varying the window, which is the proportion of agreement above what 

would be expected to occur by chance (Cohen, 1960; Fleiss, 1981). Coefficients of 0.60 

to about 0.75 indicate good, or adequate reliability instead k>0.75 indicate excellent 

reliability. Figure 43 shows the k  variation in function of the tolerance window for 

some AU. 

 

Figure 43: Kappa coefficient for single Action Unit[29] 

 

It is easy to see how the reliability improve significantly between the 1/30th 

second and 1/6th second frame tolerance windows. k  doesn’t show significant 

variations  between 1/6 and 1/3 so a tolerance window of 1/6th second provides 

adequate latitude for temporal agreement. [29] [24] 

Thanks to these considerations a cut-off frequency of 6 Hz was chosen. 

This value is also correct because the adopted FPS by the software are a function 

of the lighting level of the camera and they can reach a minimum of 7 FPS so it is 

insured that the cut-off frequency is lower than the data sampling. 

In generally speaking not all AU's are detectable with the same reliability 

because some can be a mix of several AUs and therefore one is distorted or confused, 

for example AU23 is often confused with AU24. For this reason AUs that are 

generally more easily detectable are evaluated.  

It is essential to note that these studies were carried out in 2001 when camera 

and software capabilities were significantly lower than nowadays. Finally Open Face 
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has a very high detection accuracy that is usually between 88 and 95, values below 

80% were discarded and on average in an experiment lasting half an hour (59000 

samples),  lead to not consider ~2.5% of the values (1450 samples). 

8.2 Prominence 

The fundamental parameter for analyzing facial expressions is the amplitude of 

the facial expressions and therefore the sudden contraction of facial muscles. A 

Taskload variation can induce a muscle(AU) contraction which could be already pre-

contracted so the AU prominence  is evaluated. This is because during the 

performance of tasks in a wide period of time, tending to be more than 5 minutes, the 

face can contract in a constant way, like an underlying contraction that we call pre-

contraction. In fact a new stimulus(Taskload increase) can induce a contraction and 

when the stimulus is finished the individual can maintain a pre-contraction even for 

minutes if the Taskload is still high, if in this time the operator undergoes a new 

stimulus the peak of muscle contraction will start from the pre-contraction value. 

 This concept is shown in Figure 44 using as an example the AU9 trend during an 

experiment phase. 

 

 

Figure 44: Peaks evaluation 

 

The AU9 value up to 390s remains very far from the null value so to evaluate the 

variations of the parameter between an instant t and the instant t+1 it would not be 

correct to assume that the variation is the intensity of the peak (red line) but the 

prominence(black line). Let's suppose that at instant t the Taskload assumes a 

generic value of 6 and at instant t+1 it reaches a value of 8. For example if the 

operator has perceived a variation of Taskload equal to 2, in the same way the 

variation of AU related to this phenomenon should be considered as the difference 

between the pre-contraction at instant t and the value at t+1.  The methodology of 

prominence determination is now presented. 

The prominence of a peak measures how much the peak stands out due to its 

intrinsic height and its location relative to other peaks. An isolated peak may have a 

higher prominence than a peak of equal elevation located between two peaks. The 

prominence comes through the following steps: 
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1. Place a marker on the peak. 

2. Extend a horizontal line from the peak to the left and right until the line 

does one of the following: 

 Crosses the signal because there is a higher peak 

 Reaches the left or right end of the signal 

3. Find the minimum of the signal in each of the two intervals defined in 

Step 2. This point is either a valley or one of the signal endpoints. 

The higher of the two interval minima specifies the reference level. The height of 

the peak above this level is its prominence as Figure 45 shows. 

 

 

Figure 45: Prominence determination 

 

The Matlab function findpeaks is used to determine the prominence of peaks, that 

makes no assumption about the behavior of the signal beyond its endpoints, whatever 

their height. This is reflected in Steps 2 and 4 and often affects the value of the 

reference level.  
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8.3 Variance and Covariance 

The variance of a variable X, defined as                 , is a function that 

indicates the variability of the values assumed by variable X. It is defined as: 

  
  

        
 

 
 (8.1) 

It then indicates the square deviation of the variable from the arithmetic mean 

    N is the number of data variables. The AU trend is very variable so the mean is not 

evaluated for the whole data pool but is a variable average calculated with a sliding 

window. 

The variance is the square of the standard deviation    which is a measure of the 

amount of variation or dispersion of a set of values. 

The covariance of two statistical variables X and Y is a function that allows to 

assess how much they vary together, i.e. their dependence. Covariance is defined as: 

         
                

 
 (8.2) 

Some of its properties are: 

                   (8.3) 

            (8.4) 

                       (8.5) 

                       (8.6) 

                       (8.7) 

Where a and b are constants. 

If the two variables are identical, the variance is obtained. In fact the variance is 

a particular case of the covariance: 

                         
  (8.8) 

If the covariance between two variables is zero means they are uncorrelated. 

These parameters are necessary to define the correlation coefficient used in 

subsequent data analysis. 

8.4 Correlation coefficient 

The adopted numerical measure relate AUs to other parameters from other 

sensors or Taskload is the correlation coefficient. 

The Correlation Coefficient (CC) is a statistical measure that calculates the 

strength of the relationship between the relative movements of two variables. 

The CC can assume values in a range between -1 and 1, a correlation of 1 means a 

perfect positive correlation so the two variables have the same trend. On the other 

side a correlation of -1 means a perfect negative correlation so when a variable 

https://en.wikipedia.org/wiki/Statistical_dispersion
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increase the other decrease in the same way. 0 indicates no correlation. A calculated 

number greater than 1.0 or less than -1.0 means that there was an error in the 

correlation measurement. 

There are several types of correlation coefficients, the Pearson Correlation 

Coefficient is adopted. It is a measure of the linear correlation between two variables 

X and Y, more precisely  is defined as the covariance of the two variables divided by 

the product of their standard deviations. 

     
        

    
 (8.9) 

This measures the strength and direction of the linear relationship between two 

variables.  

   and    are defined as: 

    
 

 
         
 

   

 (8.10) 

The Correlation coefficient cannot capture nonlinear relationships between two 

variables and cannot differentiate between dependent and independent variables. 

The two fundamental CC’s properties  are: 

 It is symmetric: corr(X,Y) = corr(Y,X)   

 It is invariant under separate changes in location and scale in the two 

variables, this means that even if variables X and Y are transformed into 

a + bX  and c + dY, where a, b, c, and d are constants with b, d > 0, the CC 

remains unchanged. 

In the engineering field, when measuring variables with a very high required 

precision, a      > 0.9 is usually required, but in the biometrical measurement field 

parameters have a very low predictability, high variability and measurements 

themselves can be affected by numerous errors so the statistical Evans(1996) scale is 

assumed as basic reference: 

 0.0-0.19   very weak 

 0.2-0.39   weak 

 0.4-0.59   moderate 

 0.6-0.79   strong 

 0.8-1.0     very strong 

According to this scale a minimum threshold of 0.5 is assumed as minimum 

correlation coefficient and data with a CC greater than 0.6 are considered potentially 

meaningful. 

 

 

 

https://en.wikipedia.org/wiki/Correlation
https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Standard_deviations
https://www.investopedia.com/terms/l/linearrelationship.asp
https://en.wikipedia.org/wiki/Invariant_estimator
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9 Data analysis 

9.1 Objective parameters: Secondary tasks 

Each experiment has a different task trend obviously according to the criteria 

adopted by the operator in carrying out the task. A method to process the given task 

has therefore been developed. 

Since we want to consider the variation of the tasks over a wide time interval and 

the minimum variations are usually not perceived by the operator from a cognitive 

point of view: 

 task variations of less than 5% are neglected 

 the task curve is made smoother to facilitate correlation analysis 

The smoothment is done by applying a local average through a sliding window using 

Matlab's movmean function. The width of the window is defined according to the 

criterion now described. 

Please note that we do not want to evaluate the small tasks variations because the 

ultimate goal is to adapt the automation of the system and this does not have to be 

adapted to every single variation but it tends to be considered an adaptive 

automation hysteresis with variations greater than 30%/40%. To be conservative a 

variation of 25% has been considered. Analyzing the prominence of the task trend 

peaks, the peaks with prominence greater than 25% have been selected and it has 

been determined that the time duration varies from 25 to 50 seconds. At this point it 

was possible to determine the width of the sliding window considering the two cases 

of maximum and minimum duration of a peak. 

                              
       

    
    

  

                 

   

 (9.1) 

                              
       

    
    

  

                 

   

 (9.2) 

The formulas show that the average is made with respect to the previous values so 

that it can be applied in real time. Subsequently the correlation analysis carried out 

for both dimensions of the sliding window will be reported. Generally it can be said 

that a window of 50s can be adopted when there are big variations of tasks while for 

smaller variations (but more than 25% of prominence) a 25s window is suggested. 

This approach can be easily integrated in the sensor network through an automatic 

window definition function with the criteria just described. 

 Figure 46 shows the adopted method with a window of 50 seconds. In conclusion, 

therefore, the yellow curve in the figure was used as a reference to evaluate the 

correlation with the AUs trends. 
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Figure 46: Task trend smoothing process 

 

9.2 Sensor data smoothing 

Numerous approaches have been tried in evaluating AUs and it has been noted 

that evaluating individual AUs in short time periods(0.5s - 2s) is very difficult or 

almost impossible especially because this approach is used in psychology but it is a 

human being who reads AUs and can therefore interpret them according to the 

context, so a subjective evaluation. Wanting instead to evaluate in an objective way 

the AUs to develop a mathematical model it is necessary to evaluate them in a 

greater temporal amplitude focusing on the baseline contractions of the face and 

evaluating the trend of contractions instead of the single contraction event. 

Figure 47 shows how the raw data that the software provides which need to be pre-

processed.  

 

Figure 47: AU9 Raw 

 

It has already been explained in the previous chapter how the first filtering is 

performed and the criterion for setting the cut-off frequency to 6 Hz. At this point a 
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smoothing is performed by averaging the values through a sliding window as for 

tasks and using the matlab function smooth. It is not used only movmean because 

this can involve an excessive reduction of the amplitude of the peaks and therefore a 

trend of the amplitude of the AU and their derivative that does not reflect the reality. 

For this reason movmean is used to reduce the noise and small oscillations that the 

filtering has not removed and then the function that uses the following equation is 

used: 

      
 

    
                             (9.3) 

 

where       is the smoothed value for the ith data point, N is the number of 

neighboring data points on either side of ys(i), and 2N+1 is the span. 

 In this case, however, it is difficult to determine the size of the sliding window a 

priori because each individual has his own facial expression with different response 

times and contraction entities. The smaller the sliding window the greater the 

possibility of capturing significant variations but at the same time increases the risk 

of having false positives. In fact, small peaks may occur, even when the number of 

tasks is constant, due for example to itching, movements on the chair or others 

especially if the Taskload is low because the person tends to be more distracted. In 

general, therefore, it can be said that adopting a large window has the advantage to 

eliminate false positives and reducing the noise that has not been filtered with the 

passband filter, but may not point out variations that can be significant. For this 

reason different time windowAU of 25s, 50s, 100s, and 200s have been evaluated. 

The adopted approach is to adapt the window size in function of the Taskload 

variation over time. The variance of the Task trend is evaluated and the greater the 

variance of the Taskload the more it means that the operator is affected by cognitive 

load variations and so the size of the AUwindow is reduced to analyze them in more 

detail. This variation in windowAU have been conducted manually to verify whether 

this method is functioning so it can be implemented in a future online self-calibration 

system.  This method and the self-calibration model are described in Protocol. 

9.3 Correlation coefficient 

The correlation coefficient is used to evaluate the relationship between the task 

and the AU trends. Not only the AU amplitude was analyzed, but also the peak 

prominence and frequency. As already explained the correlation coefficient is defined 

as: 

     
        

    
 

                
 

  
 
        

  
      

 
 
        

  
   

 (9.4) 

In the evaluation of biometric parameters the average reference value cannot be 

calculated as the simple average of the values of the vector x and y because as shown 

in Figure 48 defining an average value for the whole data pool in an experiment of 

2100 seconds (plot every half second) would not provide a correct relation parameter 

because during the phases the average value of pre-contraction of the facial muscles 

is very different from the average value of the whole pool. 
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Figure 48: AU9 trend 

For this reason, the data were analysed by dividing them into phases. For each 

phase k was calculated the average of the values that is used as reference for the 

values of that phase.  The sampling rate is every half second, each phase lasts 600 

sec=1200 values, so defining a parameter k that indicates the number of values on 

which the average is calculated, we have                            ,    
           . The first 50 seconds are for the initial rest and setting of the sensors, 

the last 609 values (4261-3652) are due to the final phase of rest at the end of the 

experiment to verify the rest values and any anomalies.  

The correlation coefficient formula is then adapted by calculating a reference 

average for each phase, for the first phase for example: 

                              
    
       
     

 

  
 (9.5) 

This aspect is fundamental because each subject has his or her own facial 

expression, level of contraction intensity and response time. The adopted formula 

therefore becomes: 

     

                                
 

  
 
                

  
      

 
 
                

  
   

 (9.6) 

The objective of these analyses is to highlight potential relationships between 

Taskload and AUs so the correlation coefficient is adopted as a indicator even if in 

some cases it can be an overly restrictive parameter to evaluate trend similarities. In 

fact sometimes two curves show a good similarity even if the correlation coefficient is 

around 50%, for this reason the AUs that show a correlation coefficient greater than 

50% are analyzed in detail and considered potentially usable those with   greater 

than 60%. 

Now the relationship with the Taskload trend is evaluated, the data of the 

Participant with more experience in flight control are reported. Participant 1 has a 

training as a flight controller that determines that during the formulation of the 
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solution his cognitive process is more structured and according to a precise logic. It is 

curious to note that Participant1 also gives the best correlation results, so it can 

deducted that experience plays a positive influence on facial expression response 

because the operator has more awareness of the situation and how to solve it. This 

awareness affects the physiological response that also follows a trend outlined and 

not random.  

On the contrary, it has been noticed that inexperienced participants show a less 

regular and more random AU trend especially when the Taskload increases. When 

the Taskload exceeds a certain level, these operators are affected by confusion, which 

obviously affects the facial expressions response which shows confusing contractions 

hardly interpretable. 

The first phase does not show particular variations because the Taskload is 

contained and the individual is getting familiar with the interface so the second and 

third phases are reported. 

The contraction of the eyelids, monitored by the eye gaze sensor, determines the 

contraction of muscles in the areas surrounding the eyes (AU1,AU2,AU4,AU5,AU6), 

so these AU have been valued with less interest than those of the mouth (AU9, AU12, 

AU15, AU17, AU25) in order to use Open Face to evaluate parameters which are 

independent from those already evaluated by other sensors. 

 

9.3.1 Cross correlation 

 

Experiment Phase 2 

Figure 49, Figure 50 ,Figure 51, Figure 52, Figure 53 show a close relation 

between the amplitude of the action units in the mouth area and the Taskload. As 

expected, the physiological response presents itself with a time delay. 

This delay is the Facial Expression Response Latency(FE-RL)    that occur 

between a stimulus and the related facial muscles contraction. This latency is not 

constant but it can increase or decrease in time so it can't be simply used the cross-

correlation method by adopting a constant         but a Dynamic Time Warping 

(DTW) has to be adopted. The cross-correlation analysis is performed to determine 

the range of variation of    and its average value. Subsequently this analysis is used 

to define the time warping strategy. 
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Figure 49: AU6 FE-RL 

 

 

Figure 50: AU9 FE-RL 

 

 

Figure 51: AU12 FE-RL 
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Figure 52: AU15 FE-RL 

 

Figure 53: AU25 FE-RL 

 

The cross-correlation is a measure of similarity of two series as a function of the 

displacement of one relative to the other. Considering two functions f e g differing 

only by an unknown shift along the x-axis. The cross-correlation can be used to 

determine what delay the g curve has with respect to f and therefore how 

much  must be shifted along the x-axis to make it identical to . This method slides g 

and calculates the integral of the product  f*g at each position, the functions match 

when the integral of f*g is maximized. This is because when peaks (positive areas) 

are aligned, they make a large contribution to the integral. The cross-correlation is 

defined as: 

                             
  

  

 

 

(9.7) 

           is the complex conjugate of      and     is the time delay or lag. 
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In particular to assess    the cross covariance has been evaluated which is the 

cross-correlation function of  f  and g  with their means removed: 

 

The cross-covariance is the cross-correlation function of two sequences with their 

means removed: 

                                          (9.8) 

    Where E is the expected value operator , meanf and meang are the means of f 

and g respectively for each phase. 

This function allows to obtain a vector in which C is the covariance between two 

shifting vectors. Once the crosscov vector is obtained, the phase shift value that 

maximize the covariance is determined and the AU curve is anticipated of that value. 

Consistently with the studies carried out and the available literature, delay values up 

to 180s are acceptable. Obviously the mathematical operators provide a different    

for each curve but they are very similar as shown in Table 10 : 

 

 AU6 AU9 AU12  AU15 AU25 

   (s) 78 90.5 72 89.5 89.5 

Table 10: phase shifting AU-Tasks Experiment Phase2 

  

The average    for Phase 2 is                    

As mentioned before the size of the sliding windows movmeanTA and 

movmeanAU is varied according to the variance of the Taskload and the participants 

expressivity and FE-RL, for future analysis it will be necessary to define a protocol of 

adaptability of the smoothing to the participant that is reported in Protocol.        

may change if the window size is changed but in general it can be said that for Phase 

2                 for all the partecipants. It is not necessary to calculate an exact 

value of        but this analysis is necessary to estimate it so later the dynamic time 

warping range can be settled. 

 Figure 54, Figure 55, Figure 56, Figure 57 show the AU curve anticipated of    . 

Some AUs like AU6 are aligned very well to the task curve for the whole duration of 

the Phase because the physiological response keeps about the same delay but other 

AUs like AU12 have a τ_d that is not constant so even if the τ_d maximizes the 

covariance there is a good relationship between the curves only from 300s, while 

before AU12 are too early. For this it cannot be assumed a    constant to determine 

the correlation coefficient but the DTW is necessary. 
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Figure 54: Phase correction AU6 

 

 

Figure 55: Phase correction AU9 

 

Figure 56: Phase correction AU12 
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Figure 57: Phase correction AU15 

 

Figure 58: Phase correction AU25 

 

As all the figures show, a generic cross-correlation cannot be adopted because, as 

expected,  the physiological response does not have a constant delay time. 

 

Experiment Phase 3 

The AU6, 9, 12, 15 and 25 trends are now evaluated for phase 3. In this phase the 

delay time is increased as shown in Table 11: 

 

 AU6 AU9 AU12  AU15 AU25 

   234 264 229 305 253 

Table 11: phase shifting AU-Tasks Experiment Phase3 

The average    for Phase 3 is                     

Figure 59, Figure 60, Figure 61 show the AUs curves with the phase shift applied. 
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Figure 59: Phase correction AU6 AU9 

 

Figure 60: Phase correction AU12 AU15 

 

Figure 61: Phase correction AU25 

In all the other experiments very similar values are obtained, in some cases the 

AUs are  few seconds in advance but this is a problem of the experiment because 

there may be delays in the interface between the sensors and also the calculation of 
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secondary tasks can be done with a slight delay because the operator in some cases 

starts a cognitive process that stimulates his MFE and then performs a physical task 

resolution operation that is then detected by the system as a variation of the 

Taskload. In general, therefore, AUs variations are also accepted in advance of the 

related Taskload variation but only for a few seconds.  

It is not possible to define a criterion of variation of    because each individual 

has his own response. For example Figure 62 shows the response of the participant 4 

during the third phase, the first peak is delayed while the second is almost in phase. 

 

Figure 62: Participant 4 MFE AU17 Phase 3 

 

In conclusion, considering the data of all the conducted experiments, it has been 

determined that the pre-contraction time delay of the facial muscles after a stimulus 

can be between 0s and 150s.  

 

 

9.3.2 Dynamic time warping 

Experiment Phase 2 is again evaluated to explain the DTW adopted method. The 

correlation coefficient between AU and Taskload is shown in Table 12. 

 

 AU6 AU9 AU12 AU15 AU25 

Corr-coef 0.7031 0.3627 0.6944 0.2987 0.6869 

Table 12: Correlation coefficient Phase 2 mouth AUs 

The table shows that the correlation coefficient (CC) is low for AU9 and AU15 but 

visually analyzing Figure 55 and Figure 57 a close relationship between the curves 

can be noted. This happens because the CC evaluates the similarity between the 

curves point by point and this leads to a low value because the AU curve is more 

variable and sometimes has an opposite slope for short stretches. In addition, some 

peaks are delayed with a variable time delay as described in the previous section. To 

overcome these two problems the Dynamic Time Warping is adopted. Through this 



83 

 

technique the small local variations that lead to a CC reduction are reduced and the 

relationship between the curves can be evaluated without having to fix a constant    

for the whole Phase. The DTW in fact manipulates the curves by applying a variable 

   and also changes the general trend of the curves. Figure 63 and Figure 64 show 

the AUs that have undergone the slightest and greatest variation as a result of time 

warping. 

It is easy to see that the problem of phase shift is solved but in the case of AU15 

the curve is too distorted. For this reason it is necessary to set a curve modification 

threshold in order to find the right compromise between a meaningful correlation 

without losing the physical meaning of the data. 

 

Figure 63: AU6 Warped 

 

 

Figure 64: AU15 Warped 

The Matlab dtw function has been used and Figure 65 shows how this algorithm 

works.  
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Figure 65: Dynamic Time Warping path 

 

It computes the Euclidean distance between the samples of vectors Taskload and 

AU. It returns the warping path, IX and IY, that minimizes the total Euclidean 

distance between Taskload(IX) and AU(IY). This algorithm works very well for 

similar sinusoidal signals such as audio and video but as for the data analyzed in this 

research it is necessary to impose constraints on the algorithm. Figure 66 shows the 

original signal (blue) and the warped signal (red), the warped signal is modified too 

much (up to     400s) which is not acceptable because it would mean that the MFE 

response has a delay of 400s . Thanks to the cross correlation analysis it has been 

discovered that the τ_d is between 0s and 150s so a maximum delay of two minutes 

(120s) is set as the warping limit, which leads to the curve on the bottom left in 

Figure 66, Figure 67, Figure 68, Figure 69. 

 

Figure 66: DTW without constrains 

At this point the last problem has to be solved, the DTW function shifting algorithm. 

The figures at the bottom left shows how the curves, now with a physically 

meaningful delay, sometimes still are in delay and this leads to a low correlation 

coefficient. This happens because the function uses the Euclidean distance between 

the i-th point of curve 1 and the i±j-th point of curve 2 to determine the warping path. 

The Euclidean distance is the distance between two points, i.e. the measure of the 

segment having at its extremes the two points     and    . 
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 (9.9) 

Unfortunately sometimes the minimizations of the Euclidean distance between 

curves does not lead to a reduction of the phase shift. This problem is solved by 

analyzing the slope of the curves, i.e. making the DTW of the derivatives of the 

Taskload and AU curves obtaining the warping path IX_der and IY_der. 

AU_der= diff(AU)./diff(time); 

Task_der=diff(task)./diff(time); 

[Dist_der,ix_der,iy_der]=dtw(AU_der,task_der,240) 

 

The warping paths obtained are then used for the phase shifting of the amplitude 

of the curves. 

So the graphs at the bottom right of Figure 67, Figure 68 and Figure 69 are obtained.     

 

Figure 67: AU6 derivate warping  
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Figure 68: AU12 derivate warping 

 

Figure 69: AU15 derivate warping 

This method gives good results if the curves have a relation of at least 35%, 

otherwise it generates excessive deformations but it is not a problem because the 

minimum correlation threshold accepted in this analysis is 60%.  

As has been explained in the previous sections the Taskload and AU are mediated 

with a sliding window, the first is set to 50s instead the second must be variable 

because each individual has its own facial expression and muscle contraction 

magnitude. The correlation coefficient between the two curves is evaluated for a 

windowAU of variable dimension with values from half of the minimum 

windowTA(25s)=12.5s to the double of the windowTA(50s) that is 100s. The size of 

windowAU is chosen in function of the variance of windowTA , if windowTA has a 

high variance in time a smaller windowAU  is adopted, otherwise a bigger one. The 

correlation coefficient of conducted analyses on the six participants are shown in 

Table 13. In the table are reported the AUs that show the greater correlation with 

the Taskload for the three phases and the six analyzed participants. Data are 

presented for all three phases because it was found that the stimulation of the facial 

muscles of an individual can change over time so for example the AU6 can be an 
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excellent indicator for phase 1 and phase 2 but in phase 3 the AU15 shows a better 

correlation. 

Partecipant 1 AU6 AU9 AU12 AU15 AU17 AU25 

PHASE 1 0.83 0.86 0.81 0.77 0.94 0.77 

PHASE 2 0.55 0.60 0.85 0.94 0.22 0.67 

PHASE 3 0.45 0.26 0.72 0.56 0.32 0.65 

Partecipant 2 AU6 AU9 AU12 AU15 AU17 AU25 

PHASE 1 0.77 0.70 0.88 0.22 0.35 0.87 

PHASE 2 0.69 0.57 0.24 0.87 0.86 0.65 

PHASE 3 0.68 0.23 0.71 0.68 0.39 0.67 

Partecipant 3 AU6 AU9 AU12 AU15 AU17 AU25 

PHASE 1 0.68 0.17 0.83 0.75 0.20 0.69 

PHASE 2 0.46 0.65 0.92 0.67 0.24 0.82 

PHASE 3 0.71 0.78 0.72 0.73 0.85 0.87 

Partecipant 4 AU6 AU9 AU12 AU15 AU17 AU25 

PHASE 1 0.65 0.68 0.25 0.45 0.68 0.66 

PHASE 2 0.74 0.73 0.65 0.23 0.57 0.72 

PHASE 3 0.59 0.59 0.47 0.13 0.83 0.69 

Partecipant 5 AU6 AU9 AU12 AU15 AU17 AU25 

PHASE 1 0.97 0.94 0.95 0.87 0.75 0.92 

PHASE 2 0.45 -0.17 -0.55 0.56 0.53 -0.67 

PHASE 3 0.77 0.70 0.28 0.67 0.78 0.68 

Partecipant 6 AU6 AU9 AU12 AU15 AU17 AU25 

PHASE 1 0.45 0.68 0.69 0.66 0.23 0.74 

PHASE 2 0.67 0.87 0.67 0.81 0.45 0.81 

PHASE 3 0.53 0.55 0.45 0.64 0.33 0.58 

Table 13: Correlation coefficient AUs-Taskload 

 

Table 13 shows that AU6, AU15 and AU25 are the most reliable with a 

correlation bigger than 60% in the 72% of cases.  

These experiments show that one of the goal of the research as been achieved, 

mouth AUs can be used as a Workload indicator so integrated in the sensor network. 

 It is fundamental to note that, analyzing the graphs, in some cases a good 

correlations is visible even for correlation coefficient between 50% and 60%, this 

happen because the developed algorithm needs improvements to be adapted to the 

individual. For this reason subsequently the definition of a protocol for the 

adaptation of the software to the operator will be analyzed in Protocol chapter.  

The relationship between FEs and other psycho-physiological parameters is now 

analysed in order to assess whether FEs can provide an independent evaluation 

parameter that can be added to the others to confirm the workload estimation. 
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10 Psychophysiological parameters 

10.1 Eye features 

The relationship between eye features and cognitive states has been analyzed in 

numerous studies that have shown a close relationship between these psycho-

physiological parameters and the cognitive state. [4, 9, 40, 79-82]  

Blink Rate(BR) and Visual Entropy(VE) are the two main parameters that are 

used. As anticipated in the previous chapters in this analysis the facial expressions of 

the mouth are evaluated because they are not involved in blinking and so they can 

provide an independent evaluation parameter to prove a possible variation of the 

cognitive state detected by the Eye sensor. 

The blink rate represents the variation over time of the number of blinks. It has 

been demonstrated that a reduction in the blink rate means an increase in attention 

that in extreme cases can lead to attention tunnelling, characterized by very low BR. 

The inverse of the BR (IBR) is then analysed, so an increase of IBR means an 

increase in attention and concentration. Phase 2 and Phase 3 are characterized by a 

major workload increase so are now analized.  Figure 70 and Figure 71 show the 

normalized Blink Rate and the AUs that have shown a higher correlation with 

Taskload: AU6, AU15 and AU25. They show that after each Taskload a peak of IBR 

and AUs appear with the FE-PD discussed in the previous chapter. 

It has been noted that, in most cases, during an increasing effort in the cognitive 

process to solve a task, the blink rate is reduced while the underlying contraction of 

the muscles at the sides of the mouth increases. Both Figure 70 and Figure 71 show 

how AU15 is closely related to the blink rate. 

 

Figure 70: Blink Rate Ph2 

In Phase 2, AU15 has a trend very similar to IBR and AU25 (lower lip muscles, 

Depressor Labii) presents a remarkable similarity but smoother, this is due to the 

fact that the contraction of the muscles linked to AU25 leads to open the mouth, a 

phenomenon that in facial mimicry has less magnitude unless it is voluntary or due 

to a high effort. In fact, the contraction of the lower lip that leads to the opening of 
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the mouth is due to greater cognitive effort and it is essential to point out that the 

participants were in a professional environment and knew they were being 

monitored, so this may have reduced their facial expressivity.  

AU25 therefore presents peaks when a cognitive effort is prolonged over time and 

this is clearly visible in the first two peaks of phase 2.   

Figure 46 shows how the first Taskload peak (Peak TA1 in green in Figure 70)  is 

generated by a considerable increase of Taskload whereas the second peak (PeakTA2) 

appear at an already high Taskload level and therefore a prolonged effort that 

generates an AU25 increase. The same reasoning can be done for AU6 because also 

the increase in cheeks contraction occurs when the Participant's increase in 

concentration lasts over time. 

AU6 (Cheek Raiser or Orbicularis oculi, pars orbitalis) can be considered as a 

parameter that identifies a lasting effort over time because a reduction in the Blink 

Rate leads to a greater underlying contraction of the eyelid muscles, which in turn is 

transmitted to the cheeks by contracting them. AU6 and AU25 can be therefore 

considered long time response parameters. It can be therefore concluded that AU15 

and AU25 work in synergy during the increase in concentration, AU15 contracts 

more quickly giving the first indication of increase in Workload and if the effort is 

persistent over time even AU25 increases whereas AU6 is the consequence of ocular 

focalization so can be used to prove a detected Workload variation by the Blink Rate. 

In addition, the lowering of the lower lip(AU25) leads to widen the lowering of the 

sides of the mouth (Depressor anguli oris or Lip corner depressor) amplifying the 

magnitude of AU15. 

 

Figure 71: Blink Rate Ph3 

The same phenomenon can be seen in Figure 71 for phase 3 where each PeakTA 

is followed by a peak of IBR and AUs. Again analyzing Figure 46 it can be seen how 

Peak TA2,3 and 4 occur during an enduring cognitive effort increase, AU6 and AU25 

do not show the first PeakTA2 which instead AU15 shows, even if small, but they 

increase reaching a peak for PeakTA3. 

It can be therefore concluded that AU15, AU25 and AU6 work in synergy during 

the increase in concentration, AU15 contracts more quickly giving the first indication 

of increase in Workload and if the effort is persistent over time even AU25 and AU6 

increase with a certain delay obviously variable depending on the individual. 
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10.1.1 Visual Entropy 

Visual Entropy (VE or H) has been defined in the layer chapter and can be 

broadly defined as the randomness of fixations.  

The value of entropy is high when randomness in scanning patterns is high, 

whereas, the value will be reduced when less fixation transitions are employed as 

well as steady fixation patterns are formed together with systemically gaze patterns 

are also observed. A low entropy can be interpreted as higher attention level of the 

operator, as well as high workload is suggested by an increases of dwell time and 

reduces in fixations, since higher workload demands trigger a restricted eye 

movement with narrower range of fixate areas and more time is required to focus on 

area with higher priority task. [83] 

Again Figure 72 and Figure 73 show relationships especially with AU15, in this 

case the relationship is a little less marked but the curves have the same trend. We 

expected to find this relationship because although BR and VE are two different 

parameters, they are very close to each other because when an operator focuses on 

something both IBR and IVE increase, obviously with different intensity but with a 

similar general trend. 

 

Figure 72: VE Phase 2 

 

Figure 73: VE Phase 3 
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The same considerations made for the BR can be extended for the VE but 

analyzing all the experiments it has been noticed that the relationship between VE 

and AU is less generalizable and less accentuated compared to the BR. In spite of this 

anyway there is a relationship between VE and AUs to determine the cognitive state. 

AU15 in Figure 72 and Figure 73 shows a similar general trend with some phase 

shifts of the peaks due to the FE-RL. In this case a maximum FE-RL of 150s is not 

accepted because both VE (or BR) and AU are physiological responses delayed respect 

to the stimulus (Taskload). In fact, the highest phase shifting (60s) occurs between 

the first peaks of AU15 and IVE. For all participants the phase shifting between eye 

sensor and AUs values does not exceed 70s. In general VE has a less clear and harder 

relatable trend to the Taskload and AUs than BR. 

The Taskload and the Eye features analysis have led to a potential applicable 

interpretation of the Face response, AU15 varies readly after a stimulus (Taskload 

increase)  with a maximum delay of a few seconds while AU6 and AU25 significantly 

increase if the cognitive effort lasts over time and they are characterized by a 

maximum FE-RL of 130s. 

This concept is now applied on the relationship between AU and Breathing Rate 

and Heart Rate. 

10.2 Bioharness 

The data from the cardiorespiratory sensor are now analyzed. In the Sensors 

section it has been explained that this sensor provides three main parameters: the 

Heart Rate(HR), the Short term HRV characteristic (SD1) and the Breathing 

Rate(BHR). Numerous researches have demonstrated the relationship between these 

parameters and the mental workload. [4, 6, 7, 9, 41, 83-88] 

An increase in workload leads to an increase in Heart Rate, SD1 and a Breathing 

Rate(Breath/min) decrease, for this reason the analyzed parameter is the inverse of 

the BHR (IB). In fact, when a person concentrates to solve a task tends to block the 

breath or slow it down, an increment of workload determines then an increment of 

IB. The Heart Rate is a parameter that generally varies with the WL but is strictly 

dependent on the subject because a trained person to have a lower HR and a slower 

variation over time. In these experiments the training level of the participants has 

not been evaluated so it is accepted that the response can be very different in terms 

of amplitude and Breathing Rate Response Latency(BHR-RL) from individual to 

individual. The BHR-RL can reach few minutes whereas the FE response is usually 

prompter so phase shifts between the two curves are expected. Phase 2 and phase 3 

for Participant 1 are again analyzed. Figure 74 show that the Heart Rate (beats/min) 

has a very smooth trend and is therefore difficult to relate it to the AUs but on the 

contrary IB shows interesting correlations. 
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Figure 74: Partecipant 1 Phase 2 Bioharness AU6 

 

Figure 75: Partecipant 1 Phase 2 Bioharness AU12 

 

 

Figure 76: Partecipant 1 Phase 2 Bioharness AU15 
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Figure 77: Partecipant 1 Phase 2 Bioharness AU25 

The stars in the figure above represent the WL peaks, the first blue star (1) 

identifies a slight peak while the others (2.1-2.2,3,4) represent the main peaks. The 

first peak on the left of IB is relative to the previous phase while the second is 

relative to the peak of WL 1. This peak is not highlighted by AU6,AU12 and AU15 

instead AU25 has a slight peak at 80s in conjunction with the blue star. The other 

main peaks(green) are instead highlighted by all the AU shown in the figures. The 

first two green peaks(2.1 and 2.2) are part of a lasting increase of WL that induces a 

single psycho-physiological response. The WL 3 peak induces a promptly response of 

AU6,AU12,AU25 and SD1 and then also AU15 and IB show the related peaks, AU15 

about 40s later whereas IB about 100s later. Finally, the last WL peak(4) induces an 

increase of all parameters with about the same response latency. 

 

 

Figure 78: Partecipant 1 Phase 3 Bioharness AU6 
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Figure 79: Partecipant 1 Phase 3 Bioharness AU12 

 

 

Figure 80: Partecipant 1 Phase 3 Bioharness AU15 

 

Figure 81: Partecipant 1 Phase 3 Bioharness AU25 
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Figure 75 shows again that the psycho-physiological response of IB,AU6,AU12 

and AU25 is strictly related to WL peaks, but in this case SD1 does not show all the 

peaks in fact the first WL peak induce the second IB peak and the first of the AUs 

but SD1 doesn’t show a remarkable change.  

A comparison between phase 2 and phase 3 of the participant 1 shows that in all 

the phase 3 the FE-RL  is greater than the IB-RL,  

However, this phenomenon does not occur for the other participants, each has its 

own FE-RL which in some cases remains approximately constant throughout the 

experiment whereas in others it varies from phase to phase. The maximum lag 

between the facial response and the breath response in participant 1 is: 

                    (10.1) 

This variability of the FE-RL can be related to the WL derivate, the higher the 

WL variation the faster the FE-RL is. In fact the last 3 peaks of Figure 75 are very 

gently WL variations.  

Further research will demonstrate this interpretation. 

The 80% of the participants show a clear correlation between IB and AU25, 

obviously in some it is more marked whereas in others less but the correlation 

coefficient is generally higher than 0.65. AU6 and AU12 often have peaks at the IB 

peaks but in general their variation show more noise and lower muscle contractions 

than AU25. AU15 presents partial correlations in 70% of the participants and further 

analysis could be prove its potential usefulness. SD1 in general describes WL well but 

in some cases it does not detect some WL peaks as in the case of Figure 75. 

 

 

Figure 82: Partecipant 2 Phase 3 Bioharness 
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Figure 83: Partecipant 4 Phase 3 Bioharness 

Figure 82 and Figure 83 show the data of participants 2 and 4 for phase 3 which 

is the one with the highest WL, Figure 82 shows the case in which there was less 

correlation whereas Figure 83, as for participant 1, shows an evident correlation 

between AU6,AU12,AU15 and AU25 with obviously with different FE-RL and IB-RL.  

It is interesting to note that the fundamental aspect is that sensors are able to 

detect when there is a significant peak of WL, instead minor WL variations have a 

secondary importance. All substantial variations of WL have been detected by the FE 

sensor and the most critical cases where the WL suddenly increases the FE show 

such variation, sometimes even faster than SD1 and IB. 

It can therefore be concluded that again in this evaluation AU25 is the most 

potentially promising FE parameter and given the similarities with the monitored 

features by the Bioharness sensor, the FE monitoring could be introduced in the 

sensor network. AU25 can be used as a WL evaluation parameter whereas AU6, 

AU15 and AU12 can be used as secondary parameters to confirm the WL estimation 

made byAU25, Breathing Rate and eye-sensing. 

 

10.3 Electroencephalography 

Numerous studies have demonstrated the relationship between the brain waves 

monitored by the EEG and the workload. [4, 10, 86, 88-93] In particular, the 

parameter evaluated is the EEG index explained in the sensors chapter: 

          
      
      

 
       
   

   

       
    

   

 (10.2) 

The obtained pre-processed values are then related to the AUs making them 

smoother with the two matlab functions movmean and smooth. The first function 

averages the values in a sliding window of 20 seconds for the EEG index and 30 

seconds for AUs. The smooth function uses a moving average which, unlike 

movmean, does not smooth the prominence of the original curve so movmean is used 

to reduce noise while smooth is used to extrapolate the general curves trend. 

Smoothing span for both EEG index and AUs is settled at 30 seconds. Finally, a 
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dynamic time warping of only 20 seconds was applied to correct any phase shift due 

to different Brain Waves Response Latency (BW-RL) and FE-RL.  

Table 14 shows the correlation coefficient between the processed curves as 

mentioned above. Participant 5 monitoring presented some setting problems in fact it 

can be seen how the data show low CC values and phase 1 was reported instead of 

phase 3 because in the latter the sensor presented anomalies. 

 

Partecipant 1 AU6 AU9 AU12 AU15 AU17 AU25 

PHASE 2 0.41 0.70 0.17 0.68 -0.31 0.63 

PHASE 3 0.69 0.85 0.61 0.70 0.18 0.80 

Partecipant 2 AU6 AU9 AU12 AU15 AU17 AU25 

PHASE 2 0.46 0.44 0.47 -0.10 0.039 0.54 

PHASE 3 0.73 0.60 0.65 0.62 0.53 0.70 

Partecipant 3 AU6 AU9 AU12 AU15 AU17 AU25 

PHASE 2 0.43 0.61 0.25 0.71 0.57 0.68 

PHASE 3 0.48 0.61 -0.45 0.70 0.65 -0.41 

Partecipant 4 AU6 AU9 AU12 AU15 AU17 AU25 

PHASE 2 0.78 0.63 0.79 0.26 0.31 0.69 

PHASE 3 0.85 0.78 0.89 0.23 0.12 0.82 

Partecipant 5 AU6 AU9 AU12 AU15 AU17 AU25 

PHASE 1 0.24 0.37 0.46 0.41 0.69 0.0049 

PHASE 2 0.72 0.71 0.68 0.73 0.82 0.66 

Partecipant 6 AU6 AU9 AU12 AU15 AU17 AU25 

PHASE 2 0.26 0.32 0.35 0.78 0.79 0.75 

PHASE 3 0.44 0.75 0.31 0.77 0.66 0.80 

CC>60%  42% 75% 48% 66% 33% 75% 

Table 14: Correlation coefficient between EEG index and AUs 

Again AU25 is the one that shows the best correlation and the table shows how the 

correlation between EEG and AUs increases as the WL increases, in fact higher 

correlation coefficient values have been calculated for phase 3. 

This phenomenon has also been noticed for other sensors and shows an important 

aspect. AUs monitoring increases his reliability on evaluating workload level as the 

Workload increases. This may be due to the fact that when the workload is low the 

person can get distracted and have different behaviours but when the operator 

increases his concentration and cognitive effort this leads to more determined and 

quantifiable psycho-physiological responses. 

The last row of the table shows the percentage of phases in which the CC was 

greater than 60%. In this case also AU9 showed interesting behaviours that will be 

further analysed in the ATM experiment to verify its potential relationship with 

EEG. Figure 84 and Figure 85 show the AU9 and AU25 for the participant 1 before 
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the dynamic time warping is applied. Although there are still normal phase shifts 

between the curves, it is possible to notice a close relationship between the trends. 

 

Figure 84: Partecipant 1 Phase 3 AU9 

 

 

Figure 85: Partecipant 1 Phase 3 AU25 

 

Participant 2 shows close relationships between the curves but a smaller 

movmean window had to be adopted than the other participants because the 

magnitude of the facial expressions for this participant is very small compared to the 

others and is therefore reduced smoothing. This again shows the need to develop a 

protocol to define a data pre-processing adaptation model on the each specific 

operator. 
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11 ATM experiment 

The OTM experiments allowed us to have greater knowledge about 

physiological facial reactions following stimuli in a given environment so another 

experiment was conducted in collaboration with THALES Australia to verify the 

considerations previously made. This experiment concerns Air Traffic 

Management (ATM) in the Terminal Manouvring Area (TMA). The software and 

hardware components of the AIAS lab used in this research are now presented. 

Figure 86 shows in the foreground the two radar workstations with industry-grade 

Esterline MDP-471/4 LCD tactical situation displays. The ATM station in the 

background comprises an immersive 270° control tower simulator. The external 

visuals for the 270 degrees Air Traffic Control (ATC) Tower Simulator can be 

supplied by either Lockheed-Martin's Prepar3D v3.4 or X-Plane 10. The simulators 

are commercial-off-the-shelf products so C++/Python/Javascript and Matlab were 

used to develop of suitable interfaces to integrate them within the laboratory 

network. The public available adopted traffic generator software are openScope, 

Hoekstra's BlueSky, Albatross Display, Eurocontrol's e-DEP, Euroscope. 

 

 

Figure 86: ATM simulation environment 

 

 

The CHMI2 system modules are presented in figure. The collection, processing 

and logging of sensor and simulation data is supported by a centralised server(HFE-

Lab server). Testing the full CHMI2 system required further stages of HMI design 

and development. 
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Figure 87: Hardware architecture 

 

The modular architecture provides significant flexibility in the integration of 

different types of bio-sensors developing the client-side interface as well as the 

server-side thread and buffer. Modifications can then be made to other threads to 

read data from the new buffer.  

The experiment lasts 45 minutes and is performed administered by a formally 

trained Air Traffic Controller (ATCo). The TMA ATM duties involved arrival traffic 

sequencing and spacing by mean of hybrid procedural and radar vectoring control, as 

well as deconfliction of arrival and departure streams. Only voice-based interactions 

with the simulated aircraft are considered. The Taskload is controlled by 

manipulating arrival and departure traffic throughputs and traffic density. In the 

middle of the scenario, there is a substantial increase of traffic amount (and 

complexity), which was devised to intentionally induce a noticeable change in 

physiological parameters. During the TMA ATM session, the participant must 

manually accept new arrival or departure traffic from upstream ATM sectors. When 

aircraft reach the prescribed handover conditions, the participant can release the 

aircraft to next sector. Table 15 shows TMA ATM tasks and subtasks considered in 

our study. 
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Table 15: Key tasks analysis for TMA ATM([17]) 

 

At this point the number of aircraft has been chosen as objective parameter to 

use as workload index because studies on ATC and ATM related to workload 

evaluation both through subjective evaluations (NASA-TLX) and evaluation 

through psycho-physiological parameters (EEG,Heart Rate,...) have shown a close 

relationship between traffic density and workload. [8, 13, 15, 17, 62]. The traffic 

density is defined as the number of aircraft divided by sector volume: 

                
                  

             
 (11.1) 

Simulations have shown that in some cases the operator has to perform a 

different number of tasks in equal number of aircraft because each aircraft could 

require slightly different tasks. It has also been decided to consider a parameter 

linked to the physical actions that the ATMo performs. This parameter is the number 

of control input (operator mouse click) and assumes a lower weight in the definition 

of the objective workload but must be considered as will be explained below. 

 

11.1 Objective parameters: number of aircrafts and 

control inputs 

In this chapter the AUs that have shown the best correlations in ATM 

experiments are analyzed to verify the interpretations and concepts elaborated in the 

previous chapter. 

In this experiment a smaller magnitude FE trend is expected, smoother and less 

noisy because the participant is an experienced ATM operator and therefore its 

physiological response tends to be more controlled and with less pronounced peaks 

because the individual is familiar with the interface and quick workload variations. 

As will be seen later this expectation is verified. 

 The same data pre-processing methodology is adopted. The objective is to verify 

that the AU25 is the best AU to estimate Workload and other Aus(AU9) can be used 

as secondary parameters to confirm what is captured by the other sensors and AU25.  

In this case the objective parameter for workload estimation are no longer 

secondary tasks but the number of aircraft and control input (mouse click). 
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Researches in the ATM field have already demonstrated that the number of aircraft 

is closely related to workload. [57, 89, 94] 

The experiment lasted 1969 seconds. The OTM experiments have shown that the 

greater the workload the greater the relationship between AUs trend and workload 

and the other psycho-physiological parameters so a time window between 550 and 

1750 seconds is evaluated to exclude the first minutes when the number of aircraft is 

low and the operator is familiarizing with air traffic initial conditions. We do not 

consider the last 200 seconds because the number of aircraft drastically decreased 

and the operator was finishing the test session so the psycho-physiological 

parameters are not meaningful.  

In some situations the number of airplanes increases but the operator has no 

more tasks to perform because the behaviour of the latter does not require additional 

work whereas in other situations there can be a lower number of airplanes  but the 

ATM operator has more tasks to perform because there are problems to solve. For 

this reason we cannot say that the workload is directly proportional to only the 

number of aircrafts and therefore the number of control input has been considered. 

This parameter allows to consider so the number of actions that the controller 

physically carries out in the workstation.   

 Figure 88 shows the trends in the number of aircraft and control input. The two 

trends are very similar but sometimes the control input is in advance (the controller 

performs tasks before the number of aircrafts increase, points 1,2,3,4) or delay (the 

number of aircraft has decreased but the controller still has to perform tasks related 

to past aircraft, point 9). 

 

 

Figure 88: n aircraft and control input trends 

 

For these reasons the workload has been defined as a weighted sum of number of 

aircraft (nacft) and number of control input(nci) as follow: 

                     (11.2) 
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The workload trend in Figure 89 is therefore obtained. In this case a double time 

phase(1200 s) is analyzed compared to the OTM experiments(each phase lasts 600 s) 

so the maximum dynamic time warping is settled to 240 seconds, anyway less than 5 

minutes which is the maximum accepted threshold usually used as Response Latency 

of psycho-physiological features. 

 

Figure 89: WL and AU25 trends 

 

Table 16 shows the Correlation Coefficient between AUs and Workload.  

 

 AU1 AU2 AU4 AU5 AU6 AU9 AU12 AU15 AU17 AU25 

CC -0.36 -0.52 -0.44 0.36 0.13 0.51 0.36 0.1 0.2 0.63 

Table 16: Correlation Coefficient WL-AUs 

 

In general in this experiment CCs are not very high but again the mouth AUs 

show the best relationship and the highest is for AU25.  

It can be therefore concluded that lips parting is the main indicator of workload, 

it has been demonstrated in 7 experiments (6 OTM and 1 ATM). Future researches 

will be able to study in more depth the relationship between AU25 and WL by 

defining a prediction model of WL according to lips parting. The FE-RL for AU25 is 

29s, which is a coherent value compared to what was obtained in OTM experiments. 

AU9 also shows interesting relationships that have also been highlighted in the 

OTM experiment (Table 13 ). The data of the other sensors are now analyzed. 

11.2 Eye features 

Blink Rate and Visual Entropy of the participant are now evaluated in the time 

window 550-1750 seconds. As explained in the previous chapters we use the inverse 

of BR and VE. In the evaluation of the eye features of the OTM experiment we 

analyzed the time BR_RL and FE_RL deducing that AU6 has a response time greater 

than AU25. Performing the cross-covariance analysis the same result was calculated 
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in this experiment. In fact AU6 has a ∆_RL of 15 seconds while AU25 has 3 seconds 

with respect to the Blink Rate. ∆_RL is defined as follow: 

               (11.3) 

This results in a new potential discovery that further research may prove. 

Figure 90 shows the relationship between IBR and AU25, the workload was also 

graphed to highlight the similarity between the curves and the different response 

delays of BR and FE.

 

Figure 90: AU25- Blink Rate comparison 

 

The figure shows how WL peaks are highlighted by both BR and FE, minor peaks 

2 and 3 are not highlighted much by AU25 but after the drop after peak 3 it’s easy to 

see how AU25 shows an increasing workload. After peak 4 the workload remains 

approximately constant and the BR shows a similar trend. AU25 on the other hand 

due to the physiognomy of the facial muscles as explained above tends to decrease. 

This is because the facial muscles of the corners of the mouth (Depressor Labii) tend 

to relax after a sudden contraction if the cognitive effort remains at the same level. 

Subsequently, however, the WL presents another peak(5) which is highlighted by 

AU25. Finally, peak 6 is clearly shown by both AU25 and BR.   

Figure 91 shows that AU6 also has a very similar trend to BR but very smooth. It 

is important to note that it shows in a clear way the two major peaks of WL(4-5,6) 

consistently with BR so also in this experiment the relationship between AU6,AU25 

and BR has been demonstrated. 

In this experiment AU15 does not show particular relationships, it shows the first 

major peak (4) and the second (6) but not in a clear way.  
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Figure 91: AU6- Blink Rate comparison 

 

11.2.1 Visual Entropy 

The inverse of the VE is now evaluated. Figure 92 shows how once again AU25 

presents the highest correlation although not for each peak. It is important that there 

are relationships for the main peak because it is the one that during the online 

implementation will give the main feedback of adaptation of the automation level and 

it is highlighted. 

 

Figure 92: AUs-VE comparison 

 

In this case the phase shifting between FE and VE, for the major peak, is about 

35s so slightly longer than BR but consistent with the operator's RLs calculated for 

the other sensors. 
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11.3 Cardiorespiratory features 

By relating the various parameters SD,HR and BR (inverse of BR) a correlation 

was found only with HR because BR. 

Table 17 shows the correlation coefficient with the Aus, the time warping is 

carried out with the same modalities of the OTM experiment. 

  

 AU6 AU9 AU12 AU15 AU17 AU25 

Heart Rate 0.61 0.65 0.65 0.58 0.72 0.81 

Breathing Rate 0.59 0.62 0.60 0.75 0.48 0.36 

Table 17: Correlation Coefficient AUs-Bioharness 

 

The figures show how the breathing rate (IB) is smoother and shows a significant 

and basically constant increase from 1200s when the workload presents the first 

major peak. Given the very smooth IB trend, it is difficult to find direct relationship 

between IB and AUs, but both show an increase in workload after 1200s. In the OTM 

experiment AU6,AU12,AU15 and AU25 were the ones with the highest correlation 

and again AU15 and AU25 show a close correlation with IB. AU6 and AU12 had 

presented partial reports and therefore they were proposed as indicators of secondary 

importance, in this experiment again the relationship between these AUs and the 

bioharness parameters is not clear and noisy therefore they are not considered 

reliable. AU15 instead had shown interesting reports that in this experiment happen 

again.  

 

Figure 93: AU15 trend 

Figure 93 shows that AU15 trend is very similar to IB, both curves grow around 

1200s but obviously after a certain contraction the same phenomenon found in the 

OTM experiments occurs, i.e. the muscles return to decontract because a high and 

long lasting contraction is not physiologically possible unless it is voluntary. For this 
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reason AU15 reduces again after a maximum contraction period between 1460s and 

1500s. The same phenomenon occurs for AU25. 

 

Figure 94: AU17 trend 

Obviously each individual has its own typical facial expressiveness and tends to 

use more certain muscles, EEG data showed a relationship with the AU17 and is 

therefore also analyzed in relation to bioharness to analyze the possibility that each 

individual privileges the contraction of certain facial muscles induced by a cognitive 

load increase. AU17 presents the same peaks of HR but the first two occur with a 

delay of 45s motivated by the fact that the workload is low and therefore the FE_RL 

is greater. It is interesting to note that the peaks at 1400s and 1600s have about the 

same shape of HR whereas the lower peak at 1240s that is highlighted little by HR is 

evident in the AU17 trend. 

 

Figure 95: AU25 trend 

 

AU25 initially shows a slight increase but the trend is very smooth up to 1100s 

and then has three main peaks. Analyzing again the prominence of the peaks as the 

oscillations are small (except for the peak at about 1500s) three main peaks are 

identified. Table 18 shows the time of occurrence of AU25 and HR peaks. 
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 Peak1 Peak2 Peak3 

HR 1115s 1380s 1670s 

AU25 1125s 1460s 1650s 

Table 18: AU25 and HR peaks occurrence 

 

The phase shifting between the two curves is between 10s and 80s, consistent 

with the data obtained in the OTM experiments. As already described in the previous 

analysis AU25 does not show particular relationships in this experiment in which 

AU15 seems to be more reliable, but both show the second peak of Workload around 

1500s. 

We can conclude that AU25 could still be considered as the main AU of reference 

but individual tests on the operator are necessary to understand which muscles 

privilege the contraction which in this case are the muscles related to AU15 and 

AU17. 

11.4 Electroencephalography 

The OTM experiments have shown a close relationship between AU9 and AU25 

which is analysed for this experiment. Table 19 show the correlation coefficient 

between AUs and EEG. 

 

 AU6 AU9 AU12 AU15 AU17 AU25 

CC 0.41 0.71 0.76 0.42 0.55 0.1 

Table 19: Correlation Coefficient AUs-EEG 

 

Unfortunately in this experiment the relationship between AU25 and EEG is not 

clear. On the contrary, Figure 96 and Figure 97 show how AU9, AU12 and AU17 

have a close relationship with the EEG index. AU9 between 1100s and 1400s shows a 

clear and constant increase in muscle contraction which is also shown by EEG if the 

general trend of the mean value is evaluated. In general the AUs are not in phase 

with EEG except AU17. 
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Figure 96: AU9-AU15 trends 

 

Figure 97: AU17-AU25 trends 

 

AU17 in fact has peaks about in phase with EEG when the workload increases. In 

this case study, therefore, a particular correlation with AU25 was not detected but 

the hypothesized relationship with AU9 in the OTM experiments can be confirmed. 

In addition, can be confirmed as well the relationship between Workload and 

contraction of the mouth muscles because AU12(Lip Corner Puller, Zygomatic Major) 

and AU17(Chin Raiser, Mentalis) both act on lip corners.  
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12 Protocol 

The conducted experiments have demonstrated the relationship between some 

AUs and the cognitive state and that each individual shows his or her own FE 

response following Workload variations. For this reason it is necessary to develop an 

offline calibration protocol in order to adapt the given pre-processing model to each 

operator. For each individual it is therefore necessary to make calibration 

experiments that are used to define the pre-processing data method and saved in a 

database. Following the creation of this database each operator before starting the 

experiment must select his profile so that the CHMI2 can process the monitored data 

consistently with the model defined with the calibration tests. In general, the pre-

processing data consists essentially of the following steps: 

1. Data rejection if the confidence of the monitored data is less than 80%. 

2. Lowpass filtering at 6Hz 

3. Smoothing of small oscillations by averaging the values in a sliding 

window (movmean function) 

4. Smoothing to highlight the general trend of the curve using the smooth 

function 

Steps 1 and 2 must always be applied whereas the last two steps vary according 

to the participant because each one shows a different amount of contraction of the 

muscles with equal Workload variation. Movmean and smoothing entity are defined 

through calibration experiments. 

It should be noted that this protocol is aimed at operators who already have 

experience or at least familiarity with the interface because, as has been 

demonstrated by the conducted analysis, newbies individuals have more noisy 

physiological responses and can more easily loom in emotional states such as 

confusion and anxiety that lead to be the emotional state that plays the most 

important role and not the cognitive state. An experienced individual, instead, is in 

comfort zones in performing tasks so does not have a high variation of the emotional 

state that therefore does not distort the data, or rather the emotional component in 

the cognitive state equation remains at low values. 

Performance evaluation chapter describes the limits of the software in terms of 

the position of the face in relation to the camera. Participants during both calibration 

tests and experiments must remain within the thresholds listed in Performance 

evaluation but more stringent thresholds are required in calibration tests to optimize 

the system calibration: 

 Operator’s distance from the camera between 50cm and 90cm 

 Maximum rotation around X axis <10° 

 Maximum rotation around Z axis <15° 

Reference system showed in Figure 27. 

After installing the Open Face software on the computer, simply connect the 

camera to it and start recording, data are saved to an excel file as described in 

chapter The Software: Open Face. 
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The calibration tests must consist of the following steps, presented in Figure 98: 

 Pre-test:5 minutes of pre-test in which the operator starts to perform some 

tasks with a very low workload. This phase serves to immerse the operator in 

the environment to distract him from any thoughts not consistent with the 

experiment that could induce emotional reactions and thus generate bias. 

 Variable workload experiment  

 Post-test: 5 minutes at low workload equal to the first pre-test phase (e.g. 

same number of aircraft or UAVs to manage) to compare the facial response 

with the pre-test phase to check that there are no substantial variations. In 

this phase are accepted background contractions lower than the pre-test (up to 

20%) due to possible tiredness and a more relaxed emotional state because the 

operator has finished the test. 

The central part of the experiment represents the main evaluation phase and is in 

turn divided into sub-phases. It is recommended not to screen the clock or a timer 

because the operator, so aware of when workload variations occur, may self-induce 

changes in physiological response. 

 

Figure 98: Calibration experiment 

Figure 98 shows the workload trend of the experiment, the workload indicates an 

objective parameter that can be, as for the experiments conducted, the number of 

aircraft and control input or secondary tasks. It is not necessary but it is 

recommended to use the same parameter both in calibration tests and in the main 

experiments. In figure the normalized value is presented and the maximum value 

equal to 1 represents the maximum WL value that an ATMo or OTMo can 

experiment during a working day. The workload rise rate is always equal to a 20% 

increase every minute. The experiment develops as follows: 

Phase 1  

1. increasing WL from 0 to 20% of the maximum value in one minute. 

2. WL plateau of 4 minutes to allow the operator to adapt to the context and a 

low workload 
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Phase 2 

1. Sub-Phase 2.1: increase the workload by 0.2 every minute to the maximum 

value and then quickly (5 seconds) back to 0.2. 

2. Sub-Phase 2.2: step trend with increments of 0.2 per minute and 4 plateaus, 

the first two by 70s and the last two by 150s. 

 

Phase 3 

1. WL plateau of 5 minutes to allow the operator to re-establish his background 

contraction and then compare it with Phase 1 values. 

 

In Phase 3 contractions are expected to be higher than in Phase 1 for the first 2/3 

minutes or so due to the effort made in Phase 2 (contraction inertia and FE-RL) and 

then reach lower values due to fatigue and relaxation of the participant. 

 

Two trends are generated in Phase 2 because experiments have shown that after 

a WL plateau above 10s muscle contractions tend to reduce as if it were an 

adaptation of the face and therefore of the cognitive state to that particular WL 

value. Moreover, even if the cognitive effort remains constant, especially for high 

efforts, the muscles do not remain very contracted for a long period. For this reason, a 

steadily increasing WL is initially analysed to assess the relationship between the 

magnitude of contraction and the relative WL value and the maximum reachable 

contraction of the muscles(maximum geometrical variation). The second sub-

phase(2.2), on the other hand, is used to determine the response of facial muscles 

following WL plateau of more than 10s duration. The analysis of the experiments 

showed that the Constant Workload Reduction in Contraction (CWRC) during a 

plateau depends on the level of workload, at lower workloads the CWRC occurs faster 

while at higher workloads the CWRC occurs more slowly. At high WL there is a 

greater contraction that in 10s/20s is reduced, but the variations may last up to 30s 

with possible re-contractions, so for WL over 60 the plateaus last longer (150s). 

It is recommended to repeat the experiment on the same subject at least 2 times 

at the same time of day. These experiments therefore make it possible to determine 

the specific parameters of each individual: 

 Maximum muscle contraction (extent of facial expression) 

 Change in contraction due to change in WL  

 Response times: Facial Expression Response Latency (FE-RL)  

 Constant Workload Reduction in Contraction (CWRC) 

 

These parameters are used to define two fundamental aspects of data processing: 

 Size of the sliding window movmean 

 Acceptability range of FE-RL 

 

In the previous chapters it has been explained how the smoothing of the values 

carried out through the movmean functions should be modified from person to person, 

the size of the mean sliding window can vary from about 40s to 200s. The data 
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obtained from calibration experiments are used to evaluate offline the size of this 

window so that it can be used for online analysis.  

The FE-RL also varies from individual to individual and can reach a maximum of 

150s. For this reason is the two high WL plateaus were chosen to last 150s so the 

physiological response happen during the plateau and can not happen that it appears 

when the plateau is already finished. If it exceeds this value it can no longer be 

accepted that a variation of WL has induced such a variation of FE. The offline 

analysis allows to determine the late parameter and its variation when the workload 

varies so that outlier rejection thresholds can be established. For example an 

individual with FE-RL=70s implies that during the comparison of the parameters 

evaluated by other sensors all the values of the psycho-physiological parameters 

monitored in a 70s window are evaluated and if all or most of these present a 

consistent variation within the window then a variation of WL is detected. 

The other fundamental aspect in calibration experiments is the determination of 

dominant contractions. In fact it has been seen that for the analyzed subjects AU25 

represents the most reliable for OTM and AU17 for ATM.  This difference can be due 

to the fact that the two experiments stimulate the participants in different ways so 

the ATM operator could be made to perform the OTM experiments to make a further 

analysis of dependence of the dominant AU with the performed experiment. The 

other fundamental aspect is that it has been shown that each individual prefers the 

contraction of some muscles rather than others. Thus two different individuals 

undergoing the same stimulus could show different dominant AUs, albeit in the 

mouth region, such as AU12, AU15, AU17 or AU25. Thanks to the calibration test, 

therefore, it is possible to adopt a 'boolean' approach in which it is detected which AU 

is the dominant one and others are used as secondary confirmation of cognitive load 

variation detection as proposed in the previous chapters. 

Some final notes for the experiment are: 

 Constant artificial lighting from above. 

 Camera centred with monitors and positioned above it in front of the 

participant. 

The FE monitoring is then modelled to be inserted into the sensor network. The 

development of a model is needed for the online human-system adaptation during the 

mission using databases which are defined in the calibration experiments. The 

relationship between cognitive states, evaluated with the psycho-physiological 

monitored parameters, and the workload has been modelled through Fuzzy systems. 

This relationship is not linear and is different between individuals so it is necessary 

to use continuous self-calibration systems. For this reason Fuzzy systems were 

chosen because they allow to create a loosely relationships between physiological 

features, cognitive states and mission performance through membership functions.  

Considering that psycho-physiological measurements are very noisy, Fuzzy 

membership functions give the possibility to estimate the degree of truth of a 

classification value based on suitably modelled statistical errors. The evaluation of 

workload and cognitive state is an inexact science that does not yet allow to precisely 

define a value of the latter on a universally recognized scale and for the purposes of 

adaptation of the level of automation it is initially necessary just to divide it into 

categories such as high, medium, low. Therefore the Fuzzy if-then rules or fuzzy 

conditional statements represents a good solution because allow to capture inaccurate 

modes of reasoning typical of humans decision making environment.[95, 96] These 

rules are used in a Fuzzy inference system that allows to adapt the definition of 

membership function based on historical data and calibration data.[40, 97-99] 
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An offline training is therefore necessary to define the Fuzzy model, membership 

functions, clustering and other parameters that will be later explained. Neural-Fuzzy 

System(NFS)[100] which integrate aspects of neural networks and fuzzy inference 

systems present a good repeatability and software maturity, so they had been 

investigated as the most promising offline training technique. NFS reproduces the 

brain structure which is formed by distributed network of nodes, each performing 

simple functions. Each connection is assigned a weight which is defined during the 

training session. The offline training allows to create a database with all if-then rules 

that is used during the online training (incremental learning). In our evaluations the 

input are FEs while the output is the workload objectively evaluated through 

secondary Taskload for OTM and number of aircraft and control input for ATM. 

Fuzzy logics provide a simple structure to the classifier and support a greater degree 

of result interpretability when compared against other machine learning approaches 

such as deep learning. These logics reflect very much the human reasoning method 

and operate in its ambiguity and subjectivity. The main aspect is that the 

characterization is based on the level of uncertainty of an information that is the 

degree of truth of that event occurring. It should not be confused with the likelihood 

of an event's occurrence. Uncertainty is the basis of clustering which represents the 

first level of the Neural Network. The categories of high, medium and low can be 

expressed by fuzzy sets. Dividing the workload into three categories: high, medium 

and low, the concept of uncertainty can be expressed as the degree of truth of a piece 

of information considering that it is known that the data obtained from the sensors 

have uncertainties and noise. The Fuzzy rules have already been conceptually 

anticipated during the data analysis of the experiments as for example: 

Rule i: IF AU25 is High AND Blink Rate is High THEN Workload is High 

These rules represent common characteristics between each individual such as a 

relationship between AU17 and/or AU25 and the Blink Rate but each individual has 

a different definition of these categories or sets (set's centers and spreads). For 

example, assuming to use three categories, they can be divided as follows: 

 

AU 25 normalized amplitude Partecipant1 Partecipant2 

Low 0.3 0.2 

Medium 0.6 0.55 

High 1 1 

Table 20: Clustering rules 

Once the rules describing the relationship between input and output are defined, 

different inference methods of NFS computation can be used. 

Figure 99 shows the typical architecture of a neural-fuzzy network composed of 5 

layers. 

The first layer consists of all inputs that are passed to the second layer that uses 

the membership functions to “fuzzify” the inputs obtaining the fuzzy set membership 

for a given input parameter. Then the values are passed to the decision making layer 

which performs the inference operations on the rules. In the next layer all the results 

of each rules are compared through a fuzzy OR operator obtaining the membership 

value of the output parameter. Now the workload level and his evaluation 

uncertainty is obtained in accordance to the defined rules but these data are still 

linguistic values so they are “defuzzified” into a crisp output that represents the last 

layer. 
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Figure 99: Neural Fuzzy Network architecture 

Rules are defined thanks to the conducted experiments whereas the Membership 

function layer is defined through the calibration experiments. The calibration 

experiments are then used to perform offline calibration of the system for future 

evaluations and implementations for real-time HMI2 adaptation. The offline 

calibration of the CHMI2 membership function(classification) layer is carried out 

through the use of the Adaptive Neuro-Fuzzy Inference System (ANFIS). The 

training is based on Fuzzy Inference System(FIS) which use a clustering algorithm to 

create the input xi Gaussian membership functions and    Sugeno-type FIS output 

functions. The Sugeno-type FIS used in the workload classifier uses output 

membership functions that are a linear combination of the input values. The adopted 

approach assume the same number of membership functions(jth) and clusters. The 

function equation is: 

                   
         

 

    
 

  (12.1) 

Where     is the centre of the Gaussian and     the spread. 

Each    Sugeno output functions is defined as a linear combination of the input:   

                        

 

   

 (12.2) 
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where             are the parameters of the output membership function. 

Different types of subtractive clustering algorithms can be used and the adopted 

one is the Fuzzy C-Means(FCM) clustering.[101] 

This clustering technique requires to specify the number of clusters and in the 

case of CHMI2 it has an advantage because it can be defined according to the levels 

of automation to be implemented in the system and the physiological responses 

determined in calibration experiments. FCM divides the pool of n data into c fuzzy 

groups, each data is associated with a membership matrix U which denotes the fuzzy 

membership of data point xi with respect to group j. 

The membership grade of each data i in group j is defined by a membership grade 

   , i.e. the degree of belonging to that fuzzy group. The sum of all membership grade 

across all groups must sum to unity: 

    

 

   

              (12.3) 

Each ith point is at a certain distance from the jth cluster centre which is 

calculated through the Euclidean distance: 

            (12.4) 

The degree of fuzziness of each data cluster is defined by m. A high values of m 

data points far away from the cluster center have a significant membership grade. It 

can be therefore defined a cost function as follow: 

                  
     

 

 

 

 

   

 (12.5) 

The above reported equation is differentiated with respect to all input arguments 

to find its minimum:  

                                             

 

   

  

 

 

 

     
     

 

 

 

 

   

            

 

   

 

 

 

 

 

  (12.6) 

The necessary conditions are given by: 
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(12.8) 

The main steps that the FCM carries out are now conceptually reported: 

 Cluster initialization randomly defining the c cluster centers.  

 Membership grade calculation. 

 Effective cluster centre calculation. 

 Membership grade and cluster centers are iteratively calculated until J 

satisfies a given threshold or until               satisfies a termination 

criterion. 

When the clustering phase is finished the neural fuzzy system (ANFIS) tunes the 

parameters of the generated FIS using a back-propagation method for the input 

membership functions whereas least square estimation is adopted to define the 

output membership function parameters. 

The ANFIS workload classifier is trained using a subset of the participant 

dataset, Experiments have shown that the physiological response has a more regular 

trend when the workload is high, so the training is affected for a subset equal to 20% 

of the dataset during the high WL phase. This training can be tested during further 

experiments conducted on the same subjects performing the same type of 

experiments. 

For this first evaluation of facial expressions in the sensor network, the 

relationship between the single AUs and the objective workload was evaluated. 

Future research will determine further rules to be able to tow ANFIS with more 

inputs from different sensors. The root mean-squared error of all classifiers was 

found to be 0.0471 ± 0.0253. 

Figure 100 and Figure 101 shows the Membership Functions AU25 clusters for 

the ATM experiment and participant 1 in the OTM experiment. The larger clusters 

are generated during training whereas the sharper ones represent clusters applied to 

all the dataset. They show that there is accordance between the clustering of training 

and testing, especially the ATM experiment shows how the higher is the workload 

the higher is the correlation between FE and objective workload(n aircraft and 

control input). 
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Figure 100: ATM experiment 

 

 
Figure 101: OTM Partecipant1 

 

The parameter that indicates how close is the correlation between input and 

output is the Relative Fitting Error (RFE) defined as: 

 

    
                     

                                          
 

 

(12.9) 

Where original values is the objective workload vector that has been set as ANFIS 

output. The fitting error is defined as follow: 
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(12.10) 

FIS data are the input data(AU) trained by ANFIS as explained before. Table 21 

shows the obtained RFE for all the conducted experiments. 

 

 
AU6 AU9 AU12 AU15 AU17 AU25 

ATM 
20.07 15.94 17.26 18.09 23.06 19.32 

OTM 
      

Partecipant1 
18.75 19.78 16.20 18.98 12.74 15.68 

Partecipant2 
23.17 14.98 19.95 17.60 21.62 24.91 

Partecipant3 
17.51 10.65 12.46 8.34 10.02 5.78 

Partecipant4 
17.54 14.61 19.61 22.55 21.0.3 19.42 

Partecipant5 
20.02 7.65 21.27 11.37 23.22 15.28 

Partecipant6 
11.75 16.12 14.74 13.76 16.47 12.98 

Table 21: Relative fitting error ANFIS 

 

Considering that these are the first analyses conducted on the FE in this project 

and the human body is very unpredictable, values below 20% are considered 

meaningful. Table 21 shows that most RFE are less than 20% and the minimum 

obtained values is 7.65%, which indicates an excellent correlation between AU and 

WL using a fuzzy logic inferred method. These analyses have demonstrated the 

validity of the adopted method and the potential usefulness of the AUs for workload 

determination. Further experiments are necessary to create a large ANFIS database 

that allows to further reduce the error and acquire a greater awareness of the 

physiological response. In the current test activity, the only physiological data that 

could be exchanged in real time was eye tracking data, while cardiorespiratory and 

EEG data were only analysed in the post-processing period like AUs.  In future 

researches it will be possible to perform calibration tests with the previously 

described methods to train ANFIS and then carry out experiments such as those 

already performed to verify and validate this model in order to implement the online 

automation adaptation. 
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13 Conclusions 

This research addresses the growing need to monitor humans in safety critical 

operations in which the number of tasks to be carried out is increasing. The role of 

sensor networks in cyber-physical aerospace system applications is increasingly 

important to manage more information by developing human-machine teaming and 

performance. This teaming is represented by the concept of Cognitive Human-

Machine Interfaces and Interactions(     ) systems which represents the core of the 

carried out study. 

The conducted analyses led to the achievement of the research objectives initially 

set. A relationship between cognitive state and the contractions of the facial muscles 

has been demonstrated and will be analysed in more detail in future researches. The 

carried out studies have demonstrated a close relationship between mental workload 

and Taskload variation with mouth and cheekbones Action Units (AU12, AU15, 

AU17, AU25). This concept had never been highlighted in past research and 

represents the main contribution of this project to the research field.  

In the Performance evaluation chapter the software and its applicability have 

been analyzed in order to highlight possible bias and the optimal approach to monitor 

Facial Expressions. 

The subjectivity of FEs is the aspect that has the greatest impact on the meaning 

of recorded data so it has been analysed in detail to define a protocol. In Protocol 

chapter were reported all the aspects that have to be considered during FE 

monitoring. This protocol will be used to perform calibration tests in future research 

in order to highlight the subjective component and avoid misinterpretations of face 

muscles contractions. The relationship between FE and biometric parameters such as 

EEG, Eye movements, Heart Rate, Breath Rate has been also studied demonstrating 

the possibility to integrate Facial Expression sensing in a sensor network for the 

cognitive state evaluation of ATM and OTM operators. 

      is conceived as a multi-sensor fusion system because each sensor is 

affected by bias and noise. In fact, this research confirms what expressed in other 

researches ([18]) for which the more sensors are used, the greater is the reliability 

and accuracy of the cognitive states estimation. This is because the change in one 

measure is usually related to few cognitive states.   

The EEG sensor works at very low voltages and is therefore affected by 

background noise, the Cardio-respiratory sensor is affected by the training of the 

individual, a trained subject has a lower Heart Rate and Breath Rate than a not 

trained one, whereas the Eye Sensor may suffer disturbances due to the movement of 

the operator's head. All these bias can be overcome by integrating the various sensors 

in a single system to use them in a complementary way. This research has 

demonstrated the potential reliability of FE monitoring which can therefore 

contribute significantly to the complementarity of sensors in a       framework: 

 Increasing the accuracy of Cognitive States estimation. 

 Increasing the range of applicability. 

In fact, Face Monitoring uses remote sensing: a simple camera. This allows it to 

be easily installed in different environments and can be directly connected with other 

sensors in a framework for real-time monitoring. 
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Consequently this work can be useful in both defence and aerospace fields and 

also for Single Pilot Operations (SPO).[102] Furthermore, some space applications 

currently mainly use sensor networks for medical monitoring purposes and it is 

expected that in the future      systems will also be adopted. Cognitive state 

estimation by FE monitoring can also be used in other fields such as automotive, 

psychology and all environments with the aim to monitor the human to increase 

safety and operational efficiency. 

This research  has provided useful data for the definition of the FE time response 

after a stimulus (FE-RL) and how AUs can be integrated in a parametric model that 

defines the mental workload.  

 It has been noted that the FE response is generally quicker if the workload 

variation is higher (high derivate) but further experiments are needed to prove this 

point. 

Future developments will better analyze the relationship between workload and 

mouth AUs studying the maximum time of muscle contraction after which a 

relaxation appear even if the cognitive load remains high. 

Future research activities will analyze the relationship with an additional psycho-

physiological parameter: the voice pattern.  
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