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1. INTRODUCTION 

Embedded systems are heavily used in any aspect of automotive applications. 

Nowadays, vehicles integrate more complex functionalities, that’s why the demand 

for Electronic Control Units (ECU), able to perform safety-relevant tasks, is 

increased. Some of these functions are defined as safety-critical because, in case of 

faults, could lead to anomalous vehicle reactions with risk for passengers and 

pedestrians safety. This pushes the automotive industry to invest in new 

verification, and validation methodologies act to improve the quality of the 

assessment and, at the same time, to decrease the time-to-market. 

The development process of electronics and electrical (E/E) components is related 

to the automotive functional safety standard ISO 26262:2018. This standard gives 

information to estimate, through the Hazard Analysis and Risk Assessment 

(HARA), the critical system level. Moreover, it provides a guideline for all the 

phases of the item life, above all for the hardware/software integration validation, 

since, usually, the software is in charge to mitigate the effects of some possible 

hardware failures.  

Today the industrial companies must design their E/E components to be integrated 

into the vehicle, according to this standard, and they cannot overlook it. It describes 

the way that they shall approach all the phases of the design of E/E units for 

automotive usage. 
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This thesis proposes a simulation-based technique to support the designers to 

perform the Failure Mode, Effect, and Diagnostic Analysis (FMEDA), in order to 

assess the capability of the hardware design, and so. to achieve the ISO 26262 

reliability requirements. 

It proposes to simulate the hardware reaction, injecting the faults; then, these have 

been extended to the vehicle-level through a vehicle dynamics simulator. In this 

way, it is possible to make a failure effect classification, considering the effects on 

the dynamics and driveability of the vehicle. It can be particularly useful in cases 

where the behaviour of the item is strongly coupled with the one of the whole 

vehicle. 

In particular, the case study is a power electronics module embedded in an electric 

vehicle powertrain. It considers a rear traction car with two independent electric 

motors, one per each wheel. The presence of this automotive architecture on the 

rear allows steering the vehicle using a virtual differential gear that has a strong 

safety impact on the driveability of the car. 

The approach results able to get useful output for the functional safety engineers’ 

job. 
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2. AUTOMOTIVE STANDARD ISO 26262 

Since 2011 the ISO 26262 [1] standard provides how to shall design, validate and 

test the item in such a way that it is functional safety. It was updated in 2018 to be 

applied to all road vehicles except for mopeds and aftermarket parts for vehicles 

designed to be operated by drivers with disabilities. 

The standard is structured into different parts. Each one of them regulates a specific 

phase of the lifecycle of items that have to be deployed inside a road vehicle. 

 

Figure 1: Overview of ISO 26262 standard. 

In general, the standard is divided into eleven parts (Fig. 1), as follows: 

1. Vocabulary; 

2. Management of Functional Safety; 
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3. Concept phase; 

4. Product Development: System Level; 

5. Product Development: Hardware Level; 

6. Product Development: Software Level; 

7. Production and Operation; 

8. Supporting Processes; 

9. ASIL-oriented and Safety-oriented Analyses; 

10. Guidelines on ISO 26262; 

11. Guidelines on application of ISO 26262 to semiconductors. 

Starting from the “Vocabulary” that defines all terms will be used in the standard, 

there is the first phase: “Management of functional safety”. It describes how to 

choose conventions, tools, and workflow to be adopted at the company level for all 

design, production, and decommissioning activities. After that, several phases take 

care of understanding the specific purposes of the item that is going to design. They 

are arranged, according to the V-cycle, like a “Concept Phase”. At this stage, it is 

possible to understand which is the ASIL levels of the various safety goals related 

to the vehicle function provided by the item. Once the level of criticality of the 

system is known, it proceeds to “Product development level” for the hardware and 

the software. In these phases, the procedures define guidelines about: 

• how to address the definition of the specification of components both HW 

and SW; 

•  which are the interface between them; 

•  how it has to proceed with the design of HW and SW components; 
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•  how to validate each part; 

•  how to integrate them together; 

•  how to test them together and so on.  

When the design is completed and validated there is “Production and operation”, 

here the validation activity is finished so the item can be manufactured and shipped 

to the customer. 

2.1. Vocabulary 

In order to better understand the following paragraphs, it is convenient to define 

some keywords: 

▪ Item: system or array of systems or a function to which ISO 26262 is 

applied; 

▪ Harm: physical injury or damage to the health of people inside and around 

the vehicle [2]; 

▪ Severity: a measure of the extent of harm to an individual; how critical the 

system is. It is classified into four categories (Figure 2): 

1. S0: No injuries; 

2. S1: Light and moderate injuries; 

3. S2: Severe and life-threatening injuries (survival probable); 

4. S3: Life-threatening injuries (survival uncertain), fatal injuries. 
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Figure 2: Examples of severity classification [4]. 

▪ Failure: termination of the ability of an item or an element to perform a 

function as required; 

▪ Fault: physical damage for the hardware part or programming errors (bugs) 

appearing during the software execution; 

▪ Risk: a combination of the probability of occurrence of harm and the 

severity of that harm [3]; 
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▪ Controllability: it is the capability of the driver to avoid the injury or the 

damage through a timely reaction in a hazard situation. It is arranged into 

four classes: 

1. C0: Controllable in general; 

2. C1: Simply controllable; 

3. C2: Normally manageable; 

4. C3: Difficult to control or uncontrollable. 

In Table 1, the four classes are better classified in terms of driving factors 

and scenarios: 

Table 1: Examples of controllability classification. 

Class C0 C1 C2 C3 

Description 
Controllable in 

general 
Simply 

controllable  
Normally 

controllable 

Difficult to 
control or 

uncontrollable 

Driving Factors & 
Scenarios 

Controllable in 
general 

99% or more of 
all drivers or 
other traffic 
participants 

are usually able 
to avoid harm 

90% or more of 
all drivers or 
other traffic 

participants are 
usually able to 

avoid harm 

Less than 90% of 
all drivers or 
other traffic 

participants are 
usually able, or 
barely able to 

avoid harm 

Situations that 
are considered 
distracting 

Maintain the 
intended driving 

path 
      

Unexpected 
radio volume 
increase 

Maintain the 
intended driving 

path 
      

Warning 
message - gas 
low 

Maintain the 
intended driving 

path 
      

Unavailability of 
a driver assisting 
system 

Maintain the 
intended driving 

path 
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▪ Exposure: it is a measure of the probability of being in an operational 

situation that can be hazardous if coincident with the failure mode under 

analysis. It is divided into five groups: 

1. E0: Incredible; 

2. E1: Very low probability; 

3. E2: Low probability; 

4. E3: Medium chance; 

5. E4: High probability. 

Classification in terms of duration (percentage of average operating time), 

road layout and the road surface is shown in figure 3: 

 

Figure 3: Examples of exposure classification [5]. 
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▪ Automotive Safety Integrity Level (ASIL): it is a label attached to the design 

in order to specify the necessary requirements to apply to the item, for 

avoiding an unreasonable residual risk. All the ASIL levels are reported in 

the following paragraphs; 

▪ Hazard: a potential source of harm; 

▪ Hazard Analysis and Risk Assessment (HARA): method to identify and 

categorize hazardous events of the item and to specify safety goals and 

ASILs related to the prevention or mitigation of these hazards in order to 

avoid unreasonable risk; 

▪ Safety: the absence of unreasonable risk; 

▪ Safety Goal: essential safety requirement as a result of the hazard analysis 

and risk assessment. 

2.2. Concept phase 

The concept phase process (Fig. 4) starts from the definition of the item that is going 

to design, through a series of steps leads to the functional safety concept. This part 

specifies which are additional functionalities to add to the item in order to guarantee 

the safety of the vehicle function implemented by the item. 
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Figure 4: Process steps in the ISO 26262 - Part 3 [6]. 

In the “Item definition”, it has to describe what vehicle functions the item is in 

charge of. It has to be specified, which is the functionality that the item exposes, 

understanding which are the electrical/electronic elements that concur in delivery 

of this functionality, such as sensor, network and so on. It doesn’t care about 

mechanical parts and E/E components that are outside the item. Moreover, it has to 

understand which are the functionalities provided/required to/from other items, 

elements or the environment. 

In the “Initiation of the safety lifecycle” block, it has to define the safety lifecycle 

activities making the distinction between the development of new item and a 

modification to an existing one. 

In the “Hazard analysis and risk assessment” stage, it has to identify and categorize 

hazards that could result from malfunctions of the item. In this part, it can 

understand what happens if an item component got broken, so that the specific 
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functionality that is depending on that component cannot be delivered and, 

depending on when the failure happens, it decides if there is a risk for the user or 

not. This part is not based on the mathematical model so there is not a coded or 

standard procedure to address it, there are few steps that are suggested, but they 

require many experts and brainstorming in order to produce usable results. They 

are: 

1. “Situational analysis” describes operational situations and operating modes 

in which the item could be used and where a malfunction can show up as a 

hazardous event. For example, driving at low speed, driving at high speed 

and so on; 

2. “Hazard identification” means that it has to identify which could be 

misbehaviour that the item is exposing as a result of a fault. There are 

appropriate techniques to do that; one kind entirely qualitative is the 

“Failure Mode Effect Analysis” (FMEA). Systematically, for each 

component of the item, it has to try to guess which are the failure modes that 

could affect that component and, based on that, which are the effects of that 

failure mode on the item and the functionality that the item provides; 

3. “Hazard classification” for each operational situation, it has to consider all 

the possible hazards, and it has to classify each combination of them in 

terms of severity, exposure and controllability. The hazard analysis is quite 

tricky because the outcome and the weights that are assigned to the different 

parameters depend on what is happening on the specific functionality the 

item has to provide. So, there is not a golden rule when it has to approach 

on this analysis, and it always has to apply the methods analysing carefully 
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the functionalities, the operational situations, and hazard that are taken in 

that particular item; 

4. “ASIL determination” is assigned based on the combination of severity, 

exposure, and controllability. It is obtained through figure 5: 

 

Figure 5: ASIL Determination based on Severity/Exposure/Controllability levels [7]. 

Where “QM” is an acronym of quality management, it is not an ASIL level 

where to spend time and money to mitigate the fault, and it can be neglected 

because nothing wrong happens out of that. Then, the least important level 

is “A” instead the most important one is “D”. In this last level, the risk is 

very high, so it must intervene in implementing, inside the item, some 

functional safety functionalities that mitigate this risk. 

Depending on the functionality, it has to take into consideration very 

carefully, the different aspects of severity, exposure, and controllability. 

When it did the work with one item, that work is not valid for any possible 

applications of that item, because it can have different functionalities that 
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are added to the item from time to time. Although it did the work once, it 

doesn’t mean that it will stay the same at any time, so it has to evaluate 

carefully where the item is used. 

5. “Safety goal determination” is the objective that it wants to reach in order 

to mitigate the risk associated with the obtained ASIL.  

If the hazard in a specific operational situation is safety-relevant from A to 

D, then it has to put at work measures to mitigate the risk. This is quite tricky 

because the objective, the goal to be reached, is not necessarily an additional 

functionality that it is put on the top of the functionalities needed for 

delivering the mission for which the item is intended. The objective could 

be something that relates to the development flow. In this way, the 

mitigation works applying specific techniques when doing the design and 

validation to be sure that the risk is mitigated through the design process and 

not through techniques that are inserted inside the item. 

6. “Functional safety concept” is additional functionality that the item has to 

expose to guarantee the safety of the people involved. It has to specify, if 

appropriate, which are the functionalities to put at work for reaching the 

defined safety goal. This is the case when a higher ASIL level is found so 

that, besides the methodology to apply during the development flow, it must 

put also thinks at work inside the item. There are specific architectures or 

design techniques to adopt for the item, in particular, the redundancy. 
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2.3. Product Development: Hardware Level 

ISO 26262 design process starts with hazard analysis and risk assessment (HARA) 

activity at the item level. As the output of this phase, designers obtain the item 

Automotive Safety Integrity Level (ASIL). According to the obtained ASIL, the 

standard prescribes to assess the sources of possible failures, which are the effects 

of these failures on the behaviour and safety of the item. In particular, Failure Mode 

and Effect Analysis (FMEA) [8] is a technique to be used for accomplishing such 

a task, and it is strongly recommended for ASIL C and D items. 

Another technique for the hardware integration verification is the Failure Mode, 

Effect, and Diagnostic Analysis (FMEDA). FMEA is performed during the concept 

phase and has a higher level of abstraction. Its purpose is to find how the item can 

fail. It is possible to perform this analysis since the Concept phase. The FMEDA, 

instead, is performed at a lower level of abstraction (SPICE level and model of the 

embedded software), in order to take into determining the random hardware failure 

metrics. The item has to achieve metrics suitable for the strictest ASIL level of its 

safety goals. 

Moreover, the implemented Diagnostics and mitigation strategies have to be 

assessed. This phase, like the FMECA, has to be performed during the hardware 

design phase (part 5). Of course, if the embedded software is in charge to detect or 

mitigate an HW failure, it has to be developed in compliance with the ISO 26262 

part 6 for the item ASIL level. 
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The common methodology analyses the failure modes of each component that is 

part of an item to rank all the possible failures of all components. The FMEA results 

and target system reliability are included in the FMEDA assessment results [8], as 

the following figure (Fig. 6). 

 

Figure 6: Failure mode analysis Venn diagram [9]. 

At the end of the design verification phase, engineers have to provide the item 

robustness. It has to be summarized by three metrics: “Random hardware fault” 

𝑟ℎ𝑓, “Single point fault metric” 𝑠𝑝𝑓𝑚, and “Latent fault metric” 𝑙𝑓𝑚. 

It has to define the following rates for a given fault 𝑓 [10] to compute these three 

metrics: 
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• Failure rate, 𝜆𝑓: is the occurrence rate of the fault 𝑓 expressed as Failure-

In-Time (FIT), that is the number of predicted failures in a billion hours; 

• Safe Detected (SD) rate, 𝜆𝑆𝐷
𝑓 : the rate of faults that are detected through the 

functional safety mechanism embedded in the item; 

• Safe Undetected (SU) rate, 𝜆𝑆𝑈
𝑓 : the rate of faults that are not detected 

through any of the functional safety mechanism embedded in the item, and 

they do not provoke any harm to the item user; 

• Dangerous Detected (DD) rate, 𝜆𝐷𝐷
𝑓 : the rate of faults that are detected 

through the functional safety mechanisms embedded in the item; 

• Dangerous Undetected (DU) rate, 𝜆𝐷𝑈
𝑓 : the rate of faults that are not detected 

through any of the functional safety mechanisms embedded in the item, and 

they provoke harms to the item user. 

They are classified in descending order of severity as dangerous undetected (DU), 

safe undetected (SU), dangerous detected (DD) and safe detected (SD). The SU 

cases are more stringent than DD ones because the system cannot predict possible 

misbehaviour if another safe undetected fault happens. Instead, for the dangerous 

detected cases, after a fault detection, the driver or another electronic control unit 

(ECU) can mitigate the failure limiting potential risks. 

One technique for evaluating the sensitivity of systems to failures is the fault 

injection. It consists in inoculate misbehaviours that emulate the failures and 

observing how the system react to them when it is stimulated by various workloads 

[11][12]. Historically, this technique was applied to hardware for the dependability 

validation [11], failure prediction [13], and validation of functional verification 



17 
 

methodologies. With the increase in the complexity of the software, it is 

increasingly difficult to test and validate it, which is why nowadays the fault 

injection is also applied to the software. 

Once all possible faults are injected for every component, there is the failure 

classification in terms of safe/unsafe. 

The calculation method used to prove the robustness of the hardware design shall 

provide for each failure mode affecting each component of the design, some 

estimation for 𝜆𝑓, 𝜆𝑆𝐷
𝑓 , 𝜆𝑆𝑈

𝑓 , 𝜆𝐷𝐷
𝑓 , 𝜆𝐷𝑈

𝑓 ; from these rates, it is possible to define the 

following quantities. 

The item failure rate can be expressed according to the equation below, assuming 

all faults independent: 

𝜆 =∑𝜆𝑓

𝑓

 

The single point fault rate is defined as: 

𝑠𝑝𝑓 =∑𝜆𝐷𝑈
𝑓

𝑓

 

As it can see, the single point faults cause a violation of the safety-goal, and there 

is no safety mechanism implemented in the item to detect these faults. 

The residual fault rate is defined as: 

𝑟𝑓 =∑𝜆𝐷𝐷
𝑓

𝑓
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They are faults that are not covered by an implemented safety mechanism. 

The latent fault rate is defined as: 

𝑙𝑓 =∑𝜆𝑆𝑈
𝑓

𝑓

 

They are faults that do not violate the safety goal but do it if another fault occurs. 

Given the above rates, it is possible to estimate the three metrics; in particular, the 

random hardware fault metric is defined as: 

𝑟ℎ𝑓 = 𝑠𝑝𝑓 + 𝑟𝑓 

The single point fault metric is defined as: 

𝑠𝑝𝑓𝑚 = 1 −
𝑠𝑝𝑓

𝜆
 

It represents the effectiveness of the safety architecture to protect from individual 

faults. 

The latent fault metric is defined as: 

𝑙𝑓𝑚 = 1 −
𝑙𝑓

𝜆
 

Once the metrics are computed, the hardware design verification is completed when 

they are fulfilled with the requirements imposed by ISO 26262 for the given ASIL. 

Below there is a small figure (Fig. 7) that reports an overview of requirements, in 

term of metrics, for different ASIL levels. 
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Figure 7: Overview of requirements for different ASIL-Levels [14]. 

2.4. Product development: Software Level 

Software faults are programming errors that appear during the execution of the 

software. The main problem is that possible bugs within the code can be sources of 

damage for both the driver and the people around the vehicle. For example, 

unintended acceleration of the vehicle can be a source of casualties or not brake the 

car when it is required to do so. 

For these reasons, the ISO 26262 standard also provides a guideline for software 

development. Even this phase is quite tricky because the software is responsible for 

mitigating the risk. In particular, a block diagram is provided with the main steps 

to follow; everything is regulated by the V-cycle (Fig. 8)  
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Figure 8: Software Lifecycle V-model [15]. 

It always will have a top-down approach where it starts from the design phase 

branch and then move on to the test and verification branch. Initially, the system 

design is developed, as seen previously, the entire system is divided into sub-

components, and each of them will be designed and implemented. 

Once the design is completed, it moves on the ascending branch that consists of 

doing verification and testing. The individual sub-components are first tested alone. 

If the result is positive, the different pieces of code are put together and check that 

each sub-component communicates appropriately with the other. Then, the whole 

system is tested. This is in according to the V-shape development flow where the 

descending branch consists of doing the design, and the ascending one consists of 

doing verification/testing. 
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2.5. Safety life cycle 

The safety life cycle (Fig 9) is a flow chart that describes the flow operations 

summarizing what has been said previously. 

 

Figure 9: Safety life cycle [16]. 

At the beginning, there is a “concept phase” that starts from the definition of the 

item that is going to design, through a series of steps leads to the functional safety 

concept. Here, it specifies which are the additional functionalities to add to the item 

to guarantee that is functionality safe. 

Once defined this concept, it passes on the “product development” phases. These 

are the phases when the hardware and software are designed that will implement 
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the functionalities for the item shall provide, including functional safety. The ISO 

26262 standard establishes that the development of the intended functionalities for 

the item and the development of the functional safety-related functionality is done 

concurrently. First of all, it defines what the item shall do, and it partitions the 

functionality in hardware and software, then for each component HW and SW it 

performs a fared refining of the design so that using a “divide et impera” approach, 

in this way functionality is partitioned in sub-functionalities. 

They are designed and implemented individually, according to the “V model”, and 

then they are merged in order to implement the final hardware and software. After 

that, everything is ready to integrate them to obtain the final artefact that is the 

output of the “product development” phase. Once the design has been completed, 

there are the “production” and “operation, service and decommissioning” steps.  

One aspect that it is relevant throughout all the standard is the fact that it is a clear 

model of operations. It is based on a few steps that it has always applied: 

1. Declare which are the safety goals and the relative ASILs for the vehicle 

function that you want to implement by the item, this can be done through 

documents that have different scope; 

2. Implement what it has been declared; basically, it has to put at work all the 

techniques that are suggested within the standard to obtaining the object 

declared; 

3. After the implementation of a particular phase of the standard, it has to 

check what obtained is consistent with the one declared. 
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If repeat systematically this structured approach, it is able to find problems hazard 

as possible. For this reason, it is essential that the item implementation must be done 

after all the validation phases. 
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3. PROPOSED METHODOLOGY 

Failure Mode, Effect, and Diagnostic Analysis (FMEDA) for hardware designs 

verification and validation methodology is strongly recommended by ISO 26262 

for ASIL C and ASIL D items. 

In the industrial practice, the FMEDA analysis starts from the bill of material 

(BOM) and the circuit schematic of the hardware to be verified. After analyzing the 

circuit, it is required to compute the component failure rate, using data from 

hardware part failure rate catalogues, like IEC 61709 [17], and reliability 

calculation models, like FIDES [18]. The ISO 26262 classifies the possible effects 

of each possible failure mode of each one of the components installed on the board 

into four different classes. These are safe detected (SD), safe undetected (SU), 

dangerous detected (DD) and dangerous undetected (DU). 

Usually, designers inspect the item hardware schematics manually, and through an 

inductive analysis based mainly on their knowledge and expertise, they perform, 

for each fault, the classification. 

This approach suffers from two shortcomings. With the growing complexity of 

embedded systems employed in safety-critical applications, manual inspection of 

the item schematic can become ineffective in identifying all the possible 

misbehaviours. This method is efficient to analyze those systems which have 

interactions with the physical environment, where the cause-effect relationship is 

well defined. While, in those systems where this interaction becomes complicated, 

a perfect knowledge of the item cannot be sufficient to classify the effects of the 
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failure mode. Moreover, the manual approach cannot take in detailed consideration 

the contribution of embedded software. Often, the hardware to be verified includes 

microprocessors or microcontrollers, and the manual fault effect analysis does not 

take into detailed consideration on how the software contributes to the fault 

propagation. 

3.1. Simulation-based approach 

To overcome the lack of objectivity and repeatability of manual hardware design 

inspection, it would like to propose another approach to perform an FMEDA 

analysis automatically [10]. It is based on a simulation-based criterion as a CAD 

tool used to validate and develop an item until it is able to reach all the required 

safety objectives. 

The automatic tool needs: 

• A model of the device under test (DUT), implemented, from the circuit 

netlist, as a Simulink model using the SimScape toolbox to simulate the 

electrical component. This model should follow precisely the topology for 

the integrated circuit pins and the actual printed circuit board; 

• A fault catalogue for the components present in the DUT bill of materials 

(BOM), with the relative FIT values computed during the Reliability, 

Availability, Maintainability, and Safety (RAMS) analysis; 
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• A software tool able to manage, in an automatic manner, the simulations, 

inject the failure and classify the failure effects on the safety goals of the 

item (as dangerous or safe). 

The tool is fully implemented resorting to the MATLAB/Simulink environment. 

The design of item hardware has to be modelled through the MathWorks Simulink 

SimScape toolbox, while the software is implemented as a MATLAB function. 

Even the fault list generator, the saboteur, and the classifier modules have to 

implement for the same environment as MATLAB script. In this way, it is possible 

to obtain a single executable model that capture the relevant characteristics of both 

hardware and software. 

Some aiding tools, to improve the validation and verification of the hardware, have 

been proposed in the past [19][10][20]. However, they are intended only for the 

classification of the failure effects at item(actuator)-level. For many automotive 

functions, finding item-level classification criteria can be thorny, due to the strong 

coupling between the item local failure effects and vehicle behaviour. 

This thesis would like to investigate the effect of a fault-affected item on the 

vehicle behaviour. In this way, it is possible to assess also the expected effects on 

the whole car propagating the behaviour of these faults to a vehicle-level simulator. 

Of course, to identify and classify them, this method needs to define classification 

rules at the vehicle-level. 

In this work, it is adopted an actuator-based perspective where it is only considered 

the failures that propagate to the actuators. Under this hypothesis, all the failure 
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effects can be propagated from the inside of the item to the actuator without losing 

generality [21]. 

A specific platform is required to perform the FMEDA by the simulation-based 

approach. It is composed of [22]: 

• the embedded software of the item; 

• the physical models of the item (at printed board circuit level) considering 

the fault-free and the fault-affected conditions, needed to perform the 

SPICE-level simulations; 

• the physical model of the car and the surrounding environment, provided 

by the vehicle-level simulator; 

• the physical model of the sensors and the controlled actuators; 

• scenarios in which test the failure effects; 

• vehicle behaviour classification rules. 

The following accessory components are also required: 

• fault list generator module; 

• saboteur; 

• circuit (item-level) simulator; 

• vehicle-level simulator; 

• failure effect classifier. 
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The whole system architecture is represented in the following figure (Fig. 10): 

 

Figure 10: Tool software architecture [20] 

The environment works as follows. It starts from the bill of materials (BOM) 

looking the hardware schematics, and a fault catalogue (for example [18], with the 

probabilities, computes as described in [17]). By combining these two documents, 

it is possible to generate a faults list for each component. The saboteur receives this 

failure modes list as input which will use it to inject the faults during the simulation. 

The circuit simulator takes a Simulink model of the device under test. It can be 

instrumented with dummy elements to allow to inject particular failure modes (for 

example, block parameters with a constant value changing during the simulation 

or switch to simulate open or short circuits).  

Moreover, the circuit simulator needs also a workload list representing the 

conditions where to assess the failure mode effects. These conditions can be shared 

with the vehicle-level simulator to create the same scenario. During the simulation, 

the circuit simulator interacts with the vehicle simulator, taking the input signals 

from the latter and generating the outputs for the actuators, closing the control loop. 

At this point, the simulation results can be stored and passed to a classifier. It 
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compares the system outputs in fault-free (golden condition) with the ones obtained 

after the failure inoculation (fault-affected condition) according to the vehicle 

behaviour classification rules provided. Instead, the detection/undetected 

classification is obtained directly from the simulation implemented, inside the item, 

as the failure detection system. 

As a single failure mode only is considered during the FMEDA, the saboteur injects 

one by one the faults into affected component, since the successful detection is part 

of the analysis. 

In this work, the silicon-level faults that could affect the microcontrollers (MCUs) 

are not considered, since the modern automotive-grade MCUs integrate fault 

detection and mitigation mechanisms [23][24]. So, they have to be regarded as 

Safety Element out of Context (SEooC) [1].  

3.2. The case study 

To better describe the simulation-based approach, it has been considered an 

electrically powered vehicle (EV). In particular, a rear-wheel-drive electric vehicle 

with two independent motors, one for each wheel. This automotive architecture 

allows better control on the car since the torque on the wheels can be varied to take 

into account the radius of curvature that the driver intends to travel, in a differential-

drive like fashion. Therefore, the implementation of a virtual differential should be 

considered. It also allows recovering weight, since the presence of the mechanical 
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differential gear and the two-axle shafts that connect the latter to the wheels are not 

required. Moreover, each motor has to supply half of the required power. 

As a counterpart of all these impressive characteristics, such a system must 

guarantee a high level of reliability, because a failure on one motor can cause a 

disparity torque on the rear axle, making it very difficult for the driver to keep 

control of the car on the travelled trajectory. Fortunately, the embedded software is 

in charge to detect motor failures, and it must be able to take action to minimize the 

torque disparity. 

3.3. Simulation system set-up 

 

Figure 11: Structure of the rear dual-motor axle of the car [22]. 

The benchmark application (see Fig. 11) is composed of: 

• the embedded software of the dual-inverter system; 

Powertrain Electronic
Control Unit

Inverter RInverter L

Virtual
Differential

Gear
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• the physical model of the inverters, with their fault model to be injected; 

• the physical model of the motors; 

• the physical model of the car and the surrounding environment, provided by 

the vehicle-level simulator; 

• scenarios in which test the failure effects; 

• vehicle behaviour classification rules. 

As said in the 3.1 section, the following components are also required: 

• fault list generator module implemented as a MathWorksTM MATLABTM 

script; 

• saboteur implemented as a MATLABTM script; 

• circuit simulator, resorting to MathWorksTM SimulinkTM with SimScapeTM 

toolbox, to perform the SPICE-level simulation of the design; 

• an off-the-shelf vehicle-level simulator (CarSim); 

• failure effect classifier implemented as a MATLABTM script. 

3.4. Failure mode analysis 

For the sake of this work, it has been considered only the faults that could affect the 

analogue components installed on the PCBs of the Powertrain Electronic Control 

Unit and of the two inverters. Therefore, it is identified 68 failure modes for the 

considered item: 

• 30 regarding the gas pedal position acquisition chain circuitry; 
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• 2 regarding the power supply; 

• 36 are about the two motors actuation chains. 

For each motor, there are 18 possible failure modes: 

• 6 regarding the triple redundancy encoders installed to monitor the wheel 

angular speed; 

• 12 are about power electronics (inverter). 

An inverter is composed of 6 Insulated Gate Bipolar Transistors (IGBTs), and each 

one of them can remain stuck at closed (short-circuit) or open condition. In case of 

a short circuit of an IGBT, there is no possible software mitigation solution because 

the fuses will melt down disconnecting the phase from the battery. For this reason, 

it has always been considered only open circuit failure. Due to the symmetries of 

that system, the faults are injected only on an IGBT of the left motor.  

3.5. Detection and mitigation algorithms 

The detection and mitigation algorithms are part of the benchmark application to 

develop.  
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Figure 12: Failure detection algorithm. 

The detection algorithm (Fig. 12) is based on a comparison between the current on 

one of the three phases with the minimum, maximum values of the other two. If the 

disparity is higher than 80%, a fault into the considered leg of the inverter is 

detected. If the difference is on the minimum values, the failed IGBT is the one 

connected to the negative pole of the battery; otherwise, it is the one connected to 

the positive pole. The MATLAB code is reported below: 

{function [SLFailed, SHFailed] = 

SwitchFailureFromCurrentsDetection(min,max) 

    SLFailed=0; 

    SHFailed=0; 

    if(-min<max &&-min< 0.8*max) 

       SHFailed=1; 

    end 

    if(max<-min && max< 0.8*(-min)) 

       SLFailed=1; 

    end 

end 
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In this way, it is possible to understand if a fault has occurred inside the inverter. 

Downstream of the block diagram shown in figure 12, there is another stage (Fig. 

13) such that it recognizes which is the damaged switch and sets the Detected signal 

to true. 

 

Figure 13: Failure detection algorithm part that recognizes which is the damaged switch. 

The mitigation strategy is based on the assumption that the motor driven by the 

inverter with the broken IGBT is not more able to provide the full torque expected 

to produce. Therefore, since only one of the two motors is affected by this failure, 

and the asymmetrical torque gives the most critical situation from drivability point 

of view, so it could be possible to intervene on the fault-free motor. 
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A semi-formal representation of the algorithm is shown in figure 14: 

 

Figure 14: Semi-formal (MathWorks SimulinkTM) model of the mitigation algorithm. 

UpperLimit and LowerLimit signals are equal to the speed of the fault-affected 

motor, Detection comes from the detection algorithm shown in figure 14, and 

NormalReference is the speed request from the driver during the simulation. Once 

a failure occurs, the Detection input signal switch on “true” and the driver’s speed 

request is saturated up to the UpperLimit in case of forwarding direction or 

LowerLimit in case of reverse direction. In order to remain in a safe state, the OR 

element and the delay are required, even if the detection algorithm stops to detect a 

failure.  
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4. EXPERIMENTAL RESULTS 

Before starting to analyze the results of the simulations, it is better to provide some 

more information on the vehicle-level simulator and item model. CarSim 9.0, 

produced by the company Mechanical Simulation Corporation, has been chosen 

because it includes datasets containing many vehicles and test procedures that can 

be used in the simulations. It offers a graphical user interface (GUI) to be able to 

configure scenarios, vehicle characteristics and environmental conditions. In 

addition, it provides Application Program Interfaces (APIs) as well in order to 

connect itself with third-party software. Thus, it is possible to extract the signals of 

interest, compute the item behaviour, and to close the loop: at this point, it is 

possible to apply the actuators command to the simulator.  

4.1. CarSim environment  

CarSim delivers the most efficient, accurate, and detailed methods for simulating 

vehicles performance [25]. The core of this vehicle-level simulator is composed of 

a set of differential equations to simulate the vehicle dynamics and an optimized 

solver. A graphical user interface is shown in figure 15. 
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Figure 15: The CarSim Run Control screen. 

The main part of the screen is divided into three sections: 

1. the left column, titled Simulated Test Specifications, regards to the vehicle 

data and the test procedure; 

2. the middle column, titled Run Control, takes into consideration controls for 

running the CarSim math models; 

3. the right column, titled Analyze Results (Post Processing), is used to 

visualize the simulation results and to provide access to the video. 

A small picture of the vehicle chosen for the simulation is shown below (Fig. 15). 

4.1.1.  Simulated Test Specifications  

The simulated test specifications are done by Vehicle configuration and Procedure. 

The former allows to create a new vehicle or change an already existing vehicle. 
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Figure 16: Vehicle Assembly screen 

As shown in figure 16, it consents to modify: 

• the vehicle 3D shape like length, height, width, sprung mass for the 

suspension and so on; 

• the powertrain like engine model, gearbox, transmission and differential; 

• the brake and steering system; 

• front and rear suspensions like independent, solid-axle and twist-beam for 

the rear; 

• tire specifications. 

Moreover, in figure 16 is shown the type of vehicle chosen for the simulations; it is 

a class E sedan. 

The Procedure (Fig. 17) is used to set the scenario and some driver controls for the 

simulation, for example: 
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• brake control, setting a braking pressure or a braking pedal force, like a 

constant, ramp and so on; 

• shifting control; 

• steering mode, setting the steering torque or a specific function, like 

following a particular path, keep a constant position. In the latter cases, the 

simulator implements the right steering angle to be applied; 

• 3D road, to change the geometry (like the elevation) and friction of the 

reference path; 

• start and stop conditions, to stop running the simulation at a specific time 

or station or to set only the initial time; 

• plot definitions, choosing the plot to show during and the end of the 

simulation. 

 

Figure 17: Procedure control screen. 
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4.1.2.  Run control 

This section is related to set the controls used for running CarSim math models. In 

particular, the simulator offers several environments in which implement the model 

(like Simulink, LabVIEW, and so on), as shown in Fig. 18.  

 

Figure 18: Solvers list screen. 

To perform FMEDA analysis with the vehicle-level simulation proposed in 

paragraph 3.1, the physical models of the two inverters and motors are implemented 

in Simulink. Therefore, this is another excellent characteristic to use CarSim 

simulator. 
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4.1.3.  Analyze Results (Post Processing) 

The third column, of the CarSim Run Control screen, is dedicated to the 

visualization tool. When the simulation is finished, there are three ways to analyze 

the results:  

1. Plot, setting the graphics to see in the Plot Definitions from Procedure 

menu, as said in paragraph 4.1.1; 

2. Video, as a 3D reconstruction of the environment, the car and some arrows 

that represent some forces acting between ground and car; 

3. Video + Plot, both of them. 

The best way is the third one, because it allows, at the same time, to view the video 

of the simulation and the values of the graphs. In this way, it is easier to associate 

graph trends with the operating situation of the vehicle, as shown in Fig. 19. 

 

Figure 19: CarSim VS Visualizer screen. 
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4.1.4.  Vehicle characteristics 

As mentioned in paragraph 4.1.1, many predefined simulation sets (Datasets) are 

defined in CarSim. For each dataset, it is possible to change the type of vehicle, but 

for the majority of cases, they are all cars with a thermal engine. The vehicle 

examined for this thesis work is an electric vehicle. The powertrain of an electric 

vehicle is completely different from that of a thermal engine, as explained in 

paragraph 3.2. Therefore, an already existing dataset has to be adapted to our needs; 

in particular, a kinematic chain has chosen such that each mechanical component is 

supplied by an external source (Fig. 20). 

 

Figure 20: Powertrain Components screen. 

As shown in figure 20, the only input is represented by the torque applied to the 

wheels. Vice versa, in terms of output, any signal can be selected. 
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In our specific case, the angular speed of the wheels has been taken into account, in 

order to provide them to the item model. Then, other signals used to implement the 

right control law will be listed. 

 

Figure 21: Simulink model of the original “All External Powertrain Components” dataset. 

The Simulink model of the original dataset (Fig. 21) shows how CarSim works. All 

the characteristics related to the road, the vehicle, the simulation parameters and the 

solver used for the vehicle type that is simulated, are implemented in the CarSim S-

Function2 block.  

4.2. Item model 

Model is a simplified or partial representation of reality, defined to accomplish a 

task or to reach an agreement. Generally, we would like to have models that 

perfectly reflects the physical processes. But its complexity also depends on the 

limitations of the hardware systems used for the simulation. Therefore, a reasonable 

approach could be to set the level of complexity according to what is really required. 
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For this thesis, we decide to consider a trapezoidal brushless direct current (BLDC) 

motor type [26]. It is a kind of motor adopted in the most actual electrical vehicle 

powertrains. The alternative solutions (sinusoidal model) are more complicated 

from an electrical and control point of view influencing cost production [27]; even 

if, they present limited torque and speed ripple as the main benefits. 

The block diagram of the item [28], as shown in Fig. 22, is composed of: 

• microprocessor (µP), to generate PWM signals needed; 

• power electronics stage required to drive the motor. It is composed of the 

six insulated-gate bipolar transistors (IGBTs); 

• the motor itself; 

• 3x hall-effect sensors to determine the rotor position. 

 

Figure 22: Block diagram of the item [28]. 
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4.2.1.  Embedded software model 

The Simulink model of the microprocessor (Fig. 23) is mainly composed of a 

proportional-integral-derivative controller (PID) and a pulse-width modulation 

(PWM). The PID receives the speed error given by the difference between SpeedRef 

and MeasuredSpeed. Then, through an integral derivative proportional action, it 

calculates the command D to be passed to the PWM. 

 

Figure 23: Embedded software Simulink model. 

The compensator formula implemented by the PID is: 

𝑃 + 𝐼 ∙
1

𝑠
+ 𝐷 ∙

𝑁

1 + 𝑁 ∙
1
𝑠

 

Where: 

• P is the proportional gain; 

• I is the integral gain; 
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• D is the derivative gain; 

• N is the filter coefficient. 

The PWM Logic1 block receives the D command as an input and, based on the 

position of the rotor (pos), provides the command signal G to drive the inverter's 

MOSFETs. Switch1 is used to set the PWM operating mode via the ClosedLoop-

OpenLoop signal. When its logical value is low, the open-loop mode is chosen, the 

feedback loop opens, and the G command is calculated based on the DutyRequest 

coming from outside. Otherwise, the operative mode is described above, our case. 

4.2.2.  Motor model 

In this case, as said before, we decide to consider a trapezoidal brushless direct 

current (BLDC) motor type. In addition to the block diagram, it is better to provide 

in details the schematics of the inverter (power electronics block) and the motor 

itself (Fig 24). 

 

Figure 24: Power electronics and motor schematics [28]. 
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An already motor on the market has chosen, and its parameters are listed in table 2. 

Table 2: Motor data 

Parameter Unit Value 

Numbers of poles n [pole pairs] 4 

Nominal voltage V V 500 

Terminal resistance Ω 12.5 

Terminal inductance L mH 0.091 

Torque constant 𝑘𝑡 Nm/A (V·s) 1.5 

Friction constant 𝑘𝑓 N · m s 1.138 · 10-8 

Rotor inertia J Kg cm2 5 · 10-3 

 

The not defined symbol reported in table 2 are:  

• 𝑖{𝑎,𝑏,𝑐}: the current in phases a,b,c; 

• 𝑣{𝑎𝑏,𝑏𝑐}: the voltages between the phase a-b and b-c; 

• 𝑒{𝑎𝑏,𝑏𝑐}: the back electromotive force between the phases a-b and b-c; 

• 𝑇𝑒: the electrical torque; 

• 𝑇𝐿: the load torque; 

• 𝜔𝑚: the angular speed of the rotor; 

• 𝜃𝑚: the rotor angular position. 
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The space state equations needed to model the motor are: 

{
�̇� = 𝐴 ∙ 𝑥 + 𝐵 ∙ 𝑢
𝑦 = 𝐶 ∙ 𝑥 + 𝐷 ∙ 𝑢
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By implementing this space state equations in Simulink, we obtain the figure 25: 

 

Figure 25: Motor state-space equations implemented in Simulink. 



49 
 

4.2.3. Power electronics model 

Figure 24 also shows the inverter plot. It is composed of six insulated-gate bipolar 

transistors (IGBTs) powered by a direct voltage, while at the output they supply 

alternating electrical quantities.  

In parallel with the design of the physical system, a proper error model has been 

chosen. A right approach is to reproduce the fault in a real scenario, trying to build 

an appropriate mathematical model. Therefore, apart from the effects, it is not 

always obvious to trace the causes that lead to a possible error condition. 

Furthermore, these conditions should be known from the beginning of the 

modelling, and this is not always true. Hence, a complete and exhaustive failure 

model is difficult to satisfy by covering all possible scenarios. However, for our 

specific application, it is not required; in fact, our goal is to reproduce the fault 

without investigating the boundary conditions that cause the break (such as 

overcurrent condition, failure of the junction). These aspects are well treated in 

other works [29]. We are much more interested in propagating these failures from 

the item-level to the vehicle-level and evaluating the effects. Therefore, the 

complexity of the fault model is significantly reduced and can be easily 

implemented by introducing a simple manual switching inside the inverter block. 

Which is why to perform fault injection, we used the MOSFET block provided by 

SimScape Toolbox, that is the built-in SPICE-level simulator of Mathworks 

SimulinkTM. In this way, the fault can be injected at any time during the simulation. 
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As described in [20], these switches are configured by the saboteur, reproducing a 

fault case where the single IGBT can no longer be driven, remaining permanently 

in an open or closed (short-circuit) configuration. Since in case of a short circuit, 

the fuses will melt down disconnecting the phase from the battery, as described in 

paragraph 3.4, so we inject only an open circuit failure. 

 

Figure 26: The complete model of the power electronics block implemented in Simulink. 

Figure 26 shows that there are five "PMC_port" and seven "inport". The former are 

dedicated ports for the power connection of the subsystems, while the latter always 

provide a connection to a subsystem or model but with low power as signals. 

The PMC_ports are: 

• 1 and 5, respectively "+" and "-", are dedicated for the DC power supply 

voltage coming from the battery pack. In our case, we have chosen to omit 

them and to supply the inverter with a continuous and stable voltage; 

• 2, 3, 4, respectively A, B, C, are the outputs from which to draw a three-

phase voltage to drive the motor. 
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Instead, as regards the “inport”: 

• 1, named G, is the output signal to the PWM, in charge of modulating the 

use of the MOSFETs based on the position error of the rotor at the input of 

the microprocessor; 

• 6, in magenta, are the signals managed by the saboteur to inject the faults 

inside the inverter. 

The G signal leaving the PWM passes through a BusSelector. This block accepts a 

bus as input which can be created from a Bus Creator, Bus Selector or a block that 

defines its output using a bus object. Six product blocks are present at the output, 

in order to implement the control logic for the individual MOSFETs even in the 

presence of the fault. Then the six signals are connected to the six gates. 

4.3. Simulation results 

The key point of the proposed approach concerns how to improve the assessment 

of the effects of failures on vehicle driveability. Because, as mentioned in paragraph 

3.1, we inject the faults into the inverter and evaluate how failure modes propagate 

at the vehicle-level. 

In the analysed system, the disparity torque on the rear axle can cause an unexpected 

turn of the vehicle and, in the worst case, even a rollover. For this reason, the built-

in software must be able to modulate the torque of the two motors when cornering 

and limit the torque of the fault motor in case of failure. 
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The level of risk associated with the "vehicle function" (ASIL level) is determined, 

taking into account the ability of an average driver (defined as controllability by the 

ISO 26262) to mitigate the "failure effect". For this reason, we have represented the 

average driver as a PID controller, taking into account the reaction time of a human, 

with a target behaviour represented by a predetermined trajectory that has to be 

followed by the vehicle. This has been possible, thanks to the five driver sensor 

points provided by CarSim (Fig. 27). 

 

Figure 27: Preview points for external driver control screen. 

As shown in fig. 27, the centre of the roadway is the Road reference line while the 

x-axis represents the trajectory that the car is travelling. We have set five preview 

points on which to calculate the steering angle. For each point, the error area 

(A_DRV_i), between the intermediate x-axis and road reference line up to the 

preview point location, and the lateral position error (L_DRV_i), lateral distance 

from road reference line are provided to point i. Point 1, the one at 0-meter distance 
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in front of sprung mass origin, will be used to compare the results of the simulations, 

as it provides the lateral position error of the car. 

For the scenarios to be simulated, the most significant operating modes of a vehicle 

have chosen. They are: 

1. acceleration from 0 km/h to 130 km/h; 

2. driving straight at 130 km/h; 

3. triple curving at 100 km/h; 

4. regenerative braking on a straight road from 130 km/h to 0 km/h; 

5. regenerative braking on triple curving from 100 km/h to 0 km/h. 

For each scenario, three simulations have been performed: 

• fault-free condition, the golden solution; 

• fault-affect condition; 

• fault-affect condition with mitigation algorithm enabled. 

The criteria used to compare the simulations are the lateral position error and the 

yaw angle. The latter is useful to understand the dynamic behaviour of the car when 

the driver is able to maintain the predefined trajectory (zero lateral error), as an 

asymmetric torque on the rear axle favours a yawing moment. 
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4.3.1.  Acceleration from 0 km/h to 130 km/h 

The simplified block diagram of the entire system is shown in figure 28. 

 

Figure 28: Complete system block diagram of the first scenario. 

Now we will make some considerations that will apply to all simulations. To better 

understand the scheme (Fig. 28), we preferred to divide it into three subsystems: 

the interface concerning the S-Function and the two inverter and motor models 

considered individually. 
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Figure 29: CarSim subsystem of the first scenario. 

CarSim, as shown in figure 29, receives as input: 

• LEFT_TORQUE, the torque applied to the left wheel; 

• RIGHT_TORQUE, the torque applied to the right wheel; 

• Steering wheel angle, coming from the Simple Driver Model. The latter, 

based on the Lateral error and Error Area of the preview points, previous 

paragraph, estimates the correction to be made for the steering angle to 

return in trajectory. 

The desired output selected within the CarSim program are six: 

• the angular speed of the rear wheels in “rpm”, multiplied by the conversion 

factor 2𝜋

60
, gives the angular velocities expressed in “rad/s” 

(WHEEL_LEFT_ANGULAR_SPEED and 

WHEEL_RIGHT_ANGULAR_SPEED); 

• LongSpeed, the actual vehicle longitudinal speed. It is plotted with the one 

requested as a reference in order to display the time trend; 
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• YAW_ANGLE and LATERAL_ERROR, respectively, the yaw angle and the 

lateral position error, used to compare the simulations; 

• Error Area, the air error used for the calculation of the steering angle, 

together with the lateral one. 

Let us move on to the control and actuation systems of the left part of the rear axle 

(Fig. 30). 

 

Figure 30: Left control and actuation subsystem of the first scenario. 

Being an acceleration from 0 to 130 km/h, the speed reference to be provided to the 

controller is a ramp, while the saturation block is required to limit this reference to 

130 km/h. It must be compared with the rotor speed, expressed as angular speed, 

which is why there are two gains at the output of the saturation block. The first 

conversion factor divides by 3.6 to transform km/h into m/s, while the second one 

represents the radius of the wheel to convert a linear speed into an angular one. 

Precisely, being a 225/60 R18 tire, the radius calculation is done in the following 

way: 
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𝑅𝑡𝑖𝑟𝑒 = 0,225 ∙ 0,60 +
18′′

2
= 0,225 ∙ 0,60 + 0,4572 = 0.3636𝑚 

The LoopMode will always be set at '1' due to a feedback control loop with a speed 

reference, the, as described in paragraph 4.2.1. The 

WHEEL_LEFT_ANGULAR_SPEED is the angular speed provided by CarSim, 

while the output LEFT_TORQUE will be the torque supplied to the left wheel. In 

magenta are the constant blocks used by the saboteur to inject the faults inside the 

inverter. 

 

Figure 31:Right control and actuation subsystem of the first scenario. 

The considerations made for the control and implementation system of the left part 

also apply to the right side (Fig 31) in fault-free and fault-affect conditions, while 

it is different in the fault-affect with mitigation condition. Its system block diagram 

is reported in the following figure (Fig 32). 
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Figure 32: Complete system block diagram of the first scenario in "Fault + Mitigation" simulation. 

To better understand the differences, we only consider the control subsystems, since 

the interface with CarSim does not present any modifications. 

 

Figure 33: Left control and actuation subsystem of the first scenario in "Fault+Mitigation" simulation. 
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In this simulation, the detection action by the item must be taken into account. In 

particular, the LEFT_MOTOR_FAILED (reference figure 33) signal is the one who 

drives the mitigation action. The DETECTION data, implemented as the “To 

Workspace" block, is used to save the detection time in the Matlab workspace. 

 

Figure 34: Right control and actuation subsystem of the first scenario in "Fault+Mitigation" simulation. 

As described in paragraph 3.5, the mitigation strategy adopted is to limit the speed 

reference of the fault-free motor up to the rotation speed of the fault-affected one. 

As shown in figure 34, the LEFT_ROTOR_SPEED is connected to the 

"UpperLimit" of the "Mitigation" block, while the ramp reference is connected to 

the "NormalReference"; all driven by the LEFT_MOTOR_FAILED signal 

connected to the "Detection" port. 

The first simulation must be done in fault-free condition (golden solution), which 

will be the reference for the other two conditions. The car took 16 s to reach the 

target speed (Fig. 35), but the performances are out of the scope of the current work. 
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Figure 35: Longitudinal speed characteristic. 

The graphs containing the results of the first simulation are shown in figure 36 and 

37. 

 

Figure 36: "Golden" lateral error in the first scenario. 

The lateral error is in the order of millimetres, due to the small tolerance of the PID 

used to simulate the driver. 
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Figure 37: "Golden" yaw angle in the first scenario. 

The graph is consistent with the lateral error one, as the small yaw angle values are 

due to slight corrections to the steering angle. 

Once the "golden solution" is obtained, the saboteur injects the fault inside the 

inverter of the left wheel, leaving the system to evolve on its own with no mitigation 

action. The only factor capable of keeping the vehicle in trajectory is the driver's 

ability. 

 

Figure 38: "Fault" lateral error in the first scenario. 
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Fig 38 shows the lateral error. As expected, the values are more significant than the 

Golden, reaching a peak of almost 15 cm. While in figure 39, a larger yaw angle 

values are present due to the torque disparity and the correction made by the PID to 

stay in the trajectory. Its peak at high-speed is 0.68 deg. 

 

Figure 39: "Fault" yaw angle in the first scenario. 

The last simulation made in this scenario is the fault condition with mitigation 

algorithm enabled. The results are shown below. 

 

Figure 40: "Fault + Mitigation" lateral error in the first scenario. 
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From fig. 40, it is clear that the mitigation action limited the lateral error concerning 

the fault condition. Not considering the initial peak of 1 cm, the error at high-speed 

is limited in an interval of 5 cm. The same goes for the yaw angle (Fig. 41), which 

reaches a peak of 0.27 deg at high-speed and then it is limited to lower values. 

 

Figure 41: "Fault + Mitigation" yaw angle in the first scenario. 

To better understand the results obtained from the simulations, we prefer to add 

another plot containing the three lateral errors. 

 

Figure 42: Lateral error results in the first scenario. 
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The graph shows (Fig. 42) that the mitigation algorithm is quite useful to limit the 

failure effects. After the fault is detected, at about 2 s, the benchmark mitigation 

algorithm can limit the lateral error, especially at high speed when it is more 

difficult for a human pilot to intervene. 

 

Figure 43: Yaw angle results in the first scenario. 

Analyzing the results in terms of yaw angle (Fig. 43), it is clear that the mitigation 

algorithm is able to reduce and limit the error from a range of -0.5 to 0.6 deg to a 

range of -0.2 to 0.2 deg. 

In conclusion, we can say that the mitigation algorithm, in this case, is capable of 

limiting both the lateral error and the yaw angle, even if the algorithm is 

straightforward. 
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4.3.2.  Driving straight at 130 km/h 

The second scenario considered is to maintain a cruising speed of 130 km/h on a 

straight road. The block diagram of the entire system is shown in the figure below. 

 

Figure 44: Complete system block diagram of the second scenario. 

The interface with CarSim has no changes compared to the previous scenario, while 

it is different for the control and actuation models. 

 

Figure 45: Left control and actuation subsystem of the second scenario. 
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Being a simulation of the vehicle with cruising speed at 130 km/h, the SpeedRef 

provided to the controller is a constant. For this reason, the value block “130” is 

present in fig. 45 and 46. 

 

Figure 46: Right control and actuation subsystem of the second scenario. 

The considerations, made on the speed reference, are the same for the simulation of 

the fault-affect with mitigation condition. The subdivision into subsystems is 

omitted, and only the complete block diagram of the system is shown in Fig. 47. 
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Figure 47: Complete system block diagram of the second scenario in "Fault+Mitigation" simulation. 

Also, in this scenario, the first simulation is in fault-free condition, which will 

provide the results to compare the “fault” and “fault + mitigation” simulations. 

 

Figure 48: "Golden" lateral error in the second scenario. 

As shown in the fig. 48, the error is in the order of 10-13, so it is only noise comes 

from the sensors or approximation errors of the solver. 
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Figure 49: "Golden" yaw angle in the second scenario. 

Also, for figure 49, the yaw angle is of the order of 10-11; any discussion on the 

result is superfluous. In fault-free condition, the vehicle is able to maintain a straight 

path. 

The second simulation is performed after the injection of the fault by the saboteur 

into switch 1 of the left inverter. The results are shown below. 

 

Figure 50: "Fault" lateral error in the second scenario. 
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Excluding the two initial peaks (Fig. 50), also present in the mitigation condition, 

the lateral error shows an oscillatory trend, due to the corrections on the steering 

angle by the PID. The next peak is almost 10 centimetres. 

 

Figure 51: "Fault" yaw angle in the second scenario. 

Analyzing the error in terms of yaw angle (fig. 51), we can see that the peaks 

correspond to those of the lateral error. The unbalanced torque on the rear axle leads 

to instability. Its maximum peak is 0.72 degrees. 

In the third simulation, the mitigation algorithm takes about 12 seconds for 

detection the fault; therefore, the data will be equal to the fault-affect up to the 

detection time. 
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Figure 52: "Fault + Mitigation" lateral error in the second scenario. 

As shown in figure 52, we can see that the mitigation action consistently limits the 

lateral error. It passes to a peak of almost 12 cm, in absolute value, to a peak of 6.7 

cm, thus halving its value. 

 

Figure 53: "Fault + Mitigation" yaw angle in the second scenario. 

Figure 53 shows the simulation results in terms of yaw angle. The trend is in line 

with what we expected, there is a peak of 0.29 degrees after the detection time, after 

which its value decreases more and more. 
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In the following, two figures are containing the graphs of the three simulation 

results. 

 

Figure 54: Lateral error results in the second scenario. 

As shown in figure 54, the mitigation algorithm is able to halve the lateral error. 

Furthermore, the oscillations are limited even if the vehicle is not perfectly aligned 

with the centre of the trajectory, although it falls within the roadway margins. 

 

Figure 55: Yaw angle results in the second scenario. 

Analyzing the error in terms of yaw angle (Fig. 55), we can see that the mitigation 

algorithm is able to reduce the maximum value from 0.72 to 0.29 degrees. In 
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addition, the amplitude of the oscillations is reduced from the range [-0.38 , 0.72] 

deg to [-0.24 , 0.29] deg. 

In conclusion, also for the second scenario, the mitigation algorithm has proven 

useful in reducing errors, even if the detection time is 12 seconds. This may be 

connected to the fact that the initial speed of the vehicle is already 130 km/h; 

therefore, the fault-affect engine is slightly dragged by the inertia of the vehicle. 

Unlike the first scenario where, being an acceleration from 0 to 100 km/h, the 

maximum torque delivered by the engine is at low speed. 

4.3.3.  Triple curving at 100 km/h 

In this simulation, the default path is composed of three curves, one on the right and 

two on the left side (Fig. sotto), covered at 100km/h. Since the road is not a straight 

line, the reference rotor speed of the two motors is different because the vehicle is 

curving, so we have to consider the rotational component through the instantaneous 

centre of zero velocity. 

 

Figure 56: The triple curving track implemented in the simulation environment [22]. 
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“CarSim” provides the inverse of a curvature radius ( 1

𝑅𝐶𝑈𝑅𝑉𝐸
) to overcome the 

problem relates to an infinite radius in a straight line. Let make some consideration 

on the sign: the simulator defines a positive curvature radius for curving on the left 

and the negative one for curving on the right. Since the longitudinal speed of the 

car (𝑉𝑥), has already been extrapolated, the angular speed of the vehicle is 

calculated by applying a mechanical law: 

𝜔𝐶𝐴𝑅 =
𝑉𝑥

𝑅𝐶𝑈𝑅𝑉𝐸
 

Once known the 𝜔𝐶𝐴𝑅, the geometry of the car and the sign of 𝑅𝐶𝑈𝑅𝑉𝐸, we can 

impose the tangential velocity of the wheels to perform any curve. In particular: 

{
𝑉𝐿 = 𝑉𝑥 − 𝜔𝐶𝐴𝑅 ·

𝑤𝑖𝑑𝑡ℎ

2
 

𝑉𝑅 = 𝑉𝑥 + 𝜔𝐶𝐴𝑅 ·
𝑤𝑖𝑑𝑡ℎ

2

 

Where 𝑉𝐿 and 𝑉𝑅 are respectively, the left and right tangential velocity. So, the 

desired reference rotor speeds of the motors are given dividing the tangential 

velocities by the tire radius: 

{
 

 𝜔𝐿 = 
𝑉𝐿

𝑅𝑇𝐼𝑅𝐸
 

𝜔𝑅 = 
𝑉𝑅
𝑅𝑇𝐼𝑅𝐸

 

The block diagram of the entire system used for this scenario is shown in figure 57. 
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Figure 57: Complete system block diagram of the third scenario. 

 To better understand the modifications, it has been preferred to subdivide the entire 

system into subsystems. In particular, the CarSim interface (Fig 58) there are 

InvCurvRadius and LongSpeed that are, respectively, the inverse of a curvature 

radius ( 1

𝑅𝐶𝑈𝑅𝑉𝐸
) and longitudinal speed of the car (𝑉𝑥). 

 

Figure 58: CarSim subsystem of the third scenario. 
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The implementation of the rotational component in Simulink is shown in figure 59. 

 

Figure 59: Rotational component implementation in Simulink. 

RotationalComponent indicates the linear speed of the rotational component to be 

added to the outer wheel and subtracted from the internal one to make the turn. 

 

Figure 60: Left control and actuation subsystem of the third scenario. 

Since the sign of the inverse of the curvature radius is negative for the left turns, the 

RotationalComponent will always be added with the "-" sign inside the summing 

node (Fig. 60). Consequently, for the right turns, it will be with the "+" sign (Fig 

61). 
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Figure 61: Right control and actuation subsystem of the third scenario. 

“Golden” and “Fault” simulations are made following the previous speed profiles. 

Instead for the “Fault with Mitigation” condition, the speed profile of the fault-free 

motor must be adjusted to rotor speed profile of the fault-affect one.  

Supposed that the motor with a fault is the left one and considering the 

instantaneous centre of zero velocity, we can say: 

𝑉𝑅 = 𝑉𝐿 + 𝜔𝐶𝐴𝑅 · 𝑤𝑖𝑑𝑡ℎ ⇒ 𝜔𝑅 = 
𝑉𝑅
𝑅𝑇𝐼𝑅𝐸

 

Obtaining the final relation: 

𝜔𝑅 = 𝜔𝐿 + 𝜔𝐶𝐴𝑅 ∙
𝑤𝑖𝑑𝑡ℎ

𝑅𝑇𝐼𝑅𝐸
 

So, in this case, the reference speed of the right motor rotor must be bounded 

between the saturated value, calculated by the above equation, and the normal one 

computed to perform any curve without fault. Its implementation is shown in figure 

62. 
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Figure 62: Right control and actuation subsystem of the third scenario in "Fault+Mitigation" simulation. 

LEFT_ROTOR_SPEED represents “ωL”, OmegaCar is “ωCAR”, the gain block is 

the car width and the final gain, after the Mitigation block, is the “RTIRE”. 

The block diagram of the entire system used in the simulation with the Fault + 

Mitigation conditions is shown in figure 63. 
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Figure 63: Complete system of the third scenario in "Fault + Mitigation" simulation. 

Once the speed references to be provided to the controller have been perfected, 

simulations are performed. In particular, the first is always the fault-free condition, 

which will give us a reference for comparing the other simulations. The results are 

shown below. 

 

Figure 64: "Golden" lateral error in the third scenario. 
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We are analysing the graph of figure 64; it shows that in curves is more difficult to 

maintain the trajectory correctly. In fact, the PID, used as a driver, simulates a 

human reaction to a fault and a road path. The maximum error, 0.24 meters, 

corresponds to the last curve, having a lower radius of curvature. 

 

Figure 65: "Golden" yaw angle in the third scenario. 

Figure 65 is consistent with what we expected. Being a rear-wheel drive, the yaw 

angle when cornering is different from zero to facilitate the turn. For the following 

conditions, we will analyse the data in terms of lateral error. 

Once the golden solution is stored, the saboteur injects the fault inside the power 

electronics module of the left side, precisely at switch 3. The simulation result is 

shown below. 



80 
 

 

Figure 66: "Fault" lateral error in the third scenario. 

Figure 66 shows the lateral error. The values are comparable to the “golden” result 

for the first two curves. Instead, for the last one, the lateral error is 5 cm higher, 

reaching a maximum value of 0.29 meters. 

The third simulation has carried out by enabling the mitigation algorithm. 

 

Figure 67: "Fault + Mitigation" lateral error in the third scenario. 

Analysing figure 67, we can see a trend comparable to the previous results in the 

first two curves. Instead, for the last corner, the lateral error is reduced by 6 
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centimetres compared to the fault-affect in the absence of the mitigation action. Its 

peak, in absolute terms, is 0.23 m. 

Below are two graphs containing the results of the simulations. The first concerns 

the lateral error, while the second one is the error in terms of the difference in yaw 

angle. The latter is calculated as the difference between the fault-affect and fault-

free results. It was preferred to do so because a deviation is not visible being in 

curves. 

 
Figure 68: Lateral error results in the third scenario. 

 

Figure 69: Yaw angle error calculated as the difference between the fault-affect and fault-free results. 
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As shown in figure 68 and fig. 69, the mitigation strategy adopted improves the 

lateral error and worsens the yaw angle performances. It is an expected result since 

we are bounding the speed of the fault-free wheel to the fault-affected one. In any 

case, the error is low due to the chosen speed-control strategy that adopts a small 

proportional gain in the speed controller.  

4.3.4.  Regenerative braking on a straight road from 

130 km/h to 0 km/h 

The fourth scenario taken into consideration is regenerative braking starting from 

an initial speed of 130 km/h up to a stationary vehicle. The default path is a straight 

road. 

The block diagram of the complete system is shown below. 

 

Figure 70: Complete system block diagram of the fourth scenario. 
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To better understand figure 70, we divide the system into three subsystems, as for 

the previous scenarios. We can note that at the interface regarding Carsim (Fig. 71) 

there is no change, respect to the first scenario, as the physical quantities involved 

are always the same. 

 

Figure 71: CarSim subsystem of the fourth scenario. 

While it will be different for the control and implementation subsystems, their 

figures are shown below. 

 

Figure 72: Left control and actuation subsystem of the fourth scenario. 
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Being a braking simulation from 130 km/h to 0 km/h, the speed reference to be 

provided to the controller is a ramp (Fig. 72), while the saturation block is required 

to limit this reference to 0 km/h. The two gains present at the output of the saturation 

block are used to transform the linear speed into an angular one. The latter will then 

be compared with the angular speed of the rotor to implement the correct control 

law by the controller. 

 

Figure 73: Right control and actuation subsystem of the fourth scenario. 

The considerations made for the control and implementation system of the left part 

also apply to the right side (Fig 73) in fault-free and fault-affect conditions, while 

it is different in the fault-affect with mitigation condition. Its system block diagram 

is shown in the following figure. 
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Figure 74: Complete system of the fourth scenario in "Fault + Mitigation" simulation. 

Analysing figure 74, we notice the presence of the “Mitigation” block, the only 

difference compared to the two previous conditions. For this reason, we omit the 

subdivision into subsystems, as it has been widely described in paragraph 4.3.1. 

The first simulation performed is in fault-free condition, in order to store the 

"Golden" results; in particular, the lateral error graph is shown in the figure below. 

 

Figure 75: "Golden" lateral error in the fourth scenario. 
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From figure 75, we can see that the machine takes 10 s to stop. The lateral error is 

in the order of 10-4, due to the small tolerance of the PID used to simulate the driver. 

 
Figure 76: "Golden" yaw angle in the fourth scenario. 

Also, for figure 76, the yaw angle is of the order of 10-3; any discussion on the result 

is superfluous. In fault-free condition, the vehicle is able to maintain a straight path. 

The second simulation is performed after the injection of the fault by the saboteur 

into switch 1 of the left inverter. The results are shown below. 

 

Figure 77: "Fault" lateral error in the fourth scenario. 
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Excluding the initial peak of 8 cm (Fig. 77), which will be common to the "Fault + 

Mitigation" condition, the lateral error is quite limited. Its maximum value is 25 

millimetres. 

 

Figure 78: "Fault" yaw angle in the fourth scenario. 

Analyzing the error in terms of yaw angle (Fig. 78), we can see that the peaks 

correspond to those of the lateral error due to the corrections on the steering angle 

by the PID. Its maximum value is 1.12 degrees. 

The third and final simulation carried out in this scenario is that relating to the fault 

condition with mitigation algorithm enabled. 
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Figure 79: "Fault + Mitigation" lateral error in the fourth scenario. 

Since the detection time is 2 seconds, we exclude the initial peak of 8 cm (Fig. 79), 

as mentioned previously for the "Fault" solution. After that, the maximum lateral 

error value is 22 millimetres. 

 

Figure 80: "Fault + Mitigation" yaw angle in the fourth scenario. 

Even for figure 80, the trend is consistent with the vehicle dynamics analyzed. In 

particular, we can see an initial peak, immediately after the detection time, of 1.06 

degrees, in absolute value. 
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To better understand the results obtained from the simulations, we prefer to add two 

plots containing the three lateral errors and yaw angles. 

 

Figure 81: Lateral error results in the fourth scenario. 

As shown in figure 81, initially the errors of the "Fault" and "Fault + Mitigation" 

are very close, even after a few seconds from the detection time (2 seconds). After 

that, the mitigation algorithm is able to limit the failure effects slightly in terms of 

lateral error. 

 

Figure 82: Yaw angle results in the fourth scenario. 
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Even for the yaw angle (Fig. 82), we can appreciate a slight improvement due to 

the mitigation action, reducing the maximum value, in absolute value, from 1.12 to 

1.06 degrees. 

In conclusion to this other scenario, we can demonstrate that the mitigation 

algorithm has proved useful in reducing, although in a limited way, both the lateral 

and the yaw angle error of the car. Even if the results in “Fault” and “Fault + 

Mitigation” are very close.  

4.3.5.  Regenerative braking on triple curving from 

100 km/h to 0 km/h 

The last significative operational condition chosen for a vehicle is the regenerative 

braking starting from an initial speed of 100 km/h up to the stationary vehicle. The 

default path (Fig. 83) is the same as the third scenario, consisting of three curves, 

one on the right and two on the left. 

 

Figure 83: The triple curving track implemented in the simulation environment [22]. 
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The block diagram (Fig. 84) used for the simulation of this scenario is similar to 

that used in the "triple curving at 100 km/h case" with some small differences. 

 

Figure 84: Complete system block diagram of the fifth scenario. 

The speed reference to be provided to the controller is a ramp with a negative slope, 

being braking condition. The saturation block is necessary to avoid reversing once 

the vehicle stops. Since the road is not a straight line, the reference rotor speed of 

the two motors is different because the car is curving, so we apply the treatment 

made in paragraph 4.3.3. In particular, RotationalComponent indicates the linear 

speed of the rotational component to be added to the outer wheel and subtracted 

from the internal one to make the turn. 
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Figure 85: Left control and actuation subsystem of the fifth scenario. 

Since CarSim provides a positive inverse of the curvature radius ( 1

𝑅𝐶𝑈𝑅𝑉𝐸
) for the 

left turn, the RotationalComponent is subtracted in the adder node (Fig. 85). Instead 

for the right curves, it provides a negative value; for this reason, the 

RotationalComponent is added (Fig.86). 

 

Figure 86: Right control and actuation subsystem of the fifth scenario. 
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“Golden” and “Fault” simulations are made following the previous speed profiles. 

Instead for the “Fault with Mitigation” condition, the speed profile of the fault-free 

motor must be adjusted to rotor speed profile of the fault-affect one. The block 

diagram of the entire system used to perform the simulation is shown in figure 87. 

 

Figure 87: Complete system of the fifth scenario in "Fault + Mitigation" simulation. 

Once the adjustments to the speed reference to be supplied to the controller are 

completed, the fault-free condition simulation is performed. The analysis of the 

results is shown below. 
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Figure 88: "Golden" lateral error in the fifth scenario. 

The graph in figure 88 shows that during a curve is more difficult to maintain a 

predetermined trajectory. Furthermore, cornering braking leads to inertia forces to 

destabilize the vehicle. The maximum error, 50 cm, is detected in the presence of 

the first corner, the one with the highest speed. 

 

Figure 89: "Golden" yaw angle in the fifth scenario. 

Figure 89 is consistent with what we expected. Being a rear-wheel drive, the yaw 

angle when cornering is different from zero to facilitate the turn. For the following 
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conditions, we will analyze the data in terms of lateral error, as a small variation of 

some degree cannot be appreciated on this graph. 

Once the golden solution is stored, the saboteur injects the fault inside the inverter 

module of the left side, precisely at switch 1. The simulation result is shown below. 

 

Figure 90: "Fault" lateral error in the fifth scenario. 

Analysing figure 90, we can see that the trend of the lateral error is very similar to 

the "Golden solution". Therefore, the maximum peak is detected in the first curve, 

and its value is 0.44 meters. 

The third and final simulation is performed by enabling the mitigation and detection 

algorithms. 
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Figure 91: "Fault + Mitigation" lateral error in the fifth scenario. 

The trend shown in figure 91 is comparable to the results of the previous 

simulations. At high-speed, its maximum peak of 0.505 m is detected, while for the 

last piece of the curve, the lateral error remains slightly constant at 0.18 meters. 

Below are two graphs containing the results of the simulations. The first concerns 

the lateral error, while in the second, the error in terms of the difference in yaw 

angle. The latter is calculated as the difference between the fault-affect and fault-

free results. 

 

Figure 92: Lateral error results in the fifth scenario. 
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From figure 92, we can see that the trends of the three results are very comparable 

to each other; although the worst seems to be the "Fault + Mitigation" that suffers 

in the first and last piece of the curve. In the first, the one at higher speed, the error 

worsens by 5 mm compared to the "Golden" and by 6 cm compared to the "Fault". 

Instead for the last corner, the car stops in a position of 18 cm from the centre of 

the trajectory, in absolute terms, while the "Golden" at 6 cm and the "Fault" at 8 

cm. 

 
Figure 93: Yaw angle error calculated as the difference between the fault-affect and fault-free results. 

Analysing the error in terms of the yaw angle difference (Fig. 93), we can see that 

the "Fault + Mitigation" has a worse trend. Its peak is 1.54 deg, while the "Fault" 

has a peak of 0.28 degrees. However, the results are consistent with the lateral error 

analysed in the previous figure. 

In conclusion to the latter scenario, we can say that the mitigation algorithm does 

not improve the failure effects in terms of lateral error and yaw angle. In any case, 

these errors are inside an acceptable range, therefore in a tradeoff, the adoption of 

the mitigation algorithm remains convenient. 
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5. CONCLUSIONS  

In this thesis work, we simulated faults within a power electronics module, 

evaluating the effects on an electric vehicle. This system has to act as a virtual 

differential gear to ensure car safety. We investigated the effects of two fault class 

on five possible operating conditions. Accordingly, we have found that a disparity 

torque on the rear axle leads to a strong impact on the driveability of the vehicle 

and, in extreme cases, also on overturning. For this reason, it is essential to perform 

a careful hardware/software integration verification that is responsible for providing 

the safety-relevant functions. 

Nowadays, FMEDA analysis is performed manually by designers. Still, to 

overcome the lack of objectivity and repeatability of manual hardware design 

inspection, we propose a simulation-based approach to implement an FMEDA 

analysis automatically. 

The simulation-based approach is widely used in hardware or software 

development. However, it is usually used in the early stages of a project to verify 

whether the system can reach the nominal performance requirement. We propose 

to introduce this approach also during the safety analysis, in order to support these 

difficult phases. 

The purpose of this thesis is not to propose a good set for the detection and 

mitigation algorithm, to be applied to the dual-motor axle, but to propose a 

methodology that can help the safety engineers involved in the FMEDA analysis. 
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For this reason, we decided to show the results of the simulations and not the 

FMEDA table containing the failure modes effects classification. 

Main result achieved is the possibility to analyze the software/vehicle interaction, 

assessing in particular how the embedded software is capable of detecting and 

mitigating hardware failures. Two simple algorithms, one for the detection, the 

other for the mitigation has been developed as proof-of-concept benchmarks.  

From the experimental point of view, we collected the best results at high speed 

when it is more difficult for a human driver to react appropriately. It was especially 

evident in the first scenario, where an acceleration from 0 km/h to 130 km/h was 

simulated. This is the worst situation since the motors are asked to generate 

maximum torque leading to a maximum torque disparity in case of failure of one of 

these. Instead, for regenerative braking, results obtained in fault-free and fault-

affect conditions are very close to each other, because the torque required is low. 

Nevertheless, in the fourth scenario, the mitigation action is useful to reduce, even 

if slightly, both the lateral and the yaw angle error of the car. 

In conclusion, the approach demonstrated itself able to aid the functional safety 

engineers.  
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