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Summary

This Thesis Project has been developed at Clevernet, a company which spe-
cializes in applied research of computer networking, and whose main aim is
to improve the Internet by providing secure data-in-motion. In particular,
this Research Project was focused on avoiding the so called self-induced con-
gestion, which consists of buffering and packet loss which occur in any of in-
termediate routers between two end-points. To pursue that, it was necessary
to act on the Congestion Control algorithm used in TCP. It is an end-to-end
transport layer protocol and it controls and monitors the network flow and
the sending rate through two main mechanisms: Flow Control and Conges-
tion Control. The former is an end-to-end mechanism used to avoid having
a sender send data too fast for the receiver, which has to receive and process
it reliably. The latter aims to provide reliability to the connection between
two hosts, by preventing a node from overwhelming the network. However,
Congestion Control algorithms still represent a limitation in exploitation of
network resources, basing their work only on indications of lost packets as
a signal to slow down. Loss-based Congestion Control is problematic in to-
day’s diverse computer network landscape. [1] suggests a way to mitigate
these issues, which improves end-to-end TCP performance, latency and fair-
ness. The basic idea is to modify the Receive Window (RcWnd) belonging
to the receiver so that any TCP communication is way faster and, possibly,
without delays and packet loss. Estimating available network resources is
also fundamental when adapting the sending rate both at the application
and transport layer and for this reason, it is imperative to estimate a path’s
Available Bandwidth in real-time. In order to do so, a statistical method
based on the inter-packet arrival time analysis of TCP acknowledgements is
proposed. Additionally, the round-trip time is estimated between the sender
and the receiver of the connection.
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Chapter 1

Purpose of the Thesis

This Research Project was focused on mitigating the so called self-induced
congestion. Such phenomenon consists of buffering and packet loss which oc-
cur in any of the intermediate routers along the path between a connection’s
end-points due to the significant amount of traffic emission patterns at the
source. To pursue that, it was necessary to act on the Congestion Control
algorithm, which is one of the most important algorithms in the world of
TCP. This algorithm controls and monitors the network and provides reli-
ability to a TCP connection between two hosts, by preventing a node from
overwhelming the network. This should limit congestion phenomena inside
the network, which can cause packets loss and significant delays. This is done
by dynamically setting the amount of data to send to the receiver, in order
to provide a good service; moreover, this monitoring is done on the end-
points of the network and not inside the network itself. However, Congestion
Control algorithms still represent a limitation in exploitation of network re-
sources, especially those involving a great number of concurrent requests to
an host. They fundamentally base their work only on the indication of lost
packets as a signal to decrease the packet rate. But loss-based Congestion
Control, which is widely used nowadays, is problematic in today’s diverse
networking solutions. For example, in shallow buffers, packet loss happens
before congestion. With today’s high-speed links that use switches with shal-
low buffers, loss-based Congestion Control can result in abysmal throughput
due to the system’s overreaction, decreasing the sending rate by half upon
packet loss. In deep buffers, congestion happens before packet loss. At the
edge of today’s Internet, loss-based congestion control causes the so called
“bufferbloat” problem, by repeatedly filling the deep buffers in many last-
mile links and causing seconds of needless queuing delay [4]. Cubic and BBR
algorithms are widely used nowadays; the former is a loss-based Congestion
Control algorithm for Linux kernel, the latter is a model-based algorithm,
and works better than the former. However the former acts too aggressively,
because it aims to lose packets, the latter is not very precise when there are
many TCP transfers in parallel. Thus, the main purpose of this Thesis is to
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improve TCP performance and, in doing so, reduce self-induced congestion
caused by loss-based Congestion Control algorithms. We wanted to develop
a lossless throttling mechanism, that is, decreasing the rate of all TCP flows
without packet loss. With this goal in mind, we had the idea to develop a
new TCP Congestion Control algorithm, which is still loss-based, but reacts
to packet loss and does not need it to understand that the network is not
working properly. To do that, we need to enforce an upper bound to the
sending rate of the sender, exploiting TCP flow control. This is achieved by
reducing the advertised window of the receiver of in-flight acknowledgement
packets and can be later done by a dynamic controller deployed on the edge
routers of the network, as the edge deployment vantage point gives the router
visibility on all the flows being generated in the Internet access link. This
allows a fair partitioning of the edge router resources in terms of bandwidth.
For this purpose, an accurate estimation of the Available Bandwidth was
needed, and scientific studies led Clevernet to the following formula to com-
pute it:

o AckifAcki_l
IP rate = T

It is equal to the difference between two acknowledged TCP packets (in
terms of Bytes) divided by the difference between the two packets’ acknowl-
edgement timestamps.
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Chapter 2

TCP: a short overview

2.1 What is TCP

The Transmission Control Protocol (TCP) is one of the most important
protocols belonging to the Internet protocol suite, which provides reliability
and error-checked delivery of bytes exchanged between applications running
on hosts connected through an IP network [3].

2.2 Main features

TCP provides several features which make it unique and interesting:

Connection oriented: before sending data over the network, a connection
between a sender and a receiver must be established. It stays alive even
if there are no data to send and it expires when no more necessary. In
this way TCP can create, maintain and close a connection;

Reliable protocol: the delivery of segments to a destination is guaranteed
thanks to the mechanism of acknowledgements, sent from the receiver
to the sender;

Bidirectional service: it allows two applications to send data in both
directions at the same time, so that its service can be considered ’'Full
Duplex’;

Data that have reached the final destination must be in order and sent
at most once;

Flow Control: TCP can control the flow between the sender and the
receiver and the congestion over their connection, thanks to the mecha-
nism of the sliding window. This can improve the performances of the
buffers of the two end-points.
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2.3 TCP segment structure

20-60 bytes

Figure 2.1. TCP segment header (source: GeeksforGeeks)

The TCP Protocol Data Unit (PDU) is called segment and consists of an
header and a payload. The segment header contains ten mandatory fields
and data stored in it constitute a communication channel between a sender
and a receiver. The main of them are:

 Source port (16bit): Identifies the sending port;
« Destination port (16bit): Identifies the receiving port;

« Sequence number (32bit): Has a double role, depending on the value of
the SYN flag. If it is set to 1, then this is the initial sequence number and
the sequence number of the actual first data byte and the acknowledged
number in the corresponding Ack are equal to this sequence number plus
1. If the SYN flag is 0, then this is the accumulated sequence number
of the first data byte of this segment for the current session;

o Acknowledgment number (32bit): If the ACK flag is set then the value
of this field is the next sequence number that the sender of the Ack is
expecting;

 Flags (also knows as Control bits); they are nine but the two most
important of them are:

13


https://www.geeksforgeeks.org/services-and-segment-structure-in-tcp/

2 — TCP: a short overview

1. SYN: Synchronize sequence numbers. Only the first packet sent from
each end-point should have this flag set;

2. ACK: indicates that the Acknowledgment field is significant. All
packets after the initial SYN one sent by the client should have this
flag set.

« Window size (16bit): The size of the ReWnd, which specifies the number
of bytes that the sender of this segment can currently receive.

2.4 Connection establishment

To send data over the communication channel, a connection between the two
involved hosts must be established. Before a client attempts to connect to a
server, this one must first bind to and listen at a port to open it up for con-
nections. This procedure is called "passive open" and once it is established,
a client can initiate an active open. After that, a procedure called three-way
handshake occurs. It has the aim to establish a reliable connection between
the client and server and consists of three different messages:

1. SYN: The client sends a SYN to the server and it sets the segment’s
sequence number to a random value x;

2. SYN-ACK: In response, the server replies with this message. The ac-
knowledgment number is set to one more than the received sequence
number (i.e. x+1), and the sequence number chosen by the server is
another random number (i.e. y);

3. ACK: Finally, the client sends an ACK back to the server; the sequence
number is set to the received acknowledgement value (i.e. x+1), and the
acknowledgement number is set to one more than the received sequence
number (i.e. y+1).

At this point, both client and server have received an acknowledgment
of the connection. The first two steps establish the connection parameter
(sequence number) for one direction. Instead, steps 2 and 3 establish it
(sequence number) for the other direction. In this way, a full-duplex com-
munication is set up.

Figure 2.2 shows the previous explanation.
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Client Server

Figure 2.2. Three-way handshake (source: Wikipedia-TCP)

2.5 Data transfer

Regarding data transfer, TCP provides several key features, such as:

e Ordered data transfer: The sequence number is used by TCP in order to
identify the data of each byte. By identifying the order of the bytes sent
from each host, data can be reconstructed in order, even in presence of
any packet loss [3]. Acknowledgements (ACKs) are sent with a sequence
number by the receiver of data to tell the sender that data has been

received to the specified byte.

o Retransmission of lost packets: Reliability is another particular feature
of TCP and it is achieved by the sender detecting lost data and retrans-
mitting it in two different ways: retransmission timeout (RTO) and

duplicate cumulative acknowledgements (DupAcks).

1. Dupack-based retransmission: if a segment in a stream is lost, then
the receiver cannot acknowledge packets after it because it uses cu-
mulative ACKs. Hence, the receiver acknowledges the last packet
received again on the receipt of another data packet. This mecha-
nism is used as a signal for packet loss and if the sender receives three
duplicate acknowledgements, it retransmits the last unacknowledged

packet [3];

2. Timeout-based retransmission: each time the sender transmits a
segment, it initializes a timer with an estimate of the arrival time
of the acknowledgement. If this timer expires before the sender
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receives the ACK, the segment is retransmitted with a new timeout
threshold.

The two main aspects of TCP which need a particular attention and a deep
study, are the following:

1. Flow Control

2. Congestion Control

2.5.1 Flow Control

Application A Application B

Figure 2.3. Data transmission over TCP (source: Brian Storti’s blog)

As shown in figure 2.3 above, when there is need to send data over a
network, the sender application writes data to a socket, the transport layer
(in our case, TCP) will put this data in a segment and deliver it to the
network layer. On the receiver side, the network layer will deliver this piece
of data to TCP, which will make it available to the receiver application [2].
Moreover, TCP stores the data to send in the send buffer, and the data it
receives in the receive one and when the application is ready, data are read
from the receive buffer. Flow Control is about making sure the sender does
not send packets when the receive buffer is already full, as the receiver would
not be able to handle them and consequently it would drop them. To control
the amount of data that TCP can send, the receiver will advertise its Receive
Window (Rewnd), that is, the spare room in the receive buffer[2].

Every time the receiver sends an ack message back to the sender, acknowl-
edging a packet received correctly, the ack message contains also the value of
the current RcWnd, so the sender knows if it can keep sending data. ReWnd
is a dynamic variable defined as follows:
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Data in the
buffer

7

Receive Window
(rwnd) ’

—
TCP Receive Buffer

Figure 2.4. Rc¢Wnd in the TCP Receive Buffer Brian Storti’s blog)

o LastByteRead: number of the last byte in the data flow that the appli-
cation read from the receive buffer;

o LastByteRcvd: number of the last byte of the data flow coming from
the network, copied in the receive buffer.

As TCP aims to avoid the overload of the receive buffer, the ReWnd is
defined by the following formula:
RcWnd = RevBuf fer — [Last Byte Revd — Last Byte Read]
where RevBuf fer > [Last Byte Revd — Last ByteRead] to deny overflow.

2.5.2 Congestion Control

Congestion control is another control provided by TCP in order to guarantee
a reliable connection and prevents a node from overwhelming the network.
This control of congestion is carried out by acting on the transmission at the
end-points thanks to the information deducible from the terminals themselves
on the state of the packet transmission. For example, acknowledgments for
data sent, or lack of acknowledgments, are used by senders to infer network
conditions between the TCP sender and receiver. The Congestion Control
mechanism detects a situation of congestion in the terminal entities of the
connections and forces each sender a limit on the maximum number of seg-
ments to send to the receiver, according to the perceived network congestion.
This limit is represented by the Congestion Window (CWnd) and it is main-
tained by the sender, whereas the sliding window size is maintained by the
receiver. In TCP, the Congestion Control mechanism works together with
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the Flow Control, which sets an upper limit on the amount of data trans-
mitted and not yet acked by the sender through the RcWnd. Therefore, the
amount of data not acked by the sender cannot exceed the minimum between
the values of CWnd and RcWnd, that is:

LastByteSent — Last Byte Acked < min(CWnd, ReWnd)

The algorithm

Modern implementations of TCP contain four phases for the Congestion
Control algorithm:

o Slow start: First, the ’ssthresh’ (slow start threshold) variable has to
be introduced. The slow start phase occurs when the value of CWnd is
less than the value of this variable. In the beginning of the transmission
the variable is set to a very high value, whereas the size of the CWnd
is equal to the size of a segment. During this phase, the CWnd is equal
to 1 by default and the TCP sender starts transmitting the first data
segment, waiting for an ack. The CWnd increases by an amount equal to
the MSS (Maximum Segment Size) for each acked segment. As a direct
consequence, for each RTT the CWnd doubles in size. The slow start
phase is maintained until a congestion event does not incur, or when
the size of the congestion window is greater or equal to ’ssthresh’, or in
case three equal acknowledges are acked by the sender. In this last case
the TCP sender puts its CWnd at 1 and the slow start process starts
again. The value of ’sstresh’ is now set to CWnd/2. Subsequently we
pass to the AIMD phase (when CWnd > ssthresh) or Fast Recovery
(when three acks are identified as duplicates).

« Additive increase/multiplicative decrease (AIMD): This is a control al-
gorithm which combines the linear growth of the CWnd with an expo-
nential reduction when a congestion occurs.

o Fast retransmit and Fast recovery: Phase which reduces the time a
sender waits before retransmitting a lost segment. A TCP sender uses
a timer to recognize lost segments and if an acknowledgement is not re-
ceived within that timer, the sender will assume the segment was lost in
the network, and will retransmit it. So, the duplicate acknowledgement
mechanism is the basis for the fast retransmit phase. When a sender
receives three duplicate acknowledgements, it can be sure that the seg-
ment carrying the data which followed the last in-order byte specified in
the acknowledgment was lost. A sender with fast retransmit phase will
then resend this packet immediately without waiting for its timeout. On
receipt of the re-transmitted segment, the receiver can acknowledge the
last in order byte of data received.
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2.6 Congestion Control algorithms

There are several Congestion Control algorithms, each of them present some
different peculiarity but during my stage at Clevernet, I had the possibility
to study two of them, which are widely used today. These are:

1. TCP Cubic
2. BBR

2.6.1 TCP Cubic

TCP Cubic is the best loss-based Congestion Control algorithm and the idea
behind it is that of exploiting today’s communications links having higher
bandwidth levels. In a network composed by wide bandwidth links, if a Con-
gestion Control algorithm that slowly increases the transmission rate is used,
there would be a waste of the capacity of the links themselves.

For this reason the intention of this algorithm is that of having congestion
windows with more aggressive incremental processes, but also avoiding from
overloading the network. To achieve this, and in order to increase and de-
crease the transmission ratio, the algorithm uses a cubic function, as shown
in figure 2.5 below.

Convex Growth

cwnd (pkts)

Wmax

Concave Growth

Time (sec)

Figure 2.5. The Window Growth Function of Cubic (source: Pandorafms)

The main feature of Cubic is that its window growth function is defined in
real-time so that its growth will be independent from RTT and the procedure
followed by the algorithm is soon described:

1. When a congestion event occurs, the window size for that instant will
be recorded as Wmax(maximum window size);
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2. This value is set as the inflection point of the cubic function that will
govern the growth of the CWnd;

3. The transmission is then restarted with a smaller window value and,
if no congestion has occurred, this value will increase according to the
concave portion of the cubic function.

4. As the window approaches Wmax, the increments will slow down;

5. Once the tipping point has been reached (that is Wmax), the value of
the window will continue to increase discreetly.

6. Finally, if no congestion occurs, the window size will continue to increase
according to the convex portion of the function [8].

Therefore Cubic implements schemes of large increments at first, which
decrease around the window size that causes the last congestion, and then
continue to increase with large increments. However it acts too aggressively,
contributing to self-induced congestion, as intermediate routers start drop-
ping packets causing consistent throughput reduction. But also buffering
increases, reducing the responsiveness of latency-sensitive concurrent flows,
such as those of interactive applications.

2.6.2 BBR

BBR ("Bottleneck Bandwidth and Round-trip propagation time") is a conges-
tion control algorithm developed at Google. As widely written, Congestion
Control algorithms base their work only on indications of lost packets as the
signal to slow down. This algorithm differs from the previous one because it
is not based on packet loss but it considers how fast the network is sending
data. For a given network connection, it uses recent measurements of the
network’s delivery rate and RTT to build an explicit model that includes
both the maximum recent bandwidth available to that connection, and its
minimum recent round-trip delay.[4]. BBR then uses this model to control
both how fast it sends data and the maximum amount of data to be sent
over the network at any time. The advantages of this new model translate
into:

o Higher throughput: BBR enables throughput improvements on high-
speed links. As it is resilient to losses, a BBR connection can use a path
with packet loss, making traffic on backbones faster, and bandwidth
significantly increased;

o Lower latency: BBR enables also reductions in latency, especially in
those networks connecting users to the internet.
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Chapter 3

Tools employed

To pursue the main objective of my Thesis, several tools were useful and
interesting, leading us to overcome difficulties and to find efficient solutions.
For this reason this chapter is all focused on the tools used during the stage
at Clevernet.

The idea is to provide the reader a detailed background about tools and
software which helped me to advance in the development of this ambicious
project.

3.1 tcpdump

The first tool to describe is tcpdump. It is a packet analyzer that runs under
the command line allowing the user to see network packets transmitted or
received over a network to which the NIC of the computer is attached. tcp-
dump basically prints on the standard output or on a .pcap file the contents
of network packets, so both ip source and destination, ports on which they
are sent, and the layer-5 network protocol. Moreover it can read packets from
a network interface card or from a previously created saved packet .pcap file.
Here are shown some examples of packets capture:

sudo tcpdump -i ethO src 192.186.1.185
With this command, the filter will capture all the traffic going from the
source (192.186.1.185), which network interface is eth0, to any destination.

sudo tcpdump -i ethO -w capture.pcap src 192.186.1.185 and tcp
With this command, the filter will capture only TCP traffic going from the
source (192.186.1.185), which network interface is eth0, to any destination.
The captured traffic is written down on ’capture.pcap’ file.
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3.2 eBPF/XDP

The second tool is eBPF, which is part of Linux kernel allowing to write
programs that run on events like disk I/O, which running in a safe virtual
machine in the kernel. Extended BPF derives from BPF', a technology which
optimizes packet filters. Trying to filter traffic with tcpdump with an expres-
sion (matching on a host or port), it gets compiled into BPF bytecode which
is executed by an in-kernel virtual machine.

An eBPF program is attached to a designated kernel event (kprobe) and
when it occurs, any eBPF programs attached to it is executed. eBPF is
particularly suited to writing network programs and it is possible to write
programs that attach to a network socket to filter traffic and to classify it.
The XDP (eXpress Data Path) project, in particular, exploits eBPF to do
high-performance packet processing by running eBPF programs at the lowest
level of the network stack, immediately after a packet is received, therefore
before any memory allocation needed by the network stack itself, because
memory allocation can be an expensive operation. Every eBPF program
must pass a preliminary verifying test before the user loads it in order to
avoid executing malicious code in kernel space.

The preverifier checks that the program does not contain out-of-bounds ac-
cesses and loops. The main data structure used in all eBPF programs is the
map, which is a data structure allowing data, stored and retrieved using a
key, to pass between the kernel and user space in a way that they can com-
municate with each other.

A map is defined by four values: a type, a maximum number of elements, a
size defined in bytes, and a key size in bytes. There are different map types
and each provides a different behavior and set of tradeoffs.

Moreover, eBPF can be used for software defined networks, DDoS mitigation,
intrusion detection and more.

User Program Kernel
1. generate
N
[erroyecee |
\\—/

2. load BPF uprobes

per- /

event | 3. perf_output

A
data 3 Y
.async
statistics [« o~ » maps perf_events

tracepoints

<

i

Figure 3.1. eBPF workflow (source: Blog of Brendan D. Gregg)
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3.3 libpcap

pcap is an application programming interface (API) for capturing network
traffic. In particular, libpcap provides the packet-capture of many open-
source and commercial network tools, such as protocol analyzers, network
monitors and traffic-generators.

It also supports saving captured packets to a file, and reading files containing
saved packets; applications written, using this tool, are useful to capture
network traffic and analyze it, or to read a saved capture and analyze it.
A capture file saved in the format used by libpcap can be read then by
applications which understand that format, such as tcpdump or Wireshark.

3.4 NetEm

NetEm is a tool which enhances the Linux traffic control facilities in a way
that the user can add delay, packet losses and more other characteristics to
outgoing packets from a previously selected NIC. It provides users several
options, but the most used by me were:

o delay: the ’delay’ option adds a chosen delay (in ms) to the outgoing
packets to chosen network interface;

o rate: allows the user to send outgoing packets at a rate specified in
common units, such as kbit or mbit.

Here is an example about how to use this command:
sudo tc qdisc add dev ethO root netem rate 500mbit delay 20ms

It allows to delay by 20ms all outgoing packets on device ethO with a rate of
500 Mbit.

3.5 Token Bucket Filter

The Token Bucket Filter (TBF) is a shaper for traffic control and it guaran-
tees that a configured rate is not exceeded.

3.5.1 The algortithm

Traffic is filtered based on the expenditure of tokens which correspond to
bytes, but each packet consumes some tokens. On creation, the TBF is fed
with tokens which correspond to the amount of traffic that can be burst and
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they arrive at a steady rate, until the bucket is full. If no tokens are available,
packets are queued, up to a configured limit.

At this moment TBF computes the token deficit, and throttles until the
first packet in the queue can be sent. If it is not possible to send packets
at maximum speed, the user can configure a peakrate to limit the speed at
which the bucket empties. This variable is implemented as a second TBF
with a very small bucket, so that it doesn’t burst. The parameters which I
used to configure the shaper during my tests were:

o burst: it represents the size of the bucket, in bytes. This is the maximum
amount of bytes that tokens can be available for instantaneously;

e rate: which defines the speed which sending outgoing packets;

e latency: which specifies the maximum amount of time a packet can sit
in the TBF.

An use-case:
sudo tc qdisc add dev ethO root tbf rate 500mbit burst 3200b latency 100ms

3.6 D-IGT

D-ITG (Distributed Internet Traffic Generator) is a tool capable to produce
both IPv4 and IPv6 traffic. In addition to this, D-ITG can measure several
performance metrics (e.g. throughput, delay, jitter, packet loss) at packet
level.

D-ITG can generate traffic by using stochastic models for packet size (PS)
and inter departure time (IDT) that simulate application-level protocol be-
havior. At the transport layer, it supports TCP (Transmission Control Pro-
tocol), UDP (User Datagram Protocol), ICMP (Internet Control Message
Protocol) and more.

3.6.1 The architecture

The main features of D-ITG are provided by ITGSend and I'TGRecv. The
former is the component responsible for generating traffic toward the latter.
ITGSend can send multiple parallel traffic flows to multiple ITGRecv in-
stances, and this last one can receive multiple parallel traffic flows from
them and a signaling channel is created between each couple of ITGSend
and ITGRecv components with the aim to control the generation of all the
traffic flows.

ITGSend and ITGRecv can optionally generate log files containing all infor-
mation about all packets exchanged. These logs can be saved locally or sent,
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through the network, to another component called ITGLog.

Finally, thanks to the ITGDec component, which is in charge of analyzing
the log files, the user can read and analyze performance metrics related to
the traffic flows.

The user can control each experiment from a single vantage point: the com-
ponents in charge of receive traffic behave as daemons and are controlled
by the other components that want to send traffic to them. In the same
way, also the I'TGSend components can behave as daemons and controlled
through the D-ITG API remotely. A figure which shows the architecture and
the functioning of this powerful tool is shown below in 3.2. In particular the
different components described above and their way to communicate to each
other are shown.
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Figure 3.2. D-ITG architecture (source: D-ITG 2.8.1 Manual)
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Chapter 4

Network environment and
development

4.1 The network infrastructure

Branch LAN Optimized Traffic DC LAN

Figure 4.1. A picture of the network topology used

Clevernet has several physical machines where test-beds are installed. A
remote ssh tunnel is needed to access such test-beds. During the internship,
two of them were used, called, respectively, Arya, whose operating system
is Debian, and Deadpool which is powered by VMware, an OS designed ex-
clusively for virtualization. The connection between them is back-to-back
because they are in the same DataCenter in Barcelona, therefore they are in
the same LAN. On these machines, several test-beds are installed, in partic-
ular the Sigma test-bed, stored on both machines, which was extensively and
exclusively used for this project. Each test-bed is composed by two client-box
couples. One couple is installed for each role on a single physical machine.
They are Virtual Machines running the Debian distribution of Linux. The
client is a VM provided with 2GB of RAM and 1 or 2 CPU cores and it
represents a simple workstation laptop. The box is powered by 4GB of RAM
and 4 CPU cores and it represents the router. The router aims to always
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provide a good, reliable and stable network connection for the client. There-
fore, all the tests and research projects involving network deployment are
performed on such routers. Moreover edge routers are chosen because they
have visibility over all the network flows they are involved into. In order to
run tests and network applications, a remote ssh connection to more than
one test-bed was necessary, this is why two different machines were required
and, as a consequence, two boxes and two clients.

4.2 The initial project

The main project starts from another one already developed which was in-
tegrated with some new features and tools. For this reason it was necessary
to introduce the "Traffic Generator', which was the starting point of our de-
velopment. It is a tool entirely coded in Python that allows reproducible
traffic to be generated with ease using a configurable and flexible JSON
specification file. An orchestrator parses an input JSON that describes an
experiment, validates it and runs it. Once done, it will generate a JSON file
with the collected data from an experiment. The input JSON contains all
the information about an experiment we want to perform, as shown in figure
4.2:

“"Connection_info":{
“Client_ID":"sigma-client-deadpool-ga"”,
"Client_box_ID":"sigma-box-deadpool-ga",
"Server_ID":"sigma-client-arya-ga",
"Server_box_ID":"sigma-box-arya-ga"

}s

"Generator_type":"Stress_Generator",

"Iterations":1,

"Concurrency":2,

"Path":"1GB",

"Interval_ms":100,

"Port":80,

"Write":false

Figure 4.2.  An example of JSON input file

The most important parameters are the following:

e [terations: The number of times a number of concurrent transfers are
started;

o Concurrency: The number of transfers started for each iteration;

o Interval-ms: The amount of milliseconds between each iteration;
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o Port: The port that the HT'TP GET request will be sent to;

o Path: Name and relative path within the html directory of the file that
has to be downloaded, which is stored on the server host.

All the experiments done concern one or more TCP transfers of a file specified
in the 'Path’ field, once or more, depending on the value specified in the
'Tterations’ field, between two hosts. In the same JSON file described above
are specified the roles of the two hosts; this means that one host is the client
and the other one is the server. In all experiments the client plays the role of
the TCP receiver, whereas the server represents the TCP sender. As shown
in the picture above, Sigma client installed on Deadpool is our TCP receiver,
whereas the one installed on Arya is our TCP sender. The traffic generated
runs across the two boxes, which represent the edge routers for the respective
clients. As written in the previous chapter, the connection between Arya
and Deadpool is back-to-back as they are in the same LAN, so there are
no network delays between them, in particular between Sigma VMs of both
physical machines. The traffic generator containing the JSON file and the
Python code of the orchestrator are installed on the Arya machine, whereas
the code to be executed at the end-points is specified into another tool: the
Traffic Server. It is coded in Python as well, and it can be installed and
executed onto an end-point. It binds to localhost:18891, and an ssh tunnel is
required to access it remotely. For this reason two ssh tunnels were opened,
one on the Sigma client running on Arya and one on the Sigma client running
on Deadpool. With these two connections, the orchestrator can connect to
both hosts via other two ssh connections and start its analysis regarding an
experiment. At the end of it, a JSON file containing information regarding
the test is generated and the ssh tunnels between the orchestrator and the
two hosts are closed.

4.2.1 Running an experiment

To run a new experiment, there are several steps to follow, both on the Arya
machine and on the two VM clients installed on Arya and Deadpool. First
of all two different ssh tunnels to connect to Sigma client on Arya and Sigma
client on Deadpool have to be opened. Once in the proper directory which
contains the Python code to be executed, the following shell command has
to be run on both terminals:

sudo python3 server.py

where server.py belongs to the Traffic Server tool and it is the same Python
code that both TCP sender and receiver will execute. After that, the Arya
machine’s command line, the following command has to be run:
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python3 qa-traffic-generator.py [input file.json containing specifics for the test to run]

where qa-traffic-generator.py is the Python code that the orchestrator has
to run in order to connect to both end-points via ssh, performing the cur-
rent experiment and collecting statistics about one or more TCP transfers
between the hosts during the execution. The information acquired inside the
JSON file generated at the end of an experiment is the following:

e Success: Whether a particular transfer was successful or not;
o Error-String: Only present if a transfer failed. It indicates what failed;

e Time-start: Time at which the transfer started, in order to contextualize
it;

’

o Total-time: Duration of the transfer;
o Average-bandwidth: Bytes transferred per second on average;

o Bandwidth/s: Array of number of bytes transferred each second.

4.2.2 Integrated tools and software

With the tools described, a few initial tests could be performed to better
understand how the whole software environment and the interaction between
VMs worked. After that, our interest shifted towards collecting advanced
statistics, such as information about sent and received TCP packets through
a specific port, their timestamps, the Round Trip Time between packet data
and their acknowledgements, but also the CWnd and RecWnd read from both
the sender and receiver sockets. In order to achieve this, another already
developed tool was necessary to be integrated with the ones described above.
It is called tech-ebpf-tools and it is composed of three main parts:

1. A C file including the eBPF code to be injected in the kernel which rec-
ollects stats from data structures and functions return values by means
of kernel probes (kprobes);

2. A python script, called tcpstats.py, using the BCC library to validate the
eBPF code and provide data structures to recollect the stats generated
in the kprobes in easy to parse CSV files;

3. Another python script parsing the CSV file and doing data-extraction
by means of the pandas library and finally plotting relevant stats;

As it had to be included somehow in the Traffic Server tool, two new
methods were created in the file server.py belonging to it:
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o exposed_startEBPFAnalysis (figure 4.3): it takes the input JSON file
and the role of the host (sender or receiver) as parameters. Reads the
JSON file which includes all the information necessary to identify an
host and it stores in local variables the source IP, destination IP and the
destination port of the TCP session (if present). Basing on the value
of the role variable, that tells us if the code is running on the sender
machine or the receiver one, it creates different files and stores in a local
variable the name of the NIC of the host. Once done, it will run, by the
start method, the python script which collects stats, but the receiver will
run it by managing only one thread which collects information about the
TCP session; the sender, instead, will create one additional thread to
manage information received by an eBPF /XDP module that I created in
order to retrieve timestamp of each packet arriving on the sender NIC.
More about this script will be described later;

 exposed stopEbpfStats (figure 4.4): Once threads have terminated their
work, this function is called by the orchestrator. It has the main aim
to terminate all threads invoked in the python script. In particular the

sender has to stop also the thread which was in charge of running my
eBPF /XDP module.

The two functions are shown below:

def exposed_startEBPFAnalysis(self, input_json, role):
myobj = json.loads(input_json)

if not "source-ip" in myobj:
src_ip = None
else: src_ip = myobj["source-ip"]

if not "dest-ip" in myobj:
dst_ip = None
else: dst_ip = myobj["dest-ip"]

if not "designated-port" in myobj:
port = None
else:| port = myobj["designated-port"]

if role == "c":
output = myobj["output”]
output += "_client.csv"
cong_file = myobj["cong_file"]
cong_file += "_client.csv"
nic = myobj["rec_nic"]
tcp_stats = stats.start(role, nic, output, cong_file, interval=e.1, count=-1, src_ip=src_ip, dst_ip=dst_ip, port=port)
else:
output = myobj["output"]
output += "_server.csv"
cong_file = myobj["cong_file"]
cong_file += "_server.csv"
nic = myobj["send_nic"]
tcp_stats, timestamp, timestamp_event = stats.start(role, nic, output, cong_file, interval=e.1, count=-1,
src_ip=src_ip, dst_ip=dst_ip, port=port)
self.timestamp = timestamp
self.timestamp_event = timestamp_event
self.tcp_stats = tcp_stats

Figure 4.3. startEBPFAnalysis function
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def exposed_stopEbpfStats(self, role):
if role == "s":
self.timestamp_event.set()
while self.timestamp.isAlive():
self.timestamp.join(1)

self.tcp_stats.terminate()
while self.tcp_stats.isAlive():
self.tcp_stats.join(1)

Figure 4.4. stopEBPFAnalysis function

Having merged these two tools together, several tests could be performed

in order to collect statistics at kernel level thanks to the eBPF code, generate
CSV files and plot final statistics in an ideal network scenario, that is without
cross traffic and Oms delay between the two hosts.
In figures 4.5 and 4.6 are depicted some graphics obtained thanks to the
python script which parses the CSV files generated in tcpstats.py and does
data-extraction by means of the pandas library. In particular the throughput
of a test and the Round Trip Time (RTT) between the two end-points are
shown:

Throughput

— dlient_rev
1000 — server_snd

800

600

Throughput [Mbps]

400

200

Time [s]

Figure 4.5. TCP throughput
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Figure 4.6. Round Trip Time

The throughput was almost 1000Mbps for both sender and receiver, whereas
the RTT is always 0 for the receiver side because the pictures refer to an ex-
periment done without delay between the two hosts.

But it was necessary to go further in order to start to approach the project;
as a matter of fact there was need to calculate the timestamp for each packet
sent and received by the sender in order to later compute an accurate Round
Trip Time. This was probably the main part of the Thesis project because
a lot of time was spent to find a good way to calculate precise timestamps
and, as a consequence, RTT, that was the first factor needed to calculate
the Bandwidth Delay Product. For this reason tech-ebpf-tools tool had to
be integrated with an XDP/eBPF module which is described in the next
section.

4.3 A first approach to calculate timestamps

The XDP /eBPF program coded is directly integrated in the start function of
the tepstats.py tool (figure 4.7). This last one is called by both the sender and
the receiver, as shown in figure 4.3 with the aim of acquiring statistics and
generating CSV files used by pandas library to plot figures like the previous
two shown above, but only the sender will run a second thread, called times-
tamp, in charge of running the eBPF /XDP module, called zdp _analysis.py,
to collect information about timestamp of each TCP packet.

The first step necessary to load the C program which had to run the XD-
P/eBPF code in charge of filtering all TCP packets belonging to an HTTP
session between the sender and the receiver. This is done in Python thanks to
the load__func method, that uses xdp__myProgram as the 'main’ of the C pro-
gram using the program tipe BPF. Once done, if this function does not raise
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def start(role, nic, output, cong_file, interval, count, src_ip=None, dst_ip=None, port=None):
cond = threading.Event()

tcp_stats = TCPWndStats(data_file=output, interval=interval, cong_file=cong_file, count=count,
port=port, src=src_ip, dest=dst_ip, set_cond=cond)
tcp_stats.start()

cond.wait()
if role == "s":
event = threading.Event()
t = threading.Thread(target=xdp.start, args=(event, nic,))
t.start()
return tcp_stats, t, event

return tcp_stats

Figure 4.7. start function in tcpstats.py

any exception, it is possible to attach the NIC driver to the C program with
the attach xdp function. Then, the open_ perf buffer function is invoked,
which operates on a table defined in BPF as BPFPERFOUTPUT(), and
associates the callback Python function print_event to be called when the
filtered data is available in the perf ring buffer. In this way it was possible to
transfer data from kernel to the user space. The fields of each filtered packet
we were interested in are shown below in the TimeLen structure, which is
filled at user space in the print event. These are:

Both IP source and destination;

Both TCP source and destination port;

Acknowledgement number;

Timestamp of each sent and received packet by the TCP sender

In particular, this last field is retrieved by the bpf ktime_get ns() helper,
which returns a 64-bit unsigned integer. Subsequently, a CSV file is written
down with the same header matching information stored in the structure.
The code shown below in figure 4.8 helps the reader to have a clearer idea of
what described.
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class Timelen(ct.Structure):
_fields_ = [
("timestamp", ct.c_uinte4),
("saddr", ct.c_uint32),
("daddr", ct.c_uint32),
("sport", ct.c_uintie),
("dport", ct.c_uintie),
("acknum", ct.c_uint32)

]

def run(self, event):
fn = self.b.load_func("xdp_myProgram", BPF.XDP)

self.b.attach_xdp(self.nic, fn, @)
self.perform_analysis(event)

def perform_analysis(self, event):
self.b["events"].open_perf_buffer(self.print_event)

while not event.is_set():
self.b.perf_buffer_poll()
self.b.cleanup()

def print_event(self, cpu, data, size):

t = Timelen.from_address(data)

row = {
"timestamp': t.timestamp,
'saddr': ipaddress.ip_address(t.saddr),
'daddr': ipaddress.ip_address(t.daddr),
'sport': t.sport,
'dport': t.dport,
'acknum': t.acknum}

self.writer.writerow(row)

Figure 4.8. Python code of xzdp_analysis.py tool

However, Acks accurate timestamping is key, although very complex to
achieve in virtualized environments which are very noisy, due to many opti-
mizations in the Linux kernel, such as:

o Interrupt Coalescence: a technique in which events which would nor-
mally trigger a hardware interrupt are held back, either until a certain
amount of work is pending, or a timeout timer triggers. Used correctly,
this technique can reduce interrupt load by up to an order of magni-
tude, while only incurring relatively small latency penalties. Interrupt
coalescing is a common feature of modern NIC [13];

o Generic Receive Offload: GRO is a widely used SW-based offloading
technique to reduce per-packet processing overheads. By reassembling
small packets into larger ones, GRO enables applications to process fewer
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large packets directly, thus reducing the number of packets to be pro-
cessed [14].
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Figure 4.9. XDP processing stack (source: the XDP technology)

These were two key points for our studies; in particular, as shown in
the picture above, XDP is put right before GRO and as the code developed
worked with XDP, it took all raw packets and we could better understand how
the Interrupt Coalescing could have helped us to compute accurate times-
tamps.

From these statistics it was possible to compute offline, thanks to an open-
source Python library called Pandas, the Inter-Packet rate of the packets
being acknowledged by their Acks by the following formula:

. Ack:ifAcki_l
IP rate = s Ts 1

It is computed by the difference between each ack and its previous (that is
the number of Bytes of each packet acked) divided by the difference between
the timestamps when the respective packets were acked. In the following a
Cumulative Distribution Function for the inter-packet rate is shown, useful
to evaluate if our estimations about timestamps were correct or not. It is
computed from TCP ACKs timestamp taken in the sender with XDP after
a test performed with the following specifications:

o 1 TCP flow with a throughput approximately equal to 1Gbps;
e no Cross traffic;

e no delay between the two end-points
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On the x axis of the next figure, the throughput is put, whereas on the y
one the probability of having information at certain throughput is set. The
result obtained is the following:
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Figure 4.10. Cumulative Distribution Function using XDP

As clearly shown in figure 4.10, the estimations regarding timestamps were
not precise because more than 50% of the measurements were higher than the
actual maximum capacity: the measurement is invalid. This simply means
that the timestamps calculated thanks to the helper were not accurate, be-
cause of driver level optimizations. An example of what could have happened
is the following: for each n packets an interrupt occurs, XDP catches them
all and calculates the timestamp for each single packet in a fast way (around
2Gbps).

4.3.1 Problem of timestamping in XDP

As written above, with XDP we could not get accurate timestamps. The
main reason is that each timestamp is associated to the software elabora-
tion of XDP, rather than the exact moment when the packet arrives to the
physical NIC of the host. XDP is close to the NIC driver, meaning that
timestamps could be accurate, and for this reason an attempt was done us-
ing that technology. But as the hardware timestamp is in a struct called
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socket buffer (sk_buff) and, unfortunately, XDP does not have access to this
structure because sk_buff struct is not allocated yet in the moment XDP is
used, another strategy was necessary.

4.4 From XDP to Libpcap

As XDP timestamps were affected by driver level optimizations, we decided to
change our strategy to compute them. We actually used Libpcap because we
realized that timestamping was very precise with pcap traces. In particular,
we digged deeper to find out that Libpcap is actually taking by default, when
the hardware and drivers support it, the timestamp taken by the NIC. By
running the same code to evaluate the Cumulative Distribution Function,
with the same scenario as before, the final result and the measurements were
impressive and very precise, as shown below in figure 4.11:
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Figure 4.11. Cumulative Distribution Function using Libpcap

The measurements were better and preciser than those obtained with XDP
in fact they were so close to the actual maximum capacity (1Gbps). Once no-
ticed that Libpcap worked better than XDP, code in the Traffic Server tool
had to be changed, in particular the exposed startEBPFAnalysis method
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needed some modifications. Before one additional thread to run the XD-
P/eBPF module was necessary, but this time it was no longer helpful, and
for this reason both the sender and the receiver run the same start func-
tion (figure 4.12) which is included in the ebpf tech_tool. This function is
sensibly different from the previous one showed before:

def start(role, nic, output, cong_file, interval, count, src_ip=None, dst_ip=None, port=None):
cond = threading.Event()

tcp_stats = TCPWndStats(data_file=output, interval=interval, cong_file=cong_file, count=count,

port=port, src=src_ip, dest=dst_ip, set_cond=cond)
tcp_stats.start()

cond.wait()

if role == "s":
pcap_file_received = open("stats_received.csv", "w")
writer = csv.DictWriter(pcap_file_received, fieldnames=PCAP_HEADER)
writer.writeheader()
pcap_file_received.close()
subprocess.Popen(“"ebpf_tools/xdp/./parsinganalysis")

return tcp_stats

Figure 4.12. The new start function in tcpstats.py

If the code is running by the TCP sender, a CSV file with the following
header is created:

Round Trip Time;

Timestamp;

Source and destination IP;

Source and destination port;

Sequence number and ack number

Once done, with the python class subprocess the Popen method that runs a
child program in a new process is invoked. The program is the a one that
I have developed entirely in C and captures packets thanks to the Libpcap
library.

As shown in figure 4.13, it works in the following way: pcap__lookupdev func-
tion included in Libpcap library is used to read the physical NIC of the sender,
subsequently pcap open__live function was necessary to obtain a packet cap-
ture handle to look at packets on the network. The variable dev specified in
it represents the NIC read by the previous function and is used to specify
the network device to open. Finally pcap loop processes packets from a live
capture and the most important parameter passed to it is without any doubt
the pkt_handler which is the callback to the function to be invoked each
time a packet is captured on the NIC.
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int main()

pcap_t *fp;
char *dev, errbuf[PCAP_ERRBUF_SIZE];

dev = pcap_lookupdev(errbuf);

if (dev == NULL)

{
fprintf(stderr, "Couldn't find default device: %s\n", errbuf);

exit(1);
}
fp = pcap_open_live(dev, 100, @, -1, errbuf);
if (!fp)
{

fprintf(stderr, “"Couldn't open device %s\n", dev);
exit(1);
}

pcap_loop(fp, -1, pkt_handler, NULL);
pcap_close(fp);

return @;

Figure 4.13. main function of the C program

Each TCP packet belonging to the HT'TP session between the sender and
the receiver is taken; in particular a filter is set on the source and destination
port in order to distinguish if the packet contains data or an acknowledge.
Once acquired that information, in a structure are stored the main fields of
the packet, which are:

Both source and destination IP addresses;

Both source and destination port;

Packet length;

Sequence number and Ack number;

Timestamp related to each packet;

This last ones have been calculated by the struct timeval included in the
struct pcap pkthdr, with a precision of microseconds. Each time a packet
is received by the sender, RTT by matching the last ack number received
with one of the previous sequence numbers of packets sent to the receiver
could be computed. When Ack_number = Seq_number the RTT could be
calculated by subtracting the timestamp of the ack number to that belonging
to the sequence number. RTT of each acked packet was also stored in the
same structure mentioned above and for each thousand of packets acked, a
thread in charge of writing on a CSV file the whole information saved in
the structure is invoked. The file generated was then useful to compute, by
another tool using the python pandas library, an estimation of the Available
Bandwidth offline.

Each test performed was combined together with different .pcap traces ob-
tained by running "tcpdump' on strategic hosts in the network because it
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was important to check if the estimation of the Available Bandwidth gen-
erated after acquired information from the CSV file was enough similar to
that collected on the .pcap traces. Although the code developed was work-
ing properly for our purposes, we wanted it to be more general, especially
regarding the filter set. As a matter of fact, the previous filter based only on
the source and destination port could not work for all the applications; for
this reason we needed another way to distinguish sending and receiving flow
in a more dynamic way.

The first thing to do was finding dynamically the direction of the two flows
and for this reason three different data structures were created. One is shared
between the two flows and it is filled until both directions were not found. To
do so, the only filter set regarded the layer-4 protocol; if it is equal to TCP,
the shared struct is filled with around 30 packets and then it is checked the
sequence numbers for the same couple of src and dest IP and source port and
destination port. If more than three equal sequence numbers were found, it
could be inferred that the couple of IP addresses and ports belonged to the
receiving flow, as a consequence the sending one is found by inverting the
IP addresses and ports. Once acquired the information about flows, only
the other two structures were filled with the information regarding, respec-
tively, a packet data or an acknowledgement. The information collected in
the structures are basically the same described above, and the CSV file is
written down by a secondary thread for each thousand of packets acked.
However we found out that the program worked slow because of the big
amount of data structures used and the total complexity of the final algo-
rithm. For this reason C++ was chosen, as it allows the programmer to use
collections, such as maps, rather than struct in a smarter and faster way.
The idea about how to develop the algorithm was the same as described
before but instead of using three struct, three map were used, one shared
to be filled until the flows were not found and two used to be filled with,
respectively, information about data packets and acknowledgements. Maps
are collections made up of two parts: key, which is always unique, and value.
In this case the key was formed by the four-tuple (source IP, dest IP, source
port, destination port) and the value was a vector of concatenated strings.
In it the following fields are put:

» timestamp of each packet arriving on the NIC;
e sequence number;

e ack number

With the same strategy, the direction of the two flows was found and the
vector of the other two maps was filled, rather than filling the shared one.
To have a concrete idea on the algorithm developed to find both flows, figure
4.14 is shown below:
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for (auto &v : values) {
found_receiver = 9;
equal_seqg_num = ©;

std::vector<std::string> splitted = split(v, ',');
std::string seq_num = splitted.at(1);
for (auto &vl : values) {
splitted = split(vi, ',"');
if (splitted.at(1l) == seq_num)
equal_seqg_num++;

if (equal_seq_num > 3) {
found_receiver = 1;
break;
}
}

if (found_receiver) {
sender[inverted_key] = it->second;
count_sender[inverted_key] = pkts_per_flow[inverted_key];
compute_rtt(new_key, values, it->second);
sender[inverted_key].clear();
break;

} else {
sender[new_key] = values;
count_sender[new_key] = pkts_per_flow[new_key];
compute_rtt(inverted_key, it->second, values);
sender[new_key].clear();
break;

Figure 4.14. Piece of code to identify data or acks direction

Both flows are immediately differentiated and the other two maps, called,
respectively, sender and receiver are filled. It is also called the compute_ rtt
function which was in charge of computing the Round Trip Time for each
acked packet until that moment. Then, the two structure with all the param-
eters necessary are filled; in particular for each packet received by the sender
the compute_rtt_for one_wvalue function is invoked, in charge of computing
the Round Trip Time for the last ack number received with the same strategy
mentioned above. In a first moment, this function was developed as shown
in figure 4.15:

43



4 — Network environment and development

void compute_rtt_for_one_value(const std::string& key, long local_ts, std::string ack_num, const std::vector<std::string>& val_sender) {
std::vector<std::string> splitted;
std::string value;
long rtt;

for(auto it = val_sender.begin(); it != val_sender.end(); it++) {
splitted = split(*it, ',');
std::string seq_num = splitted.at(l1);

if (ack_num == seq_num) {
ts_sender = std::stol(splitted.at(@));
std::string ack_sender = splitted.at(2);
rtt = local_ts - ts_sender;

value = std::to_string(rtt) + "," + std::to_string(local_ts) + "," + ack_sender + "," + ack_num;

m.lock();

receiver[key].push_back(value);
m.unlock();
val_sender.erase(val_sender.begin(), it);

break;

Figure 4.15. Final version of code to compute RTT

For the last ack number received, a for-loop on the whole vector of the
sender side is performed in order to find the sequence number that matched
the last acknowledgement. When the condition was satisfied the RTT is
computed and a new value (composed by the RTT, the timestamp regarding
the last ack number received and the ack number itself) is then inserted in
the vector of the receiving flow. However this solution was not so efficient
in term of complexity because the time spent to iterate over the vector was
very higher and we understood that we lost several packets arriving from the
network by looking at plots we generated to estimate the Available Band-
width. For this reason the algorithm to compute RTT needed to act faster
and the solution found was that of substituting the vector with an unordered
set. In this way it was no longer necessary to iterate over a loop because the
complexity to find an element in an unordered set is O(1). This final solution
was kept because it worked way better and after around five hundred packets
acked, a thread in charge of writing on the CSV file the information about
the TCP flow is invoked. With this CSV file we generated plots with Pandas
library and we clearly saw that they had more information than before, as
shown in the two pictures below.

4.4.1 Comparison between the two methods

On the X axis timestamp in seconds is set whereas on the Y one the IPT acks
(in Mbps) is represented. The orange flows refer to the .pcap file captured
on the NIC of the TCP sender which starts three parallel TCP transferences
with the same receiver. As shown in both figures (4.16, 4.17), a significant
amount of IPT acks is around 250 Mbps and this means that the estimation
of the Available Bandwidth by means of IPT acks is very precise if we con-
sider that we performed the test by setting the maximum throughput at 300
Mbps without any kind of cross traffic.

44



4 — Network environment and development

The black flows refer to the statistics collected in the CSV file generated
from my program with the first approach. In figure 4.16 clearly shows that
there is an huge lack of information compared with the one collected from
the .pcap file.

Once improved the performance of my algorithm, a test with the same set-
tings as before has been performed. Results from the .pcap and CSV files
have almost the same full information about the three TCP transferences,
as shown in figure 4.17. This result led us keeping my improved algorithm
to compare statistics from both types of file and to perform other tests to
estimate the Available Bandwidth.

L st e

Frghesnnate om0 L e

Figure 4.16. Comparison between IPT obtained from .pcap and CSV
with the first method
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Figure 4.17. Comparison between IPT obtained from .pcap and CSV
with the second method

4.5 Tests and measurements

The tests performed were different and various in order to simulate in the best
way all the possible network scenarios during one or more TCP transferences.
A tuning on several parameters was necessary because it was important to
explore and study all different study cases to run the tests. For this reason
one of the first parameter which needed to be changed was the delay between
the two TCP end-points. Accordingly, tests have been performed with 20ms,
40ms and 120ms delay by tuning it with the netem tool. Due to the fact that
a network environment without any kind of cross traffic acting during one
or more TCP transferences is not realistic, two new virtual machines were
setted up, one in the same LAN of the TCP sender, the other one in the
LAN of the TCP receiver. In the picture below is so depicted an example of
the complete scenario on which tests were performed. The two VM at the
top of the corners represent the TCP sender and receiver, whereas those at
the bottom exchange TCP or UDP cross traffic between them.

An example of testbed topology is shown below in figure 4.18
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Figure 4.18. Testbed topology with one single 100 Mbps bottleneck

These new machines, which runs, respectively, in Arya and Deadpool
hosts, are provided with the D-ITG tool in charging of manually running
the cross traffic during a test; sometimes it was so huge in order to make the
test very noisy to prove if the tool gave us good estimations of the Available
Bandwidth even in extreme conditions. Another parameter tuned was the
maximum throughput at which send packets at both senders side and its
edge router to better collect statistics and having a clearer plots about the
estimations. As a matter of fact the maximum throughput was decreased
from 1Gbps to 100Mbps on both senders and on their same edge router, as
shown in the picture above, meanwhile the name and relative path from the
html directory in the server host of the file that had to be downloaded had a
size of 10MB. In the pictures below are shown only two of tests performed.
In particular, in figure 4.19 are represented three parallel TCP flows going
from the same source to the same destination with one TCP flow of cross
traffic going in the same direction. Both the axes are the same described
for figures 4.16 and 4.17. As already written above, the plots contain all we
have captured from both CSV and .pcap file related to the NIC of the sender.
The red line represents the estimation of the Available Bandwidth collected
from the .pcap file, whereas the black one is related to the CSV file. As they
are quite similar, it can be inferred that the IPT collected from the CSV is
correct, this is the Available Bandwidth computed from the IPT of the .pcap
is equal to the that one computed from the CSV.

In figure 4.20 are instead shown three parallel TCP transferences in presence
of a big amount of UDP cross traffic going in the same direction of the TCP
flows.

The red and black lines are, respectively, taken from the .pcap and CSV file
and as they are quite equal even in this case, the metric calculated on the
IPT acks (represented with blue points) is precise and accurate to estimate

the Available Bandwidth.
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Chapter 5

Real-time implementation

Once realized that our offline results were promising with the second version
of the C++ code, it was the time to try to implement a new code version
which estimated the Available Bandwidth in real-time.
Starting from the previous code, it was only necessary to change the code to
be run by the secondary thread, which was previously in charge of writing
the CSV file. The largest values of the timestamp and the RTT are taken by
the set containing these values plus the ack number of each acked. Elements
of the set whose difference between the last timestamp and their current
timestamp value is greater or equal to 1 seconds are instead erased.
An iteration in reverse order is then performed on this set and until the
condition

last _ts — current _ts < last RTT

is not satisfied.

Thus, the position of the set not satisfying the condition is saved together
with the ack number and timestamp regarding that specific packet.
Another iteration in order over the set is then performed from the saved
position until the end. Each value of current timestamp and ack number is
taken together with their respective previous values and the following for-
mula could be computed:

. AckifAcki_l
IP rate = s Ts 1

The difference between the two timestamps is then divided by 1000000 in
order to switch from microseconds to seconds and each computed value of
IP rate is pushed into a vector. This is then passed to the computeQuantiles
function in charge of calculate its quantiles.

They are points of a distribution that relate to the rank order of values in
that distribution. In our case, the distribution was the vector containing
the IP rate. This sample had to be sorted by definition in order to take
the interested percentiles. In particular we were looking for three different
of them: the 25th, the 50th and the 75th which could be retrieved by the
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respective positions in the vector.

Finally it was possible to calculate the Interquartile range (IQR), defined
as the difference between the 75th quantile and the 25th one. With it, an
upper_limit and a lower one could be defined by the following two formulas:

upper__limit = (1.5« IQR) + 75th__quantile
lower_limit = 25th__quantile — (1.5 x IQR)

Values of IP rate greater than the upper_ limit or less than the lower_limit
are then removed from the vector. This function, whose implementation is
shown in figure 5.1 returns two values:

e The 50th percentile by value;
o The IQR by reference

double computeQuantiles(std::vector<double>& values, double &igr_to return) {

std: :sort(values.begin(), values.end());
int wector_size = values.size();
++vector_size;

float g25 = vector_size*d.25;
float 5@ = vector_size®@.5;
float q75 = vector_size*B.75;

int @25 _index = ((int)(g25%18))%18;
q25_index »= 5 ? g25_index = (int)qg25+1 : g25_index

(int)q25;

int g5@_index = ((int)(g56#%18))%10;
q58 index »= 5 ? @58 index = (int)qg58+1 : g5@ index = (int)g5@;

int g75_index = ((int)(g75%18))%18;
q75_index »= 5 ? q75_index = (int)q75+1 : g75_index

(int)q75;

--vector_size;
if (g5@ _index == vector size) --q58 index;
if (g75_index == wvector_size) --g75_index;

double g25_walue = values.at(gq25_index);
double q58 walue = values.at(gq50 index);
double q75_walue = values.at(q75_index);

double igr = gq75_value - g25_value;

igr_to_return = iqgr;

double upper limit = (1.5%igr) + q75_value;

double lower_limit = g25_value - (1.5%igr);
values.erase(std: :remove_if(values.begin(), wvalues.end(),

[&upper_limit, &lower_limit](auto e){return e > upper_limit || e < lower_limit;}), values.end());

return 5@ walue;

Figure 5.1. Quantiles
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The first time the secondary thread is launched, it takes the largest value
of the IP rate from the vector, then it fills an array of IP rate of 10 elements,
whose first value is the largest taken before divided by 10, called val. Each
next value of this new array is given by the sum of the previous element and
val.

A nested loop of the vector and this new array is performed, and each time
the IP rate of the vector is less or equal than any of the elements in the array,
the number of occurrences in the same position of the element is increased by
one. By iterating over this last array of occurrences and taking its maximum
value, the capacity of the link is set to maximum element of the array of 1P
rate in the same position of the one of occurrences.

By the second time the thread is launched, it is possible to estimate the
Available Bandwidth by the computing average on the values of the IP rate
belonging to the vector.

This is possible only if two conditions are satisfied:

1. The difference of absolute value between the average of the vector and
the 50th percentile is less than 0.1*capacity estimated the first time;

2. the IQR is grater than 0.3*capacity

if (found cap) {
if (diff mean 58g « B@.1%*capacity &R iqr » B.3%capacity) {
awb = computeMean(ipt_thp vector);
forintf(f, "%ld %1f\n", last ts, (awb*3)/1000000);

fclose(f);
¥
¥
else {
found _cap = true;
int max = -1;
for (int 1 = @; i « BIN SIZE; i++) {
if (occurrences[i] » max) {
max = occurrences[i];
capacity = ip_rate[i];
¥
¥
¥

Figure 5.2. Estimation of link capacity or Available Bandwidth

Figure 5.2 shows the last piece of code described above, in particular
found__cap variable is a boolean set to false by default and then set to true
once the secondary thread has estimated the capacity the first time.
Variable diff mean__50q and awb are computed as shown in figure 5.3, re-
spectively by the function computeDiffMean and computeMean.
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double computeMean(std::vector<double> &values) {

auto n = values.size();
double average = @.@;

if (n1=0) {
average = std::accumulate(values.begin(), values.end(), @.8) / n;

}

return average;

}

double computeDiffMean(std::vector<double> &values, double &g58) {

double average = computeMean(values);
return std::abs(average - g58);

}

Figure 5.3. Computation of Available Bandwidth and diff mean_50q

5.0.1 Results

An estimation of the method explained above are shown in figure 5.4 and 5.5.
The green line represents the real Available Bandwidth, given by the differ-
ence between the capacity estimated on the first one-hundred TCP packets
and the cross traffic generated (the yellow line).

The blue one represents the TCP flows on which the estimation is based
whereas the red crosses represent the actual estimations of the Available
Bandwidth. The majority of them are close to the real one, computed by
the difference between the estimated initial capacity and the amount of cross
traffic sent on the network. It can be so inferred that our method and mea-
surements are quite precise and accurate. For each estimation, in fact, the
error compared with the real Available Bandwidth is computed thanks to the
following formula:

err = | estimated Awb — real Awb |

By computing the average of each error we obtain the mean absolute error
and, from this, we saw that our results were still promising because this value
was around 30Mpbs in the worst case.
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Throughput [Mbps]
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—— TCP_flow —:= real_avbw
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Figure 5.4. Available Bandwidth real-time estimation (fig.1)

—— TCP_flow —:= real_avbw
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Figure 5.5. Available Bandwidth real-time estimation (fig.2)
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Chapter 6

Conclusions and future
work

By the measurements and estimations obtained, the method studied and
used during this Thesis Project at Clevernet is surely valid, promising and
innovative.

The Available Bandwidth real-time estimation method is pretty good, consti-
tuting a reliable starting point for the final implementation of the controller
to be deployed on the edge routers in charge of modulating the TCP receive
window.
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