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Abstract 
 

The biggest challenge of the automotive industry today is the increasing complexity of it. 
Today, a high-end car software has approximately 100 million lines of code, that makes it one 
of the most complex machines. This comes with a drawback, increasing the probability of 
software defects which can cause system failures, thus increasing the risk of damage to a 
human. Moreover, this complexity has increased the cost of the production. Both of these 
mentioned topics created the objective of finding more efficient ways for developing a 
structural toolchain and reusable software, which indeed are the key words of this thesis. The 
main reference for this thesis is the international standard for automotive industry ISO26262 
titled as “Road Vehicles – Functional Safety” that provides us with the requirements for 

Electrical and/or Electronic systems.   

ISO26262 is strictly defined for requirements that must be fulfilled, not tools or ways to satisfy 
those requirements, thus the need and necessity to develop toolchains to satisfy these 
requirements. Our goal was creating a development toolchain integrating or combining 
ISO26262, V-Cycle and Systems Engineering in one, that is what we called Hybrid-V-Cycle. 
In our quest to integrate all the methods into one, we started with the V-Cycle which is a 
standard in the development of any component of vehicle and then enforced this cycle upon 
the ISO26262 standards. By this way, we developed a Hybrid-V-Cycle with feedback loops 
for continuous improvement which will be our first chapter. Each step of it is further improved 
by pointing the safety requirements we must fulfill in that step. Furthermore, we will explain 
our innovative approach for the Architecture of the system that focuses in two main things – 
Modularity and Reusability. In the last part of the chapter there will be an example on how we 
apply our Hybrid development chain with a simple project – Digital Filter. This part is done as 
a group of to people, by me and my colleague Muaaz Tariq. 

In the second part I will jump to a real automotive project – a battery manager for Lead-Acid 
batteries called BAT-MAN, developed by ‘Brain Technologies s.r.l.’ that is going to be our 

Customer. This part is done by me. The project is focused on innovative estimation algorithm 
to estimate State of Charge and State of Health of a battery. On our several interactions with 
the customer we set up the requirements and they provide us with Concept model. After that 
we proceed as in the first chapter. It is important to mention that there are several parts of this 
project that we were not able to share because the BAT-MAN project is in the process of the 
patent application. The ascending branch of the V-Cycle will be the future of this project, where 
the software of BAT-MAN must be integrated, tested and after all be certified by ISO26262 
and release on the market. 

The newly developed Hybrid-V-Cycle caters the needs for automotive component 
development considering all the safety standards now in place. With the example we showed 
the effectiveness of this development toolchain and applying it to the real-world BAT-MAN 
project showed that how it can be helpful in tackling real world complex problems. This 
Hybrid-V-cycle makes sure that we are compliant with the functional safety standards and 
makes the work easier to handle, thus increasing the efficiency. Also, adding here the modular 
architecture developed in this thesis makes it usable for several other fields, especially complex 
Control Engineering projects. 



 

  



Introduction 
Automotive sector is very competitive and challenging nowadays. There are many 

companies which are trying hard to increase there share of the market. This competition is 
forcing companies to use innovative methods to reduce the time of production (time to market) 
of any product. A research conducted by Jabil [2] shows that in 2017, 68% of the automotive 
manufactures told that there time to market is less than 2 years. While it steadily increased to 
71% in 2018. Shortening the time to market is a good trend but it raises some problems of 
functional safety. If we are reducing the time to market, we must cut down our time for the 
whole process chain. The major time-consuming factors which are delaying process are; 

 
Figure 1. Go to market statistics 

[2] 

We are considering the major problems which are; 

• High research and development costs 
• Meeting government and safety regulation 
• Long test cycles 
• Procurement/supplier selection 
• Meeting Government and safety regulations 

In order to reduce the time required for getting your product to pass through all the safety 
regulations, the automotive sector has developed some safety rules which are proving to be less 
time consuming and since most of them follow the same standards so it is easy for the 
government to pass the product in less time. The safety standards which are being followed are 
ISO 26262. While in order to reduce the time to market the automotive manufactures are 
starting to use new approaches for the product development which is model based designing. 
Apart from the need to reduce time to market, companies are also focusing on streamlining the 
projects. They are trying to develop certain systematic principles to follow by which they can 
create a new product. A set of basic rules which will be followed in every project and can be 



adapted to different kinds of project. The basic purpose is to develop a systematic way to find 
the solution of the problem.  

 

What we are doing 
Developing new Hybrid V-cycle considering, ISO 26262 (safety standard for electric 
components in vehicles) with model-based engineering, systems engineering and V-cycle to 
streamline the process for product development while keeping in mind the functional safety 
concepts of the model. 

 

Why we are doing it? 
We are doing it to reduce the time to develop a software or hardware for our vehicles so that 
we can reduce time to market for both parts. 

 

How we are doing? 
We are taking a simple example, whose requirements are provided by the customer and trying 
to pass it through all the phases of our process so that we can establish the whole procedure for 
simple process and then we can move forward and apply the same process to real world 
projects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1, Part 1 
 

1. ISO26262 
 

ISO 26262 is the safety standard which is specific for automotive industry. It applies to safety-
related road vehicle electronic and electrical systems, and addresses hazards due to 
malfunctions. It provides the whole lifecycle of the E/E system (including H/w and S/w 
components). Important thing about this standard is the documentation. We must produce 
documents and know which steps to follow to produce these documents. The standard defines 
everything, and we follow the whole procedure to get results. The description of the standard 
as given by the official website is as follows.  

ISO26262 series of standards: 

• Provides a reference for the automotive safety lifecycle and supports the tailoring of 
the activities to be performed during the lifecycle phases, i.e., development, production, 
operation, service and decommissioning 

• Provides an automotive-specific risk-based approach to determine integrity levels 
[Automotive Safety Integrity Levels (ASILs)] 

• Uses ASILs to specify which of the requirements of ISO 26262 are applicable to avoid 
unreasonable residual risk 

• Provides requirements for functional safety management, design, implementation, 
verification, validation and confirmation measures and 

• Provides requirements for relations between customers and suppliers. 

[3] 

 

 

Severity level Title Description 
S0 Low No injury 

S1 Moderate Light or moderate non life-threatening 
injuries to the driver or passengers or people 
around the vehicle 

S2 Serious Severe and life-threatening to the driver or 
passenger or people around the vehicle or in 
other surrounding vehicles 

S3 Severe Life-threatening injuries life-threatening to 
the driver or passenger or people around the 
vehicle or in other surrounding vehicles 

Table 1. Severity levels [3] 

 

 



Exposure 
level 

Title Description 

E0 Incredible Situations that are extremely unusual 

E1 Rare Very low probability 

E2 Sometimes Low probability 

E3 Quite often Medium probability 

E4 Often-Always High probability 

Table 2. Exposure levels [3] 

 

Controllability Title Description 
C0 Controllable in general Controllable in general by all drivers 

C1 Simply Controllable Less than 1% of the drivers or other traffic 
participants are usually unable to control the 
damage 

C2 Normally Controllable Less than 10% of the drivers or other traffic 
participants are usually unable to control the 
damage 

C3 Difficult to Control The average driver or other traffic 
participant is usually unable, or barely able 
to control the damage 

Table 3. Controllability levels [3] 

 

The Draft International Standard (DIS) of ISO 26262 was published in June 2009. Since the 
publication of the draft, ISO 26262 has gained traction in the automotive industry. Because a 
public draft standard is available, lawyers treat ISO 26262 as the technical state of the art. The 
technical state of the art is the highest level of development of a device or process at a time. 
According to German law, car producers are generally liable for damage to a person caused by 
the malfunction of a product. If the malfunction could not have been detected by the technical 
state of the art, the liability is excluded [German law on product liability (§ 823 Abs. 1 BGB, 
§ 1 ProdHaftG). 

[4] 

Functional safety  

According to ISO 26262, functional safety is defined as the “absence of unreasonable 

risk due to hazards caused by malfunctioning behavior of electrical/electronic systems”. 



 
Figure 2. Functional safety cascade [5] 

 

 

 
Figure 3. Safety lifecycle for software product development [3] 

 

 

This standard is relatively new in the automotive industry. It is entirely based on concept of 
functional safety. It was developed to enforce functional safety measures in a robust manner. 
With the fast-changing technology, every company wants to reduce the time required for 
testing the model. But this must be done in a safe way, hence, ISO 26262 enforces safety 
standards to already existing development models to produce the same safety functions. ISO 
26262 is divided in following parts 10 portions; 

1. Vocabulary 

2. Management of Functional Safety 

3. Concept Phase 

4. Product Development: System Level 

5. Product Development: Hardware Level 

6. Product Development: Software Level 



7. Production and Operation 

8. Supporting Processes 

9. ASIL-oriented and Safety-oriented Analyses 

10. Guidelines on ISO 26262 

 
 

 

Concept phase – This is the first development phase that ISO 26262 defines. It includes: 

• Item definition - using layouts, illustrations, definitions to define the project clearly 
• Hazard analysis and risk assessment – using FMEA, Situational analysis etc. we define 

the hazards and analyze their risks 
• Functional safety – after Hazard analysis and risk assessment is done, we define the 

ASIL, a Safe state and the Functional safety concepts 

Furthermore, while we are in the first steps of development of V-Cycle we also have to handle: 

• Customer requirements – meetings with customer must be arranged and a table of 
requirements must be created 

• Concept model – the Concept model can be given by the Customer, if not, we shall do. 
The definition of Concept model will be explained in Model based design part. 

Here we can see that immediately our development toolchain has to melt V-Cycle, ISO 26262 
and requirement engineering into one Hybrid V-Cycle. 

Product Development: System Level – Here we define our systems architecture and interfaces. 
i.e. system level product development. In this thesis we will introduce an innovative 
architecture where the keywords of it are Modularity and Reusability. This architecture will be 
very helpful especially in the integration and testing part where the Modules can be very easily 
handled. Indeed, the integration and testing is defined in ISO 26262 in ‘4-7 System and item 
integration and testing’. Furthermore, the technical safety aspects will be defined, taken by 
ISO 26262. 

 

Product Development: Software Level – In this thesis we will be dealing with Model based 
design, thus the software produced by us will be automatically generated. In this chapter ISO 
26262 defines: 

• General topics for software development, i.e. with a level of abstraction 
• Specification of software safety requirement 
• Define safety aspects 
• Software architecture design 
• Integration and Testing 

 



We need to add also: 

• Technical model 
• Simulation 
• Verification with Concept model 
• Production model 
• Code generation 

Again, we see that we need a development that makes these work altogether. 

 

 

Process definition 
 

According to ISO 26262, every process must be defined clearly before it starts, i.e. we must 
define: 

• Methodologies 
• Tool aspects 
• Safety aspects 
• Techniques 
• Artefact 

 
Figure 4. Artefacts [6]  

Methodologies – This means that we need to define what kind of methodology we are using in 
that process. For example, Model-based Design is the Methodology in the process of 
‘Technical Model’. Another example for the process of ‘Hazard Analysis and Risk 

Assessment’ the methodology can be a type of FMEA, Situational Analysis etc. 

Tool aspects – What tools are we using for getting the process done. For example, MATLAB 
is one of the tools used for design, Embedded Coder for code generation etc. 

Safety aspects – This must define the aspects of the process that have to do with safety or 
functional safety.  



Techniques – Here we must define which techniques are we using for fulfilling the Functional 
Safety requirements. They will be chosen from the tables provided by ISO 26262 for the 
specified ASIL. 

Artefact – Artefacts are basically the outputs of the process. Here we must define what will be 
achieved in the end of the process. For example, in every project, the Concept phase artefacts 
will be: 

• Defined item 
• Customer requirements 
• Safety goal 
• Functional safety concept 
• Concept model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. V-cycle 
 

 
Figure 5. V-cycle for software [6] 

[7] 

As mentioned in the beginning, every company is trying to develop a systematic procedure to 
approach a problem. The standard software development process used in the automotive 
industry is the V-cycle. V-cycle is divided in 3 major categories which are; 

• German V-Modell 
• US government V-cycle 
• General testing V-model 

In our thesis, we will only discuss German V-cycle and use it to develop our own method. 

 

German V-Modell 

 

The V-Modell is a model for planning and realizing Projects. The V-Modell improves project 
transparency, project management and the probability of success by specifying concrete 
approaches with the respective results and responsible roles. It describes ‘’Who’’ has to do 

‘’What’’ and ‘’When’’ within the project. The V-modell was first introduced in 1997 [8] for 
civil and military agencies. Since, then due to the rapid advancement of automation, this model 
was updated to adapt to the new technological developments. The V-Modell introduced in 1997 
was updated in 2004. Following things were incorporated in that model; 



• Project-specific and organization-specific adaptability, applicability within the 
scope of the project, scalability to different project sizes and changeability and 
growth potential of the V-Modell itself. 

• Consideration of the state-of-the-art of technology and adaptation to current 
regulations and standards 

• Extension of the application to the entire system life cycle already during the 
development 

• Introduction of an organization-specific process for improving process models 

Objectives of V-Modell 

The objectives of V-Modell are described as follows; 

• Minimization of project risks 
• Improvement and guarantee of quality 
• Reduction of total cost over project and system life cycle 
• Improvement of communication between stake holders 

Basic V-Cycle components 

The V model splits the software development process into two main phases. The left 
side of the V is the part of requirement analysis, function/software design and change 
management. The right side of the V concentrates the main verification and validation 
activities.  The left side of the model can also be termed as validation while the right side can 
be termed as verification. 

Validation; The assurance that product, service or system meets the need of the 
customer and other identified stake holders. It often involves acceptance and suitability with 
external service. 

Verification; Evaluation of whether a product, service or system complies with 
regulation requirement specification or imposed condition. It is often an internal process. 

 

 

 

 

 

 

 

 

Systems engineering 
 

This approach can be traced back to 1940. It has many definitions depending on its uses 
but the classical one is; 

Specification Stream 

• User requirement specification 
• Functional requirement specification 
• Design requirement specification 

Testing Stream 

• Installation qualification 
• Operation qualification 
• Performance qualification 



‘’An interdisciplinary approach to translating users' needs into the definition of a system, its 
architecture and design through an iterative process that results in an effective operational 
system. Systems engineering applies over the entire life cycle, from concept development to 
final disposal’’. 

The definition used in our project can be represented by the following figure; 

 
Figure 6. Systems engineering 

[9] 

 

This is a common graphical representation of the system engineering life cycle. The left 
side of the V represents concept development and the decomposition of requirements into 
functions and physical entities that can be architected, designed, and developed. The right side 
of the V represents integration of these entities (including appropriate testing to verify that they 
satisfy the requirements) and their ultimate transition into the field, where they are operated 
and maintained. 

But this systematic approach does not enforce or mentions any safety checks, or it does 
not incorporate functional safety concept inside the development process. There are tests 
available which are specific for each V-cycle, but they are not standards.  

 

 

 

 



3. Model Based Design 
[10]  

Model-Based Software Development is an embedded software initiative where a two-sided 
model is used to verify control requirements and that the code runs on target electronic 
hardware. One side is the Control Model, representing the embedded software of the system. 
The architecture of the embedded software is modeled with blocks containing algorithms, 
functions and logic components. Compiled software is auto generated from this model. The 
other side is the Plant Model, representing the physical aspects of the system. Each block 
contains mathematics that allows it to emulate the behavior of that physical item. 

 
Figure 7. V-Model for System Development and types of Simulation [11] 

In the left part of the V-Model we have different types of Simulation and Prototyping that are: 

• Simulation 
• Rapid Simulation 
• Rapid Prototyping 
• Rapid Prototyping on Target Hardware 

On the other hand, in the right side of the V-Model we have In-the-Loop testing that are: 

• Software-in-the-loop 
• Processor-in-the-loop 
• Hardware-in-the-loop 

Depending on what we want to simulate or test, we must choose the right target environment 
that can be: 

• Development computer 
• Real-time simulator 
• Embedded microprocessor 

SIL testing is done to verify the automatically generated source code and runs on development 
computer and it is not in real-time. 



PIL testing is needed to verify the object code and can be run either on embedded hardware or 
development computer with Simulink and an IDE. It is also not real-time. 

HIL in the other hand is done to verify overall system functionality. It executes on the target 
hardware and it is real-time. 

These all stages will be described further when we are describing how our method works and 
where we are using it in our system. 

The most important reason of using this type of approach is the ability to get it standardized. 
Since, all the code is autogenerated and the blocks used are Simulink with no self-defined 
function, hence, it’s easy to get it standardized by regulatory bodies. 

 

Concept Model – should grasp and show the behavior of the main tasks either separately or 
together. The technology is still not defined, except for analog/digital. 

Technical Model – should exhibit the main technical aspects, i.e. the sampling rate and the 
quantization levels, the saturation levels as well as other non-linearities. In addition, it must 
define the overall logic, i.e. states, transitions between states, tasks associated with states. 

Production Model - is an adaptation of the Technical model with the blocksets provided by the 
VMU and/or RCP manufacturers in order to generate and download code for their hardware. 

 

 

 

 

 

Concept Model simulation results allow to proceed to the assembly of the Technical Model 
whose simulation results (compared to the Concept Model) allows to issue hardware and 
software requirements to procure a suitable VMU and/or RCP platform. Once procured it is 
possible to proceed with the “code production” according to the specific platform. 
If simulation results of Technical model are wrong, or something done in Concept Model is 
not possible in Technical Model, we must go back to Concept Model and do the needed 
modifications. In more serious problems, the Customer requirements might be also modified 
and Customer must be notified. 

If results of Production Model are wrong, or something done in Technical Model is facing 
problems to be implemented for a certain VMU or RCP, we must go back to Technical Model 
and make the required changes. 

 

 

 

 

Concept 
Model 

Technical 
Model 

Production 
Model 

Figure 8. Model based design model flow 



3.1. MAAB Guidelines1 
 

The Mathworks Automotive Advisory Board (MAAB) developed certain guidelines for using 
MATLAB, Simulink, Stateflow and Embedded coder to meet the requests from its key 
automotive industry customers such as Ford, Daimler Benz and Toyota and now involves the 
major part of automotive industry. MAAB Guidelines can be: 

• Global MAAB 
• JMAAB (Japan) 

Since we are not specifically targeting the Japan automotive industry we will be using Global 
MAAB version 3.0. The objective of MAAB Guidelines are: 

• System integration without problems 
• Well-defined interfaces 
• Reusable models 
• Readable models 
• Professional documentation 
• Fast software changes 
• Easy exchange of models 
• Understandable documentation 

The guidelines given by MAAB can be rated as three different priorities: 

• Mandatory 
• Strongly recommended 
• Recommended 

Mandatory guidelines are those guidelines that all companies agree that are absolutely 
essential. 

Strongly recommended guidelines are those guidelines that are agreed upon to be a good 
practice. Models should conform to these guidelines to the greatest extent. 

Recommended guidelines are those guidelines that are recommended to improve the 
appearance of the model diagram but are not critical. 

Since our tools that we will use on this work are from MATLAB, Simulink, Stateflow and 
Embedded coder we must strictly apply the Mandatory guidelines and as most as possible two 
other priority rates. In the following, we will show some examples of MAAB Guidelines. 

 

A Strongly recommended requirement is the position of the block names. They must be located 
below the block, as in figure shown below: 

 
1 Mathworks.com 



 
Figure 9. MAAB guideline for Simulink modelling example [11] 

 

A Mandatory requirement that we shall apply is the block that are not allowed to be inside 
controllers as the figure below shows: 

 
Figure 10. Prohibited blocks inside controllers [11] 

Also, naming the files is very important and Mandatory according to MAAB, and they should 
be names as shown in the figure below: 

 
Figure 11. MAAB for filenames [11] 

 

For signal naming with a priority Strongly recommended, a signal name [11]: 



• should not start with a number 
• should not have blank spaces 
• should not have any control characters 
• should not return carriage returns 
• underscores can be used to separate parts 
• cannot have more than one consecutive underscore 
• cannot start with an underscore 
• cannot end with an underscore 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. Hybrid V-Cycle 
 

The purpose of creating a Hybrid V-Cycle comes from the need of integrating ISO 26262, 
Model based design flow in V-Cycle.  

ISO26262 into V-cycle 
In our project we are mapping these points on the V-cycle for automotive safety in order 

to make V-cycle coherent with functional safety rules of ISO 26262. The following picture 
shows our concept, 

 
Figure 12. Iso26262 Enforced on V-cycle 

 

 

Hybrid V-Functional safety concept 
As can be seen from the figure 5 that we have mapped iso safety points on the V-Cycle. 

Now, we will mention our own V-cycle which shows the functional safety concepts already 
incorporated inside the model-based design.  



 
Figure 13. Hybrid V-functional safety concept 

 

Steps for the Hybrid V-Functional safety cycle 
The figure 6 can be further defined in order to give us in-depth information about the 

whole process. We will divide the process mainly in three different categories which includes 
company, customer and supplier. The following diagram shows the interaction between them,  

 

 
Figure 14. Steps for hybrid V-cycle 

All the numbers on the diagram shows the points we follow to reach result. Two lines 
dividing the customer, company and supplier. The keyword’s we want to cover in this concept 

are following, 



• Functional safety 
• V-Cycle process 
• Model based design 
• Modularity 
• Reusability 

The first three keywords were incorporated when we were talking about the figure 6. We 
included all the concepts related to first three topics. In order to make code easy and reusable 
we are using the architecture which is divided by certain defined interfaces which helps us to 
make our code modular. We know all types of inputs and outputs so we can easily replace the 
block between the interfaces to get the required function from the model.  

Explanation for the steps of Hybrid V- cycle 
 

No. Of Point Models in the Nodes 
1 Customer Requirements 
2 Technical & production model  

2.1 Rapid Control Prototype (RCP) 
2.2 Testing of production model on dspace 
2.3 Production model for VMU (vehicle management unit) 
3 Vehicle Management Unit 
4 Integration and testing 
5 Prototype 

- Major changes 

- Minor changes 

 

Table 4. Steps for Hybrid V-cycle 

Now, we will explain the steps we mentioned in figure 7.  

1. Customer requirements 

Customer can provide us with the requirements or some model which we follow when 
developing technical models inside the company. This step is important because we understand 
all the requirements set up by the customer. After understanding the requirements, we interpret 
it and work on them to find out the best possible solution for the problem within the limits set 
by the customer. 

2. Technical and production model 

After specifying all the customer requirements, in technical model step, we focus on the 
making of simplest model as possible according to our understanding of the requirements laid 



down by our customer. After making the basic technical model we need a production to set all 
the parameters in order to run it on our rapid control prototype platform to quickly lay out the 
specifications for our vehicle management unit. 

3. Rapid control prototype 

Rapid control prototyping is a very efficient method to develop, optimize, and test new 
control strategies in a real environment quickly without manual programming [12]. After 
developing the model based on the requirements put down by the customer, we should run our 
model on this rapid control prototype in order to fine tune requirements and see how the 
program is working in this environment.  

4. Testing of Production model on dSpace 

Production model has a lot of flexibility and room for improvement. We need to optimize 
the model for code production and see how many bits are required to give us satisfactory 
results. We need optimization in order to reduce the memory of our code, hence, the cost of 
our vehicle management unit. So, the production model and rapid control prototype gives us 
the requirement for our vehicle management unit. 

Minor changes 

 While testing the model on our rapid prototyping platform we are unable to reach a 
conclusion or if the model is not producing the results desired by the customer, we have to go 
back again to the second step which is ‘’technical and production model’’. We change the 

model so that we can make it function as desired by the customer.  

 Moving from the fourth step to second one, costs nothing. Since we haven’t purchased 

anything and everything up-till now is on the software. So, we can iterate it as many times as 
we like considering the requirements from the customer. The main advantage of introducing 
rapid control prototype is to see whether the chosen equipment is suitable for this application 
or we need further improvements to reduce cost while maintain the same functionality.  

5. Vehicle Management Unit selection 

After the specifications laid down by Dspace we will order the VMU from our vendors. 
We will move to this step after finalizing the model. If we need certain changes in the technical 
and production model, we will move straight to second point. 

6. Vehicle management unit 

This step will be performed outside the company. We will set up the requirements we need 
for our VMU. These requirements will be passed on to our vendors and vendor will be chosen 
accordingly. 

7. Integration and testing 

After getting the VMU from our supplier we will integrate our code with hardware and test 
it in different environments. The most important test is of fault injection in which we 
deliberately inject a fault in the system and see how robust our code is. After testing of our 
system if everything goes well then, we can move on to the next stage which is laying down 
the final product requirements. But if we are not able to produce the desired results, we have 
to go back to fourth step or all the way back to second step. 



Minor changes 

At the seventh step, we are testing on the real board and we have already bought this 
from the vendor. So, if we change it then we have to pay some damages but since we haven’t 

mass produced the system we still can go back to testing our model on rapid control prototype 
to change interfacing between the VMU and sensors to make it more efficient. It’s not 

recommended to change after you have bought the VMU from the vendor but if the system 
fails under fault injection system and it could be easily replaced by small changes then it is still 
feasible.  

Major changes 

 If at the seventh step while testing on the real hardware we have problem which is 
related to the understanding of basic requirements, then we must go back the second step which 
is technical and production model. This loop costs the same as the minor change after the 
seventh step but it means that we have not understood the requirements well enough and have 
to revise those or to come up with new model to satisfy customer needs. The hybrid V-Cycle 
helps us to standardize the procedure and it makes management of the project easy. Even if we 
have gone to the second step, to move forward we can not skip any step in between, and we 
must follow the procedure again. 

 

8. Final product requirements 

After integration and testing is successful, we will set out the product details for the 
customer. 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 



5. Innovative Modular Architecture 
 

The concept of modularity and reusability can be explained by the following diagram. Figure 
from the notes of the prof: 

 

 
Figure 15. Reusability and modularity concept 

Figure 15 shows dotted lines which helps us to divide blocks in different sections. When we 
are talking about the modularity, we mean that we can replace the block and then test it for 
some other project. The process remains the same but whatever is in the blocks, by changing it 
we can change our target. 

1. Environment 

This block represents the external environment for our model. For example, if we are 
discussing about electronic circuits then we should consider the electromagnetic interference 
in our circuits from the external environments. We can simulate all the external influences in 
software (Simulink). This block is used to simulate the actual environment as close as possible 
to the real environment but only on the software. Every software has some restrictions, so we 
try to be as close as to the real environment. For example, if we are generating signal, we add 
noise in the signal to reproduce the external affects. It affects the plant hence we have drawn 
signs in interference from this block to plant. 

2. Plant 



This block represents inputs we provide to control in order to make the decisions. This 
block is also simulated in the software.  

3. Control 

It is the main block in our scheme. It takes inputs from the plant and issues output to execute 
actions based on inputs. It also contains inputs from human machine interface. Our whole 
algorithm to control system is executed in this control block.  

4. Human machine interface 

This block in software represents interaction between human and machines. Each software 
gives us some controls which can reproduce actual human machine interaction.  In software, it 
is represented by buttons and switches which are in the software only and they don’t have any 

physical presence. You can choose the type of button and set some parameters to mimic actual 
behavior.  

5. Operator 

The programmer performs function of the operator. In real world, operator will input 
commands while here since everything is on the computer, hence the person controlling 
computer will be considered as operator. 

6. Interface 

These things define the connection between two blocks. In the above method we are connecting 
software with software, so interfaces are represented by just connections in the software. 

 

 

 

5.1. Interfaces 

 
Figure 16. Interface analysis [13] 

 

According to the Ford-FMEA-handbook there are four kinds of interfaces. [13] 



• Physical interface 
• Energy interfaces 
• Material transfer (interface) 
• Information interfaces 

 

 

5.2. Concept of reusability and modularity in Hybrid V-cycle 
 

In order to introduce this concept, we introduce the blocks. As shown in figure 8, we have 
divided the procedure in some blocks. We are going to define each block in order to understand 
the whole procedure.  

 

Software block 

 

 
Figure 17. Software blocks definition 

This block represents the software portion of our Hybrid V-cycle. software will include 
anything which is not present physically, but it is designed and tested on computer. There is no 
interaction between physical parts. We design our systems and satisfy all the requirements 
virtually on a computer. 

 

Hardware block 

 

 
Figure 18. Hardware blocks definition 

This block represents the hardware portion of our Hybrid V-cycle. In this part, we have 
a physical equipment. We are no more working on the software which is all inside computer. 
This hardware block can include VMU, RCP, input from environment and all the sensors. 
VMU and RCP are included in the hardware block but in order to define the process in a better 
way we are going to highlight them separately just to identify the steps where we are 
introducing VMU and RCP. 

 



Rapid Control Prototype Block 

 
Figure 19. RCP representation of hardware block 

Rapid control prototype is a part of hardware block. We have represented it in a 
different way just to clarify the steps where we are using RCP. 

 

Vehicle Management Unit 

 
Figure 20. VMU representation of hardware block 

Vehicle management unit is also a part of hardware block. We have represented it in a 
different way in order to clearly identify the steps where we are using VMU. 

 

 

5.3. Architecture impact in integration and testing 
 

As mentioned earlier that our procedure contains 5 important points which are as follows: 

• Functional safety 
• V-Cycle process 
• Model based design 
• Modularity 
• Reusability 

Now, we will link the modularity and reusability concepts with other concepts of functional 
safety, V-cycle process and model-based design. To explain it we have divided it in 3 parts. 
The first one is  

• Software in the loop  
• Hardware in the loop containing Rapid control prototype 
• Hardware in the loop containing VMU in the loop 



Software in the loop 

 
Figure 21. Software in the loop 

This step is covered by 2nd step of our Hybrid V-functional safety cycle. In this step, we are 
going to develop our technical and production model based on the requirements demanded by 
our customer. This is the general scheme of our methodology in which we are going to divide 
our model into 5 main blocks. All these blocks are simulated in the software and at this stage 
no hardware is involved.  The blocks are: 

• Environment 
• Plant  
• Control 
• Human machine interface 
• Operator 
• Interface  

 

 

Hardware in the loop containing Rapid control prototype 

  



 

 
Figure 22. Hardware in the loop containg rapid control prototype 

This step is covered by 4th and 5th step of our Hybrid V-functional safety cycle. As shown by 
the above diagram, after software in the loop we are doing code generation for our control 
block. 

Code generation 
We have the control block in software. In order to run it on our rapid control platform we 
convert it to a code. This process of code generation is handled automatically by software which 
produces C or C++. This automatic code is not optimized and in the following steps we will 
first try to run code on our rapid control prototype which can handle a large code size and is 
only introduced to check our control block performance and robustness. This equipment helps 
us to fine tune our control block and check for any potential errors. 

 

 
Figure 23. Code generatioin 

Frame 

Every RCP requires some timers and assignment of ports which will help other blocks to 
communicate with it. We develop the frame in the next step to make sure that interfaces interact 
smoothly with RCP. 



 
Figure 24. Defining frame 

 

Rapid Control Prototype Loop (4th & 5th step) 

 
Figure 25. RCP loop 

After constructing frame and placing code inside our rapid control prototype we replace the 
control block (referring to the left column) with rapid control prototype. After testing this 
configuration, we will observe how our control block is performing. We should make a 
distinction here, the yellow blocks on the left column with names, environment, plant, HMI 
and operator are all in the software. They are still controlled by computer which is connected 
to RCP which is a physical equipment with generated code running inside it.  

The right column has different sets of blocks. In this step, we have replaced all the software 
with hardware blocks. In the previous step, we were controlling everything from the computer. 
All the blocks except from RCP were not physically present. In this step, which is shown by 
column on right side of the diagram, we are going to replace all the software blocks with the 
hardware. All the inputs will be from hardware blocks. The operator will be a real person 
operating system with the HMI. While plant will be our sensors which will monitor the values 



and give it as an input to RCP. The environment will be everything surrounding equipment, 
which is affecting the system. 

 

Hardware in the loop for vehicle management unit 

 

 
Figure 26. Hardware in the loop for VMU 

 

This step is covered by 7th step of our Hybrid V-functional safety cycle. As shown by the above 
diagram, the RCP gives us the specification of the VMU. It tells us the specifications of 
memory and other aspects of VMU. We need these aspects in order to select the vendor which 
will give us the best product at reasonable rates. The RCP also tells about the performance. So, 
instead of buying different VMU we will set the requirements set by RCP by running the code 
at various bit rates, to meet the performance requirements set by the customer, keeping in mind 
the safety aspects of our operation. If we can reduce the power requirements of the VMU we 
will be able to reduce the cost of purchase. VMU is supplied by the supplier which is 
represented by step 6th in our Hybrid V-functional safety cycle. 



VMU loop (7th step) 

 
Figure 27. VMU loop 

As seen before, we will apply the same procedure as applied before in the RCP loop. We have 
2 columns which are included in step 7th of our Hybrid V-Functional safety cycle. Column on 
the left side shows the integration of software in VMU and then testing it on a test bench. In 
this test bench, we have all the blocks in software except from the VMU which we got from 
the supplier. We will run the code first with this configuration to check the performance of the 
VMU and to make sure everything is in order and after that we will replace all the software 
blocks with hardware to do the final tests before finalizing the solution provided to the 
customer. 

 

Flexibility in model 

The procedure explained above is one of the many combinations that could be adopted in order 
to obtain the desired results. Now, we will explain some of the other combinations of the same 
procedure. For example, if we are considering the software in the loop we can have many 
different combinations of it. 

Different combinations of software in the loop, 

We will discuss some of the combinations here in order to show the flexibility of our Hybrid 
V-Cycle.  



 
Figure 28. Combinations of software in the loop 

Here we can see that two software blocks are replaced by two hardware blocks. The 
environment is an actual environment while the plant is also considered as a hardware block. 
In some cases, we are using sensors to take input from the outside and then in order to process 
and control it we are using software. We can replace any block with hardware except from the 
control block since it’s an early to invest on a controller. Some other combinations of the 

software in the loop model can be seen below. 

 
Figure 29. Combinations of software in the loop 



In figure 21, we have replaced the human machine interface with actual buttons and a human 
is controlling that panel to produce the results.  

 
Figure 30. Combinations of software in the loop 

In the figure 22, we replaced plant with a hardware block while other blocks are still in 
software. 

 

Proposed Combinations of Hardware in the Loop Containing Rapid Control Prototype 

One of the combinations is explained in figure 17. We can consider other combinations also 
which are: 



 
Figure 31. Proposed combinations of hardware in loop for rcp 

Comparing figure 17 with 23 shows that even in the 5th step we can have a software block. This 
strategy makes our Hybrid V-cycle more flexible and it could be easily adapted to different 
conditions depending upon our requirements. 

In figure 23, the RCP is also considered as a hardware block, but we have mentioned it with 
different color to clearly identify this step. We must clearly define the interfaces when we are 
moving from software block to hardware block. We should keep in mind what are the 
requirements of hardware and software block. If the interfaces are not properly defines then it 
is impossible for the blocks to interact with each other. 

 

Proposed Combinations of Hardware in the Loop for Vehicle Management Unit 

As explained in the figure 19, about hardware in the loop for vehicle management unit, we can 
thing of other combinations also and make a hybrid model to satisfy our requirements. We will 
see an example to understand how it might work. 



 
Figure 32. Proposed combination of hardware in the loop for VMU 

 

We will give the brief overview of whole process again and in following chapters we will take 
few examples for better understanding how the whole method works by considering actual 
examples, starting from a simple digital filter leading to the more complex problem.  

1. Customer requirements 

As described in the start, these are the requirements set by customer. It can be in the shape of 
requirements or a model. We completely understand it before starting to develop the model. 

2. Technical and production model 

After specifying all the customer requirements, in technical model step, we focus on the making 
of simplest model as possible according to our understanding of the requirements laid down by 
our customer. After making the basic technical model we need a production to set all the 
parameters in order to run it on our rapid control prototype platform to quickly lay out the 
specifications for our vehicle management unit. 

In this step, we develop the model following ‘software in the loop’ and ‘model in the loop’ 

based on model-based engineering. We have nothing in hardware, every program is in 
software, for example Simulink. We modify the model according to requirements of customer. 
We also try to find out innovative solutions for satisfying requirements set out by our customer. 
There might be some requirements which cannot be incorporated in our model or even if they 
are incorporated, we pay a higher price for getting slightly better performance. At this point 



everything is in the software, hence, it costs nothing to make any changes in the model. We 
can simply do it by a click of the button.  

As described in figure 20-22, we can adopt different combinations of the software and hardware 
parts for making our system.  

3. Rapid control prototype 

Rapid control prototyping is a very efficient method to develop, optimize, and test new control 
strategies in a real environment quickly without manual programming [12]. After developing 
the model based on the requirements put down by the customer, we should run our model on 
this rapid control prototype in order to fine tune requirements and see how the program is 
working in this environment.  

4. Testing of Production model on dSpace 

Production model has a lot of flexibility and room for improvement. We need to optimize the 
model for code production and see how many bits are required to give us satisfactory results. 
We need optimization in order to reduce the memory of our code, hence, the cost of our vehicle 
management unit. So, the production model and rapid control prototype gives us the 
requirement for our vehicle management unit. 

As mentioned above, if our model is not satisfying the customer requirements then we must go 
the second step again and follow the procedure again.  

At the fourth step, we can have different combinations of software and hardware blocks. We 
can adopt the suitable combination of both of these.  

5. Vehicle Management Unit selection 

After the specifications laid down by Dspace we will order the VMU from our vendors. 

6. Vehicle management unit 

This step will be performed outside the company. We will set up the requirements we need for 
our VMU. These requirements will be passed on to our vendors and vendor will be chosen 
accordingly. 

7. Integration and testing 

After getting the VMU from our supplier we will integrate our code with hardware and test it 
in different environments. The most important test is of fault injection in which we deliberately 
inject a fault in the system and see how robust our code is.  

As can be seen from the figure 26, if the integrations and testing is not successful then we again 
move either to step 4 or step 2 depending upon the changes we have to make. If we have to 
make minor changes we have to move from step 7 to step 4 while if we have to make a major 
change we have to move straight from 7th  step to 2nd one and again we have to follow all the 
points leading up to 7th step again. 

8. Final product requirements 

After finalizing the testing and code we will set out the product details for the customer.   



5.4. Standards and guidelines check 
 

Our product has certification goals, thus through all the development we have put our effort to 
comply with them. Simulink gives us the tools to check if our model and generated code 
complies with the standards and guidelines we set before: 

• ISO26262 
• MISRA C 
• MAAB Guidelines 

This can be done in Simulink via Model Advisor: 

• Simulink -> Analysis tab -> Model Advisor 

For MISRA-C Model Advisor can run the check immediately, but for ISO26262 and MAAB 
Guidelines we must download the add-in Simulink Check™ that includes: 

• ISO 26262 
• IEC 61508 
• IEC 62304 
• DO-178 
• MAAB Guidelines 

For additional checks, we decided to run also IEC 61508 since it is the parent standard of ISO 
26262, allowing us to target different fields in the future.  

Also, an important thing to do for MISRA C certification is preparation of a compliance 
statement that is something we will not do in this thesis. 

When using MISRA C:2012 coding guidelines to evaluate the quality of your generated C 
code, you are required per section 5.3 of the MISRA C:2012 Guidelines for the Use of C 
Language in Critical Systems document to prepare a compliance statement for the project being 
evaluated. To assist you in the development of this compliance statement, 
MathWorks® evaluates the MISRA C:2012 guidelines against C code generated by using 
Embedded Coder. The results of the evaluation are published as: [11] 

• Compliance summary tables 
• Deviations 

An extra check for more robustness, we will use also ‘Code Generation Advisor’ that helps us 

to check: 

• RAM Efficiency 
• Traceability 
• Safety precaution 
• Debugging 
• ROM Efficiency 
• Execution efficiency 

 



6. Documentation 
 

Professional and reliable documentation is a must in every process on any field but especially 
in Automotive industry where the ever-increasing complexity of its processes demands an 
increase in documentation quality as well. There are several different and software and tools 
for doing it but they come with a very high cost. Thus, we have come up with our very low-
cost but efficient and clean approach using Dropbox and Dropbox Paper. The Dropbox account 
called “VMU Project” is divided on 4 different main sections that are: 

• Development 
• Documentation 
• References 
• Meeting Notes (Dropbox paper) 

 

Development contains everything that concerns technical side of the project such as Simulink 
modelling. It also has 3 different folders: 

• Concept model 
• Technical model 
• Production model 

Documentation folder contains documentation of the development such as: 

• Requirements 
• Methodologies 
• Safety lifecycle according to ISO26262 
• Presentations to be presented in the meetings with the customer 
• Results of every development step 

 

References folder contains every reference that is used in the documentation and development. 

Meeting Notes in the other hand plays a key role in keeping track of the work that has to be 
done, creates a very collaborative environment allowing every participant to comment on notes, 
sharing ideas, references, alerting everyone that a report, model or documentation is ready and 
can be found on one of the folders that we already explained. A snapshot from the Meeting 
Notes below shows it very clearly how we used it: 

 



 
Figure 33. Meeting Notes snapshot 

 

The illustration below sums up the architecture of Dropbox: 
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PART 1, CHAPTER 2 
AN EXAMPLE 

 

 

 

 

 

  

 

 



1. Customer Requirements 
 

Artefacts of this process are: 

• Defined item 
• Customer requirements 
• Safety goal 
• Functional safety concept 
• Concept model 

 

Item definition 
 

Objective:  

Perform a Fast Fourier transform on the input signal and design a low-pass digital filter 
with certain requirements given by the customer. The system shall be designed in such a way 
that it must be easy to test and validate. 

 

 

 

 

  

                                Signal1 (-10,10) [V]        Signal2 

Signal Generator                                                                                                         Oscilloscope            

 

 

What is a Fast Fourier Transform? 

When we want to decompose a signal that is composed by different signals with different 
frequencies into pure frequencies that they are made of, we apply a Fourier transform on it. A 
Fast Fourier Transform, in the other hand, is an efficient algorithm that makes us implement 
the Fourier transform in much faster way.  

What is a Low-pass Digital Filter? 

An analog low pass filter is a filter that passes analog signals with frequency below cut-off 
frequency. A digital low-pass filter is the same except that it acts on discrete-time signals. It is 
programmable, doesn’t age and provides way higher performance than analog filter. Method, 

type and implementation of the low-pass digital filter will be discussed on the Analysis and 
Architecture phase. Layout of the item to be developed: 

Digital filter 

Sampling frequency 1000 Hz 

 

FFT  

Sampling frequency 100 Hz 

Figure 35. Digital filter and FFT block 
scheme 



 

 
Figure 36. Layout 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Signals 

Expected results: 

Input Expected Output for FFT 

Signal Name Symbol Function Unit Value 
range 

switch_on sO Turn on 
system V Binary 

emergency_stop sE Emergency 
stop V Binary 

Signal1 u Input 
signal V +- 10 

Fourier analysis F(u) Output V Undefined 

Filtered signal y Output V +- 10 

On_button bo Input V Binary 

Emergency_switch bE Input V Binary 



 
 

  

 

Input Expected Output for Filter 

 
 

  

 

 

Requirements specification: 

Function 1 Digital filter 

Requirement 1-1 Sampling frequency must be fs = 1000 Hz 

 



Requirement 1-2 Input signal voltage shall be in the range of ± 10 [𝑉] 

Requirement 1-3 Output signal voltage shall be in the range of ± 10 [𝑉] 

Function 2 Fast Fourier Transform 

Requirement 2-1 Sampling frequency must be fs = 100 Hz 

Function 3 Supervisory Control 

Requirement 3-1 External Start/Stop push button must be added 

Requirement 3-2 System is turned by the Start/Stop push button 

Requirement 3-3 System is stopped by the Start/Stop push button 

Requirement 3-4 An external emergency switch must be added 

Requirement 3-5 When emergency switch is turned on, output must go to 0 

Table 6. Requirements specification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Hazard analysis and risk assessments 
 

Hazard identification: 

 

Hazard analysis and assessment: 

Hazard Effect Comment 
Hazard 
1: Severity: 1 Wrong output can lead on wrong conclusions 
  Exposure: 4 Signal generator is always on when item is on 
  Controllability: 1 Simply controllable 
Hazard 
2: Severity: 1 Possible damage 
  Exposure: 4 Signal generator is always on when item is on 
  Controllability: 1 Simply controllable 

Hazard 
3: Severity: 1 

 
High voltage can cause electrical damage, causing damage to 
operator 

  Exposure: 4 Signal generator is always on when item is on 
  Controllability: 1 Simply controllable 
Hazard 
4: Severity: 0 No damage possible when there is no output 

Component Failure Mode Effect on the item 
Signal 
generator FM1: Wrong input signal 

Hazard 1: Item gives wrong 
output 

  FM2: Not grounded Hazard 2: Possibility of damage 

  FM3: Signal voltage beyond limits 
Hazard 3: Possible damage on 
electrical components 

Microprocessor 
FM4: Microprocessor fails in executing 
instructions 

Hazard 4: Item does not give any 
output 

On/Off switch FM5: Switch does not turn on Hazard 5: Item does not turn on 

  FM6: Switch does not turn off Hazard 6: Item does not turn off 

Emergency 
button 

FM7: Emergency button does not send the 
signal 

Hazard 7: High possibility of 
damage 

Oscilloscope 
FM8: Oscilloscope does not show any 
output 

Hazard 8: Item does not give any 
output 

  FM9: Not grounded Hazard 9: Possibility of damage 

  FM10: Oscilloscope shows wrong output 
Hazard 10: Item gives a wrong 
output 

Table 7. Hazard analysis 



  Exposure: 3 Microprocessor often is working when item is working 
  Controllability: 1 Simply controllable 
Hazard 
5: Severity: 0 No voltage when item is not turned on 
  Exposure:  4 On switch is always needed when item must be turned on 
  Controllability: 1 Simply controllable 
Hazard 
6: Severity: 1 Low happening possibility of undesired actions  
  Exposure: 4 On/Off switch is always needed when item must be turned on 
  Controllability: 1 Simply controllable 
Hazard 
7: Severity: 3 

Undesired actions can cause damage on electrical 
components, causing damage to the operator 

  Exposure: 1 Emergency button is used rarely 
  Controllability: 3 Can be difficult to control 
Hazard 
8: Severity: 0 No damage possible when there is no output 
  Exposure: 4 Oscilloscope is always on when item is on 
  Controllability: 1 Simply controllable 
Hazard 
9: Severity: 0 No damage can be caused 
  Exposure: 4 Oscilloscope is always on when item is on 
  Controllability: 1 Simply controllable 
Hazard 
10: Severity: 1 Possible damage 
  Exposure: 4 Oscilloscope is always on when item is on 
  Controllability: 1 Simply controllable 

Table 8. Risk assessment 

 

ASIL Selection: 

 
Figure 37. ASIL Selection table 

 

From the table: 



• ASIL A for Hazard 7 
• QM for all other Hazards 

 

Safety Goal: 

Safety goal 1: Item shall stop immediately when the Emergency button is pushed and enter to 
the safe state 

 

Safe state: The item shall to the OFF state, where the output goes to zero and the user is 
informed. 

 

1.1. Functional safety concept 
 

Functional safety: 

Because the required ASIL is ASIL A, functional safety action is necessary, but it must be low-
cost since the hazardous situation is very unlikely. 

Proposed functional safety action: 

Functional Safety 1: Transition to emergency must be highest priority 

 

 

Concept model 
 

As already explained in the first chapter, concept Model should grasp and show the behavior 
of the main tasks either separately or together.  

 



 
Figure 38. Concept model in Simulink 

 

 
Figure 39. Results of Concept Model 

 

 

 

 

 

 



 

Architecture & Design 
 

Modular architecture and the components with interfaces must be defined: 

 

 

 

 

 

 

 

 

 

                             

 

                                                            

  

                                                       

 

                                                        

  

 

 

 

 
The following characteristic or features specified should be seen as requirements: [13] 
 

• The environment: The item will be placed in a Lab 
• There are no permitted ways of use 

User 

Plant 

Control 

HMI 

Environment 

Interface –  

Cables 

Interface –  

Cables 

Interface –  

Manual 

Interface – EM 

Figure 40. Item Architecture 



• Only one mode of operation specified 
• Both our functions, Digital filtering and DFT are function call subsytems 
• Input signal is analog with range ±10 V, with a certain high frequency noise 
• Output signal is analog with range ±10 V 

 
 

Interfaces 

 
Physical interface 

• The item will be placed in a typical Lab desk 
• Room temperature 
• Signal range 20V peak-to-peak  

Energy interfaces 
• Electric energy only 
• 20V peak-to-peak voltage transfer 
• Energy provision via cables 

 
Material transfer (interface) 

• No material transfer 
 
Information interfaces 

• Signal processing 
• Analog input to ADC to RCP Platform to DAC to Oscilloscopes 
• Bus or communication systems CAN or Ethernet 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Technical Model 
 

Technical Model should exhibit the main technical aspects, i.e. the sampling rate and the 
quantization levels, the saturation levels as well as other non-linearities. In addition, it must 
define the overall logic, i.e. states, transitions between states, tasks associated with states. 

Tool – MATLAB Simulink 

Techniques – Will be specified and chosen in each stage 

Methodologies – Model-based Design, MAAB Guidelines 

Artefacts – Software code 

Safety aspect – Techniques recommended by ISO26262 for ASIL  

 

Initiation 
 

Guidelines to perform modelling that are required by ISO26262: 

 

 
Figure 41. Modelling and coding guidelines 

Since we have ASIL A, we must choose an appropriate combination of some requirements 
since they are alternative entries. A good appropriate combination for our item will be: 

1. Enforcement of low complexity 
2. Use of unambiguous graphical representation 
3. Use of naming conventions 

 

Specification of software safety requirement: 

Recalling the functional safety defined in the previous phase: 

Functional Safety 1: Transition to emergency must be highest priority. 



According to ISO26262 we must define the components of the item that are responsible to 
achieve or maintain the safe state, which are:  

1. Emergency switch 
2. Microcontroller 

 

Functions related to safety requirement: 

1. Supervisory control/Stateflow 
 

Software architecture and specification of safety requirements 
 

Methods for notation that are given by ISO26262, for ASIL A Informal notations is highly 
recommended, so we decide for 1a. 

 

 
Figure 42. Notations for software architectural design 

For error handling we decide for Range checks of input and output data since it is highly 
recommended and can give us good desired results. 

 
Figure 43. Error detection at the sw architectural level 

For verification ISO26262 gives us several methods. An appropriate and robust combinations 
would be: 

1. Walk-through of the design 
2. Inspection of the design 
3. Control flow analysis 

 



 
Figure 44. Methods for the verification of the software architectural design 

 
The following elements shall be verified: 
 

• Compliance with the software safety requirements 
• Compatibility with the target hardware 
• Adherence to design guidelines 

 

Unambiguous illustration of architectural design that realizes the software safety requirements: 

 

 

 

 

 

 

 

 

    

We have three states: 

• OFF State – which is set by default 
• ON State – where the actions required are performed and infrom the User via HMI 
• Emergency State – Where we set the output to zero and inform the User via HMI 

 

 

 

 

 

HW Interrupt 
SAFE 

STATE 

Emergency 

Switch 

Figure 45. Illustration of HW Interrupt 



 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

 

Model-based Design  
 

Notations to be followed for ASIL A: 

• Natural language 
• Informal notations 

 

 
Figure 47. Notations for software unit design 

 

Design principles for software unit design and implementation to be followed for each unit: 

• No hidden data flow or control flow 
• No recursions 
• Initialization of variables 

Supervisory 

Control 
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Digital 
Filter 
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FFT 

100H
z 
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 No Output 
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ON 
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Figure 46. Illustration of model hierarchy 



 
Figure 48. Design principles for sw unit design and implementation 

 

Methods for software unit testing: 

 
Figure 49. Methods for software unit testing 

 

Requirement-based test is highly recommended and it is enough for our model. 

 

 

 

 

 

 

Task 1 - Supervisory control 
 

Concerning the discrete control, we must have 3 states: 

• OFF state, which is set by default 
• ON state 
• Emergency state 

Transition conditions from OFF to ON: On pushbutton must be pushed for 2 seconds. Color of 
the led will be yellow during the transition. 



Transition from ON to OFF: On pushbutton must be pushed for 2 seconds. Color of the led will 
be yellow during the transition. 

Transition from ON to Emergency: Emergency switch is turned on. Color of the led will be 
yellow during the transition. 

Transition from ON to Emergency: Emergency switch is turned off. 

Transition from Emergency to ON is not possible for safety reasons. 

 
Figure 50. Stateflow chart 

 

 

 

Task 2 - Digital Filter 
 

 
Figure 51. Task control 

 

Design characteristics: 

• Frequency response: Lowpass  
• Sampling frequency: 𝑓𝑠 = 1000 𝐻𝑧 



• Cutting frequency: 𝑓𝑐 = 100 𝐻𝑧 
• Simulink block used: FIR Filter 
• Filter order: 2 

 

Simulink block used: 

 
Figure 52. Digital Filter modelling 

 

Validation of Task 2 
 

Results with a given input of 100Hz and amplitude 10: 

 
Figure 53. Results 1 of Digital Filter and FFT 

 

Results with a given input composed by two signals with 10Hz amplitude 10V and 40Hz 
amplitude 5V: 

 



 
Figure 54. Results 2 of Digital Filter and FFT 

 

From these results we can say that we satisfy the results of Concept Model. Furthermore, we 
added:  

• state machine 
• quantization 
• sampling 
• holding 
• HMI design 

Now to start the process of transitioning from Technical to Production model shall start we 
must implement: 

• Scheduling of the tasks 
• Interrupt handling 

 

 

 

 

Task 3 - Fast Fourier Transform 
 



 
Figure 55. Task control 

 

FFT: 

Performs FFT in the incoming signal 

Complex to Magnitude-Angle: 

Converts the complex values to magnitude. By default it has 2 outputs, magnitude and angle, 
but in our case only the Magnitude is selected. 

FFT Shift Matlab function: 

Shifts zero-frequency component to center of spectrum. It is useful for visualizing the Fourier 
transform with the zero-frequency component in the middle of the spectrum. 

FFT in Simulink: 

 

 
Figure 56. FFT modelling 

 

Validation of Task 3 
Result for a given input with 100Hz frequency and amplitude 10: 

 
Figure 57. FFT result 

Result for a given input with 300Hz frequency and amplitude 10: 



 
Figure 58. FFT Result 

 

Emergency Task 
 

Emergency Task as specified in Functional Safety requirement must be the highest priority, i.e. 
this will translated as the task will be triggered by a Hardware Interrupt with highest priority 
and cannot be pre-empted by any other task. The task will be managed with Stateflow with 
following flow: 

1. Hardware interrupt is ON 
2. Emergency task starts running 
3. Set an emergency global variable to ‘True’ 
4. Emergency Task finishes 

Now, depending on which task is next in queue: 

5. Supervisory Control goes to Emergency State 
6. Task controls go to OFF 

All of the tasks are controlled by the emergency global variable because we do not know which 
task was pre-empted by the Hardware Interrupt, thus which task will run after the Emergency 
Task. Doing this, we make sure that everything goes to OFF after Emergency task runs. 

 

Emergency function-call task Stateflow: 

 
Figure 59. Interrupt handling 



 

How can we manage Scheduling and Interrupts together with Validation of the task will be 
analyzed in the following. 

 

 

Scheduling 
 

Scheduling of the tasks is very important in Real-time applications such as ours. In this 
subchapter we will analyze how can we use Simulink to do so and implement it in our example. 
Simulink offers two types of scheduling: 

• Time-Based Scheduling 
• Event-Based Scheduling 

Firstly, as seen in Customer Requirements table, in our application we have 3 Synchronous 
tasks that have to be executed as Time-Based Scheduling: 

• Supervisory Task 
• Digital Filter Task 
• FFT Task 

Secondly, we have another task that must be executed Asynchronously, i.e. only when the 
Emergency switch is turned on, thus this task must be scheduled as Event-Based Scheduling. 
The illustration below shows the scheduling principle without taking to  account the execution 
times of the tasks: 

 

 
Figure 60. Scheduling 



Simulink offers several ways to handle the scheduling of tasks(subsystems). Here we will use 
‘Temporal logic scheduler’ that is implemented via Stateflow. This technique allows us two 

different ways to use it: 

• Event-based Temporal logic 
• Absolute-time Temporal logic 

For Absolute-time Temporal logic the operators that can be used are: 

• after(x,time) 
• before(x,time) 
• every(x,time) 
• temporalCount(time) 
• elapsed(time) 

 

Time can be set as seconds(sec), milliseconds(msec), microseconds(usec), and ‘x’ is the time 

value.  

But, for RTOS applications using Absolute-time is not recommended from Simulink. Thus we 
will use Event-based Temporal logic to execute Synchronous tasks. The operators are the same 
as Absolute-time, but they are used in a different way. The syntax is as follows: 

• every(n,tick) 

The example is given for the operator ‘every’ but it is the same for every operator. The 
important thing is that the variable ‘tick’ has to be linked in a Timer, Clock or to the base rate. 

Here, we decide to not put anything more and complicate the model and use the base rate. In 
this case, the base-rate and sub-rate tasks will be managed by the OS itself and not by timer 
interrupts. The logic goes like this: 

• Execute Supervisory Control Task in a base rate that is 10Khz 
• Execute Digital Filter Task every 10 base rates, thus frequency is 1KHz 
• Execute FFT Task every 100 base rates, thus frequency 100Hz. 

 

 

 

 

 

 

 

 

 

 



 

Interrupts 
 

A more complex process to be managed in Simulink is handling Interrupt Service 
Routine(ISR). The block that creates an ISR and it also is supported from Embedded Coder, 
i.e. its code can be automatically generated is the block called ‘Hardware Interrupt’ block. 
This block can be used only in subsystems that are set as a ‘Function-call subsystems’ and it is 

different for every type of hardware. In this case we will analyze the most common one: 

• ARM Cortex-M processors 

 

 

 

 

 
Figure 61. Hardware interrupt block and its parameters 

 

(Another example is ‘External Interrupt’ block for Arduino Hardware.) 

To use the ‘Hardware Interrupt’ block we must set its parameters: 

• Set interrupt group, in this case Cortex-M 
• Set interrupt name, it will correspond to the specific entry of the processors interrupt 

vector table. A good option is to leave it as it is and then check if that is available in the 
processors vector table 

• Interrupt number, corresponds to the position of interrupt in the processor vector table 
• Check the ‘Disable interrupt pre-emption’ because we do not want other interrupts to 

preempt the ‘Emergency Task’ 



 

Of course, when the code will be generated and integrated with the firmware, the GPIO 
input of the board that the hardware interrupt is connected (in our case the Emergency 
Switch), must be linked to the ISR via hand-written code. 

 

 

 

 

 

 

  

 

 

 

All this procedure must be done when we set which hardware we will going to use. For now, 
we will use the Interrupt simulation block. Note that This block cannot be used for code 
generation. 

 

 

 
Figure 63. Control content with Interrupt simulation 
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Figure 62. Hardware interrupt flowchart 



Validation of Task 1 
 

Monitoring the Supervisory Control via Chart Mode we see that every input of us given through 
HMI Module is working, as can be seen in the following picture: 

 
Figure 64. Chart mode 

 

Control frame 
 

Control frame input must take the Analog input signal and give a digital output to the Control 
content. Here, we have done it via Quantizer block in Simulink.  

 

 
Figure 65. Quantizer 

 

Several tests have been done to see the number of bits needed to have a good result, of course 
keeping in mind that we are in a simulation environment. We have concluded that until 6 bits, 
the results with our range of frequency and amplitude is enough. The results with 4 bits give 
us a wrong result about signal spectrum, since the algorithm does not have enough information 
to give us the good result. The output with 4 bit quantization is shown below: 



 
Figure 66. FFT Output with 4 bit quantization 

 

 

 

 

The control frame output must take the calculated digital output from the Control content and 
transform it to Analog. Here we have done it via PWM and a Lowpass filter. The  parameters 
to be set are: 

• Saturation levels 
• Period of Repeating sequence 
• Value of Repeating sequence 
• Relay switch on and off values 
• Output when off and on 
• LPF characteristics 

 

 

 

 
Figure 67. PWM Design 

 



Results after reconstruction of the Signal1: 

 
Figure 68. PWM Results 

 

 

Human-Machine-Interface 
 

Components: 

• Start/Stop push button 
• Emergency switch 
• Oscilloscope 
• On LED 
• Emergency LED 

 



 
Figure 69. HMI Design 

HMI feedback: 

 
Figure 70. HMI Feedback 

 

 

 

 

 

 



 

 
Figure 71. Simulink model architecture view 

 

 

 



Testing 
 

For this example we only had a chance to perform SIL and not PIL or HIL since we did not go 
further for VMU selection. We focused on Model Based design and code generation thus SIL 
was necessary. 

Besides this, here we also perform the checks for the standards and guidelines via Simulink to 
see if our work satisfied ISO 26262, MISRA C, MAAB Guidelines. 

Tools – Simulink, Simulink CheckTM 

Safety Aspect – SIL Testing, Standards check 

Techniques – SIL 

Artefacts – SIL results, passed or failed Standard check 

 

Software in the Loop 
 

“Software-in-the-loop simulation mode denotes simulations in which the software of the real 
control system is embedded in the simulation loop. The simulation contains part of the real 
system, i.e. the control software, together with simulated parts, i.e. the device hardware and the 
environment. The executable code of the real control system is directly embedded in the 
simulation. In SIL, the software of the real control system is deployed on simulated devices 
that reside within a simulated environment with simulated sources of dynamism. SIL 
simulation is typically used during the late stages of application development. SIL simulation 
enables experimenting with the control system on simulated devices before deployment.” [14] 

In our case we will carry this task in Simulink. Certainly, SIL model contains only CONTROL 
module and nothing else. 

 

 
Figure 72. SIL Settings 

 



 
Figure 73. Simulink model to run SIL 

 

Because this example is computationally simple with very few variables, we see that the results 
are the same as Model-in-the-Loop. In the contrary, we will see that differences will be rather 
bigger when we deal with a real application. 

 
Figure 74. SIL results 

 

 

 

 

 

 

 



Standards check  
 

The results of modelling were satisfactory and failed none of the standards or guidelines. But, 
there is room to improve the Warnings given. All the reports of each check are generated and 
stored in documentation. In the following figures we can see the summary of results for each 
of the ran checks: 

 
Figure 75. ISO 26262 check results 

 

 
Figure 76. MISRA C:2012 check results 

 



 
Figure 77. MAAB guidelines check results 

In addition of the standards, we run also Code Generation Advisor with no failures: 

 

 
Figure 78. Code generation advisor check results 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PART 2, BAT-MAN PROJECT 
 

 

 

 

 

 

 

 

 

 

 

 



 

1. Customer Requirements 

 

Item definition 
 

“The proposal of BAT-MAN is to make significant technologic innovations (especially relative 
to the techniques of estimation and diagnostics), realizing at the same time a product idea 
(realizing a prototype) that, on the one hand it can offer immediate and large-scale feedback on 
the solutions developed, and on the other can act as a forerunner to a series of applications 
based on the same technologies, either in areas closely related to accumulation systems, or in 
areas where advanced diagnostic and estimation techniques can bring a significant added 
value”. [1] 

In other words, BAT-MAN project is an innovative approach to estimate the State of Charge 
(SoC) and State of Health (SoH) of a Lead-Acid battery. This project comes to life to fulfill the 
great demand of the Automotive Industry which is going in the way of full vehicle 
electrification, where BAT-MAN becomes a necessity. 

The BAT-MAN estimation algorithm has four inputs and two outputs. The inputs are: 

• Terminal Voltage (measured) 
• Current (measured) 
• Temperature (measured) 
• Nominal Capacity (Characteristic data of the battery) 

The outputs in the other hand as we already mentioned are: 

• SoC (State of Charge of the battery) 
• SoH (State of Health of the battery) 
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Figure 79. Item definition 



 
 

 

Figure 80. Item definition 

What is State of Charge?  

The amount of charge in the battery that can be extracted from it, in percentage. The formula: 

𝑆𝑜𝐶 = (𝑆𝑜𝐶0 + 
∫ 𝐼(𝜏)𝑑𝜏

𝑡

0

𝐶𝑛
) 

Nominal Capacity 𝐶𝑛, is the energy storage capacity of a battery in theory, that is given by the 
producer of the battery. The formula? 

𝐶𝑛 = 𝐶𝑟 + 𝐶𝑙𝑜𝑠𝑡 

where 𝐶𝑙𝑜𝑠𝑡 is the amount of energy that is no more available or extractable from the battery 
due to its health. 

What is State of Health of a battery? 

The amount of charge extractable from the battery in its fully charged state, relative to the 
amount when the battery was new. i.e. its Nominal Capacity given by the producer. 

𝑆𝑜𝐻 =  
𝐶𝑟

𝐶𝑛
 ∙ 100 

where 𝐶𝑟 is the Real Capacity, i.e. the amount of charge that is extractable from the battery. 
The formula: 

𝐶𝑟 = 𝐶𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 +  𝐶𝑟𝑒𝑙𝑒𝑠𝑎𝑏𝑙𝑒 

 

 

Estimation of State of Charge 
 

There are several methods to estimate the batteries state of charge. From most of the literature 
they are categorized in : 

1. Direct measurement, uses physical battery characteristic and it can be categorized in: 
a. Open circuit voltage method 
b. Impedence method 

Lead-Acid 
Battery 

BAT-MAN 
Microcontroller 

BAT-MAN Mobile 
App 



c. Terminal voltage method 
 

2. Book-keeping estimation, uses discharging current integration over time, and it can be 
categorized as: 
a. Coulomb counting method 
b. Modified coulomb counting method 

 
3. Adaptive systems, estimation algorithms that adapt to different conditions, such as: 

a. Kalman Filters 
b. Deep learning 
c. Machine learning  
 

4. Hybrid methods, use a combination of methods: 
a. Coulomb counting and Kalman filter  
b. Coulomb counting and EMF combination 
c. Per-unit system and Extended Kalman Filter combination 
 

Estimation of State of Health 
 

SoH estimation methods can be categorized as: 

1. Capacity estimation techniques 
2. Internal Resistance estimation techniques 

While for the first method we already have talked about, the Internal resistance estimation 
technique formula is: 

𝑆𝑜𝐻 =  
𝑅𝑒𝑜𝑙 −  𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑅𝑒𝑜𝑙 −  𝑅𝑛𝑜𝑚𝑖𝑛𝑎𝑙
 ∙ 100 

where 𝑅𝑒𝑜𝑙 is the internal resistance of the battery in its end of life, and in the other hand 
𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the current internal resistance of the battery and 𝑅𝑛𝑜𝑚𝑖𝑛𝑎𝑙 is the nominal internal 
resistance. 

To further continue defining our items properties we must understand what are the factors that 
SoH depends on. We must define them in this phase, but will furthermore study the effect in 
the Architecture section, where we modularize the whole system and indeed understand the 
interactions between them. Factors can be categorized as follows: 

a. Temperature 
b. Overcharging, can damage the electrolytes of the lead-acid battery. It can decrease the 

capacity of the battery and increase its internal resistance 
c. Cycles of Charge/Discharge 
d. Amplitude of the current extracted, if it goes beyond the factory limits 
e. Ageing, chemical components age due time which decreases the capacitance of the 

battery 

 



Lead-Acid battery 
 

Today, Lead-Acid battery is the main energy source for starting the automotive engines. Of 
course, we are not responsible for the lead-acid battery safety itself because that was certainly 
taken care of by the producer of the battery. Instead, what we are interested in is the range of 
the output it can deliver, which will be our boards input.  

 

Equipment Current Sank 

Equipment Current Sank 

Ignition  2-9A 
Radio  0.5-5A 
Windshield Wipers  7.5A 
Headlamps (Low Beam, Dim)  17-18A 
Headlamps (High Beam, Bright)  19-20A 
Parking lights  4-10A 
Brake lights  6-11A 
Interior lights  2-4A 
Bonnet Light  0.5-1A 
Horn  4A 
Power Window (One window)  5A 
ABS Brakes (Max)  14A 
Boot Light  1A 
Blower (Heater, Air Conditioner)  14A 
Heated Rear Window Defogger  13-28A 
Heated Seat  5A 
Power Seat Motor  10-13A 
Summer Starting (Petrol)  150-200A 
Summer Starting (Diesel)  450-550A 
Winter Starting (Petrol)  250-350A 
Winter Starting (Diesel)  700-800A 

Table 9. Typical current loads of passenger cars [15] 

 

The above table, taken by the customer shows us that the current can go until 800 Amps, while 
the voltage is always 13 Volts. The current depends on the temperature, lower temperatures 
indicates higher current, thus temperature sensor will become very handy for further analysis 
of the input data.  

 

Requirements specification 
 

After several meetings with the company, we have ended up with this table of requirements: 

 



Function 1 BAT-MAN Application 

Requirement 1-1 Sampling frequency must be fs = 10 Hz 

Requirement 1-2 Input signal voltage shall be in the range of ± 13 [𝑉] 

Requirement 1-3 Must calculate SoC, highest priority 

Requirement 1-4 Must calculate SoH, highest priority 

Requirement 1-5 Must calculate Reliability of the result, lower priority 

Function 2 HMI 

Requirement 2-1 A mobile app must be created as HMI 

Requirement 2-2 Communication between HW and App must be Bluetooth 

Requirement 2-3 Must consist two windows, one for inputs of the user (to insert 
the data of the car, battery of the car, Nomical capacity of the 
battery). The second is for Outputs. 

Requirement 2-4 Start push button must be added (Mobile App) to start 
communication 

Requirement 2-5 Graphs to monitor the output must be added 

Requirement 2-6 Graphs to monitor the inputs must be added 

Requirement 2-7 Data must be saved on certain files for further use 

Function 3 Bluetooth transmission 

Requirement 3-1 Outputs must be transmitted every time we have a result 

Requirement 3-2 Housing must be designed for EMC standards 

Table 10. Requirements 

 

We can see that these requirements demanded by the company are very similar with our 
example in previous chapter. This shows us that our example was very much on point, thus 
giving us more confidence to keep going further. 

 

 

 

 



Hazard analysis and risk assessment 
 

“In Part 3 of ISO/DIS 26262 [ISO/DIS 26262-3 2009] the process of hazard and risk 
assessment is described. Potential hazards are identified following an analysis of the 
operational situations of the system. The system may be a vehicle, a vehicle system, or a vehicle 
function.  For purposes of our analysis, we will assume the H&RA process is being applied  to 
a  vehicle. The identified potential hazards are then categorized based on the following factors: 
severity, probability of exposure and controllability. The categorization results in the 
determination of an ASIL to the potential hazard. The ASIL is also assigned to the safety 
goal(s) formulated to prevent or mitigate the potential hazard, in order to avoid unreasonable 
risk. Risk reduction (safety) requirements are then derived from these safety goals and inherit 
their ASIL” [16]. 

Through brainstorming and consulting with several groups of people, we have ended up with 
the following hazards. It is important to say that this is only for Lead-Acid battery. Because the 
company aspires to adapt this project for Lithium-Ion batteries in the future, that would be 
significantly different and possibly would have ended with different ASIL determination. 

 

 

 

 

 

Component Failure Mode Effect on the item 

Microcontroller FM1: Sensors are damaged 
Hazard 1: Electronic board gets wrong or no 
input 

  FM2: Not grounded Hazard 2: Possibility of damage 

  
FM3: Bluetooth transmitter is 

damaged 
Hazard 3: Electronic board does not send an 
output 

  
FM4: Microprocessor fails in 

executing instructions 
Hazard 4: No results available 

  FM5: Input signal beyond limits 
Hazard 5: Possible damage on electrical 
components 

Interfaces/Cables FM6: Cables not well-isolated Hazard 6: Noisy input 

  FM7 : Bluetooth connection failure Hazard 7: User cannot be informed 



HMI/Mobile App 
FM8: Connection failure/error in 

the application Hazard 8: User cannot be informed 

 

FM9: App fails to store or show 
the data 

  

Table 11. Hazard analysis 

 

Hazard Effect Comment 

Hazard 1: Severity: 0 
Wrong information possibility without any serious 

damage 

  Exposure: 4 Sensors are always on when the item is on 

  Controllability: 1 Simply controllable 

Hazard 2: Severity: 1 Possible damage 

  Exposure: 4 Electronic board is always on when the item is on 

  Controllability: 1 Simply controllable 

Hazard 3: Severity: 0 No possible damage 

  Exposure: 2 Bluetooth is not always working, only time to time 

  Controllability: 1 Simply controllable 

Hazard 4: Severity: 0 No damage possible when there is no output 

  Exposure: 3 Microprocessor often is working when item is working 

  Controllability: 1 Simply controllable 

Hazard 5: Severity: 1 Possible damage on electronic board 

  Exposure:  3 Electronic board often is taking input from sensors 

  Controllability: 1 Simply controllable 

Hazard 6: Severity: 0 No possible damage 

  Exposure: 3 Cables are often transmiting electrical energy   

  Controllability: 1 Simply controllable 

Hazard 7: Severity: 0 No possible damage 

  Exposure: 2 Bluetooth is not always working, only time to time 

  Controllability: 2 Can be difficult to control 

Hazard 9: No serious damage 



Hazard 8: Severity: 0 No possible damage 

  Exposure: 3 Item often is working 

  Controllability: 2 Can be difficult to control 

Hazard 9: Severity: 0 No possible damage 

  Exposure: 2 App is not always connected 

  Controllability: 2 Can be difficult to control 

Table 12. Risk assessment 

In addition, the situational analysis, i.e. analyzing different situations would not be needed 
because in this application clearly the main and by far most important and dangerous situation 
is the cranking phase, i.e. engine start. In our case we see that the highest level of risk is given 
by Hazard 2: Controllability(1) + Severity(1) + Exposure(4) = 6. From the table we can 
determine that this projects ASIL is QM(Quality Management). 

 
Figure 81. ASIL Selection 

Quality Management leaves us with no requirements from ISO26262. This conclusion will 
make a significant difference from the previous chapter where we determined the example as 
ASIL A. Now, we will have way more tolerance on doing things but keeping in mind that if 
something is possible which might give us more robustness in safety point of view, we will set 
that as something to be done. Also durability, quality and reliability must be taken into account.  

 

 

Concept model 
 

Brain Technologies has provided us with their – what we call ‘Concept model’. In this 

subchapter we will explain the model, i.e. the work that has been already done, in which way 
it is done and then modify the model as it should be done with respect to MAAB guidelines. 
After that we set our objectives and see the results to be compared with the ‘Technical Model’. 



The algorithm is divided in two modules: 

1. Series of extended Kalman Filters 
2. Error management and selection of the best estimate 

Inputs of the first module, thus the inputs of the whole algorithm are: 

• Voltage  
• Current 
• Temperature 
• Sampling time 
• Initial SoC in first time algorithm runs, after that the input is the previous SoC 
• Initial Voltage 
• Nominal capacity 

while the outputs of it, thus the inputs of the second module: 

• Estimation of SoCs from different Kalman filters 
• Estimated error absolute value 
• Current 

And the outputs of the second module, thus the whole algorithms: 

1. SoH 
2. SoC 
3. Reliability, which is the value in percentage of how much we trust the results given to 

the user.  
 

It is important to see the following figure, which is exactly what was given to us. It is very clear 
that firstly we must apply the MAAB design guidelines and then proceed further. Also, a lot of 
the work has been done on Matlab, which is not preferable but still we can fix it when we are 
in the code generation point, converting that code into MISRA standard code. 

 

 
Figure 82. Concept model from customer 

 



 

The inputs of the BAT-MAN algorithm in this case are given from the real data taken by the 
real batteries. Certainly, the team before has also run the algorithm with the battery model. The 
illustration below shows  the architecture of the algorithm: 

 

  
Figure 83. Inputs (left) and Outputs (right) 

  

 

 
Figure 84. Inputs (left) and Outputs (right) 

 

 



 
Figure 85. Inputs (left) and Outputs (right) 

 

 

 
Figure 86. Concept model modified 

 

 

 

 

Architecture & Design 

 
Techniques – System is defined as QM 

Methodologies – Modular and reusable architecture 

Artefacts – Architecture components definition and interfaces 

Safety aspect –  

• Some techniques recommended by ISO26262 for ASIL A, even though the system is 
QM 

 



As we understood in the example tutorial, there are features that must be specified. For BAT-
MAN they are as follows:  

• The environment: The item will be placed in a vehicle 
• There are no permitted ways of use 
• Only one mode of operation specified 
• Neither of the functions are function-call 
• Input voltage is in the range of +15 V. 
• Input current is in the range of ± 900 A 
• Input temperature is not specified. It is considered as environment effect. 

 

 
Figure 87. Architecture illustration 

 

BAT-MAN has two operation modes: 

• Device is connected to the Mobile app 
• Device is not connected to the Mobile App 

 



Environment  
 

Lead-Acid batteries are deeply affected by the environment temperature, thus it is necessary 
to design our model including temperature input as disturbance in the Environment module 
of our architecture. Due to a lot of electro-chemical interaction that happen in this kind of 
battery the temperature will affect the aging of it. This effect can be described as the 
Arrhenius equation.  
 

“Svante Arrhenius was a Swedish scientist who discovered the life of lead-acid batteries is 
affected by variations in temperature. He established that for every 10ºC increase in 
temperature the battery life would be halved. Therefore, as an example, it follows that if the 
life is 30 years at 15ºC then at 25ºC the life will be 15 years. The equation also suggests that 
at 5ºC the life will be 60 years but unfortunately other things come into play when batteries 
are very old, typically over 30 years, and the Arrhenius equation is only really valid between 
about 15ºC and 40ºC for operational batteries”. [17] 
 

The data sheet of ‘Hawker Cyclon’ battery shows this following graph: 
 

 
Figure 88. Relation between Cn and Temperature [17]  

 
 
Nominal operating temperature is 20°𝐶. Thus, we must know that when we talk about 
different characteristics of the battery, it is given that the operating temperature is 20°𝐶. 
 

To understand better we might take an example. Let us suppose that a battery operates in 
different temperatures in different months. Then, we compute the aging of that battery in one 
year. The following figure shows a typical operating temperature of a battery designed 
according to IEC 60896 that has a life of 12 years: 



 
Figure 89. Battery typical operating points [17] 

 

Taking to account the Arrhenius equation the following table was formed: 

 
Figure 90. Ageing in different temperatures [17] 

We see that the battery does not age the same in different temperatures. With the typical 
operating temperatures, we can conclude that in 365 days the battery ages about 437 days. 
Thus, if the life expectancy in theory is 12 years as this considered battery, in the reality it 
would be approximately 10 years. This simple example makes it very clear to us the effect of 
temperature cannot be neglected and certainly must be taken care of. 

 

 

 

 

Plant 
 

In this phase we shall define the plant (Lead-Acid battery) in more specific and technical detail. 
The location of the plant in the vehicle can vary from the producer of the vehicle. Usually, in 
most of the cars Lead-Acid battery is located in the cars hood. But nevertheless, there are cars 
that have the battery located inside cars trunk. Thus, both cases have to be considered if needed 
in the future of the development. 



 

 
Figure 91. Battery location in the trank of the car 

 

Firstly, the customer that has already done the concept model mostly has been using the real 
data that were collected from different kind of batteries. But surely that is not enough and a 
model must be defined. Certainly, there are a lot of different ways to do it, such as: 

1) Electrochemical modelling 
a) Shepherd model 
b) Nernst model 
c) Unnewehr universal model 

 
2) Equivalent circuit model 

a) Rint model 
b) Thevenin model 
c) DP model 

Electrochemical modelling needs a lot of memory, time consuming, computationally 
expensive, thus it is out of question immediately. The customer, for now has chosen to use 
Thevenin model. A simple Thevenin model is shown in the figure below: 

 

 
Figure 92. Thevenin model 



 

Data flow from the Plant to Control: 

• Voltage  
• Current 
• Temperature 

Data flow from Control to Plant: 

• None 

 

 
Control - Hardware architecture 
 

“Architecture is often seen as the spine of each product. ISO 26262, part 1, chapter 1.3 
describes architecture as the representation of a vehicle system, of functions, systems or 
elements, which are identifiable through components, their distinctions, intersections and 
allocation to electric hardware and software. The functional concept (ISO 26262, part 1, 
chapter 1.50) is mentioned as the basis for the definition of vehicle systems. According to the 
glossary the functional concept is compiled from specifications of intended functions and their 
interactions in order to achieve the desired behavior. Therefore, it is evident that architecture 
needs to fulfill two requirements. It provides the product structure and its intersections as well 
as the foundation for the description of the technical behavior. Each component or element and 
their intersections ask for certain requirements. The intended behavior as well as the behavior 
in case of a failure has to be specified. This forces us to plan and define all levels of abstraction, 
perspectives, intersections as well as their desired technical behavior in advance.” [13] 
 

As we already know, our system takes as input the current, voltage and temperature thus the 
need to have a way to acquire those data becomes necessary. As a first hardware component 
we must think of components that are able to: 

• Measure Voltage in the terminals of the plant 
• Current flowing 
• Temperature  

Secondly, as a requirement from the customer we know that the output data must be sent by 
Bluetooth to HMI. Thus, concerning the microcontroller we shall choose a: 

• Wireless microcontroller 

Thirdly, again from the customer we know that the output data must be saved even if there is 
no connection between User HMI and control. Thus, as a component we must add: 

• Flash Memory 
 
 
 



 

 

 

 

 

 

 

 

In addition of all this, for safety reasons as mentioned, another component that must be added 
is: 

• Protection circuit 

 

Concerning the power supply of the hardware, a clever choice is to use the power of the Plant, 
not only acquiring the data of it.. This of course would require another component, a Converter. 

 

 

 

 

 

 

 

 

 

 

“Each electric component creates heat, which has to be directed outside. The thermos 
conductivity of the housing plays an important role here. Overheating is a major cause for fire 
in control units. This is explicitly mentioned in ISO 26262 since this could be a failure function 
of the electronic.” [13] 
 
Starting from the information that above mentioned phenomena is explicitly mentioned in ISO 
26262: 

• A compatible housing must be designed to avoid thermos conductivity 
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Figure 94. Power supply architecture 



Control - Software architecture 
 

The software architecture for BAT-MAN project can be divided into 3 main modules: 

1. Acquire the data 
2. Process the data 
3. Transmit the data through Bluetooth 

Acquire data module and transmit the data module will be hand-written code. Process the data, 
i.e. BAT-MAN algorithm will be obtained through automatic code-generation via Simulink. 
All of the modules will be part of one block of code without function calls or interrupts to 
execute the tasks.  

 

 

  

 

 

 

 

 

Concerning the module of transmitting the data via Bluetooth, there are several choices given 
by different companies such as Texas Instruments with CC26xx wireless MCUs or Renesas 
Synergy with SK-S7G2 Synergy MCUs or the PK-S5D9 Synergy MCUs. Thus, the quality and 
safety of the code are guaranteed by these companies that have already done the tests and 
fulfilled their requirements. 

Application architecture 
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Figure 95. Software architecture 

Figure 96. Application architecture 



Kalman filtering estimation flowchart: 

 

 
Figure 97. Kalman filter working principle 

 

Error management flowchart: 

 

 

 

 

 

 

 

 

 

Even though our system is defined as QM, we can, as a safety culture, set the following 
requirements for the software development: 

• Compiled code size must be shown 
• Memory consumption, i.e. will the allocated memory in the hardware is enough, robust 

or not enough must be checked and tested 
• Interrupts, Function calls, Periodic, overall Scheduling  
• Operating system will be preemptive or non-preemptive 
• Application flow, number of tasks, number of variables 
• No recursive loops 
• Code in MISRA-C, Optimized 

 

 

Error 
integration 

Choose the 
result from 

the best 
Kalman 

Estimated 
SoH 

Estimated 
SoH 

Initial or 
previous 
estimated 

SoC 

Estimated 
voltage error 

Figure 98. Error 
management 

flowchart 



Interfaces 
 

Again, we must define all the interfaces of the system according to the 4 different types of 
them. 

Physical interface 
• The item will be placed in a vehicle 
• Environment temperature 
• Voltage range from 13V 
• Current range +- 900A 

Energy interfaces 
• Electric energy  
• Thermal energy 
• Voltage measurement 
• Current measurement 
• Energy provision via cables 

 
Material transfer (interface) 

• No material transfer 
 
Information interfaces 

• Signal processing 
• Analog input to ADC to Bluetooth antenna to Mobile phone 
• Bus or communication systems CAN or Ethernet 

 

 

Environment - Plant interface:  

• Energy interface, i.e. thermal energy/temperature 

Plant – Control interface: 

• Energy interface, i.e. Electric energy via cables 
• Information interfaces, i.e. Signal processing/Measurement, Analog to AD Converter 

Control – HMI: 

Information interfaces, i.e. Bluetooth communication 

 

 

 

Requirement 3-2 
 



“The housing has to be constructed in a way that it fits in the vehicle, provides protection 
against humidity and dirt ensures that cables can be fixed, fulfills the EMC requirements 
and allows the arising heat dissipates.” [13] 
 

Electromagnetic Compatibility known as EMC is a test for electronic devices to make sure that 
they do not emit radiated and conducted emissions above a certain level set by regulators. EMC 
takes care of 3 different categories of issues: 

• Emissions 
• Susceptibility 
• Coupling 

Emissions include electromagnetic energy generation by certain sources. EMC takes care of 
the unwanted emissions and how we must tackle them. Susceptibility, studies the “victim” 

electronic component, i.e. the vulnerability of the component to be affected by certain 
unwanted electromagnetic emissions. And lastly, coupling is the phenomena where the 
unwanted emissions release by a source and reaches the sinc or the “victim”.   

 
Figure 99. EMC Coupling 

To be able to tackle these problems, first we must understand different kinds of interferences 
and sources of them, and then see which on of those we have in our board. There are two types 
of interferences, continuous and transient interferences. Following table has been created to 
manage it easier: 

 

 

 

 

 

Continuous interference Sources BAT-MAN PCB 

Audio frequency Power supply units PCB is supplied directly by 
the plant 



Audio processing equipment Does not contain 

FM radio transmission type Does not contain 

Radio frequency Radio frequency 
transmissions 

Does not contain 

TV or radio receivers Does not contain 

Microcontrollers Contains 

Broadband noise Solar activity Does not contain 

Arc welders Does not contain 

Spread-spectrum mobile 
telephony 

Does not contain 

Table 13. EMC Analysis I 

 

Transient interference Sources BAT-MAN PCB 

Electromagnetic pulse Switching the circuit, or 
other components 

Contains 

Power line pulses Does not contain 

Electrostatic discharge Possible 

Lightning electromagnetic 
pulse 

Does not contain 

Nuclear electromagnetic 
pulse 

Does not contain 

Repetitive Electromagnetic 
pulse 

 

 

 

 

Electrical motors Does not contain 

Ignition systems Does not contain 

Continual switching actions 
of digital circuit 

Contains 

Table 14. EMC Analysis II 

The countermeasures that we can take for reducing the emissions are: 

• Grounding 
• Quality cables 



• Housing  
• Decoupling in critical points 
• Avoid as much as possible the unnecessary switching of the circuit or other components 
• Design to operate at lower levels of signals 

Furthermore, we can increase the measures of the second category, susceptibility of 
components. Such a measures can be: 

• Protection circuit 
• Fuses 

 

Housing and LIN Connection 

 

Housing, as required from EMC requirements is built in a 3D Printer. The following figure 
shows the case implemented in the hardware and LIN connection: 

 

 
Figure 100. Housing and LIN Connection 

 

 

Modern cars use different type of networks such as: 

• CAN (Controller Area Network) 
• MOST (Media Oriented Systems Transport) 
• FlexRay 
• Ethernet 
• LIN (Local Interconnect Network) 

Why LIN? 



LIN connection we are using in BAT-MAN is the most common network used in Automotive 
industry because of its simplicity and low cost. It is a 1-wire bus and it is mostly used in the 
applications where high speed is not needed, such as: [www.electronicdesign.com 
REFERENCE] 

• Power door locks 
• Power windows 
• Power seats 
• Power mirrors 
• Heating and air conditioning control 
• Interior lights 
• Seat heaters 

That is why LIN connection is very suitable for our application. Considering safety, LIN is 
standardized by: 

• ISO17897 

This International Standard specifies the requirements for setting up the interchange of 
digital information between onboard Electronic Control Units (ECUs) of road vehicles and 
suitable diagnostic testers. This communication is established in order to facilitate 
inspection, test diagnosis and adjustment of vehicles, systems and ECUs. [3] 

 
 

• ISO9141 

ISO 17987-1:2016 gives an overview of the structure and the partitioning of ISO 17987 (all 
parts). In addition, it outlines the use case where the ISO 17987 (all parts) will be used. The 
terminology defined in ISO 17987-1:2016 is common for all LIN communication systems 
and is used throughout ISO 17987 (all parts). It has been established in order to define the 
use cases for LIN. [3] 

 

 

Production development – Software level 
 

According to ISO26262 we shall define the tools, Techniques, Methodologies, Artefacts and 
Safety aspect: 

Tool – MATLAB Simulink, Simulink embedded coder 

Techniques – System is defined as QM 

Methodologies – Model-based Design, MAAB Guidelines 

Artefacts –  

• Application code 
• SIL testing 



• Compare MIL to SIL 

Safety aspect –  

• Some techniques recommended by ISO26262 for ASIL A, even though the system is 
QM 

• Generated code will be compliant with MISRA-C 
 
 

2. Technical model 
 

We shall start from the first module that is Environment which contains the temperature input 
that we already defined in the Architecture. In Simulink, we define the block as a Constant 
block that will get the value from the Matlab data file. What concerns scheduling of the model, 
we do not have any interrupts. The application is run as a whole and its timing will be done in 
the firmware that will be given by the supplier together with the hardware. 

 

 
Figure 101. Temperature in Environment module 

 

 

 
Figure 102. Plant module 

 

 



 
Figure 103. HMI module 

 

 
Figure 104. Parameters of BAT-MAN Application 

 

 

 
Figure 105. Control Module 

 



 
Figure 106. Architecture in Simulink 

 
 



Control frame 
 

As we already know, the Control frame contains the A/D Conversion. In Simulink model we 
must test different number of bits to see the results and thus setting how many bits we need. 
The following figures show the results with 12 and 16 bits. Obviously, there was no need to go 
lower then 12 bits since the results are not satisfying. 

 
Figure 107. 16 bit ADC Output of Voltage (left), 16bit ADC Output of Current (right) 

 

 
Figure 108. SoC with 12 bit quantization (left),  SoH with 12 bit quantization (right) 

 

 
Figure 109. SoC with 16 bit quantization (left),  SoH with 16 bit quantization (right) 

As we can see from the figures, 12 bits are not enough, thus 16 bits ADC must be implemented. 



 

SIL 
 

SIL Model has been done in a same way as in the example. SIL model for BATMAN 
Application is shown below: 

 
Figure 110. SIL Model for BATMAN 

 

 

 
Figure 111. Data set 1: Simulation (left) vs SIL (right) 

 

 

 



 
Figure 112. Data set 2: Simulation (left) vs SIL (right) 

 

 

 
Figure 113. Data set 3: Simulation (left) vs SIL (right) 

 

 

 
Figure 114. Data set 1: Difference between SoH in simulation and from SIL 



 

 
Figure 115. Data set 1: SoC difference between Simulation and SIL 

 

 
Figure 116. Data set 2: SoH difference between Simulation and SIL 

 
Figure 117. Data set 2: SoC difference between Simulation and SIL 



 

 

 
Figure 118. Data set 3: SoH difference between Simulation and SIL 

 

 
Figure 119. Data set 3: SoC difference between Simulation and SIL 

 

 

 

 

Use code execution profiling to: [11] 

Determine whether the generated code meets execution time requirements for real-time 
deployment on your target hardware. 

Identify code sections that require execution speed improvements. 



 

 
Figure 120. Profiled sections of code 

 

 

Production Model 
 

The purpose of the Production Model is adapting our Control Module to the target hardware 
and then initiate the code generation specific to it. The signal names are very important, as 
mentioned a lot of times, because we will be dealing with them in Code Composer Studio 
where we have to integrate this generated code to the firmware architecture. Firstly, I have 
taken the Control Module from the Technical model and export it into a blank model that will 
be our Production Model. The screenshot of the model is shown below: 

 

 

Our target is ARM Cortex M MCU, thus we must go on according to this characteristic. In 
‘Configuration Parameters’ in Simulink we set the device to ARM Cortex, and the tool chosen 

is Embedded Coder, as shown below: 

 



 

All the other parameters are set as default except: 

• Code interface packaging: Reusable function 
• File packaging format: Compact 
• Optimization level: Maximum, and as Priority: Minimize RAM 
• Static code metrics ON 

Furthermore, concerning ISO26262 the code traceability and Static code metrics are required. 
Both of these are provided by Simulink Embedded Coder. 

 

Traceability Report: 

 
Figure 121. Traceability report 

 

Static code metrics: 

 
Figure 122. Static code metrics 

 

 

Standards and guidelines check 
 



As conclusion, results were very good and satisfactory, passing all the checks. Furthermore, 
the reports have been generated for each check as documentation of the process. The results 
figures are shown below: 

 

 
Figure 123. ISO 26262 check report 

 

 
Figure 124. IEC 61508 check report 

 



 
Figure 125. MISRA C check report 

 

 
Figure 126. MAAB Guidelines check report 

 

In addition of the standards, we run also Code Generation Advisor for: 

• RAM Efficiency 
• Traceability 
• Safety precaution 
• Debugging 
• ROM Efficiency 
• Execution efficiency 
• MISRA C: 2012 Guidelines 

The result is shown in the figure below: 



 
Figure 127. Code generation advisor check summary 

 

 

 

HMI 
 

In BAT-MAN project there is an Android app done previously by the customer ‘Brain 

technologies s.r.l’. It takes the data via Bluetooth from the microcontroller of BAT-MAN. The 
inputs that the User can give to the app are: 

Car Data: 

• Brand of the car (optional) 
• Model of the car (optional) 
• Year it was produced (optional) 
• Engine type (optional): 

Battery Data: 

• Brand of the battery (optional) 
• SN (optional) 
• Age (optional) 
• Capacity in Ah (necessary) 



 
Figure 128. BAT-MAN Mobile app first page [15] 

The outpus for now are only the sensors readings: 

• Temperature of the board and the hood 
• Humidity of the board and the hood 
• Battery Voltage 
• Current 
• Shunt Voltage 

 
Figure 129. BATMAN App second page 

 

 

The customer requirement was to replace the Temperature places with SoC and SoH, while the 
Temperature data must be shown in the Gauges of Humidity. Thus, the Humidity does not have 



to be shown in the app. For this reason, we had to jump to Android Studio, given the source 
files by the customer make the needed changes. 

 

 

 
Figure 130. Updated BATMAN App 

 

 
Figure 131. Android studio code modification 

 

 

 

 

 

 



Suppliers 
 

3.  VMU 
 

Supplier: 

• Politecnico di Torino 

The engineering of BAT-MAN PCB has been done by two students as given in our references 
section in collaboration with ‘Brain technologies srl’. All the documentation and testing of it 

can be found in that thesis [15]. 

 
Figure 132. Hardware architecture with chosen components [15] 

The previous figure shows the hardware architecture in more details. As we already said, the 
microcontroller as we can see is an wireless microcontroller produced by Texas Instruments.  
Components already chosen by the customer are: 

• CC2640R2F-Q1 Microcontroller 
• INA226-Q1: Amplify the input to be transmitted to CC2640R2F MCU 
• LMR16006Y-Q1: Buck Converter to regulate the voltage to 3.3V to supply the 

hardware 
• WSBM8518 Shunt resistor: Since the customer has decided to measure the current via 

Shunt resistor method 
• Protection circuit 

 

CC2640R2F-Q1 MCU characteristics and safety 
 



The CC2640R2F device is a 2.4 GHz wireless microcontroller supporting Bluetooth® 5.1 Low 
Energy and Proprietary 2.4 GHz applications. The device is optimized for low-power wireless 
communication and advanced sensing in building security systems, HVAC, asset tracking, 
and medical markets, and applications where industrial performance is required. [18] 

Some of the important features of the MCU that we must mention are: 

• Arm Cortex-M3 
• Up to 48-MHz clock speed 
• 275KB of nonvolatile memory 
• Up to 28KB system SRAM 
• 8KB SRAM for chache 
• JTAG Debugging 
• 12bit ADC 

Concerning safety this MCU has all GPIOs compliant with RoHS (Restriction of Hazardous 
Substances Directive), those packages are: 

• 2.7-mm x 2.7-mm YFV DSBGA34 (14 GPIOs) 
• 4-mm x 4-mm YFV DSBGA34 (10 GPIOs) 
• 5-mm x 5-mm YFV DSBGA34 (15 GPIOs) 
• 7-mm x 7-mm YFV DSBGA34 (31 GPIOs) 

Furthermore, considering EMC, this MCU is compliant with RF (Radio frequency) regulations 
such as: 

• ETSI EN 300 328 (Europe) 
• EN 300 440 Class 2 (Europe) 
• FCC CFR47 Part 15 (US) 
• ARIB STD-T66 (Japan) 

 

INA226 
 

The INA226 is a digital current sense amplifier with an I 2C- and SMBus-compatible interface. 
It provides digital current, voltage, and power readings necessary for accurate decision-making 
in precisely-controlled systems. Programmable registers allow flexible configuration for 
measurement resolution as well as continuous-versus triggered operation. Detailed register 
information appears at the end of this data sheet, beginning with Table 4. See the Functional 
Block Diagram section for a block diagram of the INA226 device. [18] 

 

http://www.ti.com/wireless-connectivity/simplelink-solutions/bluetooth-low-energy/overview/overview.html
http://www.ti.com/wireless-connectivity/simplelink-solutions/bluetooth-low-energy/overview/overview.html
http://www.ti.com/wireless-connectivity/simplelink-solutions/applications.html
http://www.ti.com/wireless-connectivity/simplelink-solutions/applications.html#hvac
http://www.ti.com/solution/sensor-modules-for-asset-tracking
http://www.ti.com/wireless-connectivity/simplelink-solutions/applications.html#medical


 
Figure 133. INA226 Layout example [18] 

 

It is important to say that INA226-Q1 is not compliant to ISO26262 standards. But since our 
item is defined as a QM and does not dictate any safety requirement we can continue.  

 

Some features of the device: 

• Device is qualified by AEC-Q100  
• Temperature Grade 1: -40 °C to 125 °C 
• Sensing voltages from 0 to 36 V 
• High accuracy, 0.1% max Gain error, 10 µV Offset 
• I2C communication 
• Typical for HEV/EV Battery management application 

 

For further information about the components chosen by the customer can be found in the 
documentation that they have done in the reference [15]. 

 

 
Figure 134. BAT-MAN PCB 



 

Together with the hardware the supplier gives us also the firmware architecture done in CSS 
and Sensor Controller Studio. We shall integrate our application into that firmware. The 
firmware is based on the Texas instruments open source project called ‘project_zero’. The main 

file has been chosen by the supplier to be ‘project_zero.c’. Thus, now the job is to integrate 

BAT-MAN inside ‘project_zero.c’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. Integration & Testing 
 

Tools – Code Composer Studio 

Techniques – Automatic code generation 

Artefacts – SW/HW Integration 

 

Generated code results and architecture: 

3 files must be uploaded/integrated to the firmware architecture: 

• ProductionModel.c 
• ProductionModel.h 
• rtwtypes.h 

where ‘ModelName.c’, that in our case is ‘ProductionModel.c’ is the source code of the model. 
‘ProductionModel.h’ is the header file that represents model-specific data types. And 
‘rtwtypes.h’ is the file with hardware specific data types. There are 3 functions that we must 

integrate: Function for initialization, Step and function for Terminating. Function for 
initialization must be integrated in the first part of the main where every other function is 
initialized. The step function must be called in the main loop, and terminate function in the end 
if it is needed (usually never goes there). 

 

 

 

 

 

 

 

 

Firstly, we shall upload the files ‘ProductionModel.c’, ‘ProductionModel.h’, ‘rtwtypes.h’ into 

the folder named ‘Applications’ which is part of the project file ‘BATMAN’. In this folder we 

can find all the other firmware applications such as Bluetooth module.  

Secondly, in generated code we also have a file called ‘ert_main’. This file is an example main 

file automatically generated by Embedded coder which shows us how the main file must look 
like. 

 

 

 

1. Initialize 
the model 

2. Step the 
model 

3. Terminate 

Figure 135. Generated code flowchart 



 

 

 

 

 

 

 

 

 
Figure 137. ‘ert_main’ Source file 

Code integration in CCS: 

Simulink 

CCS 

Generated 
Code 

Firmware 
architecture 

Integration in CCS 

Supplier 

Figure 136. Illustration of integration process 



 
Figure 138. CCS workspace 

 

After building, we see that it is impossible to run this software in the existing firmware and 
target hardware because memory occupation exceeds the resources, as the picture below shows 
the memory allocation before and after the integration of the code: 

 
Figure 139. Memory occupation of firmware architecture 

 
Figure 140. Memory occupation integrated 

 

From above results we can say that there are 31kB of data that cannot be allocated in SRAM, 
i.e.  the generated code needs more RAM than it is available. The project has failed in step 4 
Integration & Testing, thus the next step is to go back to step 2 and re-design Technical Model 
to fit the Memory Size of the Hardware. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Conclusion 
 

In the first part of this thesis, from doing a lot of research and taking inputs and references from 
industries, International Standard Organization and Academia, we have achieved to develop a 
toolchain, a path or a workflow that is so much needed in todays world and especially in 
Automotive industry. This work can be also seen as literature for students that are interested in 
project development and take Model-based design classes. It is not possible to find such a work 
as open source and for free, it is kept inside the companies and most of the advanced tools that 
we tried to substitute such as Documentation are too expensive even for middle sized 
companies.  

In the second part of this work, I have applied the work done in the first part into a real project 
that have given us very good results such SIL results and a green light to continue the project 
and made sure that there is place for this project in embedded Automotive environment. Here, 
I dig deeper into the development toolchain since the project was real and the problems indeed 
were real. As good results were achieved such as passing the tests of MAAB, ISO 26262, IEC 
61504 and MISRA-C were achieved, also results that made us go back into the development 
flow such as memory allocation insufficiency cannot be seen as bad results since this always 
happens in the real projects, and that is exactly why the development toolchain of the first part 
is crucial and absolutely necessary. 

As a conclusion, we can say that this thesis has built the groundwork for ‘Brain Technologies 
srl’ to further continue its work in Automotive field with BAT-MAN project and others in the 
future. We have achieved solid results and opened the gates for the company to standardize the 
BAT-MAN project. Furthermore, this work can be used as a reference for students who are 
dealing with V-Cycle or Functional Safety or project in Model-based design as a reference that 
cannot be found otherwise in open source communities. 

 

 

 

 

 

 

 

 

 

 

 



Appendix 
 

Technical_model_Digital_Filter_load_file_22_11_19 
 

%Project Name: Digital Filter 

  

  

  

%--------------------- HMI -----------------------------------------

---- 

  

%To start and stop running push the ON button 

% 

%For emergency stop switch the EMERGENCY switch 

  

  

%--------------------- Environment ---------------------------------

----- 

  

%Noise signal is defined as amplitude 5 with frequency 400Hz 

%To try different environment noise, modify the Noise Generator 

block 

  

  

%--------------------- Plant ---------------------------------------

----- 

  

%Input signal (Signal1)is defined as amplitude 10 with frequency 

10Hz 

%To try different input signal, modify the Signal Generator block 

  

  

%--------------------- Control -------------------------------------

----- 

  

%Digital filter is designed with sampling frequency 1000Hz 

% 

%Cutting frequency is 150Hz 

%It is defined as function call subsystem inside Stateflow 

%Designed with Simulink filter wizard with simple 

blocks(gains,delays..) 

  

%DFT is applied on the input signal (Plant) Signal1 

%It is defined as function call subsystem inside Stateflow 

  

%Supervisory Control parameters 

  

debounceDuration = 2; 

  

ledOn_TurnOff = 0; 

ledOn_TurnOn = 1; 

ledOn_Transition = 2; 

  



ledEmerg_TurnOff = 0; 

ledEmerg_TurnOn = 1; 

ledEmerg_Transition = 2; 

  

%Sampling time 

samplingTime_supervisoryControl = 1/10000; 

filteringTicks = 10; 

fftTicks = 1; 

  

%FFT Parameters 

buffer_Size = 200; 

buffer_Overlap = 199; 

fft_Gain = 0.01; 

  

%Digital Filter block parameters 

filterCoefficients = [0.5 0.5] 

initial_conditions = 0; 

filterTicks = 1; 

  

%Output in OFF and Emergency state 

zero_Spectrum = zeros(buffer_Size,1); 

zero_Filtering = 0; 

  

%Control frame input 

  

voltageRange = 25; %Voltage range 

numBits = 12;     %Number of bits 

  

%Control frame output design 

%PWM 

upperLimitSat = 10; 

lowerLimitSat = -10; 

 carrierPeriod = [0 0.01]; 

 carrierVal = [-10 10]; 

 onPoint = 0.1; 

 offPoint = -0.01; 

 onOutput= 10; 

 offOutput = -10; 

  

 %LPF 

 passbandFreq = 15; 

 stopbandFreq = 80; 

 maxPassRipple = 0.1; 

 minStopAtten = 80; 

%--------------------- Simulation ----------------------------------

---- 

  

% 

%To see the characteristics of signals above, open Simulation data 

Inspector 

% 

%Run simulink file here 

sim('technical_model_digitalfilter_22_11_19'); 

 

 



Concept_model_Digital_Filter_load_file  
 

% Digital Filter 

% Concept Model: IIR & DFT 
  

% Simulation parameters 
  

% "Slow" sampling period 
  

Ts_2 = 0.01; % s 
  

% "Fast" sampling period 
  

Ts_1 = 0.001; % s 

Ws_1 = 2*pi/Ts_1 % rad/s 
  

% Low-pass IIR 
  

p1 = -2*pi*100 % rad/s 

K = abs(p1) % unitary DC gain 
  

H = zpk([],[p1],K) 

figure, bode(H), grid 
  

Hz = c2d(H,Ts_1,'tustin') 

zpk(Hz) 
  

figure, bode(H,Hz), grid 
  

[Hz_Num, Hz_Den] = tfdata(Hz,'v') 

 

 

 

 

Technical_model_BatmanApp – ert_main.c 
 

/* 

 * Academic License - for use in teaching, academic research, and meeting 

 * course requirements at degree granting institutions only.  Not for 

 * government, commercial, or other organizational use. 

 * 

 * File: ert_main.c 

 * 

 * Code generated for Simulink model 'BATMANApp'. 

 * 

 * Model version                  : 1.3 



 * Simulink Coder version         : 9.1 (R2019a) 23-Nov-2018 

 * C/C++ source code generated on : Sun Mar  1 17:30:28 2020 

 * 

 * Target selection: ert.tlc 

 * Embedded hardware selection: ARM Compatible->ARM Cortex 

 * Code generation objectives: Unspecified 

 * Validation result: Not run 

 */ 

 

#include <stddef.h> 

#include <stdio.h>              /* This ert_main.c example uses printf/fflush */ 

#include "BATMANApp.h"                 /* Model's header file */ 

#include "rtwtypes.h" 

 

static RT_MODEL_BATMANApp_T BATMANApp_M_; 

static RT_MODEL_BATMANApp_T *const BATMANApp_MPtr = &BATMANApp_M_;/* Real-
time model */ 

static B_BATMANApp_T BATMANApp_B;      /* Observable signals */ 

static DW_BATMANApp_T BATMANApp_DW;    /* Observable states */ 

 

/* '<Root>/VoltageV' */ 

static real_T BATMANApp_U_VoltageV; 

 

/* '<Root>/CurrentA' */ 

static real_T BATMANApp_U_CurrentA; 

 

/* '<Root>/TempC' */ 

static real_T BATMANApp_U_TempC; 

 

/* '<Root>/SampleTimeS' */ 

static real_T BATMANApp_U_SampleTimeS; 

 

/* '<Root>/SoCInit' */ 



static real_T BATMANApp_U_SoCInit; 

 

/* '<Root>/VoltageInitV' */ 

static real_T BATMANApp_U_VoltageInitV; 

 

/* '<Root>/CapacityNomAh' */ 

static real_T BATMANApp_U_CapacityNomAh; 

 

/* '<Root>/SoH' */ 

static real_T BATMANApp_Y_SoH; 

 

/* '<Root>/SoU' */ 

static real_T BATMANApp_Y_SoU; 

 

/* '<Root>/SoC' */ 

static real_T BATMANApp_Y_SoC; 

 

/* 

 * Associating rt_OneStep with a real-time clock or interrupt service routine 

 * is what makes the generated code "real-time".  The function rt_OneStep is 

 * always associated with the base rate of the model.  Subrates are managed 

 * by the base rate from inside the generated code.  Enabling/disabling 

 * interrupts and floating point context switches are target specific.  This 

 * example code indicates where these should take place relative to executing 

 * the generated code step function.  Overrun behavior should be tailored to 

 * your application needs.  This example simply sets an error status in the 

 * real-time model and returns from rt_OneStep. 

 */ 

void rt_OneStep(RT_MODEL_BATMANApp_T *const BATMANApp_M); 

void rt_OneStep(RT_MODEL_BATMANApp_T *const BATMANApp_M) 

{ 

  static boolean_T OverrunFlag = false; 



 

  /* Disable interrupts here */ 

 

  /* Check for overrun */ 

  if (OverrunFlag) { 

    rtmSetErrorStatus(BATMANApp_M, "Overrun"); 

    return; 

  } 

 

  OverrunFlag = true; 

 

  /* Save FPU context here (if necessary) */ 

  /* Re-enable timer or interrupt here */ 

  /* Set model inputs here */ 

 

  /* Step the model */ 

  BATMANApp_step(BATMANApp_M, BATMANApp_U_VoltageV, BATMANApp_U_CurrentA, 

                 BATMANApp_U_TempC, BATMANApp_U_SampleTimeS, BATMANApp_U_SoCInit, 

                 BATMANApp_U_VoltageInitV, BATMANApp_U_CapacityNomAh, 

                 &BATMANApp_Y_SoH, &BATMANApp_Y_SoU, &BATMANApp_Y_SoC); 

 

  /* Get model outputs here */ 

 

  /* Indicate task complete */ 

  OverrunFlag = false; 

 

  /* Disable interrupts here */ 

  /* Restore FPU context here (if necessary) */ 

  /* Enable interrupts here */ 

} 

 

/* 



 * The example "main" function illustrates what is required by your 

 * application code to initialize, execute, and terminate the generated code. 

 * Attaching rt_OneStep to a real-time clock is target specific.  This example 

 * illustrates how you do this relative to initializing the model. 

 */ 

int_T main(int_T argc, const char *argv[]) 

{ 

  RT_MODEL_BATMANApp_T *const BATMANApp_M = BATMANApp_MPtr; 

 

  /* Unused arguments */ 

  (void)(argc); 

  (void)(argv); 

 

  /* Pack model data into RTM */ 

  BATMANApp_M->blockIO = &BATMANApp_B; 

  BATMANApp_M->dwork = &BATMANApp_DW; 

 

  /* Initialize model */ 

  BATMANApp_initialize(BATMANApp_M, &BATMANApp_U_VoltageV, 
&BATMANApp_U_CurrentA, 

                       &BATMANApp_U_TempC, &BATMANApp_U_SampleTimeS, 

                       &BATMANApp_U_SoCInit, &BATMANApp_U_VoltageInitV, 

                       &BATMANApp_U_CapacityNomAh, &BATMANApp_Y_SoH, 

                       &BATMANApp_Y_SoU, &BATMANApp_Y_SoC); 

 

  /* Attach rt_OneStep to a timer or interrupt service routine with 

   * period 0.1 seconds (the model's base sample time) here.  The 

   * call syntax for rt_OneStep is 

   * 

   *  rt_OneStep(BATMANApp_M); 

   */ 

  printf("Warning: The simulation will run forever. " 

         "Generated ERT main won't simulate model step behavior. " 



         "To change this behavior select the 'MAT-file logging' option.\n"); 

  fflush((NULL)); 

  while (rtmGetErrorStatus(BATMANApp_M) == (NULL)) { 

    /*  Perform other application tasks here */ 

  } 

 

  /* Disable rt_OneStep() here */ 

 

  /* Terminate model */ 

  BATMANApp_terminate(BATMANApp_M); 

  return 0; 

} 

 

/* 

 * File trailer for generated code. 

 * 

 * [EOF] 

 */ 

 

 
 

Project_zero.c – Initialization in Main function 
 

static void ProjectZero_taskFxn( UArg a0, UArg a1 )// 
{ 
  // Initialize application 
  ProjectZero_init(); 
  /*    HDC2010 SENSOR CONTROLLER    */ 
 
  // Initialize the Sensor Controller 
  scifOsalInit(); 
  scifOsalRegisterCtrlReadyCallback(scCtrlReadyCallback); 
  scifOsalRegisterTaskAlertCallback(scTaskAlertCallback); 
  scifInit(&scifDriverSetup); 
 
//***********************BATMANAPP 
INITIALIZATION************************************ 
   
RT_MODEL_BATMANAPP_T *const BATMANAPP_M = BATMANAPP_MPtr; 



 
 // Unused arguments 
  (void)(argc); 
  (void)(argv); 
 
 //  Pack model data into RTM 
 
BATMANAPP_M->blockIO = &BATMANAPP_B; 
BATMANAPP_M->dwork = &BATMANAPP_DW; 
 
 
//  Initialize model 
 
 
  BATMANAPP_initialize(BATMANAPP_M, &BATMANAPP_U_VoltageV, 
&BATMANAPP_U_CurrentA, 
                       &BATMANAPP_U_TempC, &BATMANAPP_U_SampleTimeT, 
                       &BATMANAPP_U_SoCinit, &BATMANAPP_U_VoltageInitV, 
                       &BATMANAPP_U_NomCapacityAh, &BATMANAPP_Y_SoHOut, 
                       &BATMANAPP_Y_ReliabilityOut, &BATMANAPP_Y_SoCOut); 
 
// Trial Values 
 
BATMANAPP_U_SampleTimeT = 0.1; 
BATMANAPP_U_SoCinit = 40; 
BATMANAPP_U_VoltageInitV = 30; 
BATMANAPP_U_NomCapacityAh = 50; 
 
 
//**************END OF BATMANAPP INITIALIZATION******************** 
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