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CHAPTER 1 

1 Introduction 

In a European climate of the fourth industrial revolution and with the plan of the Italian 

government for Industry 4.0, which encourages companies to adapt, this thesis proposes 

itself as an industrial demonstrator aimed to small and medium enterprises that want to 

automate end-of-line testing.  

 

1.1 Thesis purpose 

This thesis responds primarily to the need to test a device that can interact with the user 

through simple gestures of the hand; it born from the complications due to the execution 

of tests by a human operator. For a human being it is realistically impossible to guarantee 

the reliability, accuracy and repeatability required by procedures such as testing, 

calibration and configuration of a device equipped with 3D gesture recognition and 

motion tracking controller chips. Besides, these procedures are characterized by a 

sequence of simple mechanical actions and are usually repeated many times, both during 

development and production, making them the ideal candidate for automation. The 

modularity and dexterity of the arm, together with the interchangeability of the end-

effector, make the robotic arm the best choice for this project. Although the price of an 

industrial robot is still very high, the development of new technologies such as 3D 

printing and the wide spread of open source technology such as ROS have significantly 

reduced the costs and time required for the realization of prototype projects. Therefore, 

today it is possible to find numerous solutions at more affordable prices, mainly aimed at 

educational and semi-professional market. 



After an in-depth analysis, the Niryo One robotic arm, powered by ROS (Robot Operating 

System), was evaluated as the most suitable for the purpose for its technical 

specifications, open-source code, and affordable cost. Thus, this thesis wants to ultimately 

prove the advantages and the capability to perform accurate automated tests even with off 

the shelf components and open-source software. 

 

1.2 Workflow 

The main objective of this thesis is to realize a 3D gestural test bench consisting of the 

DUT (Device Under Test), the robotic arm Niryo One and a PC for the supervision of the 

arm connected via wi-fi. Niryo One is controlled by a Raspberry Pi 3 B with Xubuntu for 

ARM as operating system, where ROS Kinetic is installed and which supports both 

Bluetooth and Wi-Fi communication. Therefore, since both the device to be tested and 

the robotic arm supports both Bluetooth Classic and Bluetooth Low Energy (BLE) 

communication, the latter has been chosen as the communication channel between the 

arm and the test application developed for the robot.  

Thanks to the support of the company Ema s.r.l., the various parts of the arm were printed 

using a 3D FDM (Fused Deposition Material) printer; then the arm was assembled, wired 

and configured. So, finally, it was possible to realize this industrial demonstrator. 

With this configuration in mind, the test application was designed, developed, 

implemented and tested. Niryo One offers several programming possibilities but to 

remain faithful to the purpose it was chosen to use ROS. Hence, the resulting test 

application consists of several scripts written in Python and enclosed in a ROS package 

within an architecture that will be presented later. The application is started from the PC 



and, briefly, takes care of: connect itself with the DUT via BLE, make the robot perform 

a sequence of test gestures collecting feedback via Bluetooth, move the DUT according 

to the test result and provides a report to the PC.  

In parallel, to collect the information processed by the DUT, an additional operating 

mode, named “Diagnostic Session” has been implemented in the device itself, in order to 

send data about the gestures recognized to the robot via BLE. 

Finally, the application was tested and then utilised to perform the developed test on some 

devices produced by the company Ema. 

  

1.3 Thesis Outline 

All the technologies, tools, software and libraries utilised to realise this project are 

presented and discussed in this thesis. 

In chapter 2 the state of the art of industry 4.0 is presented. In particular, among the new 

technologies promoted, those that have been exploited to realize this industrial 

demonstrator are introduced. 

In chapter 3 a key point of this thesis is brought into, the Robot Operating System (ROS). 

It is the most widespread open source robotics framework and is also adopted by the 

“Niryo One” robotic arm that will perform the test. 

In chapter 4, the six-axis (six degrees of freedom) anthropomorphic robotic arm “Niryo 

One” is presented. Then, the robot's software architecture and some of its features are 

described. The chapter ends with a first preview of the test-bench that will be realised. 



In chapter 5, instead, the other main protagonist of this work is described, the device to 

be tested (DUT). To protect Ema's intellectual property, only those elements / modules 

that are involved in this work were discussed. After, the changes made to the original 

source code to implement the new operational mode, to be adopted during the test, are 

exposed. 

In chapter 6, the test application developed for the robotic arm, the heart of this work, is 

finally produced. The ROS package created is analysed in detail, together with the 

difficulties encountered and the choices made during the design and development of the 

application. 

In chapter 7, lastly, the results obtained from the test and the conclusions drawn are 

reported. This thesis concludes with some further work to improve the robot's 

performance in the execution of gestures and to extend the test to other features of the 

device under test. 

  



CHAPTER 2 

2 Industry 4.0 State of the Art 

Industry 4.0 is an initiative that embraces new technology innovations such as the Internet 

of Things (IoT), big data, cloud computing, artificial intelligence, machine learning, 

automation and 3D printing. 

 

2.1 Automated Test Methods 

An automatic system can be considered a sum of a decision system (control system) and 

a decision implementation system (power system). The control system always includes a 

sensor system that continually detects the effects of decisions made. In the industrial field, 

the scenario of realisations is hugely vast and varied. Based on conventional mechanical 

technology, modern industrial automation uses all the other known technologies:  

§ electrical; 

§ electronic; 

§ fluid: hydraulic and pneumatic.  

In the specific sector of industrial automation of production processes, the need to operate 

according to the principles of assembly flexibility and product quality in a highly 

productive context implies the request for something that goes slightly beyond the 

concept of robots: the integrated line. To typologically specify the field of interest, 

consider a simplifying example: that of a station for the automatic composition 

(assembly) of a mechanical group. Up to now, for assembly operations in industries, the 

following two solutions were considered:  



§ Automatic assembly using a particular single-purpose machine 

§ Manual assembly entrusted to skilled workers  

The first solution is a classic example of dedicated automation. An extreme specialisation 

distinguishes each workstation; only one operation is carried out in sequence, and the 

motion is controlled by a device specifically built and not convertible. The set up is 

pushed until the desired performances are obtained, and the cost-effectiveness of the 

solution is linked to mass production. Thus, for over 20 years, more and more specialised 

robots with proprietary software have been developed in the industrial sector to perform 

always the same type of tasks, such as welding and handling of parts. 

However, in the manufacturing industry, we are currently witnessing a continuous 

introduction of automatisms able to replace man in critical functions that they consider 

their own. According to the human functions replaced, the classification of the 

corresponding types of automation systems is obtained. Finally, the advent of 

collaborative robots knocked down the wall between human and machine, opening the 

way to hybrid forms of automation even in those fields where it seemed impossible to 

replace human intervention. Today, considering that quality standards must be 

maintained throughout the production line, each test/control segment is a crucial factor to 

avoid common mistakes that could be very expensive. In such a dynamic and modern 

environment, therefore, a robot has to be able to adapt quickly and economically to 

frequent changes, such as avoiding collisions with nearby machinery or performing pre-

programmed tasks even when moved.  

  



2.2 Off-the-Shelf components 

In any sector of the industry, the terms Commercial Off-the-Shelf (COTS) and Off-the-

Shelf (OTS) components are widely used but mostly in low-volume programs. The idea 

is that the lower the volume-production, the lower the customised content. So, COTS 

parts are mainly used to save money, that combined with their immediate availability 

makes them an ideal solution for low-volume projects. Although COTS is a commonly 

used term, it often refers to a commonly misunderstood concept as explained in the 

following. Many programs start with this approach, in order not to pay for the entire 

realisation of a new customised product, and thus the initial prototypes are designed using 

OTS components. However, most of them usually abandon COTS solutions before 

production. This frequently results in higher than expected costs and, sometimes, can be 

more expensive than a custom design carried out right from the start.  

Furthermore, it is also true that there are some pitfalls in designing a platform with COTS 

parts without doing extensive research on the actual component. While a COTS 

component may be readily available when the design starts, it is most likely to undergo 

some revision or change along the way. Although this modification may work well for 

the program in many cases, there are also some occasions when a slight modification will 

no longer work for the designed project. This will result in engineering changes not only 

for that component but potentially for the parts around it as well. Therefore, when 

designing a new product with COTS components, it is crucial to understand at an early 

stage, whether it is the right solution.  

Another myth misunderstood around COTS parts is their ease of purchase and their ability 

to plug and play. When starting a project, as already mentioned, the aim is to have as 

much COTS content as possible. This saves time and total program costs, both essential 



elements with which low-volume programs struggle. Nevertheless, after the COTS 

components are usually purchased from different sources, such as distributors or Tier I 

suppliers, most of the time, they will not work correctly together due to their design. At 

this point, in most scenarios, a company will require some kind of technical support from 

the manufacturer or the distributor, and this is where the situation becomes complex 

turning into a more complicated process than expected. On the other hand, modifying the 

design of a COTS part is a significant and expensive task, not as simple as buying a 

component from such a supplier and having it modified. 

Finally, software development and integration are usually necessary because there is 

always an adjustment somewhere. Despite the various pieces of the platform can still be 

COTS, bringing a significant saving in total time and cost, the final component is no 

longer COTS and needs additional specific support. 

 In conclusion, OTS components can offer an excellent solution in terms of time and 

money for many platforms, while they are a great starting point for others. The key to 

reducing the risks surrounding the COTS parts as much as possible is to understand the 

project's requirements from the outset and then make an in-depth analysis of the 

component prior to purchase. 

  



2.3 Open-source technologies 

A crucial point of this Thesis is the adoption of the Robot Operating System (ROS) to 

manipulate the robotic arm. ROS is an open-source meta-operating system that provides 

a set of frameworks for robot development and programming, as explained in detail in 

the next chapter. This project also includes other software, libraries and tools, always 

open-source, which will be discussed during the implementation of this demonstrator.  

The most common criticism encountered when talking about open-source software is the 

unreliability, which is an unacceptable risk, especially in the industrial sector where the 

error tolerance is very low. Nonetheless, this ignores about ten years of success in 

mission-critical applications with open-source software, as well as the fact that many 

universities are using it more and more. Even if closed systems can be still suitable for 

mature markets, that usually consists of massive production with only a single application 

repeated continuously, that is unlikely to be the direction in which future robots are 

watching. Today, new markets are always demanding for new robot functionality, 

however, OEMs are becoming incapable of satisfying them because their development 

resources are committed to maintaining existing applications.  

That is why the Robotic Operating System (ROS) is essential for the future development 

of robots. ROS, in fact, offers a development community that shares technologies and 

works to achieve mutual goals, without being burdened by the maintenance of existing 

activities. Therefore, all interesting peripherals and algorithms can be developed first on 

ROS, and only later for a specific OEM platform. In this way, manufacturers who will 

dispose of a robust ROS interface will have the advantage of being first in the market to 

offer the required new functionality. Consequently, as OEMs, instead of thinking about 

maintaining all the implemented applications, they should switch to a more stable version 



of ROS to work on. At the same time, they would also benefit from all ROS tools that 

aim to improve ease-of-use, primarily via standardization.  

One of the historical problems of closed proprietary systems is, in fact, the development 

of systems that can easily interact with each other. For this reason, one of the objectives 

of ROS is precisely to create an interface standard for industrial robot controllers in order 

to provide interoperability between industrial robot platforms. Therefore, anyone creating 

a ROS driver must adhere to this standard. An example of this standardization is the 

simple message protocol that interfaces multiple industrial robot controllers and provides 

a common interface at the robot operating system level. 

Thereby, with a standard non-proprietary structure, on the contrary, developers can solve 

countless problems simultaneously. Only in this way, the development of robots could 

reach a pace that would be able to meet the demand for robotic applications. 

Even if it has not been used in this work it is worth spending a few words on ROS-

industrial, which extends the advanced capabilities of ROS software to industrial relevant 

hardware and applications. It practically embraces all the points of strengths presented 

above and already contains ROS stacks and packages developed by some of the world' s 

leading robotics companies such as ABB, Comau, Fanuc, Kuka or Universal Robots. 

Figure 2.1 reports an example of industrial robot from Fanuc company that implements 

ROS. 



In conclusion, despite the fact that ROS still has some limitations for its full use in 

industrial applications, such as those requiring real-time processes at the operating system 

level or secure and encrypted communications, there are already workarounds and some 

major companies have not been discouraged and are making their first products with 

ROS.  

  

Figure 2-1:the ROS powered Fanuc M710 on display at Automatica 2016 



CHAPTER 3 

3 Robot Operating System (ROS) 

3.1 A Brief History of ROS 

During the mid-2000s the Stanford University research projects saw several efforts in the 

construction of software systems for robotics use, such as the STanford AI Robot 

(STAIR) and Personal Robotic Program (PR) projects, carried out at the Stanford 

Artificial Intelligence Laboratory (SAIL).  The PR project in particular was led by two 

PhD students, Eric Berger and Keenan Wyrobek, who noticed that the innate diverse 

nature of robotics, needing expertise ranging from software development to specific 

hardware knowledge, placed a considerable difficulty to their colleagues. For this reason, 

they decided to set a out a system that would allow a base ground platform for other 

developers to build upon. 

Beginning this work in a unifier robotic system, the turning point happened when they 

met Scott Hassan, the founder of a technology incubator named “Willow Garage” who 

Figure 3-1: brief timeline of ROS. 



provided the critical funding needed to build what in his mind was the “Linux for 

robotics”. From there, the ROS project saw his birth and the first commit was made on 

SourceForge the seventh of November 2007. 

 

3.2 Why Ros: A Distributed Framework Architecture 

As highlighted in the previous section, when developing a software for robots several 

tasks are involved requiring a certain degree of knowledge in numerous scientific and 

engineering fields. As an example, motion planning applications require knowledge of 

coordinate geometry, artificial intelligence, soft computing and programming while robot 

vision applications require knowledge of signal processing, image processing, computer 

vision, and machine learning. 

This also means that, at a deeper level, many different developing tasks are to be 

addressed. Logging, message infrastructure, coordinate system transformation, peripheral 

drivers, navigation logic, vision systems and many other subtasks should all be taken on 

by the application developer: this generates an immense technical debt that would quite 

certainly never be filled. This calls out to a layered infrastructure where the application 

layer is separated and all the other software services and hardware resources can be 

abstracted and accessed by it. This is the basic concept of an operating system and the 

fundamental reason to the implementation of the ROS ecosystem. 

To make a parallelism, a general operating system would have the following structure: 



 

Figure 3-2: general OS layers architecture. 

The Application Layer is at the top level of the hierarchy and implements the final 

functionality of the system. Typically, the application runs at a low-privileged state (i.e. 

in user space) and has access to the system resources through the APIs provided by the 

operating system which instead runs at a high-privileged state (i.e. in kernel space). The 

System Service Layer provides the top-level interfaces to the application and has the role 

of linking the application environment to the system environment. Graphical user 

interfaces (GUIs) and file system hierarchy typically take place inside this layer. The 

Operating System Layer abstracts all the hardware functions and present them (through 

the System service layer) to the application. The process scheduler, the network manager 

and the file synchronization process are typical examples of services abstracted by this 

layer. Finally, the Hardware abstraction layer (or HAL) prepares and enables the 

hardware environment before starting the execution of the core component of the 

operating system i.e. the kernel. As such, the bootloader and all the drivers responsible to 

the correct communication to the hardware peripherals are common examples of 

functions provided by the HAL. 



In the following picture, the ROS architecture is shown: 

The main difference with respect to a traditional OS layered architecture, is that ROS 

actually runs on top of a host operating system, most commonly a Linux distribution, i.e. 

Ubuntu. ROS then is technically not an operating system but a software framework (or 

middleware) providing an integrated development environment to the robot application. 

For this reason, it has also been called a meta operating system. 

Moreover, ROS provides a suite of packages driven by the developer communities that 

implement a dense set of robot functionalities such as trajectory planning, perception, 

vision, control and manipulation. 

ROS has been thought as a multi-lingual system: ROS modules can be written in any 

language for which a client library exists. While the two most common library languages 

are C++ and Python, current libraries are also written in LISP, Java, Ruby and MATLAB. 

Figure 3-3: ROS layers architecture. 



All the software in ROS is arranged in packages. Each package can contain one or several 

nodes and it also exposes a ROS interface. Packages can be built by the application 

developer but are also independently distributed by the community and hosted on a 

software repository, providing a development environment with a common set of 

application functionalities. 

 

3.3 ROS Nodes and Topics: How the Distributed Paradigm 

Works 

ROS derives its core architectural philosophy from that of a micro-kernel operating 

system. This means that a ROS environment consists of numerous small processes that 

are all connected to each other and function by continuously exchange messages. As such 

it is presented as a peer-to-peer (P2P) architecture. 

The ROS processes are called nodes. ROS nodes are written using a ROS client library. 

roscpp and rospy are the two most used libraries written respectively in C++ and Python. 

ROS nodes are then singularly compiled and executed providing the required atomic 

functionality: actuator drivers, sensor drivers, trajectory planner, visor and so on. 

Each node can publish or subscribe to a specific topic, which are stream of data (i.e. 

messages) strictly built upon a specific type. As an example, a message carrying a velocity 

command is defined in the following way: 

 

Vector3 linear  

Vector3 angular 



Where Vector3 is once again a message composed in the following way: 

float64 x  

float64 y  

float64 z 

ROS messages are all built starting from primitive types and the framework allows the 

developer to define their own messages when the built-in ones are not sufficient to fully 

implement the application function. They are defined inside the directory of a package 

and are then compiled into the same language implementation chosen for the application. 

Node communication is then implemented by publishing messages on topic with a many-

to-many broadcasting model. All the communication relationships between the nodes are 

synthetized in what is called the ROS Graph that can be dynamically generated inside the 

environment. 

While this broadcasting model can implement a flexible application logic it is not 

appropriate for asynchronous communication, which is vital in a distributed-software 

architecture to provide a client-server interaction. Through services, a one-to-one request-

response model can be implemented.  

A service is defined by a pair of messages: one is used for the request and one is used for 

Figure 3-4: an example of ROS Graph. 



the response. Nodes can expose a service via a callable interface where another node 

sends the request message and then wait for the reply message.  

The P2P distributed model is directed by an entity called the ROS Master. The ROS 

Master provides the necessary information to the nodes allowing them to transmit and 

receive messages between each other. Inside the ROS Master runs also another process 

that is called the Parameter Server. It provides a distributed dictionary accessible via an 

API that is used to share non-binary data, such as the configuration parameters needed to 

establish the connection.  

At startup, each node connects to the master to register the message stream they intend to 

publish and the message stream to which they choose to subscribe. Every time a node is 

instantiated, the master sends to it all the necessary information that is needed to create a 

P2P connection with the other nodes that publish or are subscribed to the same topic. This 

process is explained in the following picture. 

Figure 3-5: ROS communication instauration process. 



As shown, before transmitting data over a topic a node must advertise the topic name and 

the message type published on the topic. Only then they can start to publish the actual 

data which other nodes can receive after they have sent to the master the request to 

subscribe upon the topic.  All messages on the topic have to be of the same type which 

has been advertised at the begin of the communication process. The instantiation of 

multiple nodes and the configuration of the Parameter Server can be done through a 

launch file, which is an XML file defining both a collection of nodes and a list of 

parameters. 

 

 

  



CHAPTER 4 

4 Niryo One 

4.1 Overview 

Niryo One is a 6-DOFs robotic arm of the French company Niryo. It has several parts 3D 

printed and is powered by a Raspberry Pi and ROS, which makes it very similar to an 

industrial robot. Unlike the latter, however, it can be purchased at an affordable price, and 

it is aimed at small businesses, educational market and makers. In fact, it is designed to 

allow students to learn the concepts of robotics, through simple UI interfaces, but at the 

same time also addressed to engineers who want to specialise in this field, using the ROS 

interfaces directly.  

Figure 4-1: mechanical specification of the robotic arm. 



Figure 4-1shows the mechanical dimensions of the robotic arm; it weights 3.3 kg and can 

reach up to 440 mm for a max payload of 300 g. STL files of printed parts and the source 

code of the robot are open-source and can be found on the Github project at [1]. The open-

source philosophy is the great advantage of this robot; it allows anyone to make their 

customizations or improvements benefiting from the support of the entire community. 

Then these projects will most likely be shared in the community, enriching more and 

more the functionality of the robot.  

The robotic arm is of the anthropomorphic type, i.e. it consists of 6 rotary joints that allow 

a high level of dexterity and a wide operating range, as can be seen from Figure 4-3. Each 

joint of the arm is controlled by its motor, which is equipped with an encoder to measure 

its angular position. Figure 4-3 illustrates all the joints of the arms and their operative 

range. To provide higher torques to the base (J1), the shoulder (J2) and the elbow (J3) 

joints, these are driven by the heavier and more powerful NEMA 17 stepper motors, all 

connected via CAN bus. Instead, in order to decrease the weight of the arm, the forearm 

(J4), the wrist (J5) and the hand (J6) joints are controlled by Robotics Dynamixel servo 

motors (XL-430 on J4 and J5; XL-320 on J6) daisy-chained together through a 

proprietary communication bus and connected to the Raspberry Pi 3.  

 



The end-effector chosen for the application, shown in Figure 4-4, is the simplest gripper 

among those designed by Niryo. It weighs 70 g, is length 80 mm and has a maximum 

opening width of 27 mm. Besides, it is driven by a Robotics Dynamixel XL-320 servo 

motors due to its very low weight and the fact that no great forces are required to grasp 

the artificial hand, being made of a polystyrene parallelepiped covered with a copper sheet 

connected to ground.  

Angle Min Max 

J1 -175° 175° 

J2 -90° 36.7° 

J3 -80° 90° 

J4 -175° 175° 

J5 -100° 110° 

J6 -147.5° 147.5° 

Figure 4-2: the rotational 
angle range of each joint 

are reported 
Figure 4-3: the 6-DOFs of the robotic arm are shown. 



             (a)           (b) 

Figure 4-4: a) the gripper 3D printed and assembled. b) The gripper mounted on the 
robotic arm  

Niryo One can be controlled in different ways: 

• Learning mode: Niryo One is a collaborative robot that can be moved by hand to save 

the desired positions. In this way, it is possible to teach the robot what to do without 

knowing anything about robotic concepts.  

• Controlled with a joystick: the user can choose between two control modes (position 

and orientation or independent joints). 

• G-Code: the robot can also interpret G-Code instructions and be used as a CNC machine 

with a proper end effector tool. 

• Web and mobile application: thanks to the Niryo One Cloud Service, the robot can be 

controlled by both Web applications (any browser) and mobile applications (iOS or 

Android) at the same time, keeping everything synchronized. 

• Blockly interface on Niryo One Studio: designed for those without programming 

knowledge, allows programming the robot in a visual way dealing with blocks.  

• Python API: which allows programming the robot in Python by hiding all the 

complexity of the ROS framework. 



• Use the TCP server: very convenient if one wants to send simple ASCII commands to 

the robot from his application. 

• Develop with other languages using "rosbridge_suite": a ROS package contained in the 

Niryo One ROS stack that allows communication between a non-ROS system and a ROS 

system, via WebSocket. 

• Develop directly with ROS: using the ROS interfaces (topics, services, actions) to create 

programs for the robot. 

According to the purpose of this work, the test application has been developed directly 

with ROS. So, a new ROS package called "niryo_one_test_app" was developed and 

implemented on Niryo One ROS stack and is deeply analysed in chapter 6. 

 

4.2 Software Architecture 

The Niryo One ROS stack is a collection of ROS packages developed by the company 

Niryo on ROS kinetic, that provides all the robot functionality. All the files and the 

documentation about Niryo One ROS Stack is available on the GitHub project at [2]. 

Errore. L'origine riferimento non è stata trovata. shows the entire ROS Stack 

packages architecture (Niryo One packages plus used ROS Kinetic packages), from 

hardware control to the high-level user interface: 



A brief explanation of the various layers starting from the bottom: 

§ Hardware: any package that directly deals with hardware belongs to the 

hardware layer. The "niryo_one_rpi" package is responsible mainly for managing 

the external interfaces, such as the LEDs, the GPIOs from the panel connector, 

the Wi-Fi connection. The other packages, instead, are responsible for controlling 

the motors. They consist of a driver that handles both CAN and Dxl bus to allow 

to the upper level (control layer) to send commands and receive back the position 

and errors of all the robot motors. 

§ Control: the "ros_control" and "joint_trajectory_controller" packages together 

represent the control layer. In particular, the latter implements a position 

controller which attempts to perform the target trajectory received from the upper 

level (motion planning). It works by running a control loop that at each cycle: 

receives the current position from the driver, then interpolates the trajectory to get 

Figure 4-5: Niryo One ROS Stack packages architecture. 



the next position command and lastly sends to the driver the newly elaborated 

command. 

§ Motion planning: this layer takes care of calculating the inverse kinematics in 

order to create a trajectory for the robotic arm. Here all the work is done by the 

well-known ROS MoveIt package; while the other packages contain the 

description of the actual arm's kinematic chain, necessary to configure MoveIt. 

The resulting trajectory consists of a sequence of points. Furthermore, for each 

point, the position, speed and acceleration of each arm axis are also defined. Thus, 

this path will be provided to the controller, which will execute the actual 

movement of the robot. 

§ Command & User Interface: here we find those packages that act as an interface 

between the user (a person or another machine) and the core ROS functionalities 

of the robot. Every command sent to the robot, regardless of how it is controlled, 

will pass through this layer. Then, the "commander" package will take care of 

validating the command parameters, query the underlying motion planning layer 

in case movements are required and lastly send the command directly to the 

control or hardware layer to execute it. 

§ External Communication: this is the top layer of this architecture, and includes 

those packages that have the task of hiding all the complexity of ROS. It, 

therefore, provides the ability for users who have no ROS knowledge to control 

the robot from a non-ROS environment, such as the software Niryo One Studio, 

other programming languages, web application. 

In this thesis work, faithfully for its purposes, the last layer has not been used at all. 

Instead, the ROS package developed for this test application, "niryo_one_test_app", will 



be placed just in the command layer where it will directly interact with the package 

"commander". 

 

4.3 Simulation mode 

The same Niryo One ROS stack installed in the Raspberry Pi to control the robot was 

installed on the PC allowing to work in simulation mode during the development phase, 

i.e. without the physical robot. In fact, another great potentiality of ROS, as explained in 

the previous chapter, is the possibility to visualise and simulate the robot using the ROS 

Rviz packages. To do this a PC with Ubuntu 16.04 operating system is needed, where 

ROS kinetic and Niryo One ROS Stack are already installed. Besides, in the Niryo One 

project on GitHub, the company Niryo provides a ready-to-use ROS setup of the robotic 

arm that allows to launch the robot in simulation mode and display it on the PC thanks to 

the 3D viewer Rviz ROS package. This setup consists of a ROS package named 

“niryo_one_description” which includes the URDF (Unified Robot Description Format) 

files and 3D meshes (Collada and STL files) needed to Rviz in order to visualise the robot. 

Figure [XXX] shows a picture of the robotic arm model displayed by Rviz. In order to 

correctly calculate the 3d pose of the arm and detect potential collisions between its parts, 

the 3D model of the robot must match with the real one. The kinematic arm model is built 

starting from the URDF specifications, shown in figure [XXX], which describes the arm 

using only two elements, called links and joints. The links are the rigid parts of the robots 

while a joint is the connections between two different links. For each joint, the type (such 

as revolute, prismatic), speed and operating range are specified. For each link, instead, 

the size, shape, colour and some dynamic properties such as inertial matrix can be 



defined. Then, by applying the respective 3D mesh to each link, it is possible to visualise 

both the robotic arm and the motion planning on Rviz. 

Finally, to control the 3D model on Rviz the ROS packages "joint_state_publisher" and 

"robot_state_publisher" are used. The former implements a ROS node that reads the 

robot model description to find all the joints; then allows to set the value of each joint via 

a GUI slider. The latter implements another ROS node that, instead, reads the current 

joint states from the "joint_state” ROS node and publishes the 3D poses of each robot 

link as ROS tf (transform). These ROS messages contains all the relationships/constraints 

among the different coordinates frames, one for each link, of the robot.  

The main difference between running the code on the PC, i.e. simulation mode, and 

running it on the Raspberry Pi 3 situated in the arm, i.e. normal mode, is the disablement 

Figure 4-6: the Niryo One robotic arm visualised by Rviz. 



of the hardware layer and the launch of the additional Rviz package to visualise the 

movements of the robotic arm on the PC monitor. Consequently, all commands sent to 

the hardware layer are redirected to the "robot_state_publisher” node and ideally 

executed by the 3D model on Rviz (Rviz is only a visualiser, i.e. allows even physically 

impossible arm movements, if not specified otherwise in the robot model description). 

To recap, all the robot features above the hardware layer are the same, allowing 

developers to work in both simulation and normal mode without noticing any differences. 

Of course, the features offered by Rviz can also be exploited on the side of the actual 

robot and not only during the simulation.  

Figure 4-7: a planned trajectory visualised by Rviz 



4.4 Niryo One setup 

In the original design of this test bench, there was no camera. The arm, being blind, will 

have to know in advance the positions of the objects with which it will interact. For this 

reason, a fixed position layout for the test bench was realised. That means that the robotic 

arm assumes that the DUT and the artificial hand will always be situated in the same 

place. 

In order to find all positions needed to perform the test, the learning mode of the robot 

has been exploited. Once the learning mode is activated, the torque is deactivated on all 

motors, making it possible to move it with the hand like a collaborative robot. Hence all 

the positions of interest, that are the exact positions of artificial hand and DUT were saved 

through the Niryo One Studio software on the Raspberry Pi and then exported via ssh 

connection so that they could be used in the developed application code. On the software, 

a saved position consists basically of a name and a list of the robot joint positions in 

radiant. Once exported, as can be seen in the example reported below, it also includes the 

Cartesian position (Point) and the orientation of the TCP (Tool Center Point), expressed 

both in RPY and Quaternions. 

Position_Name: hand_pos 
Joints: 
0.5062747701481692, -0.6988934985208465, -0.4386456919685022, 
0.5479328810228972, 1.1945801121392605, -0.4201297222790069 
RPY: 
-0.2, 0.0, 0.001 
Point: 
0.24, 0.125, 0.15 
Quaternion: 
0.448, 0.547, 0.448, 0.547 



Unfortunately, due to the serious emergency that we are living in Italy because of the 

corona virus, it was not possible to show the setup made in Ema company to develop the 

test application. Instead, figure XX shows the setup made temporarily at home to produce 

the photos and video of the work done. 

 

FOTO SETUP TEST BENCH 

 

  



CHAPTER 5 

5 Device Under Test (DUT) 

5.1 Overview 

The device to be tested, shown in Figure 5-1, is a smart IoT device developed and 

produced by the company Ema s.r.l. for a client of his own. It was requested to create a 

led lamp with adjustable intensity and variable colour that would report, in real time, all 

the parameters collected by its sensors and other smart devices connected to it present in 

the house. Alarms, lighting management and air quality are just some of the features of 

this device. The user, in turn, will handle the device without physically touching it and he 

can access to its features by performing gestures. For example, it is possible to change 

the lighting intensity of the room, the colour of the light or activate a scenography mode 

which reproduces all the rainbow colours. It is a part of a complete home system 

management system that allows to monitor the energy consumption of the home. Thanks 

to the easy installation of an additional device on the electricity meter of the house, 

consisting basically of an optical sensor, the colour of the light integrated in the device 

will vary according to the energy consumption read in real time. Therefore, this will 

evolve from a green light signal, indicating low consumption, up to a red flashing signal, 

indicating that you are close to the kilowatt threshold limit.  



Its main feature is that it does not have a physical interface, such as buttons or wheels, 

and it does not even integrate a display: all interactions will be visual and will take place 

through gestures. This functionality will be explained in detail in 5.2 since the original 

purpose of this thesis is precisely to automate the testing of this type of interface. 

The other functionality that will be used for testing is Bluetooth communication. Being 

an IoT device, it interacts with other smart devices connected to it through BT, and 5.3 

deepens this aspect.  

Finally, 5.4 discusses the integrations made to the original code to implement an 

additional operating mode, named “Diagnostic Session", utilised during the tests. 

   

Figure 5-1: the Device Under Test (DUT) 



5.2 Gesture Technology: the controller MGC3130 

The device to be tested can receive command inputs with natural hand and finger 

movements in real-time thanks to the MGC3130, a three-dimensional (3D) gesture 

recognition and motion tracking controller chip.  

This integrated circuit is based on Microchip's GestIC® technology that, applying the 

principles of electrical near-field sensing, provides all the building blocks needed to 

develop a robust 3D gesture input sensing system.  

All the theory about electrical near-field (E-field) sensing is deeply discussed and 

explained in [3]. With the support of Figure 5-2 and Figure 5-3, which show the influence 

of a grounded body on the electric field, a brief explanation of the whole functioning is 

given. 

 

Figure 5-2: equipotential lines of an undistorted E-field. 



If a person's hand or finger enters the electric field, the field becomes distorted, and the 

lines of the field will direct toward the hand because of the conductivity of the human 

body itself, which is grounded. From Figure 5-3, it is possible to observe how the three-

dimensional electric field decreases locally due to the proximity of the body and shifts 

the signal levels of the Rx electrode to a lower potential. Each receiver electrode (Rx) 

measures the local electric field, and Microchip's GestIC technology requires a minimum 

of four receivers to detect variations in different positions in order to determine the origin 

of field distortion from the various signals received. Then the GestIC Colibri Suite, which 

runs on-chip, processes all this information to calculate position, track movements and 

detect movement patterns (gestures). The algorithms needed to process information are 

included in the Colibri Suite that incorporates data acquisition, digital signal processing 

(DSP) and interpretation. It exposes then two important functional features:  the position 

tracking feature, that provide the absolute three-dimensional position of the hand in real-

time, and the gesture recognition model, which detects and classifies hand movement 

patterns performed within the tracking area. 

Figure 5-3: equipotential lines of a distorted E-field. 



Moreover, the Colibri Library includes a set of predefined hand gestures, some of which 

have been exploited by the final application installed on the DUT. Only the latter will be 

precisely the inputs utilised during the test application developed for the robotic arm. 

They are described below: 

§ Flick gestures: 

A flick gesture is a one-way gesture in a rapid movement, such 

as a linear hand movement from south to north inside the 

detection area. Once determined the position of the cardinal 

points, according to the orientation of the device the following 

flicks were covered during the test: 

o Flick East-West 

o Flick West-East 

o Flick North-South 

o Flick South-North. 

 

§ Circular gestures:  

A circular gesture is a round-shaped hand movement defined 

only by the direction, i.e. clockwise or counter-clockwise, and 

not by the starting position of the hand. GestIC technology 

discriminates between two types of circular movement, of 

which only one will be used and tested:  

o AirWheel: it requires the recognition of circles continuously executed 

within the sensing area. It provides information about the rotational 

movement in real-time, such as a counter that increases or decreases 

according to the direction of rotation applied. The airwheel is very 



convenient in various applications such as volume control or, as in this 

case, light dimming control. 

Finally, Microchip also provides a software package that supports the entire design 

process called the Aurea Graphical User Interface (GUI). In particular, this software has 

been widely used both during the development of the device and afterwards to display 

the electrode performance, to fully configure the controller, to record data and to flash 

the chip. Among the various controller configuration procedures, it is worth mentioning 

the Electrode Weighting and E-Field Linearization procedures. These basically consist in 

repeating some measurements at different heights, using a brick connected to ground, 

above each electrode and in the centre, as shown below respectively in Figure 5-4 and 

Figure 5-5. The same brick used in these procedures is the one that has been used in this 

application that tests the device, the so-called "artificial hand". 

 

 

 

Figure 5-4: Electrode Weighting procedure 



Moreover, it has to be said that during the development phase of the device, the company 

Ema has designed and manufactured several prototypes of boards with different 

customized arrangements of the four receiving electrodes. It is precisely from there that 

the need to be able to perform identical and repeatable tests was born, especially to be 

able to correlate the measurements collected with the different layouts developed 

Finally, in the source code developed by Ema s.r.l. for the final product, there is a software 

module, called "MGC_Driver", which manages and initialize the chip. The module has 

been modified to implement some functionality needed during the test execution and is 

analysed in 5.4.  

 

 

  

Figure 5-5: E-Field Linearization procedure 



5.3 Bluetooth functionality: the RN4678 module 

The device to be tested is also equipped with a Dual-Mode Bluetooth® 4.2 RF module, 

the Microchip RN4678, that supports both Bluetooth Classic and Bluetooth Low Energy 

(BLE) communication. It offers a complete wireless solution with built-in Bluetooth stack 

and integrated antenna, providing the local connectivity for the Internet of Things (IoT). 

So, the final application on the device can connect it to smartphones and tablets for 

convenient control or cloud application access and data transfer. 

For the test, instead, since the DUT is battery powered during testing, only BLE 

technology has been used due to its lower power consumption. 

The RN4678 module has two operating modes [4]: data mode (default) and command 

mode. In particular, when the RN4678 is in Data mode, it acts as a data pipe. In other 

words, all data sent to the module's UART is transmitted to the connected BLE device 

through a custom private service and, conversely, everything received from the connected 

BLE device via custom private service is sent directly to UART. This BLE data streaming 

Figure 5-6: RN4678 Bluetooth®4.2 Dual-Mode Module. 



function that mimics the standard SPP (Serial Port Profile) functionality used under 

Classic Bluetooth is labelled as UART Transparent. It supports data streaming between 

two BLE devices and facilitates integration with any microcontroller with a UART 

interface. When the RN4678 is in Command mode, instead, the module can be easily 

configured or controlled by sending three types of ASCII commands via UART: Set 

Commands, Get Commands and Action Commands. In particular, the Set Command 

allows modifying the configuration by writing the new parameters in the Non-Volatile 

Memory (NVM). Hence any configuration changes made survive the power cycle but 

need a reboot of the module to take effect. On the contrary, all the action commands effect 

immediately, but they will be lost in case of power recycle.  

The source code on the device contains a software module, called "CTL_RN4678", which 

is responsible for initializing and managing the RN4678 integrated circuit. To realize this 

test bench, therefore, this code has been modified to properly configure the chip and allow 

the connection via BLE with the robotic arm. It is thoroughly described in the next 

section. 

  



5.4 Code development: “Diagnostic Session” implementation 

As mentioned before, in order to be able to test the different prototype touchless interfaces 

made, and then the final product ready for the market, it is necessary to collect data. The 

various prototypal layouts developed by Ema s.r.l. are different only for the geometrical 

shape/arrangement of the four receiver electrodes on the electronic board. The different 

samples are shown in Figure 5-7. In this case, therefore, the most crucial information to 

be able to compare the various layouts are the data obtained by the four sensors and 

interpreted by the 3D gesture recognition controller. Since the purpose of this thesis is 

precisely to develop a functional test of the input interface of the final device, such data 

are exactly the most relevant to our test. In order to easily distinguishing them, each 

electrode is labelled as to its respective cardinal direction, assuming a determined fixed 

orientation of the DUT.  

Figure 5-7: one of the four-electrode receiver layouts. 



The basic idea is to develop an additional operating mode to the device, which can be 

enabled only during the development and testing phases and offers all the features 

required by the test. The original device already implemented several operating modes 

that could be selected with a hand flick. The management of this menu is carried out by 

the software module "APP_Menu", in which practically the new testing operational mode 

has been created, called "Diagnostic Session". All the additions/modifications introduced 

to the C-files that constitute the module “APP_Menu” are available in Annex A-I. 

There are two communication channels available to provide feedback during the test: via 

Bluetooth or the micro-USB port on the device.  Since this is an IoT device, and we want 

to automate the tests minimizing human intervention, a wireless solution was the most 

suitable. Therefore, communication via BLE was exploited, which offers a considerable 

reduction in power consumption and ensures better management of the integrated battery. 

Once this new operational mode has been created, the software module "CTL_RN4678" 

that manages the Bluetooth module RN4678 was worked. In fact, as soon as we enter the 

diagnostic session, it is necessary that the device enables Bluetooth and then waits for the 

robotic arm to be connected. To implement this functionality, a portion of code has been 

mostly added to the "CTL_RN4678" module. It partly takes advantage of what has 

already been developed and takes charge of appropriately reconfiguring the hardware 

module. Recalling the notions about the operating modes of the RN4678 introduced in 

5.3; it is possible to configure the chip using simple ASCII commands sent via UART 

[4]. They are listed below in the same order as they are executed: 

• ‘$$$’, is an Action-Command and set the device in Command Mode; 

• ‘GB’, is a Get-Command that returns the Bluetooth MAC address of the device; 

• ‘SG,1’, is a Set-Command to change between Bluetooth modes supported: the 

number 1 set the chip as Bluetooth Low Energy only; 



• ‘SN,Lamp’, is another Set-Command that sets the device name to “Lamp” and 

which will be shown to other BLE devices; 

• ‘---’, is the Action-Command complementary to the first one and exits the device 

from Command mode. 

This configuration procedure is performed each time the device enters in Diagnostic 

Session. Complementarily, it will be seen in the next chapter that the test application, 

instead, will be responsible for entering the DUT in the diagnostic session and then 

connecting to it via BLE. Once the connection with the robot was configured correctly, it 

was possible to take advantage of all the software architecture already developed by Ema 

s.r.l., in order to easily send the desired data to the Bluetooth module via UART, and 

finally to the robot via BLE. All the additions/modifications introduced to the C-files that 

constitute the module “CTL_RN4678” are available in Annex A-II. 

Afterwards, in order to retrieve the desired information, work was conducted on the 

"MGC_Driver" software module, which manages the gesture controller in charge of data 

acquisition and interpretation. Here the data was obtained directly from the MGC3130 

chip, which is actually connected to the four receiver electrodes. The latter is then 

connected to the micro through the I2C bus and continuously sends a message containing 

the data processed by GestIC Colibri Suite. Among the data available, the ones of interest 

for the test are the absolute position in a defined Cartesian reference system (x, y, z), the 

gesture recognized between those defined in the default set from the library and the 

counter to track the airwheel movement. Therefore, the driver source code has been 

modified in order to transmit this feedback to the robotic arm. It is transmitted whenever 

the device recognizes a gesture among those discussed in 5.2. All the 

additions/modifications introduced to the C-files that constitute the module 

“MGC_Driver” are available in Annex A-I.  



CHAPTER 6 

6 Tester Application 

6.1 Overview 

The test application shall have the robotic arm perform a functional test of the device's 

3D gesture input system and provide a report on the test performed. The key components 

of the test are the DUT (Device Under Test), the robotic arm Niryo One that performs the 

test gestures and the PC that supervises the test. Figure 6.1 shows the improvised test 

environment due to the state of national emergency: 

Figure 6-1: the test-bench realised at home 



The DUT is examined in chapter 5, where are also described the integrations made to the 

source code to implement in the device an additional operating mode to be adopted during 

the test, named "Diagnostic session". Niryo One is presented in chapter 4 as well as the 

methodology used to develop the application, the Robot Operating System (ROS) 

introduced in chapter 3. The robot is constantly connected to the PC via Wi-Fi, and it has 

also to connect to the DUT via Bluetooth Low Energy (BLE) in order to receive feedback 

during the test. Lastly, the PC must have Ubuntu 16.04 as operating system and installed 

ROS Kinetic and also Niryo One ROS Stack in order to work in simulation mode or view 

the robot. For this purpose, a virtual machine with Ubuntu OS was downloaded and 

installed on a conventional Windows PC that was used to develop the whole project. 

ROS is a distributed computing environment, so was chosen to run the test application on 

the PC, not overloading the Raspberry Pi 3 that controls the robot and taking advantage 

of the ease-of-development of ROS systems on multiple machines. It essentially consists 

of a network with a single master that provides bi-directional connectivity between all 

pairs of machines. To achieve this, all slave nodes must be configured to use the same 

master and to present themselves with a name that all other machines can resolve. For 

this work, the robot (i.e. the Raspberry Pi 3 embedded in the robot) is the master, whereas 

the PC that is connected via Wi-fi has been configured as a slave to 'remote' control the 

robotic arm. 

The test application developed consists of a ROS catkin package, called 

"niryo_one_test_app", which, by recalling the software architecture of the robot shown 

in Figure Figure 4-5, can be located in the Control layer. Here, it works alongside the 

"niryo_one_commander" package, enriching the robot with specific features used to 

move the arm during the test. Besides, just like the former, when a motion plan is required 



it directly interrogates the "moveit_commander" package in the underlying layer that 

allows the access to actions and services offered by MoveIt, such as trajectory planning.  

Once the application is started, it is designed as an FSM (Finite States Machine) to 

conveniently handle the following sequence of tasks: 

1. initialising and preparing the robotic arm; 

2. searching and connecting to the DUT via BLE; 

3. picking up the artificial hand from its prefixed location; 

4. executing of the predefined test gesture and processing the feedback received 

from the DUT; 

5. if the gesture recognised by the DUT is different from the performed one or not 

detected at all, the robot retries a configurable number of times the same gesture 

and then moves on to the next one. 

6. Repeating steps 4 and 5 for each predefined test gesture, in order: 

o Flick East-West,  

o Flick West-East,  

o Flick North-South,  

o Flick South-North,  

o AirWheel. 

7. After testing all the gestures, disconnect from the DUT and place the artificial 

hand in its spot;  

8. providing the test report to the PC and according to it, controlling the robot in 

order to move the DUT in one between two different direction.  

In the next section will be illustrated the main steps involved in the developed of this 

application as well as the tools, the libraries and the software used. 

  



6.2 Code development and implementation 

The decision to make a ROS catkin package was taken because it can be built either as a 

stand-alone project or within a workspace, where multiple interdependent packages can 

be built together all at once. A catkin workspace is basically a directory that adopt typical 

and recommended layout, where packages can be edited, compiled and installed. 

 

6.2.1 Creating the ROS package 

After the preparation of the virtual machine with Ubuntu OS and the installation of ROS 

Kinetic, a catkin workspace was created, and all the Niryo One ROS Stack packages were 

imported into it. Now, thanks to the catkin tools, it is possible to build all the packages 

and boot the robot. Before, some ROS environment variables, such as 

ROS_MASTER_URI and ROS_IP, were configured in order to create a ROS system 

distributed between the Raspberry Pi 3 and the PC. In fact, the test application has been 

designed to run on the PC, reducing the workload of the Raspberry Pi. However, it can 

also run on the robot by delegating only the launch and the report visualisation to the PC. 

A package, to be considered a catkin package, must contain: a catkin compliant 

package.xml file that provides meta-information about the package and a CMakeLists.txt 

that uses catkin. The package.xml is an XML file, called the package manifest, which 

must be included in the root directory of the package. It defines all the properties of the 

package, including mainly the package name and the dependencies on other ROS 

packages. The CMakeLists.txt file, instead, is the build system input required to build 

software packages which specifies how to build and where to install the code. The first 

step in the realization of this application was to create a new ROS package catkin-



compliant provided of a package.xml and a CMakeLists.txt files. At the beginnings, only 

the package name and some basic dependencies, such as “rospy” that allows to program 

in Python, were defined. Then they have been constantly updated as more packages were 

used during the application development. Figure 6-2shows the layout of the ROS catkin 

package “niryo_one_test_app” created for this project, while the final version of each 

file composing the package is attached in the Annex B.  

 

  

niryo_one_test_app / 

 CMakeLists.txt 

 package.xml 

 setup.py 

 src / 

  device_BLE.py 

  dut_config.py 

  test_app.py 

  tester_commander.py 

  tester_config.py 

Figure 6-2: the structure of the ROS package "niryo_one_test_app" 



6.2.2 Python scripts 

In the root of the package, according to the catkin workspace layout, then a directory 

called "src” has been created and will contain all the scripts written in Python that 

constitute the application. The application code has been organised into several Python 

files which are listed and briefly outlined below: 

§ dut_config.py: contains customizable parameters about the data transmitted via 

BLE from the device to be tested and implements the "DUT" Python class which 

provides some features (through the device_BLE.py script) and information about 

the device under test; 

§ device_BLE.py: handles everything related to the Bluetooth connection with the 

DUT, from the creation of a new thread that will be listening to the BLE channel 

waiting for messages from the device, up to the disconnection of the DUT;  

§ tester_config.py: is a simple configuration file for the robotic arm that contains 

all the saved fixed 3D poses, discussed in 4.4 and necessary to perform the test; 

§ tester_commander.py: in parallel to using the tools offered by the 

“niryo_one_commander” package to control the robot, it implements some 

additional features developed specifically to perform the test gestures; 

§ test_app.py: is the core of the test application since it contains the main program 

and the finished state machine (FSM) presented before that implements the test 

procedure. It is the only file to run, with the ROS command rosrun in order to 

start the test application. 

The first two scripts listed are therefore exclusively dedicated to the DUT and are mainly 

concerned with managing the Bluetooth connection and collecting data from the device. 

To do this, they include the “Bluepy” and “threading” Python modules that will be further 



explored in the next paragraph. They are entirely reported, respectively, "dut_config.py" 

in Annex B-V and "device_BLE.py" Annex B-IV.  

The scripts "tester_config.py" and "tester_commander.py", on the other hand, only 

concern the manipulation of the robotic arm. The former simply stores the saved positions 

and orientations and prepares the 3D pose coordinates in the proper format needed to 

move the robot. It does not provide any functionality but allows quick access in case of 

adjustments or modification of the test-bench setup. The latter, instead, implements all 

the new features added for controlling the arm and performing specific test gestures. As 

mentioned above, it interfaces directly with the "niryo_one_commander” and 

“moveit_commander” ROS packages and imports the ROS "actionlib" library and Niryo 

One ROS messages (from “niryo_one_msgs" package) to be able to actually manipulate 

the arm. They both are listed respectively in Annex B-VIII and Annex B-VII.  

Finally, the “test_app.py” implements the main program function and the test procedure. 

It has been represented through the simplified logical block flowchart of Figure 6-3, in 

which it is possible to distinguish the two parts. 
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The beginning part is the main program that first of all initialises the ROS node named 

"niryo_one_test_app", and then calls the custom function SetupNiryoOne(). This one is 

defined in the “tester_commander.py”, and takes care of launching the autocalibration 

procedure needed at each reboot of the robot, then establishes a connection with the action 

server "niryo_one/commander/robot_action” provided by the robot, and lastly set the 

correct tool through the ROS service “/niryo_one/change_tool/”. Once the robot is ready, 

a DUT object is created, which, as detailed in the next paragraph, will connect to the real 

Figure 6-3: concise logical flowchart of "test_app.py" script 
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device via BLE and collect the messages sent by it. Once the DUT, that should already 

be in Diagnostic Session, is also connected, the actual test application is started by calling 

its function DutStartTest(). This one implements the FSM machine presented in the 

overview of the chapter and, after each test sequence execution, block the program 

offering the choice to run a new test or to close the application. At this point, whether the 

app is running on PC or Raspberry Pi 3, from the Ubuntu terminal it is necessary to type 

'Q' and then 'enter' in case one wants to quit, or just 'enter' if one wants to start another 

test. The first time we start the test procedure, the DUT is already connected and only the 

possibility to start a test is offered, allowing the user to prepare and correctly place the 

DUT in its location as specified in the test-bench configuration file “tester_config.py”. In 

the other cases, a new DUT object is created and then the same sequence of steps is 

performed. In 6.2.4 it's explained in detail how the arm was manipulated, whereas here 

follows the description of the logic behind the different operations. Each state of the FSM 

listed in figure XX, except the WAIT state, consists of a movement of the arm towards a 

predefined starting position and then a series of actions specific to each state. All starting 

poses are calculated from the fixed positions of DUT and artificial hand stored in 

"tester_config.py", where also the parameters used for the calculation can be configured. 

To reach the first pose and then to perform the following set of specific actions, such as 

grasping the artificial hand, performing gestures or moving the device at the end of the 

test, a set of dedicated functions has been developed in "tester_commander.py" to 

convenient manipulate the arm as required, and they are presented in 6.2.4. Once the robot 

successfully takes the artificial hand it starts to perform the different test gestures, one at 

a time, according to the order configured at the beginning of the script. At the end of each 

gesture execution, the application checks both that all the actions were successfully 

performed by the arm and that the gesture detected and received via BLE by the DUT 

matches the one actually performed. If the robot fails to execute a single action, for 



example when MoveIt motion planning takes too long to find a valid trajectory, simply 

retry the same action again. Instead, if the gesture detected by the DUT is different from 

the expected one, or has not been detected at all, the arm will retest the same gesture only 

until the number of attempts exceeds the configurable MAX_NUM_ATT value and then 

move on to the next one. Once all gestures are performed, the robotic arm places the 

artificial hand in its place before moving the DUT according to the test result. This last 

action has also been thought from the point of view of industrial applications, where the 

robot can be imagined positioned at the end of a production line, with conveyors, to 

perform end-of-line tests in order to separate faulty devices from those functioning 

correctly. Finally, concluding the test, the application disconnects the BLE device and 

moves the arm into a safe position, the IDLE pose, waiting for the user's choice to quit or 

to run another test. During the entire execution of the script, the application prints 

continuously on screen, in the terminal window on Ubuntu, the actions that are going to 

perform, the result of each single action, the data received and those processed, all in real 

time, using the loginfo method of the “rospy” ROS module. 

 

6.2.3 BlueZ and Bluepy libraries 

When the application runs on the Robot, the integrated Raspberry Pi 3 has built-in support 

for Bluetooth Low Energy (BLE), the technology that allows even small, low-power 

devices to transmit and receive information. A simple commercial USB dongle 

supporting BLE has been used, instead, to run the application on the PC that supports 

only Classical Bluetooth.  

Since the application is developed under ROS frameworks, the source code shall be 

written in C++ or Python (version 2.7) programming language. Python was chosen from 



among the two because of its many advantages. These include, for example, integrated 

memory management or the no need to compile object files or connect to libraries. The 

only challenging part to deal with before development starts is making sure of adding 

Bluetooth support to Python. Therefore, in order to develop all the Bluetooth 

functionalities requested by the test, the BlueZ and Bluepy libraries has been imported 

and exploited: 

§ BlueZ [5] is an open-source project that consists of separate kernel modules, 

libraries and utilities which together provide everything needed to manage all the 

Bluetooth core layers and protocols. It implements a Bluetooth stack for Linux-

based operating system family and works perfectly with either single or multi-

processor and even hyper-threading systems. It has finally become the official 

Linux Bluetooth protocol stack, and its kernel modules are in the Linux kernel 

since 2.4.6 release. All the source code is available in the Git repository [6]. 

§ Bluepy, on the other hand, is a Python module that allows controlling BLE devices 

with Linux-based OS, through a useful API Python interface. The latter, in turn, 

takes advantage of the API offered by BlueZ module and allows communication 

with a BLE device via convenient Python commands. This package is an open-

source project too, developed mostly on the Raspberry Pi 3, and all the source 

code together with the API documentation are available on [7]. 

Hence first BlueZ module and then Bluepy library were installed on both the Raspberry 

Pi 3 and the PC with Ubuntu 16.04 OS.  

Several classes and their instance methods of Bluepy library has been used in the 

"device_BLE.py" script, in order to define a Class named “deviceBLE” which is 

responsible for:  



o scan for the DUT address between the BLE devices available for connection; 

o connect to the DUT in order to discover services and characteristics offered by 

the device; 

o create a custom delegated object that processes notifications whenever one is 

received; 

o through UUID retrieve the service and characteristic necessary to enable the 

reception of notifications from the DUT;  

o correctly disconnect the DUT at the end of the test. 

Together with Bluepy, the Python threading module was used to finally define a class 

named “devThread”, that heirs to the Thread class, needed to generate a parallel thread 

to the main one running the test. This new process is started in the background and is 

dedicated exclusively to listening to the Bluetooth channel waiting for notifications from 

the DUT. It creates a deviceBLE object instance, and then collects all the data processed 

by the delegate object in a buffer shared with the main process. In the file "due_config.py" 

is defined instead the class DUT which has several members as name or MAC BLE 

address and is responsible for generating the new thread that handles the Bluetooth 

communication. Finally, as seen before, in the file "test_app.py" is effectively created the 

DUT object that will generate the new process responsible for all the BLE features listed 

above. 

  



6.2.4 The ROS actionlib library 

In any ROS-based system, it is possible to perform some task by sending requests to a 

node and then receiving a response, through the ROS service. However, sometimes, if the 

service takes too long for execution, the user would like to be able to cancel the request 

during execution or to receive periodic feedback on how the request is proceeding.  

For this purpose, the ROS "actionlib" package provides the tools to create servers that 

accomplish long-run goals with the features just described and also a client interface to 

send requests to the server. These are named “ActionServer” and “ActionClient” 

respectively. Therefore, they provide a simple API in order to request goals, on the client 

side, or execute action, on the server side, by means of callbacks and function calls. 

Servers and clients communicate using a "ROS Action Protocol", shown in Figure 6-4, 

that is based on ROS messages and an action specification file.   

The action specification consist of an .action file which contains three sections where 

goals, feedback and result message are defined:  

§ Goal: a goal is a target that can be sent from an ActionClient to an ActionServer 

to accomplish a task through actions. 

Figure 6-4: the ROS Action Protocol. 



§ Feedback: the feedback message is used by an ActionServer to communicate to 

an ActionClient the incremental progress of a goal. 

§ Result: Finally, a result message is sent from the ActionServer to the ActionClient 

when the task is done, differently from feedback, this is sent only once. 

In addition to the messages just defined, as illustrated in Figure 6-4, the action interface 

protocol includes two other ROS messages: 

§ Cancel: is sent by the client to cancel a request sent to the server. 

§ Status: is sent by the server to notify clients of the current status of each goal in 

the system. 

As example, the action specification “RobotMove.action” implemented by Niryo One is 

reported below: 

# goal 
niryo_one_msgs/RobotMoveCommand cmd 
--- 
# result 
int32 status 
string message 
--- 
# feedback 
niryo_one_msgs/RobotState state 

Therefore, in order to manipulate the arm by sending direct commands using ROS, the 

"niryo_one_commander” package implements and exposes an Action Server named 

"niryo_one/commander/robot_action". Alongside the "niryo_one_msgs" package 

contains the definition of all messages, services and .action files offered by the robot. 

Starting from here, the script "tester_commander.py" has been developed in order to 

implement a SimpleActionClient that will request to the Niryo Action Server all the 



movements performed by the robot during the test. Below is the type of goal message, 

defined in the “RobotMove.action” above, that can be sent to the server to perform a task: 

int32 cmd_type 
  
float64[] joints 
geometry_msgs/Point position 
niryo_one_msgs/RPY rpy 
niryo_one_msgs/ShiftPose shift 
niryo_one_msgs/TrajectoryPlan Trajectory 
geometry_msgs/Pose pose_quat 
string  saved_position_name 
int32 saved_trajectory_id  
  
niryo_one_msgs/ToolCommand tool_cmd 

Then, to send a valid goal message it requires that both the "cmd_type" field, which 

specifies the type of command to be executed, and the fields relating to the various 

messages necessary to carry out the requested command are correctly filled. To give a 

clearer overview of the type of goals that can be requested, the script “command_type.py” 

that handles the "cmd_type" field and is included inside “niryo_one_commander” 

package is shown below:  

1. class CommandType(object): 
2.     JOINTS     = 1 
3.     POSE       = 2 
4.     POSITION   = 3 
5.     RPY        = 4 
6.     SHIFT_POSE = 5 
7.     TOOL       = 6 
8.     EXECUTE_TRAJ = 7 
9.     POSE_QUAT  = 8 
10.     SAVED_POSITION =9 
11.     SAVED_TRAJECTORY = 10   



Several of these commands has been used for developing as many functionalities in the 

“tester_commander.py” file. This Python script will then provide the "test_app.py" 

program with all the necessary tools to move the arm as desired. So, to execute actions 

such as perform gestures, take and place the artificial hand or move the DUT at the end 

of the test, the latter will use the functions exposed by "tester_commander.py", such as 

moveArmByPose(pose), moveArmByTrajectory(traj) or openGripper(). All the new 

features added for controlling the arm that exploited the ROS "actionlib" library are 

reported in Annex B-VII.  

Finally, during the development and debugging of the application, some of the logging 

tools offered by ROS were used and are presented below: 

§ rqt_console: to display and filter all the messages published in the ROS network; 

§ rqt_rosbag: for visualizing, inspecting and replaying log files called bags; 

§ rqt_graph: to display and filter a graph showing the nodes of the ROS network 

and how they are connected, i.e. they communicate with each other, through 

topics.  

It was no possible to report some picture of the work accomplished, due to the large 

dimensions of both the ROS Graph picture and the bag files collected. 

  

  



CHAPTER 7 

7 Conclusion and future developments 

7.1 Results 

Once the tester application was developed, calibrated and tested, it has been adopted to 

test the final device produced by Ema. The total time taken by the test to perform the 

sequence of gesture on a working device has been measured and is approximately equal 

to 10 seconds. On the contrary, it is not easy to measure the time taken by the human 

operator to perform the same test. Although at first glance it may seem a quite fast task, 

only at the practical execution one truly realizes how many times it is necessary to repeat 

the same gesture to obtain a replicable test.  The constant speed of the movement during 

the gesture, the distance between the device and the hand, or the configuration of the hand 

itself (the shape that the hand assumes during the gesture) are just a few among the factors 

on which one must keep focused during the execution of each gesture. In fact, the time 

taken by the human operator, making no mistakes, to perform the sequence of test 

gestures is comparable to that used by the robotic arm. However, by analysing the many 

tests I performed manually before completing this project, succeeding in performing a 

whole sequence of tests quite similar to the previous one without having to repeat any 

gestures is something that rarely happens.  

For what concerns the accuracy of the tests, the MATLAB software has been used. Since 

it was used extensively during university courses, the software was already available on 

the PC as well as the robotic toolbox that implements the ROS framework. The Niryo 

company, to conclude, also provides a MATLAB interface that connects to Niryo One 

and allows to analyse the differences between the planned and executed trajectory. It 



consists of a Graphical User Interface (GUI) written in MATLAB code, always open-

source and available on the GitHub repository at [8], which offers several useful features 

for debugging and testing the robot’s movements and hardware. Figure 7.1 shows the 

trajectories plotted on the GUI: 

From the Figure 7.1, it can be noted that the maximum deviation between the objective 

trajectory and the executed trajectory is about 0.8 mm at most. 

 

 

 

 

 

 

Figure 7-1: planned and executed trajectory plotted on MATLAB. 



7.2 Conclusion 

Since the very beginning of modern industrialization, testing and validating products has 

always been a key process to ensure quality and safety. In Ema’s special case study the 

product line had one operator responsible of programming and testing the whole product. 

Considering the fact that, under the same conditions, a complete human test execution 

can take from 10 to 20 seconds, while the robotic arm always takes about 10 seconds, 

making the test fully automated has led to an effective reduction of work/costs and a 

saving of production time.    

Of course, this project is not suitable for precision industrial applications, but it shows 

how much can be obtained even from a product targeted to the educational market at a 

very affordable price. 

Figure 7-2: the test-bench up and running. 



7.3 [9] [10] [11] [12] [13] [14] [15]Future developments 

The project realized and presented in this thesis is still work in progress and many 

improvements and new functionality are just now in the design phase.  

Being a lamp that implements a system of interaction based on the use of particular 

gestures and signals of light and colour, the natural extension of the test proposed so far 

is precisely to test also the lighting system of the device. The idea is that, while the DUT 

is in “Diagnostic Session”, in addition to send the Bluetooth message, it will turn on the 

equipped RGB LEDs with a different colour or pattern, according to the detected gesture. 

To achieve this, the source code of the device needs some quick modifications to drive 

the lighting system as desired. Meanwhile, in order to collect the visual feedback from 

the DUT, the test-bench will be provided of a fixed web camera, whereas the tester 

application will exploit the popular ROS library OpenCV (Open Source Computer Vision 

Library) [16]. This package offers several hundred machine vision algorithms that will 

allows to recognise the colours or the pattern of the light emitted by the DUT.  

Another enhancement that will be introduced soon is providing the PC with a graphical 

interface that will show in a clear and simple way all the information about the test 

performed relevant for the tester. Several solutions are still under investigation to obtain 

the best result with the minimum effort. 

Finally, new applications for the robotic arm can be developed. For example, as 

mentioned in 5.2, the calibration needed to optimize the motion tracking controller, that 

consist of the Electrode Weighting and E-Field Linearization procedures, might be a 

promising candidate for the next application. 
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Annex A: DUT modified source code 

The source code of the device to be tested could not be reported because intellectual 

property of Ema s.r.l. company. Therefore, only the parts of code written by the author of 

this thesis with the support of the company tutor are listed below: 

A-I. The APP_Main.c file: 

1. /*…………………………………………………………… 
2. * proprietary code above 
3. *…………………………………………………………*/ 
4.   
5.     /* Macchina a stati applicativo (menu) */ 
6.     switch (ST_APP) 
7.     { 
8.         case C_ST_APP_MENU: 
9.             /* Modalit‡ d'uso */ 
10.             switch (APP_LAMP_STR.CURR_MENU) 
11.             { 
12.                 case C_MODE_CONSUMPTION: 
13.      APP_PowerConsumption(); 
14.                     break;                                     
15.                 case C_MODE_COURTESY_LIGHT: 
16.      APP_CourtesyLight(); 
17.                     break; 
18.                 case C_MODE_LIGHT_GAME: 
19.      APP_LightGame(); 
20.                     break; 
21.                 case C_MODE_BOREAL: 
22.      APP_BOREAL(); 
23.                     break;  
24.                 case C_MODE_DIAG_SESSION: 
25.      APP_Testing(); 
26.                     break; 
27.   
28.                 default: 
29.                     break; 
30.             } 
31.   
32. /*…………………………………………………………… 
33. * proprietary code below 
34. *……………………………………………………………… */ 



 

A-II. The CTL_RN4678.c file: 

1. /*…………………………………………………………… 
2. * proprietary code above 
3. *……………………………………………………………… */ 
4.   
5. case C_RN_ENTER_SETTINGS:      
6.     /* comando per entrare in COMMAND session */ 
7.     if (FLAG_RN.CMD_SENT == 0) 
8.     { 
9.         EUSART1_Write('$'); 
10.         EUSART1_Write('$'); 
11.         EUSART1_Write('$'); 
12.         FLAG_RN.CMD_SENT = 1; 
13.     } 
14.     if (eusart1RxCount != 0) 
15.     { 
16.         command = EUSART1_Read(); 
17.         if (command == 0x20) 
18.         { 
19.             FLAG_RN.CMD_SENT = 0; 
20.             ST_RN = C_EXEC_COMMAND; 
21.             RN_COMMAND = C_RN_COMMAND_GET_MAC; 
22.         } 
23.     }             
24.     break; 
25.      
26. case C_EXEC_COMMAND: 
27.     switch (RN_COMMAND) 
28.     { 
29.         case C_RN_COMMAND_NOCMD: 
30.             /* nessun comando o uscita dalla sessione di comando */ 
31.             ST_RN = C_RN_ACTIVE; 
32.             break; 
33.             // 
34.         case C_RN_COMMAND_GET_MAC: 
35.             /* richiesta MAC */ 
36.             if (FLAG_RN.CMD_SENT == 0) 
37.             {  
38.                 rn_bind = 0; 
39.                 EUSART1_Write('G'); 
40.                 EUSART1_Write('B');   
41.                 EUSART1_Write('\r'); 
42.                 FLAG_RN.CMD_SENT = 1; 
43.                 //RN_COMMAND = C_RN_COMMAND_NOCMD; 
44.             } 
45.             if (RN_BUFF[18] == 0x20) 
46.             { 
47.                 /* retreive datas */ 
48.                 for (uint8_t i = 0; i < 12; i++) 
49.                 { 
50.                     NET_MAC[i] = RN_BUFF[i]; 
51.                 } 
52.                  
53.                 /* svuoto buffer in ricezione dall'RN */ 
54.                 for (uint8_t i = 0; i < C_RN_BUFF_DIM; i++) 



55.                 {                         
56.                     RN_BUFF[i] = 0; 
57.                 } 
58.                 /* uscita dal comando*/ 
59.                 FLAG_RN.MAC_ON = C_TRUE; 
60.                 FLAG_RN.CMD_SENT = 0; 
61.                 //RN_COMMAND = C_RN_COMMAND_NOCMD; 
62.                 RN_COMMAND = C_RN_COMMAND_SET_BT; 
63.             } 
64.             break; 
65.              
66.         case C_RN_COMMAND_PIN_MODE: 
67.             if (FLAG_RN.CMD_SENT == 0) 
68.             {  
69.                 rn_bind = 0; 
70.                 EUSART1_Write('S'); 
71.                 EUSART1_Write('A'); 
72.                 EUSART1_Write(',');                         
73.                 EUSART1_Write('2'); /* default mode (no pin)*/                         
74.                 EUSART1_Write('\r'); 
75.                 /* blocco comando */ 
76.                 FLAG_RN.CMD_SENT = 1; 
77.                 //RN_COMMAND = C_RN_COMMAND_NOCMD; 
78.             } 
79.             if (RN_BUFF[9] == 0x20) 
80.             {                                                
81.                 /* svuoto buffer in ricezione dall'RN */ 
82.                 for (uint8_t i = 0; i < C_RN_BUFF_DIM; i++) 
83.                 {                         
84.                     RN_BUFF[i] = 0; 
85.                 }                         
86.                 /* ricarico comando */ 
87.                 FLAG_RN.CMD_SENT = 0; 
88.                 /* uscita dal comando*/                                                 
89.                 RN_COMMAND = C_RN_COMMAND_SET_PIN; 
90.             } 
91.             break; 
92.              
93.         case C_RN_COMMAND_SET_PIN: 
94.             if (FLAG_RN.CMD_SENT == 0) 
95.             {  
96.                 rn_bind = 0; 
97.                 EUSART1_Write('S'); 
98.                 EUSART1_Write('P'); 
99.                 EUSART1_Write(','); 
100.                 EUSART1_Write('1'); 
101.                 EUSART1_Write('2'); 
102.                 EUSART1_Write('3'); 
103.                 EUSART1_Write('4');   
104.                 EUSART1_Write('4');  
105.                 EUSART1_Write('4');  
106.                 EUSART1_Write('\r'); 
107.                 /* blocco comando */ 
108.                 FLAG_RN.CMD_SENT = 1; 
109.             } 
110.             if (RN_BUFF[9] == 0x20) 
111.             { 
112.                 /* svuoto buffer in ricezione dall'RN */ 
113.                 for (uint8_t i = 0; i < C_RN_BUFF_DIM; i++) 
114.                 {                         
115.                     RN_BUFF[i] = 0; 



116.                 } 
117.                 /* uscita dal comando*/                                                 
118.                 //RN_COMMAND = C_RN_COMMAND_NOCMD; 
119.                 /* ricarico comando */ 
120.                 FLAG_RN.CMD_SENT = 0; 
121.                 /* uscita da impostazioni */ 
122.                 RN_COMMAND = C_RN_COMMAND_SET_DNAME; 
123.             } 
124.              
125.             break; 
126.              
127.         case C_RN_COMMAND_SET_DNAME: 
128.             if (FLAG_RN.CMD_SENT == 0) 
129.             {  
130.                 rn_bind = 0; 
131.                 EUSART1_Write('S'); 
132.                 EUSART1_Write('N'); 
133.                 EUSART1_Write(','); 
134.                 EUSART1_Write('L'); 
135.                 EUSART1_Write('A');                          
136.                 EUSART1_Write('M');   
137.                 EUSART1_Write('P'); 
138.                 EUSART1_Write('\r'); 
139.                 /* blocco comando */ 
140.                 FLAG_RN.CMD_SENT = 1; 
141.             } 
142.             if (RN_BUFF[9] == 0x20) 
143.             { 
144.                 /* svuoto buffer in ricezione dall'RN */ 
145.                 for (uint8_t i = 0; i < C_RN_BUFF_DIM; i++) 
146.                 {                         
147.                     RN_BUFF[i] = 0; 
148.                 } 
149.                 /* uscita dal comando*/                                                 
150.                 //RN_COMMAND = C_RN_COMMAND_NOCMD; 
151.                 /* ricarico comando */ 
152.                 FLAG_RN.CMD_SENT = 0; 
153.                 /* uscita da impostazioni */ 
154.                 RN_COMMAND = C_RN_COMMAND_EXIT_CMD; 
155.             } 
156.              
157.             break; 
158.              
159.         case C_RN_COMMAND_SET_BT: 
160.             if (FLAG_RN.CMD_SENT == 0) 
161.             {                                                
162.                 rn_bind = 0; 
163.                 EUSART1_Write('S'); 
164.                 EUSART1_Write('G'); 
165.                 EUSART1_Write(','); 
166.                 EUSART1_Write('2'); 
167.                 EUSART1_Write('\r'); 
168.                 /* blocco comando */ 
169.                 FLAG_RN.CMD_SENT = 1; 
170.             } 
171.             if (RN_BUFF[9] == 0x20) 
172.             { 
173.                 /* svuoto buffer in ricezione dall'RN */ 
174.                 for (uint8_t i = 0; i < C_RN_BUFF_DIM; i++) 
175.                 {                         
176.                     RN_BUFF[i] = 0; 



177.                 } 
178.                 /* uscita dal comando*/         
179.                 //RN_COMMAND = C_RN_COMMAND_NOCMD; 
180.                 /* ricarico comando */ 
181.                 FLAG_RN.CMD_SENT = 0; 
182.                 /* uscita da impostazioni */ 
183.                 RN_COMMAND = C_RN_COMMAND_SET_DNAME; 
184.             } 
185.              
186.             break; 
187.          
188.             // 
189.         case C_RN_COMMAND_EXIT_CMD: 
190.             /* chiusura sessione di comando */ 
191.             if (FLAG_RN.CMD_SENT == 0) 
192.             {  
193. //                        EUSART1_Write('-'); 
194. //                        EUSART1_Write('-');   
195. //                        EUSART1_Write('-');   
196. //                        EUSART1_Write('\r'); 
197.                  
198.                 EUSART1_Write('R'); 
199.                 EUSART1_Write(',');   
200.                 EUSART1_Write('1');   
201.                 EUSART1_Write('\r'); 
202.                  
203.                 FLAG_RN.CMD_SENT = 1;                         
204.                 RN_COMMAND = C_RN_COMMAND_NOCMD; 
205.             } 
206.             break;     
207.     }                    
208.   
209. /*…………………………………………………………… 
210. * proprietary code below 
211. *……………………………………………………………… */ 

  



A-III. The MGC_Decode.c file: 

1. /*…………………………………………………………… 
2. * proprietary code above 
3. *……………………………………………………………… */ 
4.     //New i2c message from MGC3130 to process 
5.     if(i2cMsgFlag) { 
6.         i2cMsgFlag = 0;         
7.         uint8_t cmd = mgcProcMsg();     //process the message 
8.          
9.         if(cmd != GI_NOGESTURE) { 
10.             switch(cmd) { 
11. //********************************************** 
12. //User code below for acting on GestIC command 
13. //********************************************** 
14.                 case GI_TAP_WEST: 
15.                 case GI_FLICK_WE: 
16.                     go_test = 0x00; 
17.                     EUSART1_Write(go_test); 
18.                     break; 
19.   
20.                 case GI_TAP_EAST: 
21.                 case GI_FLICK_EW: 
22.                     go_test = 0x01; 
23.                     EUSART1_Write(go_test); 
24.                     break; 
25.   
26.                 case GI_TAP_SOUTH: 
27.                 case GI_TAP_CENTER: 
28.                 case GI_FLICK_SN: 
29.                     go_test = 0x02; 
30.                     EUSART1_Write(go_test); 
31.                     break; 
32.   
33.                 case GI_TAP_NORTH: 
34.                 case GI_FLICK_NS: 
35.                     go_test = 0x03; 
36.                     EUSART1_Write(go_test); 
37.                     break; 
38.   
39.                 case GI_AIRWHEEL_CCW:   
40.                     /* azzeramento tempo di swipe */ 
41.                     TIMER_D_TRACK = 0; 
42.                     Gesture_Track.air_ccw = 1; 
43.                     if (Gesture_Track.air_counter != 255) 
44.                         Gesture_Track.air_counter++; 
45.                     else 
46.                         Gesture_Track.air_counter = 0; 
47.                     //GestAir(md.sensorData.airWheelCounter); 
48.                     break; 
49.   



50.                 case GI_AIRWHEEL_CW: 
51.                     /* azzeramento tempo di swipe */ 
52.                     TIMER_D_TRACK = 0; 
53.                     Gesture_Track.air_cw = 1; 
54.                     if (Gesture_Track.air_counter != 255) 
55.                         Gesture_Track.air_counter++; 
56.                     else 
57.                         Gesture_Track.air_counter = 0; 
58.                     //go_test = md.sensorData.airWheelCounter; 
59.                     //GestAir(md.sensorData.airWheelCounter); 
60.                     break; 
61.   
62.                 default: break; 
63.             } 
64.         } 
65.          
66. /*…………………………………………………………… 
67. * proprietary code below 
68. *……………………………………………………………… */ 

 

  



Annex B: Test Application source code 

The final test application, described in 6, is a ROS catkin package named 

“niryo_one_test_app” and is essentially a folder presenting the following layout: 

 

All files in the package are individually explained in 6.2 and they are reported, in the 

same order, below: 

B-I. The “CMakeList.txt” file: 

1. cmake_minimum_required(VERSION 2.8.3) 
2. project(niryo_one_test_app) 
3.   
4.   
5. ## Find catkin macros and libraries 

niryo_one_test_app / 

 CMakeLists.txt 

 package.xml 

 setup.py 

 src / 

  device_BLE.py 

  dut_config.py 

  test_app.py 

  tester_commander.py 

  tester_config.py 

 



6. ## if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS 
xyz) 

7. ## is used, also find other catkin packages 
8. find_package(catkin REQUIRED COMPONENTS 
9.   rospy 
10.   roscpp 
11.   std_msgs 
12.   geometry_msgs 
13.   niryo_one_msgs 
14.   actionlib 
15.   moveit_msgs 
16.   sensor_msgs 
17.   std_srvs 
18.   tf 
19.   trajectory_msgs 
20. ) 
21.   
22. catkin_python_setup() 
23.   
24. ################################### 
25. ## catkin specific configuration ## 
26. ################################### 
27. ## The catkin_package macro generates cmake config files for your 

package 
28. ## Declare things to be passed to dependent projects 
29. ## INCLUDE_DIRS: uncomment this if your package contains header 

files 
30. ## LIBRARIES: libraries you create in this project that dependent 

projects also need 
31. ## CATKIN_DEPENDS: catkin_packages dependent projects also need 
32. ## DEPENDS: system dependencies of this project that dependent 

projects also need 
33. catkin_package( 
34.   INCLUDE_DIRS include 
35. #  LIBRARIES robot_tester 
36.   CATKIN_DEPENDS roscpp 
37.   DEPENDS rospy 
38. ) 
39.   
40. ########### 
41. ## Build ## 
42. ########### 
43.   
44. ## Specify additional locations of header files 
45. ## Your package locations should be listed before other locations 
46. include_directories( 
47. # include 
48.   ${catkin_INCLUDE_DIRS} 
49. ) 

 



B-II. The “package.xml” file: 

1. <?xml version="1.0"?> 
2. <package format="2"> 
3.   <name>niryo_one_test_app</name> 
4.   <version>0.1.0</version> 
5.   <description>The niryo_one_test_app package</description> 
6.   
7.   <!-- One maintainer tag required, multiple allowed, one person 

per tag --> 
8.   <!-- Example:  --> 
9.   <!-- <maintainer email="jane.doe@example.com">Jane 

Doe</maintainer> --> 
10.   <maintainer email="c.poggi@ema-ic.it">Cristiano 

Poggi</maintainer> 
11.   
12.   <license>BSD</license> 
13.   
14.   <buildtool_depend>catkin</buildtool_depend> 
15.   <depend>rospy</depend> 
16.   <depend>roscpp</depend> 
17.   <depend>actionlib</depend> 
18.   <depend>std_msgs</depend> 
19.   <depend>niryo_one_msgs</depend> 
20.   <depend>geometry_msgs</depend> 
21.   
22.   
23.   
24.   <!-- The export tag contains other, unspecified, tags --> 
25.   <export> 
26.     <!-- Other tools can request additional information be placed 

here --> 
27.   
28.   </export> 
29. </package> 

  

B-III. The “setup.py” script: 

1. from distutils.core import setup 
2. from catkin_pkg.python_setup import generate_distutils_setup 
3.   
4. d = generate_distutils_setup( 
5.     packages=['niryo_one_test_app'], 
6.     #scripts=['bin/myscript'], 
7.     package_dir={'': 'src'} 
8. ) 
9.   
10. setup(**d) 
11.   



B-IV. The “dut_config.py” script: 

1. #!/usr/bin/env python 
2.   
3. import device_BLE 
4.   
5.   
6. BLE_MAC_ADDR = "D8:80:39:F5:DE:D7" 
7.   
8. BLE_NOTIFICATION_VALUE = 1 
9. BLE_NOT_VALID_DATA = 255 
10.   
11. directions = { 
12.  0 : "E", 
13.  1 : "W", 
14.  2 : "N", 
15.  3 : "S", 
16.  255: "INVALID" 
17. } 
18.   
19.   
20. class DUT(): 
21.     def __init__(self, name, device_addr = "0"): 
22.         self.name = name 
23.         self.ble_MAC_addr = device_addr 
24.         self.bleThread = device_BLE.devThread(self.ble_MAC_addr) 
25.         self.bleThread.daemon = True 
26.         self.bleThread.start() 
27.   
28.     def setDutName(self, name): 
29.         self.name = name 
30.   
31.     def setDutBleAddress(self, device_addr): 
32.         self.ble_MAC_addr = device_addr 
33.   
34.     def getDutName(self): 
35.         return self.name  
36.   
37.     def getDutBleAddress(self): 
38.         return self.ble_MAC_addr 

  

  



B-V. The “device_BLE.py” script: 

1. #!/usr/bin/env python 
2.   
3. from bluepy import btle 
4. import threading 
5. import time 
6. from dut_config import * 
7.   
8.   
9. class DeviceBLE: 
10.      
11.     def __init__(self, device_addr = "0"): 
12.         self.MAC_addr = device_addr 
13.         self.dev = 0 
14.         self.buffer_msgs = [BLE_NOT_VALID_DATA] 
15.   
16.     class devDelegate(btle.DefaultDelegate): 
17.         def __init__(self): 
18.             btle.DefaultDelegate.__init__(self) 
19.             self.handle_data = BLE_NOT_VALID_DATA 
20.   
21.         def handleNotification(self, cHandle, data): 
22.             data = int(data.encode('hex'), 10) 
23.             self.handle_data = data    
24.   
25.   
26.     def connect(self): 
27.         # Connection to the BLE device 
28.         print("Connecting to %s" %self.MAC_addr) 
29.         try: 
30.             self.dev = btle.Peripheral(self.MAC_addr) 
31.             print("Connected to %s" %self.MAC_addr)                     
32.         except: 
33.             print("Unable to connect to BTLE device %s" 

%self.MAC_addr) 
34.             retval = -1 
35.   
36.         try: 
37.             self.delegate = self.devDelegate() 
38.             self.dev.setDelegate(self.delegate) 
39.             # Enable notifications from BLE device 
40.             svc = self.dev.getServiceByUUID("49535343-fe7d-4ae5-

8fa9-9fafd205e455") 
41.             ch = svc.getCharacteristics()[2] 
42.             self.dev.writeCharacteristic(ch.valHandle+1, 

"\x01\x00") 
43.             retval = 0     
44.         except: 
45.             print("Unable to setDelegate of %s" %self.MAC_addr) 
46.             retval = -1 



47.              
48.         return retval 
49.   
50.     def waitForNotifications(self, ble_time): 
51.         self.dev.waitForNotifications(ble_time) 
52.         data = self.delegate.handle_data 
53.         self.delegate.handle_data = BLE_NOT_VALID_DATA 
54.         return data                          
55.          
56. class devThread (threading.Thread): 
57.     def __init__(self, BLEaddr): 
58.         threading.Thread.__init__(self) 
59.         self.dev = DeviceBLE(BLEaddr) 
60.         self.dev_data = BLE_NOT_VALID_DATA 
61.         while (self.dev.connect() != 0):  
62.             time.sleep(1.0) 
63.   
64.     def run(self):       
65.         while(1): 
66.             self.dev_data = 

self.dev.waitForNotifications(BLE_NOTIFICATION_VALUE) 
67.             if (self.dev_data != BLE_NOT_VALID_DATA):  
68.                 self.dev.buffer_msgs.append(self.dev_data) 
69.             #time.sleep(0.01) 
70.                  
71.     def getLastData(self): 
72.         return self.dev.buffer_msgs[-1] 

  

B-VI. The “test_app.py” script: 

1. #!/usr/bin/env python 
2.   
3.   
4. from __future__ import print_function 
5. import rospy, sys 
6. from sys import exit as sysExit 
7. import device_BLE 
8. from dut_config import * 
9. from tester_commander import * 
10. import time 
11.   
12. # Lib 
13. import actionlib 
14.   
15. # Action  
16. from niryo_one_msgs.msg import RobotMoveActionResult 
17. from niryo_one_python_api.niryo_one_api import * 
18.   



19. def dutTest(): 
20.      
21.     action_result = RobotMoveActionResult() 
22.     start = False 
23.     test_passed = False 
24.     state = states["WAIT"] 
25.     n = NiryoOne() 
26.     n.calibrate_auto() 
27.     while(1): 
28.   
29.         if (state == states["WAIT "]) :           
30.           rospy.loginfo("Enter WAIT state 

========================") 
31.           rospy.loginfo("  Press enter to start DUT TEST ...") 
32.           raw_input() 
33.           start = True 
34.           state = states["IDLE"] 
35.   
36.         elif (state == states["IDLE"]) : 
37.           action_result = moveArmByPoseID(poses_id["idle_pose"]) 
38.           time.sleep(2) 
39.           if (action_result.status) : 
40.             if (start) : 
41.               start = False               
42.               test_passed = False 
43.               state = states["TAKE_HAND"] 
44.             else: 
45.               rospy.loginfo("  Press enter to start DUT TEST ...") 
46.               raw_input() 
47.               start = True 
48.           else: # action failed retry 
49.             pass 
50.   
51.         elif (state == states["TAKE_HAND"]) : 
52.           openGripper() 
53.           shift_up_pose = list(poses[poses_id["hand_pose"]]) 
54.           shift_up_pose[2] = shift_up_pose[2] + 0.1 
55.           action_result = moveArmByPose(shift_up_pose) 
56.           time.sleep(2) 
57.           if (action_result.status) : 
58.             action_result = moveArmByPoseID(poses_id["hand_pose "]) 
59.             time.sleep(2) 
60.             if (action_result.status) : 
61.               action_result = closeGripper() 
62.               time.sleep(2) 
63.               if (action_result.status) : 
64.                 state = states["FIRST_GEST"]                 
65.           else: # action failed retry 
66.             pass 
67.         elif (state == states["FIRST_GEST"]) : 
68.           action_result = 

moveArmByPoseID(poses_id["firstGest_pose"]) 
69.           time.sleep(1) 



70.           if (action_result.status) : 
71.   
72.              try:   
73.                n.shift_pose(AXIS_Y, -0.35) 
74.              except NiryoOneException as e: 
75.                rospy.loginfo("   Niryo One Exception:") 
76.                print (e)  
77.              finally:       
78.                mydata = dut.bleThread.getLastData() 
79.                if (directions[mydata] == "W") : 
80.                  rospy.loginfo("CORRECT Gesture direction received 

from DUT = %s", directions[mydata]) 
81.                  state = states["SECOND_GEST"]           
82.                else: # wrong message received retry 
83.                  rospy.loginfo("WRONG Gesture direction received 

from DUT = %s", directions[mydata])       
84.             #else: # action failed retry swipe 
85.           else: # action failed retry start pose 
86.             pass 
87.   
88.         elif (state == states["SECOND_GEST"]) : 
89.           action_result = 

moveArmByPoseID(poses_id["secondGest_pose"]) 
90.           time.sleep(1) 
91.           if (action_result.status) : 
92.             try:   
93.               n.shift_pose(AXIS_Y, 0.35) 
94.             except NiryoOneException as e: 
95.               rospy.loginfo("   Niryo One Exception:") 
96.               print (e)  
97.             finally:       
98.               time.sleep(1) 
99.               mydata = dut.bleThread.getLastData() 
100.               if (directions[mydata] == "E") : 
101.                 rospy.loginfo("CORRECT Gesture direction received 

from DUT = %s", directions[mydata]) 
102.                 state = states["THIRD_GEST"]           
103.               else: # wrong message received retry 
104.                 rospy.loginfo("WRONG Gesture direction received 

from DUT = %s", directions[mydata])          
105.           else: # action failed retry 
106.             pass 
107.   
108.         elif (state == states["THIRD_GEST"]) : 
109.           action_result = 

moveArmByPoseID(poses_id["thirdGest_pose"]) 
110.           time.sleep(1) 
111.           if (action_result.status) : 
112.             try:   
113.               n.shift_pose(AXIS_X, -0.24) 
114.             except NiryoOneException as e: 
115.               rospy.loginfo("   Niryo One Exception:") 
116.               print (e)  



117.             finally:       
118.               time.sleep(1) 
119.               mydata = dut.bleThread.getLastData() 
120.               if (directions[mydata] == "N") : 
121.                 rospy.loginfo("CORRECT Gesture direction received 

from DUT = %s", directions[mydata]) 
122.                 state = states["FOURTH_GEST"]             
123.               else: # wrong message received retry 
124.                 rospy.loginfo("WRONG Gesture direction received 

from DUT = %s", directions[mydata])          
125.           else: # action failed retry 
126.             pass 
127.   
128.         elif (state == states["FOURTH_GEST"]) : 
129.           action_result = 

moveArmByPoseID(poses_id["fourthGest_pose"]) 
130.           time.sleep(1) 
131.           if (action_result.status) : 
132.             try:   
133.               n.shift_pose(AXIS_X, 0.28) 
134.             except NiryoOneException as e: 
135.               rospy.loginfo("   Niryo One Exception:") 
136.               print (e)  
137.             finally:       
138.               time.sleep(1) 
139.               mydata = dut.bleThread.getLastData() 
140.               if (directions[mydata] == "S") : 
141.                 rospy.loginfo("CORRECT Gesture direction received 

from DUT = %s", directions[mydata]) 
142.                 test_passed = True 
143.                 state = states["PLACE_HAND"]                
144.               else: # wrong message received retry 
145.                 rospy.loginfo("WRONG Gesture direction received 

from DUT = %s", directions[mydata])                   
146.           else: # action failed retry 
147.             pass 
148.              
149.         elif (state == states["PLACE_HAND"]) : 
150.           action_result = moveArmByPoseID(poses_id["hand_pose"]) 
151.           time.sleep(2) 
152.           if (action_result.status) : 
153.             action_result = openGripper() 
154.             if (action_result.status) : 
155.               shift_up_pose = list(poses[poses_id["hand"]]) 
156.               shift_up_pose[2] = shift_up_pose[2] + 0.1 
157.               action_result = moveArmByPose(shift_up_pose) 
158.               time.sleep(2) 
159.               if (action_result.status) : 
160.                 if (test_passed) : 
161.                   state = states["TETS_PASSED"] 
162.                   rospy.loginfo("   TEST PASSED!!") 
163.                 else: 
164.                   state = states["TEST_FAILED"]   



165.                   rospy.loginfo("   TEST FAILED!!")             
166.           else: # action failed retry 
167.             pass 
168.   
169.         elif (state == states["TEST_PASSED"]) : 
170.   
171.           shift_up_pose = list(poses[poses_id["testPassed_pose"]]) 
172.           shift_up_pose[2] = shift_up_pose[2] + 0.1 
173.           action_result = moveArmByPose(shift_up_pose) 
174.           time.sleep(2) 
175.           if (action_result.status) : 
176.             action_result = 

moveArmByPoseID(poses_id["TEST_PASSED"]) 
177.             time.sleep(2) 
178.             if (action_result.status) : 
179.               try:   
180.                 n.shift_pose(AXIS_Y, 0.3) 
181.               except NiryoOneException as e: 
182.                 rospy.loginfo("   Niryo One Exception:") 
183.                 print (e)  
184.               finally: 
185.                 time.sleep(5) 
186.                 state = states["IDLE"]               
187.           else: # action failed retry 
188.               pass 
189.   
190.         elif (state == states["TEST_FAILED"]) : 
191.           shift_up_pose = list(poses[poses_id["testFailed_pose"]]) 
192.           shift_up_pose[2] = shift_up_pose[2] + 0.1 
193.           action_result = moveArmByPose(shift_up_pose) 
194.           time.sleep(2) 
195.           if (action_result.status) : 
196.             action_result = 

moveArmByPoseID(poses_id["TEST_FAILED"]) 
197.             time.sleep(2) 
198.             if (action_result.status) : 
199.               try:   
200.                 n.shift_pose(AXIS_Y, -0.3) 
201.               except NiryoOneException as e: 
202.                 rospy.loginfo("   Niryo One Exception:") 
203.                 print (e)  
204.               finally: 
205.                 time.sleep(5) 
206.                 state = states["IDLE"]               
207.           else: # action failed retry 
208.             pass 
209.   
210.   
211. if __name__ == '__main__': 
212.     try: 
213.         # Initializes a rospy node so that the SimpleActionClient 

can publish and subscribe over ROS. 
214.         rospy.init_node('niryo_one_app_test) 



215.         # Initializes BTLE connection and thread 
216.         dut = DUT('lamp', BLE_MAC_ADDR) 
217.         # Initializes Action Client and tool 
218.         setupNiryo() 
219.         print ("TEST READY") 
220.         dutTest() 
221.   
222.     except rospy.ROSInterruptException: 
223.         print("program interrupted before completion", 

file=sys.stderr) 

1.   

  

B-VII. The “tester_commander.py” script: 

1.  #!/usr/bin/env python 
2.   
3. from __future__ import print_function 
4. import rospy, sys 
5. #from sys import exit as sysExit 
6. from tester_config import * 
7. import time 
8.   
9. # Lib 
10. import moveit_commander 
11. import actionlib 
12.   
13. # Action  
14. from niryo_one_msgs.msg import RobotMoveAction 
15. from niryo_one_msgs.msg import RobotMoveActionGoal 
16. from niryo_one_msgs.msg import RobotMoveActionResult 
17. from niryo_one_msgs.msg import RobotMoveCommand 
18. from niryo_one_msgs.msg import ToolCommand 
19.   
20. # Messages 
21. from geometry_msgs.msg import Point 
22. from niryo_one_msgs.msg import RPY 
23. from niryo_one_msgs.msg import TrajectoryPlan  
24.   
25. # Services 
26. from niryo_one_msgs.srv import SetInt 
27.   
28.   
29. from niryo_one_commander.move_group_arm import MoveGroupArm 
30. from copy import deepcopy 
31.   
32. # for shift_pose function 
33. from niryo_one_python_api.niryo_one_api import * 



34.   
35. AXIS_X    = 0 
36. AXIS_Y    = 1 
37. AXIS_Z    = 2 
38. ROT_ROLL  = 3 
39. ROT_PITCH = 4 
40. ROT_YAW   = 5 
41.   
42. poses_id = { 
43.     "idle" : 0, 
44.     "hand" : 1, 
45.     "firstGest" : 2, 
46.     "secondGest" : 3, 
47.     "thirdGest" : 4, 
48.     "fourthGest" : 5, 
49.     "testPassed" : 6, 
50.     "testFailed" : 7, 
51. } 
52. poses = [idle_pose, hand_pose, EW_start_pose, WE_start_pose, 

SN_start_pose, NS_start_pose, pass_start_pose, fail_start_pose] 
53.   
54. states = { 
55.     "idle" : 0, 
56.     "takeHand" : 1, 
57.     "firstGest" : 2, 
58.     "secondGest" : 3, 
59.     "thirdGest" : 4, 
60.     "fourthGest" : 5, 
61.     "letHand" : 6, 
62.     "testPassed" : 7, 
63.     "testFailed" : 8, 
64.     "wait" : 9, 
65. } 
66.   
67. client = 0 
68. action = RobotMoveAction() 
69.   
70. def setupNiryo(): 
71.   
72.     global client 
73.     # Creates the SimpleActionClient, passing the type of the 

action to the constructor. 
74.     client = 

actionlib.SimpleActionClient('/niryo_one/commander/robot_action', 
RobotMoveAction) 

75.   
76.     # Waits until the action server has started up and started 
77.     # listening for goals. 
78.     connection_success = False 
79.     while (connection_success == False): 
80.       connection_success = 

client.wait_for_server(rospy.Duration(3)) 
81.       if (connection_success): 



82.         rospy.loginfo("  Robot Connection established") 
83.       else: 
84.         rospy.logwarn("  Error connecting to Robot. Trying 

again") 
85.        
86.     # Setting the gripper 
87.     rospy.loginfo("Setting the gripper 1") 
88.     rospy.wait_for_service('/niryo_one/change_tool/') 
89.     try: 
90.       changeToolSrv = 

rospy.ServiceProxy('/niryo_one/change_tool/', SetInt) 
91.       resp = changeToolSrv(toolID) 
92.       rospy.loginfo("  Success: " + str(resp)) 
93.     except rospy.ServiceException, e: 
94.       print ("Service call failed: "+str(e)) 
95.       rospy.logwarn("  Could not set the tool type. Trying again 

in one second") 
96.    
97.   
98. def moveArmByPose(pose): 
99.   
100.     global client, action 
101.     action_goal = RobotMoveActionGoal() 
102.     cmd = RobotMoveCommand() 
103.     p = Point() 
104.     rot = RPY() 
105.     p.x = pose[0] 
106.     p.y = pose[1] 
107.     p.z = pose[2] 
108.     rot.roll = pose[3] 
109.     rot.pitch = pose[4] 
110.     rot.yaw = pose[5] 
111.     cmd.cmd_type = 2      
112.     cmd.position = p 
113.     cmd.rpy = rot 
114.     rospy.loginfo("  Sending Move to pose [ %3f, %3f, %3f, %3f, 

%3f, %3f] command ========================", p.x, p.y, p.z, 
rot.roll, rot.pitch, rot.yaw ) 

115.     # Creates a goal to send to the action server. 
116.     action_goal.goal.cmd = cmd 
117.     client.send_goal(action_goal.goal) 
118.     # Waits for the server to finish performing the action. 
119.     success = client.wait_for_result(rospy.Duration(30)) 
120.     if (success) : 
121.       rospy.loginfo("  Robot Moved, SUCCESS!") 
122.     else : 
123.       rospy.logwarn("  Robot Not Moved, UNSECCESS!") 
124.     # Return the result of executing the action 
125.     return client.get_result() 
126.   
127. def moveArmByPoseID(id): 
128.   
129.     global client, action, poses 



130.     action_goal = RobotMoveActionGoal() 
131.     cmd = RobotMoveCommand() 
132.     p = Point() 
133.     rot = RPY() 
134.     p.x = poses[id][0] 
135.     p.y = poses[id][1] 
136.     p.z = poses[id][2] 
137.     rot.roll = poses[id][3] 
138.     rot.pitch = poses[id][4] 
139.     rot.yaw = poses[id][5] 
140.     cmd.cmd_type = 2 
141.     cmd.position = p 
142.     cmd.rpy = rot 
143.     rospy.loginfo("  Sending command poses_id: %d 

========================", id ) 
144.     # Creates a goal to send to the action server. 
145.     action_goal.goal.cmd = cmd 
146.     client.send_goal(action_goal.goal) 
147.     # Waits for the server to finish performing the action. 
148.     success = client.wait_for_result(rospy.Duration(30)) 
149.     if (success) : 
150.       rospy.loginfo("  Robot Moved, SUCCESS!") 
151.     else : 
152.       rospy.logwarn("  Robot Not Moved, UNSECCESS!") 
153.     # Return the result of executing the action 
154.     return client.get_result() 
155.   
156.    
157. def moveArmByTrajectory(traj): 
158.   
159.     global client, action 
160.     action_goal = RobotMoveActionGoal() 
161.     cmd = RobotMoveCommand() 
162.     cmd.cmd_type = 7 
163.     cmd.Trajectory = traj 
164.     #rospy.loginfo("  Sending Move to trajectory [ %3f, %3f, %3f, 

%3f, %3f, %3f] command ========================", p.x, p.y, p.z, 
rot.roll, rot.pitch, rot.yaw ) 

165.     # Creates a goal to send to the action server. 
166.     action_goal.goal.cmd = cmd 
167.     client.send_goal(action_goal.goal) 
168.     # Waits for the server to finish performing the action. 
169.     success = client.wait_for_result(rospy.Duration(30)) 
170.     if (success) : 
171.       rospy.loginfo("  Robot Moved, SUCCESS!") 
172.     else : 
173.       rospy.logwarn("  Robot Not Moved, UNSECCESS!") 
174.     # Return the result of executing the action 
175.     return client.get_result() 
176.            
177. def openGripper(): 
178.   
179.     global client, action 



180.     action_goal = RobotMoveActionGoal() 
181.     cmd = RobotMoveCommand() 
182.     tcmd = ToolCommand() 
183.     tcmd.tool_id = 11 
184.     tcmd.cmd_type = 1 
185.     tcmd.gripper_open_speed = 300 
186.     cmd.cmd_type = 6 
187.     cmd.tool_cmd = tcmd   
188.     rospy.loginfo("   Sending open gripper command 

========================")  
189.     # Creates a goal to send to the action server. 
190.     action_goal.goal.cmd = cmd 
191.     client.send_goal(action_goal.goal) 
192.     # Waits for the server to finish performing the action. 
193.     success = client.wait_for_result(rospy.Duration(30)) 
194.     if (success) : 
195.       rospy.loginfo("  Gripper Opened, SUCCESS!") 
196.     else : 
197.       rospy.logwarn("  Gripper Not Opened, UNSECCESS!") 
198.     # Return the result of executing the action 
199.     return client.get_result()  
200.              
201. def closeGripper(): 
202.   
203.     global client, action 
204.     action_goal = RobotMoveActionGoal() 
205.     cmd = RobotMoveCommand() 
206.     tcmd = ToolCommand() 
207.     tcmd.tool_id = 11 
208.     tcmd.cmd_type = 2 
209.     tcmd.gripper_close_speed = 300 
210.     cmd.cmd_type = 6 
211.     cmd.tool_cmd = tcmd   
212.     rospy.loginfo("   Sending close gripper command 

========================")  
213.     # Creates a goal to send to the action server. 
214.     action_goal.goal.cmd = cmd 
215.     client.send_goal(action_goal.goal) 
216.     # Waits for the server to finish performing the action. 
217.     success = client.wait_for_result(rospy.Duration(30)) 
218.     if (success) : 
219.       rospy.loginfo("  Gripper Closed, SUCCESS!") 
220.     else : 
221.       rospy.logwarn("  Gripper Not Closed, UNSECCESS!") 
222.     # Return the result of executing the action 
223.     return client.get_result()   

  



B-VIII. The “tester_config.py” script: 

1. #!/usr/bin/env python 
2.   
3. # Messages 
4. from geometry_msgs.msg import Point 
5. from niryo_one_msgs.msg import RPY 
6.   
7.   
8. toolID = 11   # Gripper 1 
9.   
10. # Artificial Hand pose 
11. x_hand = 0.0 
12. y_hand = 0.253 
13. z_hand = 0.07 
14. roll_hand = 0 
15. pitch_hand = 0 
16. yaw_hand = 1.572 
17.   
18. # Idle position pose 
19. x_idle_pos = 0.193 
20. y_idle_pos = 0.253 
21. z_idle_pos = 0.15 
22. roll_idle_pos  = 0.0 
23. pitch_idle_pos = -0.001 
24. yaw_idle_pos   = 0.001 
25.   
26. # Center position pose 
27. x_center_pos = 0.24 
28. y_center_pos = 0.0 
29. z_center_pos = 0.162 
30. roll_center_pos  = 0.0 
31. pitch_center_pos = 0.0 
32. yaw_center_pos   = 0.0 
33.   
34. # EW start position pose 
35. x_EW_start_pos = 0.24 
36. y_EW_start_pos = 0.125 
37. z_EW_start_pos = 0.13 
38. roll_EW_start_pos  = -0.2 
39. pitch_EW_start_pos = 0.0 
40. yaw_EW_start_pos   = 0.001 
41.   
42. # WE start position pose 
43. x_WE_start_pos = 0.24 
44. y_WE_start_pos = -0.125 
45. z_WE_start_pos = 0.13 
46. roll_WE_start_pos  = 0.199 
47. pitch_WE_start_pos = 0.003 
48. yaw_WE_start_pos   = -0.002 
49.   



50. # NS start position pose 
51. x_NS_start_pos = 0.143 
52. y_NS_start_pos = 0.0 
53. z_NS_start_pos = 0.13 
54. roll_NS_start_pos  = 0.001 
55. pitch_NS_start_pos = 0 
56. yaw_NS_start_pos   = -0.001 
57.   
58. # SN start position pose 
59. x_SN_start_pos = 0.373 
60. y_SN_start_pos = 0.0 
61. z_SN_start_pos = 0.13 
62. roll_SN_start_pos  = 0.001 
63. pitch_SN_start_pos = 0 
64. yaw_SN_start_pos   = 0.002 
65.   
66. # Fail start position pose 
67. x_fail_start_pos = 0.24 
68. y_fail_start_pos = 0.172 
69. z_fail_start_pos = 0.035 
70. roll_fail_start_pos  = 0.0 
71. pitch_fail_start_pos = 0.121 
72. yaw_fail_start_pos   = -1.57 
73.   
74. # Pass start position pose 
75. x_pass_start_pos = 0.24 
76. y_pass_start_pos = -0.172 
77. z_pass_start_pos = 0.035 
78. roll_pass_start_pos  = -0.001 
79. pitch_pass_start_pos = 0.121 
80. yaw_pass_start_pos   = 1.57 
81.   
82. ################################################################# 
83.   
84. # Poses definition [ x, y, z, r, p, y ] 
85. hand_pose =  [x_hand, y_hand, z_hand, roll_hand, pitch_hand, 

yaw_hand] 
86. idle_pose =  [x_idle_pos, y_idle_pos, z_idle_pos, roll_idle_pos, 

pitch_idle_pos, yaw_idle_pos] 
87. center_pose =  [x_center_pos, y_center_pos, z_center_pos, 

roll_center_pos, pitch_center_pos, yaw_center_pos] 
88. EW_start_pose =  [x_EW_start_pos, y_EW_start_pos, z_EW_start_pos, 

roll_EW_start_pos, pitch_EW_start_pos, yaw_EW_start_pos] 
89. WE_start_pose =  [x_WE_start_pos, y_WE_start_pos, z_WE_start_pos, 

roll_WE_start_pos, pitch_WE_start_pos, yaw_WE_start_pos] 
90. NS_start_pose =  [x_NS_start_pos, y_NS_start_pos, z_NS_start_pos, 

roll_NS_start_pos, pitch_NS_start_pos, yaw_NS_start_pos] 
91. SN_start_pose =  [x_SN_start_pos, y_SN_start_pos, z_SN_start_pos, 

roll_SN_start_pos, pitch_SN_start_pos, yaw_SN_start_pos] 
92. pass_start_pose =  [x_pass_start_pos, y_pass_start_pos, 

z_pass_start_pos, roll_pass_start_pos, pitch_pass_start_pos, 
yaw_pass_start_pos] 



93. fail_start_pose =  [x_fail_start_pos, y_fail_start_pos, 
z_fail_start_pos, roll_fail_start_pos, pitch_fail_start_pos, 
yaw_fail_start_pos] 


