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CHAPTER 1

Introduction

In the past century the electronic systems have become essential for the technological evo-
lution and the improvement of the human lifetime. From the telecommunication to the
aerospace field, the electronic systems practically are the heart of the modern word. In the
last years, the challenge has been to design and commercialize smart devices, products with
a limited size and nevertheless able to perform several operations with high performance and
low power consumption. The main obstacle to the implementation of these devices nowadays
consists in the size scaling limits imposed by the technological processes unfit to pattern to
small features in the silicon wafers. Consequently, although until 90s the size scaling had per-
mitted to improve enough the digital circuit clock frequency, in last decades the impossibility
to further scaling as much as needed led to a different strategy: to increase the number of
cores promoting parallel computations and increasing the number of operations executable
in a single clock period. This was the strategy that permitted the development of multi-cores
devices, introduced at the beginning of the 21th century. Once the interest had passed to
the parallel execution instead of size scaling, multiple-thread programming has been added
to multi-core systems, to further improve modularity and efficiency simply substituting the
single process with a set of threads working with specific resources. These architectures are
also known as SIMD: Single Instruction Multiple Threads.
Again the scientific challenges and the human expectations make these devices unsuitable.
Nowadays, in the years of spatial exploration and robotics, in which the boundaries of human
scientific domain constantly expand, the performance improvement needs to be combined with
the capability to elaborate a huge amount of data. Let’s think for example at the number of
information that an autonomous vehicle core has to acquire and elaborate. This led to favour
the usage of GPUs against CPUs, since the first implicitly consist in an array of parallel
cores and are designed to treat huge set of data. Finally, in order to provide to the designer
enough flexibility, the GPUs has been soon substituted by the GPGPUs (General Purpose
Graphic Processing Units). An example of this device is the FlexGrip, analysed in detail in
the chapter 3.
Beyond the necessity to provide high performance on multiple data computation, it’s obvious
that also accuracy is a key point in the design step. Designers must be able to implement
hardware or software techniques able to harden the device, in this case the GPGPU, accord-
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ing to the different type of errors that can occur. From this perspective, it’s essential to be
aware of the error sources in complex digital electronic systems, as a GPGPU. The errors
that take place in this type of systems can be due to internal causes or external ones.
In the first category it’s possible to identify, for example, the data hazards, errors due to
an incorrect synchronization among resources trying to access to the same memory location,
provoking data corruptions or mistaken operations (except for the case in which both are
reading the location). Practically, the resources enter in competition and the final result
depends on which one is the fastest, e.g. if one tries to write and the other to read, the
read data could be the updated one or not depending on the order of operations. Another
type of hazard is the so called control hazard, an error that occurs in pipelined systems when
the branch predictor selects the wrong path so, when the actual branch condition arrives,
the entire pipeline must be emptied in order to follow the correct execution path. Differ-
ently from the data hazard, the control hazard probably will not produce an output error but
certainly causes a significant performance degradation. Still concerning the internal error
sources, other cases are: glitches, spurious events due for example to cross-talk phenomena;
signal skew, e.g. clock skew due to improper clock distribution that could produce violation
of the set-up and hold times of the storage elements; metastability, condition occurring when
a storage element samples a signal in the transition region (neither digital 0 nor 1) so that the
final stored value is random and stable only after a certain time interval; electromigration, a
phenomenon that occurs in connections in which an high DC current flows, provoking an high
current density that causes creation of metal bumps (possible short circuit with neighbour
connections) or voids (that collapse to open circuits).
As previously mentioned, beyond internal error sources, also the external ones are significant,
where external stays for environmental. For sure the environment represents an error source
and an evident proof is the electromagnetic disturb. Some of the most critical environmental
error sources nowadays are the so called radiation effects, and more in details the single event
effects (SEE).According to this, in the following sections SEEs will be analysed in details,
focusing on the SEUs.

1.1 Single Event Effects

The single event effect (SEE) is a phenomenon that occurs when an ionizing particle is able
to transfer enough charge to change state or damage the target component. These ionizing
particles can be present in:

• space, e.g. in cosmic rays (GCR) or solar events (generating solar energetic particles,
SEPs);

• atmosphere, due to cosmic particles that collides with the atmospheric atoms, generat-
ing cascades of protons or neutrons (these lasts cannot directly generate SEUs but the
nuclear reaction by-products of neutrons and silicon can).

• device, due to radioactive impurities in component materials, such as package, emitting
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alpha particles.

More in details, SEEs are generated by a single charged particle that passes through a semi-
conductor material and, if the linear energy transfer (LET, index of the energy transferred
to material), overcome the critical energy of the device itself [1].

Figure 1.1: SEE generation [1].

The main problem is that the critical energy decreases with the size scaling described, as
know, by the Moore’s Law (in fig. 1.2), that predicts a 50% reduction of the transistor area
each 3 years . This is the reason why the SEEs represent a critical problem from around 1990
on, when the technological node scaling was enough to permit to ionizing particles to easily
overcome the critical energy barrier.

Figure 1.2: Transistor size Moore’s Law.
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Regarding the SEE effects, this can be divided into three main classes [2]:

• soft errors, typically causing bit flip in digital devices (called single event upsets, SEU)
or a transient in an analog circuits (called single event transient, SET). These are
the most frequent in the terrestrial environment, due to alpha particles, neutrons or
protons. Different studies demonstrate that the most vulnerable components are volatile
memories (e.g. SRAM, DRAM, etc.) and complex devices (e.g. FPGA, uprocessors,
GPGPU, etc.). When the critical charge is very low, the probability to induce error in
more than one bit increased, generating the multiple bit upset (MBU). These soft errors
can be recovered with particular protection or mitigation strategies.

• firm errors, that produce temporary corruption of the device functionality due to a
SEE. In this condition, the recovery is possible only by means of a reset of the entire
system. An example is the single event functional interrupt (SEFI).

• hard errors, that occurs when the functionality of the device is permanently corrupted
(no possible recovery). Examples are the single event induced hard error (SHE), tran-
sistor is locked in a permanent logic state (due to oxide damaging), or the single event
latch-up (SEL), that cause an high current flow during latch-up state, or finally the
single event burn out (SEB), occurring in high voltage devices. These errors can only
be corrected replacing the damaged units.

1.2 Single Event Upsets

As discussed in the previous section, the SEUs are non-destructive soft errors that produce a
bit-flip in digital circuits, and in particular in memory locations (in the aerospace applications
the critical memories are the cache L1 and L2). This means that there are two way in which
a SEU can be generated:

• due to collision of ionizing particles with the memory cells;

• due to a SET signal that is latched.

In both cases the consequence is the storage of a corrupted data that could create or not
output errors. The key point is to understand which strategies can be adopted to eliminate
or minimize the effect of SEUs. These strategies belong to the so called radiation hardening
design and could be classified in physical strategies and logic strategies [3].
Regarding the physical strategies, some possibilities are:

• to substitute the CMOSs with BJTs, since are more robust with respect to the radiation
effects;

• to embed MRAM (magneto-resistant RAM) [19];

• package shielding, to limit radiation effect (not so efficient in the aerospace environ-
ment);
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• to substitute DRAM (based on capacitors) with SRAM;

• to use substrate with a wide band-gap (e.g. SiC or GaN);

• to realize circuits on insulating materials instead of semiconductors (e.g. SOS or SOI).

Vice versa the logic strategies, some possibilities are:

• modify the internal architecture of the flip-flop, even if this means to increase size or
power consumption [4].

• modular redundancy (spatial or temporal) with comparison [22, 23, 24];

• EDAC, so correcting code e.g. parity bit, Hamming code [7], convolutional codes [8],
etc.

• scrubbing techniques [9, 10], to restore the memory contents periodically;

• watchdog timers, to have the possibilities to exit from possible forbidden states.

Furthermore, the techniques can be divided in hardware and software techniques. Obviously,
there is not a golden hardening technique since each one impacts: performance, area and
power consumption. This implies that the radiation hardening design is always a trade-off
between hardening and performance degradation.



CHAPTER 2

Related Works: Injections, Tests
and Hardening

The development of safe-critical applications and, consequently, the necessity to guarantee a
significant tolerance to faults led to develop validation and design techniques able to harden
the system against SEEs. In both cases, several solutions can be taken into account, each
with specific advantages and constraints. In this chapter a brief introduction of the main
validation techniques and hardware- software-based design techniques have been provided.
Furthermore, a description of the resilient load and store instruction optimization, developed
by the Universidade Federal do Rio Grande do Sul (UFRGS), has been provided.

2.1 Fault Injection Platforms

The fault injection procedure represents the first step for the verification and validation
of those systems designed to work in a radiation harsh environment, i.e. the aerospace
application, or in safety-critical conditions. Validation in these cases require the analysis of
the system under test when it is affected by faults. The two main strategies in this optics
results to be the:

• Simulated Fault Injection (SFI);

• Emulated fault injection.

The SFI solution is based on simulations of the virtual design (VHDL) of the target sys-
tem, e.g. using tool as Modelsim (used as simulation tool in this work). Consequently, a
significant advantage of this verification strategy is that it is performed in the design steps,
before synthesis, providing to the designers the possibility to efficiently test several solutions
and hardening techniques on the virtual prototype of the final application. As discussed in
[13], the SFI can be implemented using proper simulator commands, e.g. to inject bit-flips,
otherwise modifying the hardware at different level of abstractions: introducing saboteurs
(units injecting faults) or mutants (behavioural corrupted hardware units). This strategy is

13
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widely used for different type of systems: high-speed LAN [11], CPUs [12], safety-critical em-
bedded systems [13] and also quantum circuits [14]. The main drawbacks is the huge amount
of simulations that must be performed in order to completely characterize the system influ-
enced by faults. This depends on the number of fault-sensible hardware components, and
consequently on the architecture complexity, but also on the complexity of the application.
In fact, the wider is the execution time the higher is the number of cases to verify, since faults
can occur in a larger time interval. In order to limit the number of simulations, the typical
solution is to identify the software-hardware critical units [12], limiting the so called fault
space and so the number of possible faulty conditions. This is the same goal of this thesis,
implement a monitoring system that, providing detailed information about the performance
of each module and the memory accesses, permits to identify the hardware critical modules
to reduce the number of actual simulations necessary to validate the GPGPU architecture.

Vice versa, the emulated solution is based on injections on an implemented system pro-
totype, e.g. on an reconfigurable device such as FPGA. This strategy can be implemented
both with instrumentation at different levels (RTL, gate, physical) [15] or reconfiguration
[16]. Obviusly, considering that this solution requires a physical implementation, in this case
the hardware and performance overhead must be taken into account. With respect the sim-
ulated versions, the emulated one permits to reduce the validation time.

2.2 Radiation Test

The radiation test is an additional validation technique that, with respect to the fault injec-
tion platforms discussed in section 2.1, permits to obtain analysis results closer to the realistic
behaviour of the system working in a radiation harsh environment. This is due to the fact
that the fault injection platform strategy is based on a certain number of simplifications,
one of these the injection of specific faults, e.g. memory bit-flips. Vice versa, the radiation
tests permit to more realistically monitor the radiated device without limiting the possible
type of faults under analysis. Nevertheless, the radiation test has a non-negligible drawback:
the difficulty to analyse the error propagation and cause in the system, due to the fact that
the error is visible only when an output mismatch occurs or when the functionalities are
corrupted. Another disadvantage is that this type of test, for sure more realistic, can be per-
formed only on a physical device and, consequently, not in the design steps (as the simulated
fault injection).

The radiation test is performed emulating the terrestrial or space radiation environment,
according to the target application. In the first case a beam of alpha particles, neutrons,
protons is used while in the second one an heavy ion beam. An alternative to the ion beam is
the gamma rays beam [17], that represents an easier and cheaper technique. In some tests for
space applications, also electron beam obtained by means of electron linear accelerator are
used [18]. Typical beam energy is around tens of MeV while the typical flux is several orders
of magnitude higher than the realistic one, in particular for terrestrial application, permitting
to perform in few hours an experimental test equivalent to several years of operations for the
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device under test. Radiations test has been used both to investigate memory elements [17],
[19] and complex systems as FPGA and CPU [20], [21].
The radiation test is led properly tuning the ion or particles beam, checking also the uni-
formity of the beam itself, and then irradiating the entire device or only a portion of it.
Depending on the type of ion beam the device must be prepared in a different way, e.g. using
alpha particles it’s essential to remove the package from the chip, since can act as a shield.
Three different types of radiation tests, as described in [21] are:

• Static, the device is not active, e.g. in the memory radiation test the memory is not
accessed during the radiation time;

• Semi-static, the device is partially active, e.g. in the memory radiation test the memory
is continuously read;

• Dynamic, the device is active, e.g. in the memory radiation test the memory is accesses
as in the typical usage.

During the test, in order to provide an automated monitoring of the device functionality,
the system under test is typically connected to a computer as isolated as possible from the
radiated space.

2.3 Hardening Design

It’s evident that the fault injection platform and radiation test analysis are simply able to
provide information about the effect of faults in the target application, without guaranteeing
any hardening. In fact, these are investigation techniques. Obviously, there is also the ne-
cessity, as briefly discussed in section 1.2, to implement in the design step specific hardening
strategies, from physical level to the logic one. Concerning complex systems and in particu-
lar GPGPU, the most common strategies can be classified in two categories: hardware and
software solutions. The first ones regard modifications and optimizations of the hardware
units, while the second ones typically regard optimizations of the instructions set. In the
following section two radiation hardening strategies will be analysed more in details: Triple
Modular Redundancy (TMR) and a modified version of the Load and Store instructions to the
global memory, implemented by the Universidade Federal do Rio Grande do Sul (UFRGS)
and analysed using the developed monitoring system in ch 5.

2.3.1 Triple Modular Redundancy

The TMR is based on the concept to exploit redundancy in space (physical redundancy) and
in time (sampling the signal in different time instants in the same clock cycle) and then use
a majority voter circuit in order to provide the correct output and, if properly implemented,
to communicate to the control block an error detection. Obviously, being the majority voter
a logic circuit that generates at the output the values most repeated among the inputs, this
system works with two assumptions:
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• only one of the three modules or samples is faulty;

• the majority voter is insensible to faults.

Obviously both assumptions are not realistic and the voter results to be the weakness of the
TMR strategy [22]. A general block description of the TMR technique is the one shown in
fig. 2.1.

Figure 2.1: TMR block diagram [23].

It’s possible to notice that the TMR block it’s able to detect the error and, under the as-
sumptions previously described, to provide the correct output, but is not able to recover the
faulty module, at least without adding a proper feedback unit able to identify the faulty
module and correct the error. The logic circuit of the voter and the error detector can be
easily obtain using the standard digital circuit design techniques, e.g. Karnaugh map [23].
The TMR technique can be applied at different levels of abstraction, from the gate level to
the module level. The main drawback of the TMR is that, as regard the spatial version, it
produces a hardware overhead of 200% if applied to the entire system. Therefore, in both
spatial and temporal version, the complexity and the added hardware produce a significant
performance degradation. In order to limit these effects, the general solution is to use the so
called selective TMR [24]. This solution requires the identification of the resources most sen-
sitive to faults and the implementation of the TMR technique just for these modules. There
are several methods to identify these modules, from the probabilistic analysis to a details
analysis of the performance when the system is affected by faults (e.g. by means of simulated
fault injection platform). In this optic, this thesis will be oriented to implement a monitoring
system able to provide additional information that can be useful to identify the modules more
sensitive to faults and also to analyse the performance degradation caused by the hardening
techniques. Obviously, there is also the possibilities to merge different hardening techniques
in order to take advantages of different strategies, e.g. TMR group coding method [25] or
Scan-chain-based Multiple ERror TMR (SMERTMR) [26].
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2.3.2 Software Hardening and Resilient Global Load/Store Instructions

Typical software hardening techniques are based on the Duplication with Comparison ap-
proach, consisting in duplicating the entire instruction set and compare the output results
in proper time instant to check the convergency between the two identical operations. This
obviously leads to a significant performance penalty. Analysing the single instructions, the
ones introducing the highest latency are related to the accesses to the global memory, both in
reading and writing modes. From this concept, it has been developed the resilient load and
store instruction optimization, which aims to reduce the performance degradation introduced
by the global memory accesses. In order to do this, a simple software hardening technique is
not sufficient, but also hardware modifications must be taken into account. More in details,
the resilient instructions implementation has required the optimization of the binary code,
and as a consequence of the decode unit, but also of the write and read units, that accesses to
the global memory. The resilient strategy is still base on duplication technique. In particular
the idea is to work with a copy of the used registers. This implies that both resilient load
and store work with two registers: the original and the replica. More in details:

• the resilient load substitutes the duplicated global memory load with a single load from
the global memory and a move instruction to copy the loaded value in the register
replica.

• the resilient store duplicates the number of store instruction checking the coherency
between the original and replicated code in both source and destination locations.

Analysis on this strategy show a significant reduction of output mismatch errors (also called
SDC) and execution errors (also called DUE), but with performance degradation (around
5-7%) and area overhead (around 0.15%).



CHAPTER 3

Background: FlexGrip GPGPU

The FlexGrip (FLEXible GRaphIcs Processor) is a CUDA binary-compatible open-source in-
teger GPGPU, based on the NVIDIA G80 architecture and design by a group of researchers
of the Electrical and Computer Engineering Department of the Massachusetts University [5].
More in details, this architecture has been optimized for FPGA implementation, to overcome
limits of the vector processors. In fact, although both GPGPU and vector processors provide
parallel processing capabilities, the first permits to increase the possible number of threads
simultaneously executed, optimise memory accesses and implement the conditional control
mechanism in hardware, significantly simplifying the CUDA model. In this chapter the Flex-
Grip architecture and functionality will be analysed deep in details in order to provide a
background knowledge for the next analysis.

3.1 Instruction Hierarchy

A typical GPGPU architecture is the one in fig. 3.1. As shown, the GPGPU is made of
an array of streaming multiprocessors (SM), each composed of a certain number of scalar
processors (SP). Thanks to this type of hierarchical architecture, the device is able to execute
the demanded task in a SIMD form (Same Instruction Multiple Data), with the different SPs
that, inside the same SM, execute the same thread, but handling different data. Vice versa,
the SM is designed as a SIMT processor (Single Instruction Multiple Threads) due to the fact
that, inside each SM, the same instruction is parallelized among the different SPs.

In order to optimize the parallel instructions execution, an instruction hierarchy is imple-
mented and each level is associated with a proper scheduler, that dispatches and controls the
instruction flow inside the whole structure at different levels of abstraction. In this section a
deep analysis on this instruction tree is provide, to clarify some figure of merits that will be
significant in the next chapters.

18
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Figure 3.1: Typical GPGPU architecture [5]

Starting from the instruction set, that can be converted in a cubin code (simple CUDA binary
code) or SASS code (low-level assembly, architecture specific for GPGPU NVIDIA G80), each
instruction is parallelized in 32 threads. These threads are next scheduled among the scalar
processors, that work with different memory segments (according to the SIMD strategy).
These threads are grouped in warps, the smallest set of simultaneous operations with data
independency. More in details, a single warp is composed of 32 threads, but this doesn’t
mean that a single instruction is mapped in a single warp. Vice versa, due to the fact that
each thread is associated to a specific memory segment in which a location is dedicated to the
program counter, a single warp is consisting of a group of instructions. Moreover, thanks to
a dedicated program counter, each SP can work independently from the others, in particular
in the case of branching condition. Consequently, during complex kernel executions and in
particular conditional evolutions, different threads in the same warp could diverge from the
normal execution flow, leading to the so call internal divergency.
Finally, the warps are grouped in the so called thread blocks, tri-dimensional array represent-
ing a set of operation that can be executed in parallel. These blocks are then organized in a
bi-dimensional grid.

After the description of the instruction hierarchy, an important point now is how blocks,
warps and threads are scheduled among different scalar processors. Indeed, focusing on the
scalar processors, the key point is to understand how the 32 thread of each single warp are
mapped in the scalar processor array. This mainly depends on the number of parallel cores,
that can be set during configuration steps and influences the thread-level parallelism (TLP,
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number of threads that system is able to parallel execute) [6]. In the FlexGrip, according to
the possible TLPs that can be fixed, threads are mapped in the SPs array as follows:

• if 32 cores, since warp is consisting of 32 threads, each core runs a thread and the
whole warp is executed in once. In this case the TLP and the allocated hardware are
maximum, so the system is faster. Since all threads of warp are run in parallel, the warp
is composed of a single array of 32 threads. Calling warp lane the array of threads inside
the warp that are simultaneously executed, in this case, a single warp lane is present.

• if 16 cores, each must handle 2 different threads to completely execute the warp. Ac-
cording to this, in this case 2 warp lanes are present.

• if 8 cores, each must handle 4 different threads, leading to 4 warps lanes. In this
condition the TLP and allocated hardware are minimum, so the system is slower.

In the fig. 3.2 a graphical view of the instruction hierarchy is shown, while in the concept of
warp lanes organization is described in the fig. 3.3.

Figure 3.2: Instruction Hierarchy.

Figure 3.3: Threads arrangement inside a single warp (case of 8 cores, 4 warp lanes).

3.2 FlexGrip Architecture

In this section the internal architecture of FlexGrip will be described, focusing on the main
modules. Finally, also the different memory banks present in the structure will be analysed.
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3.2.1 Block Scheduler

The block scheduler is the top-level scheduler that, from a bi-dimensional grid of thread
blocks (which dimensions are provided in the configuration stage), evaluates the total num-
ber of thread blocks and assigns the thread blocks to the streaming multiprocessors inside the
FlexGrip GPGPU, providing to the SM controller the coordinates of the selected thread in-
side the grid (grid_x and grid_y) and inside the thread block (block_x, block_y and block_z).
The scheduling policy employed by this scheduler is the round robin one. After the thread
scheduling, the block scheduler passes the control to the SM controller, that will be analysed
more in detailed in the section 3.3.

3.2.2 Warp Unit

The Warp Unit, which general architecture is shown in fig. 3.4, is the module that generates
warps and control their execution [6].

Figure 3.4: Warp Unit general architecture [6].

The main modules inside this block are: warp generator, warp scheduler, warp checker and a
set of memory banks (warp pool memory, warp state memory and fence registers) described
in detailed in section 3.2.4. Since this is a complex architecture, each module has its own
finite state machine, in order to simplify the internal description and control.

The warp generator module is responsible of the creation of warps and initialization of the
warp pool memory, warp state memory and fence register. Consequently, this module is in-
voked each time a new thread block is scheduled. During the creation of warp, a warp ID
is created and saved into the warp pool memory according to the number of warp per block,
the size of the general purpose register bank and the number of the current warp and block.
Finally, before moving the control to the warp scheduler, the warp generator also creates a
shared memory address for each single warp, according to the shared memory base address
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and size (provided by the block scheduler) and the current thread block number.

The warp scheduler module is responsible of scheduling warps when the previous module
concludes their creation. More in details, this module schedules a warp lane per time, inter-
leaving among each warp lane a gap to wait for the fetch module response. This means that
the warp scheduler module, inside the warp unit, is for all purposes a part of the pipeline
(described in section 3.2.3). When the warp is completely executed the warp scheduler sends
a signal to the streaming multiprocessor controller, that informs the block scheduler to sched-
ule a new block.

The warp checker module, as the warp scheduler, is a part of the pipeline but, differently
from the warp scheduler that precedes the fetch unit, the warp checker follows the write unit.
As final part of the pipeline, this module is responsible to control the execution of the warp,
checking if there is any internal divergency (described in section 3.2.5) and comparing an
internal mask with the fence one to check the warp divergency completion. If the internal
warp divergency is still present, the warp checker set the warp state as ready and a new lane
is scheduled by the warp scheduler. Vice versa, if divergency is solved, the warp checker sends
to the warp scheduler a done mask that, compared with an internal mask of the scheduler
itself, permits to check the completion of the warp execution.

3.2.3 Pipeline Description

Inside each SMs in the FlexGrip GPGPU, a five-stage pipeline [5] is implemented according
to the block diagram shown in fig. 3.5:

Figure 3.5: Detailed block diagram of SM [5].

From the block diagram description in fig. 3.5 is possible to notice that, during thread ex-
ecution, the warp unit interacts with the pipeline. Consequently, in the five-stage pipeline
also the warp unit must be considered. More in details: the actual pipeline takes care of
the thread execution, vice versa the warp unit schedule warps, coordinating the instruction
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execution, and check eventual internal divergency.

Concerning the internal modules of the pipeline, the different stages are:

• Fetch stage. It’s the initial stage, that fetches four or eight-bytes CUDA-binary in-
structions (respectively 32 or 64 bit) according to the value of the program counter
associated to each warp. After the fetching operation, that is always enabled by the
warp unit (more in details by the warp scheduler), the program counter of the warp
under execution is properly updated (of 4 or 8 byte according to the type of instruction:
long or short).
Analysing more in details this module and in particular its internal finite state machine,
an important fetching policy is highlighted according to the TLP set in the configu-
ration stage. In particular, when the 8-SP or 16-SP configuration is set, and so the
threads inside the warp are organized in warp lanes, what happens is that the actual
fetching from the system memory is performed only for the first warp lane (enabled by
the fetch_en input). Vice versa during the following warp lane fetch operations of the
same instruction (enabled by the pass_en input), the fetch unit doesn’t read again the
system memory but simply maintains the output signals constant thanks to the out-
put registers of the pipeline (that actually corresponds to the pipeline registers). This
permits to significantly increase the performance and reduce the power consumption,
since the reading operation of the system memory, that is large (delay) and far (delay
and consumption) from the fetch unit, is substituted by a reading operation of a set of
registers for sure smaller and closer. This feature will be analysed more in detailed in
chapter 4.

• Decode stage. It’s a single decoding stage module that interprets and decodes the binary
instructions at the output of the fetch stage and sends the decoded information at the
output to allow instruction execution.

• Read stage. This module, starting from the information obtained by the decode stage,
reads the operands stored in one of the memories inside the FlexGrip architecture, from
the global memory to the vector register file.

• Execution stage. This consists of multiple scalar processors, according to the configu-
ration, and a control flow unit to handle control flow instructions (e.g. branch).

• Write stage. This is last stage of the pipeline, dedicated to write output data of the
execution stage in the proper storage module: intermediate data in the vector register
file, final results in the global memory, etc.

A key point of this module analysis is how the instruction flow is controlled among the
different blocks belonging to the pipeline. The strategy is based on a handshake between
consecutive blocks exploiting two signals:

• a done signal, that each unit sends to the next one in the pipeline to inform it that the
output signals are steady and meaningful.
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• a stall signal, that each unit sends to the previous one in the pipeline to inform it that
the unit is busy and so not ready to sample and manage new inputs.

According to this it’s possible to conclude that the done signal "moves" in the pipeline (ac-
tually each module generates its own done and stall signal) in the same direction of the
instruction flow, vice versa the stall signal. A graphical description is shown in fig. 3.6:

Figure 3.6: Stall/Done signals inside the pipeline.

Describing more in details the communication among two successive blocks, the second block
cannot accept the output of the first one until the done signal of this block is not activated.
Vice versa, the first block cannot update the output signal and handle new inputs until the
next block is not free to accept new inputs. This will be crucial in the chapter 5 because the
consequence of this synchronization policy is that critical module at the end of the pipeline
will increase the stall time of the previous module, introducing performance degradation.

3.2.4 Memories

In this section will be provided a detailed description of the memory elements that are present
in the FlexGrip GPGPU, focusing on the internal architecture and role of each one. This
is significant considering that the memory locations are the target of SEUs that, as largely
explained in chapter 2, cause bit-flips.

Global Memory

The global memory is that storage element reserved to data, e.g. initial data and final results.
Consequently, the access to this memory is allowed both to the host (in the initial steps to
insert starting data) and the streaming multiprocessors (from the read/write unit of each
pipeline). The global memory is implemented as a dual-port RAM (random access memory)
with:

• asynchronous read;

• synchronous write (with the clock rising edge).
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The write/read control signals are combined in the write enable command (we). According
to the internal architecture: when the write enable is active (we = 1), the writing operation
occurs during the clock rising edge at the location pointed by the address signal; vice versa
when the write enable is disabled (we = 0), the reading operation occurs and the global
memory sends asynchronously the location pointed by the address signal to the output. Con-
sidering that this is a dual-port device, this is verified for both ports and each port has its
own control/data signals. Moreover, the dual-port memory is able to guarantee a simulta-
neous read/write operation of the same input data conveniently using the control/address
signals. More in details, to write the input data presents in port B to a specific location and
simultaneously read this data at the output of port A, the conditions to force at the memory
inputs are:

• we_b = 1;

• addr_a = addr_b.

This obviously permits to reduce the performance degradation since in a single clock cycle
the memory is able to write/read the same data. In the VHDL codes, the signals related
to this memory are instantiated as gmem_(...). The block diagram description of the global
memory is shown in fig 3.7:

Figure 3.7: Global memory block diagram description.

Constant Memory

The constant memory is implemented exactly as the global memory: dual-port RAM with
asynchronous reading operations and synchronous writing operations. So, this memory is
implemented as a RAM even if it is a constant memory (no data overwriting). The reason
is that actually the memory must be initialized by the host in the configuration phase.
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Vice versa, from the streaming multiprocessor point of view, only reading operations are
permitted. This implies that the SM accesses to this memory only by means of the read unit
of the pipeline. In the VHDL codes, the signals related to this memory are instantiated as
cmem_(...). Finally, the block diagram description of the constant memory is shown in fig.
3.8:

Figure 3.8: Constant memory block diagram description.

System Memory

The system memory is also implemented as a dual-port RAM with asynchronous reading
operations and synchronous writing operations. This storage element is reserved for the
instructions so:

• the writing operations is performed by the host;

• the reading operations is performed by each SM (in particular by the fetch units).

Differently from the memory elements previously described, the system memory is not directly
written or read. Vice versa all the operations are performed by means of a system memory
controller, that works as an interface between the memory and the elements that try to access.
In VHDL codes, the signals related to this memory are instantiated as sysmem_(...). The
block diagram description of the system memory is shown in fig. 3.9:
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Figure 3.9: System memory block diagram description.

Shared Memory

The shared memory is instantiated as a dual-port register file with asynchronous reading
operations and synchronous writing operations. This element is used as a communication
memory between different cores of the same streaming multiprocessor. Moreover, also the
SM controller access to the shared memory to write, during configuration, the block header
(16By containing details about the block and grid dimensions and the block indexes) and the
kernel data parameters (also 16By). In VHDL codes, the signals related to this memory are
instantiated as shmem_(...). The block diagram description of the shared memory is shown
in fig. 3.10:

Figure 3.10: Shared memory block diagram description.
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Vector Register File

The vector register file is the storage element reserved for the local and intermediate data
generated by the cores inside each streaming multiprocessor. This register file is partitioned
among the SPs of each SM and, as previously discussed, this depends on the SP-configuration
selected. According to this, this module consists of an array of dual-port register (as much
as the number of cores) and a module that evaluate the physical address starting from: base
address, register number, warp lane ID and number of cores. In practice, depending on the
SP configuration, the total address is evaluate as shown in fig 3.11:

Figure 3.11: Vector register file address.

As regard the single dual-port register, the parallelism depends again on the number of cores.
In general, since a single thread works with 512 locations in the vector register file, each SP
is associated to a portion of vector register file of:

(512 locations of 32 bit) x (number of warp lanes)

As a consequence, in the worst case (8 cores) the vector register file contains 2048 locations
(addressable with 11 bit of address). As the previous storage element, each dual-port regis-
ter allows synchronous writing operations and asynchronous reading operations. In VHDL
codes, the signals related to this memory are instantiated as gprs_(...). The block diagram
description of the vector register file is shown in fig. 3.12:
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Figure 3.12: Vector Register File memory block diagram description.

Address Register File

The address register file is the memory reserved for the the storage of the address used to
indirectly point to the shared memory, previously described. More in details, the complete
address of the shared memory is obtained summing an offset to the address stored in the
address register file. Since this memory contains addresses, it’s used from the read unit of
the pipeline, in which there are three read sources able to evaluate the complete address and
access (among others storage elements) to the shared memory. The internal architecture of
the address register file is similar to the vector register file one, except for the parallelism.
So this storage module consists of an array of dual-port registers (synchronous writing and
asynchronous reading) and a block able to evaluate the complete address to point to the
address register file starting from: configuration (in terms of number of cores), warp and warp
lane identifiers and register address. The complete address is shown in fig. 3.13 according to
the number of cores:

Figure 3.13: Address Register File address.
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Also the parallelism of the single dual-port register depends on the number of cores exactly
as occurs in the vector register file. Considering that a single thread works with 128 locations
in the address register file, each SP is associated to a portion of address register file of:

(128 locations of 32 bits) x (number of warp lanes)

As a consequence, in the worst case (8 cores) the address register file contains 512 locations
(addressable with 9 bit of address). In VHDL code, the signals related to this memory are
instantiated as addr_regs_(...). The block diagram description of the address register file is
shown in fig. 3.14

Figure 3.14: Address Register File memory block diagram description.

Predicate Register File

The predicate register file is the module that stores the predicate flags, specific bits used in
the condition branches. More in details, these predicate flags are used to point to a predicate
look-up table in which are contained the conditional instructions. The output of this look-up
table is also combined to the warp mask to update the mask itself. As regard the internal
architecture of the predicate register file, this is similar to the one of the vector and address
register file, except for the parallelism. Considering that a thread works with 128 locations
in the predicate register file, each SP is associated to a portion of predicate register file of:

(128 locations of 4 bits) x (number of warp lanes)

As possible to notice in the previous expression, each location consist of 4 bits and each bit
corresponds to a specific flag. More in details:
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• bit 0, corresponds to the "zero" flag;

• bit 1, corresponds to the "sign" flag;

• bit 2, corresponds to the "carry" flag;

• bit 3, corresponds to the "overflow" flag.

For what concern the address to point to this memory, the composition is the same discussed
in the address register file section. The predicate register file is used by the read and write
unit of the pipeline and, in VHDL codes, the signals related to this memory are instantiated
as pred_regs_(...). The block diagram description of the predicate register file is shown in
fig. 3.15:

Figure 3.15: Predicate Register File memory block diagram description.

Warp Divergence Stack

The warp divergency stack is a stack used in each single warp to store information about the
threads that, in case of branching execution, diverge from the correct (or usual) path. More
in details, the information pushed in the stack is created starting from:

• current mask;

• instruction mask;

• next program counter;

• target address;

• some tokens properly encoded (ID_DIVERGE/ID_CALL/ID_BREAK/ID_SYNC);

• bit at 0 to fill empty bits.
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The warp divergence stack is controlled at the interface by means of two control signals:
stack enable, to enable the stack, and push enable, to perform push (if active) or pop (if not
active) operations. In the pipeline this memory is used by the read unit and the execution
unit (which generate push commands). According to the internal finite state of the execution
unit, it’s possible to notice that push operations in the stack occurs in the states:

• check branch, if no correct branch;

• check call, if the warp lane 0 is in the execution unit;

• check prebreak, if the warp lane 0 is in the execution unit;

• check join, if the warp lane 0 is in the execution unit.

Vice versa, the pop operations in the stack occurs in the states:

• check return, if stack is not empty;

• check break, if stack is not empty;

• stack pop.

In VHDL codes, the signals related to this memory are instantiated as warp_div_(...). The
block diagram description of the warp divergence stack is shown in fig 3.16:

Figure 3.16: Warp divergence stack block diagram description.

Warp Pool Memory

The warp pool memory is a memory element present in the warp unit, reserved to store the so
called warp pool lanes. Each warp has its own warp pool lane, a 128 bit-wide word containing
the most significant warp information. The structure of each warp pool lane is the one shown
in the fig. 3.17:
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Figure 3.17: Warp pool lane.

As regards the internal architecture of the warp pool memory, it’s based on a dual-port
register with synchronous writing operations and asynchronous reading operations. More in
details, this memory is filled in the configuration step by the warp generator module and
then is read by the warp scheduler. In VHDL codes, the signals related to this memory are
instantiated as warp_pool_(...). The block diagram description of the warp pool memory is
shown in fig. 3.18:

Figure 3.18: Warp pool memory block diagram description.

Warp State Memory

The warp state memory is another memory element present in the warp unit, reserved to store
the warp state. The internal architecture is based on the dual-port register with synchronous
writing operations and asynchronous reading operations. The possible states of a warp are
four, coded on 2 bits as:

• 00 => ready (warp in idle);

• 01 => active (warp currently in the pipe);

• 10 => waiting fence (warp diverged);

• 11 => finished.
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This memory is written by the warp modules (generator, checker and scheduler) and by the
write unit. As regards the reading operations, these are performed by the warp checker, that
according to the current warp state modify it or not, and by the warp scheduler, that decide
how to handle the warp according to the warp state.
In the VHDL codes, the signals related to this memory are instantiated as warp_state_(...).
The block diagram description of the warp state memory is shown in fig. 3.19:

Figure 3.19: Warp state memory block diagram description.

Fence Register

The fence register is a memory element used to take track of all the threads blocked at a
certain synchronization barrier in the case of internal divergency (explained in section 3.2.5).
More in details, this store the cta id (corresponding to the block identifier) and the fence en-
able signals according to the corresponding load signals. Again, this works with synchronous
writing operations and asynchronous reading operations. The internal architecture is based
on an array of 32 fence register (since 32 corresponds to the maximum number of warps). So
practically each warp has an associated fence register.
In the VHDL codes, the signals related to this memory are instantiated as fence_regs_(...).
The block diagram description of the single fence register is shown in fig. 3.20:
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Figure 3.20: Single fence register block diagram description.

3.2.5 Internal Divergency

The FlexGrip GPGPU is able to support in hardware the thread-level branching. This implies
that, during conditional branches, it’s possible that different threads follow different path,
generating the so called internal divergency. In this case is essential to reach a convergency
point, also called synchronization barrier. Practically what the FlexGrip does is:

• to temporarily mask (so deactivate) threads that diverge from the nominal execution;

• to wait that the active threads (also called taken) reach the synchronization barrier;

• to move the control to the previously masked threads (also called not-taken) and wait
that also these reach the synchronization barrier;

• when all threads reach the same synchronization barrier, the execution of the task can
continue.

In particular, when the divergency occurs, the warp state is forced to waiting fence until all
threads are synchronized. To take track of the program counter of all the threads, the warp
divergence stack is filled by the execution unit of the pipeline. When the divergency occurs,
there is a prebreak state, to save all the information necessary to restore the execution after
divergency. Vice versa, when the stack is empty and so the threads are all synchronized, a
NOP operation is executed to communicate the end of divergency.

3.3 Configuration and standard execution flow

In this section a detail description of the configuration step and the execution flow are pro-
vided, recalling the FlexGrip general architecture, shown in fig. 3.21.
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Figure 3.21: FlexGrip general block diagram description [5].

First, the host sends to the GPGPU controller the information that must be stored in the
configuration memory (e.g. number of blocks, grid and block dimensions, thread level paral-
lelism, memory limits, etc). When the configuration memory is filled, the control is moved to
the block scheduler, that creates blocks and schedules them, providing to the SM controller all
the information related to the block (e.g. the position in the grid or the number of threads per
block). Now the control is passed to the SM controller, which calculates the ID of blocks and
threads (inside each block) and divides the shared memory among different threads, writing
the block header (16By) and the kernel parameters. Next, SM controller divides the Vector
Register File among all threads, writing the thread_ID in the R0 registers (first register of
each portion). After that the warp unit takes the control and:

• generates the warp, filling the warp pool memory and warp state memory (warp gen-
erator);

• schedules the warps (warp scheduler).

Finally, the pipeline can start to elaborate the warp, performing all the operations needed to
compute and store the results. In case of branching, the internal warp divergency could occur
at the execution unit level and, in this case, system is handled to reach a synchronization
barrier before to schedule a new instruction. At the end of pipeline elaboration, the warp
checker (inside the warp unit) checks if the warp execution is completed examining specific
masks and change the state of warp based on the check results. According to the warp state
at the warp checker output, the warp scheduler schedules a new warp lane of the warp or a
new warp. From now on the FlexGrip continues the elaboration of the instructions until the
task is completely executed



CHAPTER 4

Proposed Method

As discussed in the chapter 2, several techniques can be implemented to harden the electronic
systems against SEUs, but implementation of these always implies hardware overhead and, as
a consequence, increase of occupied area, power consumption and performance degradation.
In order to reduce these overheads still guaranteeing radiation hardening, a proper solution
is the selective hardening: apply the hardening techniques only to the critical resources. An
obvious question arises, which are the critical resources?
A resource can be defined critical when, if affected by SEU (or any other radiation effects),
the consequence on the system or the output is significant, e.g. output errors, performance
degradation, etc. This implies that the definition of critical resource depends on the designer
choices. If the goal is to protect system against output errors, probably all the resources that
could generate an output error are considered critical and so hardened. Vice versa, if the
goal is to guarantee the system speed without a high accuracy (e.g. in real time systems), a
critical resource will be the one that, affected by SEU, generates a performance degradation
above a specific threshold.
From this perspective, it’s essential to build up a monitoring system able to track the most
meaningful internal signals of each module and so to analyse the SEU impact not only in
the block in which is generated but in the entire execution chain. Combined with this moni-
toring system, a fault injector tool is used to virtually generate a bit-flip in specific memory
locations and simulate the behaviour of the system on simulation environments as Modelsim.

4.1 Performance Analysis

The monitoring systems has been achieved identifying the most significant time intervals and,
as a consequence, the signals that must be tracked. In order to be actually able to track these
signals, it’s essential to modify the VHDL codes, expanding the entities of the targeted com-
ponents from the bottom to the top module, according to the architecture hierarchy, moving
these signals up to the top module interface. This is mandatory since the testbench interacts
with the device under test (DUT), so FlexGrip, declaring it as a component and consequently

37
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has access only to the FlexGrip I/O signals. Considering the assumptions described in the
section 4.1.1, the time intervals considered of interest are:

Time interval Initial time End time
Total Warp Execution fetch_en = 1 fetch_en = 1
Instruction Fetching fetch_en = 1 fetch_done = 1
Warp Lane Fetching pass_en = 1 fetch_done = 1
Warp Lane Decoding fetch_done = 1 decode_done = 1
Warp Lane Reading decode_done = 1 read_done = 1
Warp Lane Execution read_done = 1 execution_done = 1
Warp Lane Writing execution_done = 1 write_done = 1
First Warp Lane Scheduling warp_scheduler_en = 1 pass_en = 1
Next Warp Lane Scheduling pass_en = 1 pass_en = 1
Total Warp Generation warp_generator_en = 1 warp_generator_done = 1
Warp Check Latency write_done = 1 warp_checker_stall_out = 0
Single Block Scheduling block_scheduler_en = 1 SM_controller_en = 1
Single Block Execution SM_controller_en = 1 SM_controller_done = 1

Table 4.1: Performance analysis: time intervals.

The intervals described in the table 4.1 will be discussed more in details, focusing also to
the implementation of the monitoring systems, in section 4.1.2. These intervals permit to
collect information related to the performance of each of the main module of the systems
and, consequently, to identify the identify the impact of SEUs on the performance.
As discussed in chapter 1, SEUs are generated inside the memory elements as a bit-flip in
the stored words. Obviously a SEU generates an impact on the system if the data corrupted
by the SEU is used so, in terms of memory element, if it is read. This suggests a new
possible monitoring: evaluate the time intervals in which a location is sensitive to SEUs.
This corresponds to the time interval between the first writing and the last reading on the
same memory location. In fact, assuming that a SEU occurs in a specific location after the
last reading, this will not propagate in the structure and, at the contrary, will be overwritten
by the successive writing. So, this study allows to identify two different time intervals:

• sensibility time interval, between first writing and last reading of the same location;

• indifference time interval, evaluating the time interval between to writing operations
and subtracting the previous time interval. Consequently, this corresponds to the time
interval between the last reading and the next writing of the same location.

To sum up, additional time intervals evaluated on the memory elements are contained in the
table 4.3.
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Time Intervals
First Write Last Read (VRF)
Write to Write (VRF)

Table 4.2: Performance analysis: memory elements monitoring.

Finally, to achieve a complete investigation on the memory elements and so identify the crit-
ical ones, a memory usage studied has been performed, tracking the number of access to
the memories and the type of access: reading or writing. Also this information results to
be essential because, according to what discussed previously, the more a location is read the
higher is the probability that a SEU in that location propagates, impacting the entire system
performances. Obviously, the impact on the system depends also of the type of elements
stored in that memory location: a SEU in a predicate flag or in the configuration memory
probably would be more dangerous that a SEU in a general purpose register. In conclusion,
the memory usage information monitored are highlighted in the table 4.2.

Monitored Info
Vector Register File Usage
Vector Register File Bank Usage (Writing)
Vector Register File Bank Usage (Reading)
Vector Register File Location Usage (Writing)
Vector Register File Location Usage (Reading)
Address Register File Usage
Address Register File Bank Usage (Writing)
Address Register File Bank Usage (Reading)
Address Register File Location Usage (Writing)
Address Register File Location Usage (Reading)
Predicate Register File Usage
Predicate Register File Bank Usage (Writing)
Predicate Register File Bank Usage (Reading)
Predicate Register File Location Usage (Writing)
Predicate Register File Location Usage (Reading)

Table 4.3: Performance analysis: memory time intervals.

4.1.1 Assumptions

The monitoring system has been implemented and tested considering two significant assump-
tions:

• instructions mapped in a single block with a single warp of 32 threads;

• 8 SPs configuration, i.e. warp organized in four warp lanes.
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This implies that, during the warp execution, in the pipeline there is a situation as the one
described in fig. 4.1.

Figure 4.1: Warp execution in case of signle warp.

As shown in fig 4.1, the warp enters in the pipeline a warp lane per time. When the first warp
lane (warp lane #0 ) enters in the fetch unit, first element of the pipe, the rest of the pipe
is empty and consequently each module, except for the fetch one, is in an idle state. Then
the next warp lane (warp lane #1 ) will enter in the pipe when the first one leaves the fetch
unit and passes to the decode unit, and so on. The real consequence of the assumption to
use a single warp is that, as shown in fig. 4.1, until the last warp lane doesn’t leave the pipe
the (warp lane #0 ) cannot enter again in the pipe. Consequently, this implies that a new
instruction cannot be fetched if the previous one has not been completely executed in all the
threads of the warp. This is a key point of the following analysis since allows to evaluate the
Total Warp Execution as the time interval between two fetch_en (except for the last warp
execution, evaluated as the interval between the fetch_en and the warp_scheduler_done sig-
nals).
Vice versa, in systems in which the instruction set is mapped in multiple warps the execution
is handled as shown in fig. 4.2. The difference with respect to the case previously discussed
is that now, when the last warp lane (warp lane #3 ) of the warp #0 passes from the fetch
unit to the decode unit, the first warp lane (warp lane #0 ) of the warp #1 can enter in the
pipe. This guarantees the maximum core usage but, obviously, complicates the monitoring
systems. In this case in fact, some modifications must be added to the monitoring system
described in the following sections. A possibility is to take into account also the warp_ID,
associating to it the intervals shown in table 4.1. This implies that the warp_ID signal must
be extended so that it passes through each monitored module and then, in the testbench, the
logging processes will also consider the warp_ID related to each time interval evaluated.

Finally, as regard the fault injection study, the assumption is on the SEUs target modules.
In this study the module considered sensitive to SEU are the: vector register file, address
register file and predicate register file.
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Figure 4.2: Warp execution in case of multiple warps.

4.1.2 Main module probings

In this section the monitoring system will be analysed focusing singularly on each module. In
the testbench each module has an associated process dedicated for monitoring and printing
the desired time intervals in specific output files. In order to guarantee an analysis as clear
as possible, the description of each process is associated to a pseudo code that sums up the
most significant monitoring strategies.

Fetch unit

The fetch unit, according to the table 4.1 and the description in section 3.2.3, can be moni-
tored in order to achieve two time intervals:

• Total Warp Execution;

• Instruction Fetching;

• Warp Lane Decoding.

In both case the intervals have been evaluated as the time interval between the activation
of the initial and done signal. For instance, the Total Warp Execution is measured between
the rising edge of the fetch_en signal and the rising edge of the successive fetch_en or of
the scheduler_done signals (so this interval consider also the scheduling time of the next
instruction). This concept has been applied to all the measured time intervals. In order to
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guarantee this condition, a proper offset has been introduced to remove the delay introduce
by the monitoring system itself. As regard the Instruction Fetching, this time interval has
been measured as the interval between the rising edge of the fetch_en and the rising edge of
the fetch_done signal. The Warp Lane Fetching interval (interpreted as the fetching interval
of the warp lanes except the first one) instead has been evaluated as the interval between
the rising edge of the pass_en and the rising edge of the fetch_done signal again. The rea-
son why the initial time of these fetching interval can be triggered by the fetch_en or the
pass_en is that: the first signal is used during the first warp lane fetching to communicate
to the fetch unit that the instruction must be fetched by the system memory; vice versa the
pass_en signal is used during the successive warp lane fetching to communicate to the fetch
unit that there is no need to fetch the instruction from the system memory, because it is
already present in the output registers of the fetch unit itself.
In this way the monitoring system is able to track the Total Warp Execution and the In-
struction Fetching time intervals, but there is the necessity to associate these intervals to
the different instructions and warp lanes, in order to be able to compare the performance
among these. Consequently, the monitoring system of the fetch unit receives also the in-
struction and the warp_lane_ID signals. For the same reasons, the instruction and the
warp_lane_ID signals have been passed also in the other monitoring processes, implement-
ing the entity extension described in section 4.1.
Finally, as regard the output time intervals, these have been provided in terms of clock cy-
cles. Nevertheless, in order to provide more information and have the possibility to check
the coherence of the monitoring system with respect to the Modelsim simulation, also the
absolute initial and final time instants have been printed in the output files.
The pseudo code related to the fetch unit monitoring system is shown in fig. 4.3.

Figure 4.3: Fetch unit monitoring pseudo code.
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Decode unit

The decode unit, according to the table 4.1 and the description in section 3.2.3, can be mon-
itored in order to evaluate the Warp Lane Decoding time interval. This interval has been
measured evaluating the time interval between the rising edge of the fetch_done signal, that
corresponds to the enable signal of the decode unit, and the rising edge of the decode_done
signal. As in the fetch unit, the decoding intervals are associated to the instruction and the
warp_ID and provided at the output in terms of clock cycles and initial and final time. The
pseudo code related to the decode unit monitoring system is shown in fig. 4.4.

Figure 4.4: Decode unit monitoring pseudo code.

Read unit

The read unit, according to the table 4.1 and the description in section 3.2.3, can be mon-
itored in order to evaluate the Warp Lane Reading time interval. This interval has been
measured as the time interval between the rising edge of the decode_done signal, that cor-
responds to the enable signal of the read unit, and the rising edge of the read_done signal.
The reading intervals are associated to the instruction and the warp_ID and provided at the
output in terms of clock cycles and initial and final time. The pseudo code related to the
read unit monitoring system is shown in fig. 4.5.

Figure 4.5: Read unit monitoring pseudo code.



Master Thesis Name in homebook 44

Execution unit

The execution unit, according to the table 4.1 and the description in section 3.2.3, can be
monitored in order to evaluate the Warp Lane Execution time interval. This interval has
been measured as the time interval between the rising edge of the read_done signal, that
corresponds to the enable signal of the execution unit, and the rising edge of the execu-
tion_done signal. The execution intervals are associated to the instruction and the warp_ID
and provided at the output in terms of clock cycles and initial and final time. The pseudo
code related to the execution unit monitoring system is shown in fig. 4.6.

Figure 4.6: Execution unit monitoring pseudo code.

Write unit

The write unit, according to the table 4.1 and the description in section 3.2.3, can be mon-
itored in order to evaluate the Warp Lane Writing time interval. This interval has been
measured as the time interval between the rising edge of the execution_done signal, that
corresponds to the enable signal of the write unit, and the rising edge of the write_done
signal. The write intervals are associated to the instruction and the warp_ID and provided
at the output in terms of clock cycles and initial and final time. The pseudo code related to
the write unit monitoring system is shown in fig. 4.7.

Figure 4.7: Write unit monitoring pseudo code.
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Warp scheduler

The warp scheduler, according to the table 4.1 and the description in section 3.2.2, can be
monitored in order to evaluate:

• First Warp Lane Scheduling;

• Next Warp Lane Scheduling.

The First Warp Lane Scheduling interval has been measured as the time interval between
the rising edge of the warp_scheduler_reset signal and the rising edge of the pass_en signal.
Vice versa, the Next Warp Lane Scheduling intervals have been measured as the time interval
between two successive rising edge of the pass_en signal. These intervals are associated to the
warp_ID but cannot be associated to the instruction, that is not fetched yet. Consequently,
to have an indirect reference with the instruction, these intervals have been associated to
the program counter saved in the warp lane (as described in section 3.2.4). The outputs are
provided in terms of clock cycles and initial and final time. The pseudo code related to the
warp scheduler monitoring system is shown in fig. 4.7.

Figure 4.8: Warp scheduler monitoring pseudo code.

Warp generator

The warp generator, according to the table 4.1 and the description in section 3.2.2, can be
monitored in order to evaluate the Total Warp Generation time interval. This interval has
been measured as the time interval between the rising edge of the warp_generator_en signal
and the rising edge of the warp_generator_done signal. In the cases in which there are more
than one warp a possibility could be to associate the warp_ID. The outputs are provided
in terms of clock cycles and initial and final time. The pseudo code related to the warp
generator monitoring system is shown in fig. 4.9.
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Figure 4.9: Warp generator monitoring pseudo code.

Warp checker

The warp checker, according to the table 4.1 and the description in section 3.2.2, can be
monitored in order to evaluate the Warp Check Latency time interval. This interval has
been measured as the time interval between the rising edge of the write_done signal and
the falling edge of the warp_check_stall_out signal. In the cases in which there are more
than one warp a possibility could be to associate the warp_ID. The outputs are provided in
terms of clock cycles and initial and final time. The pseudo code related to the warp checker
monitoring system is shown in fig. 4.10.

Figure 4.10: Warp checker monitoring pseudo code.

Block scheduler

The block scheduler, according to the table 4.1 and the description in section 3.2.1, can be
monitored in order to evaluate the Single Block Scheduling time interval. This interval has
been measured as the time interval between the rising edge of the Block_scheduler_en signal
and the rising edge of the SMController_en signal. The outputs are provided in terms of
clock cycles and initial and final time. The pseudo code related to the warp checker moni-
toring system is shown in fig. 4.11.
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Figure 4.11: Block scheduler monitoring pseudo code.

SM controller

The SM controller, according to the table 4.1, can be monitored in order to evaluate the
Single Block Execution time interval. This interval has been measured as the time interval
between the rising edge of the SMController_en signal and the rising edge of the SMCon-
troller_done signal. The outputs are provided in terms of clock cycles and initial and final
time. The pseudo code related to the warp checker monitoring system is shown in fig. 4.12.

Figure 4.12: SM controller monitoring pseudo code.

4.1.3 Memory probings

As in section 4.1.2, in this section a description of the memory monitoring system has been
provided and combined with a pseudo code that sum up most significant monitoring strate-
gies. Referring to the time intervals of interest discussed in the section 4.1, the monitoring
procedure used to track the memory accesses are the same considering the three memory
under analysis: vector register file, address register file and predicate register file.

The memories under test, as discussed in section 3.2.4, consist of an array of dual-port
register file and, studying the internal control and execution flow of the FlexGrip, it has been
possible to notice that port A is controlled by the read unit, while port B by the write unit
(except for the vector register file, in which port A is also used by the SM Controller during
the thread_ID storing). In order to track the memory accesses for reading and writing oper-
ation, the monitoring system works on counters incremented under proper conditions. More
in details:
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• during writing operations, when the write_en signal of one of the two ports is activated,
depending on the position of the write_en in the write_en_array (considering the
assumption of 8 SPs the array consist of 8 write_en, one for each SP), the counter
corresponding to that specific register file has been incremented. Moreover, examining
the 2MSBs of the address signal (at port A or B depending on the write_en signal),
the bank counter of a specific register file has been incremented.

• during reading operations, the problem is that the register files are asynchronous and,
consequently, each time that the register is not in the write mode it is in the read
mode. Nevertheless, in the analysis the goal is to track only the demanded readings.
For this purpose, a signal has been added to the internal FSM of controllers of the
three memories under test to inform the testbench when a reading operation is actually
demanded. Again, looking at the position in the write_en_array in which the write_en
signal is deactivated and looking at the 2MSBs of the address, the proper counters can
be incremented, both for memory and bank usage evaluation.

The location usage has been tracked using the same procedure adopted for the memory
and bank usage combined with an investigation of the address related to each single access.
Consequently, to efficiently handle the location counter, a three-dimensional array has been
created as shown in fig. 4.13.

Figure 4.13: Location counters organization.

The counter array results to be organized as follow:

• the top-level array (blue one in fig. 4.13) consists of a number of elements equals to the
number of cores (so depends on the configuration) and it’s accessed by the write_en
signal in the write_en_array.

• the medium-level array (green one in fig 4.13) consists of a number of elements equals to
the number of banks (so depends on the configuration) and it’s accessed by the 2MSBs
of the address signal.
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• the bottom-level array (orange one in fig 4.13) consists of a number of elements equals
to the number of register for each bank (512 registers for the vector register file and
128 register for the address or predicate register file) and it’s accessed by the remaining
part of the address.

Finally, as regards the time intervals, these can be easily tracked exploiting the same proce-
dures shown described for the memory, bank and location usage. In particular:

• the first write - last read interval can be tracked saving the time instant in which
a writing occurs in a specific location (using as reference the three-dimensional array)
and the time instant in which a reading is demanded. Consequently, overwriting at each
read the reading time instant, when a new write operation is demanded, the monitoring
system provide at the output the difference between the two stored time instant value
and the overwrite the write time instant.

• the write to write interval can be tracked using the same strategy described for the first
write - last read interval. The difference is that in this case the procedure saves two
successive write instant, providing at the output the difference.

The pseudo code related to the memory monitoring system, valid for each of the three mon-
itored memory modules, is shown in fig. 4.14.

Figure 4.14: Memory monitoring pseudo code.



CHAPTER 5

Experimental Results

The main goal of this study is to provide, by means of the monitoring system described in
chapter 4, a collection of performance and memory usage information that, combined with
the fault injection method, permit to identify the critical resources and to use the selective
hardening techniques. In this chapter the results of the performance analysis on specific
applications will be studied in details and a description of the fault injector will be provided.
Furthermore, the different fault injection strategies will be analysed and possible development
and implementation of this monitoring system will be taken into account.

5.1 Performance analysis results

This section will focus on the description of the performance analysis results for different
applications and versions, considering a FlexGrip configuration of 8 scalar processors (so four
warp lanes). The applications under test, in collaboration with the Universidade Federal do
Rio Grande do Sul (UFRGS), are:

• Vector_sum;

• Vector_sum with resilient global store and load instructions;

• Sort, results in appendix A;

• Sort with resilient global store and load instructions, results in appendix B;

• FFT, results in appendix C;

• FFT with resilient global store and load instructions, results in appendix D.

5.1.1 Vector_sum

The Vector_sum application is the simplest among the monitored ones. In this application
two input vectors, stored in the global memory, are read, summed and finally stored in the
global memory. According to the assumptions discussed in the section 4.1.1, in the follow-
ing sections will be analysed in detail the monitoring results for each single module under test.

50
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Fetch Unit

Starting from the fetch unit, first element of the pipeline, the analysis of this module permits
to achieve two important information: the latency of the fetch unit for each warp lane but
also, according to the assumptions in section 4.1.1, the time interval required to completely
execute each instruction. This last time interval is one of the most significant figures of merit
of this study since, simply comparing the instruction execution time the designer is able to
understand if there is a performance degradation and which instruction is more influenced
by the hardening technique. Moreover, the same comparison permits also to identify, if the
performance degradation is due to SEUs and not to the applied techniques, which instruction
is more sensitive to the SEUs effects.
The fetch unit monitoring results are plotted in fig 5.1 and collected in table 5.1.

Figure 5.1: Vector_sum: fetch unit monitoring results.
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Instruction W.Lane #0 W.Lane #1 W.Lane #2 W.Lane #3
0023C78010004205 4 2 30 16
04000780A0000005 4 2 27 13
0000000041012C00 3 2 18 16
0000000020008200 3 2 20 18
C410078030020009 4 2 27 13
000000002102E800 3 2 20 18
000000002102EA0C 3 2 20 18
80C00780D00E0005 4 2 91 77
80C00780D00E0601 4 2 91 77
0000000020008204 3 2 20 18
000000002102EC00 3 2 20 18
A0C00781D00E0005 4 2 27 13
0000078030000003 4 2 5 6

Table 5.1: Vector_sum: fetch unit monitoring results.

In fig. 5.1 it’s possible to notice that the fetch unit latency changes among different warp
lanes. More in details, during the first and second warp lanes the fetch unit is able to per-
forms the fetch operation in a limited number of clock cycles. Vice versa, during the fourth
and the third warp lanes the latency of the fetch unit increases significantly, in particular
during the third warp lane. In order to understand this behaviour, it’s important to recall
how the instruction is executed inside the streaming multiprocessor and inside the pipeline.
Considering the fig. 4.1, the warp lanes enter in the pipeline one per time as the warp lanes
that are in the pipeline move toward right, leaving the fetch unit "empty" (so free to serve
the next warp lane). Inside the pipeline, the fetch unit and the decode unit are simple both
from architectural and state machine point of view. This implies that these units are able to
complete their job in few clock cycles. Vice versa, the other pipeline units are more complex
since read and write unit have to access to memory elements, according to specific opcodes
generated at the decode unit output, while the execution unit is the real computation unit.
This implies that these three final units will intrinsically spend more time to complete the
demanded jobs and consequently, recalling the handshake mechanism generated in the pipe
thanks to the stall and done signals (shown in fig. 3.6), they will introduce on the previous
units in the pipe, e.g. the fetch unit, a significant delay.
Focusing now on fig. 5.1, this means that the higher fetch unit latency shown for the third
and fourth warp lanes is due to the fact that the final units in the pipeline needs time to
generate the outputs and be able to accept new inputs. More in details, when the third warp
lane enter in the pipeline, the read unit is for the first time activated in order to serve the
task demanded by the first warp lane and, as previously discussed, this introduce a delay that
affects also the fetch unit, that is serving the third warp lane. The same situation occurs for
the fourth warp lane in which the read unit serves the second warp lanes and the execution
unit the first one. The reason why the latency associated to the third warp lane is higher with
respect to the one associated to the fourth warp lane is related to the internal state machine
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of the read unit. In particular, the read unit, when the first warp lane arrives, execute a
certain number of checks that are not executed for the successive warp lane (since they are
related to the same structure) and consequently the delay associate to these "check" states is
generated only for the first warp lane.
Furthermore, it’s possible to notice that the fetch unit latency associated to the first warp
lane is higher than the one associate to the second warp lane. This is due to the fact that,
as discussed in section 3.2.3, during the first warp lane the fetch unit actually access to the
system memory while, during the next fetching operations related to warp lanes of the same
warp, the fetch unit simply maintains the outputs constant, without accessing to the memory.

Concerning the total warp execution, logging the fetch unit the monitoring system is able
to provide precise information about the number of cycles required to completely execute an
instruction. For the Vector_sum application the results are plotted in fig. 5.2 and table 5.2.

Figure 5.2: Vector_sum: total instructions execution.

From these results it’s possible to notice that, for this simple application, all the instructions
are executed in approximately one hundred of clock cycles, except for:

• 80C00780D00E0005 and 80C00780D00E0601. These are both load operation from the
global memory, so reading from the global memory and writing of the same data into
one of the local registers.

• A0C00781D00E0005. This is a store operation in the global memory, so reading from
a one of the local registers and writing of the same date in the global memory.

• 0000078030000003. It’s the last instruction executed and represent the return com-
mand.

In conclusion the real bottle neck for this application, and in general for most of applications,
is the access to the global or external memories.
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Instruction Total warp execution
0023C78010004205 101
04000780A0000005 88
0000000041012C00 88
0000000020008200 96
C410078030020009 88
000000002102E800 96
000000002102EA0C 96
80C00780D00E0005 344
80C00780D00E0601 344
0000000020008204 96
000000002102EC00 96
A0C00781D00E0005 320
0000078030000003 45

Table 5.2: Vector_sum: total instructions execution.

Decode Unit

The second module in the pipeline is the decode unit. The monitoring system allows to
evaluate the decode unit latency for each single warp lanes. The decode unit has a simple
combinatorial architecture able to provide at the output, in few clock cycles, the decode in-
put, but this considering the decode unit as an isolated block. Vice versa inside the pipeline,
the decode unit is affected, as discussed for the fetch unit, by the delay introduce by the last
three pipeline modules: read unit, execution unit and write unit. The decode unit monitoring
results are plotted in fig 5.3 and collected in table 5.3.
More in details, the first warp lane will be served fast in the decode unit since there are no
warp lanes in the next pipeline modules that can introduce a delay. The proof is given by the
fact that the latency associated to the first warp lane is constant and equals to the minimum
latency of the decode unit. Vice versa, when the second warp lane arrives to the decode unit,
the first warp lane is in the read unit and block the decode unit until the read one is not
ready to accept new inputs. Remembering that the read unit perform some checks, the results
plotted in fig. 5.3 are coherent with the expectations: the latency associated to the second
warp lane is the highest (since in the same time the first warp lane is in the read unit). This
is true for all the instructions except for the storing in the main memory, in which the warp
lane three is the one that has the highest associated latency. This is due to the fact that exe-
cuting the store in global memory instruction, since the bottle neck is the access to the global
memory and this occurs in the last unit of the pipeline, when the first warp lane arrive to the
write unit the fourth one arrive to the decode and it’s delayed until the store operation finishes.
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Figure 5.3: Vector_sum: decode unit monitoring results.

Instruction W.Lane #0 W.Lane #1 W.Lane #2 W.Lane #3
0023C78010004205 2 30 16 16
04000780A0000005 2 27 13 13
0000000041012C00 2 18 16 16
0000000020008200 2 20 18 18
C410078030020009 2 27 13 13
000000002102E800 2 20 18 18
000000002102EA0C 2 20 18 18
80C00780D00E0005 2 91 77 77
80C00780D00E0601 2 91 77 77
0000000020008204 2 20 18 18
000000002102EC00 2 20 18 18
A0C00781D00E0005 2 27 13 60
0000078030000003 2 5 6 6

Table 5.3: Vector_sum: decode unit monitoring results.

Read Unit

The read unit monitoring results are plotted in fig 5.4 and collected in table 5.4. As expected,
coherently to what discussed in the fetch and decode monitoring results description, the
latency associated to the first warp lane results to be the highest one, except for the global
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storage, in which the bottle neck of the pipeline is the write unit. Furthermore, except for
the global storage, the latency associated to the other warp lanes in equal independently on
the warp lane. This implies that for all the task execution the bottle neck of the pipeline is
the read unit and only at the end, during the global storage, the bottle neck results to be the
write unit.

Figure 5.4: Vector_sum: read unit monitoring results.

Instruction W.Lane #0 W.Lane #1 W.Lane #2 W.Lane #3
0023C78010004205 30 16 16 16
04000780A0000005 27 13 13 13
0000000041012C00 18 16 16 16
0000000020008200 20 18 18 18
C410078030020009 27 13 13 13
000000002102E800 20 18 18 18
000000002102EA0C 20 18 18 18
80C00780D00E0005 91 77 77 77
80C00780D00E0601 91 77 77 77
0000000020008204 20 18 18 18
000000002102EC00 20 18 18 18
A0C00781D00E0005 27 13 60 70
0000078030000003 5 6 6 6

Table 5.4: Vector_sum: read unit monitoring results.
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Execution Unit

The execution unit monitoring results are plotted in fig 5.5 and collected in table 5.5. Since
the bottle neck is the global memory, the latency associated to the execution unit is limited,
except for the global store instruction, in which the write unit represent the bottle neck and
delayed the second and next warp lanes execution (not the first warp lane one).

Figure 5.5: Vector_sum: execution unit monitoring results.

Instruction W.Lane #0 W.Lane #1 W.Lane #2 W.Lane #3
0023C78010004205 2 2 2 2
04000780A0000005 3 3 3 3
0000000041012C00 3 3 3 3
0000000020008200 3 3 3 3
C410078030020009 3 3 3 3
000000002102E800 3 3 3 3
000000002102EA0C 3 3 3 3
80C00780D00E0005 2 2 2 2
80C00780D00E0601 2 2 2 2
0000000020008204 3 3 3 3
000000002102EC00 3 3 3 3
A0C00781D00E0005 2 59 69 69
0000078030000003 5 5 5 5

Table 5.5: Vector_sum: execution unit monitoring results.
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Write Unit

The write unit monitoring results are plotted in fig 5.6 and collected in table 5.6. Since the
write unit is the last in the pipeline, it’s not affected by any delay and so the latency is equal
among warp lanes and will be higher during the global store instruction execution.

Figure 5.6: Vector_sum: write unit monitoring results.

Instruction W.Lane #0 W.Lane #1 W.Lane #2 W.Lane #3
0023C78010004205 10 10 10 10
04000780A0000005 8 8 8 8
0000000041012C00 8 8 8 8
0000000020008200 8 8 8 8
C410078030020009 8 8 8 8
000000002102E800 8 8 8 8
000000002102EA0C 8 8 8 8
80C00780D00E0005 8 8 8 8
80C00780D00E0601 8 8 8 8
0000000020008204 8 8 8 8
000000002102EC00 8 8 8 8
A0C00781D00E0005 69 69 69 69
0000078030000003 4 4 4 4

Table 5.6: Vector_sum: write unit monitoring results.
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Warp Scheduler

The warp scheduler monitoring results are plotted in fig 5.7 and collected in table 5.7. The
highest latency is almost always associated to the first warp lane, e.g. due to the fact that the
warp scheduler needs to access to the warp pool memory. The latency relate to the fourth
warp lane is significant due to the delay introduce by the read unit, as previously discussed.

Figure 5.7: Vector_sum: warp scheduler monitoring results.

Instruction W.L. #0 W.L. #1 W.L. #2 W.L. #3
00000000000000000000000000000000 3 5 3 31
00000000000000000000000000001000 62 5 3 28
00000000000000000000000000010000 52 4 3 19
00000000000000000000000000010100 62 4 3 21
00000000000000000000000000011000 68 5 3 28
00000000000000000000000000100000 52 4 3 21
00000000000000000000000000100100 68 4 3 21
00000000000000000000000000101000 68 5 3 92
00000000000000000000000000110000 244 5 3 92
00000000000000000000000000111000 244 4 3 21
00000000000000000000000000111100 68 4 3 21
00000000000000000000000001000000 68 5 3 28
00000000000000000000000001001000 284 5 3 6

Table 5.7: Vector_sum: warp scheduler monitoring results.
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Warp Checker

The warp checker monitoring results are collected in table 5.8. The results show that the
warp checker latency is independent on the warp lane number and the instruction executed
and, more important, the latency is the minimum possible value. This is due to the fact
that the Vector_sum application is simple and without possible conditional branching. As
a consequence, the internal divergency, discussed in section 3.2.5 never occurs and the warp
checker is practically needless, it will never check for fence.

Instruction W.Lane #0 W.Lane #1 W.Lane #2 W.Lane #3
0023C78010004205 2 2 2 2
04000780A0000005 2 2 2 2
0000000041012C00 2 2 2 2
0000000020008200 2 2 2 2
C410078030020009 2 2 2 2
000000002102E800 2 2 2 2
000000002102EA0C 2 2 2 2
80C00780D00E0005 2 2 2 2
80C00780D00E0601 2 2 2 2
0000000020008204 2 2 2 2
000000002102EC00 2 2 2 2
A0C00781D00E0005 2 2 2 2
0000078030000003 2 2 2 2

Table 5.8: Vector_sum: warp checker monitoring results.

Warp Generator

The warp generator unit monitoring results are collected in table 5.9. This shown the time
interval require to generate the warp and so to fill the warp pool and state memory and ini-
tialize the fence registers.

Time_interval #Cycles
Total_warp_generation 7

Table 5.9: Vector_sum: warp generator monitoring results.

Streaming Multiprocessor Controller

The streaming multiprocessor unit monitoring results are collected in table 5.10 and represents
the time interval the SM spends to execute the scheduled block.
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Time_interval #Cycles
SM_task_execution 2057

Table 5.10: Vector_sum: streaming multiprocessor monitoring results.

Block Scheduler

The block scheduler unit monitoring results are collected in table 5.11 and represents the time
interval require to schedule a block.

Time_interval #Cycles
Block_Scheduling 4

Table 5.11: Vector_sum: block scheduler monitoring results.

Vector Register File

The vector register file monitoring results regarding the number of accesses are shown in fig
5.8 and collected in the tables 5.12, 5.13 and 5.14.

Figure 5.8: Vector_sum: vector register file monitoring results.
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Module # writings # readings
GPRS0 48 60
GPRS1 48 60
GPRS2 48 60
GPRS3 48 60
GPRS4 48 60
GPRS5 48 60
GPRS6 48 60
GPRS7 48 60

Table 5.12: Vector_sum: vector register file monitoring results.

Module Bank #0 Bank #1 Bank #2 Bank #3
GPRS0 12 12 12 12
GPRS1 12 12 12 12
GPRS2 12 12 12 12
GPRS3 12 12 12 12
GPRS4 12 12 12 12
GPRS5 12 12 12 12
GPRS6 12 12 12 12
GPRS7 12 12 12 12

Table 5.13: Vector_sum: vector register file banks monitoring results (writing).

Module Bank #0 Bank #1 Bank #2 Bank #3
GPRS0 15 15 15 15
GPRS1 15 15 15 15
GPRS2 15 15 15 15
GPRS3 15 15 15 15
GPRS4 15 15 15 15
GPRS5 15 15 15 15
GPRS6 15 15 15 15
GPRS7 15 15 15 15

Table 5.14: Vector_sum: vector register file bank reading monitoring results (reading).

Observing the results, it’s evident that the number of reading operations is higher than the
writing one. Additionally, the memory access result to be balanced among different register
files, banks and consequently among the 32 threads.
Regarding the time interval between first writing and last reading and between two successive
writing operations, in table 5.15 and 5.16 the results have been collected.
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Table 5.15: Vector_sum: vector register file write-to-read monitoring results for location #0
of the register file associated to core #0.

Table 5.16: Vector_sum: vector register file write-to-write monitoring results for location #0
of the register file associated to core #0.

In the time interval tables only the results related to the location #0 of the register file #0
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have been reported, since the behaviour is similar also for the other register file locations.
More in detail, in the table is represented, using colours, which are the longer time intervals.
This is a significant figure of merits considering that, as discussed in section 4.1, this is
proportional to the sensibility of the location to the SEUs or better to the probability that
the specific location is affected by SEUs. In fact, the larger is the time interval between first
writing and last reading, the higher is the probability that a SEUs occurs.
Finally, considering the actual number of vector register file locations used, each thread will
access to 4 locations over 128 and the total vector register file utilization is the one shown in
fig 5.9.

Figure 5.9: Vector_sum: vector register file location usage.

Address Register File

The vector register file monitoring results regarding the number of accesses are collected in
the tables 5.17. As it’s possible to notice, the address register file is never used. consequently,
considering that this memory stores the addresses to point to the shared memory (that allows
the communication among different SP of the same SM), this implies that the cores work
completely in parallel.

Module # writings # readings
ADDREG0 0 0
ADDREG1 0 0
ADDREG2 0 0
ADDREG3 0 0
ADDREG4 0 0
ADDREG5 0 0
ADDREG6 0 0
ADDREG7 0 0

Table 5.17: Vector_sum: vector register file monitoring results.
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Predicate Register File

The predicate register file monitoring results regarding the number of accesses are shown in
fig 5.10 and collected in the tables 5.18, 5.19. Observing the results, it’s possible to notice
that the predicate register file is never written, due to the absence of conditional branching
in the application. Additionally, the memory access result to be balanced among different
register files, banks and consequently among the 32 threads.

Figure 5.10: Vector_sum: predicate register file monitoring results.

Module # writings # readings
PREDREG0 0 24
PREDREG1 0 24
PREDREG2 0 24
PREDREG3 0 24
PREDREG4 0 24
PREDREG5 0 24
PREDREG6 0 24
PREDREG7 0 24

Table 5.18: Vector_sum: predicate register file monitoring results.
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Module Bank #0 Bank #1 Bank #2 Bank #3
PREDREG0 6 6 6 6
PREDREG1 6 6 6 6
PREDREG2 6 6 6 6
PREDREG3 6 6 6 6
PREDREG4 6 6 6 6
PREDREG5 6 6 6 6
PREDREG6 6 6 6 6
PREDREG7 6 6 6 6

Table 5.19: Vector_sum: predicate register file bank reading monitoring results (reading).

5.1.2 Vector_sum with Resilient LOAD/STORE

Analysed the performance analysis results of the Vector_sum application, a hardened ver-
sion of the same application has been studied. This permits to quantify the performance
degradation and the overhead in terms of memory access due to the resilient LOAD/STORE
instruction.

Fetch Unit

The fetch unit monitoring results are shown in fig 5.11 and collected in the table 5.20.

Figure 5.11: Vector_sum with resilient global access: fetch unit monitoring results.
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Instruction W.Lane #0 W.Lane #1 W.Lane #2 W.Lane #3
0403C78010000011 4 2 27 13
0023C78010004205 4 2 30 16
0023C78010004225 4 2 30 16
04000780A0000005 4 2 27 13
04000780A0001015 4 2 27 13
0000000041012C00 3 2 18 16
0000000041092C10 3 2 18 16
0000000020008200 3 2 20 18
0000000020048A10 3 2 20 18
C410078030020009 4 2 27 13
C410078030020819 4 2 27 13
000000002102E800 3 2 20 18
000000002106E810 3 2 20 18
000000002102EA0C 3 2 20 18
000000002106EA1C 3 2 20 18
84D14780D00E0005 4 2 95 81
87D10780D00E0601 4 2 95 81
0000000020008204 3 2 20 18
0000000020048A14 3 2 20 18
000000002102EC00 3 2 20 18
000000002106EC10 3 2 20 18
A4D14780D00E0005 4 2 32 18
0000078030000003 4 2 5 6

Table 5.20: Vector_sum with resilient global access: fetch unit monitoring results.

Comparing these results with the one obtained and discussed for the standard Vector_sum
application, it’s possible to notice that the latency associated to the fourth warp lane has the
same trend in both the application. Nevertheless, comparing the data shown in tables 5.1
and 5.20, it’s evident that the latency associated to the global store and load instructions,
related to the third and fourth warp lanes, is higher in the application with the resilient
LOAD/STORE.

Considering the total time to complete the application, the expectation is that the resilient
version will spend a higher amount of time, in fact the number of executed instruction is
larger. The total warp execution results are shown in fig 5.12 and collected in the table 5.21.
Again, comparing tables 5.2 and 5.21, it’s possible to that not only the fetch unit latency but
the entire warp execution of the global LOAD/STORE instruction increases in the resilient
version. More in details, the performance overhead for the LOAD instruction results to be
around 5,8 % while for the STORE instruction around 5,3 %.
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Figure 5.12: Vector_sum with resilient global access: total instructions execution.

Instruction Total warp execution
0403C78010000011 88
0023C78010004205 101
0023C78010004225 101
04000780A0000005 88
04000780A0001015 88
0000000041012C00 88
0000000041092C10 88
0000000020008200 96
0000000020048A10 96
C410078030020009 88
C410078030020819 88
000000002102E800 96
000000002106E810 96
000000002102EA0C 96
000000002106EA1C 96
84D14780D00E0005 364
87D10780D00E0601 364
0000000020008204 96
0000000020048A14 96
000000002102EC00 96
000000002106EC10 96
A4D14780D00E0005 337
0000078030000003 45

Table 5.21: Vector_sum with resilient global access: total instructions execution.
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Decode Unit

The decode unit monitoring results are shown in fig 5.13 and collected in the table 5.22.
Again, comparing with the results shown in table 5.3, it’s possible to notice a latency overhead
associated to the resilient LOAD/STORE operation. Vice versa the latency trend is similar
to the standard Vector_add one.

Figure 5.13: Vector_sum with resilient global access: decode unit monitoring results.

Instruction W.Lane #0 W.Lane #1 W.Lane #2 W.Lane #3
0403C78010000011 2 27 13 13
0023C78010004205 2 30 16 16
0023C78010004225 2 30 16 16
04000780A0000005 2 27 13 13
04000780A0001015 2 27 13 13
0000000041012C00 2 18 16 16
0000000041092C10 2 18 16 16
0000000020008200 2 20 18 18
0000000020048A10 2 20 18 18
C410078030020009 2 27 13 13
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C410078030020819 2 27 13 13
000000002102E800 2 20 18 18
000000002106E810 2 20 18 18
000000002102EA0C 2 20 18 18
000000002106EA1C 2 20 18 18
84D14780D00E0005 2 95 81 81
87D10780D00E0601 2 95 81 81
0000000020008204 2 20 18 18
0000000020048A14 2 20 18 18
000000002102EC00 2 20 18 18
000000002106EC10 2 20 18 18
A4D14780D00E0005 2 32 18 58
0000078030000003 2 5 6 6

Table 5.22: Vector_sum with resilient global access: decode unit monitoring results.

Read Unit

The read unit monitoring results are shown in fig 5.14 and collected in the table 5.23.

Figure 5.14: Vector_sum with resilient global access: read unit monitoring results.
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Instruction W.Lane #0 W.Lane #1 W.Lane #2 W.Lane #3
0403C78010000011 27 13 13 13
0023C78010004205 30 16 16 16
0023C78010004225 30 16 16 16
04000780A0000005 27 13 13 13
04000780A0001015 27 13 13 13
0000000041012C00 18 16 16 16
0000000041092C10 18 16 16 16
0000000020008200 20 18 18 18
0000000020048A10 20 18 18 18
C410078030020009 27 13 13 13
C410078030020819 27 13 13 13
000000002102E800 20 18 18 18
000000002106E810 20 18 18 18
000000002102EA0C 20 18 18 18
000000002106EA1C 20 18 18 18
84D14780D00E0005 95 81 81 81
87D10780D00E0601 95 81 81 81
0000000020008204 20 18 18 18
0000000020048A14 20 18 18 18
000000002102EC00 20 18 18 18
000000002106EC10 20 18 18 18
A4D14780D00E0005 32 18 58 73
0000078030000003 5 6 6 6

Table 5.23: Vector_sum with resilient global access: read unit monitoring results.

Again, comparing the results shown in table 5.4 and 5.23, it’s possible to observe a latency
overhead associated to the resilient LOAD/STORE operation. As regard the latency trend,
it results to be similar to the standard version of the Vector_add.

Execution Unit

The execution unit monitoring results are shown in fig 5.15 and collected in the table 5.24.
Comparing the results with the ones obtained for the standard Vector_sum, collected in
table 5.5, it’s possible to notice a latency overhead for the STORE instruction but not for
the LOAD one. This it’s an obvious result considering that, since the LOAD instruction
execution produces a delay in the read unit of the pipe, since the execution unit is after the
read one in the pipeline, it’s not affected by the read unit delay.
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Figure 5.15: Vector_sum with resilient global access: execution unit monitoring results.

Instruction W.Lane #0 W.Lane #1 W.Lane #2 W.Lane #3
0403C78010000011 2 2 2 2
0023C78010004205 2 2 2 2
0023C78010004225 2 2 2 2
04000780A0000005 3 3 3 3
04000780A0001015 3 3 3 3
0000000041012C00 3 3 3 3
0000000041092C10 3 3 3 3
0000000020008200 3 3 3 3
0000000020048A10 3 3 3 3
C410078030020009 3 3 3 3
C410078030020819 3 3 3 3
000000002102E800 3 3 3 3
000000002106E810 3 3 3 3
000000002102EA0C 3 3 3 3
000000002106EA1C 3 3 3 3
84D14780D00E0005 2 2 2 2
87D10780D00E0601 2 2 2 2
0000000020008204 3 3 3 3
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0000000020048A14 3 3 3 3
000000002102EC00 3 3 3 3
000000002106EC10 3 3 3 3
A4D14780D00E0005 2 57 72 72
0000078030000003 5 5 5 5

Table 5.24: Vector_sum with resilient global access: execution unit monitoring results.

Write Unit

The write unit monitoring results are shown in fig 5.16 and collected in the table 5.25. Again,
the results are similar to the one obtained for the standard Vector_sum, except for the LOAD-
/STORE instructions.

Figure 5.16: Vector_sum with resilient global access: write unit monitoring results.
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Instruction W.Lane #0 W.Lane #1 W.Lane #2 W.Lane #3
0403C78010000011 8 8 8 8
0023C78010004205 10 10 10 10
0023C78010004225 10 10 10 10
04000780A0000005 8 8 8 8
04000780A0001015 8 8 8 8
0000000041012C00 8 8 8 8
0000000041092C10 8 8 8 8
0000000020008200 8 8 8 8
0000000020048A10 8 8 8 8
C410078030020009 8 8 8 8
C410078030020819 8 8 8 8
000000002102E800 8 8 8 8
000000002106E810 8 8 8 8
000000002102EA0C 8 8 8 8
000000002106EA1C 8 8 8 8
84D14780D00E0005 13 13 13 13
87D10780D00E0601 13 13 13 13
0000000020008204 8 8 8 8
0000000020048A14 8 8 8 8
000000002102EC00 8 8 8 8
000000002106EC10 8 8 8 8
A4D14780D00E0005 72 72 72 72
A4D14780D00E0005 4 4 4 4

Table 5.25: Vector_sum with resilient global access: write unit monitoring results.

Warp Scheduler

The warp scheduler monitoring results are shown in fig 5.17 and collected in the table 5.26.
Comparing the results shown in table 5.26 and 5.26, it’s possible to notice a latency overhead
associated to the resilient LOAD/STORE operation. The latency trend associated to each
warp lane is similar to the standard Vector_add one.
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Figure 5.17: Vector_sum with resilient global access: warp scheduler monitoring results.

Program Counter W.L. #0 W.L. #1 W.L. #2 W.L. #3
00000000000000000000000000000000 3 5 3 28
00000000000000000000000000001000 52 5 3 31
00000000000000000000000000010000 62 5 3 31
00000000000000000000000000011000 62 5 3 28
00000000000000000000000000100000 52 5 3 28
00000000000000000000000000101000 52 4 3 19
00000000000000000000000000101100 62 4 3 19
00000000000000000000000000110000 62 4 3 21
00000000000000000000000000110100 68 4 3 21
00000000000000000000000000111000 68 5 3 28
00000000000000000000000001000000 52 5 3 28
00000000000000000000000001001000 52 4 3 21
00000000000000000000000001001100 68 4 3 21
00000000000000000000000001010000 68 4 3 21
00000000000000000000000001010100 68 4 3 21
00000000000000000000000001011000 68 5 3 96
00000000000000000000000001100000 260 5 3 96
00000000000000000000000001101000 260 4 3 21
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00000000000000000000000001101100 68 4 3 21
00000000000000000000000001110000 68 4 3 21
00000000000000000000000001110100 68 4 3 21
00000000000000000000000001111000 68 5 3 33
00000000000000000000000010000000 296 5 3 6

Table 5.26: Vector_sum with resilient global access: warp scheduler monitoring results.

Warp Checker

The warp checker monitoring results are collected in the table 5.27. For this module the
behaviour results to be exactly equal to the standard Vector_sum application. This is due
to the fact that, even if the version is different, the application is the same. Consequently,
considering that the warp checker is used to handle the internal warp divergency, if in the
original application the conditional flow is absent, the same occurs also for the resilient
version. So, as in the standard version, also in the resilient one the reach the maximum
efficiency.

Instruction W.Lane #0 W.Lane #1 W.Lane #2 W.Lane #3
0403C78010000011 2 2 2 2
0023C78010004205 2 2 2 2
0023C78010004225 2 2 2 2
04000780A0000005 2 2 2 2
04000780A0001015 2 2 2 2
0000000041012C00 2 2 2 2
0000000041092C10 2 2 2 2
0000000020008200 2 2 2 2
0000000020048A10 2 2 2 2
C410078030020009 2 2 2 2
C410078030020819 2 2 2 2
000000002102E800 2 2 2 2
000000002106E810 2 2 2 2
000000002102EA0C 2 2 2 2
000000002106EA1C 2 2 2 2
84D14780D00E0005 2 2 2 2
87D10780D00E0601 2 2 2 2
0000000020008204 2 2 2 2
0000000020048A14 2 2 2 2
000000002102EC00 2 2 2 2
000000002106EC10 2 2 2 2
A4D14780D00E0005 2 2 2 2
A4D14780D00E0005 2 2 2 2

Table 5.27: Vector_sum with resilient global access: warp checker monitoring results.
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Warp Generator

The warp generator monitoring results are collected in the table 5.27. Comparing with the
table 5.9, in both application versions the warp generator spends the same time to completely
generate the warp.

Time_interval #Cycles
Total_warp_generation 7

Table 5.28: Vector_sum with resilient global access: warp generator monitoring results.

Streaming Multiprocessor Controller

The streaming multiprocessor controller monitoring results are collected in the table 5.29.
Comparing with the table 5.10, it’s possible to observe that the resilient version produces
around 48 % of performance degradation.

Time_interval #Cycles
SM_Task_execution 3047

Table 5.29: Vector_sum with resilient global access: streaming multiprocessor monitoring
results.

Block Scheduler

The block scheduler monitoring results are collected in the table 5.30. Comparing with the
table 5.11, in both application versions the warp generator spends the same time to completely
schedule the thread block.

Time_interval #Cycles
Block_scheduling 4

Table 5.30: Vector_sum with resilient global access: block scheduler monitoring results.

Vector Register File

The vector register file monitoring results regarding the number of accesses are shown in fig
5.18 and collected in the tables 5.31, 5.32 and 5.33. Comparing with the results obtained for
the standard Vector_sum (fig 5.8 and tables 5.12, 5.13 and 5.14), it’s possible to observe that
the number of writing operation are duplicate but the number of reading operations is more
than doubled. This is due to the implementation of the resilient global LOAD and STORE
instructions. Since the LOAD operation is translated in a LOAD and a MOVE, the first
operation corresponds to a writing operation on the VRF, vice versa the second operation
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corresponds to a reading operation on the VRF and then a writing operation. This means
that each global LOAD introduces an additional read operation, producing more than the
double of reading operations.

Figure 5.18: Vector_sum with resilient global access: vector register file monitoring results.

Module # writings # readings
GPRS0 96 136
GPRS1 96 136
GPRS2 96 136
GPRS3 96 136
GPRS4 96 136
GPRS5 96 136
GPRS6 96 136
GPRS7 96 136

Table 5.31: Vector_sum with resilient global access: vector register file monitoring results.
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Module Bank #0 Bank #1 Bank #2 Bank #3
GPRS0 24 24 24 24
GPRS1 24 24 24 24
GPRS2 24 24 24 24
GPRS3 24 24 24 24
GPRS4 24 24 24 24
GPRS5 24 24 24 24
GPRS6 24 24 24 24
GPRS7 24 24 24 24

Table 5.32: Vector_sum with resilient global access: vector register file banks monitoring
results (writing).

Module Bank #0 Bank #1 Bank #2 Bank #3
GPRS0 34 34 34 34
GPRS1 34 34 34 34
GPRS2 34 34 34 34
GPRS3 34 34 34 34
GPRS4 34 34 34 34
GPRS5 34 34 34 34
GPRS6 34 34 34 34
GPRS7 34 34 34 34

Table 5.33: Vector_sum with resilient global access: vector register file banks monitoring
results (reading).

Considering now the vector register locations usage shown in fig 5.19, as expected considering
that the resilient instruction are based on duplication, the total amount of used register is
doubled with respect to the standard Vector_sum, fig 5.9.

Figure 5.19: Vector_sum: vector register file location usage.
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Address Register File

The address register file monitoring results regarding the number of accesses are collected in
the table 5.34. As in the standard version, the address register file is not used.

Module # writings # readings
ADDREG0 0 0
ADDREG1 0 0
ADDREG2 0 0
ADDREG3 0 0
ADDREG4 0 0
ADDREG5 0 0
ADDREG6 0 0
ADDREG7 0 0

Table 5.34: Vector_sum with resilient global access: address register file monitoring results.

Predicate Register File

The predicate register file monitoring results regarding the number of accesses are shown in
fig 5.20 and collected in the tables 5.35 and 5.36. With respect to the standard version (fig
5.10 and tables 5.18 and 5.19) the number of reading operations increases, but the writing
operations still remain absent.

Figure 5.20: Vector_sum with resilient global access: predicate register file monitoring results.
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Module # writings # readings
PREDREG0 0 40
PREDREG1 0 40
PREDREG2 0 40
PREDREG3 0 40
PREDREG4 0 40
PREDREG5 0 40
PREDREG6 0 40
PREDREG7 0 40

Table 5.35: Vector_sum with resilient global access: predicate register file monitoring results.

Module Bank #0 Bank #1 Bank #2 Bank #3
PREDREG0 10 10 10 10
PREDREG1 10 10 10 10
PREDREG2 10 10 10 10
PREDREG3 10 10 10 10
PREDREG4 10 10 10 10
PREDREG5 10 10 10 10
PREDREG6 10 10 10 10
PREDREG7 10 10 10 10

Table 5.36: Vector_sum with resilient global access: predicate register file banks monitoring
results (reading).

5.2 Fault Injection Platform

Considering that the performance analysis monitoring system has been implemented in order
to provide detailed information regarding the internal behaviour of the FlexGrip, the goal is
to analysed this information when a SEE effects occurs, in order to be able to identify and
harden only the critical resources. For this purpose, it’s essential to have a tool able to inject
fault in the architecture under test.

5.2.1 Fault Injector

The fault injector considered in this study, focused on the effects of SEUs, it’s able to generate
a bit-flip in one of the memory locations defined in an input file called signal list (SL.txt) in
a random time instant. Once the fault injector read the signal list input file, it launches a
golden simulation of the application on the FlexGrip, so a simulation without faults, storing
the output memory and all the performance analysis results. During the golden simulation,
the fault injector save also the kernel start and done instant, defining the time interval in
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which the FlexGrip is actually execute the application, in order to inject faults only during
the application execution and not during the FlexGrip configuration.
When the golden simulation is completed the fault injector, according to the number of faults
to inject (defined at the input), run a certain amount of fault simulation injecting a bit flip
randomly in the time interval between kernel start and done and randomly in one of the
memory locations defined in the signal list file. Again, for each simulation, the injector saves
the performance analysis results and the output memory. Finally, the fault injector classified
the fault effects in four categories:

• Detected Unrecoverable Error (DUE), also known as hang, if the simulation doesn’t
terminate correctly (e.g. the kernel done is not detected);

• Masked (or silent), if the output memories of the golden and fault simulations are equal;

• Silent Data Corruption (SDC), if the output memories of the golden and fault simu-
lations are not equal (in this case the fault injector save the differences in a proper
file).

• Time-Out, if the fault simulation requires more time to be completed with respect to
the golden one, producing a performance degradation.

Moreover, the fault injector classified the SEU effects in detected and not detected. Finally,
once the fault simulations are completed, the fault injector provide a summary specifying the
total execution time and the number of fault effects.

5.2.2 Fault Injection Strategy

In order to complete analysed the fault effects, the fault injector should inject a number of
fault proportional to the memory locations and clock cycles. In particular it should launch a
simulation injecting a fault in each memory location at each clock cycle. Consequently, this
implies to run millions of simulations. Vice versa reducing the number of simulations, for
sure the simulation time decreases but also the accuracy fault injection analysis. Therefore,
it’s important to find a trade-off among number of targeted locations and number of injected
faults. Assuming to have a fixed number of injected faults (e.g. 2000), and so of fault
simulations, in the following sections will be analysed different fault injection strategies,
considering as targeted module the vector register file and as tested application the standard
version of the Vector_sum. From the performance analysis the number of register locations
of the vector register file used by the standard Vector_add, and as a consequence the ones in
which faults must be injected, are four locations in each bank of each register file in the vector
register file (assuming, as in 5.1, 8 cores). This means that standard Vector_sum accesses
to 128 locations of 32 bit each. Instead, considering the predicate register file, the number of
locations used is 32 locations of 4 bit (1 location for each thread).
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1◦ Strategy: inject all used registers with same number in a single register file

Figure 5.21: Fault injection 1◦ strategy.

Considering the number of signals in the signal list, this results to be equal to the product
between the number of register under test in the single fault injection study (in this case four
locations) and the number of bit of each register:

#signals in signal list = #registers under test x #bit of parallelism

In the standard Vector_sum application the total number of signals in the signal list is 128
so, considering 2000 injected faults, an average of 15 faults per each signal in the entire ex-
ecution interval. Moreover, to inject in all the used registers, it’s necessary to run 32 fault
injections, since there are four used locations in each bank and eight register files.

2◦ Strategy: inject all used registers with same number and bank

Figure 5.22: Fault injection 2◦ strategy.

With this strategy the number of signals in the signal list corresponds to 256 (eight registers
of 32 bits under test) so, considering 2000 injected faults, an average of 7 faults per each signal
in the entire execution interval. Moreover, to inject in all the used registers, it’s necessary to
run 16 fault injections, since there are four used locations in each bank and four banks.
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3◦ Strategy: inject all used registers with same number in all banks

Figure 5.23: Fault injection 3◦ strategy.

With this strategy the number of signals in the signal list corresponds to 1024 (one register
of 32 bits under test per each bank and register file) so, considering 2000 injected faults, an
average of 1 fault per each signal in the entire execution interval. Moreover, to inject in all
the used registers, it’s necessary to run 4 fault injections, since there are four used locations
in each bank.

4◦ Strategy: inject all used registers of single bank

Figure 5.24: Fault injection 4◦ strategy.

With this strategy the number of signals in the signal list corresponds to 128 (four register of
32 bits under test) so, considering 2000 injected faults, an average of 15 faults per each signal
in the entire execution interval. Moreover, to inject in all the used registers, it’s necessary to
run 32 fault injections, since there are four banks and eight register files.
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5◦ Strategy: inject all used registers of single register file

Figure 5.25: Fault injection 5◦ strategy.

With this strategy the number of signals in the signal list corresponds to 512 (four register of
32 bits under test per each bank) so, considering 2000 injected faults, an average of 4 faults
per each signal in the entire execution interval. Moreover, to inject in all the used registers,
it’s necessary to run 8 fault injections, since there are eight register files.

6◦ Strategy: inject all used registers of all banks and register files

Figure 5.26: Fault injection 6◦ strategy.

With this strategy the number of signals in the signal list corresponds to 4096 (four register
of 32 bits under test per each bank and register file) so, considering 2000 injected faults, an
average of 1 fault each two signal in the entire execution interval. Moreover, to inject in all
the used registers, it’s necessary to run a single fault injection.

Injection strategies summary

From the strategies previously described it’s possible to observe that the higher is the number
of locations under test, the lower is the number of fault injection simulations that must be
run to completely analysed the vector register file. Nevertheless, this implies also a reduction
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of the number of faults that are injected in each signal and, consequently, a reduction of the
accuracy. So, the unique solutions in this case is to increase the number of injected faults
or reduce the number of registers injected in a single fault injection. In table 5.37 have been
reported the information described in the strategies description for two different applications
and memory elements. This could help in the selection of the correct strategy.

VECTOR_SUM

Memory Strategy Number of
signals

Faults per
signal

Number of
injections

1 128 15 32
2 256 7 16
3 1024 1 4
4 128 15 32
5 512 4 8

Vector
Register
File

6 4096 0,5 1
1 16 125 8
2 32 62 4
3 128 15 1
4 / / /
5 / / /

Predicate
Register
File

6 / / /

FFT

Memory Strategy Number of
signals

Faults per
signal

Number of
injections

1 128 15 136
2 256 7 68
3 1024 1 17
4 544 3 32
5 2176 <1 8

Vector
Register
File

6 17408 0,1 1
1 16 125 16
2 32 62 8
3 128 15 2
4 8 250 32
5 32 62 8

Predicate
Register
File

6 64 1 1

Table 5.37: Strategy parameters for Vector_sum and FFT.

The tables correspond to an injection of 2000 faults. Obviously the higher is the number of
injected faults, the higher will be the number of faults per signal. This table has been filled
considering that:

• Vector_sum uses 4 locations of the vector register file and 1 location of the predicate
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one (for this reason the 4◦, 5◦ and 6◦ strategies have no sense for the predicate register
file).

• FFT uses 17 locations of the vector register file and 2 locations of the predicate one.

5.2.3 Fault Injection Results for Vetcor_sum

A fault injection simulation has been run for the Vector_sum in order to check the correctness
of the fault injector and analysed the effects of SEUs injected in the vector and predicate
register file (in the used locations). The number of faults injected randomly in the execution
time has been fixed to 2000 and the strategy adopted the third one. Consequently, the tool
injects faults in all the location with the same register number, independently on the bank
and the register file. The results of this fault injections are shown in tables 5.38 and 5.39.

Location #0 Vector Register File Location #1 Vector Register File
Type Total # Percentage Type Total # Percentage

Evaluated 2000 Evaluated 2000
Masked 1397 69% Masked 1187 59%
Detected 0 0% Detected 0 0%
SDC 603 30% SDC 813 40%
Hang 0 0% Hang 0 0%
Time_out 0 0% Time_out 0 0%

Location #2 Vector Register File Location #3 Vector Register File
Type Total # Percentage Type Total # Percentage

Evaluated 2000 Evaluated 2000
Masked 1462 73% Masked 1687 84%
Detected 0 0% Detected 0 0%
SDC 537 26% SDC 312 15%
Hang 1 0% Hang 1 0%
Time_out 0 0% Time_out 0 0%

Table 5.38: Vector register file fault injection results for the Vector_sum

Location #0 Predicate Register File
Type Total # Percentage

Evaluated 2000
Masked 0 0%
Detected 0 0%
SDC 0 0%
Hang 2000 100%
Time_out 0 0%

Table 5.39: Predicate register file fault injection results for the Vector_sum
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The injection results show that, as regard the vector register file, the most critical locations
is the location #1, that causes an higher number of SDCs and so of output errors. Vice versa
the location with lowest sensitivity to SEUs results to be the location #3, that generates only
15% of SDCs.
For what concern the predicate register file, it’s possible to observe that each single injected
fault generates an hang. Consequently, in the optics of a selective hardening, this location
must be hardened to guarantee the correct execution of the Vector_sum application.

5.3 Conclusions and Future Developments

This thesis work has been focused to the development of a monitoring system on a GPGPU
architecture (i.e. FlexGrip based on NVIDIA G80) in order to monitor the execution of
different application and provide at the output specific log files referred to the main internal
modules of the FLexGrip itself. This allows to analyse in details the kernel execution of
several application but also provides additional information that, in a fault injection study
for radiation hardening design, permit to very precisely identify the critical modules and,
consequently, to adopt selective hardening techniques. These methods, combined with the
performance analysis and the fault injection study, allow to harden the system against radia-
tion effects, avoiding an excessive area or performance overhead. Therefore, the implemented
monitoring system can be also used to prove the efficiency of an hardening technique in terms
of introduced performance degradation. As a proof, this work has been used in collaboration
with the Universidade Federal do Rio Grande do Sul (UFRGS) to quantitatively identify
the performance overhead of several applications modified with the resilient global LOAD
and STORE instruction with respect to the original version of the same applications. The
monitoring system has been developed under specific assumption that, for instance, does not
include the multiple warp configuration. In this case the monitoring system must be modified
in order to track also the warp ID and, consequently, to associate each of the results obtained
and described in this thesis work to the correct warp.
Furthermore, the monitoring system and fault injector has been developed considering as
goal to study the effect of SEUs. Nevertheless, with proper modification of the fault injector,
using the same monitoring system, also the effect of other radiation effects can be studied,
e.g. the SET.
In conclusion, this thesis proposed a monitoring system able to provide additional perfor-
mance information that certainly are significant both in the design and validation steps of a
radiation hardening technique.
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A.2 Decode Unit
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A.3 Read Unit
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A.4 Execution Unit
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A.5 Write Unit
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A.6 Warp Scheduler
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A.7 Warp Checker

Independently on the instruction and the warp lane, the warp checker always spends 2 clock
cycles to complete the check operation.

A.8 Warp Generator

Time_interval #Cycles
Total_warp_generation 7

A.9 Streaming Multiprocessor Controller

Time_interval #Cycles
SM_task_execution 83091

A.10 Block Scheduler

Time_interval #Cycles
Block_Scheduling 4

A.11 Vector Register File
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A.12 Address Register File

Module # writings # readings
ADDREG0 0 0
ADDREG1 0 0
ADDREG2 0 0
ADDREG3 0 0
ADDREG4 0 0
ADDREG5 0 0
ADDREG6 0 0
ADDREG7 0 0
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A.13 Predicate Register File



APPENDIX B

Sort with Resilient LOAD/STORE
Instruction

B.1 Fetch Unit

106
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B.2 Decode Unit



Master Thesis Name in homebook 111



Master Thesis Name in homebook 112

B.3 Read Unit
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B.4 Execution Unit
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B.5 Write Unit
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B.6 Warp Scheduler
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B.7 Warp Checker

Independently on the instruction and the warp lane, the warp checker always spends 2 clock
cycles to complete the check operation.
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B.8 Warp Generator

Time_interval #Cycles
Total_warp_generation 7

B.9 Streaming Multiprocessor Controller

Time_interval #Cycles
SM_task_execution 111332

B.10 Block Scheduler

Time_interval #Cycles
Block_Scheduling 4

B.11 Vector Register File
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B.12 Address Register File

Module # writings # readings
ADDREG0 0 0
ADDREG1 0 0
ADDREG2 0 0
ADDREG3 0 0
ADDREG4 0 0
ADDREG5 0 0
ADDREG6 0 0
ADDREG7 0 0
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B.13 Predicate Register File



APPENDIX C

FFT

C.1 Fetch Unit

123
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C.2 Decode Unit
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C.3 Read Unit
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C.4 Execution Unit
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C.5 Write Unit
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C.6 Warp Scheduler
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C.7 Warp Checker

Independently on the instruction and the warp lane, the warp checker always spends 2 clock
cycles to complete the check operation.
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C.8 Warp Generator

Time_interval #Cycles
Total_warp_generation 7

C.9 Streaming Multiprocessor Controller

Time_interval #Cycles
SM_task_execution 95578

C.10 Block Scheduler

Time_interval #Cycles
Block_Scheduling 4

C.11 Vector Register File
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C.12 Address Register File

Module # writings # readings
ADDREG0 0 0
ADDREG1 0 0
ADDREG2 0 0
ADDREG3 0 0
ADDREG4 0 0
ADDREG5 0 0
ADDREG6 0 0
ADDREG7 0 0
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C.13 Predicate Register File



APPENDIX D

FFT with Resilient LOAD/STORE
Instruction

D.1 Fetch Unit

140
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D.2 Decode Unit
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D.3 Read Unit
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D.4 Execution Unit
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D.5 Write Unit
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D.6 Warp Scheduler
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D.7 Warp Checker

Independently on the instruction and the warp lane, the warp checker always spends 2 clock
cycles to complete the check operation.

D.8 Warp Generator

Time_interval #Cycles
Total_warp_generation 10

D.9 Streaming Multiprocessor Controller

Time_interval #Cycles
SM_task_execution 157696



Master Thesis Name in homebook 166

D.10 Block Scheduler

Time_interval #Cycles
Block_Scheduling 4

D.11 Vector Register File
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D.12 Address Register File

Module # writings # readings
ADDREG0 0 0
ADDREG1 0 0
ADDREG2 0 0
ADDREG3 0 0
ADDREG4 0 0
ADDREG5 0 0
ADDREG6 0 0
ADDREG7 0 0

D.13 Predicate Register File
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