
POLITECNICO DI TORINO
Master of Science in Computer Engineering

Master of Science’s Degree Thesis

Development of a mobile application for
patient monitoring after coronary heart

diseases

Supervisors

Prof. Monica Visintin

Candidate

Mohamad Almoussa

ACADEMIC YEAR 2019-2020

Acknowledgements

According to a well known quote by Pauline Kael "When there is a will, There is
way". That is true, but he never mentioned where the will comes from, not only
from your inner self but also from the people that surrounds and loves you.

Before I start discussing this thesis, I want to thank all who helped me to start
and finish it.

I would like to thank Professor Monica Visintin for her trust to let me work
on this thesis and helping me through it from the beginning till the end.

I wish to express my deepest gratitude to Abinsula, the company that provided this
thesis, on top of it Poalo Doz. A special thank to Sara Prete the one that stood by
my side in this whole journey in downs before the ups that even a million thanks
wont pay her back, the same goes for Gabriele, Silvia, Maria Chiara, Alberto, and
the whole Abinsula team or in other words Family whose assistance was a milestone
in the completion of this project in which it would be my pleasure to continue and
work to offer the same help they gave to me.

I would like to share my love for my parents, Youssief and Nada, because no
words can express how thankful I am. I am indebted to both of you for all the
support, endless love, patients, sacrifices, encouragements, and above all trust that
you gave me since day one. The only way to repay you, besides love and care, is by
making you proud of me and believe me that is the main purpose of my life.

Thanks to Rola, Sally, Maya, and Ali, my beloved sisters and brother for be-
ing by my side in every step in my life supporting and encouraging to make the
best of me. I hope to be there for all of you the same way you have been for me.

Thanks to Zein, Zayat, and Eva, for being my dearest friends, second family,
and comfort zone that I enter filled with depression and leave it with nothing but
happiness and love.

i

I would also like to thank Hassan, Abbas, and Giath, my friends, for not let-
ting me down and always stick by my side whenever needed. You made the journey
much easier.

Thanks to my uncles, cousins, friends, roommates, and university colleagues,
for all the help and support.

ii

Summary

As a general overview of the project and with the help of definitions presented in
previous thesis work [1] " CardioFilo project aims to create an healthcare model
for patients affected by atrial fibrillation, myocardial infarction and/or undergoing
coronary angioplasty or other revascularisation procedures.". Its main purpose is
to create a smartphone application to keep track of the patient behavior and a web
application for the doctor.

After discharging the patient from the hospital, cardiological visits are limited
to 3-6 month check-ups which may effect controlling habits like blood pressure,
weight, or smoking cigarettes, and monitoring exam results, bleeding without help,
and/or sleep monitoring. Lack of supervision may lead to some difficulties in
managing radical changes of habits and following complex therapies, in addition to
the possibility of experiencing a new cardiovascular adverse event.

In this master thesis work we will focus on the mobile application part of
CardioFilo’s project which aims to provide an additional tool for the secondary
prevention of cardiovascular diseases through the smartphone. We will discus
who will use it, how to develop it, tools used, future improvements, and of course
security measures and precautions applied.

In CardioFilo’s mobile application different tools and libraries were used. An-
droid studio as a development tool, java as a programming language, Auth0 for
authentication, and Okhttp for server connection. It was implemented jointly with
Abinsula’s mobile development team, and all the graphics were developed by Abin-
sula’s graphic team. Both teams are located in Sassari and the collaboration with
them took place remotely with the help of Gitlab, a web-based DevOps platform
that provides Git-repository, and hangouts meet for scheduled meetings.

The mobile application is divided into multiple activities, some of them are
read-only, uploaded by the doctor (i.e. personal data, medical reports, overview)
which gives the patient the possibility to check his own situation. As for the other
activities, they are for the patient to state his records to keep the cardiologist
updated (i.e. record data, therapy).

iv

Table of Contents

List of Figures vii

Acronyms ix

1 CardioFilo Mobile Project 1
1.1 Project Overview . 1
1.2 Actors . 2

1.2.1 Cardiologist and Nurses . 3
1.2.2 Patient . 4
1.2.3 Caregiver . 6
1.2.4 Technician . 7

1.3 CardioFilo’s Activities . 7
1.3.1 UML: Use Case Diagrams 7
1.3.2 UML: Activity Diagrams . 9

1.4 Cardiofilo Graphics . 11

2 Tools used 15
2.1 Android Studio . 15

2.1.1 Why android Studio? . 16
2.1.2 Java Or Kotlin? . 17

2.2 Auth0 . 19
2.2.1 Why use Auth0? . 19
2.2.2 CardioFilo Authentication using Auth0 20

2.3 OkHttp Client . 22
2.3.1 Request Data . 23
2.3.2 Post Data . 24

2.4 Git . 25
2.4.1 GitLab . 26

2.5 Database and API’s . 27

v

3 Security 30
3.1 Cryptography . 30

3.1.1 Symmetric Encryption . 33
3.1.2 Asymmetric Encryption . 34
3.1.3 Symmetric vs Asymmetric 36

3.2 Auth0 Access Tokens . 37
3.2.1 Access Tokens In CardioFilo 39

3.3 Unit Tests . 40
3.4 Secure Coding . 41

4 Final Mobile Application UI 45

5 Future Work 55
5.1 App improvements . 55

5.1.1 Languages . 55
5.1.2 Notifications . 56

5.2 IOS Application . 56
5.3 Doctor’s application . 58

Bibliography 68

vi

List of Figures

1.1 Schematic representation of the CardioFilo hardware architecture [1]. 1
1.2 CardiodFilo’s mobile application actors. 2
1.3 Patient’s read and write activities in CardioFilo application 5
1.4 Schematic representation of CardioFilo’s mobile application use case

by the patient . 7
1.5 Schematic representation of CardioFilo’s mobile application use case

by the patient . 8
1.6 Schematic representation of CardioFilo’s mobile application use case

by the patient . 9
1.7 Activity Diagram relative to the patient overview 10
1.8 Activity Diagram relative to medical reports 10
1.9 Activity Diagram relative to record data 11
1.10 Graphics of the mobile application on Zeplin 12
1.11 Graphics of the mobile application on Zeplin 13
1.12 Graphics of the mobile application on Zeplin 14
1.13 Graphics of the mobile application on Zeplin 14

2.1 Overview of how android studio works 16
2.2 CardioFilo Build Variants division to support 2 different types of

Login . 20
2.3 Universal Login Flow in CardioFilo 21
2.4 Embedded Login Lock Flow in CardioFilo 22
2.5 Okhttp Request code used in CardioFilo 23
2.6 Okhttp Request Diagram . 24
2.7 Okhttp Post schema . 24
2.8 Okhttp Post Code used in CardioFilo 25
2.9 Overview of CardioFilo branches in Gitlab 26
2.10 Screenshot of branches created and merged in Cardiofilo 27
2.11 General overview of the API and database connection 28

3.1 Encryption and decryption in Cryptography 31

vii

3.2 Pyramid of security in security systems. 31
3.3 Symmetric encryption based on the same key shared between sender

and receiver. 33
3.4 Asymmetric encryption based on the different keys [23] 35
3.5 Key strength of both symmetric and asymmetric algorithms 37
3.6 Difference between symmetric and asymmetric algorithms 37
3.7 Client’s Token process in order to retrieve data 38
3.8 Increasing cost of bugs and defects at each phase of software devel-

opment[29]. 41
3.9 Defects found at each phase of software development[29]. 42
3.10 Cost to repair defects at each phase of software development[29]. . 42
3.11 Toast example that shows the expected value to be inserted 44

4.1 Splash screen and login . 49
4.2 Main activity . 50
4.3 Overview . 50
4.4 Status and history . 51
4.5 Status and history . 51
4.6 Record Data . 52
4.7 Record Data . 52
4.8 Record Data . 53
4.9 Record Data . 53
4.10 Record Data . 54
4.11 Record Data . 54

5.1 Mechanism for changing the application’s language. 56
5.2 Mobile Operating System Market Share Worldwide. [30] 57
5.3 Login In activity. 59
5.4 Home Page. 60
5.5 Patient’s list filtering and searching for specific one. 61
5.6 Patient’s Data. 62
5.7 Patient’s Data. 63
5.8 Patient’s Data. 64
5.9 Patient’s Data. 65
5.10 Patient’s Data. 66
5.11 Notification’s Activity. 67

viii

Acronyms

AI
Artificial Intelligence

IDE
Integrated Development Environment

AS
Android Studio

SSO
Single Sign-on

HTTP
HyperText Transfer Protocol

FTP
File Transfer Protocol

OAT
Opaque Access Tokens

HIV
Human Immunodeficiency Virus

BMI
Body Mass Index

DES
Data Encryption Standard

ix

RC
Ron’s Code

AES
Advanced Encryption Standard

DSA
Digital Signature Algorithm

RSA
Rivest Shamir Adleman

DH
Diffie-Hellman

x

Chapter 1

CardioFilo Mobile Project

1.1 Project Overview
CardioFilo’s Mobile application is a part of the main CardioFilo’s project, a service
that aims to generate a technological service between the cardiologist and the
patient to optimize cardiac patient home follow-up. It works along side with a Web
application that is already implemented by Abinsula Web development team. Both
platforms communicate with the server via Internet connecting by Wi-Fi/ADSL,
Ethernet or 3G/4G [1] as shown in figure 1.1.

Figure 1.1: Schematic representation of the CardioFilo hardware architecture [1].

The Mobile application is mainly used by cardiac patients after their first

1

1 – CardioFilo Mobile Project

examination by the Cardiologist who will register them, using the Web platform,
in the patient’s list and create a unique username and password in order to log-in
to the app.

1.2 Actors

CardioFilo’s mobile application actors are not only those who have direct usage,
but also indirect part in the application’s workflow as shown in figure 1.2.

Figure 1.2: CardiodFilo’s mobile application actors.

Direct actors:

• Patients: main users of the application.

• Caregiver : substitute of the patients in-case of any difficulties.

2

1 – CardioFilo Mobile Project

Indirect actors: Tasks

• Cardiologist: upload medical records, using the web application, which will
be viewed by the patient using the mobile application. In addition to that,
monitoring all inserted patient’s record data.

• Nurse: Insert patient’s personal data.

• Technician: Develop and update the application.

1.2.1 Cardiologist and Nurses
Even-though both the cardiologist and the nurses do not interact directly with the
mobile application, they are important actors in the whole system due to the fact
that they are responsible for entering all the data that represent the patient.

For each patient, the mobile application shows the personal data which was
already inserted by the nurse, using the web platform, before the first visit. Nurses
should ask the patient for the required personal data :

• Name and surname;

• Email;

• Data of birth;

• Place of birth;

• Fiscal Code;

• Address;

• Phone Number;

After that, the cardiologist is responsible to enter the results of the examination,
using the web platform, in the patient’s medical reports and present a suitable
therapy. The patient can check them using the mobile application which will show:

• Risk factors, i.e. hypertension, diabetes, previous chemotherapy, previous
radiotherapy, HIV in treatment, smoke, severe renal treatment.

• Body mass index, i.e. height, weight, BMI.

• Allergies and active implantable devices.

• Previous acute coronary events.

• Ejection fraction.

3

1 – CardioFilo Mobile Project

• Surgery dates if needed.

• General, cardiovascular, and recent history.

• Suitable therapy plan

Cardiologists can also monitor the situation of the patients on his web platform by
viewing the recorded data inserted by the patients.

Advantages of using CardioFilo by the cardiologist:

• Always have updated information on the patient.

• Simple and effective way for collecting data (e.g. : blood pressure, heart rate,
weight, adverse events).

• Optimized therapeutic measures.

• Direct communication with the patient in case of changes in the health status.

• Timely identification of the most critical patients.

1.2.2 Patient

Cardiac patients are the main users of the mobile application. Usually 75 years old
women and 65 years old men are the most suspected to have this kind of diseases.
After the first examination, through username and password authentication, patients
can start using the app that already contains all their personal data and medical
reports uploaded earlier by the cardiologist. Patients, using the application, can
enter daily recorded data and therapy changes (figure 1.3).

4

1 – CardioFilo Mobile Project

Figure 1.3: Patient’s read and write activities in CardioFilo application

Record data is divided into 2 parts, daily and events. In the daily part patients
can enter:

• Weight;

• Blood pressure;

• Heart Rate;

• Glycemia;

• Smoked cigarettes;

• Sleep monitoring;

The event part is more focused on the medical situation, visits, and therapy plans.
Patients can :

5

1 – CardioFilo Mobile Project

• Change the therapy.

• Ask for a visit by stating the reason.

• Inform about bleeding without help cases.

• Ask for hospitalization.

• Add exam results.

Patients can also check their therapy suggested by the doctor using the applica-
tion. It will include the drugs needed for each day and time. In addition to that, a
calendar is also implemented to provide the ability to check previous and future
therapy plans.

Advantages of using Cardiofilo by the patient:

• Continuous monitoring of his health conditions by the reference cardiologist.

• Feeling of comfort and security arising from knowing that there is a doctor
who monitors his/her situation.

• Optimized therapeutic measures.

• Simple and effective way for collecting clinical data.

• Increased awareness of his health status.

1.2.3 Caregiver
Caregiver is a [2] "Person who takes primary responsibility for someone who cannot
care fully for himself or herself. The primary caregiver may be a family member, a
trained professional or another individual. A person may need care due to loss of
health, loss of memory, the onset of illness, an incident (or risk) of falling, anxiety
or depression, grief, or a disabling condition.".

Since the patients are elderly, we should take into consideration that they may
have cognitive or visual impairments which would make it difficult for them to
use smartphones or tablets. In this situation, the caregiver can use the mobile
application instead of the patient. He/She can login using the patient’s credentials
and substitute them.

6

1 – CardioFilo Mobile Project

1.2.4 Technician

The technician does not have a direct interaction with the mobile application, but
still considered as a main actor in the project. He is responsible of developing the
mobile application and fixing all discovered bugs. Even after the application is
published his part is not finished, he should always be available for adding new
features and updating available ones.

1.3 CardioFilo’s Activities

To have the best representation of the mobile application, UML diargrams are
presented according to the requirements discussed in previous thesis work [1] about
CardioFilo’s project (see figures 1.4, 1.5, 1.6).

1.3.1 UML: Use Case Diagrams

Figure 1.4: Schematic representation of CardioFilo’s mobile application use case
by the patient

7

1 – CardioFilo Mobile Project

Figure 1.5: Schematic representation of CardioFilo’s mobile application use case
by the patient

8

1 – CardioFilo Mobile Project

Figure 1.6: Schematic representation of CardioFilo’s mobile application use case
by the patient

1.3.2 UML: Activity Diagrams
For a more precise design of the mobile application architecture, activity diagrams
were made. Each diagram represents a single screen of the CardioFilo’s mobile
application and contains detailed information about the logical flow of data (figures
1.7, 1.8, and 1.9).

9

1 – CardioFilo Mobile Project

Figure 1.7: Activity Diagram relative to the patient overview

Figure 1.8: Activity Diagram relative to medical reports

10

1 – CardioFilo Mobile Project

Figure 1.9: Activity Diagram relative to record data

1.4 CardioFilo Graphics

CardioFilo’s mobile application graphics where created by Abinsula’s graphic team
based on several meetings and mock-ups provided in previous thesis work [1]. All
the graphics were uploaded on Zeplin, a connected space for product teams to
share designs and style guides with accurate specs, assets, and code snippets [3].

These graphic were shared among developers whose email is certified to enter
the project. Figures 1.10, 1.11, 1.12, and 1.13 are some of the screens uploaded on
Zeplin. Each one of them contain all the styles, buttons, images, dimensions, and
colors needed by the developer in order to create the exact view.

11

1 – CardioFilo Mobile Project

Figure 1.10: Graphics of the mobile application on Zeplin

12

1 – CardioFilo Mobile Project

Figure 1.11: Graphics of the mobile application on Zeplin

13

1 – CardioFilo Mobile Project

Figure 1.12: Graphics of the mobile application on Zeplin

Figure 1.13: Graphics of the mobile application on Zeplin

14

Chapter 2

Tools used

Although the final application is always the programmer’s concern and that is what
is finally shown, the base of every project is choosing which tools are used and
finding out which is better, in a way that makes the project more efficient and in
the same time simpler.

The first step of choosing tools and properties is a deep research and comparisons
based on the previous knowledge from the programmer on what is needed. At
the beginning of every mobile application development, decisions should be made.
Which programming tool should be used? which programming language? and after
that comes Authentication strategy, security, database and connection management,
and above all project management.

In CardioFilo decisions were made based on researches and the experience of
Abinsula Team.

2.1 Android Studio

Android Studio is the official IDE "Integrated Development Environment" for
Google’s Android operating system, built by JetBrains’ IntelliJ IDEA software
and designed specifically for Andriod development. Besides JAVA, andriod studio
supports Kotlin and C++.

Figure 2.1 shows the main functionality of android studio in which different
types of codes are compiled in order to create an APK which will be installed on
the mobile phone in order to use the developed application.

15

2 – Tools used

Figure 2.1: Overview of how android studio works

2.1.1 Why android Studio?
Looking for a stable IDE, always choose Android Studio(AS), which is specifically
designed to accelerate the process of Android mobile App development. Ever since
its announcement in 2013, AS has been in the buzz because it nearly meets all the
expectations of developers.

Over 76.6 percent of smartphone giants like Samsung, LG, and HTC are using
Android OS, at present. Android is soon expected to take a leap to laptops, smart
watches, and cars. Android holds estimated 2 US billion dollars net worth as it’s
used by a majority of people across the world.

AS have lots of advantages that makes it better than the others, and others
mainly means Android-Eclipse[4]:

• Gradle Build System

Android Studio uses highly integrated Gradle build system which offers de-
pendency management and enhances developer experience because it is more
extensible.

• User Interface

Eclipse is big, so as a first time use for developers is a sort of a problem which
it is not in AS. The menu and tools used in it are prompt and can be easily

16

2 – Tools used

used.
Also to mention that AS is specifically built for Android, the user interface is
smooth as compared to eclipse which was built for all-purpose IDE.

• Availability of Drag-and-Drop

Android Studio offers Graphical User Interface, so the knowledge of Visual
Basic helps developers to use drag-and-drop appropriately.
Mainly, drag-and-drop is used by coders who are concerned to have an in-depth
knowledge of Visual basic, not by those who are not concerned about their
applications’ visual elements.

• Java Code Auto Completion

Although Java code auto-completion is supported by both Eclipse and AS,
AS is better than Eclipse due to the fails to provide the precise solutions most
of the time in Eclipse. Considering the importance of code completion for a
developer, AS has been designed to offer precise solutions.

• Stability of System

AS offers more stable performance than Eclipse, it arrives with lesser bugs,
lower system requirements, and easy approach.
Eclipse requires a higher Ram and CPU speed because of the larger IDE
and the basic Java-based software, so the failure to get the desirable criteria
may result a crash and becoming unresponsive. In addition, AS requires 30
seconds to compile a release version which may take up to 2 minutes in Eclipse.

In addition to all the points mentioned above, Android Studio is absolutely
one step ahead for the ability to run and debug apps using the Android
Virtual Device (Emulator), support for building Android Wear apps, built-in
support for Google Cloud Platform, enabling integration with Firebase Cloud
Messaging and Google App Engine, and Template-based wizards to create
common Android designs and components.

2.1.2 Java Or Kotlin?
This title comes with lots of tags and questions: what is the difference? which is
better? which is more used? lots of facts and different opinions.

17

2 – Tools used

The best way to illustrate the difference is by listing the pros and cons of both of
them [5].

Pros of Java :

• Easy to learn and understand in addition to flexibility.

• Large open-source ecosystem and libraries.

• Good cross-platform apps.

• Java apps are more compact and lighter as compared to Kotlin.

• Java possesses faster build process than Kotlin.

• Thanks to proceeding assembly with Gradle, collecting large projects becomes
easier in Java.

Cons of Java

• Comes with limitations such as it causes problems with Android API design.

• Higher risk of bugs since it requires writing more code.

• Slower in comparison to many other languages since it requires a lot of memory.

Pros of Kotlin

• Fewer errors and bugs due to the less amount of code.

• Kotlin aids in building a clean API.

• Usage of Java libraries and frameworks in Kotlin.

• Solves the nullability problems faced in Java by placing null directly in its
type system.

• Reduces unit test case because of static typing.

Cons of Kotlin

• Slower compilation speed than Java

• There is definitely a learning curve with Kotlin: the very short syntax, while
a great benefit, requires some learning.

18

2 – Tools used

• Some features of Android Studio such as auto-completion and compliance run
slower in Kotlin than Java.

• Experienced Kotlin developers are still a rarity.

Despite all the benefits of Kotlin, Java was the programming language used in
Cardiofilo, considering the fact that Java is one of the most powerful programming
languages and more flexible.

2.2 Auth0
Auth0 is a flexible, drop-in solution to add authentication, authorization services,
and Token-based Single Sign On for your Apps and APIs with social, databases,
and enterprise identities. It is a set of unified APIs and tools that instantly enables
Single Sign On and user management to all your applications[6].

Teams and organizations have to pay to use Auth0 but save time and reduce
the risk that comes with building their own solution to authenticate and authorize
users. In addition to connecting any application written in any language to Auth0,
developers can define the identity providers they want to be used in order to log in.
Authentication can be provided in different forms in Auth0, either by providing
username and password or by using social accounts already certified by Auth0.

2.2.1 Why use Auth0?
Auth0 is trusted by Abinsula as the Authentication provider, and that trust was
earned based on several things that Auth0 provides[7]:

• Ability to login using social accounts.

• Implementation of Single Sign ON (SSO) for more than one app.

• Secure access API’s.

• Authentication of users using Security Assertion Markup Language (SAML)
in web applications.

• Generation of one-time codes delivered by email or SMS.

• Proactive block of suspicious IP addresses if they make consecutive failed login
attempts, in order to avoid Distributed Denial of Service (DDoS) attacks.

Why setting effort and time for building your own solution to provide Authen-
tication when there is a fully functional and secured library that can be easily
used?

19

2 – Tools used

2.2.2 CardioFilo Authentication using Auth0
When designing the authentication experience for an application using Auth0, two
choices can be considered concerning the login flow, universal or embedded login[8].
Both have one main purpose which is authenticating the user in order to login but
they are different in the way they achieve it.

In Cardiofilo both of them were used, separated in 2 different buildTypes, Release
and Debug. 2 different flavors were developed in each buildType, both with the
same functionality but with different types of login flows.

Figure 2.2 shows the 4 apks created for both Universal and Embedded login in
2 separated buildTypes which the company have the right to choose which one the
user can use.

Figure 2.2: CardioFilo Build Variants division to support 2 different types of
Login

20

2 – Tools used

Universal Login

Universal Login is Auth0’s implementation of the login flow, which is the key
feature of an Authorization Server. Each time a user needs to prove their identity,
the application redirects to Universal Login and Auth0 will do what is needed to
guarantee the user’s identity. In other words as shown in figure 2.3, with Universal
Login, when the users try to log in they are redirected to a central domain, through
which authentication is performed, and then they are redirected back to the app[9].

Figure 2.3: Universal Login Flow in CardioFilo

By choosing Universal Login, it is not necessary to do any integration work to
handle the various flavors of authentication, simple username and password login
can be implemented. In addition there is a toggle switch that can include features
such as social login (Facebook, twitter,..)[8].
SSO is better supported in Universal Login, due to the fact that with embedded

21

2 – Tools used

login, it is necessary to collect the user credentials in an application served from
one origin and then send them to another one, which can present certain security
vulnerabilities.
Whenever the app triggers an authentication request, the user will be redirected to
the login page in order to authenticate. This will create a cookie. In subsequent
authentication requests, Auth0 will check for this cookie, and if it is present the
user will not be redirected to the login page. They will see the page only when
they need to actually log in. This is the easiest way to implement SSO.
Consistency and Maintenance in Universal Login is mush easier if you have multiple
apps because you do not have to implement different login pages. The Authorization
Server owns all the login pages which makes the management easier and the pages
more consistent and secure.

Embedded Login (Lock)

In Embedded login flow, Lock for mobile was used. Lock does not redirect the
user somewhere central. The login widget is served from the same page without
redirecting the user to another domain. The credentials are then sent to the
authentication provider for authentication all inside the app as shown in figure 2.4.

Figure 2.4: Embedded Login Lock Flow in CardioFilo

In Embedded Login, User experience is better because it does not require
redirecting to another sub domain, users will stay in the same application to
perform authentication. In addition, Embedded Login contains a library which the
programmer can manage in order to change the UI.

2.3 OkHttp for server connection
In general, HTTP is the way modern applications network exchange data over the
internet. HTTP efficiently loads faster and saves bandwidth.

22

2 – Tools used

OkHTTP is an open source project designed to be an efficient HTTP client, which
by default[10]:

• Connection pooling reduces request latency in case HTTP/2 is not available.

• Transparent GZIP shrinks download sizes.

• Response caching avoids the network completely for repeat requests.

Initially Android had only two HTTP clients: HTTPURLConnection and
Apache HTTP Client, for sending and receiving data from the web. OkHttp
android provides an implementation for both client interfaces by working directly
on top of a java Socket without using any extra dependencies.
Using OkHttp is easy. Its request/response API is designed with fluent builders
and immutability. It supports both synchronous blocking calls and asynchronous
calls with callbacks.
In CardioFilo, Okhttp was used in order to request and post data from the web
server.

2.3.1 Request Data
In order to Request Data in Android using Okhttp, 2 main things are needed, Base
URL from which the data is stored and the access token that grants authorization.

Figure 2.5: Okhttp Request code used in CardioFilo

23

2 – Tools used

Figure 2.5 shows the code of how to request data using okHttp. Based on the
URL and Access token, a request.builder is generated which will be called using a
new generated OKHttpCLient builder as shown in figure 2.6. In case of success,
data will be retrieved in the onResponce callback. Otherwise, onFailure will return
the reason of failure.

Figure 2.6: Okhttp Request Diagram

2.3.2 Post Data

Figure 2.7: Okhttp Post schema

Posting Data to a web server using okHttp have the same procedure as when
requesting data. The only difference is that here, data should be included (see
figures 2.7 and 2.8).

24

2 – Tools used

Figure 2.8: Okhttp Post Code used in CardioFilo

2.4 Git
Git is generally known as a distributed version-control system for tracking source
code changes during any software development. The main purpose of Git is
coordinating work among programmers, manage a project, or a set of files, as they
change over time. Its goal is data integrity, speed, and support for distributed,
non-linear workflows in additon to many other Charactristics[11]:

• Strong support for non-linear development in which multiple merges and
branches could be commited and created in the same porject.

• Compatibility with existent systems and protocols as HTTP, FTP, CVS, and
IDE plugins.

25

2 – Tools used

• Efficient handling of large projects

• Cryptographic authentication of history

• Distributed development which also includes local branches

• Pluggable merge strategies

2.4.1 GitLab
GitLab is a web-based DevOps platform, that provides Git-repository. It is known
with its unmatched visibility and the high level of efficiency in a single application
across the DevOps lifecycle. This makes GitLab somehow unique and makes
concurrent DevOps possible[12].

CardioFilo with GitLab

Gitlab was used in CardioFilo in order to manage the work on the project between
multiple parties. Different partitions were created, Cardiofilo Web project, front-
end, back-end, and of course mobile project.
Beside using gitlab as Git to add, fetch, and commit codes, it was also used to
organize tasks. Different tasks can be created and assigned to developers along side
with a branch in which the task is done. Figure 2.9 shows some of the branches
created while developing Cardiofilo.

Figure 2.9: Overview of CardioFilo branches in Gitlab

26

2 – Tools used

Branches can be created for each set of related changes in which it keeps each
one of them separated from the other, to allow changes be made in parallel without
any collisions as shown in figure 2.10. After pushing all the changes a merge can
be done to the original branch that contains the original finished code.

Figure 2.10: Screenshot of branches created and merged in Cardiofilo

GitLab is compatible with Android Studio. Branches can be fetched directly,
same as adding, committing and pushing changes to it.

2.5 Database and API’s
CardioFilo’s mobile application contains clinical data for patients who suffer from
different kinds of cardiac diseases, so a health information system with efficient
representation is required. For this reason, openEHR was used as a database for
storing the patient’s clinical data.

OpenEHR is an open health standard that concerns electronic medical records
and the standardization of the data contained in them. And as defined in [13]:
"openEHR is feasible and easy-to-apply IT platform that possibly provide several
benefits over single-level information systems in the care of elderly, comorbid
population".

Sqlite3 and Postgres databases were also used for non-clinical data (i.e. personal
data).

27

2 – Tools used

• SQLite is a C-language library that implements a small, fast, self-contained,
high-reliability, full-featured, SQL database engine [14]. It was used for local
development environment.

• Postgres is a free and open-source relational database management system
emphasizing extensibility and technical standards compliance [15]. It was used
for test and stage environment.

CardioFilo’s databases were written in python using django, a high-level Python
Web framework that encourages rapid development and clean, pragmatic design [16].
All of them including the APIs were developed by Abinsula’s back-end development
team.

The goal of this Back-End service is to provide a REST API to save and retrieve
clinical documents, record data, and personal data of patients using CardioFilo’s
mobile application. All clinical documents were stored following the open EHR
standard specification, but provided to doctors through human readable format. So
that, this service will store each document reference into its database, which will be
used to retrieve clinical data through the Clinical Gateway service downstream. To
allow the application access these APIs to retrieve or post data, an Auth0 opaque
token should be presented. The identity service is based on Auth0 identity platform
and the authentication process uses the token granted by Auht0 after authenticated
login to the app. This token should be included in the header of the request of
these APIs (discussed briefly in section 3.1 of this thesis work).

Figure 2.11 shows the process of requesting data, used in CardioFilo, from the
database using REST APIs and authorized by Auth0.

Figure 2.11: General overview of the API and database connection

Table 2.1 shows the GET and POST API requests, both of them include the
URL of the API, but they differ in the parameters and response. Obviously, POST
must include parameters which meant to be stored in the database using the API
called, and as a response it will get a status code that represents the condition of the
request. Each status code stands for a result already developed by the programmer

28

2 – Tools used

(i.e 200 success, 400 error, 500 connection error,...). The description if these codes
are presented in the description, this helps the developer understand the result of
the request especially if the developer of the APIs is different from the developer
who uses them. GET requests include only the URL of the requested API and of
course the access token. On success, the response retrieves the requested data.

GET POST

URL URL of the document
needed

URL to the document
to be added or updated

Parameters None body request model to be saved

Response body request model of
the data requested status code

Description description of the document description of the document and status code

Table 2.1: GET and POST requests for storing and retrieving data from APIs

29

Chapter 3

Security

Security is the most important aspect that must be taken into consideration while
developing any kind of project. By making the application more secure, user trust
and device integrity is granted[17]. Lack of security gives hackers direct control on
the device which can result to:

• Access to personal information.

• Denial of service to a single user.

• Loss of service.

• Damage to the systems of thousands of users.

Cardiofilo is a medical application which contains patient’s medical data. Security
measures were applied on each phase of developing with the supervision of Abinsula
team.

3.1 Cryptography
Cryptography is a technique used for securing confidential data against unauthorized
recipient. It prevents determining the content of private messages or any kind of
information sent through the internet and/or stored in any kind of storage systems.
In other words, cryptography is constructing and analyzing protocols that prevent
third parties from reading private messages [18].

Nowadays, security is a preliminary need and it is really challenging especially in
network broad systems and technology domains. Data could be hacked in different
forms (i.e. text data, audios, images, content of information, and videos). These
forms can be intercepted during the communication process between 2 users or
at storage systems, so it is more secure to encapsulate them. For this purpose
cryptography is the most popular and basic need for data security. [19]

30

3 – Security

Cryptography algorithms are widely available and used in information security.
They are categorized into Symmetric and Asymmetric keys encryption. These
algorithms are mainly based on 2 methods, encryption for encrypting data at
sender side and decryption for decrypting at the receiver side as shown in figure 3.1.
Encryption is the process of encoding a plain text in a way that only authorized
users can access and read it. Mainly, encryption uses a mathematical algorithm
which transforms plain-text data into cipher-text (encrypted) using an encryption
key. In order to read the cipher-text, decryption should be applied. Decryption is
the process of converting encrypted text back into plain-text that can be read.

Figure 3.1: Encryption and decryption in Cryptography

The main purpose of cryptography is to achieve as mush as possible security goals
especially nowadays with all the improvements in the communication networks.[20]

Figure 3.2: Pyramid of security in security systems.

Authentication:

A security system offers the authentication property if it allows to verify a proof
which has the purpose to attest the truthfulness of a data or entity attribute.

31

3 – Security

Authentication should be the most important property in any security system, if it
is not strong, all the security measures at the upper layers will not make sense (fig.
3.2). Keeping track of operations which have been performed after authentication
(saved in the Log) makes sense, from the security point of view, only if there is the
certainty of who performed those operations.

Cryptography can provide two types of authentication services [21]:

1. Integrity authentication: used to verify that no modifications has occurred to
the encrypted data.

2. Source authentication: used to verify the identity of the creator of the infor-
mation.

Authorization:

Authorization is used to provide permission to perform a security function or
activity. It is generally granted after the successful execution of an authentication
service. This security service is often maintained by a cryptographic service.

Data integrity:

Data integrity provides assurance that the data have not been altered or destroyed
in an unauthorized manner like:

• Modification: changing transmitted or stored data.

• Cancellation: data can be blocked before arriving to the destination.

• Replay: data in transit could be transmitted more than one time.

Cryptography mechanisms, digital signatures and message authentication, can
be used to detect data modifications either accidental or due to hardware failure
which can guarantee data integrity.

Privacy and data confidentiality:

Privacy is the right of individuals to control what information may be collected
and stored and by whom and to whom that information may be disclosed. It
allows to guarantee that no one can access confidential information without being
authorized.

Cryptography is used to encrypt the data to make it unintelligible to everyone
other than those who are authorized to view it. To provide privacy and data
confidentiality, cryptography is implemented in a way that an unauthorized party
will not be able to determine the keys that have been used in the encryption process
or have the ability to derive the information without using the correct keys.

32

3 – Security

3.1.1 Symmetric Encryption
Symmetric encryption cryptography is a branch of cryptography that uses the same
key for both operations, encryption and decryption. In symmetric cryptography,
the symmetric key is a single secret-key, shared only between the sender and the
receiver as shown in figure 3.3.

Figure 3.3: Symmetric encryption based on the same key shared between sender
and receiver.

Key length Block size
DES 56 bits 64 bits
3DES 112 or 168 bits 64 bits
RC2 8 to 1024 bits 64 bits
AES 128, 192, or 256 bits 128 bits
RC5 0 to 2048 bits 1 to 256 bits
RC4 variable stream

Table 3.1: Key and block size of symmetric algorithms

Symmetric algorithms (table 3.1) are split into two classes:

• Block algorithms: data is split to be encrypted into equal blocks, then they
are processed block at a time (e.g. DES, RC2, RC5, AES).

• Stream algorithms: data is encrypted one bit or byte at a time, in data stream
(e.g. RC4).

Data Encryption Standard (DES)

DES Algorithm was designed in the 70s and it was the first encryption standard
to be recommended by National Institute of Standards and Technology. It uses
64 bits key size with 64 bits block size. DES faced many attacks since it was first

33

3 – Security

created due to the shortness of the key used. The actual key is 64 bit but the
effective key is just 56 bit which made it an insecure block cipher because of the
strength of the brute force attack which is equal to 256.

3DES is an enhanced version of DES to solve the vulnerabilities presented in
the actual version. It is 64 bit block size with 192 bits key size. It is similar to the
original DES, but the encryption method is applied 3 times to increase the level
and the average safe time. It is known that 3DES is slower than the other block
cipher methods due to the 3 time encryption [22].

Ron’s Code 2 (RC2)

RC2 is a symmetric block algorithm developed by cryptographer Ron Rivest. It
is 3 times faster than DES and it is implemented at the software level. RC2 is a
64-bits block cipher with a variable key size that range from 8 to 128 bits.

Ron’s Code 5 (RC5)

The RC5 algorithm is also developed by Ron Rivest. It was created specifically
for Wireless Application Protocol. In RC5 lots of parameters, key length and the
basic block size, are variable, but the algorithm works better when block size B is
equal to twice the word in the CPU it is running on.

Advanced Encryption Standard (AES)

AES was published first time in the national institute of standard technology and
developed by two Belgian cryptographers Daemon and Trijiman. It is a block
cipher with variable key length of 128, 192, or 256 bits but usually 256 bit. it
encrypts data blocks of 128 bits in 10, 12 and 14 round depending on the key size
[22].

Ron’s Code 4 (RC4)

RC4 is a stream symmetric algorithm made by Ron Rivest. It is 10 times faster
than DES and it uses a variable key length. Stream algorithms work on a stream
of data without requiring to split them into blocks. Each bit in the plain-text data
stream is matched with a bit in the key flow, and these bits are combined together
in some way (i.e. XOR) to get the cipher-text. The key stream must be the same
in the encryption and decryption.

3.1.2 Asymmetric Encryption
Asymmetric cryptography is a modern branch of cryptography (known also as public
key cryptography) in which the algorithm uses a pair of keys, public and private.

34

3 – Security

Both keys are used in the cryptographic operations, encryption and decryption or
signature creation and signature verification as shown in figure 3.4.

The asymmetric key is made of 2 keys:

• Private key: known only by its owner, and it is kept secret to the rest of the
world.

• Public key: spread as widely as possible to the rest of the world.

Figure 3.4: Asymmetric encryption based on the different keys [23]

Main asymmetric algorithms:

Diffie-Hellman (DH)

Diffie-Hellman is the first asymmetric encryption algorithm, created by Whitfield
Diffie and Martin Hellman. It allows two users to exchange the secret key without
any shared secrets. The Diffie–Hellman protocol is a widely used method as a key
exchange algorithm. It is based on cyclic groups. A prime of length 2048 bits
should be chosen for long-term security [24].

35

3 – Security

Rivest Shamir Adleman (RSA)

RSA is the most used asymmetric algorithm. It can be used for key exchange,
digital signatures, and the encryption of small blocks of data. Nowadays, RSA is
mainly used to encrypt the message’s hash value or the session key used for secret
key encryption. The 512 and 768 bit keys are weak so it is better to use RSA with
a key size greater than 1024 for a reasonable level of security.

Elgamal Encryption Algorithm

ElGamal encryption system is an asymmetric key encryption algorithm described
by Taher Elgamal for public key cryptography which is based on the Diffie-Hellman
key exchange. It provides confidentiality without shared secrets.

Digital Signature Algorithm (DSA)

DSA was suggested and standardized by the National Institute of Standards and
Technology. Its focused on the technique of generating and validating digital
signatures. DSA can be used to verify that the message was not been changed
or altered during transit. The digital signature is the electronic version of the
written signature that proves to the recipient that the message was signed by the
originator.

3.1.3 Symmetric vs Asymmetric

Symmetric Asymmetric
Encryption and decryption Fast slow
Key distribution Difficult Easy
Processing load low high
Complexity O(Log N) O(N3)

Inherent Vulnerabilities
Brute Forced,
Linear and differential
cryptanalysis attack

Brute Forced and Oracle
attack

Vulnerabilities cause weak key usage Weak implementation
Suitable for amounts of data large low

Security Services Confidentially Confidentially, integrity,
non repudiation

Keys 1 key shared between
sender and receiver 2 keys public and private

Table 3.2: Difference between symmetric and asymmetric encryption

36

3 – Security

Both symmetric and asymmetric agree that the taller the key the higher the
security as shown in figure 3.5

Figure 3.5: Key strength of both symmetric and asymmetric algorithms

Table 3.2 and figure 3.6list the main difference between symmetric and asym-
metric algorithms.

Figure 3.6: Difference between symmetric and asymmetric algorithms

In CardioFilo, cryptography will be used in order to encrypt the data flow from
the back-end to the front-end to guarantee an end-to-end encryption. Even though
asymmetric encryption was presented as more secured, symmetric encryption is
the better choice for CardioFilo due to the large amount of transmitted data. AES
will be used with key length 256bit and can be different for every instance.

3.2 Auth0 Access Tokens
Access tokens are objects that encapsulate the security identity of a process. Gen-
erally, they are used to perform security decisions in order to grant authentication

37

3 – Security

and authorization for the user account. In other words, they contain the identity
and the privileges of the user in order to be able to authenticate by comparing the
information stored in the security database.

In Auth0, Access Tokens are also used in token-based authentication to allow an
application access the API’s stored previously [25]. When the user is successfully
authenticated and authorized, by providing correct username and password, the
application receives an access token which will be used in order to get the data
stored in those APIs.

In order to securely and authentically retrieve data from the Auth0 APIs, the
access token should be passed in the credentials of the call for those target APIs.
It will inform the API that the bearer of the token, the application of this specific
user, has been authorized to access the target API and perform the actions he
mentioned in the scope (read or write) as shown in figure 3.7.

Figure 3.7: Client’s Token process in order to retrieve data

Access Tokens have an expiration time which usually is 24 hours. So in order to
solve this short time of authentication, Refresh Tokens were presented. Refresh
Token is defined as a special token used to obtain a renewed access token. Program-
mers are able to request a new access token until the refresh token is blacklisted
[26].

In Auth0 there are 2 types of Tokens, both have the same purpose but different

38

3 – Security

functionality:

1. Opaque Access Tokens :

Contains identifiers to information in the server’s storage. A call to the server
that issued the token should be made in order to validate it.

2. JSON Web Token Access Tokens :

Contains information about an entity in the form of claims. It is not necessary
for the recipient to call a server to validate the token because the are self-
contained.

3.2.1 Access Tokens In CardioFilo
Opaque Access Tokens (OAT) where used in Cardiofilo in order to maintain
authentication and authorization which provides more security for the user and
the data he can access using CardioFilo.

The credentials are obtained by building a request the includes the URL of
Auth0 and some other scopes which perform an Authentication Callback when it is
built. In case of authentication, OnAuthentication will retrieve these credentials
that contain the access token and will be save in the credentials Manager for
security reasons. Otherwise, onError will return an exception with the reason of
failure as shown in the code below.

1 @Override
2 protec ted void onCreate () {
3 l o ck = Lock . newBuilder (auth0 , c a l l b a c k)
4 . withAudience (URL)
5 . i n i t i a l S c r e e n (I n i t i a l S c r e e n .LOG_IN)
6 . setMustAcceptTerms (f a l s e)
7 . c l o s a b l e (t rue)
8 . allowShowPassword (t rue)
9 . h ideMainScreenTit le (f a l s e)

10 . a l lowLogIn (t rue)
11 . al lowSignUp (f a l s e)
12 . bu i ld (t h i s) ;
13 }
14

15 pr i va t e LockCallback c a l l b a c k = new Authent i cat ionCal lback () {
16 @Override

39

3 – Security

17 pub l i c void onAuthent icat ion (Creden t i a l s c r e d e n t i a l s) {
18 t ry {
19 credent ia l sManager . s aveCreden t i a l s (c r e d e n t i a l s) ;
20 } catch (Exception e) {
21 }
22 @Override
23 pub l i c void onError (LockException e r r o r) {
24 showResult (e r r o r . getMessage ()) ;
25 }
26 } ;

After the access token is obtained, it is used to authorize getting data from the
APIs by including it in the header of the request.

1 f i n a l Request . Bu i lder r eqBu i lde r = new Request . Bu i lder ()
2 . get ()
3 . u r l (u r l)
4 . addHeader (" Author i zat ion " , " Bearer " + accessToken) ;

3.3 Unit Tests
Program testing is the most practiced means of verifying that a program possesses
the features as specified. Unit testing is a dynamic approach of verification in which
the code is executed with test data to check the presence (or absence) of required
features[27], and to make sure that all the code paths are working correctly. In
addition to that, by using unit tests, developers can :

• Identify the defects before integration and fixing them improves the quality of
the code.

• Increase security while changing and updating in future due to the already
created unit tests.

• Simplify the debugging process.

• Reduce the cost.

• Find bugs early.

The earlier the defects are found, the less impact they have and the less it costs
to fix them, therefore it is more practical to apply unit test activities earlier in the
software development life cycle. Usually unit tests are created by the developer who
wrote the code or someone who has full knowledge of its content. In CardioFilo,
unit testing was performed by Abinsula team after the end of each task.

40

3 – Security

3.4 Secure Coding

Secure coding is developing a software that provides security against the accidental
vulnerabilities. Defects, bugs, and logic flaws are usually the primary cause of
exploited software vulnerabilities[28]. Security professionals discovered that most of
vulnerabilities are originated from a small number of common software programming
errors after analysing thousands of reported vulnerabilities.

Figure 3.8: Increasing cost of bugs and defects at each phase of software develop-
ment[29].

As figure 3.8 shows, 85 percent of defects are introduced into the software at the
coding phase which indicates the importance of identifying the insecure coding that
leads to errors. This can be achieved by educating programmers and developers on
secure alternatives and taking a proactive step to reduce or eliminate vulnerabilities
in any software before the deployment phase.

41

3 – Security

Figure 3.9: Defects found at each phase of software development[29].

As the testing phases advance, the cost of fixing the defects increases same as
detecting them, as shown in figures 3.9 and 3.10. Bugs and defects are more likely
to be detected in the late cycle of testing phases, and it will cost more to recover
from them. Defects will be fundamentally ingrained in the code and this explains
the dramatic increase in the cost shown in figure 3.10.

Figure 3.10: Cost to repair defects at each phase of software development[29].

To mitigate potential security risks while writing the code, programmers can
take into consideration these aspects[17]:

42

3 – Security

• Enforce secure communication.

• Use implicit intents and non-exported content providers.

• Apply signature-based permissions.

• Ask for credentials before showing sensitive information.

• Add a network security configuration.

• Share data securely across apps.

• Store private data within internal storage.

• Use external storage cautiously.

• Check validity of data.

• Store only non-sensitive data in cache files.

• Use SharedPreferences in private mode.

Secure coding was properly taken into consideration while developing CardioFilo.
Private SharedPreferences were used to save access tokens in order to securely
share them across the activities of the app. All other private data where stored
in internal storage XML files. Other than that, all data inserted by the user were
validated before sending them to the server, mainly to store the correct values and
prevent SQL injection. If there is any incorrect value or unexpected character, the
app will show a toast with some information of the expected ones as shown in
figure 3.11.

43

3 – Security

Figure 3.11: Toast example that shows the expected value to be inserted

44

Chapter 4

Final Mobile Application UI

In this thesis work, the coding part of CardioFilo mobile application was developed.
All the design parts were discussed with Abinsula’s graphic team and the back
end-part with the back-end team.

After the designs were done and uploaded to Zeplin, the developing of the
front-end was started. The front-end was based on combination between layouts
(Relative and Linear), each layout represents a part or an object of the main layout.
The code below is an example of how the layout was divided in approximately all
the presented activities. One main Relative Layout that was encapsulated in a
scroll view in order to fill and make the activity scroll-able. Inside this Relative
Layout, Linear Layouts were added based on the objects that will be shown in this
specific activity.

1 <Relat iveLayout . . . >
2

3 <Scro l lV iew
4 android : layout_width=" f i l l _ p a r e n t "
5 android : layout_height=" f i l l _ p a r e n t ">
6 <Relat iveLayout
7 android : id="@+id / form_layout "
8 android : layout_width=" f i l l _ p a r e n t "
9 android : layout_height="wrap_content">

10

11

12

13 <LinearLayout
14 android : id="@+id / layout_enterwre ight "
15 android : layout_width="match_parent "
16 android : layout_height="wrap_content "
17 android : layout_below="@+id / layout_header "

45

4 – Final Mobile Application UI

18 android : layout_marginLeft ="36dp "
19 android : layout_marginTop="28dp "
20 android : layout_marginRight ="36dp "
21 android : o r i e n t a t i o n =" v e r t i c a l ">
22

23

24 <TextView
25 android : id="@+id / Dia lyrecords_tv "
26 android : layout_width="wrap_content "
27 android : layout_height="wrap_content "
28 android : layout_marginLeft ="50dp "
29 android : fontFamily="@font/ montserrat_bold "
30 android : l i n eHe i gh t ="26sp "
31 android : t ex t ="@str ing /enternewWeight "
32 android : t extCo lor ="@color / Card i o_t i t l e s "
33 android : t e x t S i z e ="20sp " />
34 </LinearLayout>
35

36 </ScrolView>
37 </Relat iveLayout>
38 </Relat iveLayout>

As for the back-end part, the work was mainly connecting CardioFilo’s mobile
app with the database created by Abinsula, in-addition to that, connecting all
the activities with each other and some other functionlaties that are performed by
the app. As discussed in the earlier sections, lots of tools were used in order to
successfully send and retrieve data. The codes listed below are the codes of the
main back-end operations(e.g. login, logout, request data, store data).

The first code represents the login operation. A new Auth0 is created and built
with some chosen activities.

1 auth0 = new Auth0 (t h i s) ;
2 auth0 . setOIDCConformant (t rue) ;
3 credent ia l sManager = new SecureCredent ia lsManager (th i s , new

Authent icat ionAPICl ient (auth0) , new SharedPre f e rencesStorage (t h i s)
) ;

4

5 l o ck = Lock . newBuilder (auth0 , c a l l b a c k)
6 . withAudience (getResources () . g e tS t r i ng (R. s t r i n g .

Authent icat ion_ur l))
7

8 . i n i t i a l S c r e e n (I n i t i a l S c r e e n .LOG_IN)
9 . setMustAcceptTerms (f a l s e)

10 . c l o s a b l e (t rue)
11 . setShowTerms (f a l s e)

46

4 – Final Mobile Application UI

12 . a l lowForgotPassword (f a l s e)
13 . allowShowPassword (t rue)
14 . h ideMainScreenTit le (f a l s e)
15 . a l lowLogIn (t rue)
16 . al lowSignUp (f a l s e)
17 . bu i ld (t h i s) ;
18 s t a r t A c t i v i t y (l ock . newIntent (t h i s)) ;

When pressing the sign-out button in the main activity (fig. 4.2) simple call-back
to Auth0 is launched, as showed in the code below, which in case of success, the
onSuccess function will start by clearing all the login credentials saved while the
login process.

1 pr i va t e void doLogout () {
2 WebAuthProvider . l ogout (auth0)
3 . withScheme (" demo ")
4 . s t a r t (th i s , l ogoutCa l lback) ;
5 }
6 pr i va t e VoidCallback logoutCa l lback = new VoidCallback () {
7 @Override
8 pub l i c void onFa i lure (Auth0Exception e r r o r) {
9 showResult (" Log out c a n c e l l e d ") ;

10 }
11

12 @Override
13 pub l i c void onSuccess (Void payload) {
14 credent ia l sManager . c l e a r C r e d e n t i a l s () ;
15 showResult (" Logged out ! ") ;
16 }
17 } ;

The code below shows the API call for retrieving the blood pressure presented in
the overview (Fig.4.3). When the response is successful, the data will be retrieved
in a form of a Json object which contains all the requested data. After that the
data will be fetched and presented in its specific place in the activity to be shown
to the user.

1

2 f i n a l Request . Bu i lder r eqBu i lde r = new Request . Bu i lder ()
3 . get ()
4 . u r l (u r l)
5 . addHeader (" Author i zat ion " , " Bearer " + accessToken) ;
6 OkHttpClient . Bu i lder b u i l d e r = new OkHttpClient . Bui lder ()

;

47

4 – Final Mobile Application UI

7 b u i l d e r = I C l i e n t . c o n f i g u r e T o I g n o r e C e r t i f i c a t e (b u i l d e r) ;
8 OkHttpClient c l i e n t = b u i l d e r . bu i ld () ;
9 Request r eque s t = reqBu i lde r . bu i ld () ;

10 c l i e n t . newCall (r eque s t) . enqueue (new Cal lback ()
11 @Override
12 pub l i c void onResponse (Ca l l c a l l , Response re sponse)

throws IOException {
13 System . out . p r i n t l n (" s u c c e s s ") ;
14 t ry {
15 St r ing jsonData = response . body () . s t r i n g () ;
16 i f (r e sponse . i s S u c c e s s f u l ()) {
17 JSONObject OverVIreJSONobj=newJSONObject (

jsonData) ;
18 JSONObject j sondataValues = OverVIreJSONobj .

getJSONObject (" data ") ;
19 // get a l l the data and show them
20 }

A different API call is used in order to store data in the database. Due to
security reasons a part of the code will not be presented. The code below shows the
main part of the API request in order to store the data. A Json object is created
containing all the data to be sent in a specific format. Then the request is build
based on the URL and the access token in order to be authorized. A response will
be retrieved that shows if the data was successfully stored.

1 JSONObject PostData = new JSONObject () ;
2 RequestBody PostD = RequestBody . c r e a t e (MEDIA_TYPE, PostData .

t oS t r i ng ()) ;
3 f i n a l Request r eque s t = new Request . Bu i lder ()
4 . u r l (u r l)
5 . post (PostD)
6 . addHeader (" Author i zat ion " , "B " + accessToken)
7 . header (" Accept " , " a p p l i c a t i o n / j son ")
8 . header (" Content−Type " , " a p p l i c a t i o n / j son ")
9 . bu i ld () ;

10 OkHttpClient . Bu i lder b u i l d e r = new OkHttpClient . Bui lder () ;
11 b u i l d e r = I C l i e n t . c o n f i g u r e T o I g n o r e C e r t i f i c a t e (b u i l d e r) ;
12 OkHttpClient c l i e n t = b u i l d e r . bu i ld () ;
13 c l i e n t . newCall (r eque s t) . enqueue (new Cal lback () {
14 @Override
15 pub l i c void onFa i lure (Ca l l c a l l , IOException e) {
16 }
17 @Override
18 pub l i c void onResponse (Ca l l c a l l , Response re sponse)

throws IOException {
19 }

48

4 – Final Mobile Application UI

Figures from 4.1 to 4.11 represent the final activities of the CardioFilo mobile
application developed in this thesis.

Figure 4.1: Splash screen and login

49

4 – Final Mobile Application UI

Figure 4.2: Main activity

Figure 4.3: Overview

50

4 – Final Mobile Application UI

Figure 4.4: Status and history

Figure 4.5: Status and history

51

4 – Final Mobile Application UI

Figure 4.6: Record Data

Figure 4.7: Record Data

52

4 – Final Mobile Application UI

Figure 4.8: Record Data

Figure 4.9: Record Data

53

4 – Final Mobile Application UI

Figure 4.10: Record Data

Figure 4.11: Record Data

54

Chapter 5

Future Work

5.1 Application improvements

5.1.1 Languages

Nowadays, mobile applications spread all over the world once they are uploaded
to the store, where any user can download theirs: thus means different cultures,
minds, and most important languages. Even though CardioFilo is meant to be
used by specific users, this does not deny the fact that it should contain more than
one language.

For now CardioFilo comes only in English, but adding other languages was
always considered while developing it. A specific XML file was created which
contains all the application’s titles, comments, notes, and strings used in it, and
that will make it easier to switch to newly added languages. A new XML file is
created for each new language. These files contain the translated version of the
main XML file, each one with its according language. When the user selects his
preferred one, the application will load the appropriate resources as shown in figure
5.1.

55

5 – Future Work

Figure 5.1: Mechanism for changing the application’s language.

5.1.2 Notifications
One of the properties of CardioFilo is to show the data uploaded by the doctor
concerning the patient’s situation. For now the user has to open the application in
order to check for new notifications. As a future update, a notification will be sent
to the user’s phone whenever the doctor submits one of these results:

• Medical reports.

• Risk factors.

• New discovered allergies.

• Surgery dates.

• Therapy dates.

• Messages from the doctor.
The application will also raise some notifications to remind the user to take

his pills, check upcoming therapy dates, and also to update some information like
blood pressure if it has been a time since the last one.

5.2 IOS Application
Google Android and Apple IOS have 98 percent of the global market share for
operating systems. Statistics in figure 5.2 shows that 74.4 percent of the mobile

56

5 – Future Work

operating systems is dominated by Android [30], due to the fact that it is shared
among different mobile companies (Samsung, Huawei, LG, OnePlus,..), and the
remaining 24.76 percent are by IOS, which is huge compared to the number of
users among the world.

Figure 5.2: Mobile Operating System Market Share Worldwide. [30]

In these days, developing both Android and IOS mobile applications is a must.
Even though Android users are obviously many more, still there is a huge percent-
age that uses IOS. Some developers tend to use Cross-platform development for
developing both Android and IOS applications due to the less time-consuming and
cost. These platforms allow the usage of one code base which is then compiled to
be used as native application for both platforms. Developers should be familiar
with CSS, HTML, and Java script in order to use these cross-platforms. Beside
that, they should also use frameworks which are the most important tools in
cross platform app development like React-native, Xamarin, Ionic, PhoneGap, and
Flutter.

Apple IOS, same as android, has its own programming language, libraries, and
platforms. Swift is the primary programming language for IOS mobile application
development which is created by Apple. It supports the core concepts associated
with Objective-C, the first programming language used by Apple, but in a safer
way.

Developing an IOS application for CardioFilo is intended to be the next step. It
will contain the exact functionalities as the Android’s version.

57

5 – Future Work

5.3 Doctor’s application

As presented before, doctors use the web application in order to monitor the
situation of their patients. Whenever the doctor wants to check some informa-
tion about a specific patient, he has to open the web application. Developing a
mobile application for doctors will make that easier and more updated after the
notification’s feature is added.

Doctor’s application will be in read only mode. It is similar to the patients
app with some extra features like searching for a patient or contacting him when
something urgent occurs. Doctors can search for a specific patient and check his
personal data, medical records, risk factors, history, status, therapy plans, and of
course notifications.

Some mock-ups are presented as an overview of the functionalities that the
application can perform [1]. Figure 5.3 shows the login page where the doctor can
login in using the same credentials as the web application. After that the main
activity will start showing a button that will view the patient’s filtering activity
where he can search for a specific patient or more, using the search bar or by
checking the features he is interested in (figures 5.4 and 5.5).

Figure 5.6 shows the list of patients that is retrieved after filtering. The doctor
can choose one of them in order to see the medical records, which show the situation
of that patient like personal data, risk factors, status, therapy plan, sleep monitoring
and overview (figures 5.7, 5.8, 5.9, and 5.10).

Doctors can also check and receive notifications when the patient change some-
thing in their records. These notifications will be shown in the Recorded events
activity 5.11. Doctors can contact the patient by email, text message, or by calling
them if there is something urgent. Taking into consideration the huge number of
patients which means huge number of notifications, doctors can delete handled
notifications and as a future adjustment maybe select what kind of notification
they want to receive.

58

5 – Future Work

Figure 5.3: Login In activity.

59

5 – Future Work

Figure 5.4: Home Page.

60

5 – Future Work

Figure 5.5: Patient’s list filtering and searching for specific one.

61

5 – Future Work

Figure 5.6: Patient’s Data.

62

5 – Future Work

Figure 5.7: Patient’s Data.

63

5 – Future Work

Figure 5.8: Patient’s Data.

64

5 – Future Work

Figure 5.9: Patient’s Data.

65

5 – Future Work

Figure 5.10: Patient’s Data.

66

5 – Future Work

Figure 5.11: Notification’s Activity.

67

Bibliography

[1] Sara Prete. «Ballistocardiographic heart rate and respiratoryrate detection».
In: (Apr. 2019) (cit. on pp. iv, 1, 7, 11, 58).

[2] Definition of Caregiver. url: https://en.wikipedia.org/wiki/Caregiver
(cit. on p. 6).

[3] Zeplin. url: https://zeplin.io/ (cit. on p. 11).
[4] Why Android Developers Should Prefer Android Studio Over Eclipse? 2016.

url: https://www.brainvire.com/android-developers-prefer-androi
d-studio-eclipse (cit. on p. 16).

[5] Michael Williams. Java-Kotlin comparison for android programming. 2019.
url: https://www.promptbytes.com/blog/java-vs-kotlin-the-no-non
sense-comparison-of-android-programming-languages (cit. on p. 18).

[6] Auth0. url: https://auth0.com/docs/getting-started/overview (cit.
on p. 19).

[7] Why Auth0? url: https://auth0.com/why-auth0 (cit. on p. 19).
[8] Universal vs Embedded Login. url: https://auth0.com/docs/guides/

login/universal-vs-embedded (cit. on pp. 20, 21).
[9] Universal Login. url: https://auth0.com/docs/universal-login (cit. on

p. 21).
[10] OkHttp. url: https://square.github.io/okhttp/ (cit. on p. 23).
[11] Why Git for your organization. url: https://www.atlassian.com/git/

tutorials/why-git (cit. on p. 25).
[12] gitlab. url: gitlab.com (cit. on p. 26).
[13] Liran Karni. «openEHR approach for the evauation and management of

elderly patients with multi-morbidity». In: Research Gate (May 2016), pp. 1–
17 (cit. on p. 27).

[14] SQlite3. url: https://www.sqlite.org/index.html (cit. on p. 28).
[15] Postgre SQL. url: https://www.postgresql.org/ (cit. on p. 28).

68

https://en.wikipedia.org/wiki/Caregiver
https://zeplin.io/
https://www.brainvire.com/android-developers-prefer-android-studio-eclipse
https://www.brainvire.com/android-developers-prefer-android-studio-eclipse
https://www.promptbytes.com/blog/java-vs-kotlin-the-no-nonsense-comparison-of-android-programming-languages
https://www.promptbytes.com/blog/java-vs-kotlin-the-no-nonsense-comparison-of-android-programming-languages
https://auth0.com/docs/getting-started/overview
https://auth0.com/why-auth0
https://auth0.com/docs/guides/login/universal-vs-embedded
https://auth0.com/docs/guides/login/universal-vs-embedded
https://auth0.com/docs/universal-login
https://square.github.io/okhttp/
https://www.atlassian.com/git/tutorials/why-git
https://www.atlassian.com/git/tutorials/why-git
gitlab.com
https://www.sqlite.org/index.html
https://www.postgresql.org/

BIBLIOGRAPHY

[16] Django. url: https://www.djangoproject.com/ (cit. on p. 28).
[17] Android Security and App security best practices. url: https://developer.

android.com/topic/security/best-practices (cit. on pp. 30, 42).
[18] Jonathan Katz and Yehuda Lindell. «Introduction to Modern Cryptography».

In: (2007) (cit. on p. 30).
[19] Muhammad Aamir Panhwar Sijjad Ali khuhro Ghazala Panhwar Kamran

Ali memon. «SACA A Study of Symmetric and Asymmetric Cryptographic
Algorithms». In: (Jan. 2019) (cit. on p. 30).

[20] Nicola Gallo Loris Gabriele Luca Ghio Lorenzo Liotino Muhammad Ali.
«Computer system security». In: (Feb. 2015) (cit. on p. 31).

[21] Dawn M. Turner. «Applying Cryptographic Security Services». In: (Aug.
2017) (cit. on p. 32).

[22] Yogesh Kumar Rajiv Munjal Harsh Sharma. «Comparison of Symmetric and
Asymmetric Cryptography with Existing Vulnerabilities and Countermea-
sures». In: (Oct. 2011) (cit. on p. 34).

[23] Ons JALLOULI. «Chaos-based security under real-time and energy con-
straints for the Internet of Things». PhD thesis. Oct. 2017 (cit. on p. 35).

[24] Nicola Gallo Loris Gabriele Luca Ghio Lorenzo Liotino Muhammad Ali. «A
Study on Asymmetric Key Cryptography Algorithms». In: (Apr. 2015), p. 8
(cit. on p. 35).

[25] Auth0 Access Tokens. url: https://auth0.com/docs/tokens/concepts/
access-tokens (cit. on p. 38).

[26] Auth0 Refresh token. url: https://auth0.com/docs/tokens/concepts/
refresh-tokens (cit. on p. 38).

[27] Larry Morell. «Unit Testing and Analysis». In: (Apr. 1989), p. 41 (cit. on
p. 40).

[28] Gary McGraw Viega Jhon. «Building Secure Software: How to Avoid Security
Problems the Right Way». In: (2001), p. 5 (cit. on p. 41).

[29] Capers Jones. Applied Software Measurement : Global Analysis of Productivity
and Quality: Global Analysis of Productivity and Quality. 2008 (cit. on pp. 41,
42).

[30] Mobile Operating System Market Share. url: https://gs.statcounter.
com/os-market-share/mobile/macedonia (cit. on p. 57).

69

https://www.djangoproject.com/
https://developer.android.com/topic/security/best-practices
https://developer.android.com/topic/security/best-practices
https://auth0.com/docs/tokens/concepts/access-tokens
https://auth0.com/docs/tokens/concepts/access-tokens
https://auth0.com/docs/tokens/concepts/refresh-tokens
https://auth0.com/docs/tokens/concepts/refresh-tokens
https://gs.statcounter.com/os-market-share/mobile/macedonia
https://gs.statcounter.com/os-market-share/mobile/macedonia

	List of Figures
	Acronyms
	CardioFilo Mobile Project
	Project Overview
	Actors
	Cardiologist and Nurses
	Patient
	Caregiver
	Technician

	CardioFilo's Activities
	UML: Use Case Diagrams
	UML: Activity Diagrams

	Cardiofilo Graphics

	Tools used
	Android Studio
	Why android Studio?
	Java Or Kotlin?

	Auth0
	Why use Auth0?
	CardioFilo Authentication using Auth0

	OkHttp Client
	Request Data
	Post Data

	Git
	GitLab

	Database and API's

	Security
	Cryptography
	Symmetric Encryption
	Asymmetric Encryption
	Symmetric vs Asymmetric

	Auth0 Access Tokens
	Access Tokens In CardioFilo

	Unit Tests
	Secure Coding

	Final Mobile Application UI
	Future Work
	App improvements
	Languages
	Notifications

	IOS Application
	Doctor's application

	Bibliography

