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Chapter 1

Introduction

1.1 Abstract
Nowadays there exist several In-Network Processing (INP) solutions that allow ten-
ants to improve their application performance in terms of different metrics: Daiet
[25] inventors claim to achieve an 86.9%-89.3% traffic reduction by performing data
aggregation entirely in the network data plane. Other solutions like NetChain [13]
and IncBricks [17] let programmable switches store data and process queries to cut
end-to-end latency; CloudMirror [16] allows client applications to specify bandwidth
and high availability guarantees.

For the time being, it seems that there is still no valid resource allocation algo-
rithm that takes into account the presence of a network having a data plane that
supports (partially or completely) INP. This thesis has mainly two goals: (i) model
and evaluate an Application Programming Interface (API) through which applica-
tions can ask for INP resources and (ii) discuss the importance of a scheduler which
can reject INP requests and propose their server-only equivalent when needed (e.g.,
high switch utilization).

1.2 Problem statement
Using INP to scale up data centers and improve their overall performance seems
a promising idea: Daiet [25] inventors claim to achieve an 86.9%-89.3% traffic re-
duction, hence reducing workload at the servers; NetChain [13] can process queries
entirely in the network data plane, thus eliminating the query processing at servers
and cutting the end-to-end latency to as little as half of an RTT.
Current data center Resource Managers (RMs) (such as Apache YARN [28], Google
Omega [26]) are not completely network-unaware: for instance, some of them are
capable of satisfying affinity rules. CloudMirror [16] even provides bandwidth guar-
antees to tenant applications. Still, current RMs do not consider INP resources.

4



1.2 – Problem statement

As a consequence, tenant applications cannot request these kinds of services while
asking for server resources.

1.2.1 Modeling INP resources
One of the two goals of this Master’s thesis consists in investigating how to model
INP resources and how to integrate them into RMs. In order to offer INP services
to a tenant application, the latter should be able to ask for INP resources through
an API. To do that, INP resources must be modeled not only to support currently
existing INP solutions such as [25] [13] [17] [10], but also future ones. It may also
be convenient to derive a single model to describe both server and INP resources.

Classic tenant application requests can often be modeled as a key-value data
structure. CloudMirror [16] requires a Tenant Application Graph (TAG) as an in-
put, which is a directed graph where each vertex represents an application compo-
nent and links’ weights represent the minimum requested bandwidth. One possible
model could be based on a TAG, describing network resources and INP services as
vertexes or links. Tenant applications could either use the same model used within
the data center or a simplified one, adding another level of abstraction.

1.2.2 INP-aware Resource Managers
In order for everything to work, a network-aware placement algorithm in the Re-
source Manager should be able to consider INP and server resources conjunctly:
this brings new challenges in the field of resource management as there are cur-
rently no Resource Managers (RMs) doing so. One problem that could arise is due
to the fact that INP resources are typically very limited in a data center: chapter 7
will argue the importance of an RM which is flexible enough to propose alterna-
tives based on the current utilization of INP and server resources, since one kind
of physical resource can become the bottleneck for the other.
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Chapter 2

Background

This chapter aims to introduce the fundamental technologies used in data centers
without which In-Network Processing (INP) would not even be possible. This
chapter starts with a general description of how resources are managed in a data
center section 2.1 and ends with a brief introduction of network techniques and
concepts which are strictly related to Resource Managers.

2.1 Resource management in data centers
In a data center, physical resources of any kind are virtualized in order to achieve
higher flexibility, portability, and availability. Usually, both compute and storage
resources are virtualized by means of Virtual Machines (VMs) and/or containers.
Flexibility and portability are both automatically achieved by these virtualization
techniques, resulting in software that can be deployed dynamically, run on multiple
platforms and even live migrated; availability is usually simply achieved by not
co-locating VMs and/or containers within a single power domain.

Nowadays, multiple Resource Managers (RMs) use different approaches to solve
different design issues. This section examines these existing RMs while trying to
categorize them based on how they face different scheduling problems.

2.1.1 Glossary
This glossary is intended to list a set of definitions for all the possibly-ambiguous
terms since this terminology has never been standardized.

Physical architecture

The elementary computational unit in a data center is called node. As mentioned
in section 2.1, nodes are being virtualized by means of VMs and containers. Nodes
run on servers, which are grouped into racks. Servers within a rack are usually
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connected through a so-called Top of Rack (ToR) switch. Server racks are then
grouped into cells (or pods), that some times may be special-purpose. Usually, a
cell is grouped with few small ones used for testing to form up a cluster. Most of
the RMs manage resources in one cluster. One or more clusters form a data center,
and multiple data centers can form a site.

Resources

In this thesis, resources are divided by (i) their level of abstraction and (ii) their
type. The Resources glossary reported at the end of this thesis follows a bottom-up
approach, starting from those terms belonging to the lowest level of abstraction.

2.1.2 Scheduling architectures
Monolithic. Probably the most simple scheduler architecture out there: a mono-
lithic scheduler consists of a single instance scheduler applying the same scheduling
algorithm for every incoming job (so there is no concurrency between resource re-
questers). A centralized scheduling logic can support a more refined job placement.
On the other hand, the absence of parallelism causes a higher latency with respect
to other architectures. Although the single instance could distinguish among dif-
ferent job types hence treating those differently, its maintenance is not trivial, due
to its single instance (and codebase) nature.

Two-level. This architecture requires computer clusters to be dynamically par-
titioned in sub-clusters, each having a dedicated scheduler. A centralized resource
allocator determines which and how many resources should be made available to
each scheduler: this is done by sending offers to schedulers (pessimistic concur-
rency). Conflicts can simply be avoided by not offering the same resource to mul-
tiple schedulers at the time. The same entity is in charge of dynamically divide
clusters into sub-clusters: this is done to avoid resource fragmentation.

Shared-state. Schedulers are not mapped to sub-clusters like in the previous
case. Multiple schedulers have access to the entire cluster and there is no cen-
tralized resource allocator assigning resources to schedulers. In this architecture,
schedulers will try to acquire resources (optimistic concurrency), having not only
the possibility of choosing between all the resources in the cluster but also to ask
for those which have been already acquired by another scheduler. To achieve this,
a centralized data structure called cell state maintains the allocation information
of all resources in the cluster, providing, in fact, a shared-state of it. Schedulers
will try to acquire resources by atomically modifying this cell state, that will be
modified only if the request does not cause any conflict. Each scheduler makes
its own resource-allocation decision on a private copy of the cell state, which is
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2.1 – Resource management in data centers

updated every time the scheduler tries to acquire some resource, no matter what
the outcome of the attempt is.

2.1.3 Taxonomy
This section tries to underline the different scheduling design issues that RMs must
face by building a simple short taxonomy, following the guidelines provided by
Google in their Omega [26] paper.

Scheduling work partitioning. The workload can be distributed across sched-
ulers in three different ways: (i) workload-type unaware load balancing, (ii) work-
load partitioning to specialized clusters and, (iii) a combination of the two.

Interference. Schedulers can concurrently ask for the same resources. In the
pessimistic approach, different resources are offered to different schedulers, making
it impossible for them to compete for the same resource: this, of course, represents
a lack of parallelism, since resource offers are made by a logically centralized entity.
Instead, the optimistic approach lets every scheduler claim any desired resources
and only conflicting requests are denied, which of course introduces an overhead.

Choice of resources. Schedulers can pick amongst (i) all cluster resources or
(ii) a subset of those. When resources are divided into disjoint sets there will be no
concurrency by definition. Making all resources available to all scheduler will make
it easier for schedulers to place jobs with particularly stringent needs, and it is also
useful when the scheduling decision must be taken based on the overall state (e.g.,
the number of free resources in the cluster).

Preemption. Schedulers can be either allowed to preempt other schedulers’ job
assignments or not. Allowing preemption brings greater flexibility at the cost of
interrupting an already-running job. Since all state-of-the-art RMs support pre-
emption, this design choice will be taken for granted and hence omitted when
comparing different RMs in subsection 3.1.7.

Allocation granularity. Considering that jobs contain multiple tasks that can
be scheduled on different resources, schedulers can either (i) incrementally schedule
tasks as soon as new resources become free or (ii) schedule a job only when all tasks
can be scheduled on the spot. Not all job types can exploit incremental resource
acquisition. This technique can also bring the system to a deadlock in case there is
no back-off mechanism that releases resources once a job cannot acquire all resources
in a reasonable amount of time.
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2.2 Software-Defined Networking (SDN)
Perhaps the most fundamental technology without which INP would not even be
possible — Software-Defined Networking (SDN) is a networking paradigm whose
main pillar is the separation of the control and data plane. Network switches
become simple forwarding devices (e.g., OpenFlow [18] switches), while the brain
of a Software-Defined Network resides in its logically centralized SDN controller,
which exercises direct control over the state in the data plane elements via an SDN
Southbound Interface (SBI). Lots of surveys (e.g., [15] and [14]) often associate
SDN with OpenFlow [18], as it is by far the most common SBI.

2.3 Network Function Virtualization (NFV)
An SDN-related (but not dependent) concept is Network Function Virtualization
(NFV).

The virtualization techniques previously mentioned in section 2.1 (e.g., VMs and
containers) can also be used to virtualize network functions (e.g., firewalls, network
monitors, etc.) to obtain all the advantages that come along with virtualization in
general, such as better resources utilization, fault-tolerance, higher flexibility, and
so on.

This decouples network services software from any kind of dedicated hardware.
Virtual Network Functions (VNFs) can be run in fact on standard commodity
servers, allowing a more flexible network deployment.

SDN and NFV are complementary, but one does not depend upon the other.

2.4 In-Network Processing (INP)
Within this project, data center INP refers to the technique of delegating some parts
of the computation to programmable switches, hence reducing servers’ workload.
Common operations performed by these devices are data aggregation and key-value
storage management.

In contrast to NFV, INP tries to delegate as much of computation to the network,
but both techniques can exploit the advantages of SDN for more flexible network
management.
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Chapter 3

Analysis

Chapter 2 introduced how resources can be managed in a data center (section 2.1)
and different network techniques such as Software-Defined Networking (SDN) (sec-
tion 2.2), Network Function Virtualization (NFV) (section 2.3), and In-Network
Processing (INP) (section 2.4). This chapter aims to dig into the details of these
systems and to extract common patterns between similar INP solutions to then
derive a model (subsection 5.2.2) capable of fully describing INP resources.

3.1 Resource Management Frameworks (RMFs)
analysis

After having described the basics behind resource management in section 2.1, it is
now time to dig into the details of existing RMs and categorize them following the
taxonomy introduced in subsection 2.1.3.

3.1.1 Borg [29]
Borg [29] is the first container-management system developed by Google. Jobs
are divided into two groups depending on their workload type (long-running and
batch) and they were initially scheduled by a logically centralized controller called
Borgmaster. After Google developed the shared-state Omega [26] scheduler (ana-
lyzed in subsection 3.1.2), Borg [29] adopted the shared-state architecture as well.

Scheduling

Each cell has its own logically centralized controller called Borgmaster, which is
essentially split into two parts: (i) the scheduling part, consisting in one or more
schedulers differentiated by the workload type they handle and (ii) a management

11



Analysis

unit in charge of handling client Remote Procedure Calls (RPCs) and communi-
cating with all other Borg [29] agents. Schedulers mainly work on tasks rather
than jobs. Tasks are scanned in a round-robin fashion and their priority is also
taken into account. Schedulers must first find all available machines for the task
to be scheduled (also considering those currently acquired by a task with lower
priority) and then find the best machine amongst them all. This second part is
done by taking into consideration not only user-specified preferences but also data
center global goals like minimizing the number of preempted tasks and allocating
tasks on machines which already have the needed packages installed to reduce the
installation time, which usually takes about 80% of the total start-up latency.

Details

Jobs. Jobs in Borg [29] are split into multiple tasks that run within a single cell:
tasks belonging to one job cannot be spread amongst multiple cells in the same
cluster. In fact, Borg [29] only operates on cells. Each job has some properties
such as a name, an owner, and most importantly, constraints about machines (e.g.,
processor architecture, etc.) which will affect its tasks placement. Tasks instead
have resource requirements (e.g., CPU cores, RAM, etc.) expressed in terms of
quotas (an array of resource quantities). Task properties can be modified at run-
time by the job owner: this is done by pushing a new job configuration file to
Borg [29] and ordering the scheduler to update the involved tasks via a non-atomic
transaction. Most of the workload in Borg [29] run in containers rather than VMs
to avoid the virtualization overhead.

Fairness. Jobs contain a priority field, expressed as an integer. Workload types
have different non-overlapping priority bands. Borg [29] schedulers are preemptive,
and in order to contain the negative effects of preemption cascades, the system does
not allow internal preemption for certain priority bands.

Resource reclamation. Tasks do not fully use their resources for their entire
lifespan. This is why the Borgmaster estimates every few seconds what is the
actual amount of resources that each task needs and reclaims the unused resources
to make them available for other tasks. This is done by periodically contacting Borg
[29] agents running on each cluster machine, requesting for fine-grained resource
consumption information. The initial estimated amount of resources needed by
a task corresponds with its maximum limit, and it then decreases towards the
actual usage. If the actual resource usage exceeds the estimation, then the latter is
rapidly increased. This technique justifies why Borg [29] inventors have noticed that
dedicating clusters for different workload types is inconvenient. They showed how
segregating long-running and batch jobs in different specialized clusters requires
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3.1 – Resource Management Frameworks (RMFs) analysis

20% to 30% more machines than having clusters who run both types of jobs using
resource reclamation.

3.1.2 Omega [26]

Omega [26] is a parallel, lock-free and optimistic cluster scheduler by Google. As
said in [4], it was born after Borg [29] with the aim of improving its software
engineering. There is no central resource allocator: all of the resource-allocation
decisions take place in the schedulers. Multiple schedulers were first introduced
in Omega [26] and then in Borg [29], making the latter scheduler not monolithic
anymore.

Scheduling

Omega [26] makes use of a data structure called cell state, containing information
about all the resource allocation in the cluster. Each cell has a shared copy of this
data structure, and each scheduler is given a private, local, frequently-updated copy
of the cell state that it uses for making scheduling decisions. According to optimistic
concurrency, once a scheduler makes a placement decision, it updates the shared
copy of the cell state with a transaction. Whether or not the transaction succeeds,
a scheduler re-syncs its local copy of the cell state afterward and, if necessary,
re-runs its scheduling algorithm and tries again. Omega [26] supports specialized
schedulers: authors have shown the advantages of a MapReduce [7] specialized
scheduler in [26].

Conclusions

Since schedulers do not have access to all cluster resources, Mesos [11] cannot
support preemption across different sub-clusters and it cannot apply policies that
make use of the complete cluster state.

3.1.3 ApacheTM Hadoop© YARN [28]

ApacheTM Hadoop© YARN [28] (for the sake of brevity: ApacheTM YARN [28]) is
the Resource Manager of ApacheTM Hadoop©, a framework for distributed process-
ing across clusters.

ApacheTM Hadoop© was initially an open source implementation of MapReduce
[7], but then the programming model has been separated from the resource man-
agement function, resulting in an application-independent RM known as ApacheTM

YARN [28].
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Entities

Each tenant application has an Application Master whose task is to (i) manage
the application life cycle and (ii) negotiate the resources that the application needs
with the central RM, making ApacheTM YARN [28] a monolithic scheduler with
no interference between tenant applications. Each node then has a Node Manager
thanks to which the RM can allocate tasks on it. The Node Manager must also
periodically monitor resource availability and report failures.

Scheduling

Application Masters issue resource request to the RM, containing containers prop-
erties and locality preferences. Upon receiving a resource request, the centralized
scheduler generates containers using available resources periodically advertised by
the nodes themselves. The outcome of this procedure is reported to the Appli-
cation Master corresponding to the tenant application that initiated the request.
Application Masters are also informed upon inserting new nodes into the system.

Details

Preemption. The RM can also ask Application Masters to revoke some resources
in case of a shortage. The application will then have a few choices: for instance,
it can yield containers that are less important or checkpoint its current status. If
an application does not collaborate with the RM upon receiving a revoking request,
the RM will forcibly terminate those targeted containers.

Failures. The RM represents a single point of failure for the system and its
restart causes the termination of all containers in the cluster, including all their
Application Masters. Node failures are detected by the RM using timeouts (nodes
have to periodically contact the RM). The RM will then inform all Application
Masters who are responsible for the application life cycle.

Conclusions

Undoubtedly, ApacheTM YARN [28] dedicates less attention to scalability due to
its de facto monolithic scheduler: multiple Application Masters just take care of
the application life cycle and do not perform scheduling, which is done instead by
a single RM.

However, ApacheTM YARN [28] authors state that the centralized RM can assure
fairness, capacity, and locality thanks to the central and global view that it has on
the system. They justify this by pointing out that ApacheTM Hadoop© is an open
platform which lets different independent sources share the same cluster, unlike
other "closed-world" schedulers like Google Omega [26].
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3.1.4 Mesos [11]

Mesos [11] is a two-level cluster scheduler based on resource offers. It has multiple
schedulers since Mesos [11] has been conceived to share clusters between different
cluster computing frameworks since the beginning of its development. By contrast,
ApacheTM YARN [28] was initially embedded in the first version of MapReduce
[7] and subsequently became independent out of the necessity to scale ApacheTM

Hadoop©.

Entities

This scheduler has a logically centralized resource allocator in charge of offering
resources to different schedulers. It is called Mesos master and it is replicated
for fault tolerance. A scheduler together with its executor (worker) node is called
framework. Nodes running on cluster nodes are called Mesos slaves.

Scheduling

Initially, every cluster node reports to the master node its available resources. Based
on this data, the master node can then offer resources to application frameworks
based on a particular policy. The master node does not offer the same subset
of resources to each scheduler. Resource conflicts can be avoided by not offering
the same resource to multiple schedulers at the time. Upon receiving resources
offers, application frameworks can either reject the offer (in case it does not satisfy
all framework’s constraints) or tell the master which tasks need to be run on the
dedicated resources. Mesos [11] already knows that certain types of frameworks
always reject certain resource offers characterized by some factors, so frameworks
can specify filters in order for the master to automatically avoid proposing certain
kinds of resources.

The resource allocation logic can be customized, and Mesos [11] includes an
allocation module based on priority and one based one fairness. Tasks can be
preempted, however, frameworks can be offered guaranteed resources on which tasks
cannot be preempted.

3.1.5 Guarantee provisioning: CloudMirror [16]

CloudMirror [16] is particularly interesting since it uses a very flexible and de-
scriptive resource model that will heavily influence the model proposed in sub-
section 5.2.2. It also allows client applications to specify bandwidth and high
availability guarantees.
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Motivation

Prior resource models were not suitable to represent interactive non-batch applica-
tions with very stringent bandwidth requirements. Both the hose and the Virtual
Oversubscribed Cluster (VOC) model are inefficient as they over-allocate band-
width. The main reason why this happens is that both models aggregate band-
width requirements between different application components into a single hose:
as a consequence, the VM scheduler does not get to know the actual bandwidth
needed between application components. At the opposite extreme there is the pipe
model, which specifies bandwidth guarantees between each pair of VMs: besides not
exploiting statistical multiplexing, it is clearly not scalable. This led CloudMirror
[16] inventors to come up with a new model.

Tenant Application Graph

The TAG is a directed graph where each vertex represents an application component
and links’ weights represent the minimum requested bandwidth. Each vertex can
have an optional size, denoting the number of VMs belonging to the component.

Server 
comp. 1

Server 
comp. 2

SB12 RB12

RB21 SB21

Server 
comp. 3

SB23 RB23

B3

C1 C2 C3

Server composite
requirements

Figure 3.1. A TAG example

There are two types of edges: (i) self-loop edges, that are equivalent to a hose
model and (ii) standard vertex-to-vertex edges. A standard edge from Tier1 to
Tier2 is labeled with an ordered pair of numbers < SB12, RB12 >, indicating
respectively the guaranteed bandwidth with which VMs in Tier1 can send traffic
to VMs in Tier2 (SB12) and the guaranteed bandwidth with which VMs in Tier2
can receive traffic from VMs in Tier1 (RB12).

Model advantages

The edge label format < SB, RB > allows the model to exploit statistical multi-
plexing, since SB can represent the peak of the sum of VM-to-VM demands instead
of the sum of peak demands needed by the pipe model. Also, since these values
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3.1 – Resource Management Frameworks (RMFs) analysis

represent bandwidth demands between individual VMs, there is no need to recom-
pute those every time a TAG node (component) sees its number of VMs change
(i.e., scales up/down).

3.1.6 Firmament [9]
Firmament [9] is a centralized cluster scheduler capable of supporting multi-dimen-
sional resource requirements (section 3.1.6). The scheduler finds an embedding
solution by solving a min-cost max-flow optimization problem over a graph called
flow network (section 3.1.6).

Flow network

The flow network is a directed weighted graph that contains both physical and log-
ical resources. Similarly to any other graph-based scheduler (e.g., [21]), a physical
resource is connected to a logical resource anytime the former can be allocated on
the latter. In order to reduce the overall amount of arcs, the flow network makes use
of equivalence class aggregates which group nodes with similar characteristics (e.g.,
tasks within a job, physical machines with the same micro-architectural topology,
etc.). An aggregate receives arcs from all entities belonging to it. Physical aggre-
gates can also receive arcs from those logical nodes that can be allocated on any of
the physical entity represented by the aggregate.

The physical network is faithfully recreated in the graph thanks to aggregates:
for instance, different machines belonging to the same rack are connected to the
same rack aggregate, all racks are connected to the cluster aggregate and so on. The
description does not either stop at the machine level since also sockets and cores
are represented in the graph. Again, inclusion relationships are expressed in terms
of arcs. Special unscheduled aggregates (one for each job) receive an arc from every
task.

The embedding solution is found by running an instance of a min-cost max-
flow optimization algorithm over the network flow. If a task cannot be allocated
on any of the physical machines, its flow will be directed to its corresponding
unscheduled aggregate. Arcs’ costs are determined by a given scheduling policy (or
"cost model"): at the time of writing, Firmament [9] supports 9 different scheduling
policies. Intuitively, arcs connecting tasks to unscheduled aggregates will have a
higher cost with respect to the ones ending in a physical entity.

Multi-dimensional resource fitting

Firmament’s [9] creator Malte Schwarzkopf introduced the coordinated co-location
(CoCo) cost model in his Ph.D. dissertation - Schwarzkopf, M. (2018). Operating
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system support for warehouse-scale computing (Doctoral thesis)†.
This scheduling policy has an interesting feature: admission control. Basically,

a task can be allocated on a physical machine only when it satisfies all task’s
resource requirements (strict resource fit). If a task cannot be allocated on any of
the physical machines, it cannot be even connected to the cluster aggregate. Given
a logical resource in the network flow, CoCo can efficiently determine all subtrees
in the physical topology in which it can be allocated. This is done by storing in
each physical aggregate the minimum and maximum amount of available resources
across its children.

3.1.7 RMFs comparison
The table below contains a quick comparison amongst RMs previously analyzed.
The taxonomy introduced in subsection 2.1.3 has been used for this categorization.

3.2 INP solutions
State-of-the-art INP solutions will be discussed in this section with the aim of
deriving a model capable of fully describing INP resources. To that end, it is
necessary to dig into the details and to recognize common patterns between them.

3.2.1 In-network aggregation: Daiet [25]
Daiet [25] is a system that performs in-network data aggregation for partition-ag-
gregate data center applications (big data analysis such as MapReduce [7], machine
learning, graph processing, and stream processing). Instead of letting worker servers
entirely perform computation on the data and then communicate with each other
to update shared state or finalize the computation, the system lets network devices
perform data aggregation to achieve traffic reduction, thus reducing the processing
load at the destination.

The inventors have proven that in-network data aggregation can reduce the
network traffic significantly for machine learning algorithms (e.g., TensorFlow [1])
and for graph analytics algorithms (e.g., GPS [24]), hence justifying the usefulness
of this system. The system has been designed for P4 [3] and programmable ASICs,
and it can be used on any other SDN platform.

Details

Controller. When executing a MapReduce program, the job allocator informs
the network controller of the job allocation to the workers. Then, the network

†Available at doi.org/10.17863/CAM.26443
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Resource Managers: quick summary
First Borg [29] version Scheduling architecture Monolithic

Scheduling work partitioning Specialized clusters
Interference None
Choice of resources All cluster resources
Allocation granularity Incremental

Omega [26] Scheduling architecture Shared-state
Scheduling work partitioning Specialized clusters
Interference Optimistic approach
Choice of resources All cluster resources
Allocation granularity Per-scheduler policy

ApacheTM YARN [28] Scheduling architecture Monolithic
Scheduling work partitioning None
Interference No interference
Choice of resources All cluster resources
Allocation granularity Incremental

Mesos [11] Scheduling architecture Two-level
Scheduling work partitioning Load balancing
Interference Pessimistic approach
Choice of resources Subset of resources
Allocation granularity All-or-nothing

Table 3.1. Resource Managers comparison table, following the taxonomy
introduced in subsection 2.1.3

controller pushes a set of rules to network devices in order to (i) establish one
aggregation tree for each reducer and (ii) perform per-tree aggregation. An aggre-
gation tree is a spanning tree from all the mappers to the reducer.

Packets. Since every reducer has its own aggregation tree associated with it,
network devices should know how to correctly forward traffic according to the
corresponding tree: to achieve this, a special tree ID (that could coincide with
the reducer ID) packet field allows network devices to distinguish different packets
belonging to different aggregation trees.

Obviously, they must also know the output port towards the next network device
in the tree and the aggregation function to be performed on the data.

Packets are sent via UDP (therefore communication is not reliable) with a small
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Figure 3.2. Daiet’s [25] basic topology and entities

Daiet: extended topology
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Figure 3.3. Daiet’s [25] extended topology

preamble that specifies (i) the number of key-value pairs contained in the packet
and (ii) the tree ID whose packet belongs to. The payload is not serialized to
achieve a faster computation by network devices.

Algorithm

To store the key-value map, network devices use two hash tables for each tree: one
for the keys and one for the values. Upon a collision, the algorithm checks whether
the key is matching or just the hash is. In the former case, data aggregation is
performed. In the latter case, the conflicting pair will end up in a spillover bucket
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Daiet: logical communication pattern
In-network data aggregation
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Figure 3.4. Daiet’s [25] logical communication pattern

that will be flushed to the next node as soon as it becomes full: this is done since
this data is more likely to be aggregated by the next network device if it has spare
memory.

Figure 3.5. Messages exchanged during a Daiet [25] instance execution
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A network device will also flush its data as soon as all its children (according to
the aggregation tree) have sent their data: this is made possible by forcing network
devices to send a special END packet after transmitting all key-value pairs to their
successor.

Used indexes are stored in aa index stack to avoid scanning the whole hash table
when flushing.

Implementation

The network data plane has been programmed using P4 [3], which brings two main
drawbacks: (i) a match-action table cannot be applied more than once for the
same packet, forcing the programmer to perform loop unrolling in case of multiple
headers in the same packet that need to be modified by the same rule table and
(ii) keys must have a fixed size, causing a big waste of memory in applications where
keys have variable-lengths (e.g., strings). The second drawback will also cause
arrays to have fewer but bigger cells, thus increasing the probability of collisions.
If these collisions involve pairs having different keys (section 3.2.1), data will not
be aggregated, causing traffic to increase.

Minimum system requirements

For each aggregation tree (i.e., for each reducer), network devices must form a tree
whose root is connected to the reducer and whose leaves are connected to mappers.
Each mapper has to be connected to exactly one network device of the lowest level.
Network devices must (i) store two arrays (one for the keys and one for the values)
and (ii) be able to hash keys. The solution requires that the system has a centralized
SDN controller connected to all switches. The SDN controller must push flow rules
to all switches belonging to at least one tree.

Conclusions

Besides all the drawbacks brought by P4 [3] listed in section 3.2.1, inventors claim to
achieve an 86.9%-89.3% traffic reduction, causing the execution time at the reducer
to drop by 83.6% on average.

3.2.2 Coordination services: NetChain [13]
NetChain [13] is an in-network solution for coordination services, such as distributed
locking, barriers, etc. All these services are realized on top of a strongly-consistent
and fault-tolerant key-value store, which is entirely implemented in the network
data plane. The network device in charge of storing the distributed store is a
programmable switch: this brings an obvious limitation in terms of storage size,

22



3.2 – INP solutions

that makes NetChain [13] an acceptable solution only when a small amount of
critical data must be stored in the network data plane, e.g., coordination services.

NetChain [13] can process queries entirely in the network data plane, causing
the end-to-end latency to drop from multiple RTTs to as little as half of one RTT
since servers are not involved in query processing anymore.

Details

Packets. Custom UDP packets are used for queries, containing fields like opera-
tion, key, and value. Read and write queries only involve the network data plane,
while insert and delete queries involve the network controller to set up entries in
switch tables and to perform garbage collection, respectively.

NetChain: basic topology and entities

Data 
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and 
consumer

SDN controller

Rack

Head 
switchWrite requests

System reconfigurations

Tail 
switch

Read requests

Read/write replies

In-network solution for coordination services

Figure 3.6. NetChain’s [13] basic topology and entities

This is acceptable since coordination services usually perform read and write
queries on already-existing objects, e.g., locks. Each switch has its own IP address,
and packet headers contain the list of addresses of switches to be traversed, allowing
those to properly forward packets to their successors (from head to tail for write
queries and the opposite for read queries). This list of IP addresses is inserted by
the client (a NetChain [13] agent).

Consistency. A variant of Chain Replication [27] is used in the data plane to
handle read and write queries and to ensure strong consistency, while switches re-
configuration is handled by the network control plane. The main difference from
the standard Chain Replication [27] protocol is that objects are stored on pro-
grammable switches instead of servers. Switches are logically connected to form an
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Figure 3.7. Messages exchanged during a NetChain [13] instance execution

oriented chain.
Read queries are processed by the tail switch while write queries are sent to the

head switch, which will forward the updated state to the rest of the chain.
The key-value store is partitioned amongst virtual nodes using consistent hash-

ing, mapping keys to a hash ring. Each ring segment is stored by f + 1 virtual
nodes allocated on different physical switches, hence tolerating faults involving up
to f switches.

Implementation

The network data plane has been programmed in P4 [3] while the controller has
been coded in Python, it runs on a server and communicates with switches through
the standard Python RPC library. Switches agents are Python processes that run
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NetChain: logical communication pattern
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in the switch OS. Some P4 [3] drawbacks were already discussed in section 3.2.1.

The out-of-order UDP delivery problem is resolved by adding sequence numbers
to write queries, hence serializing those operations, while the loss of packets is coped
by client-side retries based on timeouts.
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Minimum system requirements

Network devices must form a chain of length f + 1 in order to tolerate f failures.
The client must include the list of IP addresses of all the f + 1 switches to be
traversed in each query packet header (from head to tail for write queries and the
opposite for read queries; storing the entire backward list for read queries is only
necessary in case of tail failures).

Network devices must dedicate some local storage to NetChain [13]: more specif-
ically, they need to store a (i) register array to store values and a (ii) match-action
table to store the keys’ location in the register array and the corresponding action
to be performed. The solution requires that the system has a centralized SDN
controller connected to all switches. The SDN controller must handle switches
reconfigurations.

Conclusions

NetChain [13] inventors state that the on-chip memory of programmable switches
in enough for coordination services. Assuming a 10 MB partition allocated on
each NetChain [13] switch, a data center with 100 switches can provide a (10 MB ·
100)/3 = 333 MB storage with a replication factor of three: that would be enough
for the average number of files (22k, from 0 to 1 byte) managed by a typical Chubby
[5] lock service instance, as cited by Google in their corresponding paper. Likewise,
inventors claim that switches total memory is enough for a distributed locking
system: assuming 30 B locks, the previously-mentioned example would be capable
of storing 333 MB/30 B = 10M concurrent locks.

3.2.3 In-network caching fabric: IncBricks [17]
IncBricks [17] is a hardware-software co-designed system for in-network caching:
it makes use of network accelerators attached to programmable switches whenever
complicated operations should be performed on payloads. Supporting multiple giga-
bytes of memory, network accelerators overcome the limited storage problem typical
of programmable switches, which usually have a memory of tens of megabytes.

Details

Hardware. IncBricks [17] is composed of two components: (i) IncBox, a hard-
ware unit consisting of a network accelerator and a programmable switch, and
(ii) IncCache, a software system for coherent key-value storage. Packets arriving
at an IncBox device are first managed by the switch, which forwards the packet to
the network accelerator only if it is labeled as an in-network cache one.

If there is a match, the programmable switch will check whether the packet has
been already cached by the network accelerator or not, and will forward the packet
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Figure 3.10. IncBricks’ [17] basic topology and entities

to the right network accelerator attached to it in the former case.IncBricks: logical communication pattern
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Figure 3.11. IncBricks’ [17] logical communication pattern

Logic. The system has been designed having a multi-rooted tree topology in mind.
For each key the centralized SDN controller comes up with a set of designated
IncBox units allowed to cache that key. Any other IncBox unit placed between
these designated units won’t cache data with that specific key.
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Figure 3.12. Messages exchanged during an IncBricks [17] instance execution

Then, for a given key and a given destination node, the SDN controller estab-
lishes a unique path of designated IncBox units. Every IncBox unit in the system
will get to know (i) the set of immediate designated successors (according to the
tree topology) for every key it is responsible for and (ii) the unique successor used
for a given destination and a given key. This data is stored in the so-called global
registration table. Storing the former information can be useful in case of failures
since it is possible to build alternative paths immediately, making the whole system
more reliable. As soon as a failure is detected, the SDN controller updates all the
involved tables.

Implementation

Storage on network accelerators has been implemented as a fixed-size hash table
(plus a hash index table) due to their limited memory space. As mentioned in
section 3.2.3, IncCache takes care of the storage system.
A custom coherency protocol keeps track of all data owners in the network: every
IncBox stores a global registration table that maps a destination server for each
possible key. This information is enough since IncBricks [17] ensures that there is
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a unique path of IncBox units for a given key. The SDN controller will take care
of updating those tables upon failures.

Minimum system requirements

Communicating nodes (VMs) represent the leaves of the tree. Each path must
include exactly one root switch. All things considered, it seems reasonable to state
that the actual required topology is a chain starting from a leaf, passing through a
root node and ending on another leaf.IncBricks: extended topology
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Figure 3.13. IncBricks’ [17] extended topology

IncBox units must dedicate some local storage to realize the caching system.
The solution requires that the system has a centralized SDN controller connected
to all switches. The SDN controller must set configure network devices in order for
them to forward IncBricks [17] packets accordingly.

Conclusions

Authors claim to be able to drop request latency by 30% and to double throughput
for 1024 byte values in a small-scale cluster with 24 servers, 2 switches, and 4
network accelerators.
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3.2.4 Aggregation protocol: SHArP [10]
SHArP [10] stands for Scalable Hierarchical Aggregation Protocol, and it defines a
protocol for reduction operations. This solution aims to accelerate High Perfor-
mance Computing (HPC) applications by offloading some operations to the net-
work. SHArP [10] is targeted to support the two most used APIs in the HPC area
today: MPI [30] and OpenSHMEM [6]. The kind of operations that can be offloaded
to the network are: (i) MPI [30] barrier, reduce and allreduce, (ii) logic operands
like sum, min, max, or, xor, and, (iii) integer and floating-point operations.

Details

Entities. Aggregation Nodes (ANs) are logical entities performing reduction op-
erations. Such a node can either execute on a network device or a server, and it is
implemented as a daemon, namely sharpd.
SHArP: basic topology and entities
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Figure 3.14. SHArP’s [10] basic topology and entities

All ANs must form an aggregation tree. Multiple trees are allowed in a sys-
tem. Similarly to other in-network aggregation solutions like Daiet [25], data is
aggregated along the aggregation tree by ANs, until it reaches a root AN that is in
charge of distributing the result.

The protocol also introduces the concept of group, consisting of a subset of
physical hosts that are connected to the tree leaves: for instance, in MPI [30]
a group coincides with a communicator. One aggregation tree supports multiple
groups.

Resources are managed by a special management entity called Aggregation Man-
ager (AM). Faults and errors are always notified to this node, that will also take
care of freeing all resources belonging to the tree in which the error occurred. The
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detection of faults and errors cannot be done using timeouts since HPC APIs do not
bound the duration of aggregation operations: this is why faults must be necessarily
detected by monitoring.

Data flow. Eventually, a host program will need to execute a job on multiple
nodes. When the job is launched and all host processes have been created (e.g.,
a communicator in MPI [30]), either the cluster resource manager (like Slurm [32]
or IBM® Spectrum LSF) or an MPI [30] launcher like mpirun will contact the
AM, which will dedicate SHArP [10] resources to the job and return the list of
these allocated resources. At this point, a SHArP [10] group has been created.
Each SHArP [10] daemon sharpd running on every group member will establish a
reliable connection to the dedicated leaf switch. The AM informs the ANs about
the switch resources allocated to the application, not allowing it to exceed the
allocation.

Once connections have been established, all group members send an aggregation
request message to their parent AN. Each AN waits for all its children’s requests
before sending the aggregated data piggybacked on another aggregation request to
the parent node. ANs temporarily maintain a data structure to track an aggregation
operation’s progress.

As soon as the tree root node receives data from all its children, it performs
the final aggregation and it sends the result to a destination, that could be (i) one
or more process belonging to one or more groups or (ii) an external process not
belonging to any reduction group. In the former case, the aggregation tree is used
to redistribute the result.
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Implementation

SHArP [10] has been implemented using InfiniBand [20] as a communication stan-
dard with Mellanox’s SwitchIB-2TM devices, which provide support for data reduce
operations and for barriers. Nodes in the SHArP [10] tree are InfiniBand [20]
end nodes, and links are implemented using InfiniBand’s [20] Reliable Connections.
When distributing a result using a multicast address, though, an unreliable delivery
mechanism is used. One AN can participate to at most 64 different aggregation
trees.

Minimum system requirements

ANs (usually run by network devices) must form a tree whose leaves are connected
to data producers (a communicator in MPI [30]). Each data producer is connected
to only one tree leaf. The root AN, instead, is connected to the data consumer,
which receives the final aggregated result. ANs must dedicate part of their local
memory to the system.SHArP: extended topology
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Figure 3.16. SHArP’s [10] extended topology

The special management unit (AM) must act as a SHArP [10] RM, dedicating
SHArP [10] resources to those entities who request for them.

Conclusions

For MPI [30] applications SHArP [10] brings a significant advantage in terms of la-
tency: tests show that the latency improvement factor (latency experienced without
SHArP [10] divided by the one experienced with SHArP [10]) is proportional to the
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Figure 3.17. Messages exchanged during a SHArP [10] instance execution

message size. Even in the worst case, with a message size of just 8 MB, an MPI
[30] execution with SHArP [10] is twice as fast as the one without using it.

3.3 Integrating INP resources in Resource Man-
agers (RMs)

There are currently no RMs nowadays that (i) handle logical server, switch and
edge resources, (ii) support high-level requests (e.g., with the use of composites)
and (iii) are capable of considering multiple resource dimensions. However, different
schedulers fulfill, even partially, a subset of those requirements. This paragraph
tries to cover all the aspects of INP-integration from a theoretical point of view.

3.3.1 Interaction with different architectures
Different RM scheduling architectures were introduced in subsection 2.1.2. This
section tries to analyze how could different scheduling architectures manage INP
resources, highlighting all the drawbacks brought by each one of them. This brief
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analysis does not make any assumption regarding the INP resource model since its
format is out of the scope of this specific section.

Monolithic. In this architecture, resource requests cannot be concurrent by def-
inition since there is just one logically centralized scheduler. However, this archi-
tecture does not scale due to its intrinsic nature. Such a scheduling architecture
will be used later on to build a greedy INP-aware scheduler that will underline the
general problems that arise when dealing with INP resources (subsection 1.2.2).

Two-level. In the two-level architecture, a centralized node master (or allocator)
proposes resources to the schedulers. Let us suppose that the allocator not only
proposes server resources but also INP ones: all resources must be locked from the
instant in which resources are offered until the scheduler accepts or denies the offer.
Locking INP resources though means locking either network devices’ resources (to
perform computation) or links’ bandwidth (for guarantees), which can heavily affect
the performance of all nodes using these shared network resources.

One could think of not locking INP resources during the delay introduced by
the scheduler when accepting or denying the request, but the allocator would then
need to repeat the whole offering process in case another scheduler accepts some
INP resources that have been acquired by some other scheduler in the meantime.

Shared-state. A shared-state scheduler could include the INP resources state in
the cell state data structure. Supposing that tenant applications can request for
both server and INP resources, schedulers will try to acquire those by modifying the
cell state through an atomic commit. Schedulers that will have to satisfy requests
containing supposedly-longer resource request lists are more likely to cause a higher
amount of conflicts when attempting to write the share cell state data structure.
This could heavily affect the whole RM performance.

3.3.2 RMs’ network awareness levels

Existing RMs have a different awareness level of switch and link resources: based
on this, RMs can be divided into three groups.

VMs proximity-aware. Most of the RMs out there can spread VMs across
different failure domains like machines, racks and power domains. This group is
not worth discussing since these kinds of RMs do not consider any kind of resources
rather than server ones. Some examples of VMs proximity-aware RMs are Omega
[26], ApacheTM YARN [28] and Mesos [11].
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Bandwidth-aware. Some RMs like CloudMirror [16], Oktopus [2], Kraken [8]
and Proteus [31] allow tenants to specify bandwidth demands. These RMs let ten-
ants express their requests by using "virtual network" models like Virtual Clusters
(VCs), Time-Interleaved Virtual Clusters (TIVCs), Virtual Oversubscribed Clus-
ters (VOCs) and Tenant Application Graphs (TAGs).

Oktopus [2] and Kraken [8] assume that every VM can be placed on every phys-
ical server (i.e., VM slots instead of dealing with resource dimensions), completely
ignoring server-local resource requirements. This is not acceptable in a real-world
scenario in which different logical server resources have different resource require-
ments.

It is also worth to notice that Kraken [8] allows tenants to upgrade their band-
width requirements, causing the migration of VMs that have been previously allo-
cated in parts of the data center in which the new bandwidth requirements could
not be satisfied anymore. Still, none of these RMs is able to manage any kind of
switch resources.

Network resources-aware. The most interesting group consists of those RMs
that are actually aware of network resources. At the time of writing, there seems
to be only one embedding solution that belongs to this group, namely, the one in-
troduced in "On tackling virtual data center embedding problem" [21] by Rabbani,
Md Golam, et al. presented in the IM 2013: IFIP/IEEE International Sympo-
sium on Integrated Network Management conference. This solution allows tenants
to explicitly specify (i) logical server resources, (ii) logical switch resources, and
(iii) bandwidth demands as logical edge resources.

Tenants use a graph to express their resource requests. The graph is expressed
as a key-value map that includes (i) a set of VM resources, (ii) a set of logical
switch resources and (iii) a set of logical links connecting the above entities (and
their minimum required bandwidth).

Its placement algorithm is interesting for the scope of this thesis since it is the
only one that takes into account all three types of resources mentioned before. The
placement phase is divided into three parts: (i) the VMs placement, (ii) the logical
switches placement, and (iii) the logical links placement. The problem of placing
VMs is reduced to a min-cost flow one like showed in Figure 3.18.

The graph shown in Figure 3.18 is built in the following way: VMs are sorted
according to a requested resource capacity in descending order and placed on the
left side of the image. Physical servers are instead placed on the right side. VMs
are connected to physical servers only if they can be placed on them. A dummy
source and destination node are then added like shown in Figure 3.18 so that an
instance of a min-cost flow solver can be run on it. The outcome of this phase
provides the allocation of VMs on physical servers.

It is important to notice how VMs are sorted based on just one resource dimen-
sion. Even though the model used in [21] supports an infinite number of resource

35



Analysis

Step 1: VMs placement

• The problem is reduced to a min-cost flow problem

SRC DST

VM1

VM2

VM3

VMN

SRV1

SRV2

SRVM

..
. ..

.

VMs sorted according to a 
requested resource capacity 

in a descending order

Physical servers

Figure 3.18. VM placement in [21]

dimensions, the placement algorithm only supports one dimension and it does not
seem to exist an easy way to extend it to support multiple dimensions. The same
thing is done for the placement of logical switches, as shown in Figure 3.19.

Step 2: virtual switches placement

• Same min-cost flow problem as before
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Figure 3.19. Logical switches placement in [21]

The mapping of logical switches to physical ones is done independently of the
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outcome of the previous phase (i.e., VM placement). Figure 3.20 shows how this
could lead to a bandwidth waste in case a logical switch connecting two VMs is
mapped to a physical switch that is far away from the physical servers on which
the VMs have been previously placed.

Rack

ToR

B

Allocation request:

Link having insufficient 
residual bandwidth:

Link having enough 
residual bandwidth:

Links on the 
shortest path:

B

Figure 3.20. An example of an inefficient logical switch placement in [21]

The third and last step simply consists of mapping logical links between two
logical entities (VMs or switches) to the shortest physical path connecting the
physical devices on which the logical entities have been allocated.

The placement algorithm is not fault-tolerant since it tries to map as many VMs
as possible to the same physical server to minimize server resource fragmentation.

3.4 Resource models
Several network abstractions have been proposed to provide simple APIs to tenant
applications, requiring them to only specify high-level resource requests without
knowing the actual data center infrastructure.

The section contains a brief analysis of resource models used by tenants and a
short discussion about their ability to describe INP solutions.

3.4.1 Virtual Cluster (VC)
Proposed in the Oktopus [2] paper, a Virtual Cluster (VC) is a logical one-level
tree in which N VMs are connected to a single virtual switch by a bidirectional link
of bandwidth B.
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Figure 3.21. A graphical representation of the VC model

The virtual switch has a bandwidth of N · B, hence the VC has no oversubscrip-
tion, unlike the Virtual Oversubscribed Cluster (VOC) model described in subsec-
tion 3.4.2. Authors say that the absence of oversubscription makes it suitable for
data-intensive applications.

Usage

Kraken [8]. The VC is the only resource model used by Kraken [8]. The system
allows tenants to update their minimum guarantees in terms of bandwidth and
the number of server resources. However, tenants can only express the number of
needed computing resources (called computing units) and not their internal require-
ments (like CPU cores, memory, etc.). The assumption that all resources are the
same is not acceptable in an INP scenario.

Oktopus [2]. Tenant applications can choose one of the three following options
to express their request: they can either (i) stick with the classic resource request
by listing individual server resource demands without expressing bandwidth guar-
antees, accepting to simply get some share of the network resources, (ii) choose a
VC, most likely used to request resources for data-intensive applications which do
not tolerate oversubscribed networks or (iii) specify a VOC for those applications
having more intra-component communication than an inter-component one.

Yet, when the Oktopus [2] system receives a request expressed with a VC, it
assumes that VMs can be allocated on any server with enough free VM slots,
exactly like Kraken [8] with its computing units.

3.4.2 Virtual Oversubscribed Cluster (VOC)
Also proposed by Oktopus [2] authors, the Virtual Oversubscribed Cluster (VOC)
model consists of N VMs arranged in groups of size S. Similarly to the VC model,
VMs belonging to the same group are connected to a single virtual switch by a bidi-
rectional link of bandwidth B. Therefore, every virtual switch connecting groups of
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S VMs has a total bandwidth of N · B. All groups are then connected by a unique
root virtual switch, making this model’s topology a two-level logical tree.

B B

...

VM1 VMS

B B

...

VM1 VMS

...

B·S/O B·S/O 

Root virtual switch

Group virtual 
switch

N VMs

Server
requirements

Server
requirements

Figure 3.22. A graphical representation of the VOC model

Links connecting all virtual switches to the root one have an oversubscription
factor of O, meaning that each of those links has a bandwidth of S ·B/O. The VOC
model aims to relax the dense connectivity requirement between all VMs, having
oversubscription just for inter-group communication.

Usage

Oktopus [2]. Tenants who use a VOC model for their requests are aware of the
bandwidth oversubscription for inter-group communications as they explicitly have
to specify the oversubscription factor O in the request. Oktopus [2] though still
does not make any distinction between server resources, making it an unpractical
solution for handling INP resources.

3.4.3 Tenant Application Graph (TAG)
As described in section 3.1.5, the Tenant Application Graph (TAG) model is a
directed graph in which vertexes represent server components and links’ weights
represent the requested sending and receiving bandwidth, respectively, SB and
RB.

The model has been introduced and used by CloudMirror [16] since the previ-
ously-mentioned models are inefficient as they over-allocate bandwidth (section 3.1.5).
This model is decoupled from any network topology, allowing RMs to be more flex-
ible during resource allocation.
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Figure 3.23. A TAG example

Usage

CloudMirror [16]. The CloudMirror [16] placement algorithm just considers VM
slots, assuming that all server resources have the same requirements. This is not
true for INP applications since different INP resources require different network
devices specifications. The placement algorithm tries to find the lowest sub-tree
in the physical topology that can host the number of requested VMs taking into
account the bandwidth requested between those: this means that the scheduler is
aware of the residual bandwidth on links, but it considers all network devices to be
the same.

3.4.4 Fine-grained resource requests
Most state-of-the-art RMs [11, 29, 26, 22, 28] deal with resources in the simplest
yet most descriptive way: a list of server-only resourc demands (e.g., CPU cores,
memory, etc.).

Usage

Mesos [11]. First, the Mesos [11] logically centralized resource allocator offers
different fine-grained server resources to different schedulers. Schedulers will then
reply to the allocator with the information about the tasks to be run on servers.
The allocator is completely network-unaware and hence it can neither offer any
other kind of resource types nor accept tasks to be run on network devices.

Oktopus [2]. In Oktopus [2], tenant applications can use (i) the VC model to
express virtual networks characterized by dense connectivity, (ii) the VOC model
for oversubscribed virtual networks and (iii) a fine-grained resource list to request
server resources only. The system makes a distinction between requests expressed
by a virtual network (the first two options) and those that are not (fine-grained list).
The latter kind of requests has the lowest priority, meaning that the bandwidth
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not used by virtual networks is equally distributed amongst applications that did
not request for any bandwidth guarantee. In conclusion, when sending a resource
request to Oktopus [2] expressed through a list of resource demands, the RM will
not take care of bandwidth guarantees since there is no way for tenant applications
to specify these demands.

Borg [29]. Borg [29] does not support any network abstraction and it only allows
tenants to request resources by listing them explicitly. A scheduler first step’s
consists of finding the subset of machines on which the task could run, and while
doing this, it does not consider any kind of aspect regarding the network. During the
second step, namely scoring, which consists in finding the best subset of machines
on which the task can be allocated, the only network aspect that is taken into
consideration is the failure domain: tasks are allocated across failure domains (e.g.,
machines, racks, power domains) for fault-tolerance.

ApacheTM YARN [28]. Besides container properties, tenant applications issu-
ing requests can include locality preferences (e.g., node-level, rack-level, and global
locality preferences). Exactly like Borg [29], this is the only network aspect taken
into consideration during job placement.

3.4.5 High-level goals
Rather than a fully descriptive resource model, high-level goals specification can
be seen as an add-on to the other previously-mentioned models that are worth
mentioning for this thesis. Taking Bazaar [12] as an example, one possible high-
level goal is job completion time. Goals like these eventually need to be translated
into classic resource requirements to be correctly interpreted by an RM.
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Chapter 4

Requirements

This chapter lists a set of functional (FR) and non-functional requirements (NFR)
for the resource model. Moreover, the model exposed to tenant applications (tenant-
side model) and the one internally used by the RM (RM-side model) could be
different.

4.1 Functional requirements
FR1 The tenant-side model must be able to describe server and INP composites.

FR2 The tenant-side model must be able to describe all kinds of INP composites.

FR3 The RM-side model must be able to describe all kinds of INP composites.

FR4 The tenant-side model must allow the tenant to specify different bandwidth
demands for different composites and INP composites.

FR5 The resource model must be able to describe any kind of network topology.

FR6 The tenant-side model (and the corresponding APIs) must not change upon
the release of a new INP solution or version.

FR7 The translation from composite requirements to logical resource require-
ments must be done by the RM and not by the tenant application.

4.2 Non-functional requirements
NFR1 The tenant-side model should be able to easily express INP composite

requirements with the use of high-level laconic properties.
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Chapter 5

Design

This chapter lists all contributions this thesis has made, including (i) the design of
a system capable of handling composites (section 5.1), (ii) an appropriate resource
model (section 5.2) and (iii) an attempt of generalization of the INP solutions
(section 5.3) previously described in section 3.2.

5.1 System design
This section contains a brief description of how the whole system works: from the
tenant resource request to the actual resource placement in the physical topology.

5.1.1 Overview
As required by FR1 and FR2, tenant applications must be able to express their
requests in terms of logical resources and composites. The latter are just a simpli-
fication for tenant applications, and they need to be translated into a set of logical
resources for the placement algorithm to allocate those. This translation can be
done by the RM using a template database, that maps pre-determined composites
into their equivalent made out of just logical resources, as shown in Figure 5.1.

Logical resources represent the input of the placement algorithm. Those will be
assigned to physical resources, as shown in Figure 5.2.

The whole system design is depicted in Figure 5.3.

5.1.2 Composites translation methods
Composites can have multiple properties specifying some application requirements
or constraints.

A first approach called passive mapping would require tenant applications to ex-
plicitly express internal composites’ properties that directly affect their equivalent
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Mapping composites to logical resources

• Composites must be translated into logical resources

• This is done by using a template database managed by the RM

logical_switch {
    app: incbricks,
    ...
}

IncBricks

Template 
database

composite {
    type: inp,
    app: incbricks,
    ...
    chain_length: 3,
    ...
}

Query 
issuer

Data 
owner

Te
n

an
t

R
M

Figure 5.1. Translating composites to logical resources

Physical resources

• The placement 
algorithm places 
logical resource 
into physical ones

• Three types of 
physical resources:
• Server

• Switch

• Links

logical_switch {
    app: incbricks,
    ...
}

Rack

ToRPlacement 
algorithm

Figure 5.2. Placement of logical resources to physical resources

expressed in terms of just logical resources. Figure 5.4 shows an example of a tenant
application explicitly specifying the chain length of its IncBricks [17] composite and
the bandwidth demands B1 and B2 towards and outwards it, respectively. This,
of course, increases the expressiveness of the tenant application with the cost of
making the interface more complex to use 7 NFR1.

With the opposite approach (active mapping), tenant applications do not have
to specify internal composites’ properties, but instead more abstract performance
goals. These high-level composites’ goals will be then translated by the RM. An
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Figure 5.3. From the tenant-side model to physical resources

1st alternative: passive template mapping 
logical_switch {
    app: incbricks,
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    dst: ...,
    bandwidth: B2,
    ...
}

edge {
    bandwidth: B1,
    ...
}

User specified

Figure 5.4. Passive template mapping

example of this translation is showed in Figure 5.4, where the requested tuple rate is
transformed accordingly into topology and bandwidth constraints. This approach
simplifies the interface exposed to tenant applications by not letting them taking
care of internal composites’ properties that might be unknown to developers 3
NFR1.
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2nd alternative: active template mapping 
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Figure 5.5. Active template mapping

5.2 Resource model design
Tenant applications need a tenant-side model to be able to include INP resources in
their requests. This chapter will first discuss the integration of INP resources in an
RM using currently-existing models described in section 3.4 and will then introduce
a model proposal that must be capable of describing existing INP solutions as well
as future ones.

5.2.1 Integrating INP resources using existing resource mod-
els

Different resource models (section 3.4) are currently used by RMs to offer and
manage data center resources. Most of the times they allow the description of
logical server resources only, but some Resource Management Frameworks (RMFs)
like [8, 16, 2] also provide bandwidth provisioning by allowing tenants to request
logical edge resources. A lot of them are network-aware in the sense of being aware
of failure domains. [21] allows tenants to request logical switch resources but it
does not allow them to request logical edge resources and composites.

This section will discuss whether each resource model previously described in
section 3.4 can be used for this system or not, confronting them with the require-
ment list reported in chapter 4.

Virtual Cluster (VC)

Quick recap. The Virtual Cluster (VC) model consists of N VMs connected to
a single virtual switch by a link of bandwidth B. Figure 5.6 shows an example.
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B B
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VM1 VMN

Virtual switch

Server
requirements

Server
requirements

Figure 5.6. A graphical representation of the VC model

Requirements check. Expressing just one value of bandwidth B for all con-
nections is indeed a big limitation. One could assign to B the highest bandwidth
demand in case different nodes require different amounts of bandwidth, but this
is obviously a waste of resources. This does not completely satisfy 7 FR4. The
Time-Interleaved Virtual Cluster (TIVC) model introduced in Proteus [31] over-
comes this limitation since bandwidth constraints are expressed by time-varying
functions instead of a constant fixed value. Both models though (i) rely on a sin-
gle virtual switch that is not suitable for tenant applications that require a more
complex logical switch topology such as a chain or a tree (7 FR5) and (ii) do not
support logical switch resource requests (7 FR2).

Virtual Oversubscribed Cluster (VOC)

Quick recap. The VOC model is the oversubscribed extension of the VC one.
Figure 5.7 shows an example.

B B

...

VM1 VMS

B B

...

VM1 VMS
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B·S/O B·S/O 

Root virtual switch

Group virtual 
switch

N VMs

Server
requirements

Server
requirements

Figure 5.7. A graphical representation of the VOC model
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Requirements check. The VOC model has the advantage of not requiring a
virtual switch of bandwidth N ·B, that could be unpractical when N is particularly
large. When a tenant application issues a resource request using a VOC, it requests
for a < N, B, S, O > tuple, being respectively (i) the number of VMs, (ii) the
bandwidth needed for intra-group communication, (iii) the group size and (iv) the
oversubscription factor. Still, certain kinds of applications might need different
values of B for different groups (7 FR4). Furthermore, the two-layer logical tree
topology might not suit perfectly for applications that require a chain having more
than 2 network devices or a tree topology with more than 2 layers (7 FR5). The
VOC model still does not support logical switch resource requests (7 FR2).

A possible variant. The two limitations previously mentioned can be obviously
overcome by allowing tenants to specify (i) logical switch resources (satisfying 3
FR2) (ii) different bandwidth demands for different groups (satisfying 3 FR4) and
(iii) an arbitrary tree height. The corresponding variant is shown in Figure 5.8.

B1 B1

...

VM1 VMS

Bi

...

VM1 VMS

...

N VMs

Bi BN/S

...

VM1 VMS

...
BN/S

Server
requirements

Server
requirements

Switch
requirements

Switch
requirements

Figure 5.8. A possible VOC variant with an arbitrary tree height

However, tenant applications still (i) cannot express any kind of switch topology
(e.g., a switch loop for an in-network Distributed Hash Table (DHT) chord), vio-
lating 7 FR5, and (ii) convert INP high-level requirements (e.g., in-network total
cache size, lock requests per second, etc.) into switch resource requirements (7
FR7).

Tenant Application Graph (TAG)

Quick recap. A TAG is a graph where vertexes represent server composites,
connected by logical edge resources. Figure 5.9 shows an example.
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Figure 5.9. A TAG example

Requirements check. The model does not allow tenant applications to request
INP composites (7 FR1) and logical switch resources (7 FR2). Since this model
satisfies all other requirements, it will be used as a starting point for the resource
model proposed in subsection 5.2.2.

5.2.2 Model proposal: the extended-Tenant Application
Graph

The extended-Tenant Application Graph (eTAG) is based on a TAG and it allows
tenant applications to specify (i) all types of composites (3 FR1) and logical
resources (3 FR2), (ii) different bandwidth demands (3 FR4) for different entities
and (iii) any kind of network topology (3 FR5). An example of an eTAG is depicted
in Figure 5.10.

INP composite
requirements
INP composite
requirements

Server 

comp. 1
INP 

comp. 1

SB12 RB12

RB21 SB21

Server 
logical 
res. 3

SB23 RB23

B3

C1 C2 C3

Server composite
requirements

Server logical resource
requirements

Figure 5.10. The eTAG proposed model

The introduction of composites in the model delegates their translation into log-
ical resources to the RM (3 FR7). The template database (subsection 5.1.1) allows
tenants to express INP composite requirements in terms of high-level properties (3
NFR1).
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5.3 Generic groups
The template database (subsection 5.1.1) takes care of translating composites into
a set of logical resources in order for the placement algorithm to work (Figure 5.1).
Ideally, the template database should map individual INP solutions to their equiv-
alent made out of logical resources only, but this may be not feasible as the number
of INP solutions will likely increase in the future. That is to say, this approach is
not scalable.

INP solutions may generally seem very different from each other as they pursue
different goals, but grouping them based on common aspects might be a way to
decrease the number of entries of a template database. That said, there is no unique
way of categorizing INP solutions: for instance, one could group them based on their
final purpose, on their logical architecture, and so on. This section tries to do this
based on the latter aspect, using those INP solutions described in section 3.2.

5.3.1 In-network data aggregation
Two key examples of INP solutions that might belong to such a group are Daiet
[25] and SHArP [10]. Usually network devices must (i) form a tree whose root is
connected to data consumers and whose leaves are connected to data producers
(ii) dedicate part of their local memory to store a key-value map (iii) be able to
perform basic operations on data, such as writing and hashing (iv) wait for all its
children to send aggregated data. Then of course single INP solutions may vary
for different aspects: for instance, SHArP [10] supports multiple data consumers,
while Daiet [25] expects only one.

Data producers must be connected to exactly one tree leaf, and data consumer(s)
must be connected to the tree root.

Daiet [25] and SHArP [10] differ a lot when it comes to nodes management. In
Daiet [25], the SDN controller must push flow rules to all switches belonging to at
least one tree. On the other hand, SHArP [10] has a special unit (not necessarily
be the SDN controller) that acts as a sort of RM, dedicating SHArP [10] resources
to those entities who request for them.

5.3.2 In-network storage
Both NetChain [13] and IncBricks [17] make use of a distributed key-value map
across physical switches, even if for a different purpose. NetChain [13] in fact
implements an in-network coordination service, while IncBricks [17] simply caches
data.

Network devices must dedicate part of their local memory to store a distributed
map. They also must form a chain: in IncBricks [17], the two communication
endpoints must be connected through this chain, while in NetChain [13] this is not
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a requirement since coordination can involve more than two nodes (but switches
must support coordination primitives).

A query issuer is a logical server resource and must know how to contact at least
the head switch. In NetChain [13], query issuers might also directly contact the
tail switch, and they must include the list of IP addresses of all switches belonging
to the chain in their packets.

IncBricks [17] requires a logical server resource to own the cached data, and it
(i) must be connected to the tail switch and (ii) can reply to queries in case no
switch has cached the data.

The SDN controller is always in charge of forming the switch chain.
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Chapter 6

Evaluation

This chapter aims to evaluate the system designed in chapter 5. More specifically,
the ultimate goal is to show new challenges and problems brought by the introduc-
tion of INP resources and composites into the resource management layer.

6.1 Simulator
A simulator very similar to the Omega’s [26] lightweight simulator † has been built
up from scratch for this evaluation in Scala [19] so it could support multiple resource
dimensions, physical switch resources, composites and more. Its key aspects are
described below.

6.1.1 Physical resources

Data center architecture. This simulator emulates physical switch resources
besides server ones. It can support any kind of data center network architecture.
Specifically, a fat-tree has been used for this evaluation, which is a very common
topology for data centers to use. An example of a fat-tree topology is depicted in
Figure 6.1.

This fat-tree has three layers of switches: core, aggregation and the last one
which is usually called edge, layer, access or just simply ToR switches. Being k
the number of pods in the topology, a fat-tree contains (k/2)2 core switches, k2/2
aggregation switches, k2/2 ToR switches, and supports up to k3/4 servers. Being
then 5k2/4 the total amount of switches in a fat-tree, servers become more abundant
when k > 5.

† Available at github.com/google/cluster-scheduler-simulator
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Pod

ToR switches
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layer

Core layer

Figure 6.1. A fat-tree topology with 4 pods

Physical switch resources. For the sake of simplicity, physical switches have a
single numerical dimension called Compute Unit (CU). This assumption does not
affect this evaluation’s results and it makes the scheduling algorithm a bit simpler.
Increasing the number of switch dimensions is trivial since the simulator already
supports multiple dimensions for servers, namely CPU and memory. Logical edge
resources have been ignored to simplify the placement algorithm.

Switches are also characterized by a property map, that ultimately suggests which
kinds of INP solutions they are able to run. In this evaluation, properties and INP
solutions coincide (e.g., switch A supports INP solutions X, Y , and Z), but these
properties might be more appropriately extended to any other kind of hardware
property that distinguish switches in the data center (e.g., CPU architecture, sup-
ported data plane programming language, etc.). In general, a switch task requesting
for property P will only be allocated on a switch if it supports that same property
P .

6.1.2 Workload
The lack of workloads containing INP requests (and furthermore, of composites)
represents indeed a big limitation.

To keep things easy, logical resource requests are randomly generated. Every
time a job needs to be created, its core characteristics (e.g., number of tasks, dura-
tion, arrival time, logical resource demands, etc.) are randomly generated from an
exponential distribution. Next, the workload generator decides whether the job will
consist of an INP request (having both server and switch tasks) or it will contain
server tasks only. INP requests are generated according to the generic groups
listed in section 5.3, while classic servers-only requests adopt the Virtual Cluster
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(VC) model first introduced in section 5.2.1.
The percentage of INP requests injected into the workload is kept as a parameter

sweep so that it will then be possible to observe how simulations differ with different
amounts of INP requests.

Tweaks. Many factors come into play when generating INP requests from classic
servers-only workloads. One key aspect is the reduction of server tasks once an
INP solution is introduced: it will be called Server Tasks Cutback (STC). A
formal definition could be the following:

STC = #server tasks without INP

#server tasks with INP
(6.1)

Undoubtedly, the STC value will heavily affect simulations and its value depends
on the specific INP solution being used. For simplicity, the STC value will be fixed
to 5.

In real environments, tenant applications will directly include INP solutions in
their requests. The STC might only be useful in case the scheduler is smart enough
to propose alternatives to servers-only requests, in which case the scheduler will
have to compute the overall STC value of a job based on all the INP solutions
included in the offer as well as other factors.

Another aspect to take into consideration is the number of switch tasks to gen-
erate when creating INP requests. This also depends on the specific INP solutions
being used, but for simplicity, it is logarithmically proportional to the number of
server tasks to which it is directly connected to in the eTAG.

Template database. Some of the servers-only requests are enhanced with INP
composites. More specifically, logical server resource requirements will see their
number of server tasks reduced by STC. Then, a simple INP composite will be
inserted in the eTAG and connected to these server task groups. According to the
INP solutions analysis section 3.2, NetChain [13] and Daiet [25] composites expect
a single "data producer and consumer" node, while IncBricks [17] and SHArP [10]
composites stay in between two distinct producer and consumer nodes. Therefore,
the simulator splits the server task group in two in case the randomly-generated
INP solution belongs to the latter group.

6.1.3 Scheduler
The scheduler used for this evaluation uses a simple greedy placement algorithm
that cycles through all physical resources every time a job needs to be scheduled.
It tries to allocate as many tasks as possible on the same physical machine simply
by (i) checking the amount of available numerical resources and (ii) performing the
properties check for switch tasks as described in section 6.1.1.
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6.2 Testbed
Experiments ran on Dell C6420 servers on CloudLab [23], simulating a 3-days
long workload. The simulated data center architecture is a fat-tree with k = 4
(section 6.1.1).

6.2.1 Metrics
These simulations focus on the average resource utilization in the data center for all
dimensions. Different simulations vary in the ratio between the number of tenant
requests including INP composites over the overall amount of requests.

6.3 Results
Figure 6.2 shows moving averages of physical resource utilization across all dimen-
sions of four different simulations, in which the ratio of INP requests over classic
servers-only requests varies from 0% up to 100%. In general, it is expected that
the more INP requests tenants issue, the more Compute Units (CUs) will be uti-
lized. As described in subsection 6.1.2, job properties (e.g., number of tasks, logical
resource demands, etc.) are randomly derived from an exponential distribution: for
the sake of simplicity, server CPU and memory units per task will be derived from
the same distribution, so their utilization curve will follow a fairly similar trend.

The upper-left graph depicts a fully-utilized data center in terms of physical
server resources, with no switch resources being requested, hence used. The overall
server utilization does not reach 100% as the greedy scheduler (subsection 6.1.3)
obtains resources in an all-or-nothing fashion (gang scheduling).

The upper-right graph shows the same data for an experiment in which the
workload generator (subsection 6.1.2) issues resource requests containing INP com-
posites with a probability of 33%. Switches are the first type of physical resource
to become the bottleneck of the data center due to the scarceness of CUs (in this
simulation, switches have a tenth of resource units compared to server ones). Pre-
dictably, most of the tasks are offloaded to physical switches during the first part
of simulation: this is due to a particularly high value of the Server Tasks Cut-
back (STC) (section 6.1.2) used in the experiment. The higher the STC value, the
higher the reduction in terms of server tasks due to the introduction of INP in a
request. As soon as the scheduler does not manage to satisfy other INP requests,
the overall server utilization inflates as more and more servers-only requests get
allocated – plus, the number of server tasks is no longer reduced by STC. Besides
the termination of previously-running INP composites, the overall switch utiliza-
tion drops to 0% since physical server resources now act as a bottleneck. In other
terms, INP requests will not be satisfied because (i) their server counterpart cannot
be scheduled as physical servers are highly utilized, and (ii) the greedy scheduler
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6.3 – Results
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Figure 6.2. Physical resource utilization for different amounts of INP requests

(subsection 6.1.3) cannot acquire only physical switch resources as it adopts the
gang scheduling policy for acquiring resources.

The bottom-left graph shows the same behavior, but with more INP requests
than servers-only ones: the overall server utilization has the chance to increase at
a later time because of this their lower arrival frequency.

The last part of the graph depicts the extreme-case scenario in which all of
the incoming resource requests contain INP composites. In contrast with the first
experiment with no INP requests at all, the other kind of physical resources (server
CPU and memory units, in this case) are not completely unutilized, as INP requests
contain logical server resources too. The higher the STC value, the higher the
overall server utilization will be.

With a more proper parameter calibration, this server bottleneck effect can
disappear, e.g., by reducing the number of switch tasks required by single INP
composites. Finding the proper number of switch tasks to introduce whenever an
INP solution is requested is out of the scope of this thesis, as it may not only
depend on the number of server tasks belonging to the same request but it surely
also highly depends on the specific INP solution itself.
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Evaluation

Figure 6.3 shows the average physical resource utilization across all dimensions
as a function of the percentage of INP requests.
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Figure 6.3. Average resource utilization as a function of the INP requests ratio

As expected, the higher the percentage of INP requests, the higher the average
physical switch utilization. As the latter increases, the average physical server
utilization decreases due to the STC effect. The higher the STC value, the more
rapidly the average physical server utilization will decrease. On the other hand, the
higher the number of switch tasks required by INP composites, the more rapidly
the average physical switch utilization will increase.

When plotting the less relatively-used resource dimension as in Figure 6.4, a
peak around a certain percentage of INP requests appears.
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Figure 6.4. Minimum resource utilization across all dimensions
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Chapter 7

Conclusions

Based on the results achieved in section 6.3 and on the analysis of network-aware
RMs in subsection 3.3.2, this chapter aims to foresee some features that an ideal
fully-INP aware Resource Manager should have, as well as some open problems in
the INP resource management field.

7.1 Fully INP-aware RM features
Conjunct placement. As mentioned in section 3.3.2, [21] considers both server
and logical switch resources during allocation, but it does not place them during the
same scheduling round. The drawback of not scheduling these two kinds of resources
conjunctly causes the placement algorithm to derive a sub-optimal placement, as
explained in section 3.3.2.

Ideally, an RM should allocate a job considering its server and logical switch
resources at the same time, i.e., during the same placement round.

INP alternatives. The results reported in section 6.3 show an underutilization
of physical resources depending on the number of tenant requests containing INP
composites.

To maximize the (relative) minimum physical resource utilization, the RM would
need to adjust the ratio of INP requests over servers-only ones. With the assump-
tion that physical switch resources can become the bottleneck of whole the system
more rapidly (e.g., less switches than servers in a fat-tree with k > 5 or for the
scarceness of CUs in general), RMs should be able to propose alternatives to INP
composites made out of logical server resources or server composites only, as soon
as physical switch resources become heavily utilized. Those alternatives could be
stored, for instance, in the same template database (subsection 5.1.1) used to trans-
late INP composites into a set of logical switch resources.
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Conclusions

7.2 Open problems
Some of the important metrics used in chapter 6 are still unknown due to the lack
of operational RMs that handle INP requests.

In order for RMs to be able to propose alternatives, the performance improve-
ment of all INP solutions in the template database must be reduced to a single
number that represents the reduction of server tasks after the introduction of an
INP composite: the Server Tasks Cutback (STC).

Moreover, there should be a precise way of determining the number of switch
tasks needed to implement an INP composite, and this could depend on a lot of
factors like the set nodes to which the INP composite is connected to in the eTAG,
its high-level properties, etc.

Another key aspect to consider is the type of life cycle that different INP solutions
might have. Similarly to server requests, batch (short-term) and service (long-term)
jobs may need different scheduling policies. INP solutions should also be categorized
on the same basis, e.g., NetChain [13] as a service INP composite (since most likely
it will be running for a long time, serving multiple server tasks) and Daiet [25] or
SHArP [10] as a batch one.
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Abbreviations

AM Aggregation Manager. 30, 31, 32

AN Aggregation Node. 30, 31, 32

API Application Programming Interface. 4, 5, 30, 31, 37, 43, 65

CU Compute Unit. 56, 58, 61

DHT Distributed Hash Table. 50

eTAG extended-Tenant Application Graph. 51, 57, 62

HPC High Performance Computing. 30, 31

INP In-Network Processing. 4, 5, 7, 10, 11, 18, 33, 34, 37, 38, 39, 40, 43, 45, 48,
50, 52, 55, 56, 57, 58, 59, 60, 61, 62, 65

MPI Message Passing Interface.

NBI SDN Northbound Interface.

NFV Network Function Virtualization. 10, 11

QP Queue Pair.

RM Resource Manager. 4, 5, 7, 8, 9, 11, 13, 14, 18, 32, 33, 34, 35, 39, 40, 41, 43,
45, 46, 48, 51, 52, 61, 62, 65

RMF Resource Management Framework. 48

RPC Remote Procedure Call. 12

RTT Round Trip Time.

SBI SDN Southbound Interface. 10
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Abbreviations

SDN Software-Defined Networking. 10, 11, 18, 22, 26, 27, 28, 29, 52, 53

SFC Service Function Chaining.

STC Server Tasks Cutback. 57, 58, 59, 60, 62

TAG Tenant Application Graph. 5, 16, 17, 35, 39, 40, 50, 51

TCA Target Channel Adapter.

TIVC Time-Interleaved Virtual Cluster. 35, 49

ToR Top of Rack. 8, 55

VC Virtual Cluster. 35, 37, 38, 40, 48, 49, 56

VM Virtual Machine. 7, 10, 12, 16, 17, 29, 34, 35, 36, 37, 38, 39, 40, 48, 50, 65

VNF Virtual Network Function. 10

VOC Virtual Oversubscribed Cluster. 16, 35, 38, 39, 40, 49, 50
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Resources glossary

Physical resource physical hardware component of limited availability within a
physical machine. 5, 7, 17, 35, 45, 46, 47, 57, 58, 59, 60, 61
Physical server resource resource of a physical server machine. 34, 55, 56, 58,
59, 60, 61
Physical switch resource resource of a physical switch, network accelerator,
middle-box and of every kind of network device originally intended to forward
packets. 10, 34, 35, 52, 53, 55, 56, 58, 59, 60, 61

Logical resource logical representation of a physical resource. 17, 18, 43, 45, 46,
51, 52, 56, 58, 59, 61
Logical server resource virtualized server physical resource, often implemented
by means of a VM, container or an entire physical server. 5, 33, 35, 48, 53, 56,
57, 58, 59, 61, 62
Logical switch resource logical representation of a physical switch resource not
mapped to any physical switch device. 33, 35, 48, 49, 50, 51, 56, 58, 59, 60, 61,
62
Logical edge resource properties of virtual connections between two logical
resources, e.g., bandwidth, latency, etc. 33, 35, 48, 50, 56

Composite template describing a high-level logical component. It can be made
out of other composites and/or logical resources. 33, 43, 45, 46, 47, 48, 51, 52, 55,
56, 57
Server composite composite describing a high-level server component, e.g., web
server, databases, etc. 50, 61
INP composite composite describing a high-level INP application, e.g., In-
cBricks [17], NetChain [13], etc. 43, 51, 57, 58, 59, 60, 61, 62

Resource model model capable of describing composites and logical resources.
The model exposed to tenants and the one internally used by the RM could be
different. 15, 16, 43, 45, 48, 51
Tenant-side model resource model exposed to tenants by the system API. 35,
43, 47, 48
RM-side model resource model internally used by the placement algorithm in
order to allocate logical resources. 43
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