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Summary

Feedback gathered from university courses’ are the most effective tool given to students to shape
lectures according to their needs and difficulties. Nonetheless, feedback is often neglected by both
students and teachers, even if studies show how feedback can improve the quality of the student’s
experience as well as being an essential tool for the teacher’s development.

With the improvement in Natural Language Processing and the Machine Learning field, it is
now possible to analyze text and effortlessly gather insights. These insights ease the professor’s
work when faced with the task of reading feedback which, depending on the course, can be thou-
sands. The Logistic Network Lasso is a novel semi-supervised machine learning algorithm that
has been applied in the binary classification scenario and compared to algorithms such as Maxflow
and Belief Propagation, resulting in overall increased accuracy.

This thesis aims to answer two research questions in order to further analyze the capabilities
of the Logistic Network Lasso algorithm.

The first research question wanted to find the most efficient way to transform the feedback
data into suitable embeddings for Logistic Network Lasso. Various standard clustering algorithms
such as K-Means, Affinity Propagation, Spectral Clustering and DBSCAN are compared using
different embedded vectors. This thesis gives a general overview of the most common embed-
ding techniques, which are Word2Vec, Doc2Vec, GloVe, FastText and BERT. From the set of
embedding techniques studied, GloVe, FastText and BERT were found to be superior in terms
of the clustering performance metrics analyzed when used with standard clustering algorithms
without Logistic Network Lasso. The clustering performance metrics that were analyzed in this
thesis are divided in two classes, clustering performance metrics that rely on external indexes and
clustering performance metrics that depend on internal indexes. The metrics used for the first
class are Rand-Index, Adjusted Rand-Index, Normalized Mutual Information, Adjusted Mutual
Information and Fowlkes-Mallows score. The metrics used for the second class are the Silhouette
Coefficient, Davies-Boulding Index and the Calinski-Harabasz index. The metrics for the second
class were found to be unreliable when assessing the performance of the clustering methods when
the BERT embeddings were used, probably due to the higher dimensionality of the feature vectors.

The impact of the conventional pre-processing techniques in this clustering scenario has been
investigated. Surprisingly, standard NLP pre-processing approaches such as stemming affected
the metrics negatively and were removed from the pre-processing pipeline. Moreover, another
standard pre-processing technique known as stopwords removal was not applied, because the se-
mantic of the sentences had to be preserved.

The second research question wanted to find if the Logistic Network Lasso is an optimal choice
for tackling the binary clustering feedback problem. In order to answer the research question,
standard clustering algorithms were compared with the Logistic Network Lasso incorporating the
best embedding techniques discovered during the first research question.

Logistic Network Lasso requires weights for the edges between data points that are considered
similar. BERT similarity scores were an adequate candidate and improved the performance of
Logistic Network Lasso in binary clustering. Logistic Network Lasso is an algorithm that uses
a percentage of the true labels during training. For this reason, a certain improvement over the
other unsupervised algorithms tested was expected, proportional to the percentage of true labels
used. Using a percentage of 20% of true labels, lnLasso increased the best value of Adjusted
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Rand-Index, Normalized Mutual Information and Adjusted Mutual Information of up to 30%,
but decreased Rand-Index and Fowlkes-Mallows index. The best combination of embeddings
method to use in conjunction with Logistic Network Lasso is either FastText or BERT using the
average of both second-last and last-layer. The results of the experiments indicate that lnLasso
is a valid choice for binary clustering feedback data.

Figure 1. Bar plot showing the increment or decrement in percentage between the
best result for each clustering performance metrics, comparing the result obtained with
and without lnLasso.

This thesis, for the first time, researched the applicability of the Logistic Network Lasso when
binary-clustering feedback data. More research has to be done in the non-binary or multiclass clas-
sification scenario, comparing the Logistic Network Lasso with soft clustering techniques. In the
non-binary classification scenario, the classes can be selected using topic modelling, automating
the process even more for understanding the feedback.
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Chapter 1

Introduction

This section describes the challenges of clustering open-ended feedback, and presents the research
questions that will be answered in the rest of the thesis.

1.1 Overview

Learning Analytics applications are becoming extensively more researched, and they are consid-
ered as “the most dramatic factor shaping the future of higher education” [1]. Thanks to the
increased popularity of Educational Data Mining (EDM), we have seen how these applications
can improve the quality of the student experience [2], how these insights can be used to improve
e-learning systems [3] and how you can even improve student performance [4].

Feedback gathered from university courses’ are one of the tools that can be used to gather
insights on how well a course is perceived by students. Feedback are usually divided between
open-ended and closed-ended questions. Feedback questionnaires are composed of both of these
types of questions. Closed-ended question produce feedback following a structure, that enables
them to be easily analyzed with little effort. Open-ended questions on the other hand are more
difficult to analyze in an automated way, since they are written in a natural language, i.e. English.
Open-ended questions are useful to understand student’s feelings or attitudes and this information
is often lost or not well depicted by closed-ended questions. The rest of this thesis focuses only
on open-ended feedback and will only be referred to as “feedback”.

Feedback can often say the same concept using different words, because two students can
think in different ways. This phenomenon increases the difficulty of clustering similar feedback
together, because the tool used to cluster the feedback has to understand the semantics of the
sentences, which is a difficult task. In some cases, the huge amount of feedback discourages the
teacher reading them because the amount of work is too extensive for the teacher to handle, and
the feedback may be skimmed instead of carefully read, and useful information provided by the
students will be lost.

Whether feedback is the most effective and reliable method for teacher’s evaluation has been
studied [5], and two-thirds of the teachers and students that were involved in this study agreed that
student’s feedback is an important tool for educators development. The study involved teachers
and students from a medical college. The educator’s performance was evaluated after a three
month teaching period followed by three months where teachers could hone their skills in a precise
way thanks to the feedback that guided them toward the students needs. Following another three
months the educator’s performance and the feedback’s effectiveness was evaluated. The student’s
feedback focused on the teacher’s planning and preparation for the lecture, classroom environment
and after class consultation availability. This feedback has been found to be reliable, and teachers
agreed on its effectiveness.

Natural Language Processing (NLP) studies the interaction between computers and the natural
languages, how to analyze this data and use it in our daily lives. Some applications of NLP is
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Machine Translation which is used in Google Translate, Question Answering used by bots to help
the users find the correct Frequently Asked Question (FAQ) and Speech Recognition used for the
automatic generation of subtitles in videos. The NLP applications are only briefly introduced
here. Thanks to the progress made in this field we can now efficiently deal with vast quantities
of text and analyze it, therefore provide real-time statistics, that can be used in parallel with the
feedback, modifying a course accordingly.

1.2 Related research

Most of the research that has been done using the Least Absolute Shrinkage and Selection Op-
erator (Lasso) to network structured data (nLasso) used the squared error as the loss function.
Recently there has been research on binary classification and clustering problems with network
structured data that used the logistic loss function instead, and the name Logistic Network Lasso
(lnLasso) was coined. The research on lnLasso mostly focused on clustering and binary classifi-
cation [6], and learning networked exponential families [7]. The research compared the lnLasso
to other algorithms such as Maxflow and Belief Propagation, showing that lnLasso was overall
better in terms of accuracy after a certain number of iterations.

1.3 Problem statement

The aim of this thesis is to find out if the lnLasso algorithm can be used to tackle the problem of
clustering University courses’ feedback, comparing it with other modern and standard solutions.
University courses’ organization can vary, and with that the amount of feedback generated by
students. University courses’ can be divided into parts and for every part there could be a
feedback questionnaire. Dividing the course into parts enables the teacher to tackle problems
quickly, changing the material and the lesson’s structure accordingly to what the students may
or may not find difficult to understand. This type of feedback questionnaire divided into parts is
the case for the dataset utilized in this thesis, as shown in paragraph Dataset.

Clustering the feedback together is an important step to save time for the teacher, especially
when the amount of feedback becomes too time-consuming for a single person to analyze in a
short time, i.e. the case depicted in the previous paragraph. Clustering allows the teacher to
look at the main trends and problems that student have, and quickly act accordingly, making the
students more involved in shaping the lectures.

This problem is not limited to the universities or eLearning environments, but can be extended
to any scenario where a considerate amount of written feedback is involved, like companies de-
livering a product to a user, healthcare research, events or any scientific study that requires
open-ended questions.

In order to solve the research question of if the lnLasso algorithm can be a competitive clus-
tering technique for educational data, another research question arises. What is the most effective
way to capture the features of the educational data into a model?

1.4 Organization of the thesis

This thesis is organized into five main chapters. After the introduction, the second chapter
describes some of the many techniques used in NLP to obtain sentence embeddings which are
Word2Vec, Doc2Vec, FastText, GloVe, Recurrent Neural Networks, Long Short-Term Memory
neural networks, Skip-Thought Vectors, Paragram-Phrase Embeddings, Transformers, ELMo,
ULMFiT, OpenAI GPT and BERT.

The third chapter describes the dataset used for this thesis, the pre-processing techniques that
are usually used when solving a NLP problem, and some benchmarks that were used to compare
and train the algorithms. This chapter continues describing how to model a machine learning
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problem and describes the clustering techniques that will be analyzed in the next chapter of the
thesis, such as K-Means, Affinity Propagation, Spectral Clustering and DBSCAN. The chapter
continues describing the clustering evaluation metrics that will be used to compare the different
clustering algorithms with the lnLasso, dividing them in metrics that rely on external indexes and
metrics that depend only on internal indexes. The third chapter ends with describing the lnLasso
algorithm.

The fourth chapter describes the configuration in which the results were obtained and describes
the different experiments. The first round of experiments compares the different clustering algo-
rithms using the first three rounds of the datasets, pruning diverse configurations when results are
not reliable. The second round of experiments compares the distinct clustering algorithms using
diverse embeddings with and without stemming as a pre-processing step. The third round of ex-
periments compares the different clustering algorithms using the last three rounds of the dataset,
with diverse embeddings. The fourth round of experiments compares which of the distinct em-
beddings and configuration of lnLasso provides the best results, without a weighting schema. The
fifth and last round of experiments uses the information from the previous round to select the top
three embeddings and configurations for lnLasso and further analyzes the algorithm using as the
weighting schema the BERT similarity scores.

The fifth and last chapter draws the conclusions and further expands some questions for future
work.

11



Chapter 2

Background

In order to apply lnLasso, the dataset (see Table 3.1) needs to be represented by an undirected
weighted graph G = (V, E , W). A particular node i ∈ V of the graph represents a feedback encoded
as a phrase vector. Due to the fact that similar feedback are clustered together, the feedback’s
semantic meaning must be preserved. In the literature, there are many ways of encoding words
or phrases as vectors, and this chapter aims at describing a part of them.

2.1 Encoding feedback

Text can be unpredictable and machine learning algorithms prefer well-defined vectors of numbers,
therefore text has to be converted into numbers that represent the text properties. This step is
called feature extraction or feature encoding. The easiest way to encode feedback into numeric
vectors is to use one-hot encoding. Given a vocabulary of words that consists of all the distinct
words used in the feedback, the feedback will be truncated into words first and words will be
converted into vectors that consists of all zeros and only ones where the index of the word in the
vocabulary is. This will generate very sparse vectors, that do not carry the meaning of words.
For this reason, one-hot encoding is not suitable to be selected as a technique to encode feedbacks
for the scope of this thesis.

2.1.1 Word2Vec

Log-linear models “Continuous Bag of Words” (CBOW) or the similar “Skip-gram” first intro-
duced in [8], also known as the word2vec models, are widely adopted thanks to their simplicity
and flexibility. When word2vec models were first introduced, for the word similarity task state-
of-the-art NLP techniques where more complex non-linear neural networks that did not focus on
preserving the similarity between words and represented them as indices in a vocabulary, similar
to what one-hot encoding does. CBOW and Skip-gram achieved the result of obtaining high
quality and high dimensional word vectors using simpler architectures trained on more massive
datasets, and instead of focusing only on the scalar distance between words, multiple degrees of
similarity between words are preserved [9].

A BOW is a method to represent a text using the occurrence of words in a document, using
a vocabulary of unique words present in the input, and an array to keep track of the presence of
known words. It is called “Bag” of words because the order of the words in the text is lost. The
word2vec model trains a simple neural network with a single hidden layer, but instead of using
the neural network itself, it extracts the weights of the hidden layer, which are used to generate
the word vectors. The word2vec model is trained by attempting to guess the output (target word)
using the neighbour words as input (context words) or vice versa. More precisely, the CBOW
architecture tries to predict a word given its context, while Skip-gram tries to predict the context
given a word, as shown in Figure 2.2.
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In order to train the CBOW model, it needs a tokenized document (see Figure 3.1) as training
input. This document is going to be divided into training sample which consists of word pairs
(see Figure 2.1). The numbers of neighbours to be considered as word pair is defined by the
training window, a parameter of the model which usually is set to five. Five as the dimension of
the window means five words preceding the input word and five words after the input word are
considered as neighbours. The network is going to learn statistics from how often each pair of
words shows up in the same window, since the model assumes that words with similar meanings
are used nearby in different sentences. By doing this, words with similar meaning will end up
with a comparable numeric representation once encoded, so the word “United” will be close to
“America” and “Kingdom”, and far from “Coconut”.

Figure 2.1. Example on how word2vec splits the source text in training samples, with
a moving window w = 2.

The difference of architecture between CBOW and Skip-gram (see Figure 2.2) is important
when our interest is to give more weight to the rare words. Given the context “Tomorrow will be
a really [...] day”, CBOW will try to fit words like “beautiful” or “nice”. Words like “delightful”
since are rarer, will be used less from the model since it is trying to predict the most probable
word. Skip-gram instead starts from the word “delightful”, and adding to the context the pair
will be treated as a new observation. According to the authors of the paper [8] Skip-gram works
well when the training data and represents well even rare words, while CBOW is faster to train
and has slightly better accuracy for the more frequent words.

CBOW and Skip-gram obtained high scores in the tasks they were tested for but they were
limited to single-word recognition, and compound words such as “Air Canada” were treated as two
different single words. Another problem was that frequent words like “the” were considered similar
to any word, because they were often used together with almost any word. Some improvements
were introduced in [10] that addressed these problems. They increased the quality of the words
vector and introduced phrase vectors while decreasing the training time.

One approach to encoding feedback using CBOW and Skip-gram could be using the weighted
average of word vectors, but by doing this since as explained before the word order is not preserved
by the models, two feedback with different meaning that use the same words will be considered
as very similar. Another weakness of these two models is that they do not preserve the meaning
of words but only the degree of similarity between them.
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Figure 2.2. CBOW and Skip-gram architectures. CBOW predicts the current word
based on the context while Skip-gram predicts surrounding words given the current
word. (Figure taken from paper [8])

2.1.2 Doc2Vec

The algorithm Paragraph Vector also known as doc2vec [11] on the other hand, heavily inspired
by CBOW and Skip-gram, can represent texts with variable length ranging from sentences to
documents, while preserving their meaning. Doc2vec is an extension of Word2vec that adds
another vector called Paragraph ID, and it comes in two different variants.

The Distributed Memory version of Paragraph Vector (PV-DM), which uses this document-
unique Paragraph vector during the prediction of the next word on top of the context. During
the training this Paragraph is trained as well, and after the training it will hold a numeric
representation of the document.

The other variant is the Distributed Bag of Words version of Paragraph Vector (PV-DBOW)
which is comparable to Skip-gram. From the Paragraph vector the algorithm tries to guess the
context. This algorithm is faster and consumes less memory because it doesn’t save the word
arrays. The authors’ of the paper recommend to use a combination of both algorithms, even if
the PV-DM alone is enough to reach the state-of-the-art results.

While presenting good results in the paper, others have struggled to reproduce those results
[12]. Even if some effort was made to improve the Paragraph Vector by using pre-trained word
vectors, doc2vec, in general, performs strongly mostly on very large documents, which is not the
case of this thesis’ dataset (See Table 3.1).

2.1.3 FastText

FastText is an algorithm [13] created by the Facebook Research Team for learning word embed-
dings in the context of text classification. FastText takes inspiration from the Word2Vec model
[10], but it has some key differences. The main difference with the word2vec model is that instead
of using words as the smallest unit to compute the embeddings, words are split into n-grams e.g.
the word “eagle” will be split into “[eag, eagl, eagle, agle, gle]”. N-grams provide FastText with
some advantages over word2vec. Rare words embeddings are easier to compute, because their
n-grams might be shared with the representation of common words. If words are not present in
the dictionary, they can be split into n-grams and again see if there is a word in the vocabulary
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that shares the n-grams. Another advantage is that n-grams perform better in terms of accuracy
on smaller datasets compared to Word2Vec and unlike Word2Vec embeddings, the FastText word
embeddings can be averaged to form useful sentence embeddings.

Other than this difference, the FastText architecture is very similar to the Word2vec. It has
a weight matrix that works as a look-up table for words and a classifier is used for generating the
text representation.

Figure 2.3. Diagram showing the FastText model architecture. The architecture is very similar
to the CBOW architecture, Figure 2.2 (Figure taken from paper [13])

One of the goals of FastText is to be efficient with large datasets and in order to do so it uses
a hierarchical classifier [14] in which the different classes are organized into a tree based on the
Huffman Coding Tree. Exploiting the properties of the Huffman Tree, for uncommon words the
FastText model can generate smaller trees, increasing the efficiency. Word2Vec models do not take
into account the word order because it is computationally expensive, limiting its efficiency when
averaging the word embeddings into a sentence embeddings. FastText overcomes this problem by
using a bag of n-grams that will partially encode the word order.

2.1.4 GloVe

Global Vectors (GloVe) [15] are word embeddings that overcome the drawbacks of the word2vec
models and Latent Semantic Analysis (LSA). LSA is a technique used in summarizing text and
Topic modelling, that uses low-rank approximations to decompose large matrices. LSA is able
to leverage statistical information but unable to understand word analogies. Word2vec models
are able to do the opposite, understand word analogies using various degree of similarity between
words, but they poorly utilize the statistics that are present in the corpus because they train
using windows, instead of using global occurrence counts.

GloVe architecture uses a co-occurrence matrix computed using a fixed window size with the
same assumption of Word2Vec models, that the co-occurence ratios between words in a context are
connected to their meaning, but it also uses global count statistics. Some words are more frequent
than others and tend to be noisy, hence occurrences are weighted with a formula weight(x) =

min(1, (x/xmax)
3
4 )

Empirical results published in the GloVe paper [15] show that GloVe embeddings are generated
relatively fast, achieving better accuracy than the other models. Usually, there is no need to train
the vectors because they are downloaded already pre-trained. Hence the speed advantage is not
relevant, and further testing in other NLP tasks showed that word2vec and GloVe embeddings
perform more or less with the same level of accuracy.

Due to its architecture, this approach understands only word-level information, while to grasp
the semantic of a sentence it has to be encoded higher-level information. Even if there are
limitations to its architecture, GloVe vectors are still used today as part of more significant and
more complex NLP models.
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2.1.5 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a class of neural networks that are heavily used in NLP
since they are a natural approach for sequence modelling tasks. RNN have the flexibility to work
with sentences of different lengths, something which cannot be achieved in a standard neural
network due to its fixed structure. RNN are a type of neural network where the output from the
previous iteration is fed as input to the current step, which allows information to persist, having
some sort of “memory”.

Figure 2.4. Structure of a Recurrent Neural Network. A RNN can be seen as multiple copies of
the same simple network, each passing a message to the next network. (Source of the image link)

Using parse trees and RNN [16] has some advantages over word2vec models but since it relies
on parse trees, it works only with one sentence while in the same feedback multiple sentences
can be present. Another limitation of RNN is having only one direction due to its architecture,
and this is translated into assuming the word coming after has no effect on the meaning of the
word that is before, which is often not true in natural languages. RNN works with the same
assumption made by Word2Vec and GloVe, that in order to predict a word based on the context,
the information needed to predict the word is contained in the nearby words. In more complex
sentences, the information needed to predict the word is contained at the beginning of the phrase,
far away from the last node and outside the window of the Word2Vec model.

By construction, RNN give less weight to the nodes that are too far away and this is known
as the “vanishing gradient problem” [17]. In other words, RNN are unable to learn long-term
dependencies, which might be the case in the thesis’ dataset (See Table 3.1) where for example,
feedback number five can be related to feedback number 602, if feedback are used as single units
for the input of the RNN model.

2.1.6 Long Short-Term Memory neural networks

More complex architectures that use neural networks such as Long Short-Term Memory (LSTM)
[18] have their advantages. LSTMs overcome the weakness of RNNs, thanks to their ability
to preserve information over time. LSTMs contain information using a gated cell that acts as
a memory cell in a computer. This information can be stored, written, read or erased, using
gates that open and close. The difference between a gated cell and a memory cell is, while
information on a computer’s memory cell is digital consisting of 0 and 1, memory in the gated
cells is implemented with element-wise multiplication of sigmoids, that are differentiable and
therefore suitable for backpropagation.

As shown in figure 2.5 the gates allow to pass or block information based on its weights. These
weights are similar to the ones that regulate input and hidden states, and they are modified in the
neural network learning process via making guesses, backpropagation errors and gradient descent.

A tree-structured LSTM called “Tree-LSTM” [19], has been proved to outperforms the chain-
structured LSTM in the task of semantic relatedness. Even common variation of LSTMs such as
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Figure 2.5. Structure of a memory cell in a LSTM. The gates decide how the data flows inside
the memory cell. (Source of the image link)

Bidirectional LSTM and Multilayer LSTM [20] are limited by their chain-structure, that allows
strictly sequential information propagation. Tree-LSTMs on the other hand, are a type of network
topology where each LSTM unit can hold information from various child units. The difference
between standard LSTM and Tree-LSTM is that the Tree-LSTM’s gating vectors and memory
cell updates are dependant on the states of many child units, and instead of having one forget
gate, there is a forget gate for each child. This allows to choose how to incorporate information
from each child, and to give more or less weight to different children. Another result is that
Tree-LSTM are able to outperform heavy feature engineered systems, requiring supervision only
at the root of the tree.

Unfortunately, these more complex architectures are powerful with in-domain data, while
simpler architectures work better for learning general-purpose embeddings [21].

2.1.7 Skip-Thought Vectors

Skip-Thought Vectors [22] is an unsupervised neural network model for learning representation
of sentences in natural languages. These representations have a fixed length, and this is needed
because all sentences are replaced with a vector of numbers, and having the same length will make
the process of training and understanding natural languages easier.

The Skip-Thought model has three parts (see Figure 2.6):

• Encoder Network: A RNN that takes the sentence x(i) at index i and generates the fixed
length representation z(i)

• Previous Decoder Network: A RNN that given the embedding z(i) tries to generate the
sentence x(i− 1)

• Next Decoder Network: A RNN that takes the embedding z(i) and tries to generate the
sentence x(i+ 1)
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The Skip-Thought model is trained minimising the reconstruction of the previous and the
next sentence given the embedding z(i). This error is then back-propagated to the encoder that
tries to put as much information about x(i) as possible to help reduce the decoder error while
computing the previous and the next sentences.

After training, the decoders are not used anymore because they were needed only to train the
encoder. The encoder can now be used to generate embeddings of sentences used for the semantic
similarity task. Skip-Thought decoders work well thanks to two factors:

• Teacher Forging: Decoders outputs sentences one word at a time, using the true words
for the target sentence, shifted by one position.

• Probability Distribution: The prediction is a probability distribution over words that
could occur at that position given the context z(i) plus the sequence of words that occurred
before the current position.

Figure 2.6. Skip Thoughts model overview.

Usually, when RNN are trained for sequence prediction, they are randomly given their true
prediction label, because it helps them generalise better. In the Skip-Thought models, this does
not happen and teacher forging is applied to every word because the decoder’s performance does
not matter since they are thrown away, and reducing the frequency of words when the teacher
forging is applied will reduce accuracy.

One downside of the Skip-Thought model is that it might take weeks or even a month to
train, and depending on how the university course is structured, taking action post feedback has
to happen quickly.

2.1.8 The Paragram-Phrase embeddings

The dataset used for this thesis (see Table 3.1) could be considered as in-domain data, with the
domain of MLBP, but this thesis’ scope is to remain as general as possible, hence the interest
in learning general-purpose embeddings. The Paragram-Phrase embeddings [21] are efficient and
easy to use since they transfer easily across domains and while Skip-Thought vectors are better
for capturing semantic affinity in terms of sentences following each other, the Paragram-Phrase
embeddings try to capture paraphrastic similarity, i.e. when two sentences have the same meaning.

Paragram-Phrase embeddings encode sentences in a low-dimensional space where the cosine
distance in the space corresponds to the similarity between the sentences. They are generated
starting from standard word embeddings and modified using the Paraphrase Database (PPDB)
[23] and the Annotated-PPDB [24] using a simple but still effective word averaging model.
Paragram-Phrase embeddings are trained and tuned using only the two variations of PPDB to
avoid feature engineering too much the semantic similarity task.

These embeddings were improved even further using smooth inverse frequency weighting and
common component removal to avoid giving a large vector representation to common words,
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using an improved version of the random walk model [25], achieving respectable results [26] in
the Sentence Involving Compositional Knowledge (SICK) dataset [27] and STS (See Paragraph
STS-B) as shown in Table 2.1.

Tasks PP
PP

(proj.)
RNN

LSTM
(no o.g.)

LSTM
(o.g.)

GloVe
+ WR

PSL
+ WR

STS’ 12 58.7 60.0 48.1 51.0 46.4 56.2 59.5
STS’ 13 55.8 56.8 44.7 45.2 41.5 56.6 61.8
STS’ 14 70.9 71.3 57.7 59.8 51.5 68.5 73.5
STS’ 15 75.8 74.8 57.2 63.9 56.0 71.7 76.3

SICK’ 14 71.6 71.6 61.2 63.9 59.0 72.2 72.9

Table 2.1. Pearson’s r × 100 results on textual similarity tasks. Results are collected from [26]
and they show the improvement done in [26] in the last two columns compared to the [21] in the
first two columns. The highest scores in each row are marked in bold. LSTM results are divided
between no output gate (no o.g.) and with output gate (o.g.). The W in WR stands for the smooth
inverse frequency weighting scheme, and the R stands for removing the common components.

Results depicted in Table 2.1 are auspicious, but when this algorithm was applied to the thesis’
dataset, accuracy was far from acceptable as we can see in Table 2.2. Feedback “Using Jupyter”
and “Typo Finding” are not semantically close, but they achieved a score that almost represents
a coincident meaning probably because they share the same number of words.

Feedback 1 Feedback 2 Score
Using Jupyter Typo Finding 0.9974

I did not find anything to
complain really.

Trying to find mistakes from
the text...

0.5523

The questionnary had a couple
of trick questions. Especially the one

about invertible matrices [...]

The exercise were basically a
python tutorial instead of

actual machine learning [...]
0.7705

The course introduced the machine
learning concepts in a more

complicated way than necessary [...]

No particular bad part
for this round.

0.7297

Table 2.2. The score represent how similar the Feedback 1 and Feedback 2 are, going from -1
(opposite meaning) to 1 (similar meaning). Refer to the chapter 3.1 to understand how the dataset
is structured. Some feedback were truncated for showing purpose only.

Thus, Paragram-Phrase Embeddings were not further tested in the chapter Results.

2.1.9 Transformers

RNN and LSTM neural networks achieved excellent results in modelling natural languages, but
they both have a significant drawback due to their architecture. They are sequential, and this
means that parallelization during training is very limited. Parallelization is critical when there
are longer sentences, because the total available RAM is often not enough to fit the entire training
process, hence the training data needs to be split into multiple smaller batches. There has been
some significant progress in computational efficiency and model performance using factorization
[28] and conditional computation [29] but the sequential computation constraint still remains.
The Transformer architecture [30] that relies only on the attention mechanism [31] allows more
parallelization and can achieve promising results with less training time (if trained with multiple
GPUs).

The attention is a technique that improved the precision of machine translation systems, and
allows models to focus on the relevant parts of the input when needed. This technique was
born to solve the problem of the encoder-decoder architecture that is incapable of remembering
longer sequences, because they have to be translated into a single vector, hence becoming the
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bottleneck of performance. Generally in the encoder-decoder architecture, all the intermediate
states are discarded and only its final states are kept. The main idea of the attention mechanism
is to use those intermediate states in order to construct the context vectors that are required by
the decoders to generate the output sentence. These intermediate states are used to focus the
attention on the parts of the input that are relevant for this decoding step, therefore that is why
the technique has this name.

The Transformer architectures use self-attention layers, for both the encoder and the decoder
as shown in Figure 2.7. The encoder is composed of six identical layers stacked on top of each
other, where each layer has two sub-layers. The first is a multi-head self-attention mechanism
and the second is a fully connected feed-forward network. The decoder is also composed of six
identical layers, but in addition to the first two sub-layers that are also present in the encoder,
the decoder has a third sub-layer that performs multi-head attention on the encoder’s output.
The decoder’s output embeddings are shifted right to ensure that predictions for position i can
depend only on the known outputs at positions that are less than i.

Figure 2.7. Transformer model overview. (Figure taken from paper [30])

Transformers use the attention mechanism in parallel, and this method is called “Scaled Dot-
Product Attention”. This mechanism allows the transformer to compute the attention function
on a set of queries simultaneously using the softmax function and matrix multiplications. Multi-
head attention allows the model to receive information from different representations at different
positions at the same time using h = 8 attention layers.

The Transformer model uses multi-head attention in three different parts:

• In the encoder-decoder attention layers, when the input comes from the previous decoder
layer. This allows every position in the decoder to attend over all positions in the input
sequence.
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• In the self-attention layers in the encoder. Each position can attend to all the position in
the previous layer of the encoder.

• In the self-attention layers in the decoder. The input values of the softmax are masked out
if they correspond to connections that are not permitted.

Since transformers do not use nor recurrence nor convolution, in order to use the order of the
sequence it has to encode the position’s information. This is done adding the positional encodings
to the input embeddings at the bottom of the encoder and decoder. The self-attention mechanism
enables the Transformer to learn long-term dependencies in the network. As explained before the
vanishing gradient problem of RNNs [17] is more present when there are longer sequences, and
to improve the Transformer performance in such sentences, the self-attention can be restricted to
only a neighbour of size r in the input sequence.

The Transformer architecture shows considerable results in various tasks such as machine
translation [30], document generation [32] and syntactic parsing [33] and it is included today in
many state-of-the-art NLP models.

2.1.10 ELMo

Two identical words can change meaning depending on the context. This is known as “polysemy”
and has been an issue that previous NLP models could not tackle, because they assumed that
every word could have only one representation. Embeddings from Language Models (ELMo) [34]
attempts to solve this problem by using the context when creating the embeddings, and this not
only solves the problem of polysemy, but improves the overall accuracy because any word can
have different meaning depending on how they are used.

There are two common strategies in NLP to utilize pre-trained language representations, one
feature-based oriented and one that uses fine-tuning. ELMo uses a feature-based approach, using
task-specific architectures that add pre-trained representations as additional features. ELMo ar-
chitecture uses multi-layer bi-directional LSTMs trained with reversed sentences, that the authors
call “backward” language model. ELMo is trained in an unsupervised and task-independent way,
on a billion-word benchmark [35]. The weights are learned for each task and normalized using the
softmax function. One of the major benefits of using ELMo is that it can be used in concatenation
with any model with low effort, barely applying any changes to it. Unlike previous attempts for
learning contextualized word vectors [36] [37], ELMo representations are more rich, extracting the
hidden states of each LSTM layer for the input sequence of words, and it computes the weighted
sum to obtain the embeddings of each word.

Training ELMo is not easy and it is computationally expensive like training any other language
model. To combat overfitting and reduce the memory overhead, it is better to connect the weights
for the forward and backward language models together [38]. If the dataset that is used for
evaluation is not general-purpose but in-domain specific, it is advised to fine-tune the model on
the domain-specific data to improve accuracy. Since ELMo combines the activations of different
layers of LSTM, the outputs are normalized [39] and dropout is used to avoid overfitting. Adding
ELMo to a model increases the sample efficiency, reducing the percentage of the training set
needed to reach the same results in terms of accuracy, as shown in Figure 2.8.

2.1.11 ULMFiT

Universal Language Model Fine-tuning (ULMFiT) [41] is a transfer learning method that can
be applied to any task in NLP, that is highly influenced by the progress made in the computer
vision field. ULMFiT, instead of using a feature-based approach like ELMo, uses a fine-tuning
oriented method that still involves a language model. This approach introduces minimal or none
task-specific parameters and trains the language model by fine-tuning all the parameters for the
downstream task. Before ULMFiT, deep learning models achieved state-of-the-art results on
many NLP tasks, but they are trained on large corpora and they take many hours if not days to
converge. Instead of focusing on transductive transfer [42], the authors of ULMFiT decided to
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Figure 2.8. ELMo performance versus baseline for Stanford Natural Language Inference (SNLI)
Corpus [40] and Semantic Role Labeling (SRL) tasks, as the training set size varies from 0.1% to
100%. (Figure taken from paper [34])

focus on a inductive transfer technique introduced in the word2vec model [10], still used today
in most state-of-the-art NLP architectures. Inductive transfer via fine-tuning [43] [44] before
ULMFiT required millions of in-domain documents to achieve good performance, which lead to
overfitting on small dataset hence limiting its applicability. In NLP, novel methods have been
proposed that use transfer learning on word embeddings, pre-training them to capture additional
context using other tasks. This method is known as hypercolumns and it is used in ELMo [34],
but it requires custom-engineered architectures, while ULMFiT proposes the same architecture
across multiple tasks.

ULMFiT consists of three steps as shown in Figure 2.9, LM pre-training using general-purpose
data, LM fine-tuning, and classifier fine-tuning on the specific task. Pre-training is very beneficial
for tasks with small datasets, and it is done using the Wikitext-103 corpus [45], consisting of
pre-processed Wikipedia articles with a total of 103 million words. According to the authors of
ULMFIT, the Wikitext-103 corpus is big enough to capture the general properties of the English
language. It is the most expensive part in terms of computational time, but it has to be done
once and it is worth it due to the non-negligible increase in performance.

Even if the Wikitext-103 corpus is big enough, the data of the target task will most likely
come from a different distribution, hence fine-tuning the LM on the data of the target task is
needed. For the LM fine-tuning, two techniques are being used in the model:

• Discriminative fine-tuning: Since different layers capture different types of information
[46], they should be fine-tuned to different extents. Instead of using the same learning rate
for all the layers of the model, discriminative fine-tuning tunes each layer with different
learning rates. It begins by fine-tuning the last layer in order to choose its learning rate,
and afterwards, it computes the learning rates of the lower layers.

• Slanted triangular learning rates: It is another technique modified from [47] to change
the learning rates, which allows it to linearly increase in the beginning, and linearly decrease
the higher the iterations.

Lastly, the classifier is fine-tuned with two steps, where each step uses batch normalization
[48] and dropout, with ReLU and softmax activations that output probability distributions over
specific target classes of the last layer. The two steps consist of:

• Concat pooling: In order to avoid information loss when only the last hidden state is
considered, it takes as input the last hidden layers states, as many states as they fit in the
GPU memory. The fine-tuning of the classifier is the most crucial part, where aggressive
fine-tuning can lead to forgetting the information captured from the language model, and
shallow fine-tuning can lead to slow convergence.
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• Gradual unfreezing: Instead of fine-tuning all the layers at once, it starts from the last
layer because it contains the least general knowledge [46], and gradually unfreeze one layer
and fine-tunes on the unfrozen layers until convergence. This technique is similar to the
“chain-thaw” technique [49] but instead of training only one layer at a time, one layer is
added at the set of thawed layers at every step.

Figure 2.9. ULMFit model overview. ULMFit consists of three stages: a) General-domain LM
pretraining b) Target task LM fine-tuning c) Target task classifier fine-tuning with shaded layers
as unfreezing stages, and black layer that symbolize being frozen. (Figure taken from paper [41])

These techniques introduced for fine-tuning, discriminative fine-tuning, slanted triangular
learning rates, concat pooling and gradual unfreezing, are useful on their own but they also
improve each other making ULMFiT more general, obtaining excellent performance on a broad
selection of datasets. To handle large datasets, ULMFiT divides documents into fixed-length
batches. At the beginning of each batch, the model is initialized with the final state of the
previous batch, and hidden states are used for mean and max-pooling. Gradients are backprop-
agated to the batches that were used for the final prediction. This technique is very similar to
variable-length backpropagation sequences [50].

The main advantages of ULMFiT are that it is universal, it works on across different tasks
with different number of documents, length and label type. It uses one architecture and training
process, it is trained as a bidirectional model with a forward and backward LM, and it does not
require additional in-domain data.

2.1.12 OpenAI GPT

Generative Pre-trained Transformer (GPT) [51] uses the same approach as ULMFiT, pre-training
a language model on a vast general-purpose corpus, modifying the model accordingly to what task
is needed, and then fine-tuning using the user-defined dataset. The advantage of this approach
is that it has to learn few parameters using unlabeled data, but unlike ULMFiT, GPT uses
unidirectional language modelling. GPT uses a semi-supervised approach for understanding the
language model and a combination of unsupervised pre-training with a supervised fine-tuning,
and like ULMFiT aims at creating a universal representation that works across different tasks.

The main difference in architecture that separates GPT from ULMFiT is that the latter uses a
RNN architecture, while GPT uses a transformer model that can handle long-term dependencies
in text as explained in the paragraph about Transformers. In order to provide this task agnostic
model, GPT utilize task specific input adaptation [52] which enable GPT to process text inputs
as a single continous sequence of tokens, as shown in Figure 2.10.

The GPT model is trained using the BooksCorpus dataset [53] that consists of over 7,000
different books from different genres. The GPT architecture consists of 12 layers of decoder-only
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transformer with masked self-attention heads. The Adam optimizer is utilised [54] and layer
normalization is used in combination with feed-forward networks.

Figure 2.10. On the left there is the transformer architecture utilized by GPT. On the
right, how the input is processed depending on the NLP task the algorithm is trained
for. (Figure taken from paper [51])

One disadvantage of ULMFiT is that even if it is meant to be universal, it still requires
heavy fine-tuning and tweaking that depends on the task it has to be applied for. GPT requires
minimal extra work on fine-tuning and gives state-of-the-art or near state-of-the-art results in a
wide variety of NLP tasks. The main downside is that it requires a long time for pre-training the
model, even one month with 8 GPUs, but there is no reason on pre-training your model on your
own if you use a natural language where the pre-trained model is available.

The authors of the paper [51] released a new version of the model called GPT-2 which is
configured to use progressively a more significant number of parameters with a larger dataset
obtained by scraping text on the web. Since the performance of transformers improves log-
linearly with the number of parameters, even the largest model with a total of 1.5 Billions of
parameters (10 times more than the original GPT) still underfits the 40GB dataset. Due to
concerns about malicious use, like synthetic text generation for extremist propaganda, generating
fake news or phishing purposes, only the small model was released with a size comparable to
the original GPT architecture. After nine months of lockdown of the largest model, GPT-2 has
been entirely released because the authors believe the model is not yet accurate enough to fool
mechanisms that are designed to prove if a piece of text is generated by a human or machine.

2.1.13 BERT

Bidirectional Encoder Representations from Transformers (BERT) [55] applied the bidirectional
training of Transformers, to language modelling. ELMo, ULMFiT and now BERT focussed their
effort in language modelling, because LMs capture many aspects of the language needed for the
NLP tasks, such as long-term dependencies [56], hierarchical relations [57], and sentiment analysis
[58]. LM provides data in enough quantities for most languages and applications, data that can
be easily adapted to the needed task.

The release of BERT was seen as the beginning of a new era in NLP, thanks to the clever ideas
that were accumulated throught the years, that are part of Semi-supervised Sequence Learning
[44], ULMFiT [41], ELMo [34], OpenAI GPT [51] and Transformers [31].

The paper proposes two model sizes, one called BERT Base that has a comparable size with the
OpenAI GPT Transformer and another one called BERT Large which is a much bigger model that
achieved the state-of-the-art results in the paper. BERT uses a fine-tuning approach like ULMFiT,
but a feature-based approach like ELMo has its advantages. For example, not all tasks can be

24



Background

easily represented with the BERT architecture and need a task-specific architecture to be added
on top of the model. A feature-based approach can save computational time when an expensive
representation is pre-computed once, and experiments are done on smaller versions of the model.
With some modifications, BERT can be transformed into a feature-based only architecture, and
it still achieves significant results, meaning that it is effective for both approaches.

Standard language models are unidirectional and they have definite limitations in capturing
the semantic meanings of words and sentences of a natural language, by either scanning a text
from right-to-left or left-to-right. Another disadvantage in using unidirectional models are the
limitations of choices for architectures that can be used during pre-training. BERT and ULMFiT
both use bidirectional architectures that use both directions at the same time, allowing the model
a deeper understanding of the language context. In order to use both directions, fusing the left
and right context, BERT uses a Masked Language Model (MLM) pre-training objective, inspired
by the Cloze Task [59]. MLM randomly masks some of the tokens that are generated from the
input with the objective to predict the vocabulary id of the masked word based on its context.
In addition to the MLM technique, BERT uses a next sentence prediction (NSP) task to train
text-pair representations.

Figure 2.11. BERT architecture that consists of pre-training and fine-Tuning. Other than the
output layers they share the same architecture, and the same pre-trained model is used for all
the different down-stream tasks. All the parameters are fine-tuned. [CLS] and [SEP] are special
symbols, the first one is added in front of every input sample, and the other is used as a separator,
for example when separating questions from answers. (Figure taken from paper [55])

The BERT architecture is composed of two steps that are the unsupervised pre-training and
the supervised fine-tuning. Pre-training consists of training the model on unlabeled data over
different tasks. Fine-tuning consists of the model being initialized on the parameters obtained
from the step before, and these parameters are then fine-tuned using labelled data from the chosen
task. Each task will produce a different fine-tuned model, even if they all start from the same
pre-trained parameters. One advantage of BERT is that there is minimal variation in terms of
architecture between the Pre-Training step and the Fine-Tuning step, as shown in Figure 2.11.

BERT’s model uses a multi-layer Transformer encoder. For the BERT base it uses L=12
layers, H=768 hidden size and A=12 attention heads with a total of 110M parameters. For BERT
Large it uses L=24 layers, H=1024 hidden size and A=16 attention heads with a total of 340M
parameters.

The input is represented with single sentences or sentence pairs (for example [question, an-
swer]), meaning that for BERT a sentence is not necessarily interpreted as a linguistic sentence,
but more like contiguous text. The sentences are converted into tokens using WordPiece embed-
dings [60] that are made to deal effectively with rare words, by using sub-words units known as
wordpieces. WordPiece embeddings give a good balance between the flexibility of using single
characters as embeddings (useful for languages that use ideograms instead of words, like Japanese
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[61]), and the efficiency of using the entire word for decoding, without needing a system for han-
dling unknown words. The first token of every sentence is always the special token [CLS] and the
final hidden state of this token is used in classification tasks. Sentences are zipped together into
one single input stream, where each sentence is separated by the special token [SEP] and in the
case of a sentence pair, a learned embedding A is added on top of each token of the first sentence,
and a different learned embedding B is added on top of each token of the second sentence. Usually,
transformers do not encode the position of their inputs, but the same words in different places in
the sentence may carry a different meaning. To overcome this problem on top of the BERT input
embeddings it is added a position embedding, as shown in Figure 2.12.

Figure 2.12. Example showing how the input embeddings for each token are generated. [CLS]
token is added at the beginning of each input stream, and if the input consists of a sentence
pair, a [SEP] token is added in between the sentences and after the last one. For each token
the embedding is generating summing the token embedding, the segment embedding and the
position embedding. (Figure taken from paper [55])

Standard language models are trained in only one direction, because if trained in a bidirectional
way each word could see each other and the model will always predict the word with 100%
accuracy, without learning. In order to avoid this problem, some words are randomly masked,
usually the 15% of the entire input, and the model tries to predict them. This type of task of
trying to learn a clean input from a corrupted version is called denoising and has been explored
as a training method for encoders [62]. A downside of this method is that the pre-training step
and fine-tuning step will become more different from each other, because the token [MASK] is
not present in the fine-tuning step. To mitigate this problem, if a word is selected to be masked,
only 80% of the times it will be replaced by the [MASK] token, while the other 10% will be
replaced by a random word and it will remain unchanged for the additional 10%. The newest
release of the BERT model, improved the task of masking with a new technique called Whole
Word Masking. The previous masking was too easy for words that had been split into multiple
wordpieces, therefore the new technique fixes this problem by masking all the wordpieces that
belonged to one word before pre-processing, increasing even more the accuracy of the model in
NLP tasks.

For some NLP tasks like Question Answering (QA) and Natural Language Inference (NLI) it is
required a deep understanding of the relationship between the two sentences, but language models
do not automatically capture this. In order to let the language model capture this relationship
BERT pre-trains the model with next sentence prediction. Next sentence prediction consists into
predicting if the second sentence follows the first sentence in the original input, where 50% of the
time the second sentence is selected randomly, and 50% of the time the second sentence actually
follows the first one. This pre-training even if it is very simple, allows BERT to have significant
improvement in the QA and NLI tasks and it is done using BooksCorpus [53] and scraped English
Wikipedia. These two corpora are best suited in the generation of long contiguous sequences
because they are document-level corpora, instead of other sentence-level corpus such as the One
Billion Word Benchmark [35].

The next step after pre-training is fine-tuning for the specific task. Fine-tuning is done using
the self-attention mechanism but instead of encoding text pairs before applying the bidirectional
cross attention, BERT unifies these two steps into one. Given the input task the fine-tuning pro-
cess will select the correct output layer and use the [CLS] token if needed. Fine-tuning compared
to pre-training is less expensive, and can be done in a few hours using a GPU.
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Chapter 3

The Machine Learning Problem

3.1 Dataset

The Dataset given for this research experiment, is the collection of feedback obtained with
the 2018 edition of the Aalto University course “CS-E3210 Machine Learning: Basic Principles
(MLBP)”[63]. The course is divided into six rounds, and after each round students were asked
to answer a feedback questionnaire, with the questions “What was the worst part of the round?”
and “What was the best part of the round?” at the end of other structured questions. MLBP was
one of the most enrolled course of that year, with over 700 students coming from very different
backgrounds, since Aalto University has an increasing number of ERASMUS+ students, which in
the Computer Science track consisted of the majority of students.

Rounds Number of feedback
Introduction 1 700
Regression 2 648

Classification 3 624
Validation 4 634
Clustering 5 615

Feature Learning 6 619

Table 3.1. Number of feedback per round.

In the table 3.1 we can see the number of feedback per round, named depending on the
round’s topic. We can immediately see that the number of feedback decreases the more the
course progressed, because some students decided to drop out after the first weeks. In the Results
chapter, the rounds will be abbreviated to Intro1, Regr2, Class3, Valid4, Clust5 and Featlear6.

3.2 Pre-processing

One of the very first steps in the NLP pipeline is pre-processing the data. This step is very
crucial and it usually has a significant impact on the overall accuracy of the NLP model. For
Python, many NLP libraries handle this critical step, such as NLTK, Gensim, SpaCy, and NLP
toolkit from scikit-learn. For this thesis NLTK [64] was used because even if it is not the fastest
framework, it is the most well known and full NLP library, it has many third party extensions,
and there are plenty of approaches for each NLP task.

The main steps in the pre-processing of the data are Tokenization, Stemming, Lemmatization
and Stopwords removal.
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3.2.1 Tokenization

Given a text, tokenization is the task of chopping the text into basic units, called tokens. As we
can see from the snippet of code 3.1, tokens should not be confused with simple words, they are
characters grouped together as a useful semantic unit for processing [65]. Tokenization based on
whitespace is inadequate for many NLP applications but the NLTK library has one off-the-shelf
tokenizer that implements a better method for tokenizing.

>>> import nltk

>>> text = "The Earth is dying, it’s our responsibility."

>>> tokens = nltk.word_tokenize(text)

>>> print(tokens)

[’The’, ’Earth’, ’is’, ’dying’, ’,’, ’it’, "’s", ’our’, ’responsibility’, ’.’]

Figure 3.1. Snippet of python code to tokenize a string.

3.2.2 Stemming

In the English grammar, there are cases such as plurals, possessives and conjugations, where the
same word is mutated, hence many words can be connected into one root word. The aim of
stemming is to use heuristics to truncate the word from any affixes to the base form. NLTK
includes many off-the-shelf stemmers, depending on the application. For the scope of this thesis,
the Porter stemmer is chosen.

>>> porter = nltk.PorterStemmer()

>>> stemmed_tokens = [porter.stem(t) for t in tokens]

>>> print(stemmed_tokens)

[’the’, ’earth’, ’is’, ’die’, ’,’, ’it’, "’s", ’our’, ’respons’, ’.’]

Figure 3.2. Snippet of python code that shows the Porter stemmer.

3.2.3 Lemmatization

Lemmatization is similar to stemming, but instead of crude heuristics to chop the word, it uses
a vocabulary and tries to do a morphological analysis of the words, trying to return the base
word known as lemma. Lemmatization is more computational heavy compared to Stemming, and
as stated in [66] there is no significant difference in accuracy between the two, so it is generally
better to prefer stemming only.

3.2.4 Stopwords removal

Some words are very frequent and they carry little meaning such as ‘and’, ‘the’, ‘I’ and by removing
them it will largely decrease the size of the dataset. Since the negations are considered stopwords,
this technique is not included in the pre-processing pipeline of the thesis, because it will change
the semantic meaning of the feedback.
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3.2.5 Pre-processing results

Instead of removing the stopwords, some feedback are entirely removed from the dataset when
they carry little or no information, such as “none”, “nothing” and so on. Figure 3.3 shows the
number of feedback before and after the pre-processing, with an average dataset reduction of
10.74%. This not only improves the accuracy of the model but it will also save computing time.

Figure 3.3. Number of feedback before and after pre-processing the data, per round.

3.3 Benchmarks

In order to assess the performance of NLP models, benchmarks and workshops were created.
General Language Understanding Evaluation (GLUE) [67] is a benchmark formed by a collection
of tasks in the Natural Language Understanding (NLU) field. Researchers that worked on GLUE
have found that the models trained on this collection of tasks perform better than the models
trained on the single tasks separately. In particular for this thesis scope the tasks Microsoft
Research Paraphrase Corpus (MRPC) [68] and Semantic Textual Similarity Benchmark (STS-B)
[69] are the most related. The top 10 of the leaderboard for those tasks during the year 2019,
are algorithms that use Bidirectional Encoder Representations from Transformers (BERT) or
variation of BERT such as Robust Optimized BERT pretraining Approach (RoBERTa) [70] or A
Lite BERT (ALBERT) [71].

3.3.1 MRPC

MRPC also known as MSRP, was created due to a lack of a large-scale publicly available corpus of
sentences, in a time where paraphrasing was not considered a common NLP task. MRPC consists
of 5801 pairs of sentences that are naturally-occurring, non-handcrafted and it is not created from
translating another language, each pair followed by a number that represents whether humans
judged the two couple of sentences to be similar enough in term of semantic meaning to be a
paraphrase of each other. These sentence pairs were obtained crawling the World Wide Web
using heuristics to narrow the search space and to ensure some diversity between sentences.

3.3.2 STS-B

The STS-B is a benchmark created using a selection of datasets from the SemEval tasks from
2012 till 2017. SemEval stands for Semantic Evaluation and is a yearly ongoing event to discuss
semantic analysis systems, evolved from the older Senseval. These events aim to explore the
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meaning of the natural language and transfer these findings to computers. STS differs from
both textual entailment and paraphrase detection because it captures a gradual meaning overlap
instead of a binary classification based on particular relationships.

3.4 Defining a Machine Learning Problem

Every Machine Learning problem can be formally defined by three components: data, hypothesis
space and loss function [63].

Data is composed of features and labels. Features are the properties of the data points that
we use to describe the problem and are usually easy to measure. Since they describe the problem,
choosing useful features is an essential first step of defining a Machine Learning problem and
techniques were created to achieve excellent performance, grouped under the name of feature
learning. In general, features must contain enough information to accurately describe the problem
while still not being too much computationally heavy. Let X = {x1, ..., xn} be the feature vector
composed of n features where each xi ∈ X . X is the feature space which in this thesis case is
equal to R.

Labels represent a high-level property of the data, which will be the output of the algorithm.
Labels are usually difficult to measure and compute, most of the times involving costly human
labour, hence that is why they are the objective and final goal of the Machine Learning model.
Labels are referred with the letter y and the label space is referred with the symbol Y. The label
space is usually a limited set, depending on how many ways the dataset is categorized and if the
labels are continuous the task takes the name of regression, otherwise it is called classification.

The hypothesis space contains all the possible maps h : X → Y, which map the feature space
to the label space with a predicted label ŷi = h(xi) with ŷi ' yi. The map h is also called
predictor or classifier depending if it is a regression or classification task. The hypothesis space
is limited by the available computational resources, reduced to a feasible subset of the original
space. Knowing that the hypothesis space should be large enough to always find a map for any
possible set of features as input, and small enough to be still computationally feasible, choosing
how to define the hypothesis space for each Machine Learning problem is a design choice, and
it depends on the data and each particular application. Another reason to keep the hypothesis
space small is to avoid overfitting [72]. Overfitting happens when the map fits the data too well,
understanding patterns that work only for the training data, producing an accuracy that is much
higher in the training set compared to the validation set.

Given an hypothesis space, the loss function is used to measure the error between the predicted
label ŷ and the true label y. Common loss functions are the squared error loss L = (y − h(x))2

or the logistic loss L = log(1 + exp(−yh(x))).

Machine Learning problems can be divided into three classes: supervised, unsupervised
and semi-supervised. Unsupervised algorithms do not require labelled data and can extract
information using only the features. An example of unsupervised algorithms are the clustering
methods that are explained in the next paragraphs. Supervised algorithms require labelled data
points during training and thanks to these labels can learn to recognize better patterns in the data,
allowing the algorithm to make predictions of labels of unseen data using only the features once
trained. Semi-supervised is a class of machine learning algorithms that is in between Supervised
and Unsupervised. Semi-supervised algorithms require a subset of the true labels during training,
usually a percentage below the 30% of the entire dataset. By using only a partially labelled dataset
the accuracy of the model can increase, without drastically increasing the cost of acquiring all the
labels, which are often not provided.

3.5 Cluster Analysis

Cluster Analysis or clustering is the task of grouping together unl data points into clusters where
points being in a cluster are more similar to each other compared to the rest of the data points.
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Two types of clustering methods can be defined, hard-clustering and soft-clustering algorithms.
Hard-clustering algorithms define only one possible cluster for each data point in the dataset, while
soft-clustering methods allow data points to be in two or more different clusters at the same time,
hence allowing clusters to overlap. Since feedback are written in natural language and due to its
non-deterministic nature, feedback do not necessarily fit into one cluster but can fit more than
one cluster at the same time, soft clustering might seem like the right choice of type of clustering
to use. This does not often happen in the dataset of the thesis, probably because the feedback
questionnaire was done immediately after the quiz section, hence for this reason and to better
compare the lnLasso algorithm, only hard-clustering algorithms are considered.

There are a wide range of clustering methods and there is no universal best algorithm, because
it depends on how the dataset is distributed, hence the lnLasso algorithm will be compared to
a range of common clustering techniques, all already implemented in the scikit-learn [73] python
library.

Clustering methods alone do not always guarantee solid results because they are heavily in-
fluenced by how the features were extracted in the first place. If the Feature extraction part can
correctly model the The Machine Learning problem, even a “bad” clustering algorithm can find
how the data can be clustered together, leading to good results. Cluster Analysis is usually done
in a process of trial and error and it is good to remember that while sometimes the dataset cannot
be clustered at all, the algorithms always try to find a solution.

3.5.1 K-Means

K-means is a a straightforward and famous technique for clustering the dataset into “k” clusters.
For k-means each cluster is defined by its centre that is obtained by its mean. In the original
implementation of k-means, the initial centroids are selected randomly which in the worst-case
scenario can lead to slow convergence. The default implementation of k-means in the scikit-learn
library uses another centroids initialization algorithm known as k-means++ which spreads the
clusters uniformly after the first random centroid is selected, that results in faster convergence.
After the initial centroids are selected, each data point will be assigned to the closest centroid,
defining the clusters. The mean of each cluster is computed, and each mean will be the new
centroid for the next step of the algorithm. These steps are repeated until convergence, where
the total sum of euclidian distances from each point to its cluster is minimized.

n∑
i=0

min
µj∈C

(
‖xi − µj‖2

)
(3.1)

One of the parameters of K-means is the number of cluster k, which can be decided using the
elbow method. The idea of the elbow method is to compute the inertia for a range of clusters k.
Inertia is defined as the sum of the squared distance from the cluster centres for each data point
which is what is minimized in the equation 3.1 and can be seen as a measure on how internally
coherent the clusters are organized.

By plotting the inertia, the elbow point is the number of clusters after which the inertia starts
decreasing linearly, which could be seen in the example Figure 3.4 as the point k = 3.

The elbow might be not pronounced enough to be noticed in the graph, meaning that there
may not be any natural groups in the data, or it could also happen that there are more than one
elbow, meaning that there is more than one way to cluster the data [74].

A variation of K-means known as Mini Batch K-means uses randomly generated subsets of the
input data to reduce the computation time, but it still attempts to minimize the same objective
function 3.1. In contrast to other algorithms that reduce K-means iteration time, Mini Batch
K-means produces results that in general are comparable to the ones generated by the standard
K-means, being slightly worse [75].

K-means has some limitations and does not work well if the clusters are not of equal size
or density, if the clusters are non-spherical, or if there are multiple outliers in the data since
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Figure 3.4. Example of inertia plotted per number of clusters k. The elbow point is
found at k = 3. (Figure taken from link)

outliers have a substantial impact on the mean. Another limiting factor is that inertia is not a
normalized metric, which in high dimensional space like the sentence embeddings for this thesis
dataset (see Paragraph BERT) can lead to what is known as the “curse of dimensionality”; If
there are too many dimensions, the Euclidian distances become flat, and every data point will
seem to belong to only one cluster. This problem can be alleviated by running a dimensionality
reduction algorithm such as Principal Component Analysis (PCA) before running k-means to the
dataset. Running PCA before doing k-means is not the best approach, because if two points that
were far in a high-dimensional space might end up close in a low-dimensional space, hence they
will be clustered together even if they should not.

Due to these limitations, K-means is not the best suited algorithm to cluster educational
data [76], nonetheless thanks to its popularity in other fields it is still the most used clustering
algorithm in this field.

3.5.2 Affinity Propagation

Affinity propagation (AP) was first introduced in 2007 [77] and in contrast with k-means, it does
not need the number of clusters as a parameter. The AP algorithm works by finding exemplars
(another name for centroids) among the data points. It initially considers all data points as
exemplars and with a mechanism of sending and receiving messages between data points updates
the set of exemplars until convergence. The algorithm alternates two message-passing steps, to
update the matrices responsibility R and availability A, both containing log probabilities.

The matrix R contains values r(i, k) that measure how much xk is suited to be an exemplar
for xi, compared to the other xi. The matrix A contains values a(i, k) that represents how much
would be good for xi to pick xk as its exemplar, considering other points preference for xk being
their exemplar.

The messages sent in the iterations are the responsibilities that are based on the similarity
function s. The similarity functions is the negative euclidian distance between points s(i, k) =
−||xi − xk||2. The responsibility messages are defined by:

r(i, k)← s(i, k)− max
k′s,t,k′ /=k

{a (i, k′) + s (i, k′)} (3.2)
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Figure 3.5. Example of graph with five data points, showing how the message are sent between
data points. (Figure taken from link)

Availability is defined by the following formula:

a(i, k)← min

0, r(k, k) +
∑

i′s.t.i′ /∈{i,k}

max {0, r (i′, k)}

∀i /= k. (3.3)

a(k, k)←
∑
i′ /=k

max (0, r (i′, k))∀i = k. (3.4)

The initial values for availability and responsibility are set to zero in the first iterations and
updated with formulas 3.2, 3.3, and 3.4 until convergence. The AP algorithm will output for each
data point which one is the most probable cluster, given by the sum of the availability matrix plus
the responsibility matrix. AP can fail to converge due to oscillations, hence a damping factor λ
is introduced that gives stability and faster convergence. λ is a real value between 0 and 1 and
updates the responsibility and availability matrices as follows:

R(i, j)t = (1− λ) ·R(i, j)t + λ ·R(i, j)t−1

A(i, j)t = (1− λ) ·A(i, j)t + λ ·A(i, j)t−1
(3.5)

In the scikit-learn library implementation, the default value of λ is 0.5, and it should be
increased when the algorithm does not converge due to oscillations.

One of the most critical parameters for AP is the preference, that measures how likely points
with larger values are chosen to be exemplars, hence how many points are used to define the
clusters. Preference is set to the diagonal of the S matrix, and this parameter influences the
number of clusters, but there is no clear relation between the two values [78]. If no preference is
selected, the default value is the median of the S matrix.

AP has been succesfully used for a wide range of tasks, such as image processing [79], gene
detection [80] and it has also been used for text clustering [78]. The main drawback of AP is its
complexity, that is in the order of O(N2T ) where N are the number of samples and T are the
iterations till convergence, limiting this clustering algorithm to small to medium datasets.

3.5.3 Spectral Clustering

The goal of the Spectral Clustering (SPC) algorithm is to cluster together data points that are
connected which are not necessarily compact (see Figure 3.6), overcoming some of the negative
aspects of k-means if the dataset is in a space with dimension bigger than R2.
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Figure 3.6. Example of dataset containing two clusters that are connected together but are not
compact. (Figure taken from link)

The aim of the algorithm is constructing the affinity graph G = (V,E) thanks to which
the clustering problem can be formulated as a graph partitioning problem. SPC tries to find a
partitioning such that the edges between different clusters have small weight and the edges within
a cluster have high weight. The vertices vi of the graph represent the data points xi and two
different vertices vi and vj are connected if the similarity sij is positive or more significant than
a certain threshold.

The first step of the algorithm is to compute the affinity matrix A, which represents the data’s
structure. This can either be done by computing the graph of nearest neighbour, or via Radial
Basis Function (RBF). The RBF function, also known as Gaussian Kernel is defined as follows:

K (xi, xj) = exp
(
−α ‖xi − xj‖2

)
(3.6)

Where α is a free parameter that sometimes is written as α = 1
2σ2 . Using the Gaussian Kernel

if two points are close the similarity between them is sij ' 1 and if two points are distant sij ' 0.
Choosing the right α is still an open issue. Usually σ is set to an empiric value that is 10% or
20% of the maximum Euclidian distance between data points in the dataset [81] which makes
the SPC algorithm very sensitive to outliers. Another option is to run the Spectral Clustering
algorithm with different choices of σ and selecting the one that gives less distortion [82], but it
might happen that the dataset has various local statistics that does not allow all the data to fit
using only one value of σ. Another choice for σ is using a local scaling that is unique for every
data point that depends on the distance between itself and the K-nearest neighbour [83]. This
method does work well on synthetic data, but has limited success on real-world data [84].

SPC with K-nearest neighbour [85] partially removes the problems that might arise in clusters
with varying density and the unreliability of selecting a σ for RBF, by replacing this parameter
with the number of neighbours K which can be chosen easily. The affinity matrix is constructed
using an affinity graph using the data points as vertices and similarities as edges. For each point
k symmetric neighbours are found using the euclidian distance as a metric. For each couple of
points xi and xj the edge vij is created if xi is a neighbour of xj and viceversa. The vertices with
less than half of the average number of edges are connected with the first k/2 vertices and half of
their neighbour if their degree (see definition slightly below) is less than k/2. For each point xi
and xj their affinity aij is set to one if there is an edge vij , otherwise is set to zero, and all the
elements in the diagonal of A are set to zero. This approach creates a sparse affinity matrix that
captures the structure of the data.

Some algorithms use the top eigenvectors [86] [87] of the affinity matrix for clustering. The
top eigenvectors contain information useful for clustering, but this does not always happen. As
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Figure 3.7. Spectral clustering with different choices of σ using RBF. The top row shows the
correct choice of σ for four different datasets. The bottom row shows how the algorithm reacts at
different wrong choices of σ using the first dataset. (Figure taken from paper [83])

stated in [88] when clusters are not balanced and/or cluster have different shapes the information
that is contained in the eigenvectors is not enough to represent clusters, some eigenvectors can
represent the same cluster and some cluster can be missed. The idea present in [88] is used by
[85] with the signless Laplacian defined below.

After computing the affinity matrix A the next step in [85] is computing the diagonal degree
D matrix defined as di =

∑
j aij . After that the signless Laplacian [89] M = D+A is computed.

Similar to [88] the top w eigenvectors of M are computed, and analyzed those who do not change
sign, up to a standard deviation. The w value is equal to the double of expected clusters, meaning
that each cluster can be represented by at least one eigenvector. After computing the overlapping
eigenvectors that are related to the same cluster, the modularity is calculated for each overlapping
eigenvector in order to choose the best eigenvector that can represent the cluster. Overlapping
eigenvectors are found knowing that data points that are near the cluster’s centre have small
entries in other eigenvectors [85] (unless they represent the same cluster), so if an entry in an
eigenvector is bigger than a small value ε, e.g. ε = 0.001 the two eigenvectors overlap. Modularity
[90] [91] is a metric that defines how good a division is, when splitting a network and it is defined
as:

Q =
∑
i

eii −
∑
ijk

eijeki = Tr e−
∥∥e2
∥∥ (3.7)

The matrix e contains the fraction of all the edges that connect different networks, where eij is
the edge between network i and network j, having a total of k networks. The trace of the matrix
Tr e = Σieii is the subset of edges in the division that connects vertices inside the same division.
A good division should have a high value of trace but on its own it is not a good indicator of
the quality of the division, because putting all the vertices in the same division will provide a
Tr e = 1 which is the maximum value but it does not provide any information about the network.
To balance the trace, it is subtracted the ‖e2‖ which is the sum of all the elements in the matrix
e. If the number of edges inside the network is not better than random, the modularity will be
Q = 0, and values that are close to Q = 1 indicate a strong community structure. Usually the
modularity values are in the range between 0.3 and 0.7.

After obtaining the best eigenvector that can represent the cluster, each data point is assigned
to the closest cluster. SPC has some similarities with Kernel PCA [92] which has also been used
for clustering. The differences lay in how the matrix A is normalized to form the matrix L. This
normalization improves the performance [82]. Like k-means, SPC needs the number of cluster
as input but has the advantage of detecting arbitrary shaped clusters, making it an acceptable
choice for clustering educational data [66] if the number of clusters is small.
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3.5.4 DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) [93] is another conventional
clustering algorithm that was invented to solve the limitations of clustering extensive spatial
database. In order to be applied to large datasets, the clustering algorithm should require minimal
domain knowledge because it is often not provided and/or not known, it should be able to discover
clusters of arbitrary shape and being efficient enough to handle large datasets. Previous density-
based attempts [94] to identify clusters partitioned the data using non-overlapping cells and
histograms, and even if they were able to recognize clusters of any shape, performances were not
good because they had to compute multidimensional histograms.

The main idea behind DBSCAN is that humans can recognize clusters by merely looking at the
distribution of data points, because clusters have a high density inside them, which is significantly
higher than outside them, where outliers and noise are present. This concept is translated into
an algorithm using the following definitions:

NEps(p) = {q ∈ D| dist (p, q) ≤ Eps} (3.8)

The Eps-Neighbourhood of a point is defined by the points that have a distance that is less
or equal than Eps. A natural approach would be to require for each point in a cluster to have
at least a minimum number of points in the Eps-Neighbourhood of that point. This approach
does not work because there are two different types of points in a cluster. Those that are inside
the cluster, which are called “core points” and those which stand in the border of the cluster,
referred as “border points”. For border points the Eps-Neighbourhood will contain fewer data
points compared to the Eps-Neighbourhood of a core point, which will lead on setting a minimum
number of points that is going to be small enough to include also noise inside the cluster, hence
why this approach does not work.

A point p is directly density-reachable from a point q if:

1. p ∈ NEps(q)

2. |NEps(q)| ≥ MinPts (core point condition)

A point p is density-reachable from a point q if there is a chain of points p1, ..., pn, p1 =
q, pn = n such that pi+1 is directly density-reachable from pi. Two border points can be not
density-reachable from each other but there must be a core point in the cluster from which both
border points are density-reachable. This is translated into the definition of density-connected,
where two points p and q are density-connected if there is a point such that both p and q are
density-reachable. Thanks to the previous definitions, the next two will define what a cluster is
and what noise is, with noise being the set of points not belonging to any cluster.

A cluster C is a non-empty subset of the data points D that satisfy the following conditions:

1. ∀p, q : if p ∈ C and q is density-reachable from p than q ∈ C (Maximality)

2. ∀p, q ∈ C : p is density-connected to q (Connectivity)

And noise is defined as: noise = {p ∈ D | ∀i : p /∈ Ci}.

The two DBSCAN algorithm parameters eps and min samples which was previously referred
as MinPts, define how dense must be the points to be treated as clusters instead of noise. More
precisely the min samples parameter controls how the algorithm is tolerant toward noise, while eps
controls the local neighbourhood of the points and is a crucial parameter that strongly depends
on the dataset and cannot be left at the default value. When eps is chosen too small, most of the
data will be labelled as noise, when it is chosen too large it causes close cluster to be merged into a
bigger cluster, with eventually all clusters merged into a single cluster. The authors of the paper
[93] proposed a heuristic to determine the parameter eps and min samples for the “thinnest”
cluster. This heuristics works with this assumption:
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Figure 3.8. Figure showing how the points are clustered together. Point A and all the other red
points are core points, because the eps radius contains at least min samples=4 points, including
the point itself. The red points are reachable from each other, hence they form a single cluster.
The yellow points B and C are not core points but border points, because they are still reachable
from A thus they are part of the cluster. Point N is a noise point, because it is not reachable from
any cluster and it is not a core point. (Figure taken from link)

Given the distance d from a point p to its k-th nearest neighbour, the d-neighbourhood of
p contains exactly k + 1 points for almost all points p. The d-neighbourhood will contain more
than k+ 1 points only if various points have the same distance d from p, which is rare. Changing
the value of k does not affect d significantly. This happens only if the points of the nearest
neighbourhood are located into a line which is generally not true for points in a cluster. Plotting
these values of k-distances for different values of k in descending order will reveal some information
about the density distribution of the dataset. Similar to the elbow method used for finding the
number of cluster k in k-means, finding the point after which the k-dist start decreasing linearly
can help the user in estimating the percentage of noise, that can be used as a starting value for
eps.

Figure 3.9. Example of graph plotting the k-distance with k = 4. The authors of the paper [93]
noticed that the graph did not change much for values greater than 4 for their dataset, hence why
they chose the k = 4 value. The “elbow” point is emphasized by an arrow, showing that the values
before that point are noise outside the clusters, indicating that the eps value should be greater
than that value. (Figure taken from paper [93])

In order to find the Nearest Neighbours, the scikit-learn implementation uses either the ball
tree or kd-tree algorithm. The kd-tree is a data structure used to speed up nearest neighbour
search. It works by building a tree by repeatedly splitting the dataset into halves for each level
of the tree until you have m points left. Given a point x the k-nearest neighbours are found by
firstly fiding in which leaf of the tree the point x is. In that leaf so in that subset of the dataset,
the k points that have the minimum distance are found, and the most significant distance is used
as a radius to generate a circle around point x. From that leaf, all the tree leaves are visited
excluding the nodes where the circle does not cross the border of that subset, hence a neighbour
with a distance that is lower than the ones that were already found could not be possibly present.
If during the visit one node contains a data point with a distance that is lower than the one
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previously used to compute the circle, the distance is updated and the previous data point is
removed from the set of nearest-neighbours. Given the nature of the algorithm, kd-tree works
better only if it is working on a low-dimension space. Increasing the dimension will reduce the
effect of pruning, making the algorithm as slow as the worst-case scenario for every iteration.

The ball-tree algorithm overcomes the limits in high-dimensional space of kd-tree. Instead
of dividing the dataset into boxes by repeatedly halving the dataset for each level of the tree,
ball-tree algorithm halves into spheres. It selects a random point and from it, the point that
is furthest away. From this point it selects the point that is furthest away again, and defines a
direction given by the two points, which with high probability is the direction where the dataset
is highly spread. Given this direction all the points of the dataset are projected into this line, and
the median is found dividing the dataset in two. The mean is computed for the points that are
on the left of the median and for the points on the right. The mean is used to define the center
of two spheres with radius from the mean till the furthest point. The algorithm works the same
as kd-tree from this point, by building a tree with the spheres and visiting this tree until all the
neighbours are found.

The scikit-learn implementation of DBSCAN is deterministic and always generates the same
cluster if the order of data points is preserved. This implementation suffers from memory con-
sumption problems if ball trees or kd-trees cannot be used and a full similarity matrix needs to
be computed, e.g. in the case of sparse matrices.

3.5.5 Summary of clustering techniques pros and cons

The lnLasso algorithm will be compared with other four hard clustering techniques and they have
advantages or disadvantages depending on how the dataset is structured. Summarizing the pros
and cons of each clustering technique:

• K-means does works well with clusters of the same size, if they have a flat geometry and if
there are few clusters.

• Affinity propagation works with uneven clusters, even if there are too many of them and if
they have non-flat geometry, but it is the slowest algorithm.

• Spectral Clustering works better with few clusters of even size, but it can detect clusters
with non-flat geometry.

• DBSCAN works with non-flat geometry and uneven cluster size, but if the dataset is too
big in a high dimensional space, it might run into memory issues.

In Figure 3.10 is represented how the different clustering algorithm performs in different
datasets.

3.6 Clustering Accuracy

To evaluate the performance of the standard clustering techniques versus lnLasso, different ac-
curacy metrics were used. The different metrics used can be grouped into two categories, those
that rely on external indexes and those that find internal indexes. The metrics that use external
indexes require external information that is not produced by the clustering algorithm, which is
the correct label obtained through human labour, while metrics that use internal indexes do not
need any additional information. Metrics that use internal indexes are found to be more precise
[95] when capturing the clustering structure, but metrics that use external indexes can better
recognize if the end-result of clustering is tuning to what the user needs. The metrics that will be
used to evaluate the clustering performance are: Confusion Matrix, Adjusted Rand-Index,
Normalized Mutual Information, Fowlkes-Mallows score, V-measure, Silhouette Coef-
ficient, Davies-Bouldin Index, Calinski-Harabasz Index and Density-Based Clustering
Validation Index.
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Figure 3.10. Representation on how different clustering algorithm perform on different datasets
and how much time is needed to converge. (Figure taken from link)

3.6.1 Confusion Matrix

One way to construct the best accuracy metric to evaluate the clustering accuracy needs to use the
expensive human labour to label each data point manually, assigning them a cluster. This process
that is often referred as “the gold standard” in the literature, in order to limit the human error
requires multiple humans and it is usually done with three people, where two of them initially
label each data point, and if they don’t agree on some data points the third person will act as a
judge and decide the final label.

To compare the lnLasso accuracy in binary classification, a label was assigned for each feedback
for the first three rounds of the Dataset, Introduction, Regression and Classification. This label
will contain “1” if the feedback is related to the exercise session or quiz, “-1” if the feedback is
related to the lecture, or to a concept that the student did not understand that is contained in
the lecture’s book. If a feedback does not relate to both labels, it will be assigned the label “0”
and it will be treated as noise.

An approach to evaluate clustering performance can be to simply divide the number of pre-
dicted labels that were correct with the total number of feedback. When a feedback has been
labelled as “0” it is excluded from the total number of feedbacks, because all the clustering al-
gorithms presented before will try to cluster these outliers, except for DBSCAN. This approach
is not very well suited if the two classes are unbalanced, which is the case of the dataset of the
thesis.

In order to better evaluate the accuracy, a confusion matrix is needed. A confusion matrix
is a tool that is often used in Machine Learning to summarize the results of the prediction in
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Label Feedback

0
there is no worst part here.

every exercise complements each other well.
-1 not enough examples during the lectures!

1
implementing the gradient and empirical risk.

matrix-operations are painful with python.

Table 3.2. Example of feedback with their corresponding assigned label.

a classification problem. The matrix is constructed showing the predicted labels as rows of the
matrix and the actual labels as columns of the matrix.

Given the binary label yi = {−1,1} a True Positive (TP) is defined as a data point that should
have label “1” is correctly classified with label “1”. A True Negative (TN) is defined as a data
point that should have label “-1” is correctly classified with the label “-1”. A False Positive (FP)
is defined as a data point that should have label “-1”, but the predicted label is “1”. A False
Negative (FN) is defined as a data point that should have label “1”, but the predicted label is
“-1”. Given these definitions the accuracy is defined as [96]:

ACC =
TP + TN

TP + TN + FP + FN
(3.9)

This accuracy is also referred as Rand-Index (RI) and has a value that goes between zero and
the absolute value one.

3.6.2 Adjusted Rand-Index

The RI defined above does not take into account that random clustering should have a score that
is a constant value of zero. This problem of RI is more evident when there are many different
clusters. In case of a number of clusters that is greater than 2, TN becomes all the cases when
given two data points that should be in a different cluster are in a different cluster. Given the
higher number of clusters, there is a higher probability that two data points are in a separate
cluster even when simply assigning a random label. This is not the case of this thesis because
there are only two different clusters, but the chance normalization is still an advantage over the
simple RI.

Defining the set of possible values that the true labels can be as Y = {Y1, Y2, ..., Ys} and the
set of possible values that the predicted labels can be as X = {X1, X2, ..., Xs} the overlap between
X and Y can be illustrated using the contingency matrix where each entry nij is the number of
data points in common between Xi and Yj , nij = |Xi ∩ Yj |.

X/Y Y1 Y2 . . . Ys Sums
X1 n11 n12 . . . n1s a1
X2 n21 n22 . . . n2s a2
...

...
...

. . .
...

...
Xr nr1 nr2 . . . nrs ar

Sums b1 b2 . . . bs

Note that in the binary case of only two clusters, the contingency matrix and the confusion
matrix are the same matrix, with the contingency matrix having an extra sum for each row and
column.
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Using the contingency matrix, the Adjusted Rand-Index (ARI) [97] is defined as:

ARI =

∑
ij

(
nij
2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/

(
n
2

)
1
2
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i

(
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2

)
+
∑
j

(
bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/

(
n
2

) (3.10)

ARI has an expected value of zero for randomly assigned labels, it is symmetric, ignores
permutations and has a value between “-1” for bad clustering and “1” for perfect clustering.
No assumptions are made on the cluster structure, so it can be used to validate any clustering
algorithm.

3.6.3 Normalized Mutual Information

Mutual Information (MI) measures the agreement between two vectors of labels. Two different
normalized versions are defined, Normalized Mutual Information (NMI) which is more used in the
literature, and the Adjusted Mutual Information (AMI) that like ARI is adjusted against chance
[73].

Given the set of possible values defined for ARI X and Y in the chapter above, the entropy is
defined as:

H(Y ) = −
|Y |∑
i=1

P (i) log(P (i)) (3.11)

where P (i) = |Yi|/N is the probability that a data point picked randomly will have the label
Yi. The analogous entropy for X is defined as:

H(X) = −
|X|∑
j=1

P ′(j) log(P ′(j)) (3.12)

where P ′(j) = |Xi|/N is the probability that a data point picked randomly will have the label
Xi. MI is defined as:

MI(Y,X) =

|Y |∑
i=1

|X|∑
j=1

P (i, j) log

(
P (i, j)

P (i)P ′(j)

)
(3.13)

where P (i, j) = |Yi ∩Xi|/N is the probability that a randomly selected data point will have
the label Xi and Yi. The NMI is defined as:

NMI(Y,X) =
MI(Y,X)

mean(H(Y ), H(X))
(3.14)

Like RI, NMI and MI are not adjusted for chance and this problem will increase when the
number of cluster increases. Defining ai = |Yi| and bj = |Xi| that are respectively the number
of elements that have the label Yi and Xi the expected value E[MI] can be computed using the
following formula [98]:

E[MI(Y,X)] =

|Y |∑
i=1

|X|∑
j=1

min(ai,bj)∑
nij=(ai+bj−N)+

nij
N

log

(
N · nij
aibj

)
ai!bj ! (N − ai)! (N − bj)!

N !nij ! (ai − nij)! (bj − nij)! (N − ai − bj + nij)!

(3.15)
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Using the expected value, AMI can be defined as:

AMI =
MI− E[MI]

mean(H(U), H(V ))− E[MI]
(3.16)

Like ARI, AMI gives a constant number zero for randomly generated assigned labels, but has
a value that goes between zero and the perfect value one. For NMI and AMI various averaging
method are used depending on the field where NMI and AMI are applied. This is a parameter
that can be changed in the scikit-learn [73] implementation called “average method”.

3.6.4 Fowlkes-Mallows score

The Fowlkes-Mallows score (FMI) [99] is defined as :

FMI =
TP√

(TP + FP)(TP + FN)
(3.17)

The FMI ranges between zero and the perfect score one. Like AMI and ARI, FMI has a
constant value of zero for randomly assigned labels

3.6.5 V-measure

Given the definition of homogeneity and completeness:

h = 1− H(C|K)

H(C)

c = 1− H(K|C)

H(K)

(3.18)

where H(C|K) is the conditional entropy of the labels given the cluster assignment, defined
as:

H(C|K) = −
|C|∑
c=1

|K|∑
k=1

nc,k
n
· log

(
nc,k
nk

)
(3.19)

and H(C) is the entropy defined with the formula 3.11. n is the total number of labels, nc and
nk are the total number of labels of class c and k and nc,k is the total number of labels from c that
are in k. Homogeneity measures how much each predicted cluster contains only data points that
their true labels are in that cluster. Completeness is symmetrical to homogeneity and it measures
how many data points with the same true label ended up in the same predicted cluster. Both
homogeneity and completeness have a score that goes between zero and the best value one.

The definition of the entropy-based cluster evaluation metric V-Measure [100] is the harmonic
mean of homogeneity and completeness:

V = 2 · h · c
h+ c

(3.20)

V-measure defined like this is equivalent to NMI where the aggregation function is the arith-
metic mean [101]. The scikit-learn [73] implementation uses this formula:

V =
(1 + β)× h× c

(β × h+ c)
(3.21)
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where β is a parameter that decides how much the V-measure is influenced by the homogeneity
compared to the completeness.

Like NMI, MI and RI, V-measure does not assign a constant value zero to randomly assigned
labels, but as shown in Figure 3.11 this phenomenon is very limited when the number of clusters
is meager, as the case of the dataset of the thesis. V-Measure has a value that goes from the awful
score zero to the absolute score one.

Figure 3.11. Graph showing how the different V-measure AMI and MI scores vary in the case
of random labels per number of clusters. (Figure taken from link)

3.6.6 Silhouette Coefficient

All the previous clustering evaluation metrics require the knowledge of the true labels, because
they are clustering performance metrics that rely on external indexes. The Silhouette Coefficient
(SC) [102] is the first example of clustering metric that relies on internal indexes and they are the
cluster tightness and separation.

SC is defined as:

SC =
b− a

max(a, b)
(3.22)

where a is the mean distance between a data point and all the other points with the same true
label, and b is the mean distance between a data point and the next nearest cluster.

SC has a value between “-1” for incorrect clustering and “1” for dense clustering. The value
“0” indicates that clusters overlap. Higher scores of SC means that the clusters are dense and
separate. SC can be used to select the number of clusters like the elbow method illustrated in
the chapter K-means. In order to select the best number of cluster the average SC score for every
data point must be computed and plotted along with the width of every cluster per number of
clusters k. Every amount of cluster k with clusters having an average SC score below the total
average are discarded. If two or more numbers of clusters k are left, it is selected the number of
clusters that provides a more homogeneous distribution. One drawback of the SC is that it has a
higher value for clustering algorithms that generate convex clusters, like K-means, compared to
other clustering methods like the density-based DBSCAN.
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3.6.7 Davies-Bouldin Index

The Davies-Bouldin index (DBI) [103] is another evaluation metric that uses internal indexes to
assess clustering performance. Given the definition of similarity as:

Rij =
si + sj
dij

(3.23)

where si is the average distance between each data point of cluster i and the centroid of that
cluster and dij is the distance between the cluster centroids i and j.

The DBI is defined as:

DBI =
1

k

k∑
i=1

max
i /=j

Rij (3.24)

where k is the number of clusters. Computing the DBI is less computational expensive com-
pared to the SC, and lower values of DBI mean a better clustering with zero as the best possible
value. Like SC, DBI gives higher scores for convex clustering algorithm such as K-means, com-
pared to density-based clustering algorithms such as DBSCAN. Note that in DBI higher values
in the DBSCAN case mean worse clustering, as opposed to SC.

3.6.8 Calinski-Harabasz Index

The Calinski-Harabasz Index (CBI) [104] also known as the Variance Ratio Criterion, for a dataset
E of size nE with k clusters, is defined as:

CBI =
tr (Bk)

tr (Wk)
× nE − k

k − 1
(3.25)

where tr(Bk) is the trace of the between clusters dispersion matrix Bk and tr(Wk) is the trace
of the inside cluster dispersion Wk. The two matrices are defined as:

Wk =

k∑
q=1

∑
x∈Cq

(x− cq) (x− cq)T

Bk =

k∑
q=1

nq (cq − cE) (cq − cE)
T

(3.26)

where Cq is the subset of data points in the cluster q, cq is the centre of the cluster q, cE the
centre of the entire dataset E and nq is the number of data points in the cluster q.

Higher CBI scores mean dense and well-defined clusters, which is the standard metric to
evaluate a satisfying cluster. Like SC and DBI, CBI score will be generally higher for convex
clustering algorithm such as K-means compared to density-based clustering algorithms such as
DBSCAN.

3.6.9 Density-Based Clustering Validation Index

All the previous clustering performance metrics based on internal indexes fail at assessing the
performance of density-based clustering algorithms such as DBSCAN, and do not take into account
the noisy data points. The density-Based Clustering Validation Index (DBCV) [105] was created
to overcome these issues and revolves around the idea of computing the density within a cluster, the
density between clusters and shape properties, where high density within a cluster and low density
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between clusters means an acceptable clustering. Some Density-based metrics were introduced
before DBCV [106], some used the DBI [103] but they could not handle arbitrary shapes.

Given a dataset O = {o1, ..., on} containing n objects in an Rd space. Let KNN(o, i) be the
distance between the data point o and its ith nearest neighbour. Let C = {Ci, N} 1 ≤ i ≤ l be
a clustering solution with l clusters and a possible empty set of noisy points N , where ni is the
size of the ith cluster and nN is the cardinality of noise.

The all-points-core-distance (aptscoredist) which is the reverse of the density of each data point
concerning all other data points inside its cluster, is defined as:

aptscoredist(o) =


∑ni
i=2

(
1

KNN(o,i)

)d
ni − 1


− 1
d

(3.27)

The mutual reachability distance between two data points oi and oj is defined as dmreach(oi, oj) =
max(aptscoredist(oi), aptscoredist(oj), d(oi, oj)), where d(oi, oj) is the distance between the two
data points. The mutual reachability distance graph is a complete graph with the data points
in O as vertices and the mutual reachability distance as weight for each edge. The minimum
spanning tree of the graph is called MSTMRD. The overall idea behind DBCV is to compute
the aptscoredist and the MSTMRD for each cluster Ci. Based on the minimum spanning tree
computed before the density sparseness and density separation are used for the validity index.

The Density Sparseness of a Cluster (DSC) is defined as the maximum edge weight of the
internal edges in the MSTMRD for the cluster Ci. The Density Separation of a Pair of Cluster
(DSPC) Ci and Cj with 1 ≤ i, j ≤ l, i /= j is defined as the minimum reachability distance
between the internal nodes of the MSTMRD.

The validity index of a cluster is defined as:

VC (Ci) =
min1≤j≤l,j /=i (DSPC (Ci, Cj))−DSC (Ci)

max
(
min1≤j≤l,j /=i (DSPC (Ci, Cj)) , DSC (Ci)

) (3.28)

The DBCV is defined as:

DBCV(C) =

i=l∑
i=1

|Ci|
|O|

VC (Ci) (3.29)

The DBCV is a value between “-1” and “1” with higher values indicating better clustering
solutions.

3.7 Logistic Network Lasso

The Logistic Network Lasso is a semi-supervised algorithm [6] taking advantage of partially la-
belled network-structured data, that can be applied in many domains such as image processing
[107], social networks or bioinformatics [108]. The network-structured data is represented with
a graph G = (V, E , W) with every feedback i ∈ V being a node in the graph. Two feedback
i, j ∈ V are connected by an undirected edge {i, j} ∈ E if they are considered similar, and each
edge has an associated weight Wij > 0 indicating the amount of similarity between the feedback.
Each feedback i ∈ V has a binary label yi ∈ {−1,1} representing which cluster the meaning of the
feedback fits in best. Being a semi-supervised algorithm these labels are going to be partly used
in training the algorithm, with a sampling set M⊂ V.

The labels yi are modelled as independent random variables with unknown probabilities:

pi = Prob{yi = 1} (3.30)
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These probabilities are parametrized using the logarithm of the odds ratio, defined by the
logarithm of the probability of success divided by the probability of failure:

x[i] = log

(
pi

1− pi

)
(3.31)

The equation 3.31 defines a graph signal x[·] : V → R used to represent the classifier that
produces the labels ŷi = sign(x[i]). Minimizing the empirical error defined as:

Ê(x[·]) :=
1

|M|
∑
i∈M

` (yix[i]) (3.32)

with the loss function `:

`(z) = log(1 + exp(−z)) (3.33)

is not enough to learn a classifier from the incomplete information provided by the sampled
labels yi ∈ M. The equation 3.32 measures only how well the classifier can generate a predicted
label that is equal to the correct label yi. To use the information about the structure of the
generated cluster, the total variation (TV) is defined:

‖x[·]‖TV :=
∑
{i,j}∈E

Wij |x[j]− x[i]| (3.34)

The graph signal x[·] has a small TV if the values x[i] are constant over well connected clusters.
The TV and the empirical error are used to define the lnLasso problem:

x̂[·] ∈ argmin
x[·]∈RV

Ê(x[·]) + λ‖x[·]‖TV (3.35)

The regularization parameter λ allows deciding how much the information gathered from the
cluster structure should influence the classifier. The equation 3.35 does not enforce in a direct
way to cluster the labels yi, but they are forced to be clustered only as a result of minimizing the
TV. The lnLasso problem is solved using the inexact form of the Alternating Direction Method
of Multipliers (ADMM) [109].

ADMM solves problem that are in the form minimize(f(x) + g(z)) subject to Ax+ Bz = c,
with f(x) and g(z) convex functions. Defining the augmented Lagrangian as:

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2)‖Ax+Bz − c‖22 (3.36)

ADMM consists of the iterations:

xk+1 := argminx Lρ
(
x, zk, yk

)
zk+1 := argminz Lρ

(
xk+1, z, yk

)
yk+1 := yk + ρ

(
Axk+1 +Bzk+1 − c

) (3.37)

with ρ > 0. In ADMM x and z are updated in an alternated manner, hence the name of the
algorithm. The following conditions are necessary for the ADMM algorithm, the primal feasibility:

Ax? +Bz? − c = 0 (3.38)

and the dual feasibility:

0 ∈ ∂f (x?) +AT y?

0 ∈ ∂g (z?) +BT y?
(3.39)
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Since zk+1 minimizes Lρ(x
k+1, z, yk) the last equation of 3.39 is always satisfied for zk+1 and

yk+1 reducing the total amount of equation to be satisfied for optimality to two. The primal
residual is defined as:

rk+1 = Axk+1 +Bzk+1 − c (3.40)

and the dual residual as:

sk+1 = ρATB
(
zk+1 − zk

)
(3.41)

The two residuals converge to zero when ADMM iterates, and they are used as the stopping
criterion.

∥∥rk∥∥
2
≤ εpri and

∥∥sk∥∥
2
≤ εdual (3.42)

with εpri > 0 and εdual > 0. ADMM can be very slow to converge with high accuracy,
but it is quick to converge with modest accuracy, usually in a few tens of iterations. In Machine
Learning applications this improvement in accuracy after many iterations, generally do not provide
prediction accuracy improvements and it is often skipped, stopping the algorithm after 20 or
30 iterations. Another way to relax the ADMM constraints is through inexact minimization if
the functions are summable. Inexact ADMM works by solving the x and z minimization steps
approximately at first, and more accurately as the iterations progress.

In order to apply ADMM the equation 3.35 needs to be reformulated in:

x̂[·] ∈ argmin
x[·]∈RV

Ê(x[·]) + (λ/2)
∑

(i,j)∈E

Wi,j |zij − zji| (3.43)

where zij is the auxiliary variable defined as zij = x[i] i ∈ V, j ∈ N (i), with N (i) being
defined as the neighbourhood of the node i: N (i) = {j : {i, j} ∈ E}.

The augmented Lagrangian is defined as:

Lρ (x[·], zij , uij) = Ê(x[·]) + (λ/2)
∑

(i,j)∈E

Wij |zij − zji|+ (ρ/2)
∑

(i,j)∈E

[
(x[i]− zij + uij)

2 − u2ij
]

(3.44)

where uij is the dual variable introduced for each edge (i, j) ∈ E . The iterations to solve exact
ADMM are formulated as:

x(k+1)[·] := argmin
x[·]∈Rν

Lρ
(
x[·], z(k)ij , u

(k)
ij

)
z
(k+1)
ij := argmin

zij∈R
Lρ
(
x(k+1)[·], zij , u(k)ij

)
u
(k+1)
ij := u

(k)
ij + x(k+1)[i]− z(k+1)

ij for each (i, j) ∈ E

(3.45)

With the first equation minimizing the empirical error Ê(x[·]) and the second equation min-
imizing the total variation ‖x[·]‖TV . The two equations are then coupled together in the last
equation. The first equation of 3.45 can be rewritten knowing that the non sampled nodes i ∈M
have a label ỹi = 0, otherwise ỹi ∈ {−1,1}:

x(k+1)[i] = argmin
x∈R

` (ỹix) +
|M|ρ

2

∑
j∈N (i)

(
x− z(k)ij + u

(k)
ij

)2
(3.46)
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The second equation of 3.45 can be rewritten as:

z
(k+1)
ij = θ

(
x(k+1)[i] + u

(k)
ij

)
+ (1− θ)

(
x(k+1)[j] + u

(k)
ji

)
(3.47)

with

θ = max

1

2
, 1− (λ/ρ)Wij∣∣∣x(k+1)[i] + u

(k)
ij − x(k+1)[j]− u(k)ji

∣∣∣
 (3.48)

Using inexact approximation 3.46 can be approximated as:

x̂(k+1)[i] = Φi ◦ . . . ◦ Φi︸ ︷︷ ︸
|ỹi|d2 log(2(k+1))/ log(|M|ρdi)e

(1/di)
∑

j∈N (i)

(
z
(k)
ij − u

(k)
ij

)
(3.49)

with di being the node degree di = |N (i)| and the map defined as:

Φi(x) :=
ỹi/ (|M|diρ)

1 + exp (ỹix)
+ (1/di)

∑
j∈N (i)

(
z
(k)
ij − u

(k)
ij

)
(3.50)

The classifier x[i] once trained is able to label the data points as ŷi = 1 if x[i] > 0 and ŷi = −1
if x[i] < 0. The magnitude of the classifier |x[i]| gives a measure of the confidence of the prediction,
with higher values meaning higher confidence.
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Chapter 4

Results

The first research question is what is the most effective way to encode the sentence meaning for
the downstream task of binary clustering feedback with a certain degree of similarity. From the
set of techniques analyzed in the chapter Encoding feedback, the Word2Vec, Doc2Vec, FastText,
GloVe and BERT models were chosen for comparison. The Word2Vec, FastText and Doc2Vec
models were implemented using Gensim [110] training them on the dataset of the thesis. For the
Word2Vec model, both the CBOW and Skip-Gram variation were used, with negative sampling
and a window of five tokens. The FastText model was implemented with n = 5 and n = 10
iterations. The Doc2Vec model was implemented with both PV-DM and PV-DBOW variations.
For all the three models, the dimension of the sentence vector was kept to 100 for a better
comparison. The GloVe model was implemented downloading the pre-trained embeddings, more
precisely those with a dimension of 100, pre-trained on the Gigaword corpus + Wikipedia 2014
[15].

Due to better documentation and also since the implementation of ALBERT and RoBERTa
variations is continuously changing to improve their rank in the GLUE leaderboard [67], the
vanilla BERT implementation was chosen. As presented in the paragraph about BERT, there are
two different model sizes, for the scope of the thesis the smaller model Bert-Base has been used.

To obtain the sentence embedding with BERT, first the model is fine-tuned using MRPC [68].
Since sentence embedding are not directly supported by BERT, as suggested by one of the authors
of the paper, the model is trained with the feedback and the last hidden layer and the second-
last hidden layer values are extracted for each token, obtaining a 728-dimensional vector. Each
token-vector is added into a 728-dimensional sentence vector that will be divided by the number
of token-vectors used. This sentence embedding is the feature vector x that is used to define the
Machine Learning problem as explained in the paragraph The Machine Learning problem. To
evaluate the performance, tests have been done using only the last layer, using only the second-last
layer and using an average of both the layers. Since BERT uses two unique tokens CLS and SEP
for fine-tuning, those vectors were removed from the sentence embedding to avoid extra noise.

BERT classifier can be used to give a score of semantic similarity between sentences. Each
feedback is paired with all the remaining feedback from the round, generating all the possible
combinations. For each combination, scores ranging from zero to one are computed, where higher
values mean higher similarity. These scores are pruned with different thresholds, and only the
scores above the threshold are selected to be the weights between the nodes in the lnLasso imple-
mentation. (See the paragraph Logistic Network Lasso).

For NMI and AMI, the average method is kept to the default which is arithmetic. For AP
the preference was selected as the best in 100 possible values that generated two clusters for each
round, in terms of the metrics evaluated. For SPC with Nearest Neighbour (SPC NN), the Nearest
Neighbour is selected from 100 possible values that provide the best overall result, for each round.
For SPC with Radial Basis Function (SPC RBF) the gamma is selected from 300 possible values
that provided the best overall result, for each round. For DBSCAN, when clustering evaluation
metrics that relied on external indexes (RI, ARI, NMI, AMI, FMI, V-measure) were used, special
eps and min sample values were selected in order to allow only two clusters to exist with no
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limit to the number of noisy data points. The clustering evaluation metrics that use external
indexes do not take into account the presence of noisy points. To adjust the results for this type
of evaluation metrics the number of noisy data points for DBSCAN was limited to be less than
80, and those labels were then randomly assigned to the two clusters.

For all the clustering solutions except DBSCAN, the labels that were equal to zero were
removed from both the true labels and the predicted labels. For DBSCAN those labels were kept
to see if the algorithm could predict these values, but on average the correct noise points predicted
was below 5%, leading in lower results of RI, ARI and FMI due to a bigger chance to fail while
predicting.

Figure 4.1. Figure showing the labels distribution in the three rounds, where a strong unbalance
between label = −1 and label = 1 can be noticed.

As we can see in Figure 4.1, the labels are very unbalanced toward label = 1 meaning that
the clustering performance metric RI will not give a clear, unbiased result. This unbalance on
the feedback can be explained in terms of when the feedback questionnaire was asked to be filled.
Most of the students filled the questionnaire immediately after the quiz that was related mostly
on the exercise session, so students were unconsciously nudged into giving a feedback that was
related to some problem that they experienced shortly before the quiz, compared to some other
problem that they experienced while studying during the lecture the week before. A solution to
solve this problem of unbalanced labels would be to either downsample the more frequent class,
or introduce synthetic data points in the more infrequent class. Since the amount of data for each
round is not in the order of ten thousand, adding synthetic data points is the suggested approach
[111]. Since an unbalance in classes is pretty common in a real-world scenario and the thesis aim
was to test the algorithms with a dataset that was as less synthetic as possible, new data points
were not introduced.

All the following tables are obtained using the tokenized feedback with little pre-processing (no
stemming). This has been done to see if there was an improvement in accuracy using stemming,
as shown in the paragraph Sentence embeddings with stemming.
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4.1 Comparison of different clustering methods with differ-
ent sentence embeddings using external indexes metrics

Round
Clustering
Algorithm

Word2Vec (CBOW)
RI ARI NMI AMI FMI V05 V15

Intro1
K-Means

0.6021 0.0249 0.0063 0.0048 0.5752 0.0063 0.0064
Regr2 0.6376 0.0088 0.0005 -0.0012 0.6321 0.0005 0.0005
Class3 0.7263 0.0871 0.0229 0.0180 0.7138 0.0215 0.0233
Intro1

AP
0.6566 0.0044 0.0171 0.0010 0.7367 0.0039 0.0063

Regr2 0.7381 -0.0025 0.0064 -0.0009 0.7818 0.0015 0.0024
Class3 / / / / / / /
Intro1

SPC NN
0.5160 0.0009 0.0043 0.0029 0.5241 0.0044 0.0043

Regr2 0.6546 0.0243 0.0030 0.0012 0.6446 0.0029 0.0031
Class3 0.6816 0.0575 0.0119 0.0099 0.6601 0.0118 0.0112
Intro1

SPC RBF
0.6329 -0.0191 0.0364 0.0135 0.7175 0.0206 0.0297

Regr2 0.7078 0.0559 0.0115 0.0079 0.7042 0.0107 0.0117
Class3 0.7493 0.0459 0.0156 0.0092 0.7690 0.0131 0.0155
Intro1

DBSCAN
0.5533 -0.0452 0.0429 0.0324 0.6322 0.0386 0.0438

Regr2 0.6478 -0.0967 0.0773 0.0632 0.6832 0.0719 0.0788
Class3 0.6832 -0.0721 0.0361 0.0257 0.7120 0.0319 0.0368

Table 4.1. Results obtained using the Word2Vec sentence encoding with the CBOW variation.
All results are averaged after five iterations. V05 and V15 are the V-measure scores using beta 0.5
and 1.5, respectively. SPC NN stands for SPC with Nearest Neighbour. SPC RBF stands for SPC
with Radial Basis Function. For the third round, the AP algorithm never converged with only two
clusters. The best value for each round and for each column are marked in bold.

Round
Clustering
Algorithm

Word2Vec (Skip-gram)
RI ARI NMI AMI FMI V05 V15

Intro1
K-Means

0.5561 0.0100 0.0012 -0.0002 0.5886 0.0012 0.0013
Regr2 0.7400 0 1 0 0.7839 0 0
Class3 0.6778 -0.0058 0.0001 0.0001 0.6867 0.0001 0.0001
Intro1

AP
/ / / / / / /

Regr2 0.7400 0 1 0 0.7839 0 0
Class3 / / / / / / /
Intro1

SPC NN
0.6449 -0.0052 0.0017 -0.0007 0.7232 0.0010 0.0014

Regr2 0.7469 0.0425 0.0343 0.0133 0.7773 0.0206 0.0289
Class3 0.7609 0.0484 0.0534 0.0185 0.7882 0.0118 0.0409
Intro1

SPC RBF
0.5674 0.0137 0.0018 0.0003 0.6190 0.0017 0.0019

Regr2 0.6964 0.0337 0.0056 0.0031 0.6959 0.0052 0.0058
Class3 0.7549 0.0325 0.0200 0.0065 0.7841 0.0115 0.0165
Intro1

DBSCAN
0.0640 0.7589 0.662 0.6515 0.8907 0.6618 0.6686

Regr2 0.6478 -0.0967 0.0773 0.0632 0.6832 0.0719 0.0788
Class3 0.6901 -0.0794 0.0571 0.0400 0.7202 0.0493 0.0579

Table 4.2. Results obtained using the Word2Vec sentence encoding with the Skip-gram variation.
All results are averaged after five iterations. V05 and V15 are the V-measure scores using beta
0.5 and 1.5, respectively. SPC NN stands for SPC with Nearest Neighbour. SPC RBF stands for
SPC with Radial Basis Function. For the first and third round, the AP algorithm never converged
with only two clusters. The best value for each round and for each column are marked in bold.

For the Word2Vec embeddings generated with the Skip-gram variation (Table 4.2), the clus-
tering algorithms produced unreliable results, where the perfect scores of NMI in K-means and
AP (when it converged) are justified as being perfectly randomly generated labels. The high
scores in DBSCAN are generated by noisy solutions (ca. 90% of the total). For this reason, the
Word2Vec Skip-gram embeddings were not used for the next comparison.
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Round
Clustering
Algorithm

Doc2Vec (PV-DM)
RI ARI NMI AMI FMI V05 V15

Intro1
K-Means

0.5966 0.0223 0.0056 0.0042 0.5695 0.0056 0.0057
Regr2 0.6319 0.0179 0.0020 0.0003 0.6196 0.0020 0.0019
Class3 0.7393 0.0838 0.0239 0.0017 0.7372 0.0214 0.0244
Intro1

AP
0.6123 -0.0121 0.0018 -0.0001 0.6648 0.0015 0.0018

Regr2 0.685 0.0314 0.0040 0.0018 0.6821 0.0038 0.0041
Class3 0.7486 0.0872 0.0291 0.0194 0.7516 0.0250 0.0295
Intro1

SPC NN
0.6148 0.0194 0.0057 0.0040 0.6136 0.0055 0.0057

Regr2 0.5104 0.0070 0.0034 0.0017 0.5595 0.0034 0.0033
Class3 0.5374 0.0127 0.0094 0.0071 0.5658 0.0033 0.0091
Intro1

SPC RBF
0.6346 -0.0178 0.0347 0.0123 0.7192 0.0190 0.0019

Regr2 0.7442 0.0513 0.0254 0.0117 0.7686 0.0177 0.0058
Class3 0.7568 0.0814 0.0344 0.0200 0.7683 0.0271 0.0165
Intro1

DBSCAN
0.5657 -0.0294 0.0465 0.0223 0.7085 0.0312 0.0421

Regr2 0.6478 -0.0967 0.0773 0.0632 0.6832 0.0719 0.0788
Class3 0.6918 -0.0693 0.0329 0.0229 0.7190 0.0288 0.0335

Table 4.3. Results obtained using the Doc2Vec sentence encoding with the PV-DM vari-
ation. All results are averaged after five iterations. V05 and V15 are the V-measure scores
using beta 0.5 and 1.5, respectively. SPC NN stands for SPC with Nearest Neighbour.
SPC RBF stands for SPC with Radial Basis Function. The best values for each round and
for each column are marked in bold.

Round
Clustering
Algorithm

Doc2Vec (PV-DBOW)
RI ARI NMI AMI FMI V05 V15

Intro1
K-Means

0.5022 -0.0024 0.0006 -0.0007 0.5241 0.0006 0.0006
Regr2 0.7495 0.0349 0.0737 0.0206 0.7853 0.0323 0.0494
Class3 0.7616 0.0377 0.0764 0.0215 0.7934 0.0336 0.0514
Intro1

AP
/ / / / / / /

Regr2 / / / / / / /
Class3 / / / / / / /
Intro1

SPC NN
0.6861 0.0716 0.0554 0.0332 0.7150 0.0434 0.0545

Regr2 0.7761 0.2240 0.1095 0.0954 0.7423 0.1045 0.1115
Class3 0.7709 0.0963 0.0727 0.0371 0.7874 0.0509 0.0679
Intro1

SPC RBF
0.4991 -0.0018 0.0006 -0.0007 0.5227 0.0006 0.0006

Regr2 0.7571 0.1557 0.0674 0.0533 0.7404 0.0618 0.0687
Class3 0.7482 0.1030 0.0355 0.0258 0.7443 0.0317 0.0362
Intro1

DBSCAN
/ / / / / / /

Regr2 0.6927 0.0571 0.0132 0.0097 0.6876 0.0123 0.0135
Class3 0.7209 0.0894 0.0305 0.0225 0.7169 0.0274 0.0311

Table 4.4. Results obtained using the Doc2Vec sentence encoding with the PV-DBOW varia-
tion. All results are averaged after five iterations. V05 and V15 are the V-measure scores using
beta 0.5 and 1.5, respectively. SPC NN stands for SPC with Nearest Neighbour. SPC RBF
stands for SPC with Radial Basis Function. AP and the first round in DBSCAN never con-
verged with two clusters for all the parameters tested. The best values for each round and for
each column are marked in bold.

For the Doc2Vec (PV-DBOW) implementation (Table 4.4) the unreliability was even worse
compared to Word2Vec Skip-gram, affecting also DBSCAN. For the same reason as the Word2Vec
Skip-gram, Doc2Vec PV-DBOW embeddings were not used for the next comparison.
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Round
Clustering
Algorithm

FastText (n = 5)
RI ARI NMI AMI FMI V05 V15

Intro1
K-Means

0.5530 0.0090 0.0011 -0.0003 0.5812 0.0011 0.0011
Regr2 0.6509 0.0485 0.0115 0.0097 0.6232 0.0116 0.0114
Class3 0.7225 0.0930 0.0252 0.0208 0.7048 0.0241 0.0255
Intro1

AP
0.6123 -0.0005 5.81e-7 -0.0013 0.6449 5.25e-7 5.93e-7

Regr2 0.7268 0.0855 0.0249 0.0185 0.7206 0.0228 0.0254
Class3 0.7579 0.0869 0.0372 0.0222 0.7680 0.02967 0.0369
Intro1

SPC NN
0.5005 -0.0013 0.0005 -0.0008 0.5234 0.0005 0.0004

Regr2 0.7343 0.0690 0.0217 0.0135 0.7427 0.0183 0.0219
Class3 0.6369 0.0581 0.0243 0.0210 0.6020 0.0249 0.0238
Intro1

SPC RBF
0.6419 0.0094 0.0047 0.0004 0.6930 0.0024 0.0033

Regr2 0.7283 0.0684 0.0203 0.0144 0.7317 0.0184 0.0207
Class3 0.7635 0.0783 0.0467 0.0241 0.7812 0.0336 0.0442
Intro1

DBSCAN
0.625 -0.0329 0.0511 0.0249 0.7044 0.0348 0.0470

Regr2 0.6478 -0.0967 0.0773 0.0632 0.6832 0.0719 0.0788
Class3 0.6901 -0.0794 0.0571 0.0400 0.7202 0.0493 0.0579

Table 4.5. Results obtained using the FastText sentence encoding with n = 5 iterations.
All results are averaged after five iterations. V05 and V15 are the V-measure scores using
beta 0.5 and 1.5, respectively. SPC NN stands for SPC with Nearest Neighbour. SPC RBF
stands for SPC with Radial Basis Function. The best values for each round and for each
column are marked in bold.

Round
Clustering
Algorithm

FastText (n = 10)
RI ARI NMI AMI FMI V05 V15

Intro1
K-Means

0.5866 -0.0007 2.08e-6 -0.0013 0.5976 2.01e-6 2.12e-6
Regr2 0.5905 0.0337 0.0054 0.0037 0.6329 0.0054 0.0054
Class3 0.7300 0.0613 0.0139 0.0091 0.7318 0.0124 0.0142
Intro1

AP
0.6192 -0.0042 0.0002 -0.0012 0.6653 0.0001 0.0002

Regr2 0.7173 0.0647 0.0154 0.0107 0.7153 0.0140 0.0157
Class3 0.7561 0.0950 0.0373 0.0240 0.7613 0.0311 0.0375
Intro1

SPC NN
0.5074 -0.0012 0.0005 -0.0008 0.5244 0.0005 0.0005

Regr2 0.5070 -0.0013 0.0016 0.0001 0.5542 0.0017 0.0016
Class3 0.7143 0.0403 0.0346 0.0114 0.7193 0.0174 0.0246
Intro1

SPC RBF
0.6312 -0.0011 6.49e-06 -0.0013 0.6858 5.20e-06 6.45e-6

Regr2 0.7268 0.0341 0.0079 0.0037 0.7465 0.0065 0.0079
Class3 0.7654 0.0871 0.0522 0.0276 0.7810 0.0380 0.04972
Intro1

DBSCAN
0.6267 -0.0318 0.0498 0.0238 0.7060 0.0334 0.0454

Regr2 0.6478 -0.0967 0.0773 0.0632 0.6832 0.0719 0.0789
Class3 0.6901 -0.0794 0.0571 0.0400 0.7202 0.0493 0.0579

Table 4.6. Results obtained using the FastText sentence encoding with n = 10 iterations.
All results are averaged after five iterations. V05 and V15 are the V-measure scores using
beta 0.5 and 1.5, respectively. SPC NN stands for SPC with Nearest Neighbour. SPC RBF
stands for SPC with Radial Basis Function. The best values for each round and for each
column are marked in bold.

Between the two FastText implementation with n = 5 (Table 4.5) and n = 10 (Table 4.6)
iterations, FastText with n = 5 iterations was selected for further experiments, due to better
results most of the times, as we can see in Table 4.7. Table 4.7 was computed by doing the
average of the three rounds for the best results of each table 4.5 and 4.6.
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Embedding
method

Comparison of different FastText embeddings
RI ARI NMI AMI FMI

FastText
n=5

0.7132 0.0626 0.0618 0.0427 0.7428

FastText
n=10

0.7078 0.0530 0.0614 0.0423 0.7445

Table 4.7. Comparison of the two embeddings generated by FastText with n = 5 and n = 10
iterations. The best value for each column is marked in bold.

Round
Clustering
Algorithm

GloVe (100d Gigaword corpus + Wikipedia 2014)
RI ARI NMI AMI FMI V05 V15

Intro1
K-Means

0.5883 0.0091 0.0011 -0.0003 0.5812 0.0011 0.0011
Regr2 0.6907 0.0720 0.0177 0.0151 0.6671 0.0174 0.0179
Class3 0.7598 0.0860 0.0396 0.0229 0.7716 0.0309 0.0390
Intro1

AP
0.5633 0.0093 0.0009 -0.0005 0.6132 0.0009 0.001

Regr2 0.7438 0.0984 0.0374 0.0257 0.7450 0.0323 0.0380
Class3 0.7654 0.0950 0.0521 0.0294 0.7779 0.0396 0.0507
Intro1

SPC NN
0.4957 0.0002 0.0020 0.0007 0.5230 0.0020 0.0020

Regr2 0.5655 0.0157 0.0161 0.0133 0.5609 0.0165 0.0157
Class3 0.5367 0.0140 0.013 0.0103 0.5658 0.0134 0.0126
Intro1

SPC RBF
0.6419 0.0087 0.0046 0.0003 0.6941 0.0023 0.0031

Regr2 0.7571 0.0629 0.1053 0.0391 0.7866 0.0570 0.0834
Class3 0.7709 0.1043 0.0692 0.0379 0.7842 0.0510 0.0664
Intro1

DBSCAN
0.5933 -0.0456 0.0511 0.0320 0.6734 0.0411 0.0508

Regr2 0.6478 -0.0967 0.0773 0.0632 0.6832 0.0719 0.0788
Class3 0.6901 -0.0794 0.0571 0.0400 0.7202 0.0493 0.0579

Table 4.8. Results obtained using the GloVe sentence encoding with 100-dimensional vectors pre–
trained on the Gigaword corpus and Wikipedia 2014. All results are averaged after five iterations.
V05 and V15 are the V-measure scores using beta 0.5 and 1.5, respectively. SPC NN stands for
SPC with Nearest Neighbour. SPC RBF stands for SPC with Radial Basis Function. The best
values for each round and for each column are marked in bold.
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Round
Clustering
Algorithm

BERT (Last-Layer Embeddings)
RI ARI NMI AMI FMI V05 V15

Intro1
K-Means

0.5623 0.0313 0.0103 0.0089 0.5653 0.0103 0.0103
Regr2 0.5825 0.0123 0.0025 0.0009 0.5755 0.0026 0.0025
Class3 0.7426 0.0716 0.0208 0.0133 0.7482 0.0178 0.0210
Intro1

AP
0.6175 0.0456 0.0187 0.0173 0.5665 0.0187 0.0187

Regr2 0.5097 0.0038 0.0285 0.0247 0.5605 0.0292 0.0279
Class3 0.5598 0.0213 0.0052 0.0034 0.5873 0.0053 0.0051
Intro1

SPC NN
0.6895 0.0690 0.0864 0.0446 0.7301 0.0604 0.0806

Regr2 0.7590 0.0814 0.0754 0.0351 0.7818 0.0493 0.0657
Class3 0.7654 0.0573 0.0723 0.0264 0.7925 0.0393 0.0574
Intro1

SPC RBF
0.6504 -0.0045 0.0145 0.0015 0.7349 0.0046 0.0074

Regr2 0.7495 0.0349 0.0737 0.0206 0.7853 0.0323 0.0494
Class3 0.7616 0.0377 0.0764 0.0215 0.7934 0.0336 0.0514
Intro1

DBSCAN
0.5400 -0.0430 0.0485 0.0371 0.6267 0.0438 0.0495

Regr2 0.6512 0.0635 0.0220 0.0192 0.6175 0.0214 0.0222
Class3 0.6575 0.0429 0.0089 0.0067 0.6432 0.0086 0.0090

Table 4.9. Results obtained using the BERT sentence embedding with 728-dimensional vectors
pre-trained on MRPC corpus [68], using only the last-layer of the model. All results are averaged
after five iterations. V05 and V15 are the V-measure scores using beta 0.5 and 1.5, respectively.
SPC NN stands for SPC with Nearest Neighbour. SPC RBF stands for SPC with Radial Basis
Function. The best values for each round and for each column are marked in bold.

Round
Clustering
Algorithm

BERT (Second Last-Layer Embeddings)
RI ARI NMI AMI FMI V05 V15

Intro1
K-Means

0.6141 0.0372 0.0121 0.0105 0.5762 0.0120 0.0121
Regr2 0.7359 0.0149 0.0057 0.0513 0.7013 0.0554 0.0576
Class3 0.7456 0.1343 0.0469 0.0394 0.7246 0.0445 0.0478
Intro1

AP
0.6244 0.0511 0.0210 0.0196 0.5721 0.0210 0.0210

Regr2 0.6224 -0.0061 0.0001 -0.0015 0.6241 0.0001 0.0001
Class3 0.7542 0.1551 0.0592 0.0503 0.7303 0.0563 0.0603
Intro1

SPC NN
0.6827 0.0517 0.1053 0.0452 0.7363 0.0636 0.0900

Regr2 0.7761 0.1872 0.1017 0.0761 0.7634 0.0902 0.1035
Class3 0.7616 0.0377 0.0764 0.0215 0.7934 0.0336 0.0514
Intro1

SPC RBF
0.6504 -0.0045 0.0145 0.0015 0.7349 0.0046 0.0074

Regr2 0.7495 0.0349 0.0737 0.0206 0.7853 0.0323 0.0494
Class3 0.7616 0.0377 0.0764 0.0215 0.7934 0.0336 0.0514
Intro1

DBSCAN
0.5650 -0.0410 0.0366 0.0258 0.6452 0.0319 0.0372

Regr2 0.6827 0.0808 0.0273 0.0227 0.6609 0.0259 0.0277
Class3 0.6927 0.0803 0.0252 0.0201 0.6809 0.0236 0.0257

Table 4.10. Results obtained using the BERT sentence embedding with 728-dimensional vectors
pre-trained on MRPC corpus [68], using only the second last-layer of the model. All results are
averaged after five iterations. V05 and V15 are the V-measure scores using beta 0.5 and 1.5,
respectively. SPC NN stands for SPC with Nearest Neighbour. SPC RBF stands for SPC with
Radial Basis Function. The best values for each round and for each column are marked in bold.
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Round
Clustering

Method
BERT(Average Last and second-last layers)

RI ARI NMI AMI FMI V05 V15
Intro1

K-Means
0.6034 0.0310 0.0102 0.0088 0.5656 0.0101 0.0102

Regr2 0.7218 0.1078 0.0339 0.0288 0.6992 0.0325 0.0345
Class3 0.5404 0.0039 0.0022 0.0006 0.5624 0.0023 0.0021
Intro1

AP
0.6329 0.0539 0.0198 0.0179 0.5892 0.0196 0.0199

Regr2 0.4956 -0.0114 0.0268 0.0234 0.5628 0.0274 0.0263
Class3 0.6257 0.0301 0.0062 0.0044 0.6066 0.0063 0.0062
Intro1

SPC NN
0.6792 0.0450 0.0968 0.0392 0.7365 0.0559 0.0803

Regr2 0.7742 0.1491 0.1073 0.0662 0.7793 0.0848 0.1060
Class3 0.7616 0.0377 0.0764 0.0215 0.7934 0.0336 0.0514
Intro1

SPC RBF
0.6055 0.0377 0.0164 0.0149 0.5553 0.0165 0.0164

Regr2 0.7628 0.0838 0.1260 0.0532 0.7879 0.0752 0.1068
Class3 0.7672 0.0735 0.0661 0.0290 0.7896 0.0416 0.0580
Intro1

DBSCAN
/ / / / / / /

Regr2 / / / / / / /
Class3 / / / / / / /

Table 4.11. Results obtained using the BERT sentence embedding with 728-dimensional vectors
pre-trained on MRPC corpus [68], using the average of the last and second last-layers of the model.
All results are averaged after five iterations. V05 and V15 are the V-measure scores using beta
0.5 and 1.5, respectively. SPC NN stands for SPC with Nearest Neighbour. SPC RBF stands for
SPC with Radial Basis Function. DBSCAN converged only with a massive amount of noise points
(ca. 90%). The best values for each round and for each column are marked in bold.

Embedding
method

Comparison of different BERT
layers embedding

RI ARI NMI AMI FMI
BERT
Last
Layer

0.7380 0.0765 0.0794 0.0354 0.7712

BERT
Second

Last
Layer

0.7101 0.1313 0.0945 0.0572 0.7717

BERT
Average
Layers

0.7402 0.0922 0.0997 0.0448 0.7726

Table 4.12. Comparison of external clustering metric performances using different combination
of BERT layers. The best value for each column is marked in bold.

Results from Table 4.12 are the average of the three rounds of the best results for each Table
4.9, 4.10 and 4.11. The average of the two BERT layers will produce results that are slightly better
than both the embeddings generated when using only the last layer and only the second-last layer,
at the expense of a higher computational complexity when computing the feature matrix (usually
a 5x time increase). In the case of this thesis, with a total amount of feedback of ca. three
thousand, computing all feature matrix on a laptop CPU (i7 9750H) would take on average ca.
20 minutes, which is still a feasible time for the aim to tackle eventual problems quickly. For the
next comparison, only the BERT embeddings using the second-last layer and the average of both
layers will be used, because they provided on average better results.
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4.1.1 Sentence embeddings with stemming

As discussed in the paragraph stemming, stemming is a popular pre-processing technique that
increases the accuracy and improves the computational time for NLP models. This chapter is
dedicated into investigating if the stemming is a necessary pre-processing technique for increasing
the binary clustering feedback accuracy.

Round
Clustering
Algorithm

Word2Vec (CBOW STEMMING)
RI ARI NMI AMI FMI V05 V15

Intro1
K-Means

0.5780 0.0126 0.0027 0.0014 0.5564 0.0027 0.0027
Regr2 0.6243 0.0209 0.0029 0.0013 0.6090 0.0030 0.0029
Class3 0.7151 0.0756 0.0177 0.0140 0.7012 0.0169 0.0180
Intro1

AP
0.6123 0.0114 0.0013 -0.0002 0.6234 0.0012 0.0134

Regr2 0.7078 0.0639 0.0143 0.0105 0.6997 0.0013 0.0146
Class3 / / / / / / /
Intro1

SPC NN
0.5321 0.0026 0.0032 0.0019 0.5240 0.0033 0.0032

Regr2 0.512 0.0094 0.0038 0.0021 0.5622 0.0039 0.0037
Class3 0.6294 0.0144 0.0034 0.0017 0.6314 0.0033 0.0034
Intro1

SPC RBF
0.6398 -0.0137 0.0291 0.0088 0.7246 0.0145 0.0216

Regr2 0.7495 0.0552 0.0392 0.0169 0.7763 0.0251 0.0348
Class3 0.7564 0.0956 0.0379 0.0244 0.7617 0.0316 0.0381
Intro1

DBSCAN
0.6317 -0.0284 0.0455 0.0205 0.7108 0.0293 0.0405

Regr2 0.6478 -0.0967 0.0773 0.0632 0.6832 0.0719 0.0788
Class3 0.6901 -0.0794 0.0571 0.0400 0.7202 0.0493 0.0578

Table 4.13. Results obtained using the Word2Vec sentence encoding with the CBOW variation
and pre-processing with stemming. All results are averaged after five iterations. V05 and V15
are the V-measure scores using beta 0.5 and 1.5, respectively. SPC NN stands for SPC with
Nearest Neighbour. SPC RBF stands for SPC with Radial Basis Function. For the third round,
the AP algorithm never converged with only two clusters. The best value for each round and
for each column are marked in bold.

Round
Clustering
Algorithm

Doc2Vec(PV-DM STEMMING)
RI ARI NMI AMI FMI V05 V15

Intro1
K-Means

0.5901 0.0233 0.0077 0.0063 0.5545 0.0027 0.0027
Regr2 0.6490 0.0356 0.0062 0.0045 0.6291 0.0030 0.0029
Class3 0.7076 0.0693 0.0152 0.0121 0.6927 0.0169 0.0180
Intro1

AP
0.5664 0.0085 0.0008 -0.0007 0.6251 0.0007 0.0008

Regr2 0.7135 0.0600 0.0133 0.0092 0.7114 0.0122 0.0136
Class3 0.7467 0.0081 0.0259 0.0169 0.7511 0.0222 0.0262
Intro1

SPC NN
0.5431 0.0184 0.0138 0.0120 0.5320 0.0139 0.0136

Regr2 0.6125 0.0156 0.0033 0.0015 0.6011 0.0033 0.0032
Class3 0.7419 0.0575 0.0190 0.0117 0.7527 0.0161 0.0191
Intro1

SPC RBF
0.6226 0.0025 0.0001 -0.0013 0.6611 0.0001 0.0001

Regr2 0.7495 0.0703 0.0385 0.0199 0.7694 0.0280 0.0367
Class3 0.7654 0.0662 0.0592 0.0249 0.7892 0.0363 0.0511
Intro1

DBSCAN
0.6250 -0.0329 0.0511 0.0249 0.7044 0.0348 0.0470

Regr2 0.6478 -0.0967 0.0773 0.0632 0.6832 0.0719 0.0788
Class3 0.6866 -0.0813 0.0588 0.0418 0.7170 0.0512 0.0597

Table 4.14. Results obtained using the Doc2Vec sentence encoding with the PV-DM variation
and pre-processing with stemming. All results are averaged after five iterations. V05 and V15 are
the V-measure scores using beta 0.5 and 1.5, respectively. SPC NN stands for SPC with Nearest
Neighbour. SPC RBF stands for SPC with Radial Basis Function. The best value for each round
and for each column are marked in bold.
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Round
Clustering
Algorithm

FastText (n = 5 STEMMING)
RI ARI NMI AMI FMI V05 V15

Intro1
K-Means

0.5540 0.0106 0.0015 0.0001 0.5811 0.0014 0.0015
Regr2 0.6319 0.0245 0.0036 0.0019 0.6153 0.0036 0.0036
Class3 0.7058 0.0564 0.0106 0.0077 0.6961 0.0101 0.0108
Intro1

AP
0.6089 0.0020 0.0001 -0.0013 0.6335 0.0001 0.0001

Regr2 0.7192 0.0754 0.0196 0.0145 0.7127 0.0181 0.0200
Class3 0.7337 0.0628 0.0151 0.0097 0.7327 0.0133 0.0154
Intro1

SPC NN
0.4864 -0.0014 0.0002 -0.0011 0.5260 0.0002 0.0002

Regr2 0.6099 -0.0012 0.0026 0.0009 0.6198 0.0026 0.0026
Class3 0.5203 0.0010 0.0016 0.0001 0.5662 0.0016 0.0015
Intro1

SPC RBF
0.6460 0.0125 0.0026 0.0002 0.6981 0.0020 0.0025

Regr2 0.7431 0.0373 0.0211 0.0080 0.7728 0.0130 0.0177
Class3 0.7598 0.0782 0.0381 0.0208 0.7748 0.0287 0.0369
Intro1

DBSCAN
0.6317 -0.0284 0.0455 0.0205 0.7108 0.0293 0.0405

Regr2 0.6478 -0.0967 0.0773 0.0632 0.6832 0.0719 0.0788
Class3 0.6901 -0.0794 0.0571 0.0400 0.7202 0.0493 0.0579

Table 4.15. Results obtained using the FastText sentence encoding with n = 5 iterations and
pre-processing with stemming. All results are averaged after five iterations. V05 and V15 are
the V-measure scores using beta 0.5 and 1.5, respectively. SPC NN stands for SPC with Nearest
Neighbour. SPC RBF stands for SPC with Radial Basis Function. The best value for each round
and for each column are marked in bold.

Round
Clustering
Algorithm

GloVe(Gigaword+Wikipedia STEMMING)
RI ARI NMI AMI FMI V05 V15

Intro1
K-Means

0.5461 0.0066 0.0008 -0.0005 0.5667 0.0008 0.0008
Regr2 0.6983 0.0807 0.0212 0.0182 0.6742 0.0207 0.0215
Class3 0.7374 0.0812 0.0225 0.0159 0.7352 0.0202 0.0229
Intro1

AP
0.5729 0.0092 0.0017 0.0004 0.5554 0.0017 0.0017

Regr2 0.7457 0.0854 0.0354 0.0219 0.7551 0.0289 0.0354
Class3 0.7579 0.0906 0.0381 0.0234 0.7664 0.0309 0.0380
Intro1

SPC NN
0.5060 0.0030 0.0014 0.0001 0.5363 0.0014 0.0014

Regr2 0.7457 0.0210 0.0544 0.0114 0.7847 0.0196 0.0308
Class3 0.5587 0.0124 0.0137 0.0110 0.5648 0.0142 0.0134
Intro1

SPC RBF
0.6432 -0.0108 0.0250 0.0064 0.7277 0.0113 0.0172

Regr2 0.7590 0.0738 0.0912 0.0380 0.7853 0.0544 0.0773
Class3 0.7672 0.0778 0.0627 0.0290 0.7880 0.0411 0.0565
Intro1

DBSCAN
0.5717 -0.0243 0.0398 0.0173 0.7155 0.0252 0.0348

Regr2 0.6495 -0.0924 0.0623 0.0509 0.6833 0.0581 0.0636
Class3 0.6918 -0.0784 0.0563 0.0391 0.7218 0.0484 0.0570

Table 4.16. Results obtained using the GloVe sentence encoding with 100-dimensional vec-
tors pre-trained on the Gigaword corpus and Wikipedia 2014, and pre-processing with stem-
ming. All results are averaged after five iterations. V05 and V15 are the V-measure scores
using beta 0.5 and 1.5, respectively. SPC NN stands for SPC with Nearest Neighbour.
SPC RBF stands for SPC with Radial Basis Function. The best value for each round and
for each column are marked in bold.
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Round
Embedding

method
BERT (Second-Layer STEMMING)

RI ARI NMI AMI FMI V05 V15
Intro1

K-Means
0.5108 0.0071 0.0023 0.0010 0.5345 0.0024 0.0023

Regr2 0.5256 0.0005 0.0006 -0.0008 0.5548 0.0007 0.0006
Class3 0.5523 0.0148 0.0034 0.0017 0.5812 0.0035 0.0033
Intro1

AP
0.5815 0.0120 0.0023 0.0009 0.5632 0.0022 0.0023

Regr2 0.6376 0.0404 0.0094 0.0076 0.6115 0.0096 0.0094
Class3 0.4935 0.0019 0.0013 -0.0002 0.5611 0.0013 0.0012
Intro1

SPC NN
0.5039 0.0004 0.0013 0 0.5233 0.0013 0.0013

Regr2 0.7583 0.0670 0.1091 0.0419 0.7869 0.0606 0.0878
Class3 0.7616 0.0377 0.0764 0.0215 0.7934 0.0336 0.0514
Intro1

SPC RBF
0.6587 0.0062 0.0302 0.0039 0.7392 0.0084 0.0135

Regr2 0.7514 0.0419 0.0822 0.0252 0.7856 0.0385 0.0582
Class3 0.7616 0.0377 0.0764 0.0215 0.7934 0.0336 0.0514
Intro1

DBSCAN
/ / / / / / /

Regr2 / / / / / / /
Class3 / / / / / / /

Table 4.17. Results obtained using the BERT sentence embedding with 728-dimensional vec-
tors pre-trained on MRPC corpus [68], using only the second last-layer of the model, and
pre-processing with stemming. All results are averaged after five iterations. V05 and V15
are the V-measure scores using beta 0.5 and 1.5, respectively. SPC NN stands for SPC with
Nearest Neighbour. SPC RBF stands for SPC with Radial Basis Function. The best value for
each round and for each column are marked in bold.

Round
Embedding

method
BERT(Average Last and Second-last layers STEMMING)

RI ARI NMI AMI FMI V05 V15
Intro1

K-Means
0.5105 0.0057 0.0016 0.0003 0.5355 0.0017 0.0016

Regr2 0.5165 0.0011 0.0063 0.0044 0.5549 0.0065 0.0062
Class3 0.5829 0.0112 0.0021 0.0005 0.5805 0.0022 0.0021
Intro1

AP
0.6312 0.0642 0.0358 0.0337 0.5622 0.0360 0.0356

Regr2 0.6433 0.0490 0.0133 0.0112 0.6128 0.0134 0.0131
Class3 0.4976 -0.0008 0.0005 -0.0009 0.5589 0.0005 0.0005
Intro1

SPC NN
0.5458 0.0171 0.0061 0.0047 0.5467 0.0061 0.0060

Regr2 0.7556 0.0573 0.0990 0.0354 0.7864 0.0521 0.0766
Class3 0.7616 0.0377 0.0764 0.0215 0.7934 0.0336 0.0514
Intro1

SPC RBF
0.6587 0.0062 0.0302 0.0039 0.7392 0.0084 0.0135

Regr2 0.7495 0.0349 0.0737 0.0206 0.7853 0.0323 0.0494
Class3 0.7654 0.0618 0.0639 0.0252 0.7908 0.0372 0.0533
Intro1

DBSCAN
/ / / / / / /

Regr2 / / / / / / /
Class3 / / / / / / /

Table 4.18. Results obtained using the BERT sentence embedding with 728-dimensional vectors
pre-trained on MRPC corpus [68], using an average of the last and the second last-layer of the
model, and pre-processing with stemming. All results are averaged after five iterations. V05 and
V15 are the V-measure scores using beta 0.5 and 1.5, respectively. SPC NN stands for SPC with
Nearest Neighbour. SPC RBF stands for SPC with Radial Basis Function. The best value for
each round and for each column are marked in bold.

In the table 4.17 for the third row Class3 SPC NN and SPC RBF have the same score, meaning
that they converged at the same solution. In both table 4.17 and 4.18 DBSCAN never converged
to an useful solution, and the values for the 90% noisy points solutions were omitted.
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Embeddings
method

Comparison of different embedding methods
without and with stemming

RI ARI NMI AMI FMI
Word2Vec 0.7147 0.0560 0.0521 0.0404 0.7625
Word2Vec
Stemming

0.7152 0.0545 0.0600 0.0469 0.7542

Doc2Vec 0.7119 0.0536 0.0527 0.0361 0.7520
Doc2Vec

Stemming
0.7133 0.0543 0.0625 0.0433 0.7543

FastText 0.7132 0.0626 0.0618 0.0427 0.7428
FastText
Stemming

0.7163 0.0554 0.0600 0.0409 0.7528

GloVe 0.7233 0.0707 0.0752 0.0451 0.7539
GloVe

Stemming
0.7231 0.0617 0.0646 0.0358 0.7670

Bert SL 0.7101 0.1313 0.0945 0.0572 0.7717
BERT SL
Stemming

0.7262 0.0389 0.0719 0.0224 0.7732

Bert BL 0.7402 0.0922 0.0997 0.0448 0.7726
BERT BL
Stemming

0.7266 0.0611 0.0704 0.0314 0.7730

Table 4.19. Comparison of the different embeddings method with and without stemming for pre
processing the input. BERT SL stands for BERT using only the second-last layer, and BERT BL
stands for BERT using the average of the last and second-last layers. The best value for each
clustering evaluation metric is marked in bold.

The final comparison shown in Table 4.19, is made using Table 4.1, 4.13, 4.4, 4.13, 4.5,
4.15, 4.8, and Table 4.16, averaging the best values for each evaluation metric, for Intro1, Regr2
and Class3. The final comparison table 4.19 shows that GloVe and BERT were more affected
negatively by stemming, compared to the other embeddings method. BERT, in particular, is
even more penalized by the stemming compared to GloVe, in both cases using only the second-
last layer and the average of both last and second-last layers. For the other embedding methods
stemming did not provide a clear improvement in the metrics evaluated (in some cases it produced
a decrease) that justified the extra step in the NLP pipeline. For this reason, the embeddings
without stemming were used for the next comparisons.
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4.2 Comparison of different clustering methods with differ-
ent sentence embeddings using internal indexes metrics

For the SC, DBI and CBI scores in the DBSCAN case, the noisy points were limited to be less
than 80 data points (maximum of noisy points in the first three rounds), and those labels were
then randomly assigned to the two clusters. This has been done to avoid different results when
comparing SC, DBI and CBI, that already penalize density-based clustering on their own. Even
if there was no constraint on the noisy data points other than to be less than 80, DBSCAN
preferred to produce solutions with very few noisy data points (on average less than five noisy
points), because they were better in term of the metrics evaluated.

In order to compute the DBCV, the implementation from Christopher Jennes has been used
(url), but contrary to what presented in the original paper [105] this implementation is extremely
slow and can’t handle noisy data points, hence the random assignments that were performed
for SC, DBI and CBI was also applied here. Most of the times, the DBCV implementation did
not converge to a solution, making it impossible to compare the numerous different embedding
methods. For this reason, the DBCV metric was left out of the clustering performance metrics
analysis.

Note that as stated in the chapter about the DBI, lower values of DBI indicate better clustering.

Round
Clustering
Algorithm

Word2Vec CBOW Doc2Vec PV-DM
SC DBI CBI SC DBI CBI

Valid4
K-Means

0.5873 0.6501 674.77 0.6354 0.6003 812.35
Clust5 0.5652 0.6752 553.26 0.5844 0.6286 668.90

Featlear6 0.6825 0.5630 890.23 0.6746 0.5539 890.44
Valid4

AP
0.636 0.6051 624.12 0.6504 0.5667 753.23

Clust5 0.6628 0.6249 454.59 0.6180 0.5848 564.25
Featlear6 / / / 0.6848 0.5299 888.22

Valid4
SPC NN

0.6547 0.5678 572.65 0.5804 0.5575 566.64
Clust5 0.4846 0.6911 452.61 0.3576 0.5742 73.29

Featlear6 0.4423 0.7658 441.93 0.6607 0.5801 874.64
Valid4

SPC RBF
0.5795 0.6556 673.45 0.6014 0.6325 786.32

Clust5 0.5820 0.6656 551.89 0.5649 0.6483 659.55
Featlear6 0.6693 0.5849 870.51 0.6566 0.5860 866.70

Valid4
DBSCAN

0.7889 0.1568 126.32 0.7513 0.1928 120.49
Clust5 0.8103 0.4088 211.24 0.7836 0.5067 157.98

Featlear6 0.7406 0.2468 312.55 0.7166 0.4596 272.02

Table 4.20. Results obtained using the Word2Vec CBOW variation and Doc2Vec PV-DM varia-
tion sentence embeddings. All results are averaged after five iterations. The best values for each
round, for each column and for each type of sentence embeddings are marked in bold.
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Round
Clustering
Algorithm

GloVe FastText(n=5)
SC DBI CBI SC DBI CBI

Valid4
K-Means

0.6354 0.6431 633.08 0.5868 0.6719 553.92
Clust5 0.7092 0.5952 659.55 0.5912 0.6688 514.80

Featlear6 0.7268 0.5220 782.65 0.6727 0.6303 620.48
Valid4

AP
0.7247 0.5318 564.99 0.7251 0.5404 458.94

Clust5 0.7339 0.5334 631.61 0.6989 0.5433 414.43
Featlear6 0.7430 0.4855 746.62 0.7543 0.4823 511.04

Valid4
SPC NN

0.4773 0.7107 426.97 0.4964 0.6941 455.66
Clust5 0.4773 1.0329 469.32 0.5853 0.6723 514.60

Featlear6 0.3824 1.1054 148.27 0.4616 0.7619 380.47
Valid4

SPC RBF
0.8304 0.1621 324.78 0.6454 0.6244 497.18

Clust5 0.7940 0.3193 554.33 0.623 0.6372 486.24
Featlear6 0.771 0.3476 470.36 0.7046 0.6008 530.74

Valid4
DBSCAN

0.8219 0.3497 222.38 0.8275 0.4705 171.52
Clust5 0.8024 0.5201 127.24 0.8174 1.3978 75.64

Featlear6 0.7963 0.4929 165.29 0.8146 0.1671 307.52

Table 4.21. Results obtained using the GloVe pre-trained word vectors, trained on the Gigaword
corpus + Wikipedia 2014 and the FastText model with n = 5 iterations embeddings. All results
are averaged after five iterations. The best values for each round, for each column and for each
type of sentence embeddings are marked in bold.

Round
Clustering
Algorithm

BERT(Last-layer) BERT(Second last-layer)
SC DBI CBI SC DBI CBI

Valid4
K-Means

0.2176 2.9136 48.80 0.1422 3.5282 40.72
Clust5 0.1782 3.3445 36.02 0.1532 3.3693 35.62

Featlear6 0.2198 2.9171 44.52 0.1589 3.3477 39.69
Valid4

AP
/ / / 0.0619 4.4652 21.56

Clust5 0.1180 3.3003 30.31 0.0773 3.6287 29.80
Featlear6 0.1577 3.3114 37.84 0.1003 4.2936 25.30

Valid4
SPC NN

0.2147 2.7881 31.49 0.3267 0.5404 9.56
Clust5 0.1848 1.2160 7.73 0.2314 1.6090 9.35

Featlear6 0.2832 0.9853 13.88 0.2807 0.9348 14.55
Valid4

SPC RBF
0.4222 1.2508 14.94 0.4699 0.9588 12.39

Clust5 0.1158 2.4852 30.71 0.4071 0.7770 6.34
Featlear6 0.0883 2.2063 25.79 0.4323 1.1667 13.73

Valid4
DBSCAN

0.2699 3.0759 15.07 0.4320 1.4408 15.11
Clust5 0.2620 3.1981 14.88 0.2965 2.7330 7.41

Featlear6 0.2471 3.2702 15.37 0.3713 1.5850 9.34

Table 4.22. Results obtained using the last-layer and the second-last layer of BERT trained on
MRPC corpus [68]. All results are averaged after five iterations. The best values for each round,
for each column and for each type of sentence embeddings are marked in bold.
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Round
Clustering
Algorithm

BERT(Average last and second-last layers)
SC DBI CBI

Valid4
K-Means

0.1934 3.1701 42.40
Clust5 0.0505 3.5464 35.75

Featlear6 0.1845 3.2153 40.44
Valid4

AP
0.0646 4.4805 21.58

Clust5 0.1009 3.5659 29.81
Featlear6 0.1373 3.6819 30.44

Valid4
SPC NN

0.2845 1.0963 9.61
Clust5 0.2368 1.9636 9.77

Featlear6 0.2784 0.9567 14.18
Valid4

SPC RBF
0.3415 0.5253 10.07

Clust5 0.3026 1.0928 7.06
Featlear6 0.4344 1.2033 13.40

Valid4
DBSCAN

0.4678 1.1936 15.32
Clust5 0.4624 0.4072 5.63

Featlear6 0.4002 1.0979 9.58

Table 4.23. Results obtained using the average of the last-layer and the second-last layer of BERT
trained on MRPC corpus [68]. All results are averaged after five iterations. The best values for
each round, for each column and for each type of sentence embeddings are marked in bold.

Embeddings
method

Comparison of different embeddings
methods

SC DBI CBI
Word2Vec 0.7799 0.2708 706.09
Doc2Vec 0.7505 0.3864 790.56

GloVe 0.8097 0.2763 691.76
FastText 0.8198 0.3936 563.06
BERT LL 0.3225 1.1654 43.11
BERT SL 0.4364 0.7507 38.68
BERT BL 0.4549 0.6297 39.53

Table 4.24. Comparison of the different embeddings method in terms of internal indexes metrics.
BERT LL stands for BERT using only the last layer, BERT SL stands for BERT using only the
second-last layer, and BERT BL stands for BERT using the average of the last and second-last
layers. The best value for each clustering evaluation metric is marked in bold.

As explained in SC, DBI and CBI all tend to penalize DBSCAN, but we can see from the
tables 4.20 and 4.21 that SC and DBI tend to penalize less DBSCAN compared to CBI. Even
with this penalization, DBSCAN still produced the best clustering solution in terms of the metrics
evaluated in table 4.20 and 4.21. Table 4.24 was computed using the average the best results of
each table. As we can see from Table 4.24 in terms of internal indexes metrics BERT does not
give good results, probably due to the higher dimensionality of the embeddings (728d vs 100d),
even if it produces the best solutions in terms of external indexes metrics.

For this reason, internal indexes metrics proved to be not reliable when assessing the per-
formance of the different clustering algorithms with different embeddings, and they will not be
further analyzed in the next experiments.
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4.3 Logistic Network Lasso for binary clustering

For the next results the V-Measure scores with β = 0.5 and β = 1.5 were excluded on purpose,
because from the previous experiment there was no justification into focusing more on the homo-
geneity of a clustering solution compared to completeness and vice versa. As explained in Logistic
Network Lasso, lnLasso is a semisupervised algorithm that uses a percentage of the true label to
improve the learning of the classifier. The main parameters of lnLasso are the regularization
parameter λ and the percentage of the true labels that are used. For this round of experiments,
all the weights of the graph of the network are set to 1, meaning that every feedback is connected
with each other. The main focus of this round of experiment is to show how the clustering metrics
change at the modification of the regularization parameter and the percentage of the true labels
used.

Round
Word2Vec (DBOW)

RI ARI NMI AMI FMI PROB REG
Intro1 0.5857 0.0333 0.0138 0.0105 0.5444 0.1 0.001
Intro1 0.6280 0.0672 0.0353 0.0304 0.5646 0.2 0.001
Intro1 0.5817 0.0173 0.0057 0.0022 0.5684 0.1 0.01
Intro1 0.6257 0.0564 0.0208 0.0151 0.6030 0.2 0.01
Intro1 0.5963 0.0218 0.0055 0.0020 0.5879 0.1 0.1
Intro1 0.5940 0.0187 0.0041 0.0010 0.5951 0.2 0.1
Regr2 0.5804 0.0489 0.0115 0.0072 0.5670 0.1 0.001
Regr2 0.6193 0.0881 0.0334 0.0247 0.5924 0.2 0.001
Regr2 0.5904 0.0265 0.0070 0.0032 0.5879 0.1 0.01
Regr2 0.6196 0.0436 0.0146 0.0080 0.6197 0.2 0.01
Regr2 0.5897 0.0133 0.0052 0.0013 0.6004 0.1 0.1
Regr2 0.6176 0.0362 0.0075 0.0033 0.6376 0.2 0.1
Class3 0.6408 0.0521 0.0157 0.0102 0.6256 0.1 0.001
Class3 0.6421 0.0823 0.0259 0.0194 0.6139 0.2 0.001
Class3 0.6226 0.0401 0.0101 0.0061 0.6085 0.1 0.01
Class3 0.6747 0.0701 0.0212 0.0121 0.6720 0.2 0.01
Class3 0.6312 0.0043 0.0031 -0.0004 0.6438 0.1 0.1
Class3 0.6455 0.0162 0.0063 0.0024 0.6529 0.2 0.1

Table 4.25. Results obtained running the lnLasso algorithm with Word2Vec DBOW variation
embeddings. PROB stands for probability and indicates the percentage of true labels used,
(i.e. 0.1 = 10%) and reg is the regularization parameter λ. The best result for each metric
and for each round is marked in bold.
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Round
Doc2Vec (PV-DM)

RI ARI NMI AMI FMI PROB REG
Intro1 0.5793 0.0297 0.0111 0.0079 0.5547 0.1 0.001
Intro1 0.6347 0.0824 0.0394 0.0341 0.5725 0.2 0.001
Intro1 0.5890 0.0313 0.0113 0.0069 0.5696 0.1 0.01
Intro1 0.5947 0.0324 0.0099 0.0065 0.5696 0.2 0.01
Intro1 0.5827 0.0188 0.0047 0.0017 0.5756 0.1 0.1
Intro1 0.5947 0.0270 0.0095 0.0054 0.5870 0.2 0.1
Regr2 0.5455 0.0290 0.0094 0.0060 0.5409 0.1 0.001
Regr2 0.5900 0.0609 0.0220 0.0164 0.5616 0.2 0.001
Regr2 0.5701 0.0312 0.0059 0.0028 0.5656 0.1 0.01
Regr2 0.6196 0.0527 0.0127 0.0070 0.6244 0.2 0.01
Regr2 0.5674 0.0114 0.0041 0.0011 0.5840 0.1 0.1
Regr2 0.6272 0.0149 0.0055 0.0008 0.6581 0.2 0.1
Class3 0.6151 0.0383 0.0110 0.0067 0.6005 0.1 0.001
Class3 0.6668 0.1027 0.0397 0.0293 0.6384 0.2 0.001
Class3 0.6134 0.0246 0.0055 0.0014 0.6072 0.1 0.01
Class3 0.6774 0.0345 0.0125 0.0049 0.6908 0.2 0.01
Class3 0.6257 0.0033 0.0026 -0.0002 0.6331 0.1 0.1
Class3 0.6637 0.0142 0.0058 0.0003 0.6815 0.2 0.1

Table 4.26. Results obtained running the lnLasso algorithm with Doc2Vec PV-DM variation
embeddings. PROB stands for probability and indicates the percentage of true labels used,
(i.e. 0.1 = 10%) and reg is the regularization parameter λ. The best result for each metric
and for each round is marked in bold.

Round
FastText (n = 5)

RI ARI NMI AMI FMI PROB REG
Intro1 0.5703 0.0305 0.0156 0.0122 0.5348 0.1 0.001
Intro1 0.6420 0.0879 0.0444 0.0390 0.5720 0.2 0.001
Intro1 0.5903 0.0352 0.0157 0.0122 0.5488 0.1 0.01
Intro1 0.6233 0.0540 0.0224 0.0175 0.5844 0.2 0.01
Intro1 0.5957 0.0239 0.0070 0.0037 0.5876 0.1 0.1
Intro1 0.6157 0.0219 0.0066 0.0022 0.6307 0.2 0.1
Regr2 0.5681 0.0296 0.0084 0.0049 0.5589 0.1 0.001
Regr2 0.6193 0.0768 0.0255 0.0176 0.6011 0.2 0.001
Regr2 0.5797 0.0375 0.0104 0.0066 0.5697 0.1 0.01
Regr2 0.6000 0.0420 0.0114 0.0067 0.5972 0.2 0.01
Regr2 0.5831 0.0061 -0.1981 0 0.5959 0.1 0.1
Regr2 0.6425 0.0022 -0.1915 0.0006 0.6871 0.2 0.1
Class3 0.6154 0.0435 0.0147 0.0091 0.5977 0.1 0.001
Class3 0.6733 0.1332 0.0510 0.0506 0.6360 0.2 0.001
Class3 0.6387 0.0469 0.0128 0.0081 0.6249 0.1 0.01
Class3 0.6616 0.0517 0.0164 0.0099 0.6550 0.2 0.01
Class3 0.6315 0.0254 0.0056 0.0022 0.6347 0.1 0.1
Class3 0.6729 0.0389 0.0166 0.0074 0.6866 0.2 0.1

Table 4.27. Results obtained running the lnLasso algorithm with FastText with n = 5 iter-
ations embeddings. PROB stands for probability and indicates the percentage of true labels
used, (i.e. 0.1 = 10%) and reg is the regularization parameter λ. The best result for each
metric and for each round is marked in bold.
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Round
GloVe

RI ARI NMI AMI FMI PROB REG
Intro1 0.6003 0.0391 0.0159 0.0123 0.5595 0.1 0.001
Intro1 0.6343 0.0783 0.0388 0.0337 0.5685 0.2 0.001
Intro1 0.5690 0.0267 0.0101 0.0065 0.5452 0.1 0.01
Intro1 0.6037 0.0467 0.0242 0.0204 0.5489 0.2 0.01
Intro1 0.5827 0.0162 0.0040 0.0012 0.5732 0.1 0.1
Intro1 0.6117 0.0325 0.0096 0.0054 0.6050 0.2 0.1
Regr2 0.5860 0.0424 0.0131 0.0083 0.5793 0.1 0.001
Regr2 0.6030 0.0756 0.0250 0.0185 0.5772 0.2 0.001
Regr2 0.5704 0.0265 0.0104 0.0064 0.5579 0.1 0.01
Regr2 0.5977 0.0336 0.0097 0.0056 0.5981 0.2 0.01
Regr2 0.5831 -0.002 0.0047 0.0014 0.6027 0.1 0.1
Regr2 0.5957 0.0283 0.0071 0.0025 0.6198 0.2 0.1
Class3 0.6068 0.0467 0.0153 0.0106 0.5850 0.1 0.001
Class3 0.6548 0.0918 0.0312 0.0235 0.6248 0.2 0.001
Class3 0.6154 0.0479 0.0120 0.0076 0.5980 0.1 0.01
Class3 0.6695 0.0996 0.0321 0.0223 0.6535 0.2 0.01
Class3 0.6257 0.0112 0.0035 0.0001 0.6268 0.1 0.1
Class3 0.6740 0.0156 0.0192 0.0033 0.7035 0.2 0.1

Table 4.28. Results obtained running the lnLasso algorithm with GloVe pre-trained word vectors,
trained on the Gigaword corpus + Wikipedia 2014 embeddings. PROB stands for probability and
indicates the percentage of true labels used, (i.e. 0.1 = 10%) and reg is the regularization parameter
λ. The best result for each metric and for each round is marked in bold.

Round
BERT (Second-last layer)

RI ARI NMI AMI FMI PROB REG
Intro1 0.5730 0.0253 0.0119 0.0088 0.5372 0.1 0.001
Intro1 0.6200 0.0663 0.0336 0.0292 0.5586 0.2 0.001
Intro1 0.6067 0.0476 0.0178 0.0136 0.5675 0.1 0.01
Intro1 0.6477 0.0856 0.0457 0.0389 0.5894 0.2 0.01
Intro1 0.6020 0.0385 0.0144 0.0107 0.5690 0.1 0.1
Intro1 0.6043 0.0407 0.0155 0.0119 0.5706 0.2 0.1
Regr2 0.5874 0.0465 0.0102 0.0057 0.5795 0.1 0.001
Regr2 0.6276 0.0869 0.0350 0.0252 0.6015 0.2 0.001
Regr2 0.5787 0.0435 0.0111 0.0072 0.5643 0.1 0.01
Regr2 0.6372 0.0962 0.0393 0.0278 0.6154 0.2 0.01
Regr2 0.5821 0.0366 0.0115 0.0065 0.5824 0.1 0.1
Regr2 0.6475 0.0349 0.0296 0.0093 0.6734 0.2 0.1
Class3 0.6281 0.0566 0.0139 0.0093 0.6989 0.1 0.001
Class3 0.6599 0.1037 0.0414 0.0327 0.6230 0.2 0.001
Class3 0.6274 0.0644 0.0206 0.0152 0.6020 0.1 0.01
Class3 0.6449 0.0873 0.0331 0.0262 0.6106 0.2 0.01
Class3 0.6397 0.0347 0.0100 0.0049 0.6370 0.1 0.1
Class3 0.6716 0.0346 0.0112 0.0045 0.6832 0.2 0.1

Table 4.29. Results obtained running the lnLasso algorithm with using the second-last layer
of BERT embeddings. PROB stands for probability and indicates the percentage of true labels
used, (i.e. 0.1 = 10%) and reg is the regularization parameter λ. The best result for each
metric and for each round is marked in bold.
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Round
BERT(Average last and second-last layers)

RI ARI NMI AMI FMI PROB REG
Intro1 0.6000 0.0373 0.0136 0.0101 0.5661 0.1 0.001
Intro1 0.6203 0.0674 0.0305 0.0261 0.5623 0.2 0.001
Intro1 0.5943 0.0393 0.0134 0.0096 0.5672 0.1 0.01
Intro1 0.6370 0.0819 0.0373 0.0319 0.5769 0.2 0.01
Intro1 0.6087 0.0395 0.0139 0.010 0.5813 0.1 0.1
Intro1 0.6263 0.0460 0.0193 0.0138 0.6099 0.2 0.1
Regr2 0.5804 0.0388 0.0109 0.0064 0.5695 0.1 0.001
Regr2 0.6203 0.0988 0.0396 0.0301 0.5905 0.2 0.001
Regr2 0.5754 0.0199 0.0079 0.0033 0.5719 0.1 0.01
Regr2 0.6189 0.0898 0.0332 0.0247 0.5914 0.2 0.01
Regr2 0.6159 0.0208 0.0079 0.0022 0.6329 0.1 0.1
Regr2 0.6405 0.0513 0.0159 0.0073 0.6610 0.2 0.1
Class3 0.6459 0.0513 0.0139 0.0089 0.6348 0.1 0.001
Class3 0.6531 0.1075 0.0378 0.0303 0.6184 0.2 0.001
Class3 0.6134 0.0428 0.0113 0.0075 0.5933 0.1 0.01
Class3 0.6805 0.1266 0.0520 0.0389 0.6497 0.2 0.01
Class3 0.6592 0.0444 0.0110 0.0051 0.6620 0.1 0.1
Class3 0.6866 0.0349 0.0193 0.0061 0.7097 0.2 0.1

Table 4.30. Results obtained running the lnLasso algorithm with using the average of the last and
second-last layers of BERT embeddings. PROB stands for probability and indicates the percentage
of true labels used, (i.e. 0.1 = 10%) and reg is the regularization parameter λ. The best result for
each metric and for each round is marked in bold.

Embeddings
method

Comparison of different embedding methods
RI ARI NMI AMI FMI

Word2Vec 0.6298 0.0792 0.0315 0.0248 0.5903
Doc2vec 0.6305 0.0820 0.0337 0.0266 0.5908
FastText 0.6526 0.0993 0.0403 0.0357 0.6030

Glove 0.6356 0.0845 0.0320 0.0348 0.5997
BERT SL 0.6483 0.0952 0.0421 0.0331 0.6093
BERT BL 0.6459 0.1024 0.0430 0.0336 0.6057

Table 4.31. Comparison of running the lnLasso algorithm using different embeddings. The best
result for each clustering performance metric is marked in bold.

Table 4.31 was computed using the average of the best values for all the three rounds, for each
different embeddings method. As we can see from Table 4.31, the best results were obtained using
the FastText and BERT embeddings, which will be further analyzed in the next paragraph.
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4.3.1 Comparison using BERT similarity score

In order to truly let the lnLasso algorithm work at its peak performance, it has to be applied
on a network structured dataset where part of the data points in the graph are connected by
weighted edges. To obtain the weighted edges that connect similar feedbacks, BERT scores of
semantic similarity were computed between each feedback forming every possible combination.
The scores were pruned with different thresholds of 0.6, 0.7, 0.8 and 0.9, and for each pruning
the lnLasso algorithm was executed on the feedbacks encoded with different embeddings. Only
the three embeddings that obtained the best scores in the previous comparison were selected,
FastText with n = 5 iterations, BERT using only the second layer and BERT using the average
of the last and second-last layer.

Round
BERT(Second-last layer)

RI ARI NMI AMI FMI SIM
Intro1 0.6967 0.1171 0.0980 0.0655 0.6856 0.9
Intro1 0.6983 0.1443 0.0882 0.0719 0.6425 0.8
Intro1 0.6983 0.1280 0.0909 0.0634 0.6804 0.7
Intro1 0.6817 0.1103 0.0613 0.0450 0.6565 0.6
Regr2 0.6844 0.1080 0.0938 0.0539 0.6788 0.9
Regr2 0.6827 0.1323 0.0796 0.0463 0.6857 0.8
Regr2 0.6628 0.0788 0.0427 0.0230 0.6701 0.7
Regr2 0.6844 0.1006 0.0943 0.0474 0.6929 0.6
Class3 0.7295 0.1467 0.0992 0.0563 0.7283 0.9
Class3 0.7209 0.1535 0.0780 0.0501 0.7097 0.8
Class3 0.7192 0.0917 0.0869 0.0400 0.7299 0.7
Class3 0.7260 0.1151 0.1075 0.0581 0.7236 0.6

Table 4.32. Results obtained running the lnLasso algorithm using the second-last layer of
BERT embeddings. SIM stands for the threshold of similarity scores. The row with the best
results for each round is marked in bold.

Round
BERT(Average last and second-last layers)

RI ARI NMI AMI FMI SIM
Intro1 0.6983 0.1160 0.1099 0.0695 0.6959 0.9
Intro1 0.7117 0.1443 0.1294 0.0876 0.6951 0.8
Intro1 0.6667 0.0916 0.0457 0.0344 0.6361 0.7
Intro1 0.6817 0.1161 0.0678 0.0545 0.6321 0.6
Regr2 0.6811 0.1113 0.0808 0.0478 0.6744 0.9
Regr2 0.6777 0.0864 0.0786 0.0403 0.6842 0.8
Regr2 0.6794 0.0814 0.0917 0.0411 0.6958 0.7
Regr2 0.6927 0.1302 0.1067 0.0591 0.6926 0.6
Class3 0.7243 0.1023 0.1083 0.0532 0.7291 0.9
Class3 0.7243 0.1608 0.0896 0.0607 0.7029 0.8
Class3 0.7226 0.1222 0.0845 0.0476 0.7197 0.7
Class3 0.7312 0.1406 0.1066 0.0602 0.7272 0.6

Table 4.33. Results obtained running the lnLasso algorithm using the average of the last and
second-last layers of BERT embeddings. SIM stands for the threshold of similarity scores. The
row with the best results for each round is marked in bold.
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Round
FastText(n = 5)

RI ARI NMI AMI FMI SIM
Intro1 0.7133 0.1420 0.1571 0.0986 0.7085 0.9
Intro1 0.7033 0.1288 0.1116 0.0749 0.6901 0.8
Intro1 0.6917 0.1120 0.0989 0.0591 0.7023 0.7
Intro1 0.6850 0.1048 0.0731 0.0465 0.6877 0.6
Regr2 0.6811 0.0865 0.0933 0.0435 0.6946 0.9
Regr2 0.6744 0.1024 0.0665 0.0393 0.6698 0.8
Regr2 0.6827 0.1017 0.0865 0.0461 0.6862 0.7
Regr2 0.661 0.0806 0.0529 0.0298 0.6669 0.6
Class3 0.7329 0.1228 0.1476 0.0695 0.7404 0.9
Class3 0.7295 0.1483 0.1004 0.0620 0.7167 0.8
Class3 0.7329 0.1366 0.1240 0.0710 0.7247 0.7
Class3 0.7072 0.1167 0.0683 0.0457 0.6864 0.6

Table 4.34. Results obtained running the lnLasso algorithm using the FastText with n = 5 itera-
tions embeddings. SIM stands for the threshold of similarity scores. The row with the best results
for each round is marked in bold.

By looking at tables 4.32, 4.33 and 4.34 it seems that there is no clear correlation between the
threshold used to prune the edges, and the best results that are marked in bold. Another round of
experiments has been done selecting the threshold that provided the best results for each different
embeddings, and instead of directly using the BERT score for similarity as the weight of the edge,
a value of 100 has been given as a weight to the edges that had a BERT score above the threshold
and a weight of 1 to the other edges, similar to what has been done in [112]. Unfortunately, this
weighting schema did not provide reliable results, with ARI and AMI scores that were always 0
or very close to 0, therefore the results were not reported.

Embeddings
method

Comparison of different embedding methods
using lnLasso

RI ARI NMI AMI FMI
BERT SL 0.7023 0.1306 0.0918 0.0588 0.6839
BERT BL 0.7119 0.1384 0.1142 0.0690 0.7050
FastText 0.7096 0.1222 0.1304 0.0714 0.7117

Table 4.35. Comparison of running the lnLasso algorithm with BERT similarity scores
as weighting scheme using different embeddings. The best results for each clustering
performance metric are marked in bold.

Table 4.35 was computed using the average of the best rows for all the three rounds for each
embedding. Comparing table 4.31 and table 4.35 we can see that the BERT similarity scores
weighting scheme is needed to have a substantial increase in accuracy, in terms of the clustering
performance metrics evaluated.
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Embedding
Method

Comparison of different clustering
algorithm using different embeddings

with lnLasso
RI ARI NMI AMI FMI

Word2Vec 0.7147 0.0560 0.0521 0.0404 0.7625
Doc2Vec 0.7119 0.0536 0.0527 0.0361 0.7520
FastText 0.7132 0.0626 0.0618 0.0427 0.7428

GloVe 0.7233 0.0707 0.0752 0.0451 0.7550
BERT SL 0.7101 0.1313 0.0945 0.0572 0.7717
BERT BL 0.7402 0.0922 0.0997 0.0448 0.7726

lnLasso BERT SL 0.7023 0.1306 0.0918 0.0588 0.6839
lnLasso BERT BL 0.7119 0.1384 0.1142 0.0690 0.7050
lnLasso FastText 0.7096 0.1222 0.1304 0.0714 0.7117

Table 4.36. Comparison of the raw different clustering algorithms and the lnLasso
algorithm using different embeddings. The best results for each clustering performance
metric are marked in bold.

Table 4.36 was computed using the average of the best values for the three rounds, for the raw
clustering algorithms analyzed in the previous paragraphs (K-means, AP, SPC NN, SPC RBF
and DBSCAN) and the lnLasso algorithm. As we can see from table 4.36, the lnLasso algorithm
improved ARI, NMI and AMI, especially when using the FastText embeddings.

Figure 4.2. Bar plot showing the increment or decrement in percentage between
the best result for each clustering performance metrics, comparing the result obtained
with and without lnLasso.

The Bar plot 4.2 shows how in terms of ARI, NMI, and AMI lnLasso provides an improvement
of up to 30%. RI and FMI scores are better without lnLasso.
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Chapter 5

Conclusions and future work

The efficiency of LnLasso has been researched in binary classification scenarios with partially
labelled networked data. For the first time, in this thesis, the performance of the lnLasso algorithm
was tested when binary-clustering feedback data.

An overview is given of the different embedding methods that can be used using standard
clustering methods and in combination with lnLasso. The sets of experiments executed in this
thesis showed that the best embedding methods from the ones analyzed for binary clustering
feedback data are GloVe, FastText and BERT. After extensive analysis of which clustering method
is the most optimal while clustering feedback data, Spectral Clustering proved to be the one
providing the best results majority of the time. Stemming, even if it is a typical pre-processing
step, decreased the performance of the clustering algorithm using the best embedding methods.
The clustering performance metrics that used internal indexes proved to be unreliable and could
not assess the performance of BERT, most probably due to the higher dimensionality of the
vectors. For this reason, if the true labels are available, an analysis with the clustering performance
metrics that used external indexes is preferred.

One round of experiments proved that assigning weights to the edges that connect similar
feedback is a necessary step for lnLasso. Results using BERT similarity scores as weights for the
edges that connect comparable feedback indicate that BERT is a suitable method for identifying
similar feedback for lnLasso.

As explained in the paragraph Logistic Network Lasso, lnLasso is a semi-supervised algorithm
that uses a percentage of the true labels during training. For this reason, a certain improvement
over the other unsupervised algorithms that were tested was expected, proportional to the per-
centage of true labels used. Using a rate of 20% of true labels, lnLasso increased the best value of
ARI, NMI and AMI of up to 30%, but decreased RI and FMI. The best combination of embedding
method to use in conjunction with lnLasso is either FastText or BERT using the average of both
second-last and last-layer. The results of the experiments made in the previous chapter indicate
that lnLasso is a valid choice for tackling the problem of binary clustering feedback data.

The research that has been done in this thesis can be further extended on multiple points.
In order to better compare the lnLasso algorithm, the experiments were done in terms of binary
clustering. Binary clustering might not always be an efficient approach when clustering feedback
data and depends on how the questions were formulated in the first place. LnLasso can be
reformulated for non binary classification problems or multiclass classification problems, and then
compared to the clustering techniques analyzed in this thesis without forcing to only have two
clusters. For the particular dataset used in this thesis, feedback was rarely ambiguous and could
be easily labelled into one of the three clusters. For this reason, only hard-clustering techniques
were analyzed, but this assumption might not work for all datasets. For multiclass classification
problems, the lnLasso needs to be compared to soft-clustering techniques. In order to further
automate the process, topic modelling can be used to identify the classes for a multiclass approach.
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