
POLITECNICO DI TORINO

Master degree in Computer engineering - Data science

Master Thesis

Deep learning for visual place
recognition

Building a large scale software to geo-localize a given photo

Supervisors
prof. Barbara Caputo Gabriele Moreno Berton

matricola: 252805

Academic year 2019 – 2020

Deep learning for visual place recognition
Master thesis. Politecnico di Torino, Turin.

© Gabriele Moreno Berton. All right reserved.
April 2020.

3

Acknowledgements

Dopo aver concluso la mia tesi, è arrivato il momento più difficile, la stesura
dei ringraziamenti.

A mia moglie Daria, che da anni mi supporta e mi sopporta, e che mi
aiuta in tutte le piccole e grandi sfide quotidiane.

Alla professoressa Barbara Caputo, che mi ha dato la possibilità di entrare
nel mondo del deep learning, e ai ragazzi del lab, che mi hanno fatto capire
che si possono imparare mille cose chiacchierando alle macchinette del caffè.

Al mio compagno di tesi Valerio, senza cui non avrei raggiunto i risultati
di questa tesi.

Ai miei genitori, senza i quali non sarei mai diventato la persona che sono
oggi.

Ai miei amici, che riescono a farmi dimenticare dell’università e del lavoro.
Alle persone che ho incontrato nel cammino della vita, che non ho mai più

rivisto, e che hanno saputo insegnarmi qualcosa.
A tutti i giusti, quelli che credono in un mondo migliore, che fanno dei

sacrifici per il bene degli altri, e che mi riempiono di motivazione.
A tutti voi, che in mille modi diversi avete fatto in modo che raggiungessi

questo traguardo, voglio dire grazie.

4

5

Abstract

An open problem in the artificial intelligence community is building an algo-
rithm that is able geo-localize a given photo just by its visual information,
overcoming the multiple problems related to the changes in appearance that
a specific location has over time. The purpose of this thesis is to show that it
is possible to create such a software, which is fast, accurate and which works
on large-scale geographical areas. To achieve this it is necessary to overcome
various issues, such as creating a vast dataset, its related database, building
a reliable neural network and including various machine learning algorithms,
in order to create a robust and efficient system. Moreover, we built a graph-
ical user interface to make the system usable by anyone, in which the user
can upload the photo and browse through the results. A second part of this
thesis is about research, where the focus is on improving the accuracy and
speed of the software, and overcoming the various problems that arise when
the photos belong to different domains.

6

7

Contents

1 Introduction 11
1.1 Thesis’s objectives . 11
1.2 Related works and main problems 11
1.3 Our contribution: research & development 12

2 Related Works 14
2.1 The landscape . 14
2.2 Image retrieval . 14

2.2.1 Features extraction . 15
2.2.1.1 Local features 16
2.2.1.2 Global features 16
2.2.1.3 Hybrid features 16

2.2.2 Features aggregation 17
2.2.2.1 Feature to visual word assignment 17
2.2.2.2 Weighting scheme 17
2.2.2.3 Multiple features aggregation 18
2.2.2.4 Pooling of deep feature maps 18

2.2.3 Similarity Research . 18
2.2.3.1 K-nearest neighbors 18
2.2.3.2 Other Machine Learning methods 19

2.2.4 Candidates re-ranking 19
2.3 Other approaches . 19

2.3.1 Cross-appearance localization 20
2.3.1.1 Cross-domain 20
2.3.1.2 Cross-view 20

2.3.2 Localization problem as a classification task 21
2.3.3 3D-based methods . 21

8

I 23

3 Data collection 25
3.1 Building a dataset . 25
3.2 Metadata and Google street view panoramas 26
3.3 Google Street View Time Machine 27
3.4 Removing the distortion . 28
3.5 Cleaning the dataset . 31
3.6 Datasets . 33

3.6.1 Turin1M . 33
3.6.2 Turin30k . 33
3.6.3 Turin81 . 36
3.6.4 Turin30k_undistorted 37
3.6.5 Turin30k_inpainted 37

3.6.5.1 Inpainting over dynamic objects 38
3.6.6 Pitts30k . 40
3.6.7 Pitts30k_inpainted . 41

II 42

4 Architectures and Experiments 44
4.1 Architectures . 44

4.1.1 NetVLAD . 44
4.1.1.1 Training process 46
4.1.1.2 Setup . 48

4.1.2 ResNetVLAD . 49
4.1.2.1 Setup . 49

4.1.3 DyNetVLAD . 50
4.1.3.1 Setup . 50

4.1.4 ResNetVLAD + autoencoder 51
4.1.4.1 Setup . 52

4.2 Experiments . 52
4.2.1 NetVLAD on Pitts30k 53
4.2.2 ResNetVLAD on Pitts30k 53
4.2.3 ResNetVLAD on Turin30k 54
4.2.4 ResNetVLAD on Turin30k_undistorted 55
4.2.5 ResNetVLAD on Pitts30k_inpainted 55
4.2.6 ResNetVLAD on Turin30k_inpainted 56

9

4.2.7 DyNetVLAD on Pitts30k 56
4.2.8 DyNetVLAD on Turin30k 57
4.2.9 ResNetVLAD + autoencoder on Pitts30k 58
4.2.10 NetVLAD on Turin81/Turin1M 58

4.2.10.1 Algorithm . 58
4.2.10.2 Setup . 61
4.2.10.3 Results . 61
4.2.10.4 GUI . 61

4.3 Comparison and Discussion 64

5 Conclusions and future works 65

10

Chapter 1

Introduction

1.1 Thesis’s objectives
The goal of this thesis is to build a user-friendly software that, given an
outdoor photo as input, is able to understand where it was taken. This
task is commonly known as Visual Place Recognition (VPR), and the input
image is usually called query. VPR can find many application in today’s
world, such as 3D reconstruction, augmented reality and outdoor navigation
systems, for example for self-driving cars, as GPS signal worsens in cluttered
urban environments. While some systems (such as augmented reality) require
knowing the 6 degrees-of-freedom from which the photo is taken, the thesis’s
goal is to compute the location with an acceptable margin of a few meters.
Moreover the software must respect the following constraints:

• large-scale: be able to find the location of the query within the area of
a big city;

• scalable: it should easily scale up to bigger geographical areas, such as
whole regions or even countries;

• fast: the whole computation should be performed in seconds;

• accurate: the accuracy should be high enough for the software to be
employed in real-world scenarios.

1.2 Related works and main problems
Luckily, the VPR problem is widely studied, with research on the topic
steadily growing in the past decade. The task has been approached in many

11

1 – Introduction

different ways, but most of the problems are common among all these ap-
proaches. The problems of VPR are related to appearance changes, meaning
that the same location might look very different in different moments. These
appearance changes are related to:

• lighting conditions: the huge light variations between day and night,
or even between seasons;

• dynamic objects: the presence of moving or temporary objects, such
as vehicles or pedestrians;

• long-term conditions: the changes in the environment during seasons,
or even man-made structures;

• different point of views: the same place seen from different point of
views might look very different;

• different domains: with deep learning methods, if train and test set
belong to different domains (such as urban and countryside) there might
be a drop in performance.

1.3 Our contribution: research & develop-
ment

We chose to approach the problem using image retrieval techniques, which
are based on comparing the query with a large number of images of which
the location is known, called database images. To this end, it was needed to
build a vast dataset of images, and we chose to collect images from Google
Street View. The data collection process is thoroughly explained in Section 3.
We then built a dataset with 1 million images of Turin, a smaller subset with
30 thousand images, and a third dataset of images collected with a phone,
to test our software. Each of these images is linked to a record in a MySQL
database, where their coordinates and other metadata are saved. In Section
4.1 we explain the algorithms used, and we talk about their implementation
aimed at high scalability.
Moreover, we present the results of our system, showing that it can quickly
and accurately locate a given photo within Turin, being able to find the
correct location of 86% of the images with only 20 predictions within seconds
(Section 4.2.10.3). We then built a GUI, in order to make the software
practical and easy to use, as shown in Section 4.2.10.4.

12

1 – Introduction

From this point, our thesis took a path more oriented towards research,
by exploring new techniques aimed at improving our results. To this end,
we created new datasets (Section 3.6.4), in which we try to overcome some
of the basic VPR problems, and we experimented new algorithms (Section
4.1.4), aimed at reducing the loss of accuracy that results from a domain
shift. Finally, we built a novel implementation (Section 4.1.3) which helped
us achieve better results on our datasets.

13

Chapter 2

Related Works

2.1 The landscape
Research on visual place recognition has been steadily growing in the last
decade. This increase in interest is due to the creation of large geo-localized
images datasets, the easiness in acquiring new data (e.g. through camera
on smart phone) and the limitations of localization and orientation systems
(e.g. GPS signal worsens in urban cluttered environments), which intrinsi-
cally have a high degree of approximation. Moreover, an increasing number
of present-day practical applications would rely on a ideally perfect visual
based localization system, such as 3D reconstruction, consumer photogra-
phy -"Where did I take these photos?"-, augmented reality, and outdoor
or indoor navigation systems, which are essential for self-driving cars and
robotics. There is no standardized designation for visual place recognition,
methods name vary from one paper to another. The most common ones are
visual place recognition, visual based localization, structure-based localiza-
tion, visual geo-localization, image-based pose estimation, and a number of
rearrangements of these terms. Most of current approaches for VPR rely on
image retrieval, while others try to exploit 3D methods, and some even view
VPR as a classification task.

2.2 Image retrieval
An image retrieval system is a system that, given a dataset of images, called
database or gallery, and a single other image, called query, is able to retrieve
the images in the database that are most similar to the query. Image retrieval

14

2 – Related Works

can have lots of practical applications, one of the most common being face
retrieval. In this task, the database is made of images of faces, usually
annotated with the person’s full name. Then, when a new image of a face is
given to the system, this has to be able to understand which person the new
image belongs to, by searching the most similar face in the database. This
task is similar to the VPR task, where the database is made of images of
places, and the queries can be new images uploaded by a user. In the vast
majority of cases, an image retrieval system is based on 4 steps:

Figure 2.1: Architecture of a standard image retrieval system

• features extraction, which is the extraction of the descriptors that give
meaningful information about the image;

• features aggregation, which is the rearrangement of features, preparing
them for the next step;

• similarity research, which is the algorithm that takes the features in
input and outputs the likelihood of their images representing the same
place;

• candidates re-ranking, after having found a restricted number of poten-
tial candidates, re-ranking them from the most likely positive.

2.2.1 Features extraction
The task of extracting the best descriptors to represent an image has been
approached in a huge variety of methods. The goal is to have features that
incorporate the greatest amount of discriminant information, possibly with-
out requiring too much memory, and in a fast and light way. The types of
features used belong to one of these 3 groups: local, global, hybrid.

15

2 – Related Works

2.2.1.1 Local features

In the pre-deep-learning era, local features were without a doubt the most
used in visual place recognition and computer vision in general. Their de-
scription occur at a small level, usually just a pixel and its local neigh-
borhood. Its extraction is based on two steps: finding a salient area, and
extracting its descriptors. The most famous features-extractor of this kind is
the scale-invariant feature transform (SIFT) [1], published and patented in
1999. Various alternatives have been proposed during the years, mostly to
speed up the computation, such as SURF [2], which are required when the
computation needs to be real-time. Another more recent evolution of SIFT
is RootSIFT [3], which creates better descriptors than SIFT while reducing
the computational requirements

2.2.1.2 Global features

Global features consider the image as a whole, and compute a vector as its
representation. Perhaps the most naive example of global features would
be to just use the raw image itself, possibly after resizing. Global features
are usually less robust to changes in point-of-view and local changes (such
as occlusions), but are usually much less computationally hungry than local
features. In this group there are both hand-crafted methods, such as GIST
[4], and more recent learned methods. Among the learned methods, the most
widely used for images are convolutional neural networks [5, 6], which can
be used as a features extractor for a given image. Usually the features are
the output from one or more convolutional layer. The CNN can either be
trained on a different task, like classification, or directly trained for the image
retrieval task.

2.2.1.3 Hybrid features

By hybrid features we refer to those types of features that don’t belong to
the previous two groups, and that either consider just a part of the image, or
that combine multiple types of features. One example is represented by patch
features, which, during the extraction, consider only a patch of the image at
a time. The patch can be chosen in various ways, either based on the content
(e.g. on the image saliency [7]) or in a standardized fashion, like through a
fix grid or a sliding window [8]. On the other hand, combined features use
a combination of local and global features to build the final descriptors of
the image. One example is presented by [9], which uses global features to

16

2 – Related Works

restrict the number of potential positives, and local features to compute the
final output

2.2.2 Features aggregation
Features aggregation is the task of aggregating features in a more convenient
way. These is because the features, especially if local, can have huge dimen-
sion. Moreover, in visual place recognition, aggregation can be performed
in a way to benefit the retrieval process, for example by enhancing features
that are known to be useful for the task.

2.2.2.1 Feature to visual word assignment

This technique comes from the more famous bag of words (BoW) used in
natural language processing, where a vector is built counting the occurrences
of each word. However, in computer vision there are no such things as words,
so it was common to group the features in clusters, or Voronoi cells, and con-
sider only the center of the clusters as features [10]. In this way, a vector with
the same length as the number of clusters can be built, with the counts of fea-
tures belonging to each cluster. This creation of a visual vocabulary is known
as bag of visual words or bag of features. However, this hard assignment of
each feature to its cluster can worsen the representation of the features, and
numerous ways to replace this with a "softer" assignment have been thought.
An example is hamming embedding, by Jegou et al. [11], which further di-
vides each cluster for a more precise assignment of every feature. Another
subsequent work by Jegou et al. is Vector of Locally Aggregated Descriptors
(VLAD) [12], in which also the distance between the feature and the center
of its cluster is saved, giving a more precise representation.

2.2.2.2 Weighting scheme

Weighting consists in assigning a weight to each features, usually by giving
higher weights to more discriminative features. The weights can be computed
by taking into account the frequency of a certain feature in the dataset, as
in [10]. Other works [13] propose to assign the weight according to their
intra and inter-burstiness, which is the likelihood that a feature is repeated
more than once in an image and in the dataset. Other techniques [14] sim-
ply propose to remove the least discriminative features, saving memory and
reducing noise.

17

2 – Related Works

2.2.2.3 Multiple features aggregation

Features obtained with neural networks can be used together with local or
patch features. This way its possible to gather multiple types of features into
a single vector, like a bag of features. Mixing local and neural features has
been done in [15], and [16] has replace local with patch features.

2.2.2.4 Pooling of deep feature maps

With the recent advances of deep learning, it has become more common
to extract features with CNNs. The features can be extracted by the last
convolutional layers, and can be concatenated together. To reduce the high
dimensionality several types of pooling have been applied. Maximum Ac-
tivations of Convolutions [17] proposes to reduce the dimensionality by ag-
gregating each maximum of the activation maps into unidimensional vectors.
Sum-Pooled Convolutional features [18] gives better results, simply summing
the responses of each maps instead of finding their maximum. More recently
Arandjelovic et al. [5] propose NetVLAD, a fully differentiable layer that
can be plugged into a CNN and be treated like another layer of the network.
This layer has trainable weights, which make it the state-of-the-art option
at the moment. This later propose to mimic the architecture of NetVLAD
in a deep-learning fashion, therefore calculating clusters and distances from
them for each feature.

2.2.3 Similarity Research
The most common way to find the most similar vector of features to a given
one (e.g. computed from a query) is by finding the closest to it by euclidean
distance (usually with L2 norm) or cosine similarity. This is simple to do
as long as the dimensions don’t grow too much, both in terms of number
of descriptors (one for each image) and of size of each descriptors. In the
latter case, a dimensionality reduction is often needed, and PCA is a common
technique [5, 6]. To improve results, whitening can also be applied, as in [5].

2.2.3.1 K-nearest neighbors

Brute force KNN can be used in those cases where the datasets are not too
large, and computation can be done in a reasonable time. However, if the
size of the dataset grows, so does the number of descriptors, and having an

18

2 – Related Works

exact response can take too long to be computed. In some cases, approxi-
mate k-nearest neighbors can be a better solution, in which a little loss in
accuracy can give a huge reduction of computation time [19]. An example
of a library which implements approximate nearest neighbors search is Faiss
[20], developed by the Facebook AI Research team.

2.2.3.2 Other Machine Learning methods

Other methods have been employed which focus on better understanding the
distribution of the features, and exploit this knowledge to improve the accu-
racy of the retrieval task. An example is given by [21], where the similarity
search is viewed as a classification task, and an SVM is used. In [22] the
authors avoid the heaviness of SVM by exploiting the advantages of Linear
Discriminant Analysis (LDA).

2.2.4 Candidates re-ranking

The retrieved candidates can optionally undergo a post-processing phase of
re-ranking, attempting in this way to sort them in a more accurate way.
This is often done when the similarity search is done in an approximate way,
and the re-ranking of the selected candidates can be performed in an exact
manner. Another example in which re-ranking can be used, is when the
features have been reduced by PCA, and the candidates can be sorted by
using their distance with the query considering their full dimension, skipping
therefore the PCA reduction. Re-ranking is also performed in cases where
other data is known about the dataset, such as in [23], where Torii et al.
exploit the location of their dataset to further improve the accuracy of the
final response.

2.3 Other approaches

A lot of research has tried to approach the VPR problem with various image
retrieval techniques that take into account the various problem of VPR, such
as domain shift, while others tried to find solutions very different from the
standard image retrieval, such as using 3D methods or transforming the
localization task into classification.

19

2 – Related Works

2.3.1 Cross-appearance localization
Given the huge amount of interest in standard visual place recognition, some
researchers also focused their work on solving the problem in different ways.
This is the case of cross-domain VPR, where the database and query images
belong to slightly different domains, and cross-view VPR, where the domain
shift is much bigger.

2.3.1.1 Cross-domain

Cross-domain visual place recognition takes explicitly into account the dif-
ferences in distribution between the database domain and the query domain.
Some examples can be of database images taken as normal daylight photos,
while the queries can belong to many different domains, such as photos taken
at night, grey-scale images, or even painting (Figure 2.2). An example in this
field is [22], in which the query is an old sketch or painting.

Figure 2.2: Cross-domain

Figure 2.3: Cross-view

2.3.1.2 Cross-view

Cross-view VPR focuses on the much more challenging task of having a
database made of aerial views images (Figure 2.3). These images have the

20

2 – Related Works

advantage to be available for any corner of the globe. However the query
images are still taken on from the ground, thus the difficulty of the task.
Several works have been done in the field, both with classical [24] and deep
methods [25]. Interesting work from Bansal et al. [26] relies on image recti-
fication for ground-level query images, in a way to make them more similar
to aerial-view images.

2.3.2 Localization problem as a classification task
Researchers have also approached the VPR task as a classification task, which
is, instead of finding the exact position of the query image, to find the region
in which it was taken. This allows VPR to take a more global approach, for
example by designing a system that predicts in which continent or country
the image was taken. To this end, researchers [27] propose a variety of world-
wide grids, as in Figure 2.4, and design systems that classify images according
to their position in the grid.

Figure 2.4: Localization as classification

2.3.3 3D-based methods
3D based methods use a database of geo-localized 3D models, which are used
to find the location of the 2D query image. The databases can be built using a
variety of sensors, such as RGB-D cameras, LIDARs, RADARs, etc., and are
usually expensive to acquire, in terms of money cost (3D sensors are usually
more expensive than cameras), time, computation and storage needs. These
methods are often much slower than 2D-based methods, which makes them
less scalable, but they give much higher 6-DOF accuracy [28]. This methods
can be used together with 2D-based methods, as in [29], where the authors
use the speed of 2D based methods to filter a limited amount of candidates
from the database, and then 3D methods to have a precise estimate of the
query position.

21

2 – Related Works

Figure 2.5: 3D based method from [30]. These methods recover the exact
pose of the query. The central image is the query and the surroundings
represent the 3D database

22

Part I

23

24

Chapter 3

Data collection

3.1 Building a dataset

After analysing the alternatives, we decided that 2D image retrieval would
be the best option for our task. This because 3D datasets are too few and
cover just small portion of the territory, and approaching the problem as a
classification task, as in [27], would be too imprecise for our needs. Moreover,
we decided not to use aerial views, because they usually rely on a stream of
images, and their performance with a single image is still very low.
We then briefly explored the various options available in order to obtain a
dataset with ground-level street images, that could be scalable and easy to
use. The top options were Google Street View, Mapillary, Bing Streetside,
Apple Maps, Open Street Cam. All these are websites or apps built on top of
massive datasets, usually made of images taken by cars with a camera that
drive around cities (Figure 3.1). However, the only ones covering all Euro-
pean cities are Google Street View and Mapillary. Of these two, the latter
only has frontal and backward images, while the former has 360° spherical
panoramas, which would be perfect for our case of study. Using Street View,
we could build datasets covering almost any city of the western world (Figure
3.2).

25

3 – Data collection

Figure 3.1: Car used by Google Street View to take panorama images

Figure 3.2: The areas in blue have been covered by Google Street View

3.2 Metadata and Google street view panora-
mas

The Google Street View dataset covers almost all Italian roads, and in most
places the photos were taken several times throughout the years. We fo-
cused our research in the area of the city of Turin, to limit the amount of
images needed for the task. The images provided by Street View are 360°
equirectangular panoramas (Figure 3.3), that can be downloaded with vari-
ous resolution, the highest being 6656x13312 pixels. Using Street View APIs
we are able to download some metadata for each panorama, including its
ID, latitude, longitude and the date when the image was taken. In this way
we are able to build a large database with information about whole cities,
and its related dataset of images. We made scripts in order to simplify the
download of the data, which take as parameters the coordinates of the area,

26

3 – Data collection

and the number of processes that we want to launch, in order to speed up
the download by multi-processing. In this way we are able to obtain city-
wide metadata in a couple of hours, and their related panoramas in a couple
of days, all without requiring high-end computers or incredibly fast internet
connection.

Figure 3.3: Example of a Google Street View panorama

3.3 Google Street View Time Machine
A good algorithm for visual place recognition must be invariant to changes
in viewpoint and lighting and to moderate occlusions. It should also learn
to suppress confusing visual information such as clouds, vehicles and people,
and to chose to either ignore vegetation or to learn a season-invariant veg-
etation representation. The Google Street View Time Machine can help to
achieve this, as it can show the same location in different dates. The Time
Machine is based on the fact that Google cars pass through the same roads
multiple times over the years, and the dataset keeps accumulating images.
So every passage of a Google car can be seen as a new layer of panoramas
over the previous ones. On the Street View website, one can easily see the
same location throughout the years, and using their APIs it is possible to
download those panoramas. Figure 3.4 represents various images of the same
location between 2008 and 2019. It can be noticed that the images have huge
differences, and by using them to train a neural network it can learn to ignore

27

3 – Data collection

dynamic objects (such as vehicles), illumination changes, small point of view
changes, changes in the vegetation and shadows.

(a) November 2011 (b) June 2012

(c) May 2014 (d) May 2015

(e) July 2016 (f) October 2017

(g) September 2018 (h) August 2019

Figure 3.4: Various images of the same place from 2008 to 2019

3.4 Removing the distortion
As shown in Figure 3.3, panoramas represent a 360° equirectangular projec-
tion of the surroundings of the camera. Altough equirectangular projections

28

3 – Data collection

are an excellent way to map the surface of a sphere to a flat image, the re-
sulting image appears very distorted, and thus very far from any undistorted
image that we would later on use as query. This can represent a challenge
for a retrieval neural network, as most visual place recognition networks are
designed to handle database images and query images coming from the same
domain. Undistorting an equirectangular panorama can be done only for
small sections of the image (the field of view has to be less than 180°) by
using the gnomonic projection, also known as rectilinear projection. The
gnomonic projection is a nonconformal map projection obtained by project-
ing points P1 (or P2) on the surface of sphere from a sphere’s center O to
point P in a plane that is tangent to a point S. In Figure 3.5, S is the south
pole, but can in general be any point on the sphere. Since this projection
obviously sends antipodal points P1 and P2 to the same point P in the plane,
it can only be used to project one hemisphere at a time. In a gnomonic
projection, great circles are mapped to straight lines, and it represents the
image formed by a spherical lens. In the projection of Figure 3.5, the point

Figure 3.5: Gnomonic Projection

S is taken to have latitude and longitude (λ, φ) = (0,0) and hence lies on the
equator. The transformation equations for the plane tangent at the point S
having latitude φ and longitude λ for a projection with central longitude λ0
and central latitude φ1 are given by

x = cosφ sin(λ− λ0)
cos c

y = cosφ1 sinφ− sinφ1 cosφ cos(λ− λ0)
cos c

29

3 – Data collection

and c is the angular distance of the point (x, y) from the center of the pro-
jection, given by

cos c = sinφ1 sinφ+ cosφ1 cosφ cos (λ− λ0)

The inverse transformation equation are

φ = sin−1
(

cos c sinφ1 + y sin c cosφ1

ρ

)

λ = λ0 + tan−1
(

x sin c
ρ cosφ1 cos c− y sinφ1 sin c

)

where
ρ =

√
x2 + y2

c = tan−1ρ

By using the inverse transformation equation we’re able to undistort small
tiles of the panorama (Figure 3.6), which we can then use for the image
retrieval task.

(a) Distorted image (b) Undistorted image

Figure 3.6: Example of a tile of a panorama, distorted (a) and undistorted
(b).

30

3 – Data collection

3.5 Cleaning the dataset
Even by keeping low resolutions for panoramas, a dataset collected with
Google Street View can take huge amount of memory, and its processing will
therefore need a long time and computation power. To reduce the size of
the dataset, we remove parts of the panoramas that contain the least useful
information: the top 4/13, and the bottom 5/13 (Figure 3.7), reducing the
size to 4/13 of the original image. This helps to achieve huge memory sav-

Figure 3.7: An example of a panorama, and in the center the part that we
save in the dataset

ings, but the dataset can still be of very large dimension. Just to give an
example, a dataset of the Turin area, with around 1.000.000 panorama with
resolution 512x3584 (removing the top and bottom parts), requires about
300GB of memory. Processing this amount of data can easily take days, and
it is therefore necessary to make sure that the our dataset doesn’t contain
unneeded images. The focus of our research was to retrieve the position of
given images which were taken in urban environments. Therefore, all the
images containing non-urban scenes can be deleted from the dataset, and
this can greatly reduce the amount of memory needed to store the dataset,
depending on the area from which the images are downloaded. Obviously,
due to the size of the dataset, this process of deleting rural panorama has to
be done in an automated way. In order to do this, we decided to use semantic
segmentation neural networks to estimate the number of pixels that belong
to buildings for each panorama: if this number is below a threshold (we

31

3 – Data collection

chose 2.5% of the total amount of pixels as the threshold), it means that the
photo was taken in a rural area and can therefore be deleted. The network
that we used was a PSPNet [31] with a ResNet50 [32] backbone trained on
the ADE20k dataset [33, 34], which showed good qualitative results on our
Street View images. This method turned out to work very well for the task,
and, when the geographical area selected to download images is big enough
(more than 10.000km2), it helps to reduce the size of the dataset of up to
75%. Although the accuracy of PSPNet [31] is very high, its huge compu-
tational requirement made it unfeasible to be used of large scale datasets.
Our solution was therefore to train a light-weight ResNet18 [32] to give an
estimate of the number of pixels belonging to buildings for each panorama,
changing therefore a semantic segmentation task to an inference task. To
train the ResNet18 [32] we built a dataset of 288.000 panoramas using the
PSPNet [31]. After a qualitative analysis we found that the ResNet18 [32]
could identify the rural-area images equally well as the PSPNet [31], and was
able to do this in a fraction of the time, giving us the possibility to use this
method to clean even large scale datasets.

(a) Panorama with buildings

(b) Semantic segmentation of the panorama

(c) Semantic segmentation with buildings highlighted

Figure 3.8: Example of a panorama with many pixel belonging to buildings,
and therefore it should be kept in the dataset

32

3 – Data collection

(a) Panorama without buildings

(b) Semantic segmentation of the panorama

(c) Semantic segmentation with buildings highlighted

Figure 3.9: Example of a panorama with no pixel belonging to buildings,
and therefore it should be deleted

3.6 Datasets
In order to train and test our algorithms we built a few datasets, all of which
contain images in the Turin area. For our experiments we used a pre-existing
dataset, named Pitts30k, and all the new datasets that we created.

3.6.1 Turin1M
Turin1M is a dataset of 949542 Street View panoramas covering an area
of around 100 km2 between latitude 45.0 and 45.1 and longitude 7.6 and
7.7. This area covers most of the city of Turin, its whole center, and parts
of nearby towns (Figure 3.10). The dataset is made of panoramas with
resolution 512x3584 where the top and bottom part have been removed, as
in Figure 3.7. The whole dataset requires about 300 GB of memory.

3.6.2 Turin30k
When Turin1M dataset is completely downloaded, we have extracted three
geographically disjoint subsets (train set, val set and test set) as in Figure

33

3 – Data collection

Figure 3.10: The blue rectangle represents the area of Turin1M, while the
red boundary is the border of the city of Turin

3.11, in order to fine-tune the network giving a reasonable amount of data
and reducing also the retrieval time. First of all, during the training part of
the CNN, we have followed what is done by the authors of [5], that consists
in use images of the last year (2018/2019) for the query set, and the ones
of the same places but of different years for the database set. This is a
good approach, because in this way the network receives the image of the
same places in different instant, from different view-points and environment
conditions. So, it generalizes and learns which features are useful and which
are not. Further, the subsets are built providing the number of images inside
database equal to the one of the query set. This means that for each query
there is exact one positive corresponding database image (e.g. for 10 images
of places of the database there are respectively the same 10 places of last year
like queries). Since, the network will receive distorted images for the bag-of-
visual-words like set and not-distorted images as queries, at test time, we have
trained it in order to try to prepare the algorithm to this kind of situation.
Then, what is done consists essentially in train using the cropped panos that
are downloaded by means of unofficial API, so the distorted images, as set for
searching the similar images w.r.t. the queries, while the queries are retrieved
using the official API, that returns images with straight lines.
Anyway, we have built three different subset, following the previous rules,
that are compose as described in Table 3.1.
In order to consider the whole Turin1M dataset, passing to a large-scale
situation, a possible solution is to immediately filter the images that contain

34

3 – Data collection

Dataset Database Query set
Turin30k_train 10,000 10,000
Turin30k_val 10,000 10,000
Turin30k_test 10,000 10,000

Table 3.1: Number of images in subsets Turin30k.

somethings similar to the queries, discarding all the rests. In this sense, the
retrieval area should be reduced together with the needed amount of time.
An example could be using such detection/semantic segmentation algorithms
to produce annotations applied to filter over the entire dataset. Through this
methods, we can retrieve what objects are represented in a photo, discarding
all the dynamic ones, detecting texts, vegetation, car models, urban cleanings
and so on. In this way, all the images that don’t contain the annotation that
are extracted by the query, should be ignored at least in a first moment.
Overall, we have postponed this kind of approaches to the future works.

Figure 3.11: The three rectangles represents the area selected to build the
sets of training, validation and test

35

3 – Data collection

3.6.3 Turin81

The main idea of this thesis is to develop a software able to receive images
from a third domain, like a mobile phone, and visualize the results produced
by the algorithm.
Then, it is not trivial collect a set of geo-localized images from an external
device w.r.t. the one of the database. Overall, just to make some indicative
tests, we have created a set of 81 images, called Turin81 (Figure 3.13), around
the city-centre of Turin captured with an iPhone 7 which has the GPS turned
on. In this way, the information about the coordinates are stored in the EXIF
metadata attached to the photo. Retrieving a consistent number of this kind
of images remains a big problem. Some images of Turin81 are shown in the
Figure 3.12.

Figure 3.12: Example of Turin81 images

36

3 – Data collection

Figure 3.13: The red dots represent the location of the photos in Turin81

3.6.4 Turin30k_undistorted
It contains the same sets of Turin30k, but with the database images that are
processed in our algorithm to remove the distortion (Section 3.4). This is
used to perform the same tests and evaluate the domain shift given by the
distortion in our task.

3.6.5 Turin30k_inpainted
One of the biggest problem of VPR are dynamic objects, like vehicles or
pedestrians, that might occlude parts of the images. Moreover, a common
image retrieval system, not optimized for the VPR task, might focus its sim-
ilarity search on these dynamic obejct (e.g. the query has a blue car, then
find the database images with blue cars), which obviously doesn’t suit well
image retrieval for VPR.
To solve this problem, we propose a technique to automatically "erase" these
dynamic objects from photos. This is done in two steps: localizing the dy-
namic objects, and "painting" them over. In order to localize the dynamic
objects, semantic segmentation comes to great help, as it gives a good ap-
proximation of the pixels that belong to each semantic class. To this end, we
used the same PSPNet [31] that we used in 3.5, which showed good results
on our datasets. Once the segmentation step was finished, and we found all
the dynamic objects in the images, it was time to find a way to erase them.

37

3 – Data collection

To this end, a technique called inpainting comes to great help.

3.6.5.1 Inpainting over dynamic objects

Inpainting is a method that, given a masked image, which is an image where
some pixels have been removed, tries to find a good estimate of the orig-
inal values of those pixels. Usually inpainting with deep learning is done
with a encoder-decoder architecture, in which the encoder takes as input the
masked image and produces features, and the decoder takes as input the fea-
tures and tries to reconstruct the image removing the hole. Obviously, the
network needs to learn useful features from a vast amount of data, in order
to predict the values of the missing parts. The inpainting approach that we
choose was from the paper Image Inpainting for Irregular Holes Using Partial
Convolutions [35], which claims to be the first to demonstrate the efficacy of
training image-inpainting models on irregularly shaped holes. A U-Net-like
architecture [36] (Figure 3.14 is used, in which each block of the decoder
takes as input not only the output of the previous block, but also the output
of the corresponding block of the encoder. One of the main challenges in

Figure 3.14: U-Net architecture

inpainting is to find a suitable loss. A simple approach would be to use an
L1 or L2 loss, calculating the pixels-wise distance between the ground-truth
image, and the image outputted by the network. Unfortunately, minimizing
the L1 or L2 loss does not produce realistic results, as the output is usually
very blurry.

38

3 – Data collection

To solve this problem [35] proposes to use multiple losses:

•
Lhole = 1

Nigt

||(1−M)� (Iout − Igt||1)

where M is the binary mask, Iout is the prediction, Igt is the ground
truth image, Nigt denotes the number of elements in Igt (C*H*W)

•
Lvalid = 1

Nigt

||M � (Iout − Igt)||1

•
Lperceptual =

P−1∑
p=0

||ΨIout
p −ΨIgt

p ||1
NΨIgt

p

+
P−1∑
p=0

||ΨIcomp
p −ΨIgt

p ||1
NΨIgt

p

where ΨI∗
p is the output of I∗ from the pth layer of the VGG-16 [37]

pre-trained on ImageNet (the layers utilized are pool1, pool2, pool3),
Icomp is the raw output image Iout, but with the non-hole pixels directly
set to ground truth, NΨIgt

p
is the number of elements in ΨIgt

p

•
Lstyleout =

P−1∑
p=0

1
CpCp

||Kp((ΨIout
p)T (ΨIout

p)− (ΨIgt
p)T (ΨIgt

p)

Lstylecomp =
P−1∑
p=0

1
CpCp

||Kp((ΨIcomp
p)T (ΨIcomp

p)− (ΨIgt
p)T (ΨIgt

p)

•

Ltotal−variation =
∑

(i,j)∈R,(i,j+1)∈R

||I i,j+1
comp − I i,jcomp||1

NIcomp

+
∑

(i,j)∈R,(i,j+1)∈R

||I i+1,j
comp − I i,jcomp||1

NIcomp

where R is the region of 1-pixel dilation of the region.

The total loss is therefore computed as

Ltotal = Lvalid+6Lhole+0.005Lperceptual+120(Lstyleout+Lstylecomp)+0.1Ltotal−variation
The final total loss makes the output images accurate enough to be indistin-
guishable from the ground truth for small masks. However, in our case the
masks often have bigger size, and the output can be less realistic, but hope-
fully good enough to improve the performances of the network. As shown in
Figure 3.15, this technique shows pretty good results on our dataset. The
results this dataset are reported in 4.2.6.

39

3 – Data collection

Figure 3.15: Example of the pipeline to create inpainted datasets on
Turin30k: on the top-left the input image, top-right the segmented image,
bottom-left the mask of dynamic objects, bottom-right the inpainted image

3.6.6 Pitts30k
Pitts30k is a pre-existing dataset created by the authors of NetVLAD [5]
in order to test their algorithm. We also used this dataset to compare our
results to theirs. Pitts30k is a dataset of 30000 database images and 21840
query images, divided in train, val e test set. The images are taken in the
city of Pittsburgh, Pennsylvania. Just like our Turin30k dataset, Pitts30k

40

3 – Data collection

has been built with Google Street View images.

3.6.7 Pitts30k_inpainted
For the sake of completeness, we decided to apply to Pitts30k the same
segmentation plus inpainting that we used on Turin30k (Figure 3.16. The
results this dataset are reported in 4.2.5.

Figure 3.16: Example of the pipeline to create inpainted datasets on Pitts30k:
on the top-left the input image, top-right the segmented image, bottom-left
the mask of dynamic objects, bottom-right the inpainted image

41

Part II

42

43

Chapter 4

Architectures and
Experiments

4.1 Architectures
To perform the tests on the datasets that we created we used a number of
architectures, starting from current state-of-the-art NetVLAD.

4.1.1 NetVLAD
Today, the state-of-the-art is achieved by NetVLAD [5] network, that is prop-
erly developed for the VPR task solved via image retrieval and is inspired
by the VLAD representation [38]. The network is composed by a backbone,
which is the VGG16 [37] for the best result, or AlexNet [39]. It is trun-
cated at the last convolutional layer (conv5), where the features related to
the entire image are extracted. At this point, a novel trainable VLAD layer
is used to compact the features in a fixed length vector representation. The
architecture is shown in the Figure 4.1. In [5] the Triplet Loss (Figure 4.2) is

Figure 4.1: NetVLAD architecture [5]

44

4 – Architectures and Experiments

used, in a revisited form properly for the VPR task. They [5] call their loss
’Weakly supervised triplet ranking loss’, that we can summarize in this way:

• Take a test query q;

• Between all its potential positives pqi , take the best matching potential
positive pqi∗ = argmin

pq
i

dθ(q, pqi);

• Take its negative samples {nqj};

• Compute the distance between the query and positive d(q, {pqi∗}) and
the ones between the query and all the negatives d(q, {nqj});

• The goal becomes: d(q, {pqi∗}) < d(q, {nqj}) ∀j, so it’s a ranking loss
between each training triplet (q, {pqi}, {n

q
j});

• So, their [5] loss is defined in this way:

Lθ =
∑
j

l

(
min
i
d2
θ(q, p

q
i) +m− d2

θ(q, n
q
j)
)

where l is the hinge loss and m is a constant figuring the margin. In this
way all the negatives that have distance greater by a margin than the
distance between the best matching potential positive and the query,
will have loss 0. While when the margin is violated, the loss will be
proportional to the amount of violation.

Figure 4.2: Triplet Loss: minimize the distance between the anchor and the
positive sample, while maximize the distance between the same anchor and
the negative sample.

Overall, the best advantage is related to the fact that NetVLAD [5] is end-to-
end trainable and is developed for the specific VPR task, so it is very robust
on localizing urban photos.

45

4 – Architectures and Experiments

4.1.1.1 Training process

In order for the triplet loss to be performed, it is necessary to compute the
nearest (in the features space) positive and the 10 nearest negatives for each
query. Obviously finding the exact nearest positive and negatives would
require to compute the features for all database images at each iteration,
making the training process incredibly slow. To speed up the training, the
authors proposed to compute a cache of all the features, to be used for a
number of iterations, and then be recomputed again. This number is called
cache refresh rate, and it’s best value is between 1000 and 500.
The code that we used starts from a version downloaded from a GitHub
repository [40], that contains a pytorch version of NetVLAD [5] that was
originally developed in Matlab. This code receives a set of arguments in
order to run the algorithm for training, testing or clustering. Furthermore,
from command line, it’s possible also decide the pre-trained network to use,
the number of epochs to train, which dataset to test, the path to resume a
checkpoint and many others settings.
To train completely the network, two steps are needed:

• Run the algorithm in clustering mode:

– Build model: it is compose by the pre-trained backbone (VGG16
[37] or AlexNet [39]) and a L2 normalization layer;

– Take the dataset used to train: in this phase only the database set
is used;

– Create a dataloader sampling randomly from the database set and
extract the descriptors;

– Perform a K-means algorithm to cluster the extracted descriptors
for a given K (from NetVLAD [5] paper K=64);

– Store the cluster centroids.

• Run the algorithm in train mode:

– Build model: the network is composed by the encoder (same back-
bone as before) and the pooling layer NetVLAD [5], that is initialized
with the centroids previously extracted;

– Take the dataset used to train: there are two classes for the dataset,
the first one is for the database images, it contains the path for the
images, how many database and query images there are, the coor-
dinates and some others information. While the one for the queries,

46

4 – Architectures and Experiments

contains all the stuff so the code to analyze each query and find its
positive and negatives. This research is performed in two steps, the
first one is a KNN with radius, used to find the positives images
inside the 25 meters from the query coordinate, and the second step
is a KNN based on the features, to keep the most positive between
the ones previously found. This last KNN is executed inside the in-
herit __getitem__ function of the dataset class, where the features
of the database images are already passed. For the negative sam-
ples instead, the code considers all the samples out of 25 meters and
keep randomly 1000 samples. Then, a KNN based on the query and
negatives features is computed, extracting only 10 negative samples
that are within margin w.r.t. the positive.

– Start the training: for a certain number of epochs it splits the queries
set in subsets, for each of them the algorithm extracts the descriptors
of the database saving that results in a cache variable. The dimen-
sion of the cache is given by the argument cacheBatchSize (default
value is 24). The use and the advantages of the cache is explained in
[5]. At this point, the dataloader of the considered subset of queries
is created. The dataloader of queries set returns tensors correspond-
ing to the query, its positive and its negatives. Then, the Triplet
Loss is calculated and the backpropagation algorithm is performed.
All this stuff is repeated for all the subsets of queries set.

– Each time an epoch ends, an evaluation is performed on a speci-
fied set (val set by default). A checkpoint is saved for each epoch
and whether the accuracy is improved a further checkpoint called
’model_best’ is stored.

– The metrics used to evaluate the algorithm is the recall@N. It con-
sists in give us how many predictions are correct after N ones. The
value used to compare an epoch and evaluate if is the best one is the
recall@5.

The training can be also restored from a checkpoint. In this case the
option ’resume=path_of_checkpoint’ should be defined when the pro-
gram is launched. Then, all the flags, the optimizer parameters and so
on, are resumed from the checkpoint.

• Run the algorithm in test mode:

– Specify the checkpoint path in the resume option;

47

4 – Architectures and Experiments

– The model is built and the weights of the resumed checkpoint are
loaded;

– The specified dataset is loaded, both database and queries set. There
is only one dataloader, because the samples are all collected in an
sorted list, then the counter of database and queries images, give us
the split of that two sets.

– The batches pass through the network extracting the descriptors
and search between the descriptor vector is executed. To improve
the efficiency of this step, the faiss [20] python library is used.

– The recall@N with N = [1, 5, 10, 20] is displayed.

4.1.1.2 Setup

All our trainings on NetVLAD have been done with the following configura-
tions:

• Backbone: VGG16 [37] (pre-trained on ImageNet) cropped at the last
convolutional layer;

• LossNetV LAD: Triplet ranking loss [5];

• Trainable layers: whole backbone + netvlad core;

• Number of clusters K: 64;

• Optimizer: SGD;

• Learning rate: 0.0001;

• Momentum: 0.9;

• Weight decay: 0.001;

• Scheduler step: 5 epochs;

• Scheduler decay: 0.1;

• Batch size: 4 tuples (each tuple contains the query, the positive and at
most 10 negatives);

• Cache refresh rate: 1000.

48

4 – Architectures and Experiments

4.1.2 ResNetVLAD
The complexity of NetVLAD, in addition to the burden of calculating the
positives and negatives for each iteration, makes it a very heavy network to
train. Training NetVLAD can easily take days, even on the latest GPUs.
This is also due to the VGG16 architecture, which was created in 2014, and,
given its huge number of parameters (138M), its slow to train. More recent
CNNs, like the popular Resnet [32] in all its variants, can achieve similar or
better results while requiring a fraction of the time to train. For the afore-
mentioned reasons, we decided to substitute the backbone of NetVLAD with
a Resnet18, which achieves similar results to the VGG16 on the ImageNet
challenge. However, instead of taking features from the last convolutional
block, as with the VGG16, we decided to extract them from the one before
the last. This helped us to speed up the training time, from few days to few
hours, giving us the possibility to perform a greater number of tests.

4.1.2.1 Setup

All our trainings on ResNetVLAD have been done with the following config-
urations:

• Backbone: ResNet18 [32] (pre-trained on ImageNet [41]) cropped at the
4th convolutional block, and freezing all layers before the last one;

• LossNetV LAD: Triplet ranking loss [5];

• Trainable layers: last res-block layer of ResNet18 + pooling;

• Number of clusters K: 64;

• Optimizer: Adam;

• Learning rate: 0.00001;

• Scheduler: no;

• Batch size: 4 tuples (each tuple contains the query, the positive and at
most 10 negatives);

• Cache refresh rate: 1000.

49

4 – Architectures and Experiments

4.1.3 DyNetVLAD
Although NetVLAD is end-to-end trainable, preliminary tests showed that
the clusters’s initialization has a great impact on the final results of the
trained neural network. To exploit this information, we built a novel imple-
mentation, where the architecture is the same as in the original paper, but
the clusters are not only learned, but also recomputed dynamically along
the training, from which the name DyNetVLAD. The training process dif-
fers from NetVLAD in that once convergence is reached, instead of ending
the training process, new clusters are computed, and the NetVLAD core pa-
rameters are reset from scratch. The new clusters are computed from the
weights of the backbone, which in the meantime has adjusted its weights, and
the backbone’s weights are kept once the new clusters are computed. This
method showed better results on both datasets that we used for training and
testing, by better adapting to them, even though the training time is usually
much longer than in NetVLAD. Preliminary tests with a similar approach, in
which the clusters are recomputed after any epoch which shows improvement
(instead of after reaching convergence) showed worse results.

4.1.3.1 Setup

All our trainings on DyNetVLAD have been done with the following config-
urations:

• Backbone: ResNet18 [32] (pre-trained on ImageNet [41]) cropped at the
4th convolutional block, and freezing all layers before the last one;

• LossNetV LAD: Triplet ranking loss [5];

• Trainable layers: last res-block layer of ResNet18 + pooling;

• Number of clusters K: 64;

• Optimizer: Adam;

• Learning rate: 0.00001;

• Scheduler: no;

• Batch size: 4 tuples (each tuple contains the query, the positive and at
most 10 negatives);

• Cache refresh rate: 1000.

50

4 – Architectures and Experiments

4.1.4 ResNetVLAD + autoencoder

One big problem in our project is that the query images (taken with a phone)
and the database images belong to different domains. Moreover we have few
query images, so we cannot use them to train the model. Furthermore in
this experiments we have used distorted images in the database to compare
the result with the ones obtained in the previous experiment, especially the
one over Turin1M. So, the idea is to inject more information as possible
to the network about our query test dataset, without feeding it any human-
annotated label. Summarizing, the focus on the very important features (e.g.
the ones of the buildings) is already partly done as in NetVLAD [5], using
the Google Time Machine, then we use the distorted images as database
set also during the training and finally to learn more about this features, a
self-supervised task is used. When the number of test query images will be
higher, a domain adaptation process will be performed directly using those
images.
Self-supervised learning is a technique in which the labels that are used to
train the neural networks are automatically generated in the code, and take
therefore the name of pseudo-label. This makes creating labels a trivial task,
which, unlike human-annotated labels, does not require a long annotating
process. The easiest example of self-supervised learning is perhaps the ro-
tation task, where an unlabeled image is used, rotated of a random angle
multiple of 90°, and then the network has to predict the correct rotation of
the image. This process helps the network to learn features which are useful
to the self-supervised task, and most likely they will be useful also for the
main task. Moreover self-supervised learning is used for domain adaptation,
where a network is trained to solve the main task on a domain, and a self-
supervised task on another domain, on which we will at the end test the
network.
To this end, we added a self-supervised branch to the main ResNetVLAD ar-
chitecture. There are multiple options available for choosing a self-supervised
task, and we opted for an autoencoder. An autoencoder is a network whose
task is to output the image, as it was given in input. A standard autoen-
coder is made by an encoder, which transforms the image into features, and
a decoder, which transforms the features into an image. The loss used in our
case is L2, which during preliminary tests showed better results than L1 in
reconstructing the input image.

51

4 – Architectures and Experiments

4.1.4.1 Setup

The training of ResNetVLAD + autoencoder has been done with the follow-
ing configurations:

• Encoder for NetVLAD: ResNet18 [37] (pre-trained on ImageNet) cropped
at the last convolutional layer;

• Encoder for autoencoder: same as encoder for NetVLAD, plus the last
convolutional layer;

• Decoder for autoencoder: equivalent layers as ResNet18 inverted (scaling
up instead of scaling down);

• LossNetV LAD: Triplet ranking loss [5];

• Lossautoencoder: L2 [5];

• Trainable layers: whole encoder + NetVLAD core + whole decoder;

• Number of clusters K: 64;

• Optimizer: Adam;

• Learning rate: 0.00001;

• Scheduler: no;

• BatchsizeNetV LAD: 4 tuples (each tuple contains the query, the posi-
tive and at most 10 negatives);

• Batchsizeautoencoder: 16;

• Cache refresh rate: 1000.

4.2 Experiments
All the experiments report a table, in which is shown the recall of the algo-
rithm on the val and test dataset. When testing a model, for each query we
retrieve the 20 database images that are the nearest in the features space to
the query. These 20 images are sorted, and based on them we calculate the
recall. R@1 (standing for recall at 1) is the percentage of query for which the
first database image retrieved was correct. R@5 is equivalent, but consider-
ing the first five images, and so on. R_avg is the average between R@1, R@5,

52

4 – Architectures and Experiments

R@10, R@20. For each experiment it’s shown on which dataset the model
was trained and tested. The algorithms are trained and tested on computer
with:

• GPU: NVIDIA GeForce GTX Titan X 12GB

• RAM: 64GB

• CPU(s): 12 x Intel(R) Core(TM) i7-5930K CPU @ 3.50GHz

4.2.1 NetVLAD on Pitts30k
We started our experiments by trying our pytorch NetVLAD model on
Pitts30k, as its authors did, to make sure that we could get the same re-
sults as theirs. Our tests showed (Table 4.1) that our configurations were
indeed correct, as we could obtain the same results as the paper.
Setup:

• Trained on: Pitts30k, train set

• Tested on: Pitts30k, val and test set

• Reached convergence after 25 epochs, in 37h30m

Dataset R@1 R@5 R@10 R@20 R_avg
Pitts30k Val 85.2 94.6 97.0 98.3 93.8
Pitts30k Test 81.9 91.2 93.2 95.7 90.5

Table 4.1: Results of NetVLAD trained on Pitts30k

4.2.2 ResNetVLAD on Pitts30k
We trained our ResNetVLAD model on Pitts30k, to make sure that it would
be faster and as accurate. Our tests confirmed this hypothesis. Moreover,
the results on the Turin30k dataset shows that there is a considerable domain
shift between the two datasets.
Setup:

• Trained on: Pitts30k, train set

• Tested on: Pitts30k, val and test set; Turin30k, val and test set

53

4 – Architectures and Experiments

• The recalls, epochs and times are an average over 3 runs

• Reached convergence after 3 epochs, in 2h18m

Dataset R@1 R@5 R@10 R@20 R_avg
Pitts30k Val 87.5 95.3 96.9 98.1 94.4
Pitts30k Test 85.5 92.4 94.3 95.9 92.0
Turin30k Val 54.5 76.1 83.4 88.9 75.7
Turin30k Test 54.6 73.6 80.0 85.8 73.5

Table 4.2: Results of ResNetVLAD trained on Pitts30k

4.2.3 ResNetVLAD on Turin30k
Aware of the fact that there must be a reasonable domain shift between
the datasets of Pitts30k and Turin30k, we trained our model on Turin30k.
The results are still lower w.r.t. those on Pitts30k, meaning that Turin30k
is a more challenging dataset. The training time on this dataset is also
considerably longer, meaning that the features needed to it are more distant
to the pre-existing ones, of the pre-training on ImageNet.
Setup:

• Trained on: Turin30k, train set

• Tested on: Turin30k, val and test set; Pitts30k, val and test set

• The recalls, epochs and times are an average over 3 runs

• Reached convergence after 7 epochs, in 7h44m

Dataset R@1 R@5 R@10 R@20 R_avg
Turin30k Val 76.0 90.7 94.2 96.5 89.3
Turin30k Test 76.7 91.3 94.8 97.0 89.9
Pitts30k Val 67.4 80.5 84.3 87.6 79.9
Pitts30k Test 73.8 85.1 88.9 92.2 85.0

Table 4.3: Results of ResNetVLAD trained on Turin30k

54

4 – Architectures and Experiments

4.2.4 ResNetVLAD on Turin30k_undistorted
To check if the distortion would actually be one of the causes for the lower
performances of ResNetVLAD on Turin30k compared to Pitts30k, we had to
train and test the model on the undistorted dataset. Our results show that
removing the distortion can bring a slight improvement over the distorted
dataset. Moreover, the ResNetVLAD trained on Turin30k_undistorted gives
higher results when tested on Pitts30k rather than ResNetVLAD trained on
Turin30k, meaning that the domain gap between Pitts30k and Turin30k_undistorted
is smaller than the one between Pitts30k and Turin30k.
Setup:

• Trained on: Turin30k, train set

• Tested on: Turin30k, val and test set; Pitts30k, val and test set

• The recalls, epochs and times are an average over 3 runs

• Reached convergence after 9 epochs, in 9h28m

Dataset R@1 R@5 R@10 R@20 R_avg
Turin30k_undistorted Val 77.0 91.2 94.3 96.4 89.7
Turin30k_undistorted Test 77.4 91.5 94.9 97.1 90.2

Turin30k Val 74.5 90.5 94.0 96.3 88.9
Turin30k Test 75.4 90.6 94.4 96.8 89.3

Table 4.4: Results of ResNetVLAD trained on Turin30k_undistorted

4.2.5 ResNetVLAD on Pitts30k_inpainted
The Pitts30k_inpainted dataset has exactly the same images of Pitts30k, to
which segmentation and inpainting have been applied. Our results on this
dataset showed a slight but constant improvement, meaning that inpainting
does indeed have a positive effect on this dataset.
Setup:

• Trained on: Pitts30k_inpainted, train set

• Tested on: Pitts30k_inpainted, val and test set

• The recalls, epochs and times are an average over 3 runs

55

4 – Architectures and Experiments

• Reached convergence after 2 epochs, in 2h00m

Dataset R@1 R@5 R@10 R@20 R_avg
Pitts30k_inpainted Val 87.8 95.4 97.1 98.2 94.6
Pitts30k_inpainted Test 86.1 92.6 94.5 95.9 92.3

Table 4.5: Results of ResNetVLAD trained on Pitts30k_inpainted

4.2.6 ResNetVLAD on Turin30k_inpainted
The Turin30k_inpainted dataset has exactly the same images of Turin30k,
to which segmentation and inpainting have been applied. Our results on this
dataset do not show any improvement.

• Trained on: Turin30k_inpainted, train set

• Tested on: Turin30k_inpainted, val and test set

• The recalls, epochs and times are an average over 3 runs

• Reached convergence after 7 epochs, in 7h14m

Dataset R@1 R@5 R@10 R@20 R_avg
Turin30k_inpainted Val 76.0 90.7 94.3 96.5 89.4
Turin30k_inpainted Test 76.7 90.8 94.5 96.8 89.7

Table 4.6: Results of ResNetVLAD trained on Turin30k_inpainted

4.2.7 DyNetVLAD on Pitts30k
We then trained our novel implementation on the Pitts30k dataset, to see if
it could achieve reasonable improvements. The results clearly show a con-
siderable improvement.
Setup:

• Trained on: Pitts30k, train set

• Tested on: Pitts30k, val and test set; Turin30k, val and test set

56

4 – Architectures and Experiments

• The recalls, epochs and times are an average over 3 runs

• Reached convergence after 5 epochs, in 3h54m

Dataset R@1 R@5 R@10 R@20 R_avg
Pitts30k Val 88.1 95.6 97.4 98.4 94.9
Pitts30k Test 86.4 93.1 94.9 96.4 92.7
Turin30k Val 57.0 77.7 84.6 89.9 77.3
Turin30k Test 58.3 76.9 82.9 88.2 76.6

Table 4.7: Results of DyNetVLAD trained on Pitts30k

4.2.8 DyNetVLAD on Turin30k
We then trained DyNetVLAD also on the Turin30k dataset, to see if it could
achieve reasonable improvements also on this dataset. The results clearly
show a considerable improvement.
Setup:

• Trained on: Turin30k, train set

• Tested on: Turin30k, val and test set; Pitts30k, val and test set

• The recalls, epochs and times are an average over 3 runs

• Reached convergence after 20 epochs, in 21h56m

Dataset R@1 R@5 R@10 R@20 R_avg
Turin30k Val 77.4 91.6 94.9 97.0 90.2
Turin30k Test 78.2 92.1 95.6 97.6 90.9
Pitts30k Val 68.8 81.4 85.4 88.5 81.1
Pitts30k Test 72.7 84.2 87.8 91.1 83.9

Table 4.8: Results of DyNetVLAD trained on Turin30k

57

4 – Architectures and Experiments

4.2.9 ResNetVLAD + autoencoder on Pitts30k
We trained and tested the ResNetVLAD with autoencoder on the standard
Pitts30k, to have results that we could compare to the standard NetVLAD
[5] paper. However, the results show that the input image reconstruction
through an autoencoder with this configuration is not a suitable self-supervised
task for ResNetVLAD. We therefore did not continue the experiments on the
other datasets.
Setup:

• Trained on: Pitts30k, train set

• Tested on: Pitts30k, val and test set

• Reached convergence after 5 epochs, in 7h24m

Dataset R@1 R@5 R@10 R@20 R_avg
Pitts30k Val 72.2 86.6 91.0 94.4 86.1
Pitts30k Test 69.1 84.6 89.2 93.0 84.0

Table 4.9: Results of ResNetVLAD + autoencoder trained on Pitts30k

4.2.10 NetVLAD on Turin81/Turin1M
Finally, in order to achieve our thesis’ goal, we had to find a way to make
our algorithms scalable to whole cities, and prove that they could work even
on such large datasets. For the final, city-wide test we decided to use the
classical implementation of NetVLAD, trained on Pitts30k

4.2.10.1 Algorithm

The whole algorithm needs to be processed fast enough to be used through
the GUI. Therefore, the classical pattern of online processing would be way
too slow for our purpose (it might take days for a city).
One of the biggest challenges was due to the fact that even if each panorama
was about 400 KB, its related vector of features, calculated with NetVLAD,
was 1284 KB, and all together they would require huge amounts of memory.
This is because the vector of features is a vector of 32768 (215) floats of 4
bytes, and we take 10 crops from each panorama, and we therefore have 10

58

4 – Architectures and Experiments

vectors of features. In order to calculate the euclidean distance between a
vector of features of a query and all the vector of features of the database im-
ages, it is necessary to load the features of the whole database each time that
we have a new query. This process could take days in a city-wide dataset.
As an example, in our Turin1M dataset the images need about 300 GB of
storage, while its vector of features need around 1200 GB. Just loading se-
quentially in memory such a huge dataset, without doing any computation
on it, requires almost a day.
To overcome this memory obstacle, we decided to apply PCA on all the vec-
tors of features, to reduce the dimension from 32768 to a smaller number,
to make sure that these vectors could fit in RAM without losing too much
accuracy. After trying different values for the final dimension of the vectors,
we decided 256 to be the best one: using PCA 256 the recall5 on the Pitts-
burgh dataset drops from 94.8% to 91.8%, but the dimension of the vectors
of features could be reduced by 128 times. The memory required to store the
features for the Turin1M dataset could therefore be reduced from 1200 GB
to about 10 GB, which made them easy and fast to load to RAM. But even
with the whole dataset loaded in RAM, finding the nearest neighbours with
traditional methods would require too much time, as its complexity varies
between O(nd+kn) and O(ndk), depending on the algorithmic choices, where
n is the size of the database set, d the size of the query set, and k is KNN’s
hyperparameter. To speed up the KNN search, we found a great library de-
veloped by Facebook AI Research team named Faiss [20].
Faiss is a library for efficient similarity search and clustering of dense vec-
tors. It is written in C++ with complete wrappers for Python/numpy. Faiss
[20] has various implementation of KNN search, many of which give approxi-
mated results, and which can be performed on GPU. Moreover, Faiss [20] has
a great tool for clustering, which can also be performed on GPU. The clus-
tering can be of great help because given a vector of features from a query,
we can perform the KNN only on the features of the database images which
are closest to the features of the query. To find the closest ones, we just
take those that belong to the same cluster to the query features, or to the
neighboring ones. This helps to avoid computation on the farthest vectors
of features, which obviously would not improve the recall, and would greatly
slow down the algorithm.

59

4 – Architectures and Experiments

Step Duration Offline/Online Disk usage
Download metadata 3 hours Offline 300 MB
Download panoramas 1 day Offline 300 GB
Features computation 2 days Offline 1200 GB
PCA-256 computation 2 days Offline 10 GB

Faiss clustering 2 hours Offline 10 GB
Retrieval < 1 sec* Online NA

Table 4.10: We show the duration of each step for the retrieval on Turin1M.
*The retrieval time is calculated for one query

Once the Faiss [20] index is built on the Turin1M dataset, the model can
be tested through the GUI or by our dedicated step in the pipeline. This
pipeline step is useful to test a set of images in a supervised environment,
while with the GUI we can test one image at a time, without knowing the
recall but watching the database images predicted. In order to process and
test big images like the ones produced by a smartphone, we have decided
to perform a 5-crop during the pre-processing. Each crop has square shape
equal to the 90% of the smallest side of its original image. Then each crop is
resized to a smaller dimension (224x224 pixels) and finally tested. The final
result is produced by a voting performed on the produced predictions of each
single crop.
Summarizing, the test on each query is performed in this way:

• produce 5 crops;

• extract a certain number of predictions for each crop called preds_per_crop;

• the predictions that will be pooled for the entire query is preds_per_query,
where preds_per_query < preds_per_crop);

• assign to all the preds_per_crop different weights: the first preds_per_query
have weight A and to all the rest (preds_per_crop - preds_per_query)
a weight B, where A > B. In this way the first preds_per_query pre-
dictions of each crop will have higher importance w.r.t. the others, so
the most common predictions between the 5 crops will be extracted;

• only the top_per_query (at most preds_per_query) predictions are used
to show the results and calculate the recalls.

60

4 – Architectures and Experiments

4.2.10.2 Setup

• Model: NetVLAD [5] with VGG16 [37] pre-trained on Pitts30k;

• Database: Turin1M

• Query set: Turin81

• PCA: 256

• Precision: 100

• Predictions per crop: 1000

• Predictions per query: 100

• Top per query (max recall): 100

• Weights for voting: 3·preds_per_query+2·(preds_per_crop−preds_per_query)

4.2.10.3 Results

Finally, the final results showed us that our thesis’ goal was mostly achieved.
The whole system takes less than a second to find the location of a query,
and 86% of the queries are correctly located within the first 20 predictions.

Set R@1 R@5 R@20 R@50 R@100
Turin81 40.7 61.7 86.4 87.7 91.4

Table 4.11: Test of Turin81 over Turin1M

4.2.10.4 GUI

Once, the dataset is built, we want to make easy for a novice user execute
two kind of operation: access to db (not really implemented for the thesis
goal) and visualize the algorithm results, for an uploaded photo. In order to
allow this, we have developed a web-like interface, the main page is shown
in the Figure 4.3. The software allows to choose a city, from the available
(actually Turin), set some filter, for example it’s possible to select only a
specific area of the selected city, through the map of the right, and finally
explore the database visualizing all the image matching the filter, or upload
a user photo and run the deep learning algorithm. At this point the software

61

4 – Architectures and Experiments

remands the user to a new page, where the results are shown. Further, for
what concerns the DL software-feature, the user can navigate on the map,
that will show markers in the places predicted (Figure 4.4).
The website is developed in HTML, CSS, BOOTSTRAP and JavaScript for
the client side, while in php for the server one. The maps shown are im-
plemented by means of the official Google API for JS, so they includes all
the features provided by Google Maps, like navigate through the streets with
Google Street View.
Actually, the filter that works is the one on the geographical area. Once
Torino is selected between the cities, the map is updated and a drawable
rectangle allows the user to select a specified zone. The corresponding coor-
dinates are passed to the algorithm and are applied only at the end, so are
shown only the predicted images that matches the user specified coordinates.
The number of images returned by the algorithm is at most 20.
The improvement for future is to apply the filter before the retrieval is per-
formed.

Figure 4.3: Main page of web site

62

4 – Architectures and Experiments

Figure 4.4: Result-page of web site: on top there is the user-uploaded image,
while in the red circles all the correct predictions. The map at the bottom
shows the positions of the predictions.

63

4 – Architectures and Experiments

4.3 Comparison and Discussion
To facilitate the comparison between the various methods used we present
a comparison with the results collected from the previous sections. Results
on Turin30k are shown in Table 4.12, while results on Pitts30k are shown in
Table 4.13. For clearer visualization, only the average value of the recall is
shown (average between recall 1, 5, 10 and 20).
On the Turin30k dataset we can see that removing the distortion can give a
slight improvement, and DyNetVLAD performs better than NetVLAD. In-
painting does not seem to give any acceptable improvement, as the recall is
higher on the val test but lower on the test set.

Method R_avg Val R_avg Test
ResNetVLAD on Turin30k (Baseline) 89.3 89.9

ResNetVLAD on Turin30k_undistorted 89.7 90.2
ResNetVLAD on Turin30k_inpainted 89.4 89.7

DyNetVLAD on Turin30k 90.2 90.9

Table 4.12: Comparison of various methods on Turin30k. In bold are all the
results that work better than the baseline. They are all in bold (and not just
the best one) because the methods can be applied together (e.g. undistort
+ inpainting + DyNetVLAD)

On the Pitts30k dataset we can see that DyNetVLAD performs better
than NetVLAD, and unlike in the Turin30k dataset, inpainting can also give
a slight improvement.

Method R_avg Val R_avg Test
ResNetVLAD on Pitts30k (Baseline) 94.4 92.0
ResNetVLAD on Pitts30k_inpainted 94.6 92.3

DyNetVLAD on Pitts30k 94.9 92.6
NetVLAD + autoencoder on Pitts30k 86.1 84.0

Table 4.13: Comparison of various methods on Pitts30k. In bold are all the
results that work better than the baseline. They are all in bold (and not just
the best one) because the methods can be applied together (e.g. inpainting
+ DyNetVLAD)

64

Chapter 5

Conclusions and future
works

In this thesis we have focused on the visual place recognition (VPR) task,
implementing deep learning algorithms and developing software to make eas-
ier the dataset creation related to Google Street View images and the geo-
localization of photo uploaded by a user. As explained in this thesis, our
pipeline allows to download metadata and images for all the places cov-
ered by Google Street View and perform offline many expensive operations,
reducing the amount of time needed for the actual retrieval test. In our fu-
ture works we’ll work on more challenging datasets, for example where the
database and query images belong to further domains such as day/night or
winter/summer. Moreover, we have already started removing of distortion of
the Turin1M dataset, and from the first tests, it seems to have slightly im-
proved the results. The most interesting works that should be immediately
tried from our point of views are:

• attention module in the network, to focus on the parts of the image that
are deemed as more important to the retrieval task;

• reduce the number of features used during the VPR task, with deep
learning methods, trying to improve the accuracy;

• annotating the images with relevant static objects that might help the
retrieval, such as streetlight poles, benches or statues;

• try different domain adaptation and domain generalization methods, in
order to make the neural network perform well even on more diverse
datasets.

65

66

Bibliography

[1] David Lowe. «Distinctive Image Features from Scale-Invariant Key-
points». In: International Journal of Computer Vision 60 (Nov. 2004),
pp. 91–. doi: 10.1023/B:VISI.0000029664.99615.94.

[2] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool.
«Speeded-up robust features (SURF)». In: Computer Vision and Image
Understanding 110 (June 2008), pp. 346–359. doi: 10.1016/j.cviu.
2007.09.014.

[3] Relja Arandjelovic and Andrew Zisserman. «All about VLAD». In: June
2013, pp. 1578–1585. doi: 10.1109/CVPR.2013.207.

[4] Aude Oliva and Antonio Torralba. «Modeling the Shape of the Scene:
A Holistic Representation of the Spatial Envelope.» In: International
Journal of Computer Vision 42.3 (2001), pp. 145–175. url: http://
dblp.uni-trier.de/db/journals/ijcv/ijcv42.html#OlivaT01.

[5] Relja Arandjelovic, Petr Gronát, Akihiko Torii, Tomás Pajdla, and
Josef Sivic. «NetVLAD: CNN Architecture for Weakly Supervised Place
Recognition.» In: CVPR. IEEE Computer Society, 2016, pp. 5297–5307.
isbn: 978-1-4673-8851-1. url: http://dblp.uni-trier.de/db/conf/
cvpr/cvpr2016.html#ArandjelovicGTP16.

[6] Albert Gordo, Jon Almazan, Jerome Revaud, and Diane Larlus. End-
to-end Learning of Deep Visual Representations for Image Retrieval.
2016. eprint: arXiv:1610.07940.

[7] Jiri Matas, Ondrej Chum, Martin Urban, and Tomas Pajdla. «Robust
Wide Baseline Stereo from Maximally Stable Extremal Regions». In:
Image and Vision Computing 22 (Sept. 2004), pp. 761–767. doi: 10.
1016/j.imavis.2004.02.006.

[8] Navneet Dalal and Bill Triggs. «Histograms of Oriented Gradients for
Human Detection». In: IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR 2005) 2 (June 2005).

67

https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1016/j.cviu.2007.09.014
https://doi.org/10.1016/j.cviu.2007.09.014
https://doi.org/10.1109/CVPR.2013.207
http://dblp.uni-trier.de/db/journals/ijcv/ijcv42.html#OlivaT01
http://dblp.uni-trier.de/db/journals/ijcv/ijcv42.html#OlivaT01
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2016.html#ArandjelovicGTP16
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2016.html#ArandjelovicGTP16
arXiv:1610.07940
https://doi.org/10.1016/j.imavis.2004.02.006
https://doi.org/10.1016/j.imavis.2004.02.006

BIBLIOGRAPHY

[9] Charbel Azzi, Daniel Asmar, Adel Fakih, and John Zelek. «Filtering
3D Keypoints Using GIST For Accurate Image-Based Localization».
In: Jan. 2016, pp. 127.1–127.12. doi: 10.5244/C.30.127.

[10] J. Sivic and A. Zisserman. «Video Google: A Text Retrieval Approach
to Object Matching in Videos». In: vol. 2. Nov. 2003, 1470–1477 vol.2.
doi: 10.1109/ICCV.2003.1238663.

[11] Hervé Jégou, Matthijs Douze, Cordelia Schmid, Theme COG, and
Equipe-Projet Lear. «Hamming Embedding and Weak Geometry Con-
sistency for Large Scale Image Search - Extended version». In: (Oct.
2008).

[12] Hervé Jégou, Matthijs Douze, Jorge Sánchez, Patrick Perez, and
Cordelia Schmid. «Aggregating Local Image Descriptors into Compact
Codes». In: IEEE transactions on pattern analysis and machine intel-
ligence 34 (Dec. 2011). doi: 10.1109/TPAMI.2011.235.

[13] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. «On the bursti-
ness of visual elements». In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR ’09) (June 2009). doi: 10.1109/CVPRW.
2009.5206609.

[14] Relja Arandjelović and Andrew Zisserman. «DisLocation: Scalable
Descriptor Distinctiveness for Location Recognition». In: Nov. 2014,
pp. 188–204. isbn: 978-3-319-16816-6. doi: 10 . 1007 / 978 - 3 - 319 -
16817-3_13.

[15] Ke Yan, Yaowei Wang, Dawei Liang, Tiejun Huang, and Yonghong
Tian. «CNN vs. SIFT for Image Retrieval: Alternative or Complemen-
tary?» In: Oct. 2016, pp. 407–411. doi: 10.1145/2964284.2967252.

[16] Pilailuck Panphattarasap and Andrew Calway. Visual place recogni-
tion using landmark distribution descriptors. 2016. eprint: arXiv:1608.
04274.

[17] Ali Sharif Razavian, Josephine Sullivan, Stefan Carlsson, and Atsuto
Maki. Visual Instance Retrieval with Deep Convolutional Networks.
2014. eprint: arXiv:1412.6574.

[18] Artem Babenko and Victor Lempitsky. Aggregating Deep Convolutional
Features for Image Retrieval. 2015. eprint: arXiv:1510.07493.

[19] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew
Zisserman. «Object retrieval with large vocabularies and fast spatial
matching». In: June 2007. doi: 10.1109/CVPR.2007.383172.

68

https://doi.org/10.5244/C.30.127
https://doi.org/10.1109/ICCV.2003.1238663
https://doi.org/10.1109/TPAMI.2011.235
https://doi.org/10.1109/CVPRW.2009.5206609
https://doi.org/10.1109/CVPRW.2009.5206609
https://doi.org/10.1007/978-3-319-16817-3_13
https://doi.org/10.1007/978-3-319-16817-3_13
https://doi.org/10.1145/2964284.2967252
arXiv:1608.04274
arXiv:1608.04274
arXiv:1412.6574
arXiv:1510.07493
https://doi.org/10.1109/CVPR.2007.383172

BIBLIOGRAPHY

[20] Jeff Johnson, Matthijs Douze, and Hervé Jégou. «Billion-scale similarity
search with GPUs». In: arXiv preprint arXiv:1702.08734 (2017).

[21] Colin Mcmanus, Ben Upcroft, and Paul Newmann. «Scene Signatures:
Localised and Point-less Features for Localisation». In: July 2014. doi:
10.15607/RSS.2014.X.023.

[22] M. Aubry, B. Russell, and J. Sivic. «Painting-to-3D Model Alignment
Via Discriminative Visual Elements». In: ACM Transactions on Graph-
ics (2013). Pre-print, accepted for publication.

[23] Akihiko Torii, Josef Sivic, and Tomas Pajdla. «Visual localization by
linear combination of image descriptors». In: Nov. 2011, pp. 102–109.
doi: 10.1109/ICCVW.2011.6130230.

[24] Tsung-Yi Lin, Serge Belongie, and James Hays. «Cross-View Image
Geolocalization». In: June 2013, pp. 891–898. doi: 10.1109/CVPR.
2013.120.

[25] Nam Vo and James Hays. Localizing and Orienting Street Views Using
Overhead Imagery. 2016. eprint: arXiv:1608.00161.

[26] Mayank Bansal, Harpreet Sawhney, Hui Cheng, and Kostas Daniilidis.
«Geo-localization of street views with aerial image databases». In: Nov.
2011, pp. 1125–1128. doi: 10.1145/2072298.2071954.

[27] Tobias Weyand, Ilya Kostrikov, and James Philbin. «PlaNet - Photo
Geolocation with Convolutional Neural Networks». In: (2016). doi: 10.
1007/978-3-319-46484-8_3. eprint: arXiv:1602.05314.

[28] Torsten Sattler, Will Maddern, Carl Toft, Akihiko Torii, Lars Ham-
marstrand, Erik Stenborg, Daniel Safari, Masatoshi Okutomi, Marc
Pollefeys, Josef Sivic, Fredrik Kahl, and Tomas Pajdla. Benchmark-
ing 6DOF Outdoor Visual Localization in Changing Conditions. 2017.
eprint: arXiv:1707.09092.

[29] Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and Marcin
Dymczyk. From Coarse to Fine: Robust Hierarchical Localization at
Large Scale. 2018. eprint: arXiv:1812.03506.

[30] Youji Feng, Lixin Fan, and Yihong Wu. «Fast Localization in Large
Scale Environments Using Supervised Indexing of Binary Features».
In: IEEE Transactions on Image Processing 25 (Nov. 2015), pp. 1–1.
doi: 10.1109/TIP.2015.2500030.

69

https://doi.org/10.15607/RSS.2014.X.023
https://doi.org/10.1109/ICCVW.2011.6130230
https://doi.org/10.1109/CVPR.2013.120
https://doi.org/10.1109/CVPR.2013.120
arXiv:1608.00161
https://doi.org/10.1145/2072298.2071954
https://doi.org/10.1007/978-3-319-46484-8_3
https://doi.org/10.1007/978-3-319-46484-8_3
arXiv:1602.05314
arXiv:1707.09092
arXiv:1812.03506
https://doi.org/10.1109/TIP.2015.2500030

BIBLIOGRAPHY

[31] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and
Jiaya Jia. Pyramid Scene Parsing Network. 2016. eprint: arXiv:1612.
01105.

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Resid-
ual Learning for Image Recognition. 2015. eprint: arXiv:1512.03385.

[33] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso,
and Antonio Torralba. «Semantic understanding of scenes through the
ade20k dataset». In: arXiv preprint arXiv:1608.05442 (2016).

[34] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso,
and Antonio Torralba. «Scene Parsing through ADE20K Dataset». In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017.

[35] Guilin Liu, Fitsum Reda, Kevin Shih, Ting-Chun Wang, Andrew Tao,
and Bryan Catanzaro. «Image Inpainting for Irregular Holes Using Par-
tial Convolutions». In: (Apr. 2018).

[36] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. «U-Net: Convo-
lutional Networks for Biomedical Image Segmentation». In: (May 2015).

[37] Karen Simonyan and Andrew Zisserman. «Very Deep Convolutional
Networks for Large-Scale Image Recognition». In: CoRR abs/1409.1556
(2014). url: http://arxiv.org/abs/1409.1556.

[38] Cordelia Schmid Hervé Jégou Matthijs Douze and Patrick Pérez. «Ag-
gregating local descriptors into acompact image representation». In:
CVPR 2010 - 23rd IEEE Conference on Computer Vision and Pat-
ternRecognition, Jun 2010, San Francisco, United States (2010). url:
https://hal.inria.fr/inria-00548637.

[39] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. «ImageNet
Classification with Deep Convolutional Neural Networks». In: Advances
in Neural Information Processing Systems 25. Ed. by F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger. Curran Associates, Inc.,
2012, pp. 1097–1105. url: http://papers.nips.cc/paper/4824-
imagenet - classification - with - deep - convolutional - neural -
networks.pdf.

[40] Nanne. pytorch-NetVlad. url: https://github.com/Nanne/pytorch-
NetVlad.

70

arXiv:1612.01105
arXiv:1612.01105
arXiv:1512.03385
http://arxiv.org/abs/1409.1556
https://hal.inria.fr/inria-00548637
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://github.com/Nanne/pytorch-NetVlad
https://github.com/Nanne/pytorch-NetVlad

BIBLIOGRAPHY

[41] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio
Torralba. «Places: A 10 million Image Database for Scene Recognition».
In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(2017).

71

	Introduction
	Thesis's objectives
	Related works and main problems
	Our contribution: research & development

	Related Works
	The landscape
	Image retrieval
	Features extraction
	Local features
	Global features
	Hybrid features

	Features aggregation
	Feature to visual word assignment
	Weighting scheme
	Multiple features aggregation
	Pooling of deep feature maps

	Similarity Research
	K-nearest neighbors
	Other Machine Learning methods

	Candidates re-ranking

	Other approaches
	Cross-appearance localization
	Cross-domain
	Cross-view

	Localization problem as a classification task
	3D-based methods

	I
	Data collection
	Building a dataset
	Metadata and Google street view panoramas
	Google Street View Time Machine
	Removing the distortion
	Cleaning the dataset
	Datasets
	Turin1M
	Turin30k
	Turin81
	Turin30k_undistorted
	Turin30k_inpainted
	Inpainting over dynamic objects

	Pitts30k
	Pitts30k_inpainted

	II
	Architectures and Experiments
	Architectures
	NetVLAD
	Training process
	Setup

	ResNetVLAD
	Setup

	DyNetVLAD
	Setup

	ResNetVLAD + autoencoder
	Setup

	Experiments
	NetVLAD on Pitts30k
	ResNetVLAD on Pitts30k
	ResNetVLAD on Turin30k
	ResNetVLAD on Turin30k_undistorted
	ResNetVLAD on Pitts30k_inpainted
	ResNetVLAD on Turin30k_inpainted
	DyNetVLAD on Pitts30k
	DyNetVLAD on Turin30k
	ResNetVLAD + autoencoder on Pitts30k
	NetVLAD on Turin81/Turin1M
	Algorithm
	Setup
	Results
	GUI

	Comparison and Discussion

	Conclusions and future works

