
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Microservice Oriented Pipeline
Architectures

Supervisors

Prof. Giovanni MALNATI

Candidate

Eugenio DURANTI

Academic Year 2019/2020

Abstract

Microservice Architecture is an architectural style becoming more and more popular
nowadays. It’s getting over the old paradigm not only because of the benefits
it provides but also because it fits perfectly with the Cloud world, in particular
with the capabilities of the network to provide on-demand availability of computer
system resources.
The thesis goal is to design a microservice architecture starting from a monolith.
The use case is a parsing application for generics semi-structured data coming from
a huge variety of devices like IoT devices of a smart city system rather than an
industry 4.0 sensor system.
The devices generate data that need to be parsed, classified, processed, aggregated
and eventually displayed in a human-readable fashion.
In the context of application pipelines, the present thesis work aims to implement
a microservice architecture addressing distributed system properties like scalability,
maintenance, high availability, and fallback mechanisms to build a more robust
and a more agile architecture from the modularity point of view.
However, Microservice Architectures are not a cure-all. Although they allow many
advantageous features, some drawbacks need to be kept in mind when deciding
to implement a Microservice Architecture, for instance, the structural complexity
that such architectural style adds to the application.
There is not a solution written in stone, this thesis shows which are the main
challenges addressed when building Microservices in the context of pipelines and
tries to summarize the advantages and disadvantages of the architectural design.

i

Acknowledgements

ACKNOWLEDGMENTS

Questo lavoro di Tesi è dedicato a mio fratello Alberto,
il faro più luminoso che mi indica la strada.

Eugenio

ii

Table of Contents

List of Figures vi

Acronyms viii

1 Introduction 1
1.1 The Project . 2

1.1.1 Overall . 2
1.1.2 Ingester . 3
1.1.3 Parser . 3
1.1.4 Aggregator . 3

1.2 Pipelines . 4
1.2.1 Why Data Pipelines . 4

1.3 Microservices . 5
1.3.1 Distribution means communication 5
1.3.2 From Monolith towards Microservices 6

1.4 Goals to achieve . 10

2 State of the art 13
2.1 Technologies involved . 14

2.1.1 Spring Framework . 14
2.1.2 Jhipster-Registry . 15
2.1.3 MongoDB . 16
2.1.4 Hazelcast . 16
2.1.5 Kafka . 18
2.1.6 Docker . 19

3 Project Design 20
3.1 Software Purpose . 21

3.1.1 Infrastructure Servers . 22
3.1.2 The Data . 24

3.2 Ingester . 25

iv

3.2.1 SFTP Client . 25
3.2.2 The Model: RawEntity . 26
3.2.3 Parser Engine . 27
3.2.4 Hazelcast Producer . 27
3.2.5 Ingester: Hazelcast synchronization 28
3.2.6 Fallback . 32

3.3 Parser . 34
3.3.1 The Models . 35
3.3.2 Hazelcast Consumer . 36
3.3.3 Parser Engine . 36
3.3.4 Parser: Hazelcast Synchronization 37
3.3.5 Hazelcast Producer . 39
3.3.6 Fallback . 40

3.4 Aggregator . 41

4 Deploy 44
4.1 Deploy . 45

4.1.1 Docker as a virtualization platform 45
4.1.2 Set up the Jhipster-Registry 50
4.1.3 Proposed solution for deployment 52

5 Alternative Solutions 54
5.1 Kafka as Message Broker . 55

5.1.1 Pros and Cons . 59
5.2 Hazelcast solution: Scaling with finer granularity 60

5.2.1 Pros and Cons . 62

6 Conclusion 63
6.1 Results achieved . 64
6.2 Future Improvements . 65

6.2.1 Docker Swarm . 65
6.2.2 Hazelcast Persistent queues 66
6.2.3 Monitoring system . 66

Bibliography 67

v

List of Figures

1.1 Typical Monolith Application’s Architecture 7
1.2 Microservice Application’s Architecture 9

2.1 Hazelcast Cluster . 17
2.2 Kafka based Application . 18

3.1 Pipeline’s Architecture . 21
3.2 Configuration Server . 24
3.3 Architecture of Ingester Microservice 25
3.4 Ftp Client’s execution model . 26
3.5 Event-Driven model with Hazelcast Cluster 28
3.6 Schema for the SFTPClient synchronization 30
3.7 When Ingesters fetch the data let others know that those data don’t

have to be processed by changing them the status 32
3.8 Parser Architecture . 34
3.9 The schema represents the data flow through two instances of Parser 38
3.10 Aggregator architecture . 41
3.11 Aggregator architecture II . 42

4.1 Architecture of a virtualized system 45
4.2 Architecture of a Virtualized system through Docker 46
4.3 Deploy Architecture . 52
4.4 Deploy Architecture II . 53

5.1 Architecture with Kafka . 55
5.2 Pipeline with Kafka as Message Broker 56
5.3 Architecture . 60

6.1 Overall Architecture . 64

vi

Acronyms

AOP
Aspect OrientedProgramming

CaaS
Cache as a Service

CPsubsystem
Consistent and Partition tolerant subsystem

DAO
Data Access Object

ORM
Object Relational Mapping

POJO
Plain Old Java Object

REST
REpresentational State Transfer

SaaS
Software as a Service

SFTP
Secure File Transfer Protocol

SOAP
Simple Object Access Protocol

viii

Chapter 1

Introduction

"Architecture is the decisions
that you wish you could get right early

in a project"
-Ralph Johnson

1

1 – Introduction

1.1 The Project
The purpose of this thesis was to implement a Microservice Oriented Pipeline
Architecture to parse and aggregate semi-structured data. The thesis project
consists basically of three phases:

1. Architectural design The first phase consisted of analyzing the monolith
application to identify and isolate the functional parts of the software in order
to design a balanced separation of concern.

2. Development The second phase constisted of integrating the classes extracted
from the monolith into the microservices under development while taking care
of a series of aspect like Project Structure, Dependency Management and
Profiling

3. Deployment The last phase is deployment. Once we have Microservices
working we need to run them in a real scenario. This means Dockerize the
microservices as well as all infrastructure servers, ensuring to meet requirements
with respect to network isolation, scalability and High-Availability and have a
system that can be deployed in a plug and play approach.

1.1.1 Overall
The pipeline is responsible to parse, decorate and aggregate heterogeneous semi-
structured data with the goal to prepare them for a further elaboration and
visualization.
Due to the highly heterogeneous kind of data, the elaboration has been organized in
pipeline’s stages where each of them is responsible to treat the data on a different
granularity.
The elaboration starts when some data are stored in an SFTP Server: our data lake1.
The application is then made up by subsequent elaboration processes, organized as
Microservices to guarantee a strong decoupling factor.
In order to carry out their tasks, every microservice acts as consumer with respect
to a source, perform its elaboration and in somehow deliver the elaboration’s

1[1]A data lake is a system or repository of data stored in its natural/raw format,usually object
blobs or files. A data lake is usually a single store of all enterprise data including raw copies of
source system data and transformed data.
A data lake can include structured data from relational databases (rows and columns), semi-
structured data (CSV, logs, XML, JSON), unstructured data (emails, documents, PDFs) and
binary data (images, audio, video)

2

1 – Introduction

product somewhere: typically towards the next microservice in the chain.
To achieve this, as well as to respond to typical distributed system’s issues like
scalability and high availability, the microservices have been clusterized by means
of Hazelcast technology, following an Embedded Topology.
It means that each microservice contains an Hazelcast Memeber that will have its
own set of threads and will exposes the port 5701.
Hazelcast members perform automatically a discovery of other Hazelcast members
to join into an Hazelcast Cluster, allowing to clusterize the entire application.

1.1.2 Ingester
The first stage of the pipeline is called Ingester.
Ingester interact with the data lake to fetch the data and feed them to the pipeline.
With this in mind the Ingester is responsible to continuosly poll the SFTP server
to fetch the data and to prepare them for the elaboration.
The data are organized in Entities called RawEntity and are now ready to be
elaborated flowing through the pipeline.

1.1.3 Parser
The subsequent stage is the Parsing.
Typically data are associated with metadata.
Metadata can be separated from associated data in different files and still the data
themselves can be also split up and come along out of order.
The Parser is so broken up in two stages: in a first instance we need to identify
which are metadata and which data are associated with. This operation is going to
transform the more primitive entity RawEntity in a semantically more consistent
model called Entity. This job is still done by the Ingester.
The actual parsing is performed in a second stage where we look inside the data,
give them a semantic meaning and resolve the dependencies between the various
Entity.
The output of such operation is an entity called Item which groups data with
the same semantic meaning (e.g. an audio chopped in chunks that needs to be
reassembled) and are now ready to be aggregate in an higher level entity.

1.1.4 Aggregator
The aggregator is the final stage in the pipeline.
The Aggregator’s purpose is to semantically aggregate Item entities in the Blob to
let visualize the data on semantic base.

3

1 – Introduction

1.2 Pipelines
[2] A pipeline is a set of data processing elements, called stages, chained together,
where the output of one element is fed in input to the next element. Pipeline is
a pervasive concept in computer science, in this context we will refer to Software
pipelines which consist of a sequence of computing processes conceptually executed
in parallel, with the output stream of one process being automatically fed as the
input stream of the next one.

1.2.1 Why Data Pipelines
The efficient flow of data from one location to another (e.g. from a SaaS application
to a data warehouse) is one of the most critical operations for enterprise applications.
After all, useful analysis cannot begin until the data becomes available or are
prepared for elaboration.
Data flow can be unreliable because there are many things that can go wrong
during the migration from one system to another: data can become corrupted, it
can hit bottlenecks (causing latency) or data sources may conflict and/or generate
duplicates.
As the complexity of the requirements grows and the number of data sources
increases, such problems worse in scale and impact over the system.
Data pipelines offer an effective solution for such kind of issues. Pipelines get rid
of many manual steps and enables an automated flow of data from one stage to
the next. The biggest advantages of a data pipelines are:

1. It automates the processes involved in extracting, transforming, combining,
validating, and loading data for further analysis and visualization.

2. It enhances throughput by eliminating errors and mitigating bottlenecks
or latency.

3. It can process multiple data streams at once: it is an pretty appealing
for today’s data-driven enterprise.

A data pipeline views all data as streaming data and it allows for flexible schemas.
Regardless of whether it comes from static sources (like a flat-file database) or from
real-time sources (such as IoT devices), the data pipeline divides each data stream
into smaller chunks that it processes in parallel, ensuring an optimized computing.
The data pipeline does not require the ultimate destination to be a data warehouse.
It can route data into another application, in our case will be a server responsible
to dialogue with a client application in order to visualize such data.

4

1 – Introduction

1.3 Microservices
A Microservice Architecture is a software architectural style that consists in devel-
oping an application as a set of small services meant as independently deployable
components, responsible of serving a particular logical aspect of the entire appli-
cation. Such services build up the application by cooperating together through a
lightweight communication.
This architectural style is opposed to the Monolith Architectures: an application
that is made by a single executable unit responsible for serving all the aspects of the
application. Monolith applications can be successful because of the simplicity, but
present some drawbacks. The first we can notice is that due to the tight-coupled
nature of this approach is difficult to mantain a certain level of modularity over
time and even a little change will be propagated in the whole application that
eventually will have to be retested and redeployed.
Another issue is that a monolith can scale, but you would need to scale the entire
application requiring a bigger amount of resources than scaling only a part of it.

1.3.1 Distribution means communication
[3] At the dawn of distributed computing, in the early ’80s, the need to have
computers communicating to each others brought to the introduction of one of
the more widespread technology in the distributed calculus: RPCs. RPC stands
for Remote Procedure Call, the idea behind it was that developers didn’t have to
care anymore whether a procedure call is done locally or remotely, the promise
was so that since the computational power was quite limited, with such technology
now they were able to design big cross-machine systems able to distribute the
elaboration over an high number of machines transparently.
In part because the machines power forced to have distributed elaboration, in part
because the idea behind the RPC was to make a transparent usage of remote calls,
this led to a situation where the interfaces granularity was very fine-grained.
The problem here is that make a remote call is not the same to perform a local
call either from a performance, security and robustness point of views. As the
technology grows, the technological limits don’t justify anymore the tendency to
distribute the elaboration with such granularity. The need to distribute the software
came out to be strictly bounded by the need to have standards for communication
between applications and this led to the idea of using HTTP to transport, XML to
phrase the messages and use these mechanism to to invoking method calls. This
approach in fact has been introduced by Microsoft and called Simple Object Access
Protocol: SOAP.
If we try to identify the biggest advantage of using SOAP architectures, we’d find
out that indeed SOAP was able to solve interoperability issues in an effective way:

5

1 – Introduction

defining a widely accepted standard protocols. But this approach, again, started to
collapse and that’s because still treats remote calls as if they were locals and stuff
started going worse when system’s complexity blew up and developers were asked to
write layers and layers to treats additional concept which SOAP didn’t was meant
for (e.g. Exception handling, transaction support, security, digital signatures).
The industry then started to migrate towards another approach: RESTful Archi-
tectures. RESTful architectures turned out to be very popular and this comes from
its simplicity: treating HTTP as HTTP.
Rather than layer procedural call semantics over HTTP, REST instead treats the
HTTP in the way they were specified in terms of create, read, delete, and update
semantics.

1.3.2 From Monolith towards Microservices
The old paradigma in data platform architectures was to have a big monolith
application whose goal was:

• Ingest some data: Such data are typically highly hetergeneous.

• Cleanse, enrich, transform and aggregate the source data into trustworthy
data that can address the needs of a diverse set of consumers.

• Serve the datasets to a variety of consumers with a diverse set of needs.
In the context of an industry 4.0 for example this would mean that data
collected can be served to collect statistics, to enhance employer productivity
by targeting the informations rather than to enhance controls and security or
for organizational purposes.

It’s indeed common practice that the monolithic architecture hosts data that
semantically belong to different domains: a centralized data platform with no clear
domain boundaries.
This centralized model can work for organizations that have a simpler domain with
smaller number of different comsumption cases, but will likely fail for applications
with rich domains, a large number of sources and a diverse set of consumers, where
sources are those entities generating data (e.g. IoT devices, sensors, etc.) and
consumers are the final user of such data.
If we look in deep in monolith architecture what we find is an architectural
decomposition around the mechanical functions of ingestion, parsing, aggregation,
serving, etc.
An approach can be to find a way to scale the system by breaking it down to its
architectural quanta in order not only to enhance properties like scalability and
high availability but also to allow a fast, modular and less painful growth of the
system.

6

1 – Introduction

An architectural quantum is an independently deployable component with high
functional cohesion, which includes all the structural elements required for the
system to function properly.
The motivation behind breaking a system down into its architectural quantum
is to create independent teams who can each build and operate an architectural
quantum and allow a parallelized work across these teams to reach out better
operational scalability.
In fact, in a monolithic scenario the development teams needed to communicate
and work together along with those responsible for testing and deploying. In
the context of monolith application, in fact, they were built following a layered
approach. This led to organize the developer teams around a specific layer of the

Figure 1.1: Typical Monolith Application’s Architecture

software implying that when some change had to be done in some part of the
application, this change would have affected the whole application due to high
intrinsic level of connascence 2.
It’s remarkable that Teams were built around skillset base and communication

2[4] two components are connascent if a change in one would require the other to be modified
in order to maintain the overall correctness of the system. In addition to allowing categorization
of dependency relationships, connascence also provides a system for comparing different types of
dependency. Such comparisons between potential designs can often hint at ways to improve the
quality of the software.
Reducing connascence will reduce the cost of change for a software system. One way of reducing
connascence is by transforming strong forms of connascence into weaker forms moving away from
tightly coupled systems.

7

1 – Introduction

among them is not always easy and effective, so teams found out that gaining the
ability to build and deploy their applications themselves, in development, test, and
production environments was not only faster, but errors was less likely since a lot
of errors deriving from environmental inconsistencies were eliminated.
Given the influence of previous generations of data platforms architecture, architects
decompose the data platform to a pipeline of data processing stages. A pipeline
that implements a functional cohesion around the technical implementation of data
processing (ingestion, preparation, parsing, aggregation, serving).
[5] If we look at the Martin Fowler’s Microservice definition we can find the reasons
to decide for a Microservice Architecture in our specific domain.
In fact he points out some of the issues highlighted above:

1. Organize around Business Capabilities:
If we look at the 1.2, we can notice that a monolith architecture follows pretty
much the Teams organization structure, a good example of Conway’s Law:
Any organization that designs a system (defined broadly) will produce a design
whose structure is a copy of the organization’s communication structure.
– Melvyn Conway, 1967
What Martin Fowler proposed is a different approach: Do not organize the
architecture around the organization structure: organize the architecture
around Business Capabilities. We are now going to build self-consistent
broad-stack services, which implies building cross-functional teams with a full
range of skillset: from user-experience, databases, project management and
so on. Certainly is true that also monolithic can be built around Business
capabilities, but in most cases is very difficult for the teams to have clear
boundaries for their concerns. The explicit separation of concerns that a
Microservice Architecture offers help teams to keep those boundaries clear.

2. Compose via Service:
It’s a useful concept divide our application in Components as functional
unit independently replaceable and upgradeable. One kind of component is a
library, which tends to run in the same memory address as the calling code and
communicates via language function call mechanisms. Libraries are usually
compile-time dependencies thus static.
The other type of component, called a service, runs in its own address space
and communicates either through low-level protocols like TCP/IP or higher-
level ones like SOAP or REST, making these runtime dependencies.
While the components of a monolith are typically libraries because usually
data flows through method calls, the components of a microservice architecture
are services because they are indepentently deployable and because often it’s
only documentation and discipline that prevents that concerns of different
areas overlap, leading to overly-tight coupling among components.

8

1 – Introduction

Figure 1.2: Microservice Application’s Architecture

Services make it easier to avoid this by using explicit remote call mechanisms
and by lesseninng the connascence of the system. In our use case we identified
such runtime components as processing units with high functional cohesion:
in the context of pipelines the stages are quite good candidate.

3. Smart endpoints and dumb pipes: While building communication mecha-
nisms there are approaches like SOAP which tend to have heavy communication
protocol built typically on top of HTTP and reponsible for complex operations.
The approach proposed for microservices is to keep communication lightweight.
The idea behind microservices is that each service receives some request,
applies some logic and produces a result demanding cross-cutting concerns to
infrastructure servers. The communication is performed typically in two ways:

• RESTful approach: through HTTP requests and response in a synchronous
way

• Event-Driven approach: by means of Message Queues or Topic as asyn-
chronous system to deliver messages.

All the logic is thus delegated within the services leaving the communication
mechanism free of it. With respect to a monolith application the communica-
tion pattern must be redesigned though. In our case we chosen an Event-Driven
approach, using distributed queues to fit in a Producer/Consumer scenario.

9

1 – Introduction

1.4 Goals to achieve
The system needs to be thought to respond to the most common critical issues in
distributed architectures.
Such properties are transversal and impact both on the Architectural Design and
Deployment.

1. Scalability
Is the property of the system to react to a change of the traffic load in an
elastic way.
We can respond to the load variation in two ways:

• Horizontal Scale or Scale out: by adding logical resources to the system
(e.g. another server on which the traffic can be spread)

• Vertical scale or Scale up: by increasing the physical resources of the
machines hosting the service (e.g. incrementing RAM or migrating the
system to a more powerful machine).

Horizontal Scalability is certainly the property impacting most on the Archi-
tectural design.
Of course we can scale the entire system but it brings to waste resources
because can happen that the traffic load impacts only over one part of the
system: scaling the whole application is a waste of resources and this reflects
on the costs. Moreover with monolith we don’t have database separation,
it means that all the applications will access a single database, ending up
to a bottleneck since caching mechanisms are less effective and I/O traffic
can result a problem. A Microservice Architecture can be designed to scale
on different granularity. Identifying the critical functional units to scale and
implementing the architecture accordingly, optimizes the system behaviour
when some part of the application is stressed out. A microservice architecture
can optimize even the Vertical Scaling: Some part of the system can be more
memory greedy or more CPU intensive than other parts.
The separation of concerns enables the possibility to dedicate specific physical
resources on different part of the application.
The Scalability affects also the Deployment process. In fact adding resources
both physical or logical can be an hard task. With use of virtualization
technologies like Docker this is simplified, indeed we can add easily logical
resources by adding a container and we can bind it physical resources basing
on specific needs, limited of course by the machine’s power.

2. Maintainability
It is maybe the most crucial part of a software lifecycle. Once the application

10

1 – Introduction

is sent to the market, it’s time to keep it up and continuously update it either
for bug fixing and feature enhancement. Since is typically the longest phase,
and then the most expensive, we have to take organizational decisions to
reduce this complexity and ease the maintenance process. We can achieve this
by leveraging either on Architectural Design, on Modularity and on Deploy
technology. Microservice Architecture helps this phase: due to loosely coupling
and separation of concerns of the architectural components, the developer
teams can be structured to work with one specific component of the system.
Since each component has typically a reduced complexity with respect to
the whole system, it fits perfectly with agile methodologies and so now we
are encouraged to build teams around specific and self-consistent part of
the application, instead of letting teams work around a specific layer like in
monolith n-tier architectures where teams were strictly coupled and aggregated
on skillset base with all the difficulties the teams had to face to work together.
Another advantage in using these architectures is that the system can be
updated without tear it down, in fact updates can come along by simply
adding the new version of one part of the system while the others could not
be updated yet. This is possible due to the loosely coupling and isolation of
concerns properties. From a different point of view also Deployment choices
help to reduce maintenance costs: the use of a virtualization technology allows
to have different operating systems on a single machine. This means to reduce
the need to have additional hardware resources eliminating all the costs it
brings with it such as electricity, space, and hardware maintenance.

3. Reliability and High Availability
High Availability is the property of a system that in presence of faults, in-
dependently from their nature, doesn’t go down ensuring a certain level of
operational performance. Some applications like the Mission Critical or Busi-
ness Critical are forced to ensure high availability because of their sensitive
nature. Typically High Availability is ensured by eliminating all Single Point
Of failures. This is done by adding redundancy, so even if a component goes
down the system is still alive. Certainly Microservice Architectures help us to
ensure availability through the modularization of the application but it’s not
enough. In truth redundancy is a slightly different concept from scalability:
while scalability is implemented to respond to load variation, thus on the
application logic, redundancy is done to respond to failures. For example
typically an application works with one database instance: we can of course
scale out the database and work with Database’s cluster, but if it’s not strictly
required, this may add a lot of complexity. Here the Database is a single point
of failure since the entire application is not able to keep working without it.
We need a backup database that takes it over when the primary one crashes or

11

1 – Introduction

becomes unavailable. It’s common that in redundant and distributed systems
are present cross points like Load Balancer or infrastructure server as Service
Discovery, Gateway and Configuration Server that often are single point of
failure. Introducing redundancy on these points makes our systems more
robust ensuring high availability. Ensuring high availability doesn’t mean
only to be able to respond to failures but also to prevent them to happen.
Virtualization technologies comes to our help again: they limit the unreliability
of operating systems. If something goes wrong only that Container will be
compromised and the host system will keep working regularly.

12

Chapter 2

State of the art

"Before software can be reusable,
it first has to be usable."

-Ralph Johnson

13

2 – State of the art

2.1 Technologies involved
2.1.1 Spring Framework
The Project has been developed using Spring.
Spring is an open-source Framework used for developing Java application.
The key feature making Spring interesting is the infrastructural support at applica-
tion level, this lets the developers focus only on the application-level business logic
delegating other aspects to the Framework.
The Spring Framework provides a lot of feature, well-organized in six modules:

1. IoC Core
It’s the hearth of Spring Framework.
It relies on the concept of Bean which is a wrapper of Java Objects and is
managed by the framework so that they can be passed when needed to the
rest of the application.
The main task of the core is to provide an implementation of the Inversion
of Control also known as Dependency Injection. IoC is the process whereby
objects define their configuration and their dependecies which are the other
objects it works with.
Hence come the name Inversion of Control, in fact are now the beans themselves
that manage their own dependencies instantiating and initializing other objects
they work with.
So what does actually do the IoC core is consuming both Business POJO
Objects defined by developers and metadata configuration files that instruct
Spring container how to instantiate, configure, and assemble the objects in
your application.
Eventually we will have a fully configured system ready to use.

2. DAO
The Data Access Object Support module in Spring aims to simplify the use of
data access technologies such JDBC, Hibernate or JDO.
This module introduces an abstraction layer allowing developers not to worry
about specific implementations details of each technology, delegating this job
to the framework and making easier switching from one technology to another.

3. ORM
The Object Relational Mapping module in Spring, aims to integrate the sup-
port for and abstraction layer responsible to perform CRUD operations from
a Object Oriented enviroment in a relational-fashion.
It’s an abstraction layer that manages translations between POJO and rela-
tional data.

14

2 – State of the art

4. AOP Another key component of Spring network is the Aspect Oriented
Programming. It’s remarkable that IoC core does not depend on Aspects, so
its usage is optional.
AOP provides another way of thinking about the program structure.
Aspect means a modularization of concerns that cut across multiple classes
allowing the developers to manage cross-cutting-concerns in a single point
instead to have to spread it over the whole application.

5. Web Spring Web packages provide basic web-oriented integration feature
such that the initialization of servlet listeners and web-oriented application
contenxt in the IoC core.
They provide also a package for Model-View-Controller implementation for
web-application

What Spring basically does thus is that lets you assemble your code together.
The popularity of Spring Framework comes with inclusion of huge number of
features and the framework became a lighter weight alternative for enterprise
application Java Developers looking a way for building application using the J2EE
stack, but avoiding unnecessary and silly mechanism J2EE stack has embedded.
Spring Framework tried to follow the developer tendency to moving away from
heavy monolith applications towards a higher distributed model where applications
are built around a potentially high number of small services that can easily deployed.
Spring Developer Teams reacted to this shift launching two ambitious projects:

1. Spring Boot: it is a revision of the Spring project, it embraces core features
depicted above, but cuts out many enterprise features and deliver a lighter
REST-based, microservice-oriented Framework.

2. Spring Cloud: it aims to drive more the Spring Framework towards Mi-
croservices, trying to make simpler to operationalize and deploy Microservice
both in public and private cloud infrastructures.

2.1.2 Jhipster-Registry
In a Microservice Architecture the Registry is a fundamental piece: it ties all the
components together and allows them to communicate each other.
The Jhipster-Registry is a Open Source, Apache 2-licensed application developed
by the Jhipster team.
Jhipster Registry has basically three main purposes. We will see more aboute them
later, in a nutshell we have:

1. Eureka Server: used as Service Discovery

2. Spring Cloud Configuration Server: used as Configuration Server

15

2 – State of the art

3. Administration Server: integrate a dashboard to monitor and manage
applications present in the enviroment.

2.1.3 MongoDB
MongoDb is a general purpose distributed database.
It has been designed for modern applications and optimized for the cloud era.
MongoDb is a Document based Database, which means it stores and handles data
in JSON format and allows flexible and dynamic schemas. It does not only allow
typical Relational Database features like ACID operations and support for join
query, but it also combines the ability to scale out with features such as

1. Indexing: MongoDB has support for generic secondary indexes, allowing fast
queries and providing unique, compound, geospatial, and full-text indexing
capabilities as well.

2. Aggregation: MongoDB supports an “aggregation pipeline” that allows you
to build complex query from simple ones and allow the database to optimize
it.

3. Special collection types: MongoDB supports time-to-live collections for
data that should expire at a certain time, such as sessions. It also supports
fixed-size collections, which are useful for holding recent data, such as logs.

The document-based approach replaces the concept of relations (thus rows and
columns) with a more flexible model called Document. There are no predefined
schemas, keys and values have not fixed size or type, so working with such flexibility
ease the software development helping programmers to model their applications.

2.1.4 Hazelcast
Hazelcast is a distributed cache in-memory platform written in Java. The platform
allows to distribute data along a cluster of servers in a secure and consistent way.
An Hazelcast cluster is a network of cluster members that run Hazelcast.
Cluster members automatically join together to form a cluster. This automatic
joining takes place with various discovery mechanisms that the cluster members use
to find each other. We will rely on the discovery through Eureka Service Discovery.
The use of in-memory and streaming technologies are a necessity for microservices
architectures in order to design scalable, modular and easy-to-mantain systems.
In the context of microservices Hazelcast helps to face crucial challenges as high
performance and efficient inter-service communications while offering a bunch of
features to respond the needs of modern distributed enviroments.
Hazelcast proved to be well suited for orchestrating a number of microservices

16

2 – State of the art

Figure 2.1: Hazelcast Cluster

in a load balanced environment that do not share any resources other than the
exposed data structures through Hazelcast.

CPsubsystem

Strong consistency is a crucial requirement for coordination tasks. A distributed
coordination tool must keep its consistency in failure cases. However, Hazelcast is
mainly designed for high availability. In this regard, Hazelcast gracefully handles
server, client, and network failures to maintain availability, but its core replication
mechanisms, which are basically built on top of asynchronous replication, do not
guarantee strong consistency in every failure scenario. In terms of the CAP prin-
ciple, Hazelcast is AP thus prefer Availabilty and Partition Tolerance to Consistency.

CAP Principle:
[6] It is impossible for a distributed data store to simultaneously provide more than
two out of the following three guarantees:

1. Consistency: Every read receives the most recent write or an error.

2. Availability: Every request receives a (non-error) response, without the
guarantee that it contains the most recent write.

3. Partition tolerance: The system continues to operate despite an arbitrary
number of messages being dropped (or delayed) by the network between nodes

17

2 – State of the art

CPSubsystem contains new implementations of Hazelcast’s concurrency APIs
on top of the Raft consensus algorithm. As the name of the module suggests,
these implementations ensure Consistency and Partition Tolerance with respect
to the CAP principle and they live alongside AP data structures in the same
Hazelcast cluster, offering consistency and allowing distributed version of java
concurrency API such as IAtomicLong. IAtomicReference, ILock, ISemaphore,
ICountDownLatch. With the CP subsystem Hazelcast will likely become a good
citizen of distributed coordination use cases.

2.1.5 Kafka
[7] Kafka is a stream-processing software platform. The plarform aims to provide a
unified, high-throughput, low-latency platform for managing real-time data through
a messaging system.
A streaming platform has three key responsabilities:

• Publish and subscribe to streams of records, similar to a message queue or
enterprise messaging system.

• Store streams of records in a fault-tolerant durable way.

• Process streams of records as they occur.

Figure 2.2: Kafka based Application

Kafka offers many features one of the most attractive for our purposes is certainly

18

2 – State of the art

its usage as Message Broker1.
Kafka is strongly suggested for such applications that needs to building real-time
streaming data pipelines that reliably get data between systems or applications and
building real-time streaming applications that transform or react to the streams of
data. Kafka ensures strong guarantees as scalability, high availability, persistence as
well as low latency and high throughput. Kafka is run as a cluster which instances
can run both locally or remotely spanning on multiple datacenter. The Kafka
cluster stores streams of records in categories called Topics.

2.1.6 Docker
Docker is an open-source virtualization technology used to automate the deployment
process. Docker exploits kernel virtualization features to cope with challenges as
Dependency hell and versioning by running the application in a light and isolated
enviroment. Docker thus provides a platform for developing, shipping and running
applications in isolated enviroment called Container by exploiting Linux kernel
resource isolation properties as cgroups and namespaces. The container concept
not only ensures an isolated enviroment allowing us to run multiple containers on
the same host safely but is also lightweight because does not have all the extra load
of having an abstraction layer of the virtualization technologies like the hypervisor.
The massive usage of virtualization technologies in deployment is not by chance
and nowadays is the state-of-art because are able to respond to many common
problems in Deployment proposing simple and effective solutions.

1A message broker is an architectural pattern for message validation, transformation, and
routing. It mediates communication among applications, minimizing the mutual awareness that
applications should have of each other in order to be able to exchange messages, effectively
implementing decoupling

19

Chapter 3

Project Design

“Any fool can write code that a computer can understand.
Good programmers write code that humans can understand.”

— Martin Fowler

20

3 – Project Design

3.1 Software Purpose
The application aims to parse, classify, decorate, elaborate and eventually aggregate
semi-structured data.
This comes from the need not only to allow a future elaboration but also to visualize
them on a human readable interface like the one of a client application.
The Architecture is presented as a Pipeline made up by 3 stages: an Ingester
responsible for fetching data and perform a primitive parsing, a Parser responsible
to read inside the data, structure and aggregate them basing on their metadata
and finally an Aggregator responsible for aggregating on a semantic base our
well-structured data.
To exploit the advantages of a distributed architecture discussed in the previous
chapters accordingly to the goal to achieve, it has been chosen a Microservice
Architecture.
The Architecture is presented as a pipeline where each stage is a microservice.
The communication between microservices is performed by means of a distributed
cache called Hazelcast. Hazelcast is able to clusterize the application allowing the
microservices to share a set of data structures used both for communication and
synchronization purposes. The communication mechanism uses distributed queues
managed by Hazelcast to let flow the data from one pipeline’s stage to the next
addressing the architecture towards an Event-Driven Architecture.

Figure 3.1: Pipeline’s Architecture

21

3 – Project Design

3.1.1 Infrastructure Servers
The Database

The Database used is MongoDB: a cross platform database NoSQL using document
Json-Like format with schema.
The Architecture involves the use of 3 Databases, one for each service composing
the application.
Since there are multimedia files involved in the dataset, it will be plausible that
files will exceed the maximum data size allowed by MongoDB, so, we will rely on
GridFS. [8] Instead of storing a file in a single document, GridFS divides the file
into parts, or chunks , and stores each chunk as a separate document.
By default, GridFS uses a default chunk size of 255 kB; that is, GridFS divides a
file into chunks of 255 kB with the exception of the last chunk. The last chunk is
only as large as necessary.
Similarly, files that are no larger than the chunk size only have a final chunk, using
only as much space as needed plus some additional metadata.
GridFS uses two collections to store file:

1. fs.chunk: stores the file chunks

2. fs.files: stores file metadata.

When you query GridFS for a file, the driver will reassemble the chunks as needed.
You can perform range queries on files stored through GridFS.
You can also access information from arbitrary sections of files, such as to “skip”
to the middle of a video or audio file.
GridFS is useful not only for storing files that exceed 16 MB but also for storing any
files for which you want access without having to load the entire file into memory.
So, we will end up to have:

1. Ingester Database : The database that will serve the Ingester microservices.
it will holds the 3 collections:

• RawEntity: holding metadata
• fs.files: holding gridFS related metadata
• fs.chunk: holding the data

2. Parser Database The database that will serve the Parser microservices.
it will holds the 4 collections:

• Entity: holding metadata of Entity
• Item: holding metadata of Item

22

3 – Project Design

• fs.files: holding gridFS related metadata both of Entity and Item
• fs.chunk: holding the data both of Entity and Item

3. Aggregator Database The database that will serve the Parser microservices.
it will holds the 4 collections:

• Item: holding metadata of Item
• Blob: holding metadata of Blob
• fs.files: holding gridFS related metadata both of Item and Blob
• fs.chunk: holding the data both of Item and Blob

Service Discovery

The service Discovery is a service in our enviroment that allows server instances
to get to know each other throughout a registry that maps service names and ip
addresses.
When a microservice is interested in contacting another microservice in the enviro-
ment asks to Eureka Server the location of the recipient.
The service discovery keeps update the entries thanks to Eureka Clients embed-
ded in each microservice in the enviroment.
Eureka Clients are not only responsible to register themselves in the Eureka
Server, but are also responsible for sending an healthcheck periodically, so that
the Service Discovery is aware of the crashed services and can perform a clean up
of the entries. In our application, we’ll use Service Discovery to allow Hazelcast
nodes to discover each other, in order to join in a cluster.

Configuration Server

The Configuration server is a server that centralizes all the configuration files and
responsible to serve the instances when the application boots up.
The Configuration server can be configured either to store the configuration files in
a remote repository as GitHub or either in the local file system.
In a microservice architecture, centralize all the configuration files is a very im-
portant step to ease maintainability and fasten the configuration process of the
entire application. In our case we rely on Spring Cloud framework that offer a very
powerful tool called Spring Cloud Config Server.
In order to handle as less infrastructure server as possible, the solution proposed
uses Jhipster Registry that embeds both Eureka Service Discovery and Spring
Cloud Config in a single deployable unit.

23

3 – Project Design

Figure 3.2: Configuration Server

3.1.2 The Data
We can imagine we are treating data coming from large variety of sources like IoT
devices deployed around a smart city rather than in a university campus or data
coming from sensors of a smart industry. The data source with respect to our
system is an SFTP Server on which we will end up to have a folders structure with
a root.
Under the root folder can be present a variable number of subfolders that appear
dinamically, each of them representing the device that has generated the data
contained by the folder itself, thus each folder will be named as the <Agent_Id> it
refers to.
Due to the large variety of devices, we will have an highly heterogeneous dataset
which is formed by actual data and metadata. The data formats we are going to
deal with are composed by:

• Json: contains data or metadata associated to Zip or Bz2 Files.

• Xml: is self-consistent. Contains both metadata ad and data.

• Bz2: contains only data, typically multimedia ones.

It’s remarkable that data, as well as metadata, can come along fragmented, out-
of-order and with any insurance that a fragment of data I’m waiting for, will
eventually arrive.

24

3 – Project Design

3.2 Ingester
The first stage of our pipeline is called Ingester. The Ingester is responsible for
fetching data from a source: in our case an SFTP server.

Figure 3.3: Architecture of Ingester Microservice

3.2.1 SFTP Client
In order to fetch the data we will have the first module of the chain: an SFTP
Client. This is not a traditional Client, in fact it acts as a Consumer in a Produc-
er/Consumer scenario.
Its role will be to continuously poll the Server to get to know if:

• some files are added under the known folders

• some new folder is present under the root one.

For efficiency purposes we will poll different folders with different threads that we’ll
call Watchers. The parent thread instead will be responsible for polling the root
looking for new folders added. We’ll call the parent thread Poller. The Poller
assigns the folders to poll the newly created watchers, so they can check whether
there are new files to fetch.
If some new file is added, gets downloaded by a watcher. Each and every file fetched
from the server is first structured as a model called RawEntity for being stored into
MongoDB. No problem so far. The first issue we can notice is that, since we are

25

3 – Project Design

running in multithreading, we should synchronize our threads to prevent some file
to be download multiple times. It might seem unnecessary but the network can be
a bottleneck, so optimize its usage is fundamental for this application. Synchronize

Figure 3.4: Ftp Client’s execution model

all the threads is not trivial: we are building a distributed architecture, so we will
have multiple instance of Ingester running at the same time, likely on different
machines. It’s not enough to synchronize the local threads, but we need to do it
also with respect to the remote ones, but we will discuss about this later.

3.2.2 The Model: RawEntity
The RawEntity model is represented with a variety of fields, some of them bring
informations about its nature, some other is initialized and used by the application
for processing purposes. The main fields are:

• Id : Unique Id, written by MongoDB

• content_type: extension of the file

• path: the folder’s path where the file has been stored

• file_name: the filename

• metadata: if it’s a file of metadata, is not null

• payload: if it’s a payload, is not null

26

3 – Project Design

• evidences: the list of Evidence’s models generated from this RawEntity

• payload_file_name: if it’s a metadata file, tells us how it’s called the associ-
ated file of data.

3.2.3 Parser Engine
The parser is the functional unit responsible for looking inside the data and actually
transform the model from RawEntity into an Entity. The first thing is to fetch
the data from MongoDb.
To keep track of elaboration steps each model has a field called STATUS. The parser
fetches data having status set to READY.
In order to ensure that elaboration cannot happen twice o multiple times on the
same data as this can lead to inconsistent situations, we have to synchronize each
and every thread in the system that run concurrently to take such data from the
Database.
Unfortunately we already said that in our architecture we will have multiple
instances of Ingester so a classical in-memory synchronization will not be enough
though. We will discuss about this later on.
For now let’s focus on the single instance running. At this point the elaboration
can end up in three main cases:

1. The elaboration succeed: the RawEntity processed is stored in the Database
with status PARSED, a new Entity model is generated and forwarded to the
next stage of the elaboration piepeline.

2. The Data is malformed: this will produce an error since is not possible to
generate an Entity model from this data, so the RawEntity is store in the DB
with Status ERROR and it’s not propagated through the pipeline.

3. The current data needs some other RawEntity to generate the Entity
model: The RawEntity’s status is set to POSTPONED and it will be processed
further on.

Once the elaboration succeed, the new Entity is generated and is ready to be
wrapped, serialized and pushed into the ingester_queue.

3.2.4 Hazelcast Producer
The task to prepare and actually forward the data is demanded to the last module
in the chain: the HazelcastProducer. This module acts as a Producer with
respect to the ingester_queue. The ingester_queue is indeed a classical Java
BlockingQueue extended by Hazelcast to ensure it can be distributed among all

27

3 – Project Design

the Hazelcast Cluster nodes and to make it redundant for fault tolerance reasons.
The advantage of this approach is that we are actually decoupling the services, so
that a Producer doesn’t know who is going to fetch the data from the queue, it only
knows that there is a certain number of consumers responsible to manage the data
stored into the queue. Another advantage comes free with this topology: in fact
if several microservices crash, that doesn’t affect the queue since it is distributed
and backed up over all the nodes in the cluster. To ensure the queue stays alive is
sufficient that at least one Hazelcast Instance is up. If the system is balanced, so

Figure 3.5: Event-Driven model with Hazelcast Cluster

when the producing rate is equal to the consuming rate, the queue doesn’t grow in
size.
When dealing with real situations the producing rate is asymmetric with respect
to the consuming rate, for example if the Consumers are cut out from the cluster
or experience network latency, then is possible that the queue may grow out of
control.
To address this issue has been implemented a backpressure mechanism that intro-
duces a latency at producer side that depends on the ingester_queue size. As
the queue grows up, the latency gets bigger, as the queue gets shorter, the latency
decreses. If the queue gets full, the producer stops pushing data into it.

3.2.5 Ingester: Hazelcast synchronization
We already introduced that, due to the need to scale the pipeline stages, we
are working with multiple instances of Ingester (as well as multiple instances
of each pipeline’s stage) and since each stage relies on the same Database for

28

3 – Project Design

performance reasons, it is necessary to synchronize the microservices to let them
work concurrently. We are already using inter-process communication mechanism
with the Hazelcast Queue, we can thus exploit Hazelcast also to synchronize the
microservices.
We have to synchronize basically two modules:

• The consumer: in this case the SFTPClient

• The parser engine

What we need for the synchronization here is to prevent multiple threads in this
distributed enviroment to perform the same operations at the same time: we need
to protect our code from ditributed multithreading. With such guarantee we can
synchronize our Ingesters.

For what concerning the consumer synchronization we must avoid that different
SFTPClient will download the same file. We rely on Hazelcast Distributed Map
which is nothing else than a normal Java HashMap shared between the ingester in-
stances: we’ll call this map ingesterSyncMap and we will use it to keep track which
files are being processed by the different Ingester instances. The ingesterSyncMap
is structured as follows:

• Key: filename of the file that has been locked.

• Value: owner’s Id of this lock and a timeStamp.
The Id identifies who is dealing with such file.
The TimeStamp is an expiring date for the fault recovery. In case the owner
of the lock goes down for some reason while processing the data, such file will
not be locked forever.

Hazelcast distributed maps are thread safe objects. They offer lock mechanism
that can deal with typical race condition when multiple threads share the same
resources. Here we will make use of Pessimistic lock mechanism, the usual way to
solve this race issue is using the lock mechanism provided by Hazelcast distributed
map: map.lock and map.unlock methods. You simply lock the entry until you
finished with it.

29

3 – Project Design

Figure 3.6: Schema for the SFTPClient synchronization

1 IMap <String , HazelcastRecord > syncMap = hazelcastInstance
2 . getMap (" ingesterSyncMap ");
3 syncMap .lock(filePath);
4 if(checkIfLockExists (filePath)) {
5 syncMap . unlock (filePath);
6 return false;
7 }
8 syncMap .put(filePath , hazelcastRecord);
9 syncMap . unlock (filePath);

So the SFTPClient, before downloading a file, as shown in 3.6:

1. it tries to acquire the lock mechanism provided by Hazelcast distributed map
and it waits until it gains the lock.

2. it looks at the ingesterSyncMap and checks whether some entry with a Key
equals to our current file to download exists.

3. if it exists, means that this file is being downloaded by some other SFTPClient
instance, if does not exist it writes the record in the map.

30

3 – Project Design

4. it unlocks the map entry.

For what concerns the parser engine instead, we must ensure that different Parser
do not fetch the same data from the Database concurrently.
if this happens, is possible that two identical Entity will be generated and for-
warded to the next stage. This is not only inefficient, but potentially dangerous
as we’ll end up to have duplicated files that will eventually be treated as different
ones, breaking the system.
We must guarantee that different threads fetch and update data atomically: we
need a distributed synchronization primitive.
Hazelcast technology, as already said, offers mechanisms to do atomic operations
in a distributed enviroment relying on the CPsubsystem.
Hazelcast offers us an object called FencedLock for such purposes. Distributed
locks are unfortunately not equivalent to single-node mutexes because of the com-
plexities in distributed systems, such as uncertain communication patterns and
independent process failures.
[9] In an asynchronous network, no lock service can guarantee mutual exclusion,
because there is no way to distinguish between a slow and a crashed process.
Consider the scenario where a Hazelcast client acquires a FencedLock, then hits a
long GC pause. Since it will not be able to commit session heartbeats while paused,
its CP session will be eventually closed. After this moment, another Hazelcast client
can acquire this lock. If the first client wakes up again, it may not immediately
notice that it has lost ownership of the lock. In this case, multiple clients think
they hold the lock. If they attempt to perform an operation on a shared resource,
they can break the system. To prevent such situations, one may choose to use an
infinite session timeout, but this time probably she is going to deal with liveliness
issues. Even if the first client crashes, requests sent by two clients can be re-ordered
in the network and hit the external resource in reverse order. There is a simple
solution for this problem. Lock holders are ordered by a monotonic fencing token,
which increments each time the lock is assigned to a new owner. This fencing token
can be passed to external services or resources to ensure sequential execution of
side effects performed by lock holders. We have to ensure some lock mechanism, to
distinguish which data are available for the elaboration and which data are being
processed.
In principle the Ingester’s parser engine fetches all the data with status set as
READY. It would be enough to atomically set the status of the database’s entities
that are going to be processed from READY to PROCESSING to ensure each data will
be processed only once, as shown in 3.7.
After the processing the status will be updated and will fall in one of the status we
discussed above.

31

3 – Project Design

Figure 3.7: When Ingesters fetch the data let others know that those data don’t
have to be processed by changing them the status

1 hazelcastLockingService .lock (); // myFencedLock .lock ();
2 result = rawEntityService
3 . findAllByStatus (RawEntityStatus .READY);
4 for (RawEntity e: result) {
5 rawEntityService . updateById (e.getId (), rEntity -> {
6 rEntity . setStatus (RawEntityStatus . PROCESSING);
7 });
8 }
9 hazelcastLockingService . unlock (); // myFencedLock . unlock ();

3.2.6 Fallback
Our architecture should be designed to be scalable, high available, easy to maintain
and fault tolerant. To be robust to failures is fundamental having some mechanism
to recover when bad things happen. The synchronization mechanisms we discussed
about, introduced in the system a couple of criticalities: let’s try to analyze the
following scenarios:

• What would happen if one Ingester will go down while has some entries in the
ingesterSyncMap ?

• What would happen if the server goes down when processing is not finished
yet?

32

3 – Project Design

In both of situations we have "locked" some data and those will stay "locked" forever,
in the first case they are the data living in the SFTP Server, in the second case the
data "locked" are in the database. The issues have been addressed by introducing
a function triggered periodically that try to figure out if some entry is deprecated.
Every Ingester periodically will check if there is some entries in ingesterSyncMap
older than a certain threshold and in case will remove them. This is the reason
why every entry in the map has a Timestamp. For what concerning the database
entities, they have a timestamp in the field last_update. We are going to exploit
this information and follow the same argument: The state PARSED is set once the
elaboration has been concluded, thus once the data has been already pushed into
the queue. So if something goes wrong in one of the Ingester instances, this will
imply that in the DB will be present entries with state PROCESSING (while they are
marked as PROCESSING are not involved in any new elaboration) even though such
entries are not under elaboration. Means that every entities with state PROCESSING
and older than a certain threshold is probably coming from an inconsistent scenario.
A periodic triggered function will look at such entities and will recover the state to
READY, so they can be reprocessed further on.

33

3 – Project Design

3.3 Parser
The second stage of our pipeline is called Parser. This stage is responsible to look
inside the Entity picked from the queue, finds its dependencies, stucture their
data into a Map<String, Object>, then build a model called Item which can be
composed either by only one Entity or by many of them depending on its nature.
Inside the Parser Microservice, we can identify again three functional units:

1. Consumer: it interfaces with the ingester_queue and takes the data pushed
into it.

2. Parser Engine: it is the most important part of the elaboration chain, it
processes the data structuring them into the Database.

3. Producer: it interfaces with the parser_queue to forward the data to the
next stage.

Figure 3.8: Parser Architecture

34

3 – Project Design

3.3.1 The Models
There are two main data model which this pipeline’s stage works on.

Entity

This model is generated in the previous pipeline’s stage, but is stored in this one.
It is a model more consistent than RawEntity, in fact it brings informations about
metadata and data concerning the same file, but while metadata are processed and
put into a HashMap<String, Object>, the payload is still raw and comes along as
ByteArray.
The main fields are:

• id : is the unique Id generated by MongoDB

• createdAt: is the creation timestamp of this Entity

• agentId: id of the device where this data comes from

• contentType: the data type present in the payload

• items: one Entity can be associated to one or more Items, this tracks the
items generated by this entity

• metadata: the metadata as HashMap<String, Object>

• payload: the raw payload as byte[]

Item

It is an higher level model. The Item has a payload structured in a HashMap<String,Object>.
The metadata, from now on are not necessary as one Item can derive from many
Entities and the metadata are associated to this lasts. It wouldn’t make sense
carrying them around.
The Item is designed as follows:

• id: : is the unique Id generated by MongoDB

• blobId: it’s a reference to an higher level model called blob this Item will
belong to.

• payload: is the payload that is now organized in an HashMap<String, Object>

• chunks

35

3 – Project Design

3.3.2 Hazelcast Consumer
This is the Consumer component of our pipeline’s second stage. It will poll the
ingester_queue to pick the data pushed into it.
Hazelcast DistributedBlockingQueue is a thread safe object: the data extracted
from it are removed atomically, so it won’t be possible for two parser instances to
fetch the same data twice.
When the consumer picks the Entity from the queue, stores it into the Database
and triggers the Parser module for processing the new data.

1 @Scheduled (fixedDelay = 300)
2 public void pickFromQueue (){
3 try{
4 Record record = hazelcastConsumerService .

consumeHazelcastMessage ();
5 if(record != null){
6 String tag = record . getKey ();
7 entityParserService . update (tag);
8 Thread .sleep (100);
9 }

10 }catch (Exception e){
11 e. printStackTrace ();
12 }
13 }

The Consumer is not aware of who’s pushing the data into the queue, thanks to
this decoupling characteristic, the system can scale very easily: we can add parser
instances and this will be completely transparent with respect to the Producer side.

3.3.3 Parser Engine
As discussed above, this module is responsible to transform Entity into an higher
level model called Item.
When the elaboration starts, the parser takes the entities having status READY.
Let’s highlight that the entityParserService.update(String tag) takes one
argument and this argument is a string containing:

• Agent_id

• Content_type

this because of the dependencies among data.
An Item can be generated by many Entity, this implies that in order to generate
such Item, all the entities involved should be present before the parser starts the

36

3 – Project Design

elaboration.
If they are present only partially, will not be possible to generate a complete Item
and the elaboration will be POSTPONED or depending on the case, is generated an
incomplete Item that subsequently will be updated. For this reason, we store also
the Items in this pipeline’s stage.
The crucial requirement is that all the Entities having the same semantic aggregation
key, which are just Agent_Id and Content_type, have to be processed together by
the same thread. We are again in front of a synchronization issue.
We need to ensure that the Entities being elaborated by one Parser, shouldn’t be
treated by anybody else concurrently or this will end up generating inconsistent
data, as for example two different Items semantically equals.
It is also possible that an Entity can concur to create many Items, so things can
get even worse if we do not manage such situations.
Once the elaboration is completed the entity status is updated and we can be in
one of the following scenarios:

1. The elaboration succeed: an entity can produce only one item and in this
case the entity will be marked as PARSED or can concur to create an Item
altogether with other Entity and in this case will be marked as MERGED

2. The elaboration fails: if something goes wrong then the the Entity is
marked as ERROR

3. Some Entity is missing: then we are waiting for some data to arrive in
order to generate the Item/s. The Entity is thus marked as POSTPONED.

The elaboration will then produce Item that will not be only forwarded but they
will also stored. As mentioned, is possible that to create a complete Item might be
required many Entities but we don’t know if and when those will eventually arrive.
We will start aggregating the Entities in Items even if we do not own all the pieces
and we will wait for other pieces to close the incomplete Item in future if possible.
The Item once generated is passed to the Hazelcast Producer to be forwarded to
next pipeline’s stage through a queue with same mechanisms described for the
previous stage of the pipeline.

3.3.4 Parser: Hazelcast Synchronization
The synchronization between Parser instances are a bit trickier than it was with
Ingesters. This because of the strong dependencies between Entity models that
make mandatory to process them with the same thread.
What does it mean?
When the parser engine takes in charge some data to elaborate, it have to fetch the
data Entity from the Database. But while with the Ingester was enough fetching

37

3 – Project Design

all data with status READY, now it will not work anymore. We should ensure that,
given a key (in relational database meaning) composed by attributes Agent_Id +
Content_type, the parser checks whether some other Parser has already taken in
charge data with the same key and in case drop them.
Let’s consider the following situation:
Some Entity with Key0 = Agent_Id0 + Content_Type0 are pushed in the DB.
Let’s say that such key will identify N entities.
At t0 there are M with M<N Entities stored in the Parser’s Database and elaboration
for Key0 is taken charge by Parser_Instance1.
If Parser_Instance1 is allowed to parse such data, it would mean that all the
data with Key0 (In 3.9 entities in red) will have status READY.
When a thread decides that want to process a data, it locks it by setting its status
as PROCESSING.
If one entity in the database has status PROCESSING, it would mean that such key
is being elaborated by another thread in the enviroment and Parser_Instance1 is
not allowed to process data with such key.
It’s crucial for the parser to process all the Entity with same Agent_id and
Content_type together. Let’s assume that all the M instance with Key0 are in
status READY: then Parser_Instance1 is allowed to parse them. As the elaboration
starts, the data M+1 with key0 is stored in the DB.
How to prevent that this last entity will be involved in another parallel elaboration?

Figure 3.9: The schema represents the data flow through two instances of Parser

38

3 – Project Design

The solution presented follows the approach done with Ingester.
We still need to perform atomic operations on Database and ensure that when a
thread is querying for data, the other threads wait. So we fetch all data having
status READY, for each of them we evaluate their Keys for each key we check if
there is some entity with state PROCESSING and then we filter out all of them. We
will end up to have all the keys for which none of the relative entities have status
PROCESSING. Then we set to those entities the status PROCESSING so that another
thread will not be able to process data with Key0 in parallel.

1 if(hazelcastLockingService .lock ()){
2 try{
3 result = entityService .
4 findAllKeysNotHavingState (contentType ,agentId ,
5 EntityStatus . PROCESSING);
6

7 for (Entity e: result) {
8 entityService . updateById (e.getId (),
9 ev -> {

10 ev. setStatus (EntityStatus . PROCESSING);
11 });
12 }
13 hazelcastLockingService . unlock ();
14 return new PageImpl <Entity >(result , page , result .size ());
15 }catch (Exception e){
16 hazelcastLockingService . unlock ();
17 return new PageImpl <Entity >(result , page , result .size ());
18 }
19 }else{
20 return new PageImpl <Entity >(result , page , result .size ());
21 }

3.3.5 Hazelcast Producer
Again the last functional module inside the single microservice is the one responsible
to communicate with the next stage of the pipeline.
Again, this is done by means of Producer/Consumer mechanism through a dis-
tributed Java BlockingQueue<Item>.
This mechanism has been implemented for the communications between the pipeline
stages as it helps us to achieve decoupling and scalability but also to standardize
in somehow the communication mechanisms in the Architecture. In fact again, the
the parser’s producer module is quite similar to the previous stage’s one but this
time it handles different data. As soon as a new Item is created, it is delivered

39

3 – Project Design

to the Producer, responsible to push the data into the queue. This queue is not
the same as the one between Ingester and Parser. This queue will be called
parser_queue and stands between the Parser Microservice and the Aggregator
Microservice.
It forwards Item models to the Aggregator where they will be further aggregated
on a semantic base.

3.3.6 Fallback
Let’s suppose that something in system goes wrong for any reason and one Parser
Microservice goes down.
What will happen to the Application?
How to prevent that a failure affects the system’s behaviour?
Let’s assume that at a certain point, a Parser fails. Of course it will be scaled, so the
system will keep working as usual, but the fail may introduce some inconsistency
in the data. It’s our duty enstablishing some mechanism to react to such failures.
When a Parser goes down without any on-going elaboration, is a safe situation.
When instead it goes down while processing data, then the data under elaboration
are still marked with status PROCESSING and thus will never get to status PARSED
or MERGED. A routine scheduled periodically is responsible to find data marked as
PROCESSING with last_update older than a certain threshold and restore such
status to READY. Of course can happen that indeed the data has been forwarded,
and then the server goes down before changing the state to PARSED. In this scenario
the data will be restored and reprocessed, but when the Parser will try to save
the Item generated in the DB, this will not be allowed since would be a duplicated
Item and then will not be forwarded again.

40

3 – Project Design

3.4 Aggregator
The aggregator is the last step of our data pipeline.
This stage is responsible for Item aggregation on a semantic criteria.
These criteria are not hardwired but can be configured throughout a configuration
file called aggregator.json under src/main/resource/config folder. this config-
uration specifies the various aggregation criteria for each and every content_type.
This file is parsed when the Aggregator service boots up and then the service can
aggregate Item in order to create Blob models, nothing more than list of items
grouped following semantic criteria. The structure of this service is essentially
similar to the previous ones: there is an ingestion stage, an elaboration step but
this time, being this the final stage we do not have to propagate the data to another
step.
This service will interact with a client application to which the data will be served
for displaying them, for this purpose this service will expose some REST Api. The

Figure 3.10: Aggregator architecture

purpose of the aggregation is to display the data following semantic criteria, such
criteria are passed to the application via the mentioned aggregator.json. In fact,
we can have many criteria for each content to display and they can change over

41

3 – Project Design

the time.
The aggregator acts thus as a sink of the system, where the rest Api are hit by the
clients application in order to get and in case post data towards the application.
To guarantee high availability, even this microservice is scaled out. In case one
Aggregator goes down the application will be still available to serve the data.
Since the Aggregator is scaled, not redundant, we will need a Load Balancer in

Figure 3.11: Aggregator architecture II

front of the last pipeline stage that will have to forward the traffic to the Aggregator
Scaling Group, following some Load Balancing Policy, like, for example, a Round
Robin policy.
In a real use case scenario, we’ll have many endpoints REST responsible for serving
quite a lot aspects of the application such as profiling but also administration
dashboard and so on.
Let’s focus on core, thus the endpoints in charge to handle the data treated by the
application.
There are three HTTP methods used to contact such endpoints REST:

1. GET : are hit to ask for specific data stored in the DB. Indeed there is some
POST methods involved to enrich some requests, but since this doesn’t fit
with REST specification, in future we’ll move such query towards a GET with
parameters.

2. PUT: used to modify some data present in the DB.

42

3 – Project Design

All this methods ask for Blob which are the actual data prepared for visualization.

43

Chapter 4

Deploy

“Currently, DevOps is more like a philosophical movement,
not yet a precise collection of practices, descriptive or prescriptive.”

- Gene Kim

44

4 – Deploy

4.1 Deploy
Once the system has been developed, it is time to build the production enviroment.
For this purpose, as mentioned in the introduction, we will use Docker.

4.1.1 Docker as a virtualization platform

Figure 4.1: Architecture of a virtualized system

Virtualization technologies got into the software industry to optimize physical
resources (breaking the old fashion way where to ensure isolation we had to buy
new hardware) allowing to run multiple operating systems on the same host that
essentially means that allows to run many applications in an isolated enviroment
on same host. But virtualization presents some drawbacks, mainly deriving from
the fact that virtualization is expensive.
First we have multiple kernel to deal with, and thus many operating systems.
For each operating system we add to our system, we have to allocate resources for
it.
Although we do not have physical hardware, we have virtual hardware, so each
machine will have its own virtual space, its own virtual RAM and so on as shown
in 4.1.
Even if we get many benefits from this approach, is still not the best choice we
can take nowadays. Docker is a very good alternative to the previous approach, it

45

4 – Deploy

keeps the benefits and eliminate most of drawbacks.
Docker is a virtualization platform that exploit Linux kernel features like cgroups
and namespaces for running applications in an isolated enviroment presenting the
following advantages:

• Lightweight: we do not have the issue to configure complex virtual machine
images hard to set up and hard to deploy

• Portable: Docker has images really small and we can use configuration like
Dockerfile to spin things up instantaneously on almost any system.

• Fast: we do not have to boot up an entire operating system and copy all the
files, which can be a tricky process, just to make our application running.

Figure 4.2: Architecture of a Virtualized system through Docker

One of the biggest benefit we can see in Docker is that it doesn’t make use of the
Hypervisor, that basically means that we do not have anymore separate kernels
on top. Docker is still using the same resources as the kernel host and exploits
namespaces and control groups to use such resources in a more efficient way.
Docker has a process that runs directly on the operating system, known as Docker
daemon which is responsible to manage Docker Images, Docker Containers as
well as many command line utility that comes with Docker. Docker Containers are
running instances of Docker Images that are nothing else than bundles ready to be
run.

46

4 – Deploy

The application that we deliver with such Docker Image basically run directly
on the host machine once we start a Docker Container. A Docker Container
is typically a process running in our host OS, and by using namespaces Docker
allocates segments of host OS resources as well as indicates how much of resources
a container can have by means of Control Groups.

Such images are built following a layered approach, thus an image is made up
by many tiers stacked on one another. An image is built by running a script called
Dockerfile, that actually gives instructions on how to build the Docker Image.
An example of Dockerfile (the one used for building the Parser Microservice
is reported in 4.1

1 FROM openjdk :8-jdk - alpine
2 ADD / target /parser -1.0 - SNAPSHOT .jar parser .jar
3 COPY /wait -for -it.sh /usr/wait -for -it.sh
4 RUN \
5 apk update && \
6 apk add ffmpeg && \
7 ffmpeg -version
8

9 RUN chmod +x /usr/wait -for -it.sh
10 ENTRYPOINT ["java", "-jar", " parser .jar", "-Xms =4G" , "-Xmx =5G"]

Listing 4.1: Example Dockerfile

As we can see it follows a predefined syntax that suggest the layered approach:

1. starts from a base image: the openjdk:8-jdk -alpine which provides the
enviroment on top of which we can run our application software.

2. our application .jar is added to our base image.

3. a shell script is run to configure third party software or plug-in necessary to
run our application. In this case the Parser Microservice relies on an external
software called ffmpeg, thus the RUN clause arranges the installation.

4. the last step is the ENTRYPOINT: defines the command that launches the
application software to execute when a Container is run.

Once the images are created, we can now create running containers from them
to make run our application. As mentioned before, Docker aims to automate
the deploy process providing a script to the Daemon that essentially defines the
rules to set up our virtualized enviroment: this script is written following the YML
declarative syntax and is called docker-compose. [10] Compose is thus a tool for
defining and running multi-container Docker applications within a context of same

47

4 – Deploy

Docker Host.
Docker Compose allows us to define multicontainer application called “stacks” and
to run them on a single Docker host o nel cluster; Docker defines stacks as linked
services groups sharing software dependencies which are orchestrated and scaled.
Docker Stack allows us to define many application configurations inside a file
called docker-compose.yml and to run them in an isolated runtime environment
managing them in centralized script.
With Compose thus, you use a YAML file to configure your application’s services
defined as scalable groups of containers.
Then, with a single command, you create and start all the services from your
configuration. Compose is basically a three-step process:

1. Define your app’s environment with a Dockerfile (as in 4.1) so it can be
reproduced anywhere.

2. Define the services that make up your app in docker-compose.yml so they
can be run together in an isolated environment.

3. Run docker-compose up to run your entire app.

In the following snippet we show a simplified version of docker-compose written
to automatically compose our system, from image building to user-defined network
definition:

1 version : "2.2"
2 services :
3 ingester :
4 build :
5 context : .\ ingester
6 dockerfile : Dockerfile
7 networks :
8 - service_network
9 environment :

10 - _JAVA_OPTIONS =- Dspring . profiles . active =prod
11 dns: 8.8.8.8
12 restart : always
13 depends_on :
14 - mongodb
15 - eureka
16 links :
17 - mongodb : mongodb
18 - eureka : eureka
19 command : bash -c "/usr/wait -for -it.sh --timeout =0 eureka :8761"
20

Listing 4.2: Example docker-compose

48

4 – Deploy

1 mongodb :
2 image : mongo: latest
3 container_name : db_container
4 restart : always
5 networks :
6 - service_network
7 depends_on :
8 - eureka
9 eureka :

10 container_name : eureka_container
11 image : jhipster /jhipster - registry : latest
12 volumes :
13 - host_path : container_path
14 environment :
15 - SPRING_PROFILES_ACTIVE = native
16 - JHIPSTER_SECURITY_AUTHENTICATION_JWT_BASE64_SECRET =xxx
17 - SPRING_SECURITY_USER_PASSWORD =xxx
18 - JHIPSTER_REGISTRY_PASSWORD =xxx
19 - SPRING_CLOUD_CONFIG_SERVER_COMPOSITE_0_TYPE = native
20 - SPRING_CLOUD_CONFIG_SERVER_COMPOSITE_0_SEARCH_LOCATIONS =file

:/ central - config /Ingester , file :/ central - config / Parser , file :/
central - config / Aggregator

21 restart : always
22 dns: 8.8.8.8
23 networks :
24 - service_network
25 networks :
26 service_network :
27 driver : bridge
28 ipam:
29 config :
30 - subnet : 10.0.0.0/16
31 gateway : 10.0.0.1

Listing 4.3: Example docker-compose

The docker-compose shows that we created three services in terms of Docker
Containers. We created

1. Service called Ingester: our microservice

2. MongoDB: the database

3. Service called Eureka: the service discovery

In the compose we specify for each service a bunch of instructions. The main ones
are:

49

4 – Deploy

• Where to build the image from: we have to specify the image or the
Dockerfile to build it.

• The restart policy: sometimes a container can go down due to many reasons,
when it happens we can specify a strategy to bring it up again.

• The network which the relative container will be attached to.

• A volume mapped to host filesystem to have persistence after some container
has gone down.

• The ports to expose towards the outside world.

With such mechanism we are not only able to build in a very easy way even very
complex applications, but we can deploy them just running the command

docker-compose up –scale ingester=n –scale mongodb=1 –scale
eureka=1

from the directory where is the compose file.
With the option

–scale <service_name>=<number_of_instances>

we are telling the docker daemon that we want to scale the service specified. By
default Docker scale one instance for each image. Docker compose presents a
limitation: it works only in the local Docker Host. The multi-container application
is deployed thus on a single machine limiting quite a lot the architecture features.
Docker extends its range also to multiple Docker Host distributed around the
Network including a tool called Docker swarm for natively managing a cluster of
Docker Engines called "swarm". Docker Swarm allows to broaden the arguments
discussed so far from Docker Host to a cluster of Docker Engines. This will be
discussed in future improvements section.

4.1.2 Set up the Jhipster-Registry
In our scenario we used a preboiled Docker image and set it up through enviroment
variables overwriting the default configuration as follows:

• SPRING_PROFILES_ACTIVE= native

• JHIPSTER_SECURITY_AUTHENTICATION_JWT_BASE64_SECRET=<secret_key_base64>

• SPRING_SECURITY_USER_PASSWORD=<user_password>

50

4 – Deploy

• JHIPSTER_REGISTRY_PASSWORD=<service_password>

• SPRING_CLOUD_CONFIG_SERVER_COMPOSITE_0_TYPE=native

• SPRING_CLOUD_CONFIG_SERVER_COMPOSITE_0_SEARCH_LOCATIONS=<list_of_paths>

Actually with these we are simply giving the basic security configuration and telling
the cloud configuration server module to run in native configuration that means to
store and retrieve servers configuration files in the local file system.
Alternatively the Configuration Server can be set to Composite to retrieve files
from a remote repository such as Git.
Once we run the image as a Docker Container we get the service available and
ready to work.

51

4 – Deploy

4.1.3 Proposed solution for deployment
Following the requirements, we have to set up a microservices-based pipeline and
deploy it by Dockerizing the various services needed. In figure 4.3 we can see the
Application Deployed.
We can see that there is a user-defined network with subnet range address

Figure 4.3: Deploy Architecture

10.0.0.0/16.
Every services are attached to such network to let containers communicate each
other.
Containers expose ports but those are visible only from inside the user-defined
network called service_network.
The Database, MongoDB, exposes the port 27017 to be reached out by microservices.
Each microservice exposes the port 5701 because Hazelcast members have to
communicate in order to join into a Cluster.
The Hazelcast Discovery is performed through Eureka Service Discovery embedded
into the Jhipster-Registry.
The Jhipster-Registry exposes only the port 8761 and uses this port both for Service
Discovery and for Configuration Server (the default port for the configuration server
used - Cloud Config - would be the 8888).
We can think to expose the port 8761 of Jhipster-Registry to the outside world
since it offers also a Dashboard where is possible to monitor what’s happening with
service discovery.

52

4 – Deploy

The only port we must expose to the outside world is the 80 port of the Aggregator,
as it exposes some REST Api.
This is a partial solution as the microservice should not expose ports, but there will
be a gateway like Jhipster-Gateway where pass all the ingoing and outgoing traffic.
The Gateway can be a Single Point of Failure, but present some advantages like
centralizing cross-cutting concerns for easier maintenance and acts as decoupling
point between the application and the outside world, this would be also a module
implementing load balancer policy, as the aggregator service is scaled out, to
allow a fair spread of traffic incoming from client application among all aggregator
instances.

Figure 4.4: Deploy Architecture II

Also the implementation of Apis and Gateway Configuration will be discussed
in section future improvements.

53

Chapter 5

Alternative Solutions

"If you think good architecture is expensive,
try bad architecture."

—Brian Foote

54

5 – Alternative Solutions

5.1 Kafka as Message Broker
In the early design stages, when defining the architecture have been explored some
alternative solutions. The choices were still on Event-Driven solutions but relying
on a technology called Kafka introduced in section 2.1.5 instead of Hazelcast.
In the architecture we will have 4 Microservices involved and the kafka cluster
responsible for the communication acting as Message Broker.

Figure 5.1: Architecture with Kafka

The architecture is still similar to the one presented in section 3.1: we can find

• An ingester: this time the ingester is not scaled: it acts as a bare consumer
which fetches the data from the SFTP server and push it up into the relative
Kafka Topic.

• A RawParser: There is a first parser which hold the parsing logic of the 3.2
in the presented architecture. It handles indeed the RawEntity and turn them
into Entity. This Microservice is scaled, we will have thus multiple instances
of it.

• A Parser: Is the second phase of parsing, is the microservice responsible to
process the Entity in order to get Item. Also this microservice will be scaled
and organized as a scaling group.

55

5 – Alternative Solutions

• An Aggregator: Is the last stage. Is the corresponding microservice of 3.4.
Also this microservice will be scaled.

The data flow from one stage of the pipeline to the next through kafka topics1 The
microservices instances are organized as a Consumer group with respect to its topic
of interest. We will end up to have three topics.
Each Topic is responsible to manage a different type of data model and the

Figure 5.2: Pipeline with Kafka as Message Broker

microservices act as Producers and Cosumers with respect to such Topics.
Producers publish data to the topics of their choice.

The producer is responsible for choosing which record to assign to which partition
within the topic, in our solution is still valid that data comes along fragmented
and out of order, so to guarantee that the Parsing for the same data is done by the

1[7] A topic is a category or feed name to which records are published. Topics in Kafka are
always multi-subscriber; that is, a topic can have zero, one, or many consumers that subscribe to
the data written to it.
The Kafka cluster durably persists all published records—whether or not they have been con-
sumed—using a configurable retention period. For example, if the retention policy is set to two
days, then for the two days after a record is published, it is available for consumption, after which
it will be discarded to free up space. Kafka’s performance is effectively constant with respect to
data size so storing data for a long time is not a problem.

56

5 – Alternative Solutions

same thread, we have to exploit Topic partitions2.
Producer will decide target partition to place any message, depending on the
partition id that must be specified within the message. So we have to associate fairly
a set of Agent_Id+Content_type to each partition. Consumers label themselves
with a consumer group name, and each record published to a topic is delivered to
one consumer instance within each subscribing consumer group.
Consumer instances can be in separate processes or on separate machines.
If all the consumer instances have the same consumer group, then the records will
effectively be load balanced over the consumer instances.
If all the consumer instances have different consumer groups, then each record will
be broadcast to all the consumer processes.
Partition are not dynamically created, so we have to choose the number of partitions
that we want and then Consumers can be created dynamically to be associated to
partition accordingly. We put Consumers to listen to specific partions.
Each partition manage a certain number of Key in relational database meaning
(which for instance at Entity level the key is made out of Agent_Id+Content_type)
so the producer will send data to a specific partition of a specific topic, depending
on the Key.
A single consumer is attached to one partition. That consumer is thus responsible
for processing all data belonging to that set of Key since within the same consumer
group each partition will be assigned to one consumer only. We will have three
possible scenarios:

1. The consumer group has fewer instances than the number of partition: this
will lead to one consumer being assigned to multiple partitions

2A Partition is an ordered, immutable sequence of records that is continually appended
to—a structured commit log. The records in the partitions are each assigned a sequential id
number called the offset that uniquely identifies each record within the partition.

57

5 – Alternative Solutions

2. The consumer group has same number of topic partitions, then partition and
consumer mapping will one to one.

3. if number of consumer is higher than number of partition then we are wasting
resources because some of consumer will not actually consume anything.

This schema is followed for every topic and the relative Producers and Consumers.

58

5 – Alternative Solutions

5.1.1 Pros and Cons

Let’s show the advantages and disadvantages of comparing the architectures pre-
sented concerning the goals to achieve and the reasons why it has been adopted
the Architecture exploiting Hazelcast.

Scalability

Comparing the two solutions is clear that Hazelcast provides a higher degree of
flexibility to our architecture. In fact, with Hazelcast the scaling factor is not
bounded by anything. Using Kafka, the scaling factor inside a single scaling group
is bounded by the number of partitions chosen during development.
The number of different partitions for a given Topic is an upper bound for the
number of consumers we can deploy.
Moreover, if we use Kafka the complexity to coordinate many SFTP Client leads to
an architecture where becomes harder to scale the ingester heading to a Bottleneck
and Single Point of Failure.

Maintenability

As the project grows in size we might be in the situation where we need to add
more content types to our project: while in the kafka solution this growth will
impact heavily on the application, in the one presented using Hazelcast will be
painless, for example content_type are hardwired to partitions and this will impact
whenever we’ll have the need to add more content_type.
Kafka is a service separated from our pipeline and works following a Server/Client
interaction. This introduce in our architecture one more element that needs to
be maintained separately. Moreover Kafka makes use of a service discovery called
Zookeeper and this would have implied to discard Jhipster-Registry and use another
technology also for Configuration Server. The Architectural components will be
more with a Kafka architecture that would have probably been harder to maintain.

Fault Tolerance

From this point of view Kafka offers persistence unlike Hazelcast that has been
is thought as Cache in memory. If the Kafka goes down, when it reboots all the
record enqueued are still there because kafka relies on very efficient persistence
policies based on .log files. With Hazelcast we do not have such feature and
the persistence needs to be enabled by using specific interfaces that allow the

59

5 – Alternative Solutions

implementation of write-through 3 policies.

5.2 Hazelcast solution: Scaling with finer granu-
larity

The architecture presented so far suffers from a certain degree of coupling between
the pipeline stages that we cannot get rid of.
In fact, despite the effort to decouple our architecture, pipeline stages are somehow
coupled with the fact that they have to work on the same data models creating
a dependency between various stages, which means that our services are not
completely loosely coupled.
We can think to organize the architecture not to have microservice responsible for
serving a single pipeline’s stage, but responsible for managing all steps concerning
a specific content_type. The architecture will be more loosely coupled and with
an higher modularity’s degree. If we consider the architecture depicted in 5.3,

Figure 5.3: Architecture

3Write through is a storage method in which data is written into the cache and the corresponding
main memory location at the same time. The cached data allows for fast retrieval on demand,
while the same data in main memory ensures that nothing will get lost if a crash, power failure,
or other system disruption occurs.

60

5 – Alternative Solutions

we can notice that a lot of complexity has been added to our application. First
of all we are now dealing with as many queues as many Content_types which
number might grow over the time. Moreover, in the 5.3 is not explicit anymore the
elaboration pipeline.
We will end up to have only 2 microservices

• 1 Ingester Microservice: we will have one ingester very similar to the one
presented in 3.2

• Many Parser Microservices: we will have as many Parser Microservice
as many content_types. Each Parser Microservice is responsible to parse,
process and aggregate Entity with the same Content_type.

In fact, the pipeline is totally contained in every Parser instance (the rightmost part
of 5.3). In this architecture the ingester acts exactly as in the solution developed:
it’s responsible for fetching the data from the SFTP server and performs a first
elaboration in order to get the content_type of the current Entity.
Once we get the content_type, the Ingester will forward the Entity towards the
relative queue.
For each and every queues we will have a service consuming the data pushed into
it and responsible to perform all the subsequent steps of the pipeline (Parsing and
Aggregation). We will have many instances of such service as it will be scaled out.
In this scenario we will end up to have an ecosystem where each microservice is
responsible for treating only one specific kind of data, making possible to extend
the application by simply adding a new microservice whenever we add new kind of
device.
From the technology point of view we can think to still use Hazelcast and have a
single Database within the same scaling group where all the instances access to the
same database, in a similar manner we did in the solution developed. In this way
we can keep the goals we achieved with the developed solution and without having
the limits of that architecture.
We can think of this architecture as an extension and improvement of the architec-
ture developed.

61

5 – Alternative Solutions

5.2.1 Pros and Cons
Loosely coupling

If we look at this architecture we can notice that the microservices can be developed
in different programming languages and by different teams without being strictly
bounded one another.
Each microservice can be deployed independently and is almost self consistent with
respect the application purposes.
We can find a lot of advantages in this architecture, but in order to implement it
there is a lot of complexity that needs to be managed, we are adding a potentially
insane number of microservices that need to be developed, deployed and maintained
individually.

Scalability

From the scalability point of view this architecture is completely different from the
one developed.
We are not scaling anymore on a single pipeline stage, but we can scale on a
self-consistent service that handles many stages of processing, but responsible for
handling a single kind of data.
Such Architecture allows us to react load variations in a smarter way, in fact, we
can bring up and scale out only the microservices responsible for serving the data
types present at moment notice.
Such extremely flexible system allows to minimize wasting resources and to maximize
the the efficiency.

Maintainability

The maintainability is affected by two factors: In a first instancewe have in fact
a loosely coupled system, due to this property we’re able not only to manage
versioning issues easily but we can evolve our system without affecting what has
been already done.
This loosely coupling allows also to build teams around services and make them
responsible for the entire lifecycle of a particular application’s service.
The solution obviously adds a lot of complexity, indeed the number of service
requested depends linearly on the number of content types which could easily blow
up.
In order to develop, deploy and to deal with such architecture we have to deal with
its intrinsic complexity which ends up to be more expensive.

62

Chapter 6

Conclusion

“It is not the strongest of the species that survive,
nor the most intelligent,

but the one most responsive to change.”
—Charles Darwin

63

6 – Conclusion

6.1 Results achieved
The architecture that has been implemented addressed some issues about scalability,
high availability and maintenance.
The architecture presented doesn’t respect precisely all the properties a Microser-

Figure 6.1: Overall Architecture

vice Architecture should have due to the specific nature of the application, but
shows that Microservices fit or can be adapted in many use cases very different
from each other.
In the context of data pipelines, it is plausible to think that each pipeline’s stage
would require a different amount of resources. During the design process, the stages
are identified to be the elementary functional units: making them independently
deployable units allows us to allocate the right amount of resources for each of
them as well as giving the chance to scale horizontally at such granularity level.

64

6 – Conclusion

The use of Jhipster-Registry allows to centralize Service Discovery and Configura-
tion Server uniforming as much as possible the technologies and easing maintenance
aspects. The configuration server centralizes all the configuration files, so that
when some configuration needs to be changed, it can be done in a single location
without going around looking for the right file to change.
The High Availability of the application is guaranteed not by redundancy but
thanks to its high scalability that ensures a constant level of computational power
even when the application is stressed out.
The fault tolerance is guaranteed by fallback mechanisms implemented along with
Hazelcast Clusterization, that keeps all data structures backed up so even if some
nodes goes down, the behaviour of the system is not affected. We can see in
6.1 the Architecture of the system developed, it highlights the topology of the
system in terms of scaling groups (equivalent to Docker services) and architectural
components like the Databases, the jhipster-Registry and the data source.

6.2 Future Improvements
6.2.1 Docker Swarm
As discussed in 4.1, our deploy can be extended to multiple Docker Host in order
to exploit the architecture’s potentialities.
Docker Swarm is a tool to manage and orchestrate cluster of Docker Hosts called
swarm. a A swarm consists of many Docker hosts running as a cluster and act as
managers (to manage membership and delegation) and workers (which run swarm
services). A given Docker host can be a manager, a worker, or perform both roles.
When defining a service we set parameters which in somehow form a state of the
service (number of replicas, network resources , storage resources available to it,
ports the service exposes to the outside world, and so on), once we run the service
Docker works to keep such state.
If some Docker Host node goes down, Docker schedules that node’s tasks on other
nodes where a task is defined as a running container which is part of a swarm
service and managed by swarm manager.
Deploying our application through Docker Swarm we can exploit thus a swarm of
docker hosts to exploit a geographical distributed architecture.

65

6 – Conclusion

6.2.2 Hazelcast Persistent queues
One of the main criticalities in the system developed is that the communication
is performed through queue data-structures managed by a distributed in-memory
cache. This Architecture is robust with respect to node failures but if the system
goes down entirely the data present into the queues will get lost when the system
reboots, this is because is not enabled the persistence on the queues.
Hazelcast allow to rise events on data structures that can thus be backed up in a
database to enable persistence and make the system more robust to failures.
This improvement enhances robustness at the cost of performance.

6.2.3 Monitoring system
A possible improvement would be to add a server responsible to collect informations
on how the system is behaving.
This server should monitor Hazelcast to see how the queues are growing and
optionally establish some healthcheck mechanism towards the microservices by
means of the service discovery. Such server will expose REST Api in order to
provide such infomations to a client application that allows interaction with the
system. The client application should be a kind of Dashboard that can be thus
exploited also to react to critical situations and allow a easy deploy within the
enviroment.
To achieve this, such monitoring server has to commmunicate with the Docker
Engine Api that docker daemons exposes allowing to dynamically create, destroy,
run, start and stop containers. We can think to design the system in order to
allow the system administrator to use such administration tool not only to provide
resource availability to the system, ma also to set up threshold and auto-scaling
mechanisms to be automate the system as much as possible.

66

Bibliography

[1] Wikipedia. Data Lake (cit. on p. 2).
[2] Garrett Alley. What is a Data Pipeline? Nov. 2018. url: https://www.

alooma.com/blog/what-is-a-data-pipeline (cit. on p. 4).
[3] Kyle Brown. Beyond buzzwords: A brief history of microservices patterns.

Ed. by IBM. [Online; posted November 30, 2016]. Nov. 2016. url: https:
/ / developer . ibm . com / technologies / microservices / articles / cl -
evolution-microservices-patterns/ (cit. on p. 5).

[4] Wikipedia. Connascence. url: https://en.wikipedia.org/wiki/Connasc
ence (cit. on p. 7).

[5] Martin Fowler. Microservices. Ed. by martinFowler.com. [Online; posted
March 25, 2014]. Mar. 2014. url: https://martinfowler.com/articles/
microservices.html (cit. on p. 8).

[6] Wikipedia. CAP Theorem (cit. on p. 17).
[7] Kafka Documentation. Kafka. url: https://kafka.apache.org/ (cit. on

pp. 18, 56).
[8] Mongo Documentation. GridFS. url: https://docs.mongodb.com/manual/

core/gridfs/ (cit. on p. 22).
[9] Hazelcast Documentation. FencedLock. url: https://docs.hazelcast.org/

docs/3.12-BETA-1/javadoc/com/hazelcast/cp/lock/FencedLock.html
(cit. on p. 31).

[10] Docker documentation. Overview of Docker Compose. url: https://docs.
docker.com/compose/ (cit. on p. 47).

67

https://www.alooma.com/blog/what-is-a-data-pipeline
https://www.alooma.com/blog/what-is-a-data-pipeline
https://developer.ibm.com/technologies/microservices/articles/cl-evolution-microservices-patterns/
https://developer.ibm.com/technologies/microservices/articles/cl-evolution-microservices-patterns/
https://developer.ibm.com/technologies/microservices/articles/cl-evolution-microservices-patterns/
https://en.wikipedia.org/wiki/Connascence
https://en.wikipedia.org/wiki/Connascence
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://kafka.apache.org/
https://docs.mongodb.com/manual/core/gridfs/
https://docs.mongodb.com/manual/core/gridfs/
https://docs.hazelcast.org/docs/3.12-BETA-1/javadoc/com/hazelcast/cp/lock/FencedLock.html
https://docs.hazelcast.org/docs/3.12-BETA-1/javadoc/com/hazelcast/cp/lock/FencedLock.html
https://docs.docker.com/compose/
https://docs.docker.com/compose/

	List of Figures
	Acronyms
	Introduction
	The Project
	Overall
	Ingester
	Parser
	Aggregator

	Pipelines
	Why Data Pipelines

	Microservices
	Distribution means communication
	From Monolith towards Microservices

	Goals to achieve

	State of the art
	Technologies involved
	Spring Framework
	Jhipster-Registry
	MongoDB
	Hazelcast
	Kafka
	Docker

	Project Design
	Software Purpose
	Infrastructure Servers
	The Data

	Ingester
	SFTP Client
	The Model: RawEntity
	Parser Engine
	Hazelcast Producer
	Ingester: Hazelcast synchronization
	Fallback

	Parser
	The Models
	Hazelcast Consumer
	Parser Engine
	Parser: Hazelcast Synchronization
	Hazelcast Producer
	Fallback

	Aggregator

	Deploy
	Deploy
	Docker as a virtualization platform
	Set up the Jhipster-Registry
	Proposed solution for deployment

	Alternative Solutions
	Kafka as Message Broker
	Pros and Cons

	Hazelcast solution: Scaling with finer granularity
	Pros and Cons

	Conclusion
	Results achieved
	Future Improvements
	Docker Swarm
	Hazelcast Persistent queues
	Monitoring system

	Bibliography

