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Abstract

Market micro-structure is a branch of finance describing the details of how transac-
tions happen in the order book between buyers and sellers and what is their effect
on price formation. Furthermore, the fundamental laws of supply and demand
are not avoidable, meaning trading always has a cost or an impact on the price.
Economic equilibrium happens when the quantities demanded, at the current price,
are equal to the quantities supplied, and this holds also for liquid assets in financial
markets. Investors are interested having the best strategies and planning the
investments (meta-orders) and this motivated extensive research in the academic
world, addressing the problem of building a valid mathematical model to reproduce
empirical impact curves emerging from the underlying micro-structure. Thus, this
implies that endogenous effects play a vital role, justifying also the Universality
associated to the mentioned empirical laws.
Starting from existent mathematical models, the present work aims first to im-
plement a robust computational framework able to reproduce the dynamics of
a Latent Order Book (LOB) and its transaction cost curves. Secondly, it tries
to address the problem of herding behavior among traders and how this reflects
on the impact cost, called co-impact, and price correlation, comparing with some
additional recent empirical results.
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Chapter 1

Introduction

1.1 Overview
In market micro-structure, the study of how the price of financial assets 1 are
affected by planned execution of a certain volume of orders Q, called meta-orders,
has become increasingly important throughout these last years.
In fact, there are very well established empirical results (see e.g. [1], [2]) that
proved the existence of Universal laws regulating the mechanics of an order book2.
This aspect has an important implication that, perhaps, goes against a common
misconception: financial markets are not as susceptible by global news media as
one may think.
Indeed, most of price movements are exclusively an endogenous effect which derives
from the market micro-structure rather than events in the world’s political or
economic environment, for instance, see [3], [4].
As in many problems in theoretical physics, Universality allows one to abstract
from microscopic details, and focus on global parameters that describe the system;
this means constructing a "coarse-grained" model that should be able to reproduce
the above mentioned law. Therefore, in the price dynamics there should be some
large scale phenomena emerging from the order book’s microscopic dynamics.
Furthermore, Universal Laws regarding the price imply that its behavior is inde-
pendent on the period in which the exchange happened, the geographical position
or even the kind of contract traded (Bitcoin, options, futures, ...).

1Any resource owned by a company or multinational. It can produce positive economical value
and can be converted to cash(e.g. Apple, Google, etc,..).

2List of orders that records the interest of Buyers and Sellers of a particular asset or financial
instrument. A matching tool is used to determine which orders can be fulfilled and at which
price.
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Introduction

The total orders visible, daily, are much less than total Market Capitalization 3, and
the quantity which is visible in the order book is again many orders of mangnitude
smaller.

Subsequently, the latent order book has been introduced, which contains the
intentions of the traders in the market that are not yet visible in the revealed book,
playing an important role in the formation of the price.
Mathematical models have been built to explain this phenomena [5], together with
more intense empirical research in order to understand the extent of validity of the
square-root law.
More recently, there is evidence of a square-root/linear cross-over behavior of price
returns and this is well described in the models of latent order books [6], but it
would be interesting to see this in our simulation, even if unfortunately, it does not
seem the case.

1.2 Aim of the Research
There are still some open problems for what concerns the average price impact
in presence of multiple meta-orders execution; traders may in fact have different
strategies that result in different execution frequencies.
Plus, meta-orders are in general correlated both in size and sign (buy or sell) in
different ways.
The first goal of the research is to built a solid computational framework, which
is able to reproduce the principal features of the latent order book in the linear
approximation. Furthermore, it tries to include for the effect of noise traders,
investigating its effects on the impact curve and relaxation.
The simulation accounts also for called crowding effects or herding: many different
traders plan orders’ execution following another trader for which the strategy is
known; consequently, the other traders follow, imitating the same behavior.
Firstly, we simulated the latent book in presence of only one meta-order type with
a given frequency of execution: this reproduces the square-root law as predicted by
the model, which is a reaction-diffusion process physics’ inspired.
In second place, we substituted the lonely trader with the multiples correlated
agents, reproduced by noise traders with a given correlation exponent suggested by
the empirical evidence.
Third, we tried to simulate the co-impact of noise traders plus a known constant

3It represents the total market value of an asset (maybe owned by a third company) and it is
obtained multiplying the current price of one share or order, times the total number of shares.It
can be expressed in different currencies.
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frequency agent.

1.3 Methods
For obvious reasons, the implementation of a continuous mathematical model is
a discrete process in which each orders is independent of the other and diffuses
in the price-axis following the rules given by the master equation. The price axis
was initialized with a certain shape(linear) which ensures the stationarity of the
process.
The simulation was made using the scripting language Python.
The code was also parallelized in order to optimize the execution time and there
has been an extensive use of servers provided by Ecole Polytechnique at Ladhyx.
Each plot was made making many realization of the same process and then averaging
over this realizations, recording the mid-price time series.

1.4 Plan of the thesis
The work is divided in three parts. First, an introduction to the order book
concept, secondly the mathematical model of the latent order book and the further
modification to account herding behaviours and co-impact behavior.
Thereafter, we show the results of the simulation, from the already known model to
the modified one. Plus, we show some results of the co-impact behavior, compared
with empirical results.
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Chapter 2

The Order Book

2.1 What is an order book?

The order book is the principal tool used in financial markets to satisfy supply and
demand.
They are used in every stock exchange around the world.
In the old days it used to a paper list, now it is far more complicated that that,
but the principle has never changed: for a given price level(or price tick), it records
the interest of investors on a particular security or asset.
The list is divided into two: the bid(demand) side and the ask(supply) side for
every price.
In figure 2.1, a sketch of an order book is depicted.

Figure 2.1: Sketch of a generic order book.
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The ask and bid are well represented and also the mid-price, halfway from the best
buy price and the best sell price.
Besides the bid and ask label, the order are labeled also as limit orders and market
orders.

Limit Orders are not meant to be executed right after placing. Therefore the
price level can be changed dynamically, given a minimum and a maximum price
at which one desires to buy/sell. They may be placed at best buy/sell price or
not and they can get executed at any price given that the investor wants to sell.
Orders are not executed directly from investors, but they are managed by a a third,
the market maker, which mediates between sellers and buyers and makes sure the
market is always liquid, with a low spread.
Market Orders are executed right at the current price. meta-orders, which we will
talk about next, are market orders.
The investor shows interest in a particular stock and the broker instantly sells or
buys orders. Of course there may be some delays, due to available liquidity or
anticipated stock exchange closing time.
Fundamental rule of supply and demands wants that orders are fulfilled at the
price which intersect buy orders and sell orders: providing more liquidity on one
side makes the price push in the opposite direction. The change in price is called
impact and works in the same way both for market and limit orders.
The surprising fact is that for meta-orders, the impact follows a Universal law,
called the square-root law. In physics, whenever there is some universality, this
comes from some underlying low-frequency actors. These actors are the traders
who form the order book.

Figure 2.2: Supply and Demand Curve. P ∗ is the transaction price or equilibrium
price and Q∗ is the equilibrium quantity traded.
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2.2 Revealed order book vs. Latent order book
We have argued that the order book records the traders’ placing orders in a form
of a list. For a given asset, we know that the number of orders actually traded
daily is 1

200 smaller than the market capitalization.
And the number of orders actually visible are 1000 less than that.

Therefore, the role of the market maker, as mentioned before, is provide con-
tinuous liquidity to the revealed order book, which is nevertheless, much lower that
the liquidity actually recorded by intermediaries of any kind.
In addition, the orders are revealed only close to the current transaction price/mid-
price. This large liquidity somehow hidden can be resolved only in longer time-scales
than characteristic time-scales of the revealed order book.
At the same time, low frequency/long time-scales actors justify the "coarse-grained"
model description and the presence of Universal laws dominating the dynamics of
the price.

Thus, that is how the idea of latent order book emerged. It should contain the
intentions of the traders, recorded somewhere, but not directly visible. This fact
has been a weak spot for critics but its inference has proved to be feasible recently
(see [11]).

The dynamics of the latent order book(LOB) can be modeled as a reaction-
diffusion process and should reproduce the formation of the price and the shape of
the LOB.
Indeed, We can write the Fokker-Planck equation and look for stationary solution
that can be simulated, starting from the micro-structure and collecting average
signals.

6



Chapter 3

The Mathematical Model

3.1 The Latent Order Book
The starting point for this research is the reaction-diffusion process used to model
the latent order book(LOB) shown in [5].
As previously said, the orders diffuse in the price axis and when a buy order matches
a sell order they get executed at the that price just like a reaction process, so one
has A+B -> 0.
As shown below in 3.1, each order is labeled as buy or sell order and they are all
limit orders, which means that they do not get executed right after placing, but
the traders have time to change their mind and they can in this way diffuse, raising
or lowering the price, with diffusion coefficient D.
The orders can also be cancelled with rate ν and deposed with rate λ

Figure 3.1: Latent book: buy (blue beads) and sell(red beads) orders are labeled.
Also deposition and cancellation rates are shown as well as the diffusion coefficient.
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If the size of the system goes to infinity (hydrodynamic limit), one can use the
average density of orders for the bid(buy) and ask(sell), ρB(x, t) (resp. ρA(x, t))
and write the Fokker-Planck Equations that govern the dynamic of the system:

∂ρB(x, t)
∂t

= −Vt
∂ρB(x, t)

∂t
+ D

∂ρB(x, t)2

∂t2 − νρB(x, t) + λsgn(pt − x)− κRAB(x, t)

∂ρA(x, t)
∂t

= −Vt
∂ρA(x, t)

∂t
+ D

∂ρA(x, t)2

∂t2 − νρA(x, t) + λsgn(pt − x)− κRAB(x, t)

The drift-diffusion term contains a shift term Vt of the entire book that accounts
for some new information that is visible to all traders in the market, affecting them
collectively. The prices are diffusive in reality, so this term can also be a Gaussian
noise.
We can also notice that the reaction term provides a non linearity with reaction
rate κ.
In fact, RAB ≈ ρB(x, t)ρA(x, t) + fluctuations.
One also takes the limit in which κ → ∞, so the orders disappear immediately
from the book when they react.
In order to get rid of the non-linearities in the equations we notice that we can
define φ(x, t) = ρB(x, t)− ρA(x, t).
This quantity vanished when x = pt which is the average reaction price and also
solution of the following PDE; this is in general different from the instantaneous
one pinstt = (abest + bbest)/2 but we neglect this difference because is relatively small
and is called diffusion width.
To sum up, we can write the new equation:

∂φ(x, t)
∂t

= −Vt
∂φ(x, t)

∂t
+ D

∂φ(x, t)2

∂t2 − νφ(x, t) + λsgn(pt − x)

Integrating over the informational drift component, introducing a new price p̂t =s t
0 Vsds and changing reference frame to y = x− p̂t, we obtain

∂φ(y, t)
∂t

= D
∂φ(y, t)2

∂t2 − νφ(y, t) + λsgn(pt − p̂t − y)

Starting from symmetric initial conditions such that φ(y,0) = −φ(−y,0), p̂t =
pt = 0 is always a solution since it has to be stationary at t → ∞ such that
∂φ(y,t)
∂t

= 0 and therefore has to keep the symmetry from the origin.
In addition, we place ourselves in infinity memory limit when no cancellation
and deposition of orders occurs: there are only low-frequency slow agents, that
do not contribute immediately to the revealed liquidity in the reveled book, like

8
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high-frequency traders do.
In this sense, the latent book serves as a reservoir for the revealed book.
The solution of the differential equation above is:

φs(y ≤ 0) = λ

ν
(1− eγy) and φs(y ≥ 0) = −φs(−y ≤ 0) with γ =

ò
ν

D

This expression represents the average shape of the book and it can be further
simplified in the infinite memory limit, that is, deposition and cancellation rates
tend to zero.

3.1.1 Linear Latent Order Book
Near the transaction price, the approximation leads to a linear shape of the book
with density given by φs(y) = − J

D
y, taking γ → 0. That is the LLOB. J is the

current and it is defined as J = D∂yφs |= λ
ν
It can be introduce also another

quantity, formally the slope of the linear average shape of the book, which is the
latent liquidity:
L = J

D
that provides a measure of how big is the deposition rate λ with respect to

the cancellation rate ν, proportional also to the diffusion coefficient: higher the
deposition rate, higher the liquidity provided to the latent book, etc.

3.2 Meta-orders
We now introduce the meta-orders in the model’s description. We remain in the
linear approximation of the latent Order Book: if the resulting impact shifts the
price by a little amount, that is justified.
That is true if the meta-order execution lasts for hours, although, for longer
executions, we have to take into account nonlinearities and fewer approximations
are necessary.
The meta-orders are modeled as an extra "current" of orders which arrive at the
transaction price pt, and immediately provide liquidity in the revealed book.
At the transaction price we have that y becomes yt = pt − p̂t and so we can write
the simplified differential equation for the LLOB, with an extra term that accounts
for the meta-order.

∂φ(y, t)
∂t

= D
∂φ(y, t)2

∂t
+ mtδ(y − yt) and

∂φ(y → ±∞, t)
∂t

= −L

The condition to impose is, of course, that the shape of the book is linear away
from the price and equal to the latent liquidity L. The solution of this equation is

9
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the same as the one previously obtained for the LLOB, plus a convolution term
that depends on the form of mt.

φ(y, t) = −Ly +
Ú t

0
ds

msñ
4π(t− s)

e− (y−ys)2
4D(t−s)

At the transaction price yt, φ(yt, t) = 0. One obtains therefore a stochastic integral
equation for the price:

yt = 1
L

Ú t

0
ds

msñ
4π(t− s)

e− (yt−ys)2
4D(t−s)

If the impact is small such that |yt − ys|2 << D(t − s) , one can neglect non-
linearities and the mid-price becomes simply the result of a linear propagator
model.

yt = 1
L

Ú t

0
ds

msñ
4π(t− s)

This approximation is therefore valid for small trading rates that do not push the
price that much.

3.2.1 Square Root Impact
The solution of the stochastic equation yt provides already an average price signal,
result of the coarse-graining process that the model does.
If one trades meta-orders the price will be shifted up(ms > 0) for buy meta-orders
and down(ms < 0) for sell ones. Consequently, the impact depends on the quantity
traded Q and can be therefore defined as:

I(Q) = E[Ô(yt+T − yt)|Q]

where T is the execution time and Ô is sign of the meta-orders (buy or sell).
The simplest case one can imagine is constant rate of meta-orders m0 = Q/T . In
that case the equation for the price becomes an easily soluble integral:

I(Q) = m0

L
√

4π

√
t

This equation will be useful when we will try to compare the simulation with the
mathematical model. Also, it is important to underline that this holds for very low
participation rates m0.
To be more precise the integral equation for yt has been solved, in the paper by

10



The Mathematical Model

Donier et al. [5], but that is more involved and it will be reported here only the
result for low and high constant participation ratio.

I(Q) ≈ m0

Jπ

ó
Q

L
for m0 << J

I(Q) ≈
ó

2Q

L
for m0 >> J

It is remarkable that for high participation ratios the Impact does not depend
anymore on the execution time T , but only on volume traded, independently of
the execution rate.
It is often written as I(Q) = Y σ

ñ
Q
V
, where Y is an order one parameter, σ is the

daily volatility, which is often interpreted also as the standard deviation of the
time series of the price returns during one trading day.
V = JTd is the daily traded volume.

3.3 Correlated meta-orders: herding
So far we have discussed simple and already known cases for which the square-root
law has been extensively proved empirically.
One can ask if the law holds when correlated meta-orders are superposed to the
constant rate volume.
In this case, if that constant rate trader wanted to estimate his own impact, the
only known variable would be its own execution rate.
The other traders modeled with δms, random variable, try to copy his behaviour
and trade around m0, with a characteristic time-delay:

ms = m0 + δms, E[δmsδmsÍ ] = σ2(s− sÍ)−µ and E[δms] = 0

Since we look at increments of fractional Brownian motion, called fractional Gaus-
sian noise, as shown in [8], the exponent µ is related to the Hurst exponent
characteristic of Brownian motion through the relation

µ = 2(1−H)

The general equation for the price now becomes

yt = 1
L

Ú t

0
ds

m0ñ
4π(t− s)

e− (yt−ys)2
4D(t−s) + 1

L

Ú t

0
ds

δmsñ
4π(t− s)

e− (yt−ys)2
4D(t−s)

If the impact is small, in the linear propagator model regime we can write

11
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yt = 1
L

Ú t

0
ds

m0ñ
4π(t− s)

+ 1
L

Ú t

0
ds

δmsñ
4π(t− s)

Now applying the expected value with respect to the noise, given that E[δms] = 0,
one has

E[yt] = 1
L

Ú t

0
ds

m0ñ
4π(t− s)

One comes back to the previous results, which implies that the noise does not affect
the behavior of the impact at least for what concerns the first moment.
We will see if this approximation holds also in the simulation

Trivially, if m0 = 0 then E[yt] = 0

The price auto-correlation reads instead

E[ytytÍ ] = σ2

4πL2

Ú t

0

Ú tÍ

0
dsdsÍ (s− sÍ)−µñ

(t− s)(tÍ − sÍ)
e

− (yt−ys)2
4D(t−s) −

(ytÍ −ysÍ )2

4D(tÍ−sÍ)

Again, in the linear propagator framework and putting t = tÍ to obtain the variance,
one has

E[y2
t ] = σ2

4πL2

Ú t

0

Ú t

0
dsdsÍ (s− sÍ)−µñ

(t− s)(t− sÍ)

The variance if a function of t and we want to extract this information in order to
check both the correctness of the simulation and the relation between the correlation
and variance exponent. We can do a change of variable in order to have integrals
from 0 to 1: setting the scaling, s = tx and sÍ = ty, yields:

E[y2
t ] = t1−µ σ2

4πL2

Ú 1

0

Ú 1

0
dxdy

(x− y)−µñ
(1− x)(1− y)

The only problem here is the integral, that despite being a constant, possesses a
divergence for x and y close to 1.
Anyway we can call this proportionality factor C.

E[y2
t ] = C σ2

4πL2 t1−µ

12



Chapter 4

Simulation

This part of the report is dedicated to the simulation of the reaction-diffusion
process reproducing the latent order book with the correlated meta-orders.
It will be subdivided in four parts:

• The simulation of the Linear Latent Order Book(LLOB) with constant m0

• LLOB with m0 = 0 and noise only meta-orders

• The simulation of the herding behaviour : constant rate + noise

• The simulation of the co-impact plot with respect to the participation ratio of
the number of orders traded, φ

13



Simulation

4.1 LLOB Simulation
The order book is initialized symmetrically (as shown in 3.1) with a linear shape
in the number of orders(limit orders), starting from the reference initial mid-price
p0 = 0 which is defined, at any time t, as

pt = 1
2(bt + at)

bt is defined as the maximum price at which investors are willing to buy orders,
while abest is the minimum price at which investors are willing to sell them.
The spread is given by at − bt.
At each step, orders independently diffuse in the price axis with the same probability
to be placed at an higher or lower price, due to the fact that each investor has the
same amount of knowledge about the future mid-price.
This ensures the average mid-price stays constant with respect to the initial condi-
tion, in absence of external perturbations.

The number of orders that have to move at each step and each price tick is
a random variable, distributed as a binomial distribution(scheme in 3.1).
After that, each order moves up or down along the price axis, independently and
symmetrically with probability, pmove = 1

2 .
Given a generic time-step t and tick size i belonging to the price axis and calling the
number of selected orders N i

move,t, the number of total orders N i
t and the number of

orders that raise or lower the price of one price tick, N i
up,t and N i

down,t respectively,
we can write the following relations

N i
move,t ∼ Bin(N i

t−δt, p) with p = 2Dδt

N i
up,t ∼ N i

down,t ∼ Bin(N i
move,t,

1
2)

Therefore, N i
move,t = N i

up,t + N i
down,t ⇒ < N i

up,t >=< N i
down,t >= N i

move,t

2 .

In the first relation, δt is the time step of the simulation and D is the diffu-
sion coefficient of the Fokker-Planck Equation shown in the previous chapter.
The fluctuation in the shape of the order book is tuned by the parameter p and
subsequently through the diffusion coefficient D.
Furthermore, unitary measure of probability implies that

δt ≤ 1
2D

Setting D allows us to choose the desired time-step. In the simulation, D = 1.

14
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Finally, we can write the equation for the total number of orders,

N i
t = N i

t−δt −N i
move,t + N i−1

up,t + N i+1
down,t

Setting t = δt and averaging over many realizations we have

< N i
δt >= N i

0 −N i
0(2Dδt) + (2Dδt)

2 (N i−1
0 + N i+1

0 )

The linear initialization of the order book’s shape implies (both for bid and ask side)

N i−1
0 = N i

0 − 1
N i+1

0 = N i
0 + 1

Substituting in the above equation, the last two terms cancel out yielding,

< N i
δt >= N i

0

This means that the linear shape is stationary ∀t ∈ {0, δt, ..., nitδt}, where
nit ∈ N+ is the number of iterations.
We are going to treat the reaction and boundary term separately; the above equation
holds therefore for

i ∈ {2, ..., L− 1} \ {j}
calling L the order book’s size and j, the position at which reaction happens.
The size of the order book in the simulation is L = 1001.

Reaction Term

As already mentioned, we want the initial mid-price to be p0 = 0 chosen as a
reference frame: for this purpose, average available liquidity for the bid and ask
side should always be the same, giving the reaction position

j = 1
2(L + 1)

At this position, the average number of orders should always be zero, at any time,

< N j
t >= 0 ⇒ < pt >= 0

To obtain this, we note that

N j
t = N j

t−δt −N j
move,t + N j−1

up,t + N j+1
down,t −Rt

Setting t = δt and averaging over many realizations, one has, provided that N j
0 = 0,

< N j
δt >= N j

0 − (2Dδt)N j
0 + (2Dδt)

2 (N j−1
0 + N j+1

0 )− < Rδt >

15
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Giving the linear initialization, N j−1
0 = N j+1

0 = 1, yielding,

< N j
δt >= 2Dδt− < R >= 0 ⇒ < Rδt >= 2Dδt

This has to be valid for any t, so the random variable Rt has to balance, on average,
the in-contribution from j − 1 and j + 1. Therefore

Rt ∼ N j−1
up,t + N j+1

down,t

Boundary Terms

In the simulation, ask and bid orders have to diffuse, reacting when they superpose,
but leaving in this way, the order book with increasingly less liquidity(number of
orders).
Recalling the stationary solution of the Fokker-Planck equation, the latent liquidity
was defined as

L = J

D

which is, essentially, the order book’s slope.
We included the parameter D into the simulation but not J , which can be inter-
preted as the average density of orders injected in the order book; in this way,
orders react but liquidity is constantly provided through the parameter J .
Thus, the quantity Jδt determines the number of orders that, on average, are
injected in the book from the boundaries: the orders are taken at each time step,
from a Poisson distribution.
Calling Nboundary, the random variable of the number of orders injected at the
boundaries,

Nboundary ∼ Poiss(2Jδt)

The factor 2 comes from the fact that we have two boundaries, one for the ask and
one for the bid side.
Poisson distribution can be obtained as a limit case of binomial distribution
Bin(L, p). In fact its distribution average is

< Nboundary >= Lp = J

D
(2Dδt) = 2Jδt

Another interesting way to look at Latent Liquidity is by writing the average ratio
of the number of orders injected and reacted in the order book, hence,

< Nboundary >

< Rt >
= 2Jδt

2Dδt
= J

D
= L

16
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We can write for the boundaries, setting t = δt

N1
δt = N1

0 −N1
move,δt + Nboundary + N1

down,δt

NL
δt = NL

0 −NL
move,δt + Nboundary + NL

up,δt

Averaging we obtain,

< N1
δt >=< NL

δt >= Dδt(L − 1)

Figure 4.1: A snapshot of the order book’s simulation at a random t. One can
notice pt = 0. In this case L = 501 and t = 0.1
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4.1.1 Constant Rate m0

If the meta-orders’ execution rate is constant ms = m0, the integral stochastic
equation for the average impacted price becomes a bit simpler,

yt − y0 = 1
L

Ú t

0
ds

m0ñ
4π(t− s)

e− (yt−ys)2
4D(t−s)

Neglecting non-linearities, hence, |yt − ys|2 << D(t − s), corresponds to having
the simulated maximum impacted price, very small with respect to the size of the
order book, for instance calling T , the length of the simulation, one would have,

< pT − p0 >= I(T ) ≤ L

2
1
10

In this way, by pure geometric arguments, we can determine the maximum volume
Q, that we can inject as meta-orders. Solving the above integral, we obtain

yT − y0 = I(T ) ∝ 2m0

L
√

T

up to a
√

4π constant. Recalling that D = 1⇒ L = J ,

2m0

J

√
T ≤ L

2
1
10

T ≤ ( L

40)2(m0

J
)−2

m0
J

is called participation ratio: it is a measure of how much orders, on average, are
injected as metaorders with rate m0, with respect to limit orders, with rate J .
Intuitively, an high value of the participation ratio would make limit order’s trading
impossible, "opening" the order book and increasing the spread. As we will see,
this is very well reproduced by the simulation.

Operatively, at each time step t, orders are injected exactly at the current mid-price,
pt. Given that the meta-orders investor has not a particular strategy and m0 is
constant, calling Nmeta, the random variable of number of meta-orders,

Nmeta ∼ Bin(1, m0δt) ⇒ < Nmeta >= m0δt

18
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Figure 4.2: [Top to Down]. a) order book’s linear initialization, t = 0 and
current mid-price is p0 = 0. Orders represented as beads: blue for bid(buy) side
and green for the ask(sell) side. b) Selected orders are empty beads: they diffuse
symmetrically with p = 1

2 . c) New configuration after diffusion. d) Beads of
different type react one by one when on same price. e) At t = δt, after reaction, the
new current mid-price is pδt = −0.5, because the bid side did not provide enough
liquidity. 19
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An important feature that should be reproduce by the simulation is the square-
root impact law. Recalling the theoretical impact curves for both high and low
participation ratio

I(Q) ≈ m0

Jπ

ó
Q

L
for m0 << J

I(Q) ≈
ó

2Q

L
for m0 >> J

Making some substitutions of parameters we can obtain two functions depending
on the rescaled time t

T
, yielding,

Ith(t/T ) ≈ m0
√

Q

Jπ
√
L

ó
t

T
for m0 << J

Ith(t/T ) ≈
ó

2m0T

L

ó
t

T
for m0 >> J

The 4.3 below shows the evolution of the book compared with the theoretical
impact curves.

One can see that in low participation ratio, the theoretical line matches per-
fectly the mid-price curve as expected. The books remains closed and the spread
seems roughly constant, on average, throughout the meta-orders’ execution and
relaxation.
In the high participation ratio, the theoretical formula does not match the mid-price
curve, but it matches well the ask side.
The reasons for this may be many: it could be due to discretization factors or a
more detailed description could be needed, including the exponential factor in the
stochastic integral equation of the equation for the mid-price.

In this case, the order book opens itself, increasing the spread and reaching
its maximum at t = T and then relaxing a lot slower than the low participation
rate case.
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Figure 4.3: Evolution of mid-price pt, best ask at and best bid bt until t = 2T .
The theoretical curve is in black for both plots, δt = 0.1.
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4.2 Noise Traders
First, we analyze the behavior of the book solely in the presence of the noise traders.
Therefore, m0 = 0 and

mt = δtmt and E[δmtδmtÍ ] = σ2(t− tÍ)−µ

δmt is an increment of fractional brownian motion (fBn), called fractional Gaussian
noise (fGn), with E[δmt] = 0, meaning that there are on average, as many buy
meta-orders as sell meta-orders. The fGn is generated with the Davies Harte
method for fBm ([7], [8]).
µ is related to the fractional noise correlation exponent H, through the relation

µ = 2(H − 1)

A good way to check the correctness of the simulation is to compute the exponent
of the variance against the Hurst exponent. The plot 4.4 shows the fitting of the

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
H

0.0

0.2

0.4

0.6

0.8

1.0

m0 = 0 ,  J = 1
sim

th = 1 th

Figure 4.4: Blue dotted: exponent αsim obtained from the fitting. Black dashed:
theoretical line αth = 2(1−H). δt = 0.1.

mid-price’s variance exponent, which we computed previously, E[y2
t ] ∝ t1−µ, where

22
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α = 1− µ, which is the value plotted versus Hurst exponent.
a typical characteristic of the price in financial markets is to be mean reverting:
this means that the variance exponent has to satisfy the relation,

α ≤ 1

It is worth notice that in case H = 1 we have perfect Brownian motion of the mid-
price, which is a well known behavior of price returns in financial markets, market
efficiency. But, from the graph, we can see that in this case, the "experimental"
exponent is not exaclty 1.

An important degree of freedom is the parameter σ, amplitude of the noise which
can be confronted with the charaterisic current of the order book J , σ

J
.

Tuning the parameter, one finds out that an high value, in particular σ
J

> 1,
opens the book symmetrically giving birth to unphysical effects that we have to
discard. It is difficult to find out the exact value at which the book opens but it
should be roughly one: the threshold value increases with the time-step δt.

Injecting the noise, we introduce also a characteristic timescale in the system
that depends on how correlations between meta-orders decay. The other parameter
to set is the exponent µ. Empirically, it is known that his µ = 1

2 (see [9]).
This yields an Hurst exponent of H = 3

4 = 0,75.
From now on, we will use this value to run the simulations with additive noise.

The exponent of the variance as showed in the first plot in 4.5, is well repro-
duced with αsim − 1 = −µsim ≈ −1

2 .
For comparison, we report below the same plot as above, with σ

J
= 0. It is immedi-

ate to notice that despite being both mean reverting, the presence of the correlated
meta-orders imply longer range correlations in the price; It is "less" mean-reverting.

The effect of the noise has no transient state, if switched on at a certain time, the
effect on the spread < st >=< at > − < bt >, is almost instantaneous and shifts
up the the value of the spread, that remains stationary hereafter, (4.6).
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10 1 100 101 102

t

10 1

100

[y
2 t
]

t

m0 = 0, J = 1, dt= 0.1
fit, sim 1 = -0.46

10 1 100 101 102

t

10 2

10 1

100

[y
2 t
]

t

m0 = 0, J = 0, dt= 0.1
fit, sim 1 = -0.86

Figure 4.5: In blue: signature plot of the price yt in log-log scale. In Black dashed:
slope line fitted from data with exponent αsim − 1

Figure 4.6: Average spread. δt = 0.5. The noise starts at half number of steps nit
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4.3 Herding Behaviour
Giving the general form of meta-orders’ rate,

mt = m0 + δmt

we want to investigate if the impact curve changes qualitatively with respect to
the noiseless case. From the model’s solution we recall the stochastic equation of
the price in the linear approximation, hence,

yt = 1
L

Ú t

0
ds

m0ñ
4π(t− s)

+ 1
L

Ú t

0
ds

δmsñ
4π(t− s)

Applying the expected value with respect to noise’s realizations, given that E[δms] =
0, one has

E[yt] = 1
L

Ú t

0
ds

m0ñ
4π(t− s)

The impact behavior on the price in presence of symmetric noise traders should
not depend significantly on the long-range correlations of meta-orders, if the noise
does not dominate the dynamics, with respect to the characteristic dynamics of
the order book.
We choose to work therefore in the regime σ

J
= 1. That’s because we are sure the

simulation reproduces correctly the theoretical variance exponent of the price.

Figure 4.7: Impact ratio between the general case and the constant rate case.
δt = 0.5

In the 4.7 the ratio I(t;mt)
I(t;m0) proves that meta-orders noise traders do not change

significantly, aside from fluctuations, the behavior of the impact curve, as predicted
by the theory. This is particularly true if m0 >> J . In low participation ratio
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Figure 4.8: Mid-prices for σ
J

= 1 (left side) and σ
J

= 0 (right side). δt = 0.5

instead there looks to be a little imbalance between the two: the ratio stays slightly
over 1 until the end of the execution, but that could be a discretization problem,
since the number of orders executed is significantly lower. At t

T
= 1 something

interesting happens. The relaxation looks qualitatively different with respect to
the noiseless case, at least in high participation ratio.

This fact can be better seen in 4.8 in the top-left figure: we are in high par-
ticipation ratio with respect to both J and σ.

After the end of the execution, in fact, the presence of the noise creates an
imbalance in the order book, in this case in the bid size, pushing down the the
best price bt. In that region, during relaxation, orders react faster than they can
diffuse, opening the book and increasing the spread. The effect lasts roughly twice
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the execution time T , closing back the book and returning to the non-impacted
price, always slower than the noiseless case.

In the low participation ratio instead, one cannot appreciate any substantial
difference, apart from relaxation which tends to be faster, as one can see better in
4.7, and the average signals are less noisier in the noiseless case.
The advantage of this strategy, for the constant rate investor, is being able to be
"less visible" to other traders, and therefore, disclosing less information, essential
when trying to make profit. This requires also a longer. execution-time.
Instead, in the previous case m0 >> σ = J , the rate is too high and the price is
pushed-up, not convenient for the buyer on a first instance, but useful if we want
to sell after at a smaller rate 0 , hoping to make a profit.
Furthermore, the log-log plot of the Impact below shows in detail that the square-
root law is reproduced (4.9).

Figure 4.9: log-log Impact for high and low participation ratio. δt = 0.5

In the next chapter we will, show that the square-root hold also in Q, volume of
meta-orders traded. Indeed, it can be showed that Q is a function of time through
the relation,

Q(t) = m0t
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4.4 Co-Impact
In a recent paper [10], it was investigated empirically the effect of meta-orders on
the square-root law. In particular, it was found that, although the data is very
noisy, there might be some cross-over from square-root to quasi-linear, ending up
with a plateau.
The explanation given, intuitively, was that, if we trade a fraction of the total
volume traded in some unit time, φ, which can be mapped onto the constant rate
parameter m0, and to we add another fraction φm with the same sign(buy or sell),
since the impact function is additive, one should find

I(φ + φm) = C
ñ

φ + φm

that behaves linearly and has a plateau if φ << φm. Given that we don’t have any
trend in the noise meta-orders, since E[δms] = 0, we should not find any plateau,
for φ tending to zero. It is worth trying though, if the square-root law is kept and
if the there are some similarities between the curve fitted from empirical data and
the plots obtained from the simulation. The idea is to repeat the same the same
data analysis done in the above mentioned paper, with simulation data. We collect
simulation’s price data for 80 different participation ratios, with nit = 1000

10−3 ≤ m0

J
≤ 102

computing , each time, the parameter φ defined as:

φ = 1
1 + Vreact

Q0
+ σ

m0δt
< Qnoise >

Thereafter, the data has been binned in order not to lose the information on the
variance. The result is good for high values of φ: the fluctuations are not dominant
since volume traded is big enough. Nevertheless, it looks very noisy if the quantity
traded at constant rate is small(4.10). Finally, the 4.11 shows the fitted slope
which gives value δfit = 0.44. Empirically the parameter lays between 0.4 and 0.7,
therefore it seems an acceptable result.
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Figure 4.10: Co-Impact vs. Participation ratio φ
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Simulation
fit
lin = 0.44

Figure 4.11: In dark blue: log-log Impact vs. participation ratio φ. In red: fitted
slope from data.
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4.5 Concluding Remarks
Overall, the simulation demonstrate a quite satisfactory result. On one hand, the
code seems robust, and works well in the regimes suggested by the recent empirical
discoveries.

On the other hand, at the moment, the simulation is not able to reproduce a
clear cross-over between square-root and linear behavior.

it may require further investigation, in particular, adding some new features
that can help confronting with the reality of financial markets. The code seems to
be stable and robust with respect the Hurst exponent, which can allow to explore
different time correlation length of meta-orders.
Also the square-root law is well reproduced.

There seems to space for future investigation. It could be worth trying to put in
place a trend in the noisy meta-orders,

E[δmt] /= 0

If there exists a plateau, it should be proportional to the square root of participation
ratio given the trend, times a constant.
It could also depend on the amplitude of the fGn, σ.
4.12 shows the empirical plot. The cross-over that appears to be present from
square-root to an almost linear behavior. There seems to be a sort of plateau.

Indeed, the fitting function is a square-root plus constant B.
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Figure 4.12: Empirical Co-Impact plot showing clearly the two regimes and a
sort of plateau. Graph taken from [10]. Data taken from ANCERNO database.
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