
POLITECNICO DI TORINO

Master of Science in Computer Engineering

Master Thesis

Dynamic Sharing of Computing
and Network Resources between

Different Clusters

Supervisor

prof. Fulvio Risso
Candidate

Francesco Borgogni

Company tutor
TOP-IX

Leonardo Camiciotti

Academic year 2019-2020

Acknowledgements

This is the end of five intense but beautiful years, in which I have learnt and received
so much, technically speaking but especially on a personal level. In these occasions
it is important to stop for a moment and reflect upon our lives, and thank for
everything we have received.

“Nothing in this world that’s worth having comes easy.”

I thank my supervisor Prof. Fulvio Risso, who has always been kind and available
during these months of thesis work and has always suggested great advice and ideas
to improve. A big thank you also to Alex Palesandro, who has been an invaluable
component of the project we are developing and an excellent software team leader,
and who guided and assisted me in facing the initial impact with the huge world
of Kubernetes. I also thank all the people in TOP-IX who have been extremely
courteous and available, especially Leonardo Camiciotti for his patience and his
brilliant ideas and suggestions.

Then, I want to express my deepest gratitude to my friends, my parish group
and my family: I would not be the person I am without them, their teachings,
encouragements and also their corrections. Obviously they could not help me with
the technical aspects of this thesis, but without them I would never have made it,
and I hope to be able to show every day my love for all of them. A special thank
goes to Emanuele and Davide, true brothers in this journey, and to Matt Fradd
too.

“Freedom from evil is not a destination we reach: it’s a daily choice we make.”

3

Contents

List of Figures 7

1 Introduction 11

1.1 Goal of the thesis . 11

2 Background 13

2.1 Cluster federation . 13

2.2 Kubefed . 14

2.2.1 Kubefed limitations . 16

3 Technologies 18

3.1 Kubernetes: a bit of history . 18

3.2 Applications deployment evolution 19

3.3 Container orchestrators . 20

3.4 Kubernetes architecture . 22

3.4.1 Control plane components 22

3.4.2 Node components . 24

3.5 Kubernetes objects . 25

3.5.1 Label & Selector . 27

3.5.2 Namespace . 27

3.5.3 Pod . 27

3.5.4 ReplicaSet . 27

3.5.5 Deployment . 28

3.5.6 Service . 29

3.6 Virtual-Kubelet . 30

3.7 Kubebuilder . 31

4

4 Protocol 33

4.1 Point to point connections . 33

4.1.1 Ad-hoc request . 34

4.1.2 Operating and release phases 35

4.2 Messages . 36

4.2.1 Advertisement . 36

4.2.2 Request (user → cluster) . 37

4.2.3 Request (cluster → cluster) 38

4.2.4 Acknowledge . 39

4.2.5 Quote . 39

4.2.6 Offer . 39

4.3 Broker . 40

5 Software architecture 42

5.1 Global architecture . 42

5.2 Broadcaster . 44

5.3 Controller . 45

5.4 Policies . 46

6 Implementation 48

6.1 Advertisement operator . 48

6.1.1 Advertisement API definition 49

6.1.2 Broadcaster . 52

6.1.3 Controller . 54

6.2 Kubernetes provider . 55

6.2.1 Pod lifecycle methods . 57

6.2.2 Pod translation methods . 58

7 Results 61

7.1 Test environment . 61

7.2 Functional tests . 62

7.3 Performance and scalability tests 64

7.3.1 Test results . 65

7.3.2 Test limitations . 67

5

8 Conclusions and future works 68

Bibliography 70

6

List of Figures

2.1 KubeFed architecture overview. 14

2.2 KubeFed main concepts [9]. 16

3.1 Evolution in applications deployment [10]. 19

3.2 Container orchestrators use [3]. 21

3.3 Kubernetes architecture [10]. 22

3.4 Kubernetes master and worker nodes [10]. 26

3.5 Kubernetes pods [10]. 28

3.6 Kubernetes Services [10]. 29

3.7 Virtual-Kubelet concept [22]. 31

4.1 Advertisement messages exchange. 34

4.2 Request submitted by a user and sent to another cluster. 34

4.3 Request served with an auction. 35

4.4 Advertisement messages exchange with broker. 41

4.5 Request submitted by a user and sent to another cluster through the
broker. 41

5.1 Software components. 42

5.2 Architecture. 43

5.3 Broadcaster differentiation example. 44

5.4 Controller reconciliation from Advertisement to Virtual Node. . . . 45

5.5 OPA policy decoupling [13]. 46

6.1 Implementation architecture. 49

7

7.1 Observed times with 10 Advertisements. 66

7.2 Observed time trends with 100 Advertisements. 66

8

Listings

2.1 FederatedDeployment example [9] 15

3.1 Basic example of Kubernetes Deployment [10]. 28

3.2 Basic example of Kubernetes Service [10]. 30

4.1 Advertisement message. 36

4.2 Request message. 38

4.3 Request message sent by home cluster to others. 38

4.4 Acknowledge message. 39

4.5 Quote message. 39

4.6 Offer message. 39

6.1 Advertisement struct definition. 50

6.2 AdvertisementSpec struct definition. 51

6.3 AdvertisementStatus struct definition. 51

6.4 StartBroadcaster function. 52

6.5 GenerateAdvertisement function. 52

6.6 Reconcile method. 54

6.7 Virtual-Kubelet provider interface [22]. 55

6.8 KubernetesProvider struct definition. 56

6.9 KubernetesConfig struct definition. 56

6.10 CreatePod method. 57

6.11 GetPod method. 58

6.12 Home-to-Foreign function. 58

6.13 Foreign-to-Home function. 60

7.1 Virtual-Kubelet Deployment. 62

9

7.2 Advertisement operator Deployment. 63

7.3 Bash script to configure the cluster and create Advertisements. . . . 64

7.4 Sample Advertisement used in the tests. 65

10

Chapter 1

Introduction

In the last several years, ICT world has seen an incredible innovation with the
introduction of virtualization first, then with containerization and finally with or-
chestrators. In this last field, one of the main actors is Kubernetes, an open source
system for managing containerized applications in a clustered environment. The
spread of Kubernetes is rapidly increasing; in cloud providers such as Google Cloud
Platform and Microsoft Azure it is the most popular choice [1] and many companies
and organizations have started to set up their own clusters in order to migrate their
applications on it. With the advent of 5G and edge computing also telecommuni-
cations companies are moving towards a Kubernetes solution [4].

In a similar scenario, if we could share resources between clusters this would
open many use cases:

• different users with their small clusters (for example Minikube [12]) can par-
tially or totally offload their applications to others;

• different companies could interconnect and get payed for hosting others’ ap-
plications;

• in an IoT scenario, edge nodes (which typically have limited resources) can
send requests to more powerful ones;

• in an edge computing scenario, an application can be scheduled on the best
cluster in order to reduce latency.

1.1 Goal of the thesis

Kubernetes does not support natively this sharing of resources among clusters: a
concept of “Federation” has been defined and is being developed, but the project
is relatively new and not very mature (it is still alpha [9]).

11

Introduction

This work, carried out by the Computer Networks Group at Politecnico di
Torino and developed with the collaboration of TOP-IX [18], proposes an alterna-
tive solution to this problem, focusing on a protocol that allows different clusters
to know each other, exchange their information and send their jobs. The aim is to
provide to a user who can use Kubernetes the possibility to exploit the proposed
solution with no extra effort, interacting with the same interface and working with
the same resources, but taking advantage of many other clusters on which he can
deploy his applications.

The discussion is structured as follows:

• Chapter 2 introduces some background aspects about the problem of clus-
ter federation, the solution proposed by Kubernetes and why we propose a
different approach.

• Chapter 3 provides an extensive presentation of Kubernetes, its architecture
and concepts, and an introduction to the tools used to develop the solution.

• Chapter 4 describes the designed protocol, the messages exchanged and
some possible scenarios.

• Chapter 5 illustrates the architecture of the software that has been devel-
oped.

• Chapter 6 shows the implementation of the designed solution in Kubernetes.

• Chapter 7 explains how the implementation has been tested and reports
some qualitative results.

• Chapter 8 closes the thesis with final conclusions and possible future works.

12

Chapter 2

Background

This chapter provides an introduction to cluster federation, explaining what “fed-
erating some clusters” means and why it is relevant. An overview of Kubernetes
proposal for managing this issue (Kubefed) is illustrated and analysed, showing
some limitations that give a reason for the work done. If you are interested in
deepening Kubernetes Federation, please refer to the official documentation, from
which this chapter takes inspiration [9].

2.1 Cluster federation

Many organizations today deploy their applications on large clusters across hybrid
(private and public) clouds. Cloud providers give to the user the feeling to dispose
of infinite resources, but they need to predict the user requirements in order to
provide services with high availability at minimal costs. In order to accomplish this
goal, cloud providers can cooperate together to bring new business opportunities,
such as expanding available resources, achieving cost-effective asset optimization
and adopting power saving policies. They require simplified solutions to create and
manage a flexible aggregation of all the clusters. Such aggregation is called cloud
federation [2, 23].

Cloud federation requires one provider to wholesale or rent computing resources
to another cloud provider. Those resources become a temporary or permanent
extension of the buyer’s cloud computing environment, depending on the specific
federation agreement between providers [19]. This allows different cloud providers
the opportunity to work collaboratively, offering better services to customers and at
the same time increasing their productivity. Customers can advantage from cloud
federation for a larger offer of available services, the capability of price comparison
and the removal of vendor lock-in [23].

13

Background

2.2 Kubefed

Kubernetes Cluster Federation (KubeFed) allows to coordinate the configuration of
multiple Kubernetes clusters from a single set of APIs in a hosting cluster. Its aim is
to provide mechanisms for expressing which clusters should have their configuration
managed and what that configuration should be [9].

KubeFed extends Kubernetes APIs for Federated Resources through the CRD
mechanism. It manages CRDs and implements functions such as synchronizing
resources and cross-cluster scheduling. In KubeFed there are two types of cluster:

• Host cluster: a cluster which is used to expose the KubeFed API and run
the KubeFed control plane.

• Member cluster: a cluster which is registered with the KubeFed API and
that KubeFed controllers have authentication credentials for. The Host Clus-
ter can also be a Member Cluster.

kubefedctl

Member
Cluster 1

Federation
Control Plane

Member
Cluster 2

Host
cluster

Figure 2.1. KubeFed architecture overview.

KubeFed is configured with two types of information:

• Type configuration declares which API types KubeFed should handle. It
consists of three main concepts:

14

Background

– Template: defines the object representation, common to all federated
clusters;

– Placement: defines which clusters will be allowed to see the resource;

– Override: defines variations to the template, which can be different on
each cluster.

• Cluster configuration declares which clusters KubeFed should target. You
can add/delete clusters with kubefedctl join/unjoin.

Propagation is the process that distributes resources to federated clusters.

apiVersion: types.kubefed.io/v1beta1

kind: FederatedDeployment

metadata:

name: test-deployment

namespace: test-namespace

spec:

template:

metadata:

labels:

app: nginx

spec:

replicas: 3

selector:

matchLabels:

app: nginx

template:

metadata:

labels:

app: nginx

spec:

containers:

- image: nginx

name: nginx

placement:

clusters:

- name: cluster2

- name: cluster1

overrides:

- clusterName: cluster2

clusterOverrides:

- path: "/spec/replicas"

value: 5

- path: "/metadata/annotations/foo"

op: "remove"

Listing 2.1. FederatedDeployment example [9]

15

Background

With these three other concepts we have all the building blocks that can be used
by higher-level APIs:

• Status collects the status of resources distributed by KubeFed across all
federated clusters.

• Policy determines which subset of clusters a resource is allowed to be dis-
tributed to

• Scheduling refers to a decision-making capability that can decide how work-
loads should be spread across different clusters similar to how a human oper-
ator would

All these concepts are summarized in the scheme below.

Figure 2.2. KubeFed main concepts [9].

2.2.1 Kubefed limitations

KubeFed is a centralized solution, where all the decisions are taken by the elected
‘master’ (i.e. the Host cluster). This is clearly impossible between clusters belong-
ing to different organizations, because no one wants to leave the control to another

16

Background

entity. Another important limitation is that KubeFed is not transparent: to in-
teract with the federation a specific interface is needed (kubefedctl CLI) and the
API resources must explicitly specify that they can be executed on other clusters
(for example the FederatedDeployment showed in listing 2.1).

These are just the main reasons for which we decided to implement a different
solution, which could be

• transparent: a user who can use Kubernetes should be able to use the
application with no extra knowledge required, using the same interfaces (e.g.
kubectl) and the same API resources (e.g. Deployment); moreover, the
offloaded resources should be seen as if they were on the user’s cluster, so
that he can use them without changing his interaction with Kubernetes;

• autonomous: the user can set some policies, but even without them the
system should work as well, deciding if and where to offload a job; the user
could even work in the cluster without knowing that his applications are
executed somewhere else;

• decentralized: if a cluster is offloading its applications, it should have the
complete control over them and it should be the one that takes scheduling
decisions, not a centralized entity.

17

Chapter 3

Technologies

So far we have often named Kubernetes and described one of the tools it offers,
Kubefed. In this chapter we will analyse Kubernetes architecture, showing also
its history and evolution though time, in order to lay the foundations for all the
work which will be exposed later on. Kubernetes (often shortened as K8s) is a
huge framework and a deep examination of it would require much more time and
discussion, so we will try to present its main concepts and components; if you are
interested in deepening, please refer to the official documentation, from which this
chapter takes inspiration [10].

The chapter continues with an introduction to other technologies and tools used
to develop the solution, in particular Virtual-Kubelet [22], a project which allows
to create virtual nodes with a particular behaviour, and Kubebuilder [7], a tool
to build custom resources.

3.1 Kubernetes: a bit of history

Around 2004, Google created the Borg system, a small project, with less than
5 people initially working on it. The project was developed as a collaboration
with a new version of Google’s search engine. Borg was a large-scale internal
cluster management system, which “ran hundreds of thousands of jobs, from many
thousands of different applications, across many clusters, each with up to tens of
thousands of machines” [21].

In 2013 Google announced Omega, a flexible and scalable scheduler for large
compute clusters. Omega provided a “parallel scheduler architecture built around
shared state, using lock-free optimistic concurrency control, in order to achieve
both implementation extensibility and performance scalability” [16].

18

Technologies

In the middle of 2014, Google presented Kubernetes as on open-source version
of Borg. Kubernetes was created by Joe Beda, Brendan Burns, and Craig McLuckie,
and other engineers at Google. Its development and design were heavily influenced
by Borg and many of its initial contributors previously used to work on it. The
original Borg project was written in C++, whereas for Kubernetes the Go language
was chosen.

In 2015 Kubernetes v1.0 was released. Along with the release, Google set up a
partnership with the Linux Foundation to form the Cloud Native Computing
Foundation (CNCF) [5]. Since then Kubernetes has incredibly grown, achiev-
ing the CNCF graduated status and being adopted by nearly every big company;
nowadays it has become the de-facto standard for container orchestration [20, 15].

3.2 Applications deployment evolution

Kubernetes is a portable, extensible, open-source platform for running and coor-
dinating containerized applications across a cluster of machines. It is designed to
completely manage the life cycle of applications and services using methods that
provide consistency, scalability, and high availability.

What does “containerized applications” means? In the last decades, the de-
ployment of applications has seen significant changes, which are illustrated in the
picture below.

Figure 3.1. Evolution in applications deployment [10].

Traditionally organizations used to run their applications on physical servers.
One of the problems of this approach was that resource boundaries between applica-
tions could not be applied in a physical server, leading to resource allocation issues.
For example, if multiple applications run on a physical server, one of them could
take up most of the resources, and as a result, the other applications would starve.

19

Technologies

A possibility to solve this problem would be to run each application on a different
physical server, but clearly it is not feasible: the solution could not scale, would
lead to resources under-utilization and would be very expensive for organizations
to maintain many physical servers.

The first real solution has been virtualization. Virtualization allows to run
multiple Virtual Machines on a single physical server. It grants isolation of the
applications between VMs providing a high level of security, as the information of
one application cannot be freely accessed by another application. Virtualization
enables better utilization of resources in a physical server, improves scalability, be-
cause an application can be added or updated very easily, reduces hardware costs,
and much more. With virtualization you can group together a set of physical re-
sources and expose it as a cluster of disposable virtual machines. Isolation certainly
brings many advantages, but it requires a quite ‘heavy’ overhead: each VM is a full
machine running all the components, including its own operating system, on top of
the virtualized hardware.

A second solution which has arrived recently is containerization. Containers
are similar to VMs, but they share the operating system among the applications,
relaxing isolation properties. Therefore, containers are considered a lightweight
form of virtualization. Similarly to a VM, a container has its own filesystem, CPU,
memory, process space etc... One of the key features of containers is that they
are portable: as they are decoupled from the underlying infrastructure, they are
totally portable across clouds and OS distributions. This property is particularly
relevant nowadays, with cloud computing: a container can be moved without any
problem across different machines. Moreover, being “lightweight”, containers are
much faster than virtual machines: they can be booted, started, run and stopped
with very a little effort and in a short time.

3.3 Container orchestrators

When hundreds or thousands of containers are created, the need of a way to manage
them becomes essential; container orchestrators serve this purpose. A container
orchestrator is a system designed to easily manage complex containerization de-
ployments across multiple machines from one central location. This management
includes the containers themselves, the hosts, networking, storage etc... The most
famous orchestrators are Kubernetes, Docker Swarm and Apache Mesos; the one
which we will focus on and describe in the following is Kubernetes.

20

Technologies

Figure 3.2. Container orchestrators use [3].

Kubernetes provides you with [10]:

• Service discovery and load balancing Kubernetes can expose a container
using the DNS name or using their own IP address. If traffic to a container
is high, Kubernetes is able to load balance and distribute the network traffic
so that the deployment is stable.

• Storage orchestration Kubernetes allows you to automatically mount a
storage system of your choice, such as local storages, public cloud providers,
and more.

• Automated rollouts and rollbacks You can describe the desired state for
your deployed containers using Kubernetes, and it can change the actual state
to the desired state at a controlled rate. For example, you can automate
Kubernetes to create new containers for your deployment, remove existing
containers and adopt all their resources to the new container.

• Automatic bin packing You provide Kubernetes with a cluster of nodes
that it can use to run containerized tasks. You tell Kubernetes how much
CPU and memory (RAM) each container needs. Kubernetes can fit containers
onto your nodes to make the best use of your resources.

• Self-healing Kubernetes restarts containers that fail, replaces containers,
kills containers that don’t respond to your user-defined health check, and
doesn’t advertise them to clients until they are ready to serve.

• Secret and configuration management Kubernetes lets you store and
manage sensitive information, such as passwords, OAuth tokens, and SSH

21

Technologies

keys. You can deploy and update secrets and application configuration with-
out rebuilding your container images, and without exposing secrets in your
stack configuration

After having illustrated the main high-level features of Kubernetes, we can
finally analyse its components and architecture.

3.4 Kubernetes architecture

When you deploy Kubernetes, you have a cluster. A Kubernetes cluster consists of
a set of machines, called nodes, that run containerized applications. At least one of
the nodes hosts the control plane and is called master: it manages the cluster and
expose an interface to the user. The worker node(s) host the pods that are the
components of the application. The master manages the worker nodes and the pods
in the cluster. In production environments, the control plane usually runs across
multiple machines and a cluster runs multiple nodes, providing fault-tolerance and
high availability.

Here’s the diagram of a Kubernetes cluster with all the components linked
together.

Figure 3.3. Kubernetes architecture [10].

3.4.1 Control plane components

The control plane’s components make global decisions about the cluster (for exam-
ple, scheduling), as well as detecting and responding to cluster events (for example,

22

Technologies

starting up a new pod). They can be run on any machine in the cluster. However,
for simplicity, they are typically executed all together on the same machine, which
do not run user containers.

API server

The API server is the component of the Kubernetes control plane that exposes
the Kubernetes REST API: it is the front end for the Kubernetes control plane.
Its function is to intercept REST request, validate and process them. The main
implementation of a Kubernetes API server is kube-apiserver. It is designed to
scale horizontally, which means it scales by deploying more instances. Moreover,
it can be easily redounded to run several instances of it and balance traffic among
them.

etcd

etcd is a distributed, consistent and highly-available key value store used as Kuber-
netes’ backing store for all cluster data. It is based on the Raft consensus algorithm
[17], which allows different machines to work as a coherent group and survive to
the breakdown of one of its members. etcd can be stacked in the master node or
external, installed on dedicated host. Only the API server can communicate with
it.

Scheduler

Control plane component that is responsible for instantiating the pods. The one
provided by Kubernetes is called kube-scheduler, but it can be customized by
adding new schedulers and indicating in the pods to use them. kube-scheduler

watches for newly created pods not assigned to a node yet, and selects one for
them to run on. To make its decisions, it considers singular and collective resource
requirements, hardware / software / policy constraints, affinity and anti-affinity
specifications, data locality, inter-workload interference and deadlines.

kube-controller-manager

Component that runs controller processes. It continuously compares the desired
state of the cluster (given by the objects specifications) with the current one (read
from etcd). Logically, each controller is a separate process, but to reduce complex-
ity, they are all compiled into a single binary and run in a single process. These
controllers include:

23

Technologies

• Node Controller: responsible for noticing and reacting when nodes go down.

• Replication Controller: in charge of maintaining the correct number of pods
for every replica object in the system.

• Endpoints Controller: populates the Endpoint objects (which links Services
and Pods).

• Service Account & Token Controllers: create default accounts and API access
tokens for new namespaces.

cloud-controller-manager

This component runs controllers that interact with the underlying cloud providers.
The cloud-controller-manager binary is a beta feature introduced in Kubernetes
1.6. It only runs cloud-provider-specific controller loops. You can disable these
controller loops in the kube-controller-manager.

cloud-controller-manager allows the cloud vendor’s code and the Kubernetes
code to evolve independently of each other. In prior releases, the core Kubernetes
code was dependent upon cloud-provider-specific code for functionality. In future
releases, code specific to cloud vendors should be maintained by the cloud vendor
themselves, and linked to cloud-controller-manager while running Kubernetes.
Some examples of controllers with cloud provider dependencies are:

• Node Controller: checks the cloud provider to update or delete Kubernetes
nodes using cloud APIs.

• Route Controller: responsible for setting up network routes in the cloud in-
frastructure.

• Service Controller: for creating, updating and deleting cloud provider load
balancers.

• Volume Controller: creates, attaches, and mounts volumes, interacting with
the cloud provider to orchestrate them.

3.4.2 Node components

Node components run on every node, maintaining running pods and providing the
Kubernetes runtime environment.

24

Technologies

Container Runtime

The container runtime is the software that is responsible for running containers.
Kubernetes supports several container runtimes: Docker, containerd, CRI-O, and
any implementation of the Kubernetes CRI (Container Runtime Interface).

kubelet

An agent that runs on each node in the cluster, making sure that containers are
running in a pod. The kubelet receives from the API server the specifications of
the Pods and interacts with the container runtime to run them, monitoring their
state and assuring that the containers are running and healthy. The connection with
the container runtime is established through the Container Runtime Interface
and is based on gRPC.

kube-proxy

kube-proxy is a network agent that runs on each node in your cluster, implementing
part of the Kubernetes Service concept. It maintains network rules on nodes, which
allow network communication to your Pods from inside or outside of the cluster.
If the operating system is providing a packet filtering layer, kube-proxy uses it,
otherwise it forwards the traffic itself.

Addons

Features and functionalities not yet available natively in Kubernetes but imple-
mented by third parties pods. Some examples are DNS, dashboard (a web gui),
monitoring and logging.

3.5 Kubernetes objects

Kubernetes defines several types of objects, which constitutes its building blocks.
Usually, a K8s resource object contains the following fields [8]:

• apiVersion: the versioned schema of this representation of the object;

• kind: a string value representing the REST resource this object represents;

• ObjectMeta: metadata about the object, such as its name, annotations, labels
etc...

25

Technologies

Figure 3.4. Kubernetes master and worker nodes [10].

• ResourceSpec: defined by the user, it describes the desired state of the object;

• ResourceStatus: filled in by the server, it reports the current state of the
resource.

The allowed operations on these resources are the typical CRUD actions:

• Create: create the resource in the storage backend; after a resource is create
the system will apply the desired state.

• Read: comes with 3 forms

– Get: retrieve a specific resource object by name;

– List: retrieve all resource objects of a specific type within a namespace,
and the results can be restricted to resources matching a selector query;

– Watch: stream results for an object(s) as it is updated.

• Update: comes with 2 forms

– Replace: replace the existing spec with the provided one;

– Patch: apply a change to a specific field.

• Delete: delete a resource; depending on the specific resource, child objects
may or may not be garbage collected by the server.

In the following we will illustrate the main objects we will need in the next chapters.

26

Technologies

3.5.1 Label & Selector

Labels are key-value pairs attached to a K8s object and used to organize and mark
a subset of objects. Selectors are the grouping primitives which allow to select a
set of objects with the same label.

3.5.2 Namespace

Namespaces are virtual partitions of the cluster. By default, Kubernetes creates 4
Namespaces:

• kube-system: it contains objects created by K8s system, mainly control-
plane agents;

• default: it contains objects and resources created by users and it is the one
used by default;

• kube-public: readable by everyone (even not authenticated users), it is used
for special purposes like exposing cluster public information;

• kube-node-lease: it maintains objects for heartbeat data from nodes.

It is a good practice to split the cluster into many Namespaces in order to better
virtualize the cluster.

3.5.3 Pod

Pods are the basic processing units in Kubernetes. A pod is a logic collection of one
or more containers which share the same network and storage, and are scheduled
together on the same pod. Pods are ephemeral and have no auto-repair capacities:
for this reason they are usually managed by a controller which handles replication,
fault-tolerance, self-healing etc...

3.5.4 ReplicaSet

ReplicaSets control a set of pods allowing to scale the number of pods currently in
execution. If a pod in the set is deleted, the ReplicaSet notices that the current
number of replicas (read from the Status) is different from the desired one (specified
in the Spec) and creates a new pod. Usually ReplicaSets are not used directly: a
higher-level concept is provided by Kubernetes, called Deployment.

27

Technologies

Figure 3.5. Kubernetes pods [10].

3.5.5 Deployment

Deployments manage the creation, update and deletion of pods. A Deployment
automatically creates a ReplicaSet, which then creates the desired number of pods.
For this reason an application is typically executed within a Deployment and not
in a single pod.

This is an example of a Deployment

apiVersion: apps/v1

kind: Deployment

metadata:

name: nginx-deployment

labels:

app: nginx

spec:

replicas: 3

selector:

matchLabels:

app: nginx

template:

metadata:

labels:

app: nginx

spec:

containers:

- name: nginx

image: nginx:1.7.9

ports:

- containerPort: 80

Listing 3.1. Basic example of Kubernetes Deployment [10].

The code above allows to create a Deployment with name nginx-deployment and
a label app, with value nginx. It creates three replicated pods and, as defined in

28

Technologies

the selector field, manages all the pods labelled as app:nginx. The template field
shows the information of the created pods: they are labelled app:nginx and launch
one container which runs the nginx DockerHub image at version 1.7.9 on port 80.

3.5.6 Service

A Service is an abstract way to expose an application running on a set of Pods as a
network service. It can have different access scopes depending on its ServiceType:

• ClusterIP: Service accessible only from within the cluster, it is the default
type;

• NodePort: exposes the Service on a static port of each Node’s IP; the
NodePort Service can be accessed, from outside the cluster, by requesting
<NodeIP>:<NodePort>;

• LoadBalancer: exposes the Service externally using a cloud provider’s load
balancer;

• ExternalName: maps the Service to an external service so that internal
apps can access it.

Pod

Node

Figure 3.6. Kubernetes Services [10].

29

Technologies

The following Service is named my-service and redirects requests coming from
TCP port 80 to port 9376 of any Pod with the app=MyApp label.

apiVersion: v1

kind: Service

metadata:

name: my-service

spec:

selector:

app: myApp

ports:

- protocol: TCP

port: 80

targetPort: 9376

Listing 3.2. Basic example of Kubernetes Service [10].

3.6 Virtual-Kubelet

Two Kubernetes-based tools which have been used during the developing work are
Virtual-Kubelet and Kubebuilder. Virtual Kubelet is an open source Kubernetes
kubelet implementation that masquerades a cluster as a kubelet for the purposes
of connecting Kubernetes to other APIs [22]. Virtual Kubelet is a Cloud Native
Computing Foundation sandbox project.

The project offers a provider interface developers need to implement in order to
use it. The official documentation says that “providers must provide the following
functionality to be considered a supported integration with Virtual Kubelet

1. Provides the back-end plumbing necessary to support the lifecycle manage-
ment of pods, containers and supporting resources in the context of Kuber-
netes.

2. Conforms to the current API provided by Virtual Kubelet.

3. Does not have access to the Kubernetes API Server and has a well-defined
callback mechanism for getting data like secrets or configmaps.” [22]

30

Technologies

Figure 3.7. Virtual-Kubelet concept [22].

3.7 Kubebuilder

Kubebuilder is a framework for building Kubernetes APIs using Custom Resource
Definitions (CRDs) [7].

CustomResourceDefinition is an API resource offered by Kubernetes which
allows to define Custom Resources (CRs) with a name and schema specified by
the user. When you create a new CustomResourceDefinition, the Kubernetes API
server creates a new RESTful resource path; the CRD can be either namespaced or
cluster-scoped. The name of a CRD object must be a valid DNS subdomain name.

ACustom Resource is an endpoint in the Kubernetes API that is not available
in a default Kubernetes installation and which frees users from writing their own
API server to handle them [10]. On their own, custom resources simply let you
store and retrieve structured data. In order to have a more powerful management,
you also need to provide a custom controller which executes a control loop over the
custom resource it watches: this behaviour is called Operator pattern [11].

Kubebuilder helps a developer in defining his Custom Resource, taking auto-
matically basic decisions and writing a lot of boilerplate code. These are the main
actions operated by Kubebuilder:

1. Create a new project directory.

31

Technologies

2. Create one or more resource APIs as CRDs and then add fields to the re-
sources.

3. Implement reconcile loops in controllers and watch additional resources.

4. Test by running against a cluster (self-installs CRDs and starts controllers
automatically).

5. Update bootstrapped integration tests to test new fields and business logic.

6. Build and publish a container from the provided Dockerfile. [7]

32

Chapter 4

Protocol

The goal of the protocol is to allow communication between different Kubernetes
clusters so that applications, or in general jobs, of each cluster can be sent and
executed on other domains. This allows to set up a ‘pool of clusters’ in which free
resources of each member are made available and shared with others.

The general idea behind this protocol is to exploit periodic advertisement mes-
sages in which a cluster exposes its capabilities. These messages are then used to
build a local table that will be analysed to decide where to send the jobs. If the
lookup fails for any reason, the protocol provides the possibility to launch an ad-hoc
auction for that specific request.

4.1 Point to point connections

In this first scenario there are different K8s clusters, belonging to various entities
(companies or users) that may have previously signed a sort of agreement to com-
municate between each other. Therefore, each member knows the others and has
a direct connection with them.

Each cluster periodically sends its advertisement and receives the ones from
others, maintaining an advertisement table.

Whenever a user submits a job to its cluster (a personal one or the one of his
company), it decides whether to execute it locally or to delegate it to someone else.
In the latter case, the cluster (that will be called home cluster) makes a lookup
in its table: an algorithm determines the best set of clusters to host the job and,
when found, request messages are sent to the chosen clusters; they will reply with
an implicit ack/nack to confirm, or not, the instantiation of the requested job.

33

Protocol

Cluster 1

Cluster 3

Cluster 2ADVERTISEMENT

ADVERTISEMENTADVERTISEMENT

Adv
table

Adv
table

Adv
table

Figure 4.1. Advertisement messages exchange.

A job can be composed by several components, which can be scheduled on
different clusters: the networking module will deal with the interconnection between
all the cluster needed to execute the application.

3. REQUEST

Cluster 1

Cluster 3

4. ACK/NACK

Cluster 2
Adv
table

Adv
table

Adv
table

1. REQUEST

User

2. Lookup

Figure 4.2. Request submitted by a user and sent to another cluster.

4.1.1 Ad-hoc request

The protocol supports also the possibility that the lookup in the advertisement table
fails (e.g. not enough announced resources or request policies cannot be satisfied).

34

Protocol

In this case, the home cluster can make a specific hosting request to other
clusters, triggering an auction in real-time. Each cluster sends its offer ; the home
cluster collects all of them and decides where to send the single components or
the whole application; the requests are followed, as in the previous scenario, by an
ack/nack.

3. QUOTE

Cluster 1

Cluster 3

4. OFFER

Cluster 2
Adv
table

Adv
table

Adv
table

1. REQUEST

User

2. Lookup

3. QUOTE
4. OFFER

6. REQUEST

7. ACK/NACK

5. Decision

Figure 4.3. Request served with an auction.

Offer messages are different from advertisements : offer contains the prices for
the deployments of the requested application; advertisement contains the prices for
the cluster resources (cpu, ram, images...). Therefore, offers do not modify the
advertisement table: they are specific messages related to the current auction and
forgotten when the auction expires, as visible in the messages details in sections
4.2.1 and 4.2.6.

4.1.2 Operating and release phases

While the application is running on remote clusters, the home cluster checks peri-
odically if its offloaded components are still alive and the clusters exchange traffic
for the communication between the different components.

When the user does no longer need the application, he sends a release message
to his home cluster, which is forwarded it to all the clusters that are currently
hosting one or more components of the application itself.

35

Protocol

4.2 Messages

4.2.1 Advertisement

Two types of messages are sent:

• full advertisement : it contains all the information about the cluster; it is sent
every 30 minutes;

• partial advertisement : it contains only the free available resources (availabil-
ity) and is also used as hello message; it is sent every 10 minutes.

{

"cluster_id": string,

"resources": [

"image1": {...},

...

],

"availability": [...],

"prices": [...],

"network": {...},

"flags": [...],

"timestamp": datetime,

"timeToLive": datetime,

"status": string

}

Listing 4.1. Advertisement message.

• cluster id: unique id of the cluster;

• resources: images already mounted;

• availability: free resources (cpu, memory...);

• prices: prices of the previous resources (images and availability);

• network: network information about the cluster (e.g. internal CIDR, gateway
IP...);

• flags: various flags for different purposes (e.g. aggregation information);

• timestamp: instant in which this message has been created;

• timeToLive: time of validity of this advertisement;

36

Protocol

• status: status of the advertisement set by the receiving cluster (e.g. the
advertisement has been accepted or not).

The above fields are mandatory for every Advertisement message, but new fields
can be added in other implementations. The flags field serves exactly this purpose:
a cluster can define its own flags and, if needed, the additional fields related. If a
cluster does not understand a certain flag, it will simply ignore it and all the fields
it does not know. For example, a cluster could add the flag aggregated = true

indicating that the resources announced in its advertisements are the sum of its
own resources and the ones of other clusters. When doing this, it can be necessary
to add a field advertisements in which it inserts the advertisement messages it
is aggregating. Another example could be the flag aggregatable = false which
prevents other clusters from aggregating the advertisement.

The status fields allows the receiving cluster to insert its own information in the
advertisement message of another, so that the sender can read them. For example
it can specify if the advertisement has been accepted or not.

Advertisement table

The advertisement table maintains the information about all the clusters that have
sent their advertisement. When a cluster builds its table, it can enrich the messages
with additional data, for example network information (e.g. latency, bandwidth,
etc.). If an hello message is not received from a cluster for more than 30 minutes
(3 messages lost) its entry is deleted.

Cluster id Images Availability Prices Latency Timestamp TimeToLive

cluster1 id
image1 cpu cpu L1 T10 T11
image2 memory memory

image1
image2

cluster2 id
image2 cpu cpu L2 T20 T21
image3 memory memory

image2
image3

Table 4.1. Advertisement table.

4.2.2 Request (user → cluster)

The request message contains all the data about the application the user wants to
execute.

37

Protocol

{

"app_id": string,

"app_info": {

"app_components": [...],

...

},

"policies": [...],

"timestamp": datetime,

"timeToLive": datetime

}

Listing 4.2. Request message.

Its main fields are the following:

• app id: id of the application;

• app info: information about the application to be executed (e.g. components
of the application);

• policies: rules the user sets for his application (e.g. blacklist of clusters,
network requirements...).

4.2.3 Request (cluster → cluster)

Once the home cluster has received the request from the user, it decides, using its
advertisement table, to which clusters it will assign the various application compo-
nents or, potentially, the whole application; it keeps track of these assignments in
the application table.

{

"app_id": string,

"app_components": [...]

}

Listing 4.3. Request message sent by home cluster to others.

Applications table

Each cluster maintains two tables: the first one listing its own applications hosted
by other clusters, the second one with applications coming from other clusters,
hosted locally. Since the two tables have the same structure, we show here only the
application table (Table 4.2).

38

Protocol

App id Components Assigned to / Belongs to

app1 id
component1 cluster1 id
component2 cluster2 id

app2 id
component2 cluster2 id
component3 cluster3 id

Table 4.2. Applications table.

4.2.4 Acknowledge

When a cluster has been chosen by another and receives the request message, it it
sends an instantiation confirm or, if it is no longer available, an explicit refusal.

{

"app_id": string,

"cluster_id": string,

"confirm": boolean

}

Listing 4.4. Acknowledge message.

4.2.5 Quote

It contains the components of the application for the auction in progress.

Note: cluster id is the id of the home cluster

{

"cluster_id": string,

"app_id": string,

"app_components": [...],

"timestamp": datetime,

"timeToLive": datetime

}

Listing 4.5. Quote message.

4.2.6 Offer

It contains the offers of the remote cluster for the auction in progress.

Note: cluster id is the id of the remote cluster

{

"cluster_id": string,

"app_id": string,

39

Protocol

"offers": [

"app": {

"interest": number,

"price": number

},

"component1_id": {

"interest": number,

"price": number

}

...

],

}

Listing 4.6. Offer message.

• offers: list of the offers to host the whole application (app field) or the single
components; if interest = 0 the item cannot be assigned to the cluster.

4.3 Broker

In this scenario each cluster sends its advertisement as before, but clusters commu-
nicate to a broker instead of a foreign domain. Therefore, the broker maintains the
advertisement table with the information about all clusters connected to it. This
way, the involved clusters do no longer need to directly know each other; further-
more, also the joining to the ‘cluster pool’ is simplified: it is only necessary to make
a deal with the broker to get to know all the other members and to be announced
to them.

The protocol acts exactly as in the point-to-point scenario; the only difference
is that the advertisement table is kept and queried on the broker and not locally.
Possibly, a cluster can periodically pull the table and keep a local copy to have
faster lookups and to decrease the load on the broker. After the lookup in the table
and the selection of the cluster set, the communication between the clusters can
always pass through the broker or it can specify them the IP addresses to use to
speak with each other directly.

The broker can also provide a certified service: it can for example suggest a
given cluster because it has a very good network connection or because it has a
high stability and low downtime. Therefore, the broker can introduce additional
value in the system, helping cluster to select which one is the best foreign cluster
for their services.

40

Protocol

Cluster 1

Cluster 3

Cluster 2

Broker
ADVERTISEMENT ADVERTISEMENT

ADVERTISEMENT

Adv table

Figure 4.4. Advertisement messages exchange with broker.

Cluster 1

Cluster 3

Cluster 2

Broker

Adv table

2. Lookup

1. REQUEST

User

3. REQUEST 4. REQUEST

5. ACK/NACK6. ACK/NACK

Figure 4.5. Request submitted by a user and sent to another cluster
through the broker.

41

Chapter 5

Software architecture

This chapter presents an overview of the developed software architecture, showing
the general structure of the solution and deepening the part related to the protocol,
which is the one addressed by this thesis.

5.1 Global architecture

The developed solution is split into 3 main components:

• jobs scheduling;

• inter-cluster communication;

• networking.

Cluster#2

dronet

droned

drone

pods

job#1 job#2 job#n

endpoints
management

Cluster#1

dronet

droned

drone

pods

job#1 job#2 job#n

internet

Figure 5.1. Software components.

42

Software architecture

We will describe the second component, which is in charge of realizing the
communication between the clusters through the protocol described in chapter 4.
The information provided by this component is used by the scheduling module to
distribute jobs across the clusters and by the networking one to set up tunnels and
endpoints which enable the network connection between the clusters.

The software architecture is illustrated in the picture below. For the sake of
simplicity, we show only two clusters, but the communication may occur between
an arbitrary number of them.

Home cluster

Remote
clusters

list

Broadcaster

Outgoing
Advertisement

Incoming
Advertisement

Virtual
Node

Out
policies

In
policies

Neighbour
Policies

Controller

Cluster resources

Node
Node

Node

Admin
Foreign cluster

Remote
clusters

list

BroadcasterOutgoing
Advertisement

Incoming
Advertisement

Virtual
Node

Out
policies

In
policies

Neighbour
Policies

Cluster resources

Node
Node
Node

Controller

Admin

Figure 5.2. Architecture.

The administrator can define some neighbour policies which will be used to accept
or modify the incoming Advertisement and will be applied to outgoing messages.
These policies are injected in two modules and will be applied during execution.
Two chains can be identified:

• Outgoing chain:

1. A list of the remote clusters is provided (by the admin or through a
discovery protocol).

2. The broadcaster reads this information to create a client to the foreign
clusters.

3. The broadcaster reads the cluster resources and, after applying some
policies, creates an Advertisement.

4. The Advertisement is pushed to the foreign cluster.

• Incoming chain:

1. An Advertisement is received from the foreign cluster.

43

Software architecture

2. The Advertisement is checked by a policy block.

3. If the Advertisement is accepted it is sent to the controller.

4. The controller creates a virtual node with the information taken by
the Advertisement.

In the following a deeper description of the main modules is provided.

5.2 Broadcaster

The broadcaster is in charge of sending to other clusters the Advertisement message,
containing the resources made available for sharing and their prices. Before exiting,
the message can be modified by the outgoing policies: this allows for example to
differentiate the previous information for every receiving cluster.

Cluster 1

Cluster 4 Cluster 3

Cluster 2

cpu: 5 0.01€/cpu
ram: 10GB 0.05€/GB
images: nginx 0.1€/h

cpu: 15 0.01€/cpu
ram: 40GB 0.02€/GB
images: nginx 0.05€/h
 mysql 0.08€/h

cpu: 8 0.01€/cpu
ram: 20GB 0.03€/GB
images: mysql 0.1€/h

Figure 5.3. Broadcaster differentiation example.

There are two main use case scenarios we are interested in:

• Commercial agreement: clusters sell their resources to others and get paid
accordingly.

• Sharing: clusters add their resources to a shared ‘pool’ and get from it when
they need them, without a payment.

44

Software architecture

The second use case is particularly interesting: imagine when you are at home, there
are 4 laptops but nobody is using them; their resources are completely available
and unused. With sharing, you can offload part of your jobs to them, reducing
the load on your machine and enabling the execution of more powerful applications
which your computer alone could not bear. The same scenario can be applied in
an office, among the clusters in the internal network.

5.3 Controller

The controller is the module that receives Advertisement messages and creates the
virtual nodes with the announced resources. Doing so, the scheduler can read the
virtual nodes and decide where to offload the jobs it receives, also considering the
requested prices. Before being processed by the controller, messages are checked
by the incoming policies block, which can accept or refuse an Advertisement.

cpu: 5 0.01€/cpu
ram: 10GB 0.05€/GB
images: nginx 0.1€/h

cpu: 15 0.01€/cpu
ram: 40GB 0.02€/GB
images: nginx 0.05€/h
 mysql 0.08€/h

Virtual
Node

Advertisement 1

Controller

Advertisement 2

Advertisement 3

cpu: 15
ram: 40 GB
images: nginx
 mysql

Cluster 3

cpu: 5
ram: 10 GB
images: nginx

Cluster 1

Figure 5.4. Controller reconciliation from Advertisement to Virtual Node.

In the example above, the Advertisement from cluster 2 is discarded, whereas the
other messages received are accepted and translated in two virtual nodes. A possible
question could be: “Why do I need to create a virtual node? I could simply watch
the Advertisements and schedule over them”. This is true, but it would force
to adopt a custom scheduler that observes Advertisement resources: instead, the
native scheduler uses nodes to take its decisions. Therefore this solution works even
with the standard Kubernetes scheduler, although a custom one can provide better
results as it considers more rules and constraints.

45

Software architecture

5.4 Policies

As discussed before, the behaviour of the broadcaster and controller depends on
the policies which have been set. A common way to set policies is to use the Open
Policy Agent (OPA), an open source, general-purpose policy engine that enables
unified, context-aware policy enforcement across the entire stack. OPA is a CNCF
incubating-level project [14].

OPA decouples policy decision-making from policy enforcement. When your
software needs to make policy decisions it queries OPA, providing structured data
(e.g. JSON, YAML...) as input. The data that the service or its users publish can
be inspected and transformed using OPA’s native query language, Rego. Rego
is a high-level declarative language, inspired by Datalog but which extends it to
support structured document models such as JSON1.

Figure 5.5. OPA policy decoupling [13].

OPA and Rego are domain-agnostic so you can describe almost any kind of
objects in your policies, from which users are allowed to access which resources
to which times of day the system is accessible. Moreover, policy decisions are not
limited to simple yes/no or allow/deny answers: they can produce any structured
data as output.

1Check the official documentation for further information about Rego language basics https:
//www.openpolicyagent.org/docs/latest/policy-language/

46

https://www.openpolicyagent.org/docs/latest/policy-language/
https://www.openpolicyagent.org/docs/latest/policy-language/

Software architecture

Generally speaking, a policy is a set of rules that controls the behaviour of a
software service. It can describe rate-limits, names of trusted servers, the clusters
an application should be deployed to, and more. Authorization is a special kind of
policy that says which people (or machines) can perform which actions on which
resources. Authorization is sometimes confused with Authentication (how people
or machines prove their identity). Authorization often exploits the results of au-
thentication (username, user attributes, groups...), but makes decisions based on
far more information than just who the user is; some policy decisions have even
nothing to do with users.

Today policy is often a hard-coded feature of the software service it administers.
Open Policy Agent allows the decoupling of policy from that software service, so
that the people responsible for policy can read, write, analyze, and in general
manage policy separately from the service itself [13].

The proposed solution requires mainly two types of policies:

• admission/validation policies: they could be applied to incoming Advertise-
ment to remove the ones we are not interested in or validate the data we are
receiving;

• mutation policies: they could be used both for incoming Advertisement (e.g.
some values are invalid so they are modified with legal ones) and outgoing Ad-
vertisement, for example if we want to differentiate the resources announced
or their prices on the basis of the destination cluster.

As explained, OPA offers a convenient way to define these types of policies, but
being very generic it can be also used for more complicated ones, like scheduling
policies: for example, the user could influence the scheduling of the pods across the
various clusters on the basis of some parameters he has chosen.

47

Chapter 6

Implementation

This chapter will present the implementation of the software solution discussed in
the previous chapter. For the reasons detailed in section 3.3, Kubernetes has been
chosen as orchestrator. The developed code has been written in Go, which is the
language in which Kubernetes and all related projects are written.

The implementation is composed by two main modules:

• Advertisement Operator: an operator that broadcasts Advertisement mes-
sages and reconciles the ones received, creating virtual nodes. This component
leverages the concept of Custom Resource Definition presented in section 3.7
and exploits Kubebuilder for code generation.

• Kubernetes VK provider: implementation of a provider for the Virtual-
Kubelet project, previously illustrated in section 3.6.

6.1 Advertisement operator

The Advertisement operator is the core of the implementation developed during
this work. It is composed by the logical blocks described in chapter 5 and detailed
in the image below. In the following we will possibly refer to the cluster that sends
the Advertisement as home cluster and the one that receives it as foreign cluster.

Before launching the operator two steps are required:

• install the Advertisement CRD on your cluster;

• install all the ConfigMaps containing the kubeconfig of every foreign cluster
you will connect to.

48

Implementation

Broadcaster

Outgoing
Advertisement

Incoming
Advertisement

Out
policies

In
policies

Cluster resources

Node
Node

Node Virtual
Node

Controller

Remote
clusters

list

Images

VN

CM
CM
CM

Deploy

SA CR

CM
CM

RemoteKubeconfig

Figure 6.1. Implementation architecture.

6.1.1 Advertisement API definition

The Advertisement message has been modelled as a Custom Resource, which easily
allows to extend Kubernetes API. Using Kubebuilder, a struct object with the

49

Implementation

requested fields has to be defined: the tool provides a Makefile which generates a
CustomResourceDefinition from the designed struct.

As most of Kubernetes objects, an Advertisement contains the four fields:

• metav1.TypeMeta and metav1.ObjectMeta: the metadata of the object (e.g.
name, namespace, kind, resourceVersion...);

• Spec: contains the desired state of the object;

• Status: defines the observed state of the object.

// Advertisement is the Schema for the advertisements API

type Advertisement struct {

metav1.TypeMeta ̀json:",inline"̀
metav1.ObjectMeta ̀json:"metadata,omitempty"̀

Spec AdvertisementSpec ̀json:"spec,omitempty"̀
Status AdvertisementStatus ̀json:"status,omitempty"̀

}

Listing 6.1. Advertisement struct definition.

AdvertisementSpec holds the information the home cluster is announcing to oth-
ers. Every cluster has a unique ClusterId, which is a simple string possibly
derived by the DNS domain name of the cluster itself, and sends the Images

already mounted on it and its Availability (in terms of cpu, memory etc...);
ContainerImage1 is a struct defined by Kubernetes API containing the names by
which the image is known and its size in bytes, ResourceList2 is a map where the
key is the name of the resource and the value is its quantity.

Each one of the above resources have an associated price in the Prices field,
with a content similar to the following:

prices["cpu"] = 2

prices["memory"] = 3

prices["nginx"] = 10

The NetworkInfo field contains network information about the cluster, for example
the address space of its pods (PodCIDR). Finally, the struct contains a Timestamp

and a TimeToLive fields.

1https://godoc.org/k8s.io/api/core/v1#ContainerImage

2https://godoc.org/k8s.io/api/core/v1#ResourceList

50

https://godoc.org/k8s.io/api/core/v1#ContainerImage
https://godoc.org/k8s.io/api/core/v1#ResourceList

Implementation

type NetworkInfo struct {

PodCIDR string ̀json:"podCIDR"̀
GatewayIP string ̀json:"gatewayIP"̀
// +optional

SupportedProtocols []string ̀json:"supportedProtocols,omitempty"̀
}

// AdvertisementSpec defines the desired state of Advertisement

type AdvertisementSpec struct {

ClusterId string json:"clusterId"

// +optional

Images []corev1.ContainerImage ̀json:"images,omitempty"̀
Availability corev1.ResourceList ̀json:"availability"̀
Prices corev1.ResourceList ̀json:"prices"̀
Network NetworkInfo ̀json:"network"̀
Timestamp metav1.Time ̀json:"timestamp"̀
TimeToLive metav1.Time ̀json:"timeToLive"̀

}

Listing 6.2. AdvertisementSpec struct definition.

AdvertisementStatus is set by the receiving cluster and filled with information
the sending cluster can read. Acknowledgement field holds the status of the Adver-
tisement (Accepted, Pending, Refused); ForeignNetwork contains network infor-
mation about cluster foreign which are needed by cluster home in order to set up
network connection; ObservedGeneration is needed by the controller to distinguish
different types of requests (we will explain this in section 6.1.3).

// AdvertisementStatus defines the observed state of Advertisement

type AdvertisementStatus struct {

Acknowledgement string ̀json:"acknowledgement"̀
ForeignNetwork NetworkInfo ̀json:"foreignNetwork"̀
// +optional

ObservedGeneration int64 ̀json:"observedGeneration,omitempty"̀
}

Listing 6.3. AdvertisementStatus struct definition.

The installation of the CRD creates two API endpoints that can be contacted:

• /apis/protocol.drone.com/v1/namespaces/default/advertisements: the
list of all Advertisements;

• /apis/protocol.drone.com/v1/namespaces/default/advertisements/{id}:
the specific Advertisement with the given id.

51

/apis/protocol.drone.com/v1/namespaces/default/advertisements
/apis/protocol.drone.com/v1/namespaces/default/advertisements/{id}

Implementation

6.1.2 Broadcaster

The broadcaster is in charge of sending to other clusters the Advertisement message.
It has been implemented as a standalone component launched by the main process
in another goroutine.

The StartBroadcaster function receives as parameters the ID of the home
cluster (clusterId); localKubeconfig and foreignKubeconfig can be used for
debugging purposes but are not needed when deploying in Kubernetes. The func-
tion reads the kubeconfigs of the foreign clusters from the ConfigMaps previously
installed: with this information it can send its Advertisement to each of them.

func StartBroadcaster(clusterId string, localKubeconfig string,

foreignKubeconfig string) {

// get a client to the local cluster

localClient, err := pkg.NewK8sClient(localKubeconfig, nil)

if err != nil {

log.Error(err, "Unable to create client to local cluster")

return

}

// get configMaps containing the kubeconfig of the foreign clusters

configMaps, err :=

localClient.CoreV1().ConfigMaps("default").List(metav1.ListOptions{})

if err != nil {

log.Error(err, "Unable to list configMaps")

return

}

for _, cm := range configMaps.Items {

if strings.HasPrefix(cm.Name, "foreign-kubeconfig") {

go GenerateAdvertisement(localClient, foreignKubeconfig,

cm.DeepCopy(), clusterId)

}

}

}

Listing 6.4. StartBroadcaster function.

The GenerateAdvertisement function generates an Advertisement CR every 10
minutes and post it to a foreign cluster. It receives a client to the local cluster and
the ConfigMap containing the kubeconfig to the foreign cluster; foreignKubeconfig
Path can be used for debugging purposes. First of all it tries to create a client to the
foreign cluster: after 3 failed attempts the function returns with an error message.
After that, an Advertisement object is forged (using the resources read from the
Nodes of the home cluster) and sent to the foreign cluster, which will create (or
update if it already exists) it.

52

Implementation

func GenerateAdvertisement(localClient *kubernetes.Clientset,

foreignKubeconfigPath string, cm *v1.ConfigMap, clusterId string) {

var remoteClient client.Client

var err error

var retry int

// extract the foreign cluster id from the configMap

foreignClusterId := cm.Name[len("foreign-kubeconfig-"):]

// create a CRDclient to the foreign cluster

for retry = 0; retry < 3; retry++ {

remoteClient, err = pkg.NewCRDClient(foreignKubeconfigPath, cm)

if err != nil {

log.Error(err, "Unable to create client to remote cluster

"+foreignClusterId+". Retry in 1 minute")

time.Sleep(1 * time.Minute)

} else {

break

}

}

if retry == 3 {

log.Error(err, "Failed to create client to remote cluster

"+foreignClusterId)

return

} else {

log.Info("created client to remote cluster " + foreignClusterId)

}

for {

nodes, err :=

localClient.CoreV1().Nodes().List(metav1.ListOptions{LabelSelector:

"type != virtual-node"})

if err != nil {

log.Error(err, "Unable to list nodes")

return

}

adv := CreateAdvertisement(nodes.Items, clusterId)

err = pkg.CreateOrUpdate(remoteClient, context.Background(), log, adv)

if err != nil {

log.Error(err, "Unable to create advertisement on remote cluster

"+foreignClusterId)

} else {

log.Info("correctly created advertisement on remote cluster " +

foreignClusterId)

}

time.Sleep(10 * time.Minute)

}

}

Listing 6.5. GenerateAdvertisement function.

53

Implementation

6.1.3 Controller

The controller is the module that watches Advertisement resources. When an
Advertisement is received, it is checked by the checkAdvertisement method that
applies the policies defined by the administrator and update its status accordingly;
this way the sending cluster can have an acknowledgement by reading the status. If
the object is accepted, the Deployment containing the Virtual-Kubelet is created:
this will spawn the virtual node with the resources announced.

The main logic is quite simple, but there is a problem: the Reconcile method
offered by Kubebuilder is triggered for every modification of the watched Custom
Resource. This can be cumbersome because the Request message received does
not contain the type of the request (create/update/delete). Since the Reconcile

method updates the Advertisement status, an infinite loop can be easily started.
To deal with this problem the following solution has been adopted:

• DELETE: if the Advertisement has been deleted, the Get method will fail and
the error will be ignored.

• UPDATE: the metadata of a K8s object contains a Generation field that is
incremented for all changes, except for changes to metadata or status. This
field is copied in the Advertisement status at creation and for every update of
the spec: by comparing Generation field with the last ObservedGeneration,
status updates can be ignored.

func (r *AdvertisementReconciler) Reconcile(req ctrl.Request) (ctrl.Result,

error) {

// get advertisement

var adv protocolv1.Advertisement

if err := r.Get(ctx, req.NamespacedName, &adv); err != nil {

// reconcile was triggered by a delete request

log.Info("Advertisement " + req.Name + " deleted")

return ctrl.Result{}, client.IgnoreNotFound(err)

}

// The metadata.generation value is incremented for all changes, except

for changes to .metadata or .status

if adv.Status.ObservedGeneration == adv.ObjectMeta.Generation {

return ctrl.Result{}, client.IgnoreNotFound(nil)

}

// filter advertisements and create a virtual-kubelet only for the

accepted ones

adv = checkAdvertisement(adv)

if err := r.Status().Update(ctx, &adv); err != nil {

54

Implementation

log.Error(err, "unable to update Advertisement status")

return ctrl.Result{}, err

}

if adv.Status.Acknowledgement != "ACCEPTED" {

return ctrl.Result{}, errors.NewBadRequest("advertisement ignored")

}

// create configuration for virtual-kubelet with data from adv

vkConfig := createVkConfig(adv)

err := pkg.CreateOrUpdate(r.Client, ctx, log, vkConfig)

if err != nil {

return ctrl.Result{}, err

}

// launch virtual-kubelet deployment

deploy := pkg.CreateVkDeployment(adv)

err = pkg.CreateOrUpdate(r.Client, ctx, log, deploy)

if err != nil {

return ctrl.Result{}, err

}

log.Info("launching virtual-kubelet for cluster " + adv.Spec.ClusterId)

return ctrl.Result{}, nil

}

Listing 6.6. Reconcile method.

6.2 Kubernetes provider

The Kubernetes provider is the component that implements the interface exposed
by Virtual-Kubelet. Many companies have implemented their own provider (Al-
ibaba, Azure, HashiCorp...), which allows a Kubernetes cluster to see and work
transparently with their cloud platforms. The provider that has been implemented
does the same with a K8s cluster, ‘hiding’ the whole cluster behind a virtual Node,
hence avoiding to expose precise information about the cluster itself to foreign
parties.

type PodLifecycleHandler interface {

// CreatePod takes a Kubernetes Pod and deploys it within the provider.

CreatePod(ctx context.Context, pod *corev1.Pod) error

// UpdatePod takes a Kubernetes Pod and updates it within the provider.

UpdatePod(ctx context.Context, pod *corev1.Pod) error

// DeletePod takes a Kubernetes Pod and deletes it from the provider.

55

Implementation

DeletePod(ctx context.Context, pod *corev1.Pod) error

// GetPod retrieves a pod by name from the provider (can be cached).

GetPod(ctx context.Context, namespace, name string) (*corev1.Pod, error)

// GetPodStatus retrieves the status of a pod by name from the provider.

GetPodStatus(ctx context.Context, namespace, name string)

(*corev1.PodStatus, error)

// GetPods retrieves a list of all pods running on the provider (can be

cached).

GetPods(context.Context) ([]*corev1.Pod, error)

}

Listing 6.7. Virtual-Kubelet provider interface [22].

All the methods above refer to a Provider object. The main information contained
in the one implemented are the client to the foreign cluster, the config used to
create the virtual node and the notifier function which allows the provider to
notify the virtual-kubelet about pod status changes.

type KubernetesProvider struct {

client *kubernetes.Clientset

nodeName string

operatingSystem string

internalIP string

daemonEndpointPort int32

config KubernetesConfig

startTime time.Time

notifier func(*v1.Pod)

}

Listing 6.8. KubernetesProvider struct definition.

KubernetesConfig contains the configurable parameters for the virtual-kubelet:
the path to the foreign Kubeconfig file, the resources to set in the virtual node
(CPU, Memory, Pods) and the Namespace to map (i.e. only the pods belonging to
this namespace will be sent to the foreign cluster).

type KubernetesConfig struct {

RemoteKubeConfigPath string ̀json:"remoteKubeconfig,omitempty"̀
CPU string ̀json:"cpu,omitempty"̀
Memory string ̀json:"memory,omitempty"̀
Pods string ̀json:"pods,omitempty"̀
Namespace string ̀json:"namespace,omitempty"̀

}

Listing 6.9. KubernetesConfig struct definition.

56

Implementation

6.2.1 Pod lifecycle methods

The implementation of the interface methods shown in listing 6.7 is quite simi-
lar; the main difference is the action which is performed on the Pod (create/up-
date/delete); therefore we will only describe the CreatePod() and GetPod().

When a pod is submitted (e.g. kubectl create -f pod.yaml) on the home
cluster, the CreatePod() method is triggered. First of all it checks if the pod is
controlled by a DaemonSet; a DaemonSet is a controller which ensures that all
Nodes run a copy of a Pod. These pods are typically related to internal network,
storage, logging or monitoring, so they must not be sent to the foreign cluster.
Second, the pod is transformed so that it can be correctly posted on foreign cluster
and it is created. Finally the local pod is notified by the updates of its remote copy.

func (p *KubernetesProvider) CreatePod(ctx context.Context, pod *v1.Pod)

error {

ctx, span := trace.StartSpan(ctx, "CreatePod")

defer span.End()

// Add the pod’s coordinates to the current span.

ctx = addAttributes(ctx, span, namespaceKey, pod.Namespace, nameKey,

pod.Name)

log.G(ctx).Infof("receive CreatePod %q", pod.Name)

// ignore DaemonSet pods

if pod != nil && pod.OwnerReferences != nil && len(pod.OwnerReferences)

!= 0 && pod.OwnerReferences[0].Kind == "DaemonSet" {

msg := fmt.Sprintf("Skip to create DaemonSet pod %q", pod.Name)

log.G(ctx).WithField("Method", "CreatePod").Info(msg)

return nil

}

// prepare a pod to be pushed on foreign cluster and try to create it

podTranslated := H2FTranslate(pod)

podServer, err :=

p.client.CoreV1().Pods(p.config.Namespace).Create(podTranslated)

if err != nil {

return errors.Wrap(err, "Unable to create pod")

}

log.G(ctx).Info("Pod", podServer.Name, "successfully created on remote

cluster")

p.notifier(pod)

return nil

}

Listing 6.10. CreatePod method.

57

Implementation

GetPod() returns a pod given its name and namespace. The pod received from the
foreign cluster is transformed by a function that is the inverse of the one used to
post the pod and returned by the method.

func (p *KubernetesProvider) GetPod(ctx context.Context, namespace, name

string) (pod *v1.Pod, err error) {

ctx, span := trace.StartSpan(ctx, "GetPod")

defer func() {

span.SetStatus(err)

span.End()

}()

// Add the pod’s coordinates to the current span.

ctx = addAttributes(ctx, span, namespaceKey, namespace, nameKey, name)

log.G(ctx).Infof("receive GetPod %q", name)

opts := metav1.GetOptions{}

podServer, err :=

p.client.CoreV1().Pods(p.config.Namespace).Get(name,opts)

if err != nil {

if kerror.IsNotFound(err) {

return nil, errdefs.NotFoundf("pod \"%s/%s\" is not known to the

provider", namespace, name)

}

return nil, errors.Wrap(err, "Unable to get pod")

}

podInverted := F2HTranslate(podServer, p.config.RemoteNewPodCidr)

return podInverted, nil

}

Listing 6.11. GetPod method.

6.2.2 Pod translation methods

The H2FTranslate() (Home-to-Foreign) function receives a pod from home cluster
and prepares a pod to be pushed on the foreign one, copying only the necessary
fields (Name, Namespace, Labels, Containers). An Affinity field is added so
that the pod on foreign cluster cannot be scheduled on a virtual-kubelet node.
Finally, some original values are saved in Annotations in order to retrieve them in
the inverse translation.

func H2FTranslate(pod *v1.Pod) *v1.Pod {

// create an empty ObjectMeta, copying only "Name" and "Namespace" fields

objectMeta := metav1.ObjectMeta{

Name: pod.ObjectMeta.Name,

Namespace: pod.ObjectMeta.Namespace,

Labels: pod.Labels,

}

58

Implementation

// copy all containers from input pod

containers := make([]v1.Container, len(pod.Spec.Containers))

for i := 0; i < len(pod.Spec.Containers); i++ {

containers[i].Name = pod.Spec.Containers[i].Name

containers[i].Image = pod.Spec.Containers[i].Image

}

affinity := v1.Affinity{

NodeAffinity: &v1.NodeAffinity{

RequiredDuringSchedulingIgnoredDuringExecution: &v1.NodeSelector{

NodeSelectorTerms: []v1.NodeSelectorTerm{

v1.NodeSelectorTerm{

MatchExpressions: []v1.NodeSelectorRequirement{

v1.NodeSelectorRequirement{

Key: "type",

Operator: v1.NodeSelectorOpNotIn,

Values: []string{"virtual-node"},

},

},

},

},

},

},

}

// create an empty Spec, copying only Containers and Affinity fields

podSpec := v1.PodSpec{

Containers: containers,

Affinity: affinity.DeepCopy(),

}

metav1.SetMetaDataAnnotation(&objectMeta, "home_nodename",

pod.Spec.NodeName)

metav1.SetMetaDataAnnotation(&objectMeta, "home_resourceVersion",

pod.ResourceVersion)

metav1.SetMetaDataAnnotation(&objectMeta, "home_uuid", string(pod.UID))

metav1.SetMetaDataAnnotation(&objectMeta, "home_creationTimestamp",

pod.CreationTimestamp.String())

return &v1.Pod{

TypeMeta: pod.TypeMeta,

ObjectMeta: objectMeta,

Spec: podSpec,

Status: pod.Status,

}

}

Listing 6.12. Home-to-Foreign function.

59

Implementation

F2HTranslate() (Foreing-to-Home) function performs the inverse translation, tak-
ing the original value of the fields UID, ResourceVersion, CreationTimestamp,

NodeName from the Annotations; possibly, the PodIP is changed too. Eventually,
the values saved in Annotations are deleted.

func F2HTranslate(podForeignIn *v1.Pod, newCidr string) (podHomeOut *v1.Pod) {

podHomeOut = podForeignIn.DeepCopy()

podHomeOut.SetUID(types.UID(podForeignIn.Annotations["home_uuid"]))

podHomeOut.SetResourceVersion(podForeignIn.Annotations["home_resourceVersion"])

t, err := time.Parse("2006-01-02 15:04:05 -0700 MST",

podForeignIn.Annotations["home_creationTimestamp"])

if err != nil {

_ = fmt.Errorf("Unable to parse time")

}

podHomeOut.SetCreationTimestamp(metav1.NewTime(t))

if podHomeOut.Status.PodIP != "" {

newIp := changePodIp(newCidr, podHomeOut.Status.PodIP)

podHomeOut.Status.PodIP = newIp

podHomeOut.Status.PodIPs[0].IP = newIp

}

podHomeOut.Spec.NodeName = podForeignIn.Annotations["home_nodename"]

delete(podHomeOut.Annotations, "home_creationTimestamp")

delete(podHomeOut.Annotations, "home_resourceVersion")

delete(podHomeOut.Annotations, "home_uuid")

delete(podHomeOut.Annotations, "home_nodename")

return podHomeOut

}

Listing 6.13. Foreign-to-Home function.

60

Chapter 7

Results

This chapter will show how the implementation described in the previous chapter
has been tested to derive some qualitative results that characterize the current
prototype.

7.1 Test environment

As seen in chapter 6, the implemented solution heavily relies upon Kubernetes API
resources and libraries. For this reason we are more interested in the end-to-end
testing rather than unit testing, because we assume that the objects offered by
Kubernetes work properly.

In order to have a test environment that could be easily destroyed and recreated,
the tests have been carried out using two simple types of cluster: Minikube [12],
a local single-node K8s cluster with all Kubernetes features, and KinD [6], a tool
for running local Kubernetes clusters within Docker containers. Both of them are
not intended to be used in production, but it is not unusual for a single user to
install them on his local machine (especially Minikube). Therefore they perfectly
suit one of the use cases presented in the introduction in chapter 1, where different
users with their small clusters want to share resources among them; for example
this could be the case of a university lab or a company office.

All the tests have been run on my personal laptop using two or three virtual
machines running Ubuntu 18.04 (kernel version 4.15.0-88) one with 2 cpu cores,
8 GB of ram and 100 GB of disk, the others with 2 cpu cores, 4 GB of ram and
20 GB of disk; Kubectl version was the latest (1.17.3), whereas Minikube hosted
Kubernetes v1.16.2 on Docker 19.03.7.

61

Results

7.2 Functional tests

Functional tests aim at verifying that the end-to-end chain operates as expected:

1. launch the Advertisement operator on both clusters;

2. check that home-Advertisement is created on foreign cluster and vice versa;

3. upon the receipt of the Advertisement a Virtual-Kubelet Node must be cre-
ated;

4. when a pod is scheduled on the virtual node it must be launched on the other
cluster.

The first component that has been tested is the Virtual-Kubelet Kubernetes provider
(section 6.2). Initially it was executed as a process outside the cluster: it created
a Node and sent all the pods scheduled on it (on home cluster) to the foreign one,
returning the updates on its status (Pending, Running etc...). When everything
was working, the Virtual-Kubelet was moved in a pod managed by a Deployment.

apiVersion: apps/v1

kind: Deployment

metadata:

labels:

run: vkubelet

name: vkubelet

namespace: default

spec:

replicas: 1

selector:

matchLabels:

run: vkubelet

template:

metadata:

labels:

run: vkubelet

spec:

serviceAccountName: user1

containers:

- image: dronev2/virtual-kubelet

name: vkubelet

command: ["/usr/bin/virtual-kubelet"]

args: ["--provider", "kubernetes",

"--provider-config", "/app/config/vkubelet-cfg.json",

"--disable-taint"]

volumeMounts:

- name: provider-config

mountPath: /app/config/vkubelet-cfg.json

62

Results

subPath: vkubelet-cfg.json

- name: remote-config

mountPath: /app/kubeconfig/remote

subPath: remote

volumes:

- name: provider-config

configMap:

name: vk-config

- name: remote-config

configMap:

name: foreign-kubeconfig

Listing 7.1. Virtual-Kubelet Deployment.

As shown in the example above, the Virtual-Kubelet needs some arguments:

• provider: the name of the provider which must be executed (in this case
kubernetes);

• provider-config: the configuration file with the information needed by the
provider;

• disable-taint: a flag which allows to schedule pods on the virtual node
created.

Moreover, the Deployment mounts two Volumes containing the configuration file
for the provider and the kubeconfig of the foreign cluster.

To develop and test the Advertisement operator we followed a similar set of
steps, starting with out-of-cluster execution and ending with the Deployment shown
below. In this case we only need a parameter with the cluster-id of the cluster;
the generation of the Virtual-Kubelet Deployment is made by the operator in the
Reconcile() method.

apiVersion: apps/v1

kind: Deployment

metadata:

labels:

run: advertisement-operator

name: advertisement-operator

namespace: default

spec:

replicas: 1

selector:

matchLabels:

run: advertisement-operator

template:

metadata:

63

Results

labels:

run: advertisement-operator

spec:

serviceAccountName: user1

containers:

- image: dronev2/advertisement-operator

name: advertisement-operator

command: ["/usr/bin/advertisement-operator"]

args: ["--cluster-id", "cluster1"]

Listing 7.2. Advertisement operator Deployment.

7.3 Performance and scalability tests

Tests presented in this section aim at a preliminary assessment of the performance
and scalability of the solution. These tests were executed on an Ubuntu 18.04
virtual machine with 8 GB of RAM and 2 CPU cores. The cluster installed was
Minikube [12].

We could not test with real cluster because of the difficulties in the setup of
the required hardware, hence we emulated them by creating Advertisement CR
manually: the Advertisement operator reacted creating a Virtual-Kubelet for every
message. The script below sets up the cluster installing the Advertisement CRD
and the necessary ConfigMaps; after that, it launches the Advertisement operator
and creates the Advertisement CRs.

#!/bin/bash

clusterNum=100

configure clusters installing the Advertisement CRD and creating the

configMaps containing the kubeconfig

kubectl apply -f adv-crd.yaml

for ((i=1;i<=clusterNum;i++)); do

id=cluster${i}
kubectl create configmap foreign-kubeconfig-${id}

--from-file=remote=kubeconfig

done

create Advertisement operator deployment

kubectl apply -f adv-deploy.yaml

create Advertisements

for ((i=1;i<=clusterNum;i++)); do

sed -i -e "s/clusterX/cluster$i/g" adv.yaml

kubectl apply -f adv.yaml

sed -i -e "s/cluster$i/clusterX/g" adv.yaml

64

Results

done

exit 0

Listing 7.3. Bash script to configure the cluster and create Advertisements.

This is the Advertisement used for this test.

apiVersion: protocol.drone.com/v1

kind: Advertisement

metadata:

name: advertisement-clusterX

spec:

clusterId: "clusterX"

images:

- names:

- "nginx"

- names:

- "mongodb"

availability:

cpu: "3"

memory: "2Gi"

pods: "100"

network:

gatewayIP: 172.17.0.3

podCIDR: 10.244.0.0/16

prices:

cpu: "1"

memory: "2"

nginx: "20"

mongodb: "50"

timestamp: 2020-03-13T13:30:59Z

timeToLive: 2020-03-13T13:50:59Z

Listing 7.4. Sample Advertisement used in the tests.

7.3.1 Test results

In order to evaluate the performance of the solution, some time intervals have been
analysed, in particular the ones between the following time instants:

• Advertisement creationTimestamp;

• Virtual-Kubelet Deployment creationTimestamp;

• Virtual-Kubelet Pod startTime;

• Virtual-Kubelet Node creationTimestamp.

65

Results

Initially, the script has been launched with clusterNum=10, returning the results
illustrated in the figure below.

Figure 7.1. Observed times with 10 Advertisements.

We can see that the Virtual-Kubelet Deployment is created immediately when
an Advertisement is received, whereas its Pod requires 9-10 seconds to start on
average, and this value generally increases with the number of Advertisements.
Virtual-Kubelet Node creation, after the Pod has started, is nearly immediate too.

After this first test, the script was executed again, but with clusterNum=100.
The results, displayed in figure 7.2, follows the same trend observed with 10 Adver-
tisement: Virtual-Kubelet Deployment and Node creation times are almost always
null, while the Pod starting time grows, up to nearly 2 minutes.

Figure 7.2. Observed time trends with 100 Advertisements.

66

Results

Apparently the solution does not scale in the number of Advertisements. However,
an additional test proves the opposite: if we create a new Advertisement after
some time, when all the previous 100 have stabilized (i.e. the Virtual-Kubelet
Node has been created and is in Ready status), the required times are the same
of the first graph, 8 seconds from Advertisement CR creation to Virtual-Kubelet
Node creation. This means that the problems occurs when we receive many Ad-
vertisements in a short period of time, because each of them triggers a chain
of K8s objects creation, but there are no problems in storing many of them and
managing multiple Virtual-Kubelet Nodes.

The last performance test was created to evaluate if the efficiency of the Kuber-
netes default scheduler would be affected by the presence of many Virtual-Kubelet
Nodes. Therefore we ran a simple nginx Deployment and discovered it was not
disturbed at all: each pod was created on a different node and reached Running

status in 6 seconds on average, independently from the number of nodes (including
virtual nodes) active in each cluster.

7.3.2 Test limitations

The tests described are obviously limited and cannot be considered as actual “scal-
ability tests”, but they are a first achievement. Moreover, consider they were
launched on a Minikube cluster, therefore all the Virtual-Kubelet Pods had to run
on only one real Node: there were 100 pods running on the same Node, and this
is the limitation set by Kubernetes1. In fact, the creation of an additional Deploy-
ment was blocked by the system, but in spite of all that, the cluster continued to
work properly.

1check the official documentation https://kubernetes.io/docs/setup/best-practices/

cluster-large/

67

https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://kubernetes.io/docs/setup/best-practices/cluster-large/

Chapter 8

Conclusions and future works

This thesis has presented some of the modules that compose the project we are
developing at the Computer Networks Group at Politecnico di Torino. The goal
of this project is to enable dynamic sharing of resources between different clus-
ters, with a smart scheduler that distributes the components of each application
and a networking module that allows the communication among them. The tar-
get is Kubernetes, but the protocol and the software architecture are generic and
independent from the underlying technology.

The analysis of the related works shows that this issue has started to be ad-
dressed only in the last years and there is not a stable and widespread solution
available yet; moreover, the official proposal from Kubernetes has some limitations
that we want to overcome providing a transparent and decentralized solution.
Therefore, the prototype that has been developed adopts the approach of extend-
ing the API exposed by Kubernetes using Custom Resource Definition, allowing a
user to exploit the advantages of sharing without needing to modify his interaction
with Kubernetes. The qualitative tests that have been carried out shows that this
implementation does not introduce any noticeable overhead in the deployment of
applications. The solution seems also to scale with an increasing number of clus-
ters, as long as Advertisements are created with a certain delay between them, in
order to allow the cluster to set up all the necessary resources; however, even in
this situation the cluster should be ready in some minutes and this additional cost
needs to be paid only when bootstrapping.

Starting from the work done, the first feature that should be implemented in
the future works is the policy management; as explained in chapter 5, Open Policy
Agent will be used for this purpose. Another issue that still needs to be formalized
and addressed is about the setup of the foreign clusters each cluster can communi-
cate with: at the moment this information is installed as ConfigMaps in the cluster
before the operator is executed, so that it can read them, but a sort of ‘discovery

68

Conclusions and future works

protocol’ could be defined (or already existing protocols could be used, like UPnP1).
A further extension that has only been designed but not yet realized is the concept
of the broker illustrated in section 4.3, which could enable many additional features.

Finally, some aspects that have already been discussed and conceptualised but
still need to be implemented are for example the completeness of the Virtual-
Kubelet (kubelet logs, exec etc...), the addition of network information such as
latency or bandwidth in the Advertisement, the resource locking on the foreign
cluster upon the receipt of an Advertisement or the creation of an environment on
the foreign cluster with all the resources (CRDs, Volumes, ConfigMaps etc...) the
user has defined on his home cluster.

1https://en.wikipedia.org/wiki/Universal_Plug_and_Play

69

https://en.wikipedia.org/wiki/Universal_Plug_and_Play

Bibliography

[1] 8 facts about real-world container use. url: https://www.datadoghq.com/
container-report/.

[2] Uchechukwu Awada. ≪Hybrid Cloud Federation: A Case of Better Cloud
Resource Efficiency≫. In: July 2018.

[3] Eric Carter. Sysdig 2019 Container Usage Report: New Kubernetes and se-
curity insights. Oct. 2019. url: https://sysdig.com/blog/sysdig-2019-
container-usage-report/.

[4] Joan Engebretson. Will Kubernetes Be the Operating System for 5G? AT&T
News Suggests Yes. Feb. 2019. url: https://www.telecompetitor.com/
will - kubernetes - be - the - operating - system - for - 5g - att - news -

suggests-yes/.

[5] Ferenc Hámori. The History of Kubernetes on a Timeline. June 2018. url:
https://blog.risingstack.com/the-history-of-kubernetes/.

[6] KinD git repository. url: https://github.com/kubernetes-sigs/kind.

[7] Kubebuilder git repository. url: https://github.com/kubernetes-sigs/
kubebuilder.

[8] Kubernetes API official documentation. url: https : / / kubernetes . io /
docs/reference/generated/kubernetes-api/v1.17/.

[9] Kubernetes Federation git repository. url: https://github.com/kubernetes-
sigs/kubefed.

[10] Kubernetes official documentation. url: https://kubernetes.io/docs/
home/.

[11] Kubernetes Operator pattern. url: https://kubernetes.io/docs/concepts/
extend-kubernetes/operator/.

[12] Minikube project git repository. url: https://github.com/kubernetes/
minikube.

[13] OPA documentation. url: https://www.openpolicyagent.org/docs/
latest/.

70

https://www.datadoghq.com/container-report/
https://www.datadoghq.com/container-report/
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://www.telecompetitor.com/will-kubernetes-be-the-operating-system-for-5g-att-news-suggests-yes/
https://www.telecompetitor.com/will-kubernetes-be-the-operating-system-for-5g-att-news-suggests-yes/
https://www.telecompetitor.com/will-kubernetes-be-the-operating-system-for-5g-att-news-suggests-yes/
https://blog.risingstack.com/the-history-of-kubernetes/
https://github.com/kubernetes-sigs/kind
https://github.com/kubernetes-sigs/kubebuilder
https://github.com/kubernetes-sigs/kubebuilder
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.17/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.17/
https://github.com/kubernetes-sigs/kubefed
https://github.com/kubernetes-sigs/kubefed
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://www.openpolicyagent.org/docs/latest/
https://www.openpolicyagent.org/docs/latest/

BIBLIOGRAPHY

[14] OPA git repository. url: https://github.com/open-policy-agent/opa.

[15] Kalyan Ramanathan. 5 business reasons why every CIO should consider Ku-
bernetes. Oct. 2019. url: https://www.sumologic.com/blog/why-use-
kubernetes/.

[16] Malte Schwarzkopf et al. ≪Omega: flexible, scalable schedulers for large com-
pute clusters≫. In: SIGOPS European Conference on Computer Systems (Eu-
roSys). Prague, Czech Republic, 2013, pp. 351–364. url: http://eurosys2013.
tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf.

[17] The Raft Consensus Algorithm. url: https://raft.github.io/.

[18] TOP-IX website. url: https://www.top-ix.org/it/home/.

[19] Understanding the cloud service broker model. url: https://searchnetworking.
techtarget.com/definition/cloud-federation.

[20] Steven J. Vaughan-Nichols. The five reasons Kubernetes won the container
orchestration wars. Jan. 2019. url: https : / / blogs . dxc . technology /
2019 / 01 / 28 / the - five - reasons - kubernetes - won - the - container -

orchestration-wars/.

[21] Abhishek Verma et al. ≪Large-scale cluster management at Google with
Borg≫. In: Proceedings of the European Conference on Computer Systems
(EuroSys). Bordeaux, France, 2015.

[22] Virtual-kubelet git repository. url: https://github.com/virtual-kubelet/
virtual-kubelet.

[23] Gianluca Zangara et al. ≪A Cloud Federation architecture Based on Open
Technologies≫. In: Nov. 2015.

71

https://github.com/open-policy-agent/opa
https://www.sumologic.com/blog/why-use-kubernetes/
https://www.sumologic.com/blog/why-use-kubernetes/
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
https://raft.github.io/
https://www.top-ix.org/it/home/
https://searchnetworking.techtarget.com/definition/cloud-federation
https://searchnetworking.techtarget.com/definition/cloud-federation
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/virtual-kubelet/virtual-kubelet

	List of Figures
	Introduction
	Goal of the thesis

	Background
	Cluster federation
	Kubefed
	Kubefed limitations

	Technologies
	Kubernetes: a bit of history
	Applications deployment evolution
	Container orchestrators
	Kubernetes architecture
	Control plane components
	Node components

	Kubernetes objects
	Label & Selector
	Namespace
	Pod
	ReplicaSet
	Deployment
	Service

	Virtual-Kubelet
	Kubebuilder

	Protocol
	Point to point connections
	Ad-hoc request
	Operating and release phases

	Messages
	Advertisement
	Request (user → cluster)
	Request (cluster → cluster)
	Acknowledge
	Quote
	Offer

	Broker

	Software architecture
	Global architecture
	Broadcaster
	Controller
	Policies

	Implementation
	Advertisement operator
	Advertisement API definition
	Broadcaster
	Controller

	Kubernetes provider
	Pod lifecycle methods
	Pod translation methods

	Results
	Test environment
	Functional tests
	Performance and scalability tests
	Test results
	Test limitations

	Conclusions and future works
	Bibliography

