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Abstract

Subject of this thesis is the design of a space robotic mission to the asteroid 433 Eros. The
mission aims to grab a boulder from its surface and transport it inside the Earth’s influence
sphere. This work was inspired by NASA’s Asteroid Redirect Mission (ARM), which was
cancelled in 2017 due to lack of funding, andwhose purposewas to transfer a boulder from
the surface of a Near-Earth asteroid (NEA) to a stable lunar orbit, where it could be further
analyzed both by robotic probes and by a future manned mission. The propulsion system
used for the theorized mission consists of three autonomous ion thrusters fully adjustable
in magnitude and direction of thrust. Furthermore, during the return flight an Earth
gravity assist is used to increase the mass of boulder that the spacecraft can transport
towards Earth. The following chapters will analyze the interplanetary phase of this
mission and, specifically, an optimization of the interplanetary trajectories will be carried
out. An indirect method will be used to formulate the possible optimal combinations of
the powers of the three engines, where, in the context of electric propulsion, the thrust
and flow rate of the propellant are linked by a cubic dependence on the input power.
The trends of the power, the thrust and the specific impulse of the optimal case will be
compared with the case in which the power is distributed in such a way as to have a
thruster always at maximum power and with the case in which the power is distributed
uniformly. Finally, the results obtained from the asteroid Eros (Near-Earth asteroid) will
be compared with those obtained from the sub-kilometer asteroid "2008ev5".
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Chapter 1

Introduction

Electric propulsion (EP) can boost the performance of interplanetary missions due to the
low propellant consumption in comparison to chemical propulsion.
The optimization of an interplanetary trajectory is essential to satisfy all the scientific
and technical requirements of a space mission. Space trajectories are typically controlled
by the thrust vector. Optimization consists of finding the optimal control law for thrust
magnitude and direction to maximize a specified performance index, while fulfilling the
boundary conditions that characterize the mission. In the considered case, the optimiza-
tion problem consists of finding the optimal power partitioning among the thrusters, the
corresponding thrust magnitude and the optimal thrust direction. In preliminary anal-
ysis, the patched-conic approximation is adopted and two-body problem equations are
commonly used to describe the interplanetary flight; this assumption is maintained here.
Cubic relations are assumed for thrust and propellant flow rate as a function of input
power. Each engine can either be turned off or operate between minimum and maximum
input power limits. In addition, the total power cannot exceed the available power, which
varies inversely with the distance from the Sun.
Numerical methods for trajectory optimization can be in general classified into three main
groups: indirect methods, direct methods, and evolutionary algorithms. This thesis is
focused in particular on the first group.
Indirect methods are based on the theory of optimal control and solve the optimization
problem by defining and solving a boundary value problem. The theory of optimal control
provides differential equations for the adjoint variables and boundary conditions for opti-
mality. The optimal controls must maximize the Hamiltonian at any given point along the
trajectory, in agreement with Pontryagin’s maximum principle. The Hamiltonian is also
a cubic function of the engine input powers and a detailed function analysis is presented
to find the partitioning combinations that correspond to local maxima. It is then easy to
compare them and select, at any trajectory point, the global optimum.
The asteroid (433) Eros in chosen as target in order to provide a wide variation in power
available for thrusting, as opposed to primary ARM asteroids with more Earth-like or-
bits.
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Introduction

An Earth gravity assist in the return leg is used to improve performance. In order to
simplify the optimization process, a different analysis is carried out separately for the
outbound and inbound flights: for the outbound flight the aim is to minimize the pro-
pellant consumption with a fixed initial mass of propellant and dry mass, while, for the
inbound flight, the performance index to be maximized is the initial mass (i.e. the total
mass of the spacecraft departing from the asteroid, so the mass of grabbed boulder), using
the real amount of propellant left from the outbound flight.
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Chapter 2

Spaceflight Syllabus

2.1 Two-Body Problem
In classical mechanics, the two-body problem is to predict the motion of two massive
objects which are abstractly viewed as point particles. The problem assumes that the two
objects interact only with one another; the only force affecting each object arises from
the other one, and all other objects are ignored.

The most prominent case of the classical two-body problem is the gravitational case,
arising in astronomy for predicting the orbits (or escapes from orbit) of objects such as
satellites, planets, and stars.

Two-body problem equations describe motion of point mass m with respect to the
main body:

dr

dt
= V (2.1)

dV

dt
= g +

T

m
+
D

m
+
L

m
(2.2)

dm

dt
= −T

c
(2.3)

where r is the position vector, V the velocity vector, g = −µr/r3 the gravity
acceleration, T the thrust,D the drag, L the lift and c the effective exhaust velocity.

2.2 Orbital Elements
In physics, an orbit is the gravitationally curved trajectory of an object, such as the tra-
jectory of a planet around a star or a natural satellite around a planet. Normally, orbit
refers to a regularly repeating trajectory, although it may also refer to a non-repeating
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Spaceflight Syllabus

trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the
central mass being orbited at a focal point of the ellipse, as described by Kepler’s laws of
planetary motion. In the absence of other forces than gravity, the massm follows a conic
trajectory which depends on the initial conditions.

The conic trajectory of body is given by:

r =
p

1 + e cos ν
(2.4)

where p is a geometrical constant of the conic called the "parameter" or "semilatus
rectum", e is the eccentricity, ν is the "true anomaly" (angle between r and the point on
the conic nearest the focus).
According to the eccentricity value, the geometric shape of the trajectory changes: it is
possible to have a circle if e = 0, an ellipse if 0 < e < 1, a parabola if e = 1, an hyperbola
if e > 1.
There are two constants ofmotion: energy ε = V 2/2−µ/r; angularmomentumh = rxV
(the trajectory lies on a plane perpendicular to h).
The trajectory shape and orientation, and the position of the spacecraft at a given time
are describes by six Keplerian elements.
Two elements define the shape and size of the ellipse:

• Semimajor axis a = −µ/(2ε): the sum of the periapsis and apoapsis distances
divided by two. For classic two-body orbits, the semimajor axis is the distance
between the centers of the bodies, not the distance of the bodies from the center of
mass. Use p = h2/µ in case of a parabola, when a is not defined;

• Eccentricity e =
√

1 + 2ε(h/µ)2: shape of the ellipse, describing how much it
is elongated compared to a circle (not marked in diagram). Also, the eccentricity
vector e = [(V 2 − µ/r)r − (r · V )V ]/µ can be defined.

Two elements define the orientation of the orbital plane in which the ellipse is em-
bedded:

• Inclination (angle between the orbit plane and the reference plane): i = cos−1(hk/h)
(hk is the component along the axis perpendicular to the reference plane). This
angle is defined between 0° and 180°;

• Right ascension of ascending node (angle between line of nodes, pointing towards
ascending nodes, and reference direction I): Ω = cos−1(nI/n) (line of nodes
vector n = Kxh, nI is the component along I). Change sign when nJ < 0.

The remaining two elements define the orientation of the conic in the orbital plane:

• Argument of periapsis (angle between line of nodes and eccentricity vector): ω =
cos−1[n · e/(en)]. Change sign when eK < 0;

9



Spaceflight Syllabus

• True anomaly (angle between eccentricity and position vectors at a specific time):
ν = cos−1[e · r/(er)]. Change sign when r · V < 0.

Figure 2.1: Keplerian elements

The intersection of the orbital plane with the xy-plane is called line of nodes. This
line intersects the orbit at two points. At the ascending node the z-coordinate of body
changes from negative to positive. The other intersection constitutes the descending node.

Apart from these classical orbital elements, other orbital elements are sometimes used as
they may be more appropriate for certain problems, or because some classical elements
become ill-determined when e and/or i approach zero. In the case e = 0, the periapsis
ω is not determined, and the position in the orbit should be measured from the ascend-
ing node. In the case i = 0, the ascending node Ω is not determined. For this, the
Equinoctial elements are introduced:
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Spaceflight Syllabus

p = a(1− e2) (2.5)
f = e cos (ω + Ω) (2.6)
g = e sin (ω + Ω) (2.7)
h = tan (i/2) cos Ω (2.8)
k = tan (i/2) sin Ω (2.9)
L = Ω + ω + ν (2.10)

where p is the semiparamiter and L is the true longitude.
Relationship between classical and modified equinoctial orbital elements:

• Semimajor axis: a = p/(1− f 2 − g2)

• Orbital eccentricity: e =
√
f 2 + g2

• Orbital inclination: i = 2 tan−1
(√

h2 + k2
)

• Argument of periapsis: ω = tan−1 (g/f)− tan−1 (k/h)

• Right ascension of the ascending node: Ω = tan−1 (k/h)

• True anomaly: ν = L− (Ω + ω)

11



Chapter 3

Space Propulsion

3.1 Generalities of Space Propulsion
Compared to atmospheric propulsion, in space propulsion there is not something to
exchange momentum to obtain thrust. For this there is a need to bring propellant on
board and the aim is to reduce its consumption as much as possible. Two types of
propulsion can be defined:

• Primary propulsion: it is the type of propulsion that allows to change orbit;

• Auxiliary propulsion: this is the type of propulsion that allows to stay in a specific
orbit, intervening against any external disturbances.

Consider an isolated system, which represents for example a rocket, with a certain
massm and a speed V :

Figure 3.1: Isolated system

After a time interval dt, suppose that a mass of propellant dmp is hurled along a
certain direction with a speed c− v:

12



Space Propulsion

Figure 3.2: Spacecraft + propellant system

where c is the exhaust velocity with respect to the system.

Looking at the "spacecraft + propellant" system, this is an isolated system, so the to-
tal momentum at time t must be equal to the total momentum at time t+ dt:

mV = (m− dmp)(V + dV )− dmp(c− V ) (3.1)

Simplifying, neglecting the higher order infinitesimals, we obtain:

mdV = dmpc (3.2)

dV =
dmp

m
c (3.3)

The peculiarity of the space propulsion is that the propellant is consumed in a con-
tinuous way, so we pass from the discrete system to the continuous system:

dV =
dV

dt
dt (3.4)

dmp =
dmp

dt
dt = ṁpdt (3.5)

where ṁp is the propellant mass flow.

Taking the equation (3.2) and dividing it by dt, for a continuous system we have:

m
dV

dt
= ṁpc = T (3.6)

where T is the thrust.

13



Space Propulsion

Figure 3.3: Geometry

By indicating with ue the gas velocity at the outlet section, a further formula for thrust
is obtained:

T = ṁpue + Ae(pe − p0) (3.7)
But in the space p0 = 0, so:

T = ṁpue + Aepe (3.8)
So to obtain the maximum thrust it would be necessary to have an adapted nozzle

(pe = p0 = 0) but, given the high expansion ratios, it is possible to obtain a pe ' 0.
The effective exhaust velocity c is defined:

c =
T

ṁp

=⇒ c ' ue (3.9)

The equation that will be used will therefore be the (3.6).

The propellant must be accelerated with respect to the system, so it must be supplied with
kinetic energy. This energy that must be supplied to the propellant is called kinetic power
and is equal to:

PK =
1

2
ṁpc

2 (3.10)

To have thrust, therefore, you need an energy source, and the various types of propul-
sion differ from the type of source: to have chemical propulsion, energy derives from a
chemical reaction; to obtain electric propulsion, energy is taken from an electric generator
or a solar panel; to obtain nuclear propulsion, energy is taken from a nuclear generator.
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3.2 Propulsion System Performance

3.2.1 Total Impulse
The total impulse is a measure, not very precise, of the propulsion effect:

It =

∫ tf

0

Tdt = T∆t, T = cost. (3.11)

but, from the equation (3.6):

Tdt = mdV

so we obtain:

It = mavg∆V (3.12)

wheremavg is the average mass of the mission.

Generally, for auxiliary propulsion, the amount of propellant used is much smaller than
the mass of the system, so it can be assumed that the mass remains constant. Therefore:

It = m∆V (3.13)

3.2.2 Specific Impulse
The expense, expressed in terms of kilos of propellant that I have to store, will be:

mp =

∫ t

0

ṁpdt = ṁp∆t, ṁp = cost (3.14)

The specific impulse is defined as follows:

Isp =
It

propellant weight on Earth
=

It
mpg0

(3.15)

where g0 is the gravity acceleration on Earth surface.

If we consider a fairly small time within which T and ṁp are constant, we obtain:

Isp =
T

ṁpg0
=

c

g0
[s] (3.16)

Fixed the total impulse:

mp ∝
1

Isp
(3.17)
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Space Propulsion

so the bigger the specific impulse and the smaller the quantity of propellant that will
serve for the mission.

Note that dimensionally the specific impulse is a time [s]. This is explained by con-
sidering a rocket engine on the ground, which to start, at zero instant, has a thrust equal
to the weight T = mg0. The expelled flow rate is considered constant and equal to
ṁ = m/tb, where tb is the operating time (burning). Substituting in the thrust one
obtains T = ṁtbg0 from which tb = T/(ṁg0) = Isp. The specific impulse therefore
coincides with the operating time of this object.

3.3 Rocket Equation
Speed variation is evaluated:

dV =
T

m
dt (3.18)

∆V =

∫ tf

0

dV =

∫ tf

0

ṁpc

m
dt (3.19)

The ∆V does not indicate the simple variation of speed, but that which the engine
would give in the absence of other forces and with thrust aligned with the speed.
By definition of flow rate:

dm

dt
= −ṁp (3.20)

By replacing and changing the integration variable:

∆V =

∫ mf

m0

− c

m
dm = c ln

m0

mf

, c = cost. (3.21)

This equation represents the Rocket Equation, and is the most important equation of
space propulsion. For each mission it is possible to calculate the minimum ∆V that must
be achieved if you really want to carry out that mission. Once the mission to be achieved
is defined, the specific impulse of the propulsion system is fixed, the ratio between the
final mass and the initial mass is obtained:

mf

m0

= e−
∆V
c (3.22)

If you want to have significant final masses, you must have values of c at least equal
to the ∆V you want to achieve, or if you can also have larger or much larger values.
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Space Propulsion

Figure 3.4: Typical Characteristic Velocities
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3.4 Velocity Losses

Figure 3.5: Forces vectors

The angle ϕ is called Flight Path Angle.

Assuming we neglect lift, we have the following vector equation:

m
dV

dt
= T +D +mg (3.23)

Projecting the various vectors along the direction of V :

dV

dt
=
T

m
cosα−D − g sinϕ =

T

m
− T

m
(1− cosα)− D

m
− g sinϕ (3.24)

Integrating between the initial and the final instant:

Vf−V0 = ∆V −
∫ tf

0

T

m
(1−cosα)dt−

∫ tf

0

D

m
dt−

∫ tf

0

g sinϕdt = ∆V −losses (3.25)

There are generally three types of losses:
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• The term
∫ tf
0

T
m

(1−cosα)dt represents themisalignment losses, which are canceled
if α = 0. However, it is generally advisable to introduce a certain α (therefore
losses due to misalignment) if this allows the other two losses to be reduced;

• The term
∫ tf
0

D
m
dt represents the aerodynamic losses, that is losses due to aerody-

namic drag, which depend on density and speed;

• The term
∫ tf
0
g sinϕdt represents the gravity losses, which are the most significant.

They are due to the fact that the body moves in a gravitational field, which attracts
it, and tends to vary the speed.
Multiplying and dividing by V : ∫ tf

0

g

V
V sinϕdt (3.26)

But the term V sinϕ, from the figure, represents the vertical component of speed,
so: ∫ rf

r0

g

V
dr (3.27)

It is noted that, at the same altitude, if you increase the speed you can reduce this
term. So the optimal strategy is to accelerate as much as possible at the start, gain
speed, and increase in altitude. Electric propulsion, which has very little thrusts,
fails to do this.
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Chapter 4

Electric Propulsion

Electric Propulsion (EP) is a class of space propulsionwhichmakes use of electrical power
to accelerate a propellant by different possible electrical and/ormagnetic fields. The use of
electrical power enhances the propulsive performances of the EP thrusters compared with
conventional chemical thrusters. Unlike chemical systems, electric propulsion requires
very little mass to accelerate a spacecraft. The propellant is ejected up to twenty times
faster than from a classical chemical thruster and therefore the overall system is many
times more mass efficient.
To fully understand the operation of an electric propulsion system, it is therefore necessary
to understand the operation of the chemical propulsion.
There is a combustion chamber where propellant is injected, inside which an exothermic
chemical reaction takes place (develops heat).

Figure 4.1: Chemical propulsion

Thanks to the thermal power generated, the flow heats up and is expanded into a
nozzle.
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From the first principle of thermodynamics, in stationary conditions and adopting an
Eulerian point of view:

Pt = ṁpEch = ṁp

(
hc +

u2c
2
− h0 −

u20
2

)
(4.1)

In the second section:

0 = ṁp

(
he +

u2e
2
− hc −

u2c
2

)
(4.2)

As a first approximation it can be said that the propellant arrives cold in the combustion
chamber, h0 = 0; the speed of the gases with which they enter the combustion chamber is
very small, u0 = 0; the speed of the gases leaving the combustion chamber is very small
(subsonic flow and large area), uc = 0.
In space propulsion the expansion ratios are very large, so at the exit there could be a very
small enthalpy, he = 0.
From equation (4.2) we thus obtain:

c ' ue =
√

2hc =
√

2CpTc =
√

2Ech (4.3)

This is why the specific impulse in chemical propulsion is limited, because it depends
on the amount of energy that can be extracted from the propellant.

Figure 4.2: Typical values of specific impulse of chemical propulsion

So the chemical propulsion is capable of generating high thrusts, but has limited
specific impulses. The other advantage is that only a combustion chamber is needed, but
if the ∆V becomes large, the consumption will also become higher.

Electric propulsion thrusters for spacecraft may be grouped into three families based
on the type of force used to accelerate the ions of the plasma:

• Electrothermal propulsion: Electricity is used to heat: the acceleration is still of
the thermofluid-dynamic type, that is, the hot fluid under pressure is accelerated in
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a nozzle, as occurs in chemical rocket engines.
The electrothermal category groups the devices where electromagnetic fields are
used to generate a plasma to increase the temperature of the bulk propellant. The
thermal energy imparted to the propellant gas is then converted into kinetic energy
by a nozzle of either solid material or magnetic fields. Lowmolecular weight gases
(e.g. hydrogen, helium, ammonia) are preferred propellants for this kind of system.
There are two types of electrothermal rocket engines: resistojet, in which the fluid
is heated by an electrical resistance; arcjet, in which an electric arc is triggered
inside the fluid (in the throat of the nozzle) which will function as a resistance.

Figure 4.3: Electrothermal propulsion

An efficiency is added because, generally, it is not possible to transform all the
electric power obtained from the solar panels (which is then transmitted to the
propellant) into a Joule effect, and therefore into heat.
The problem with this type of propulsion is that a hot gas is produced, so there will
be a limit on ue:

ue =
√

2hc =
√

2CpTc =

√
2
ηPe
ṁp

=⇒ ηPe = ṁphc = ṁp
u2e
2

(4.4)

It is therefore noted that the electrothermal propulsion has more or less the same
specific impulse values as the chemical propulsion.

• Electrostatic propulsion: If the acceleration is caused mainly by the Coulomb force
(i.e. application of a static electric field in the direction of the acceleration) the
device is considered electrostatic. A "neutralizer" must be present as spacecraft
must not be electrically charged;
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• Electromagnetic propulsion: If ions are accelerated either by the Lorentz force or
by the effect of electromagnetic fields where the electric field is not in the direction
of the acceleration, the device is considered electromagnetic.

Both in electrostatic and electromagnetic propulsion, a passage is eliminated: the
propellant is accelerated directly by the electric power, without passing through a high
temperature zone. This means that ue can take any value, just increase Pe or decrease ṁp.
This is the reason why you can have an unlimited specific impulse in electric propulsion.

ηPe = ṁp
c2

2
=
Tc

2
=⇒ c =

√
2
ηPe
ṁp

= 2
ηPe
T

(4.5)

But increasing the power P is not a viable way, because it depends on the size of the
solar panels from which it is extracted, or in general it depends on the size and weight
of the power generator. But also decreasing the ṁp is not convenient, in fact the thrust
decreases and, for the same ∆V , the mission time is longer.

It is assumed that the mass of the generator is proportional to the power:

mgenerator = αPe (4.6)

with α parameter which depends on the type of generator.

The system can be viewed as:

m = museful +mpropellant +mgenerator (4.7)

If it is assumed to have neither propellant nor payload, the mass of the system will be
equal to or slightly higher than that of the generator, so:

T

m
<

T

mgenerator

=
T

αPe
=

T

αTc
2η

=
2η

αc
(4.8)

This represents the maximum theoretical acceleration that can be had.
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Figure 4.4: Comparison between specific impulse and thrust for both chemical and elec-
tric propulsion

In general, with electric propulsion it is possible to consume 10 times less but with
much longer mission times.

The different applications which currently make or may make use of Electric Propul-
sion Systems in the future, are:

• LEO (e.g. Earth Observation, Earth Science, constellations)

• MEO (e.g. Navigation)

• GEO (e.g. Telecommunications)

• Space Transportation (e.g. launcher kick stages, space tugs)

• Space Science, Interplanetary, and Space exploration.

For these different types of missions and requirements, the technology is faced with
operational challenges in order to be able to copewith different type ofmaneuvers, such as:
electric transfer from GTO to GEO, station keeping, interorbital transfer, interplanetary
cruise, continuous LEO operations (air-drag control), (extreme) fine and/or highly agile
attitude control, Long-endurance missions, etc.

4.1 Solar Electric Propulsion (SEP)
Solar electric propulsion (SEP) refers to the combination of solar cells and electric
thrusters to propel a spacecraft through outer space. This technology has been ex-
ploited in a variety of spacecraft by the European Space Agency, the Japanese Space
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Agency, Indian Space Research Organisation and NASA. SEP has a significantly higher
specific impulse than normal chemical rockets, thus requiring less propellant mass to be
launched with a spacecraft and it has been evaluated for missions to Mars.
Solar electric propulsion combines solar panels on spacecraft and one or more electric
thrusters, used in tandem. [9]

4.1.1 Solar Arrays
The SEP project began developing large, flexible, radiation-resistant solar arrays that can
be stowed into small, lightweight, more cost-effective packages for launch. After launch,
they unfurl to capture enough solar energy to provide the high levels of electrical power
needed to enable high-powered solar electric propulsion.

The SEP project worked with ATK Aerospace and Deployable Space Systems Inc. to
build and test two solar array designs: one that folds out like a fan (ATK MegaFlex) and
another that rolls out like a window shade (DSS ROSA). Both use lightweight structures
and flexible blanket technology and are durable enough to operate for long periods in
Earth orbit or passing through the punishing space environment, including the Van Allen
radiation belts.
Both arrays achieved all state-of-the-art-related goals including four times the radiation
tolerance, 1.7 times the power per mass (kW/kg), four times the stowed volume efficiency,
and over twenty times deployed strength. [10]

(a) MegaFlex Solar Array (b) Roll Out Solar Arrays (ROSA)

Figure 4.5: Two solar arrays designs

Development ofMegaFlex technology will leverage the mission-proven Ultraflex so-
lar array design will be scaled up for power levels between 30-50 kW.
MegaFlex is an accordion fanfold flexible blanket solar array comprised of interconnected
isosceles-triangular shaped lightweight substrates. When stowed, the solar array is con-
figured as a flat-pack to produce a compact launch volume and high system frequency.
The circular membrane structure, which contains radial spar elements, becomes tensioned
similar to an umbrella, resulting in a highly efficient, strong and stiff structure. [11]
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Figure 4.6: MegaFlex Solar Array on SEP vehicle

The ROSA technology (Roll-Out Solar Array) is a new/innovative mission-enabling
solar array system that will offer maximum performance in key areas and affordability
for future space missions. The Mega-ROSA architecture integrates multiple high-voltage
elastically deployable ROSA modular "winglet" elements into a deployable backbone
structure. It features a flex-blanket solar array configuration conducive to providing high
power levels.
The technology is proposed to be lighter and less expensive then current solar array
designs, offer compact stowed packaging and strength and stiffness that is conducive to
providing power levels – from 60 kW to more than 300 kW and increase the solar array’s
deployed stiffness and strength, operation reliability, radiation tolerance, scalability, and
high voltage operation capability. [11]
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Figure 4.7: Mega-ROSA Solar Array on SEP vehicle

4.1.2 Hall Thrusters

The SEP project will use electrostatic Hall thrusters with advanced magnetic shielding
instead of a rocket engine with conventional chemical propellant. With SEP, large solar
cell arrays convert collected sunlight energy to electrical power. That energy is fed into
exceptionally fuel-efficient thrusters that provide gentle but non-stop thrust throughout
the mission.
The thruster traps electrons in a magnetic field and uses them to ionize the onboard
propellant — in this case, the inert gas xenon (it has a low ionization energy and a heavy
mass)— efficiently accelerated to generate thrust and then neutralized in the nozzle.
Several Hall thrusters can be combined to increase the power of an SEP spacecraft. Such
a system can be used to accelerate xenon ions to more than 65,000 mph and will provide
enough force over a period of time to move cargo and perform orbital transfers. [10]
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Figure 4.8: Blue ion beam of a Hall Thruster

4.1.3 Key Facts
• Solar electric propulsion allows deep-space missions to carry more cargo and use
smaller launch vehicles while reducing mission costs.

• The Solar Electric Propulsion project has developed solar arrays that are lighter,
stronger, more compact, and less expensive than those currently available.

• Solar electric propulsion provides such high fuel economy that it reduces the amount
of propellant required onboard vehicles for deep-space missions by as much as 90
percent.

• Solar electric propulsion will enable affordable human-crewed missions beyond
low Earth orbit.
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Chapter 5

Indirect Optimization of Low-Thrust
Trajectory

An optimization problem consists in searching for the control law that maximize or
minimize a particular performance index. Given the great influence that propellant
consumption has on the costs of an orbital transfer (and those of putting the vehicle into
orbit), it’s essential to minimize the amount of propellant required for the maneuver or,
equivalently, maximize the final mass of the vehicle, fixed the initial one. The optimal
problem therefore consists in the research of the strategy that allows to realize the orbital
transfer maximizing the mass at the end of the maneuver (or other performance indexes,
such as themaximization of the payload). The analytical solution of a problemof this type,
for an orbital transfer, can be found only for a few simple cases, given the simplifications
that must be adopted. For the search of meaningful solutions, the optimal problem must
therefore be solved by searching for approximate solutions or with numerical methods.
Among the numerical methods, the indirect optimization techniques offer high numeric
precision and an important theoretical content, and allow to obtain the optimal solution
with a limited number of parameters and limited calculation times. In this chapter it’s
examined the optimal control theory, based on indirect optimization. For references on
the vector and matrix calculation, refer to the Appendix.

5.1 Optimal Control Theory

The theory of optimal control, based on the principles of variational calculus, is here
described in the form best suited to the optimization of spatial trajectories.
The generic system to which the optimal control theory is applied, is described by a vector
of state variables x. The differential equations that describe the evolution between the
initial and final instants (external contours) are functions of x, of the controls vector u
and of the independent variable t (time), and they have the generic form:
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dx

dt
= f(x,u, t) (5.1)

In the particular case being examined, it is convenient to divide the trajectory into a
number n of subintervals, or arcs, within each of which the variables are continuous. The
j-th interval starts at time t(j−1)+ and ends at time tj− and the values that the variables
assume at its endpoints are x(j−1)+ and xj− , where the signs - and + indicate the values
assumed immediately before or after the point considered. In this way it is possible to
take into account the possible discontinuities of the variables (for example the speed and
the mass are discontinued at the end of an impulsive maneuver) and, at the limit, also of
the time (in the case of a planet flyby) which apply to the junction points between the
various arcs (internal contours). With this formulation it is also possible (and, as will
be seen, convenient) to make the second member of the equations (5.1) assume different
expressions depending on the sub-interval considered.
Mixed boundary conditions are also imposed, involving the values of the state variables
and the independent variable (time) both at the external and internal boundaries. The
conditions imposed are generally non-linear and are expressed as:

χ(x(j−1)+ ,xj− , t(j−1)+ , tj−) = 0 j = 1, . . . , n (5.2)

The optimal problem consists in the search for the extremal values (maximum or
minimum relative) of a functional that, in its general form, is of the type:

J = ϕ(x(j−1)+ ,xj− , t(j−1)+ , tj−) +
∑
j

∫ tj−

t(j−1)+

Φ(x(t),u(t), t)dt j = 1, . . . , n

(5.3)
The functional J is the sum of two terms: the function ϕ, dependent on the values

assumed by the variables and the time to the contours (internal and external), and the
integral, extended to the whole trajectory of the function Φ, which depends on time and
from the values assumed in each point by variables and controls. Note that with the
introduction of appropriate auxiliary variables it is always possible to refer to the case
ϕ = 0 (Lagrange formulation) or Φ = 0 (Mayer formulation, here preferred).
It is useful to rewrite the functional introducing the Lagrange multipliers, constants
µ associated with boundary conditions, and variables λ, also called added variables,
associated with the equations of state:

J∗ = ϕ+ µTχ+
∑
j

∫ tj−

t(j−1)+

(
Φ + λT (f − ẋ)

)
dt (5.4)

where the point . indicates the derivative respect to time.
The functionals J and J∗ depend on the time t, on the state variables x and on their

derivatives ẋ (in particular on the values that time and variables assume at the extremes of
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each arc, tj and xj) and from the controls u. Obviously, if boundary conditions and state
equations are satisfied, the two functional, and therefore their extremal values, coincide.
Integrating by parts to eliminate the dependence on the derivatives of the variables ẋ we
obtain:

J∗ = ϕ+µTχ+
∑
j

(λT(j−1)+x(j−1)+−λTj−xj−)+
∑
j

∫ tj−

t(j−1)+

(
Φ+λTf−λ̇Tx

)
dt j = 1, . . . , n

(5.5)
and differentiating we obtain the first variations of the functional δJ∗ (the square

brackets indicate a matrix):

δJ∗ =

(
−H(j−1)+ +

∂ϕ

∂t(j−1)+
+ µT

∂χ

∂t(j−1)+

)
δt(j−1)++

+

(
Hj− +

∂ϕ

∂tj−
+ µT

∂χ

∂tj−

)
δtj−+

+

(
λT(j−1)+ +

∂ϕ

∂x(j−1)+
+ µT

[
∂χ

∂x(j−1)+

])
δx(j−1)++

+

(
λTj− +

∂ϕ

∂xj−
+ µT

[
∂χ

∂xj−

])
δxj−+

+
∑
j

∫ tj

t(j−1)+

((∂H
∂x

+ λ̇T
)
δx+

∂H

∂u
δu

)
dt j = 1, . . . , n

(5.6)

where the Hamiltonian H of the system was defined as:

H = Φ + λTf (5.7)

The (necessary) optimal condition prescribes the stationarity of the functional and,
therefore, the annulment of its first variation for any choice of variations δx, δu, δx(j−1)+ ,
δxj− , δt(j−1)+ , δtj− compatible with differential equations and boundary conditions. The
introduction of added variables and constants allows, with an appropriate choice, to
cancel at the same time the coefficient of each of the variations in expression (5.6), thus
ensuring the stationarity of the functional expressed by the condition δJ∗ = 0.
By canceling the coefficients of δx and δu within the integral for each point of the
trajectory we obtain, respectively, the Euler-Lagrange differential equations for the added
variables:

dλ

dt
= −

(
∂H

∂x

)T
(5.8)

and the algebraic equations for controls:
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(
∂H

∂u

)T
= 0 (5.9)

It is interesting to note that the control laws (and as will be seen also the boundary
conditions) are formally independent of the fact of searching for the maximum or mini-
mum of J .
Particular attention must be paid if one of the controls is subject to a constraint, ie it must
belong to a given admissibility domain (for example the thrust module must be between
the minimum value 0 and the maximum value Tmax; the same applies to the coefficient
of lift that has an upper limit CLmax). The cases in which the constraint depends on time
or state variables are not considered, but only those in which it is explicit and constant,
as in the cases illustrated above. In the presence of such a constraint, the optimal value
of the control at each point of the trajectory is that which, belonging to the admissibility
domain, maximizes, if the maximums of J are sought, or minimizes, if the minimums
are sought, the Hamiltonian (5.7) at that point (Maximum principle of Pontryagin). In
practice there are two possibilities:

• the optimal value of the control is that provided by equation (5.9) if it falls within
the admissibility domain and therefore the constraint does not intervene at that
point (locally "unconstrained" control). In other words, if the value obtained is in
the admissibility domain, then it is the optimal one;

• the optimal value is at the extremes of the domain, ie the control assumes the
maximum or minimum value, if that provided by equation (5.9) does not fall within
the admissibility domain ("constrained" control). In other words, if the value
obtained does not falls within the admissibility domain, the optimal value is the
maximum or minimum one (according to Pontryagin’s principle).

A particular case occurs if the Hamiltonian is linear with respect to one of the controls
subject to constraints, since in the corresponding equation (5.9) the control does not appear
explicitly and therefore cannot be determined. In this case, there are still two possibilities
(referring to the case where J should be maximized):

• If in the equation (5.7) the coefficient of the considered control is not zero, then
H is maximized for the maximum value of the control if the coefficient is positive
and minimum if it is negative (bang-bang control), according to the principle of
maximum of Pontryagin. In other words, the optimal value is the maximum value
of the control if the coefficient inH is positive; or the minimum value of the control
if the coefficient in H is negative;

• if in the equation (5.7) the coefficient of the considered control is identically zero
during a finite interval of time (singular arc), then it is necessary to impose the
annulment of all the successive derivatives of the coefficient with respect to time,
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until in one of them the control does not appear explicitly: the optimal control is
therefore determined by setting equal to zero the last derivative. It is well known
that the order of derivation necessary for the purpose is always even and its half
indicates the order of the singular arc.

Regarding themissing boundary conditions, it is convenient to refer to the j-th contour,
writing the conditions that derive from considering it as the final endpoint of the (j-1)-th
subinterval or as the initial endpoint of the j-th subinterval; canceling in the order the
coefficients of δxj− , δxj+ , δtj− , δtj+ in the expression (1.6), we obtain:

−λTj− +
∂ϕ

∂xj−
+ µT

[
∂χ

∂xj−

]
= 0 j = 1, . . . , n (5.10)

λTj+ +
∂ϕ

∂xj+
+ µT

[
∂χ

∂xj+

]
= 0 j = 0, . . . , n− 1 (5.11)

Hj− +
∂ϕ

∂tj−
+ µT

∂χ

∂tj−
= 0 j = 1, . . . , n (5.12)

−Hj+ +
∂ϕ

∂tj+
+ µT

∂χ

∂tj+
= 0 j = 0, . . . , n− 1 (5.13)

where the subscripts j− and j+ indicate the values assumed respectively immediately
before and after the point j (it is necessary to distinguish as discontinuities may occur in
the junction points between sub-intervals). Equations (5.10) and (5.12) have no meaning
at the beginning of the trajectory (j = 0), while equations (5.11) and (5.13) have no
meaning at its end (j = n).
Eliminating the added constants µ from the equations (5.10) ÷ (5.13) we have the
boundary conditions of optimum:

σ(x(j−1)+ , xj− ,λ(j−1)+ ,λj− , t(j−1)+ , tj−) = 0 (5.14)

that, with the assigned conditions (5.2), they complete the differential system given
by equations (5.1) and (5.8).
Considering a generic state variable x, if subjected to particular boundary conditions,
equations (5.10) and (5.11) provide particular optimal conditions for the corresponding
addition variable λx:

• if the state variable x is explicitly assigned to the initial t0 or final tf instant, the
corresponding added variable λx,0 is free at that point;

• if the initial or final value of the state variable x does not appear neither in the
function ϕ nor in the boundary conditions, the corresponding added variable λx,0
is null at that point;
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• if a state variable is continuous and free in an internal point i (χ contains the
equation xj+ = xj−), the corresponding added variable is also continuous at that
point (λxj+ = λxj− );

• if a state variable is continuous and explicitly assigned in an internal point (χ
contains the equations xj+ = xj− = a), the corresponding added variable has a
"free" discontinuity at that point: that is, the value of λxj+ is independent of λxj−
and must be determined by the optimization procedure.

Similarly, if H does not explicitly depend on time, equations (5.12) and (5.13) also
provide, in some cases, particular boundary conditions:

• if the initial time t0 (or the final time tf ) does not appear explicitly neither in the
boundary conditions nor in the function ϕ (ie is free), the Hamiltonian is null at the
initial (or final) time (H0 = 0);

• if the initial or final time is assigned, the Hamiltonian is there free;

• if the intermediate time tj does not explicitly appear in the function ϕ, (the only
condition in χ that involves it is the continuity of time tj+ = tj−) (ie it is free and
continuous) the Hamiltonian is continuous at point j (Hj+ = Hj−);

• if the intermediate time tj is explicitly assigned, (in χ the equations tj+ = tj− = a
appear) the Hamiltonian has a "free" discontinuity at that point.

5.2 Boundary Value Problem (BVP)
The indirect method adopted for the optimization of orbital transfers involves the appli-
cation of the optimal control theory to the system of equations (5.1) which has boundary
conditions dependent on the type of orbits between which the transfer takes place. The
theory of optimal control formulates a new system of differential equations (BVP) in
which some of the initial values of the variables are unknown, as we saw in the previous
chapter. The solution to this problem is to find which initial values allow, by numerically
integrating the differential system, to satisfy all boundary conditions, both imposed and
optimal.
We now describe the BVP resolution method and how the optimal problem is formulated
so as to adapt to its characteristics.
As we saw in the previous chapter, the optimal control theory formulates the optimal prob-
lem as a mathematical problem subject to differential and algebraic constraints. Since
some initial values of state variables and additions are unknown, the optimal problem
translates into a differential boundary problem (BVP), with the differential equations
(5.1) and (5.8), in which the controls are determined by the algebraic equations (5.9),
supported by the boundary conditions imposed (5.2) and of optimum (5.14). The problem
in question has some peculiarities:
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• the integration interval is subdivided into sub-intervals in which the differential
equations can have different expression;

• the duration of each sub-interval is generally unknown;

• the boundary conditions can be non-linear and involve the values of the variables
both at the external and internal boundaries;

• the variables can be discontinuous to the internal contours and their value can be
unknown after the discontinuity.

The main difficulty of indirect optimization techniques is precisely the solution of
the boundary problem that emerge from their application: the method for its solution
is therefore an indispensable tool and moreover there must be correspondence between
its characteristics and those of the problem under consideration. The BVP solution is
obtained by reducing it to a succession of initial values problems that is brought to
convergence according to the Newton method.
To resolve the indeterminacy of the duration of each sub-interval, we resort, for the
sole purpose of integration, to the replacement of the independent variable t with a new
variable ε defined in the j-th sub-interval through the relation:

ε = j − 1 +
t− tj−1
tj − tj−1

= j − 1 +
t− tj−1
τj

(5.15)

where τj is the duration (generally unknown) of the subinterval. In thisway the internal
and external contours are fixed, thanks to the introduction of the unknown parameters τj ,
and correspond to consecutive integer values of the new independent variable ε.
For the description of the method, we refer to the generic system of equations given by
(5.1) and (5.8) in which the controls have been replaced by expressions (5.9). There is
therefore a differential problem in the variables, of state and additions, now no longer
distinct, y = (x,λ):

dy

dt
= f ∗(y, t) (5.16)

It must be taken into account that, in the problem under consideration, constant
parameters also appear, such as the durations of the subintervals τj or the values of the
variables after a discontinuity: it is therefore useful to refer to a new vector z = (y, c)
which contains the state and addition variables and the new vector c of the constant
parameters.
Applying the change of independent variable, the system of differential equations takes
the form:

dz

dε
= f(z, ε) (5.17)
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Explaining the secondmember of the equations (5.17), for state variables and additions
we have:

dy

dε
= τj

dy

dt
(5.18)

while for the constant parameters we have, of course:

dc

dε
= 0 (5.19)

The boundary conditions are generically expressed, without distinguishing between
imposed and optimal conditions, such as:

Ψ(s) = 0 (5.20)

where s is a vector that contains values that the variables assume for each contour
(internal or external) ε = 0, 1, . . . , n, and the unknown parameters.

s = (y0,y1, . . . ,yn, c) (5.21)

The initial values of some of the variables are generally unknown, and the search
for the solution translates into determining, through an iterative procedure, which values
they must assume to satisfy the equations (5.20). The procedure is described assuming
that none of the initial values is known. The r-th iteration begins with the integration of
the equations (5.17) with the initial values pr found at the end of the previous iteration.
That is fixed:

z(0) = pr (5.22)

and we proceed to the integration of equations along the entire trajectory taking into
account any discontinuities at the internal contours (to start the procedure, at the first
iteration it is necessary to choose tentative values p1). In each of the contours, the value
of state variables is determined and, at the end of the integration, the error on boundary
conditions Ψr is calculated at the r-th iteration.
A ∆p variation leads to varying the error on the boundary conditions of a quantity which,
taking into account only terms of the first order, is equal to:

∆Ψ =

[
∂Ψ

∂p

]
∆p (5.23)

Having to cancel the error on boundary conditions (ie wanting to get ∆Ψ = −Ψr),
at each iteration the initial values are corrected by a quantity:

∆p = pr+1 − pr = −
[
∂Ψ

∂p

]−1
Ψr (5.24)
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until the boundary conditions (5.20) are verified with the desired precision. The
matrix that appears in equation (5.24) is calculated as the product of two matrices:[

∂Ψ

∂p

]
=

[
∂Ψ

∂s

][
∂s

∂p

]
(5.25)

where the first can be immediately obtained by deriving the boundary conditions from
the quantities that appear there. The second matrix, which contains the derivatives of
values of the variables to the contours with respect to the initial values, that is the values
that are assumed to the contours (ε = 0, 1, . . . , n) from the matrix:[

∂z

∂p

]
= [g(ε)] (5.26)

is obtained by integrating the system of differential equations obtained by deriving
the main system (5.17) with respect to each of the initial values:

[ġ] =
d

dε

[
∂z

∂p

]
=

[
∂

∂p

(
dz

dε

)]
=

[
∂f

∂p

]
(5.27)

where the point . now indicates the derivative with respect to the new independent
variable ε. Explaining the Jacobian of the main system (5.17), equation (5.27) takes the
form:

[ġ] =

[
∂f

∂z

][
∂z

∂p

]
=

[
∂f

∂z

]
[g] (5.28)

The initial values for the homogeneous system (5.28) are obtained by deriving the
relation (5.22); the identical matrix is thus obtained:

[g(0)] =

[
∂z(0)

∂p

]
= [I] (5.29)

Note that with this method it is also possible to treat discontinuities in the variables.
In fact, for a discontinuity in point i, it is sufficient to update both the vector of the
variables z and the matrix g through the relation h that binds the values of the variables
before and after the discontinuity:

zi+ = h(zi−) (5.30)

[
gi+

]
=

[
∂h

∂z

][
gi−

]
(5.31)

(for this reason, in defining the vector s there is no distinction between the vectors
yi+ and yi− , as one is a known function, through h, of the other and of the vector c).
Obviously, if some of the initial values of the variables are known, the problem is
simplified since the vector p is reduced to the estimation of only the unknown components
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of z(0) and the vector Ψ to the non-explicit boundary conditions at the initial time.
The matrix that appears in equation (5.24) can also be evaluated numerically: its i-th
row is obtained by varying the i-th component of p by a small quantity ∆p (keeping the
others fixed) and then integrating the equations (5.17). It is thus possible to calculate the
variation of the boundary conditions ∆Ψ(∆p) and, linearizing, obtain the corresponding
row as ∆ΨT/∆p. This procedure allows in some cases a simpler and faster solution of
the BVP (suitable values for ∆p, found empirically, are of the order of 10−6÷10−7) but it
is not always able to guarantee convergence: the determination of the matrix in equation
(1.24) is in fact less accurate than its calculation through the solution of the system (5.28)
and, given the great sensitivity of the problem, the numerical approximations introduced
can compromise convergence.
A similar numeric procedure can also be used for the calculation of the Jacobian and the
matrix [∂Ψ/∂s]: however, it was preferred to maintain the analytical evaluation and to
use, in the setting of the codes, the values obtained numerically to verify, by comparison
with those provided by the analytic expressions of the Jacobian and the matrix [∂Ψ/∂s],
the accuracy of these expressions.
The integration of all the differential equations, both for the main system (5.17) and for
the homogeneous one (5.28), is performed with a variable step and order method based
on the Adams formulas, as described by Shampine and Gordon [6].
In the examples that follow, the required precision is 10−7 (that is, it is required that the
maximum error Emax = maxi(Ψi) on the boundary conditions be less than this value).
The linearization introduced for the calculation of the ∆p correction given by equation
(5.24), to be applied to the initial attempt values, introduces errors that can compromise
convergence by increasing rather than decreasing the error on the boundary conditions.
Some steps have therefore been taken to improve the procedure.

• In order not to stray too far from the solution, the correction made is actually a
fraction of the one determined, that is:

pr+1 = pr +K1∆p (5.32)

withK1 = 0.1÷ 1, depending on whether the starting solution is relatively distant
or close to the one sought.

• At each iteration, after the new vector of initial attempt values pr+1 has been
determined through (5.32) and the equations of motion are integrated, we compare
the maximum error on boundary conditionsEr+1

max with that obtained at the previous
iteration Er

max: if the maximum error is less than a multiple of the previous one, ie
if Er+1

max < K2E
r
max, proceed with the new iteration. As to converge to the solution

the error on the boundary conditions, in the first iterations, can increase, the value
ofK2 must be greater than the unit: a value ofK2 = 2÷3 guarantees good results.

• If, on the other hand, the error in the new iteration is too large with respect to the
previous one, we proceed to the bisection of the correction made, halving it: that
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is, integrating the equations of motion with the attempt values:

pr+1 = pr +K1∆p/2 (5.33)

The comparison between the new maximum error obtained and that of the previous
iteration is then repeated and, if necessary, also the bisection. A maximum number
of 5 bisections has been set, after which the procedure stops, meaning that the
solution of attempt chosen cannot lead to convergence.
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Chapter 6

Statement of the Problem

In preliminary analysis, the patched-conic approximation is commonly adopted and the
two-body problem equations are used to describe the motion of the point-mass space-
craft (with variable mass m). For the presented case, only the heliocentric phases are
considered and the state equations are the following:

dr

dt
= V (6.1)

dV

dt
= g +

T

m
(6.2)

dm

dt
= −q (6.3)

where r is the position vector and V the velocity vector.

A trajectory based on the Asteroid Redirect Mission scenario is considered. Asteroid
(433) Eros is selected as the target to provide a wide variation of available power, as op-
posed to primary ARM asteroids (for example asteroid 2008EV5) with more Earth-like
orbits. The mission purpose is to pick up a large boulder from Eros surface and deliver
it to a stable orbit in the Earth-Moon system. The spacecraft leaves the Earth’s sphere of
influence on a specific date, dictated by the possibility of a lunar gravity assist to boost
the escape mass.
The value of the spacecraft initial mass is assigned and it is equal to 10000 kg, of which
5000 kg is the mass of the available propellant. Escape velocity is fixed at 1.4km/s
(C3 equals to 2km2/s2). After rendezvous, the spacecraft remains at Eros for 174 days
and then starts the return flight with a pick-up mass that must be maximized. An Earth
gravity assist in the return leg is used to improve the performance. Arrival date and
arrival velocity C3 (2km2/s2) are here fixed. These previous values are chosen on the
base of performance of the current technology.
Boundary conditions can be written as:
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r0 = rE(t0) (6.4)
[v0 − vE(t0)]

2 = C30 (6.5)
m0 = 10000kg (6.6)
r1 = rA(t1) (6.7)
V1 = VA(t1) (6.8)
r2 = rA(t2) (6.9)
V2 = VA(t2) (6.10)

m2 −m1 = mboulder (6.11)
r3− = r3+ = rE(t3) (6.12)

[V3− − VE(t3)]
2 = [V3+ − VE(t3)]

2 (6.13)
rf = rE(tf ) (6.14)

[Vf − VE(tf )]
2 = C3f (6.15)

mf = 5000kg (6.16)

where subscripts 0, 1, 2, 3 and f refer to Earth departure, Eros arrival, Eros departure,
Earth gravity assist (- just before, + just after) and Earth arrival, respectively. Subscripts
E and A refer to Earth and target asteroid. The pick-up massmboulder is maximized.

Thrust magnitude and propellant mass flow rate of a thruster are related to its input
power. As a consequence, the effective exhaust velocity (therefore the specific impulse)
is also a function of the input power. Cubic relations are assumed here for thrustmagnitude
T and propellant mass flow rate q:

T = a0 + a1P + a2P
2 + a3P

3 (6.17)
q = b0 + b1P + b2P

2 + b3P
3 (6.18)

and the specific relationships applied in the example problems for this work are shown
in Figure 6.1(a). Additionally, the engine specific impulse as a function of input power is
illustrated in Figure 6.1(b), where Isp = T/(qg0).
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(a) Thrust and Mass Flow Rate (b) Specific Impulse

Figure 6.1: Thruster performance as a function of input power

As is shown in the previous graphs, each thruster works with a minimum input power
of 7 kW and maximum input power of 13.95 kW. Three fully autonomous thrusters are
considered for this mission. It is important to notice that the maximum value of specific
impulse, namely the minimum propellant consumption, corresponds to the maximum in-
put power. For this reason, in order to use the least amount of propellant, is fundamental
to use the thrusters at maximum power for as long as possible.

The spacecraft has solar arrays that produce 47 kW of electric power at 1 AU (initial
and final position of the mission), but 5 kW must be reserved for on board electronics.
The array power is assumed to vary in an inverse relation with the squared distance from
the sun and the available power for thrusting is Pa = 47/r2 − 5kW , with r in AU. A
90% duty cycle is considered. Thrust magnitude and direction are the problem control
variables. These propulsion assumptions are similar to those used in the development of
the Asteroid Redirect Robotic Mission reference trajectory.
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Chapter 7

Optimization of the segments

In order to find the optimal control law for the thrusters indirect methods are used.
As said,indirect methods are based on the theory of optimal control [3] and solve the
optimization problem by defining and solving a boundary value problem [1].
An adjoint variable is associated with each differential equation and the Hamiltonian is
defined. The usual expression is:

H = λTr V + λTV g + TSF (7.1)

where the thrust coefficient:

SF =
λTV T /T

m
− λm

q

T
(7.2)

is named the switching function.

The theory of optimal control provides differential equations for the controls and ad-
joint variables (Euler-Lagrange equations) and also boundary conditions for optimality
[1], which depend on performance index and applied boundary conditions. Refer to
section (5.2) for more details.
The optimal controls must maximize H at any given point along the trajectory, in agree-
ment with Pontryagin’s maximum principle (PMP). One deduces that the thrust must be
parallel to the velocity adjoint vector λV and the switching function becomes:

SF =
λV
m
− λm

q

T
(7.3)

If the propulsion system has constant effective exhaust velocity c = T/q, the thrust
magnitude is the only remaining control, and one easily recognizes that a bang-bang con-
trol is required. The thrust assumes its maximum value when SF > 0, whereas the engine
is switched off when SF < 0. Only in special cases, usually involving atmospheric flight,
the switching function remains null along a non-zero interval and the thrust assumes an
intermediate value (singular arc).
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PMP requires the maximization of SF . In the general case of non-constant c the function:

H̄ = T − mλm
λV

q (7.4)

must be maximized. It is interesting to note that H̄ is a linear combination of T and q,
and it depends on a single parameterK = mλm/λV wich is varying along the trajectory.
At any given trajectory point,K is known and the power level that maximizes H̄ must be
sought.

The problem is more complex when more than one engine is available and the elec-
tric power is split between the engines. Each thruster provides its own thrust and has its
own propellant consumption, which both depend on its input power. H̄ becomes:

H̄ =
N∑
i=1

Ti −Kqi (7.5)

Three equal thrusters (N = 3) will be considered here. By introducing the coefficients
cj = aj −Kbj, j = 0, 1, 2, 3, one has:

H̄ =
3∑
i=1

c0 + c1Pi + c2P
2
i + c3P

3
i =

3∑
i=1

fi (7.6)

Figure 7.1: Generic behavior of function f
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The function f = c0 + c1P + c2P
2 + c3P

3 is shown in Figure (7.1) with arbitrary
scales for c3 > 0, wich is the case considered here. The curve second derivate changes
its sign from negative to positive at P0 = −c2/(3c3). Two cases exist, depending on
∆ = c22− 3c1c3, the discriminant of the quadratic equation that nullifies the first derivate
of f . When ∆ > 0 a local maximum exists at P = PL = −P0 −

√
∆/(6c3), with a local

minimum at a symmetric position with respect to P0. The curve is stationary at P0 for
∆ = 0. The curve is monotonic and no stationary points exist for ∆ < 0.

Each engine can either be turned off (Pi = 0) or operate betweenminimum andmaximum
limits (Pm ≤ Pi ≤ PM ). In addition, the total power cannot exceed the available power,
that is,

∑3
i=i Pi ≤ Pa.

The determination of the optimal power partitioning at any trajectory point is turned
into finding P1, P2, P3 that maximize H̄ , that is, a cubic function of the three variables,
with the linear constraints Pi = 0 or Pm ≤ Pi ≤ PM and

∑3
i=i Pi ≤ Pa. Feasible

solutions satisfy all the constraints. At a feasible point, a constraint is said to be active
when the equality sign holds; it is said to be inactivewhen a strict inequality holds. Local
maxima of H̄ are sought for any combination of active and inactive constraints, and then
compared to select the global maximum.

The function H̄ is locally maximum if its variation is non-positive for any variation
of the control variables. The constrained maximization problem is treated with an ap-
proach based on Lagrangian multipliers µ. Instead of H̄ , the augmented function:

H̄∗ =
3∑
i=1

fi + µa

( 3∑
i=1

Pi − Pa
)

+
3∑
i=1

µi,M(Pi − PM) +
3∑
i=1

µi,m(Pi − Pm) (7.7)

is maximized. Its first variation is:

δ1H̄∗ =
3∑
i=1

(∂fi/∂Pi + µa + µi,M + µi,m)δPi (7.8)

and the second variation is:

δ2H̄∗ =
3∑
i=1

(∂2fi/∂
2Pi)δPi

2 (7.9)

For inactive constraints, the corresponding Lagrangian multipliers re set to zero.

When the active constraints are fulfilled, H̄∗ = H̄ for any choice of the Lagrangian
multipliers that correspond to the active constraints. It is therefore possible to find values
of µs and Pi that satisfy the constraints and simultaneously nullify δ1H̄∗ for any variation
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of the control variables. This is done by setting the coefficient of δPi to zero for any
i. At this point, the first variation of H̄ is also zero for any admissible variation of the
control variables. That is, the solution is a stationary point for the selected constraints
combination. Inspection of δ2H̄∗ = δ2H̄ allows analysis of the nature of the stationary
point (maximum, minimum or inflection point): δ2H̄ < 0 for any admissible variation
is required for a local maximum. Final checks must concern the selected constraint
combination. First, constraint removal must be considered to check if H̄ can be improved
by turning an active constraint into an active one. Second, it is necessary to check the
inactive constraints and discard the solutions if any of them is violated.

7.1 Optimal Case

7.1.1 Three Thrusters On
The three-thruster case with cubic functions for T and q and c3 > 0 is treated here.
First, solutions with three thrusters on are considered. Numbering is arranged to have
P1 ≥ P2 ≥ P3.

• Case 3a, "No Active Constraint". All the multipliers are zero and maximization
requires:

∂fi
∂Pi

= 0 i = 1,2,3 (7.10)

The only solution with δ2H̄ < 0 is Pi = PL for any i when ∆ > 0. The thrusters
operate at the same power level. No optimal solution is instead found for ∆ < 0.

• Case 3b, "Available Power Constraint". Only µa in non-zero and maximization
implies:

∂fi
∂Pi

+ µa = 0 i = 1,2,3 (7.11)

The partial derivates are equal either with three thruster at the same power level
Pi = Pa/3 or with two engines at the same power (P1 = P2 = Pa − 2P0) and
the third one at a symmetric level with respect to P0, that is, P3 = 4P0 − Pa.
The latter solution is an inflection point as it is always easy to select variations
which fulfill δP1 + δP2 + δP3 = 0 and make δ2H̄ either positive or negative. The
uniform repartition solution corresponds to a maximum only if Pi < P0 (that is,
∂2fi/∂

2Pi < 0).

• Case 3c, "One Thruster at Maximum Power P1 = PM". Only µ1,M is non-zero.
Equation (7.10) holds for i = 2,3 and gives P2 = P3 = PL (only fo ∆ > 0). This
solution is a local maximum only if ∂fi/∂Pi > 0, whereas, in the opposite case, H̄
grows if the constraint is removed.
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• Case 3d, "Available PowerConstraint, One Thruster atMaximumPowerP1 = PM".
Only µa and µ1,M are non-zero.
One has Equation (7.11) for i = 2,3, and these thrusters must operate at the same
power P2 = P3 = (Pa − PM)/2. A maximum occurs only if P2 = P3 < P0 and
∂f1/∂P1 > ∂f2/∂P2. In general, excluding maximum and minimum values, two
thrusters at the same power level cannot occur when ∂2f/∂2P > 0 (P > P0 for
c3 > 0).

• Case 3e, "Two Thrusters at Maximum Power P1 = P2 = PM". Only µ1,M and
µ2,M are non-zero.
Equation (7.10) holds for i = 3 and P3 = PL (only for ∆ > 0).This solution is a
maximum only if ∂f1/∂P1 > 0

• Case 3f, "Available Power Constraint, Two Thrusters at Maximum Power P1 =
P2 = PM". The third engine power is defined P3 = Pa − 2PM . The case with
three thrusters at PM can be seen as a special solution, when Pa ≥ 3PM . For a
maximum, ∂f1/∂P1 > ∂f3/∂P3 > 0 is required. With one thruster at maximum
power P1 = PM and one at minimum power P3 = Pm only µ1,M and µ3,m are
non-zero.
Equation (7.10) is enforced for i = 2 to obtain P2 = PL (only for ∆ > 0).
The solution however, improves if the constraint on P3 is removed as ∂f3/∂P3 >
∂f2/∂P2 = 0

• Case 3g, "Available Power Constraint, One Thruster at Maximum Power P1 = PM
And One at Minimum Power P3 = Pm". One has P2 = Pa − PM − Pm. This
solution may or may not be a maximum, depending on the specific values of f
derivates at the relevant points; details are omitted. A special case is P2 = PM
when Pa > 2PM + Pm.
In the case of two thrusters at minimum power P2 = P3 = Pm, Equation (7.10)
for i = 1 gives P1 = PL (only for ∆ > 0). The solution however, improves if the
constraints on P2 (and P3) are removed as ∂f2/∂P2 > ∂f1/∂P1 = 0.

• Case 3h, "One Thruster at Minimum Power P3 = Pm". Others thrusters have
P1 = P2 = (Pa−Pm)/2. The cases with one thruster at minimum power P3 = Pm,
with and without the available power constraint are analogous to the cases with
one thruster at maximum power (3c and d). However, the Pa-unconstrained case
improves if the constraint on P3 is removed, as ∂f3/∂P3 > 0 and Pm must be lower
than P0 for a feasible solution of Equation (7.10). The Pa-unconstrained solution
is a minimum for P1 > P0 but improves if the constraint on P3 is removed, as
∂f3/∂P3 > ∂f1/∂P1 for P3 < P1 < P0.

• Case 3j, "Available Power Constraint, Two Thrusters at Minimum Power P2 =
P3 = Pm". One has P1 = Pa − 2Pm. Again, this solution may or may not be a
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maximum, depending on the specific values of f derivates at the relevant points.
A special case is P1 = PM when Pa > PM + 2Pm.

• Case 3k, "Three Thrusters at Minimum Power Pi = Pm".
Maximum if ∂fi/∂Pi < 0.

7.1.2 Two Thrusters On
Solution with two thrusters on (P3 = 0) are treated here.

• Case 2a, "No Active Constraint".
Equation (7.10) for i = 1,2 gives a local maximum for P1 = P2 = PL (only for
∆ > 0).

• Case 2b, "Available Power Constraint".
Equation (7.11) for i = 1,2 gives P1 = P2 = Pa/2, which is a maximum only for
P1 < P0.

• Case 2c, "One Thruster at PM" requires Equation (7.10) for i = 2, that is P2 = PL
(∆ > 0). Maximum only for ∂f1/∂P1 > 0.

• Case 2d, "Available Power Constraint, One Thruster at PM", has P2 = Pa − PM
(and the special case P2 = PM for Pa > 2PM ). The derivates of f at the relevant
points determine if this solution is a maximum or not. One thruster at Pm cannot
be a maximum, based on the same reason of the three.thrusters case.

• Case 2e, " Available Power Constraint, One Thruster at Pm", has P1 = Pa − Pm
(and the special case P1 = PM for Pa > PM + Pm). The derivates of f at the
relevant points determine if this solution is a maximum.

• Case 2f, "Two Thrusters at Minimum Power Pi = Pm".
Maximum if ∂fi/∂Pi < 0.

7.1.3 One Thruster On
The one thruster case (P2 = P3 = 0) has only three options:

• Case 1a, "No Active Constraint".
Equation (7.10) for i = 1 gives a local maximum for P1 = PL (only for ∆ > 0).

• Case 1b, "Available Power Constraint".
Equation (7.11) for i = 1 gives P1 = Pa (with the special case P1 = PM for
Pa > PM , the derivates of f must be positive at PM ).

• Case 1c, "One Thrusters at Minimum Power P1 = Pm". The derivates of f must
be negative at Pm.
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7.1.4 Operating Modes
All the locally optimal solutions are considered and the corresponding values of H̄ are
compared to select the global maximum. There are 26 possible optimal operating modes
comprising the special cases: all thrusters off, 4 modes with one thruster on, 8 with two
thrusters on and 13 modes with three thrusters on. They are summarized in Tables (7.1)
and (7.2). It is worth nothing that the analysis has greatly reduced the number of modes
that can be optimal with respect to the total number of operating modes, as each engine
could theoretically operate in any of five modes: P = 0, PM , Pm, PL and at the available
power, somehow distributed among the engines. The value of H̄ is evaluated for the
potentially optimal modes and compared at any point during integration, selecting the
mode that corresponds to the maximum value. The evaluation is purely algebraic and the
speed of integration is not remarkably affected with respect to a simple constant-cmodel.

i 1b 1b(sc) 1a 1c 2b 2b(sc) 2d 2e 2e(sc) 2a 2c 2f

1 0 Pa PM PL Pm Pa/2 PM PM Pa − Pm PM PL PM Pm

2 0 0 0 0 0 Pa/2 PM Pa − PM Pm Pm PL PL Pm

Table 7.1: Operating Modes (0, 1 and 2 thrusters on)

i 3b 3b(sc) 3d 3f 3g 3g(sc) 3j 3j(sc) 3h 3a 3c 3e 3k

1 Pa/3 PM PM PM PM PM Pa − 2Pm PM (Pa − Pm)/2 PL PM PM Pm

2 Pa/3 PM (Pa − PM )/2 PM Pa − PM − Pm PM Pm Pm (Pa − Pm)/2 PL PL PM Pm

3 Pa/3 PM (Pa − PM )/2 Pa − 2PM Pm Pm Pm Pm Pm PL PL PL Pm

Table 7.2: Operating Modes (3 thrusters on)

7.2 Thrustmax Case
In addition to the optimal partitioning of power, a further case was evaluated, which we
will call "thrustmax", in which the partitioning of power is made in such a way as to have
always a thruster at maximum power. Numbering in arranged to have P1 ≥ P2 ≥ P3.
Solutions with three thrusters on are treated here:

• Case 3a, "Available Power Constraint, Three Thrusters at Maximum Power P1 =
P2 = P3 = PM", when Pa ≥ 3PM .

• Case 3b, "Available Power Constraint, Two Thrusters at Maximum Power P1 =
P2 = PM". The third engine power is defined P3 = Pa − 2PM . This when
2PM + Pm ≤ Pa < 3PM .
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Solutions with two thrusters on (P3 = 0) are treated here:

• Case 2a, "Available Power Constraint, Two Thrusters at Maximum Power P1 =
P2 = PM", when 2PM ≤ Pa < 2PM + Pm.

• Case 2b, "Available PowerConstraint, One Thruster atMaximumPowerP1 = PM".
The second engine power is defined P2 = Pa − PM . This when PM + Pm ≤ Pa <
2PM .

The one thruster case (P2 = P3 = 0) has only one option:

• Case 1a, "Available Power Constraint, One Thruster atMaximumPowerP1 = PM",
when PM ≤ Pa < PM + Pm.

i 1a 2b 2a 3b 3a

1 PM PM PM PM PM

2 0 Pa − PM PM PM PM

3 0 0 0 Pa − 2PM PM

Table 7.3: Operating Modes for Thrustmax Case (1, 2 and 3 thrusters on)

7.3 Thrustuni Case
In addition to the optimal partitioning of power and the "thrustmax" case, the uniform
power partitioning was evaluated, which we will indicate with ”thrustuni" case, either
with maximum number of thrusters used, e.g., 3 when Pa > 3Pm, or minimum number
of thrusters used, e.g., 2 when Pa < 2PM . This case requires that power is partitioned
for the three engines uniformly.

7.3.1 Maximum number of thrusters
Solutions for "thrustuni" case with maximum number of thrusters are treated here:

• Case a: Three engines at the same power P1 = P2 = P3 = Pa/3, for Pa ≥ 3Pm.

• Case b: Two engines at the same power P1 = P2 = Pa/2 and P3 = 0, for
2Pm ≤ Pa < 3Pm.

• Case c: One engine on, P1 = Pa and P2 = P3 = 0, for Pm ≤ Pa < 2Pm.
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i c b a

1 Pa Pa/2 Pa/3

2 0 Pa/2 Pa/3

3 0 0 Pa/3

Table 7.4: Operating Modes for Thrustuni Case with maximum number of thrusters (1,
2 and 3 thrusters on)

7.3.2 Minimum number of thrusters
Solutions for "thrustuni" case with minimum number of thrusters are treated here:

• Case a: Three engines at the same power P1 = P2 = P3 = Pa/3, for Pa ≥ 2PM .

• Case b: Two engines at the same power P1 = P2 = Pa/2 and P3 = 0, for
2Pm ≤ Pa < 2PM .

• Case c: One engine on, P1 = Pa and P2 = P3 = 0, for Pm ≤ Pa < 2Pm.

i c b a

1 Pa Pa/2 Pa/3

2 0 Pa/2 Pa/3

3 0 0 Pa/3

Table 7.5: Operating Modes for Thrustuni Case with minimum number of thrusters (1, 2
and 3 thrusters on)
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Chapter 8

433 Eros Asteroid

Eros (minor body designation: 433 Eros), is a stony and elongated asteroid of the
Amor group and the first discovered and second-largest near-Earth object with a mean-
diameter of approximately 16.8 kilometers. Visited by the NEAR Shoemaker space probe
in 1998, it became the first asteroid ever studied from orbit.
The eccentric asteroid was discovered by German astronomer Carl Gustav Witt at the
Berlin Urania Observatory on 13 August 1898, and later named after Eros, a god from
Greek mythology; the son of Aphrodite who is identified with the planet Venus. [12]

Aphelion 1.7829 AU
Perihelion 1.1333 AU

Semi-major axis 1.4581 AU
Eccenticity 0.2227

Orbital period 1.76 years
Mean anomaly 47.239°
Inclination 10.829°

Longitude of ascending node 304.31°
Argument of perihelion 178.82°

Table 8.1: Orbital elements of 433 Eros at the epoch 27 April 2019 (JD 2458600.5) [2]

8.1 Eros Results
Orbits of Eros and Earth are non-coplanar, with an angle of 10.83◦ between the two
planes [2]. Because of the geometric aspects of the problem, there are many different
departure periods of the outbound journey. In fact, in a same year, the mission may start
either in the period of December (node close to the aphelion of Eros), or in the period
of June (node close to the perihelion of Eros). Nevertheless, a same departure from a
specific node, but in different years, may have different performances in terms of optimal
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consumption, due to the synodic period 1 between Earth and Eros, which is about 2.31
years [2]. In the same way, there are different periods of fly-by for the inbound journey.
A trajectory based on theAsteroid Redirect Mission scenario is considered. Some simpli-
fications are introduced with respect to the actual ARRM study. No forced coast arcs are
introduced and additional propellant consumption (engine calibration, attitude control) is
neglected. Relevant dates are fixed: Earth escape is on January 16, 2022; arrival at Eros
July 5, 2024; departure from Eros is on December 26, 2024, arrival at Earth is on March
20, 2027. C3 is 2km2/s2 both at Earth escape and arrival.
The indirect method is used to compare optimal power partitioning, "thrustmax" case and
uniform power partitioning, either with maximum number of thrusters used or minimum
number of thrusters used.
Optimization results are presented separately for the outbound and inbound trajectory.

8.1.1 Outbound Flight

Preliminary solutions of the outbound flight are found by removing the constraint of the
asteroid rendezvous, imposing instead only the arrival in a generic point of Eros’ orbit,
not caring about the real presence of the asteroid. In this way, is possible to find an
hypothetical trajectory with the best performance in terms of propellant consumption.
In Figure (8.1) is shown how the number of active thrusters varies during the mission for
the four cases.

1Synodic period is defined as the time required for any phase angle to repeat itself.
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Figure 8.1: Number of active thrusters during the mission
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In the 4 cases the mission starts with all the thrusters on, turning off respectively on days
45, 43, 49 and 45. The thrusters turn off, that is they do not produce thrust, when the
thrust coefficient (switching function) is negative, Sf < 0. From day 159 to day 240 it
is noted that in the optimal case only 2 thrusters are used compared to the 3 used in the
other cases, indicating that less thrust is needed. This is mainly due to the higher specific
impulse (and therefore to the higher effective exhaust velocity) that the optimal case
presents, in the same period, compared to the other three cases. The main differences are
from around 475th day: in the optimal case there is an alternation of periods in which
there are 1, 2 or 3 thrusters on, then ending the mission with 3 thrusters on, while in the
"thrustmax" case there is an alternation of periods in which there are 1 or 2 thrusters on,
then ending the mission with 2 thrusters on. Instead, in the remaining cases in which the
power is distributed uniformly, it is possible to have either all thrusters on (and at the
same power) or all thrusters off for the "Maximum number of thrusters" case, while in
the "Minimum number of thrusters" case there are intervals in which all 3 thrusters are
needed and other intervals in which there are conditions for turning off a thruster.

The available power along a trajectory infuences the performance in terms of
propellant consumption. This aspect may be clearly visible in Figure (8.2), that shows
how the available power is distributed for the three thrusters.
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Figure 8.2: Power partitioning between thrusters
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The light blue curve is the power Pa which is available for thrusting, and depends on the
spacecraft’s position relative to the Sun. The blue, orange and grey curves are the electric
power Pi used by each thruster, while the yellow curve is the cumulative power PT used
by all the three thrusters. The available power follows an oscillatory trend between a
maximum of about 46kW and a minimum of about 21kW . As for the power of a single
engine, it is between a maximum value of 13.95kW and a minimum value of 7kW .
Eros was chosen because, being quite eccentric, the available power varies widely.

The most remarkable features, however, are the arcs that do not use all the avail-
able power. In the optimal case, in particular, in the period between 159th and
240th days, even though there would be enough power for the third engine to operate
(Pa ≥ 2PM + Pm), there are only two thrusters on. On the contrary, in "thrustmax" case
and in both "thrustuni" cases, the third thruster is also active and all the available power
is used. This result suggests that in the proximity of the zone where thrusting is less
convenient an intermediate thrust level at higher effective exhaust velocity (with two or
one thruster at maximum power) becomes beneficial.

Compared to the "thrustuni" case in which the power is uniformly distributed
among the 3 thrusters, between the optimal case and the "thrustmax" case it is known
that T1 and T2 always have the same power except in the period between 530th and
770th days about. Another difference that distinguishes the cases of optimum and
"thrustmax" is the trend of the power of T1: while in the "thrustmax" case it always
assumes a maximum value of 13.95kW , in the optimal case it can vary. In fact,
it decreased in the period between 575th and 647th days and assumed a parabolic
trend in the last mission segment, reaching a minimum of 9.26kW . As for T3, in
the "thrustmax" case and in the period between 155th and 235th days approximately,
it has an average power of about 9.22kW compared to the null power assumed
instead in the case of optimum. Furthermore, in the "thrustmax" case, after reaching
a minimum power of 7.23kW on the 475th day, it is turned off until the end of the mission.

The arc at low power at the end of the outbound leg of optimal case, is also re-
lated to the convenience of having a single thruster at full-power when the available
power is limited even though no coast arc is required in its vicinities.

In the two cases in which the power is distributed evenly for the three thrusters,
we note how the difference between the two cases occurs in the period of time between
05/07/2023 and 24/02/2024. If in fact in the "Maximum number of thrusters" case you
can have either all 3 thrusters on or all off, in the "Minimum number of thrusters" case,
in this time interval, you have the conditions to turn off the T3 and use only it two. In
this way, as you will see from the mass value of the spacecraft on arrival on the asteroid,
you can save about 100 kg of fuel.
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Figure 8.3: Behavior of the thrust during the mission
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Figure 8.4: Comparison of the thrust for the different cases

Comparing the trend of the thrust for the cases of optimal and "thrustmax", it is noted that
the two trends tend to be quite similar to each other, except in the periods between 160th

and 240th days approximately, in which the thrust generated by the "thrustmax" case is
higher compared to that generated by the optimum case, and between 795th and 901th

days in which the thrust generated by the optimum case is higher than that generated by
the "thrustmax" case. These differences are due to the fact that, in these time intervals,
the number of thrusters turned on is different for the two cases.
As regards the thrust generated by the "thrustuni" case, it faithfully follows the trend of
the thrust generated by the other two cases, with the difference that it is zero in four time
intervals. On the other hand, when it is not equal to zero, it is always equal to or greater
than the thrust generated by the other two cases.
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Figure 8.5: Comparison of the effective exhaust velocity for the different cases

Figure 8.6: Comparison of the specific impulse for the different cases

If, however, you go to see the trend of the specific impulse, you notice how the optimal
case presents a higher specific impulse for most of the mission. This difference is very
evident between the optimal case and the "Maximum number of thrusters" case, while
compared to the "thrustmax" and "Minimum number of thrusters" cases, the optimal
case has advantages but not so relevant (except in the vicinity of 700th days in which the
difference is more marked).
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Figure 8.7: Comparison between the thrust and the specific impulse during the mission
for the different cases
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The optimal control law is compared to the values that would be assumed for the
"thrustmax" case for a uniform power repartition on the same trajectory.
It confirms that arcs with lower thrust level are used in convenient places to better use
the propellant with a larger specific impulse.

The table:

Strategy m1[kg]

optimal 7409
thrustmax 7329

Maximum thrusters 7274
Minimum thrusters 7382

shows the values of the final mass of the spacecraft upon arrival on the asteroid, for the 4
cases.

It is easy to understand how the case concerning the optimal power partitioning has the
largest final mass, indicating that there has been less propellant consumption. Again
from the consumption point of view, the worst case is therefore the "Maximum number
of thrusters" case, in which the power is distributed uniformly for the 3 thrusters, either
all on or all off.
These results reflect the trend of the effective exhaust velocity and the specific impulse.

In Figure (8.8) is shown the outbound trajectory (projected in the ecliptic plane) , where
departure and arrival points are marked with an asterisk on the respective orbit.
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Figure 8.8: 2D Trajectory

From the figures (8.8) and (8.10) and from the trend of the available power, it can be seen
that there are two passages near the perihelion (including departure) and one passage
near the aphelion. This is because we prefer to push much with small radii (perihelion)
and less with large radii (aphelion), in order to have a lower consumption and therefore
energy expenditure. In fact, according to the formula of energy variation:

∆ξ = V∆V (8.1)

there is an energy gain ∆ξ at the expense of a cost ∆V . In order for this cost to be
minimal, with the same variation of energy, we want a high speed V and, considering a
circular speed (as if the orbit for the moment was circular and not elliptical), we would
have that:

V =

√
µ

r
(8.2)

Therefore, with small radii (perihelion in an elliptical orbit), you will have a greater speed.
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Figure 8.9: Thrust vectors along trajectory

In Figure (8.9) the thrust vectors along the departure 2D trajectory are shown. From
this visualization is clear once again that the number of switched on engines depends
on the spacecraft’s position relative to the Sun. For this reason, the thrust segment
with the greatest intensity of thrust vectors (about 1.6 N) are placed in the most
efficient positions in terms of available power, namely in proximity of the perihe-
lion of the outbound trajectory. Is also possible to notice how thrust vectors in this
case (and in almost every outbound trajectory) are substantially tangential to the trajectory.

By analysing Figures (8.10) and (8.11) is possible to understand how the inclina-
tion of the trajectory varies along the journey. The angle φ is the angle between the
position vector of the spacecraft and the ecliptic plane, where a reference frame centered
in the Sun is used. As one can see, inclination varies only when trajectory passes for
one of the nodes, and it remains unchanged between the passages. This is clearly visible
also in the 3D vision of the trajectory, where the Z scale is enlarged to highlight the
inclination of Eros’ orbit.
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Figure 8.10: How inclination of the trajectory and angle φ vary during the mission for
optimal case

Figure 8.11: 3D Trajectory
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8.1.2 Inbound Flight

A similar analysis can be made for the inbound flight. In this case the optimization index
to be maximized is the initial massm2 departing from Eros.
As said, the inbound journey is characterized by the period of fly-by. Choosing a proper
period of time, in base of the arrival date of the outbound trajectory, the inbound journey
has a fly-by in February 2026 and a value of the initial mass m2 about 12000 kg. The
above mentioned geometric aspects, together with the available electric power, are again
critical for a positive or negative performance in terms of optimized mass. More in detail,
since the amount of propellant for the inbound journey is the same for every trajectory, the
key for a better result is how efficiently it is possible to manage this amount of propellant
in the Eros-Earth segment, in order to have a greater mass of propellant left to as-
sist the fly-by in breaking the spacecraft and changing the plane towards the ecliptic plane.

In Figure (8.12) is shown how the number of active thrusters varies during the mission
for the four cases.
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Figure 8.12: Number of active thrusters during the mission
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Figure 8.13: Power partitioning between thrusters
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From the figure (8.13) it is possible to notice the trend of the available power. It is evident
that in the first mission segment there is a very low available power so that only one
thruster can be turned on. This is due to the fact that in this section you are close to the
aphelion. As you approach the perihelion, or in any case the Earth’s orbit, the distance
between the Sun and the spacecraft r decreases allowing to obtain higher available powers.
In particular, there are two peaks of the Pa: the first peak of about 43 kW occurs near the
flyby, the second peak of about 63 kW occurs in the last mission segment as it is in the
point of the trajectory closest to the Sun.
As for the power partitioning between the thrusters, in the first mission segment in which
the available power is very low, it is exploited completely first by T1 and then by T2. It
is noted that the conditions for turning on the T3 arrive very late, just before the flyby.
Immediately after the flyby it can be seen that all thrusters are turned off for a fairly long
period.
The only big difference between the cases occurs when the thrusters are turned on again
after the period in which theywere turned off. Note how, even if there are available powers
that allow the ignition of all three thrusters (Pa > 3Pm), in the optimal and "thrustmax"
cases it is preferred to have T1 and T2 at maximum power and T3 off, while in the two
"thrustuni" cases the available power is correctly distributed uniformly between the three
thrusters. Only when Pa > 2PM +Pm the T3 is switched on, first in the "thrustmax" case
and a little later in the optimal case. This is explained by looking at the figure (8.18):
the optimal case presents a higher Isp for a longer mission range, and this entails the
possibility of re-starting the T3 later, as the maximum Isp is used for reduce the thrust
produced and therefore the consumption.
In the last mission segment, having a very high available power, all thrusters are exploited
at maximum power until the end of the mission.
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Figure 8.14: Behavior of the thrust during the mission
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Figure 8.15: Comparison of the thrust for the different cases

Figure 8.16: Comparison of the effective exhaust velocity for the different cases

71



433 Eros Asteroid

Figure 8.17: Comparison of the specific impulse for the different cases
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Figure 8.18: Comparison between the thrust and the specific impulse during the mission
for the different cases
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As mentioned previously, the objective of the mission is to maximize the mass of the
boulder taken from the asteroid, or to maximize the mass of departure from the asteroid
m2. The mass of the boulder is equal tom2−m1, that is the difference between the mass
of departure from the asteroid m2 minus the mass of arrival on the asteroid m1 . In this
case, however, not knowing the massm2, we obtain themboulder in another way: given the
arrival mass on the asteroid m1, we calculate the mass of propellant remaining from the
formulam1− 5000kg (about 2400 kg) and, through the iterative calculation, we proceed
to the calculation of the mass of the spacecraft upon arrival on Earth mf , assuming that
it has been consumed all fuel on board. From this mass, subtracted the 5000 kg of dry
mass, the maximized boulder mass is obtained which, added to the mass of the spacecraft
upon arrival on the asteroid, provides the optimal mass of the spacecraft departing from
the asteroid for the inbound flight .

Strategy m1[kg] m2[kg] mf [kg] mboulder[kg]

optimal 7409 12181 9772 4772
thrustmax 7329 11915 9586 4586

Maximum thrusters 7274 11630 9356 4356
Minimum thrusters 7382 12007 9625 4625

Table 8.2: Results of indirect optimization

Also for the inbound flight, from table (8.2) it can be seen how with the optimal
distribution of power it is possible to take from the asteroid a boulder heavier than
4% compared to the "thrustmax" case and 9% compared to the "maximum number of
thrusters" case, which is therefore the worst.

The inbound trajectory is shown in Figure (8.19):
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Figure 8.19: 2D Trajectory

The spacecraft leaves Eros in December 2024 with an initial mass about 12000 kg and
intercept Earth in March 2027 with a final mass about 9700 kg. Even in this case,
departure and arrival epochs are marked with an asterisk on the respective orbit.
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Figure 8.20: Thrust vectors along trajectory

In Figure (8.20) the thrust vectors along the fly-by 2D trajectory are shown. This
visualization confirms, as shown in Figure (8.13), that in this case almost all of the
propellant is used to break the spacecraft after the Earth fly-by. Unlike the trajectory in
Figure (8.9), in this case (and in almost every inbound trajectory) thrust vectors have a
significant radial component and are mostly not tangential to the trajectory.

In the graph of φ and inclination of the trajectory is possible to see how almost
all the inclination variation is due to the Earth fly-by. This is also clearly visible in the
3D vision of the trajectory, where again the Z scale is enlarged. These graphs are shown
in Figure (8.21) and (8.22).
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Figure 8.21: How inclination of the trajectory and angle φ vary during the mission for
optimal case

Figure 8.22: 3D Trajectory
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Chapter 9

2008EV5 Asteroid

(341843) 2008 EV5, is a sub-kilometer asteroid, classified as a near-Earth object
and potentially hazardous asteroid of the Aten group, approximately 400 metres
(1,300 feet) in diameter. It was discovered on 4 March 2008, by astronomers of the
Mount Lemmon Survey at Mount Lemmon Observatory near Tucson, Arizona, United
States.
2008 EV5 was the preliminary baseline target of NASA’s proposed
sample-return Asteroid Redirect Mission. [13]

Aphelion 1.0381 AU
Perihelion 0.8783 AU

Semi-major axis 0.9582 AU
Eccenticity 0.0834

Orbital period 0.94 years
Mean anomaly 123.95°
Inclination 7.4374°

Longitude of ascending node 93.382°
Argument of perihelion 234.85°

Table 9.1: Orbital elements of 2008 EV5 at the epoch 27 April 2019 (JD 2458600.5) [2]

9.1 2008EV5 Results

9.1.1 Outbound Flight

In Figure (9.1) is shown how the number of active thrusters varies during the mission for
the three cases.
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Figure 9.1: Number of active thrusters during the mission

In the first place it must be underlined how the asteroid 2008EV5 being much closer to
the Earth, allows to be reached in a much shorter period. The outbound flight has in fact
a duration of about 465 days, compared to the 900 days needed to arrive on the asteroid
Eros.
From figure (9.1) it can be seen that for the majority of the mission all three thrusters are
turned on, and this applies to all the cases examined.
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Figure 9.2: Power partitioning between thrusters

The asteroid 2008EV5 was chosen precisely because, being much less eccentric than
Eros, it presents a much less variable variation in the available power. In fact, it has a
parabolic trend and is between amaximum of 43 kW and aminimum of 35 kW. Therefore,

80



2008EV5 Asteroid

having high available powers for the whole mission, and being Pa > 2PM + Pm, there
are the conditions to have all three thrusters on for the whole mission. Only the optimal
case has three arcs in which the T3 is turned off, despite the conditions for turning it on.
This is because, from figure (9.5), it can be seen that in those arches there is a greater
specific impulse, so we prefer to have less thrust but a higher Isp to consume less.

Figure 9.3: Comparison of the thrust for the different cases

Figure 9.4: Comparison of the specific impulse for the different cases
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Figure 9.5: Comparison between the thrust and the specific impulse during the mission
for the different cases
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The table:

Strategy m1[kg]

optimal 8166
thrustmax 8153
thrustuni 8161

shows the values of the final mass of the spacecraft upon arrival on the asteroid, for the 3
cases.
It is clearly visible how the variations of m1 for the different cases are smaller than
asteroid Eros. Due to the less eccentricity, asteroid 2008EV5 allows to have a smaller
variation of available power. This is why the results are similar.

In Figure (9.6) is shown the outbound trajectory (projected in the ecliptic plane),
where departure and arrival points are marked with an asterisk on the respective orbit.

Figure 9.6: 2D Trajectory
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Figure 9.7: Thrust vectors along trajectory
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Figure 9.8: How inclination of the trajectory and angle φ vary during the mission for
optimal case

Figure 9.9: 3D Trajectory
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9.1.2 Inbound Flight

In Figure (9.10) is shown how the number of active thrusters varies during the mission
for the four cases.

Figure 9.10: Number of active thrusters during the mission
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Figure 9.11: Power partitioning between thrusters

The duration is longer for the inbound flight as an arrival speed of v∞ = 0.7km/s has
been chosen.
As can be seen from the trend of the available power, it varies between a maximum of 47
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kW and a minimum of 38 kW. This trend has two maximums and two minimums, which
means that spacecraft moves twice near the perihelion and twice near the aphelion. So,
as for the outbound flight, there are always the conditions to have all three thrusters on.
As can be seen from figure (9.11), only in an arc of the optimal case, in the initial mission
segment, is not all the available power used. In fact, from figure (9.14) it is evident that in
that arc it is not convenient to have high thrust values as there is a higher specific impulse.
So it is preferable to have a medium thrust level, turning off the T3, to consume less.

Figure 9.12: Comparison of the thrust for the different cases

Figure 9.13: Comparison of the specific impulse for the different cases
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Figure 9.14: Comparison between the thrust and the specific impulse during the mission
for the different cases
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Below are the results for the three cases, as regards the masses:

Strategy m1[kg] m2[kg] mf [kg] mboulder[kg]

optimal 8166 19730 16564 11564
thrustmax 8153 19668 16515 11515
thrustuni 8161 19703 16542 11542

Table 9.2: Results of indirect optimization

With the optimal distribution of power it is possible to transfer the heaviest boulder.
Unlike the asteroid Eros, the masses are much higher as the asteroid is much closer,
always considering the hypothesis that upon arrival all 5000 kg of propellant were
consumed. With the power partitioning according to the "thrustmax" case, it is possible
to transport a boulder that is 0.4% lighter, while with the "thrustuni" case, it is possible
to transport a boulder that is 0.2% lighter. Since the asteroid 2008EV5 is much closer,
it is easy to understand how the type of power partitioning has little influence on the
optimization of the final mass.

The inbound trajectory is shown in Figure (9.15):
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Figure 9.15: 2D Trajectory

The spacecraft leaves asteroid in November 2023 with an initial mass about 19700 kg
and intercept Earth in April 2026 with a final mass about 16500 kg. Even in this case,
departure and arrival epochs are marked with an asterisk on the respective orbit.

In the graph of φ and inclination of the trajectory is possible to see how almost
all the inclination variation is due to the Earth fly-by. This is also clearly visible in the
3D vision of the trajectory, where again the Z scale is enlarged. These graphs are shown
in Figure (9.16) and (9.17).
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Figure 9.16: How inclination of the trajectory and angle φ vary during the mission for
optimal case

Figure 9.17: 3D Trajectory
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Conclusions

The cancelled NASA’s Asteroid RedirectMission has been selected for a validation analy-
sis of the opportune trajectories for a sample-return mission. Main purpose of the mission
was to transfer a boulder from the surface of a NEA to a stable lunar orbit, where it could
be further analyzed by other missions. For this analysis the NEA (433) Eros has been
selected. In order to quantify the mass of the transportable boulder inside the Earth’s
influence sphere an optimization process of the trajectory has been carried out studying
separately the outbound and inbound flight, considering an Earth gravity assist in the
inbound leg. Commonly adopted approximations have been used.
Methods to split the available power among electric thrusters have been presented. An
indirect method is used to the optimization of the trajectory and for point-by-point selec-
tion of the optimal partitioning, providing the maximum benefit. From the comparison
between the asteroid Eros and the asteroid 2008EV5, it has been seen how, increasing
the eccentricity and the distance from the Sun, greater is the need of an optimal power
partitioning between the thrusters. Results shows that an optimal power partitioning
strategy, respect to other power partitioning strategies simpler, provides relevant savings
in terms of propellant consumption.
Given the great influence that the consumption of propellant has on the costs of an orbital
transfer, this method allows to carry out the orbital transfer by maximizing the mass at
the end of the maneuver, or minimum the consumption of propellant.
For long-term missions, electric propulsion, used in the post-launch phase, is preferred.
This, even if it provides a small thrust for long times, favors a large specific impulse and
a reduction in costs.
The amounts of propellant for orbit control around the asteroid and for ascending and
descending manoeuvres are not considered as well. All these propellant contributions
may vary critically the mass of boulder that the spacecraft can transport towards Earth,
so, for this reason, a new and more accurate analysis of the mission could be necessary.
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Appendix A

Spherical Coordinate System

The vector form of the equations of motion must be explicit, projecting the equations
into a suitable reference. An inertial reference is chosen as it is more convenient due
to the absence of drag and Coriolis accelerations (which would complicate the Jacobian
evaluation of the system required for the BVP solution) and above all for the correspon-
dence between the variables added to the speed components in the inertial system and the
component of the primer vector. We therefore adopt spherical coordinates in a inertial
reference system based on the equatorial plane: the position of the vehicle is described
by the radius r, by the longitude θ and by the latitude φ, while the speed by the radial
components (i.e. toward the Zenith) u, in the East v and North w direction, in a local
reference.
As for speed, it was preferred to project the differential equation in this reference, and
not in one with an axis parallel to the speed itself, to have a simpler relationship between
relative and absolute speed.
By projecting the equations of state into chosen reference we have:
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m
cos γT sinψT +

qS

m

[
−CD cos γ sinψ+

+ CL

(
− cosσ sin γ sinψ − sinσ cosψ

)]
(A.6)

dm

dt
= −T

c
(A.7)

where γ e ψ are the elevation angle (flight path angle) and heading angle (measured re-
spectively from the horizontal plane, with positive angles upwards, and counterclockwise
from the parallel, with positive angles to the north) of the relative speed Vr, while γT
and ψT are the same angles fo the thrust T ; σ is the roll angle, or bank angle, i.e. the
angle which the aerodynamic lift is rotated with respect to the plane of the trajectory (i.e.
the plane determined by the vectors r and Vr), measured clockwise around the relative
speed, starting from the radial direction.
The angle σ breaks down the lift into a component in the plane of the trajectory (L cosσ),
which controls the flight altitude, and a normal component to the plane (L sinσ) which
rotates the speed vector and therefore varies the inclination of the orbit. For direct orbits
(cosψ > 0), positive values of sinσ give a negative contribution to the derivate of w and
therefore lead to an increase in inclination if the flight proceeds from North to South.
γ and ψ angles depend only on state variables:

sin γ =
u

Vr
(A.8)

cos γ cosψ =
v − ωr cosφ

Vr
(A.9)

cos γ sinψ =
w

Vr
(A.10)
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where the relative speed module is equal to:

Vr =
√
u2 + (v − ωr cosφ)2 + w2 (A.11)

The angles γT and ψT are the controls that determine the direction of the thrust, while the
angle σ determines that of the lift. By expressing the expression of the Hamiltonian and
canceling the partial derivates with respect to the angles γT and ψT , the optimal values
for the thrust angles are obtained:

sin γT =
λu
λV

(A.12)

cos γT cosψT =
λv
λV

(A.13)

cos γT sinψT =
λw
λV

(A.14)

where:

λV =
√
λ2u + λ2v + λ2w (A.15)

is the modulus of the primer vector which is, as anticipated, parallel to the optimal thrust
direction.
Similarly, by deriving the Hamiltonian from the angle σ, the optimal value for the roll
angle is obtained:

cosσ =
λu cos γ − λv sin γ cosψ − λw sin γ sinψ

λV sin δ
(A.16)

sinσ =
λv sinψ − λw cosψ

λV sin δ
(A.17)

which determines the direction of lift.
The differential equations for the added variables are provided by the Euler-Lagrange
equations:

dλ

dt
= −

(
∂H

∂x

)T
(A.18)

We obtain:
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λ̇r =
1

r2

[
λθ

v

cosφ
+ λφw + λu

(
−2

r
+ v2 + w2

)
+

+ λv(−uv + vw tanφ) + λw(−uw − v2 tanφ)

]
+

2qS

mVr
λV ω cosφ[

VE(−CD cos δ + CL sin δ) + LE(−CD sin δ − CL cos δ)
]
+

− qS

m
λV

∂ρ

∂r

1

ρ
(−CD cos δ + CL sin δ) (A.19)

λ̇θ = 0 (A.20)

λ̇φ =
1

r cos2 φ
(−λθv sinφ− λvvw + λwv

2) +
2qS

mVr
λV ωr sinφ[

VE(−CD cos δ + CL sin δ) + LE(−CD sin δ − CL cos δ)
]

(A.21)

λ̇u =
1

r
(−λrr + λvv + λww)− 2qS

mVr
λV[

VZ(−CD cos δ + CL sin δ) + LZ(−CD sin δ − CL cos δ)
]

(A.22)

λ̇v =
1

r

[
−λθ

1

cosφ
− 2λuv + λv(u− w tanφ) + 2λwv tanφ

]
− 2qS

mVr
λV[

VE(−CD cos δ + CL sin δ) + LE(−CD sin δ − CL cos δ)
]

(A.23)

λ̇w =
1

r
(−λφ − 2λuw − λvv tanφ+ λwu)− 2qS

mVr
λV[

VN(−CD cos δ + CL sin δ) + LN(−CD sin δ − CL cos δ)
]

(A.24)

λ̇m =
T

m2
λV +

qS

m2
λV (−CD cos δ + CL sin δ) (A.25)

where δ is the angle between the primer and the relative speed, and have been introduced,
in a local reference Zenith East North, the components of the versors parallel to the
relative speed:

VZ = u/Vr = sin γ (A.26)
VE = (v − ωr cosφ)/Vr = cos γ cosψ (A.27)
VN = w/Vr = cos γ sinψ (A.28)

and parallel to the lift:
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LZ =
λu(1− sin2 γ)− λv sin γ cos γ cosψ − λw sin γ cos γ sinψ

λV sin δ
(A.29)

LE =
−λu sin γ cos γ cosψ + λv(1− cos2 γ cos2 ψ)− λw cos2 γ sinψ cosψ

λV sin δ
(A.30)

LN =
−λu sin γ cos γ sinψ − λv cos2 γ sinψ cosψ + λw(1− cos2 γ sin2 ψ)

λV sin δ
(A.31)

Figure A.1: Spherical coordinates
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Appendix B

The Patched-Conic Approximation

An interplanetary spacecraft spends most of its flight time moving under the gravitational
influence of the Sun. Only for brief periods, compared with the total mission duration,
is its path shaped by the gravitational field of the departure or arrival planet. The
perturbations caused by the other planets while the spacecraft is pursuing its heliocentric
course are negligible.
Just as in lunar trajectories, the computation of a precision orbit is a trial-and-error
procedure involving numerical integration of the complete equations of motion where
all perturbation effects are considered. For preliminary mission analysis and feasibility
studies it is sufficient to have an approximate analytical method for determining the total
∆V required to accomplish an interplanetary mission. The best method available for
such an analysis is called the patched-conic approximation.
The patched-conic method permits us to ignore the gravitational influence of the Sun
until the spacecraft is a great distance from the Earth (perhaps a million kilometers).
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Appendix C

Vector and Matrix Calculation

The notation chosen indicates a column vector with a bold font:

a =


a1
a2
...
an

 (C.1)

A row vector is therefore indicated as aT , where the symbol T indicates the transposed
matrix. In this way, referring to the matrix calculation, the scalar product between two
vectors a · b is written indifferently as:

a · b = aTb = bTa (C.2)

The derivation of a column vector with respect to a scalar quantity (for example the time
t) originates a new column vector whose components are the derivatives of the single
components of the original vector:

da

dt
=


da1/dt
da2/dt

...
dan/dt

 (C.3)

On the contrary, the derivation of a scalar quantity (for example the performance index
ϕ) with respect to a column vector a gives rise to a row vector whose components are the
derivatives of ϕ with respect to the components of the original vector:

dϕ

da
=

(
dϕ

da1
,
dϕ

da2
, . . . ,

dϕ

dan

)
(C.4)

Finally, in similarity to what was seen above, the derivation of a vector a (n components)
with respect to a second vector b (m components) creates a matrix, indicated by square
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brackets, with n rows andm columns: each column is in fact given by derivatives of the
components of a with respect to a single component of b (treating the latter as a scalar
quantity, this case is analogous to the derivation of a vector with respect to a scalar), while
each row is given by the derivatives of a single component of a (seen as scalar, in analogy
to the derivation of a scalar with respect to a vector) with respect to the components of b:

[
da

db

]
=

da1/db1 . . . da1/dbm
... . . . ...

dan/db1 . . . dan/dbm

 (C.5)

It should be emphasized that the subscripts used in this Appendix (which identify the
vector component) should not be confused with those used in the rest of the work (where
they generally indicate the point at which the vector is to be calculated).
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