
POLITECNICO DI TORINO
Master degree course in Electronic Engineering

Master Degree Thesis

Neural network optimization
for indoor person localisation

using capacitive sensors

Supervisors
prof. Mihai Teodor Lazarescu
prof. Luciano Lavagno

Candidate
Nicoletta Sportillo

ID:242036

Accademic Year 2019-2020

This work is subject to the Creative Commons Licence

Alla mia famiglia,
in particolare a nonno Tonino, che è
sempre stato un maestro e fonte
d’ispirazione per me e avrebbe gioito
immensamente nel vedermi come sono
diventata e
a nonna Olga, che avrebbe voluto
assistere anche a questo traguardo

Summary

Nowadays one of the main aspects of smart homes and smart cities is hu-
man localisation and movement estimation. It can lead to a better quality of
life with reduced costs for example by controlling other existent smart tech-
nologies as automatic heating and lightning. Moreover, indoor movement
monitoring can be really useful in assisted-living for elderly people.

This kind of system must be privacy-aware and easy to use and a tagless
passive positioning system can be a good choice. Among the different type
of passive sensing, one of the most interesting is the capacitive sensing. This
kind of technology has already been used in mobile and wearable devices,
but there are few studies on human localisation.

However, the need of cheap hardware and the possibility to analyse the
acquired data by a microcontroller make capacitive sensors easy to produce
and to prototype.

These sensors are the basis of a long-term research project at DET called
"Capacitive sensing for indoor human localisation" within with this thesis
work was carried out.

Among the different modes of working of capacitive sensing, the loading
mode has been chosen since a single electrode is used. The principle of work-
ing is simple: as the person gets closer to the sensor, the capacitive coupling
between the body and the sensor increases and by measuring this capaci-
tance, the distance from the sensor can then be inferred.

The experiment has been made in a 3 m x 3 m room using four capac-
itive sensors. Then an indirect measurement of the capacitance has been
performed by measuring the frequency of a 555 timer-based relaxation oscil-
lator. An Arduino board has been used to evaluate the frequency for each
sensor, then the measurement has been sent to a base station by a wire-
less module. Machine Learning classification algorithms have been used for
localisation purpose.

Finally, the position of the person within the room has been monitored
using two systems.

4

The first uses four capacitive sensors as in previous experiments, while the
second is based on four ultrasound anchors that can localize a mobile tag and
is used as accurate reference.

Since the capacitive sensor captures environmental noise, its range and
stability over time are limited and the collected data are affected by noise.
The reference position and the capacitive sensors readings have been collected
concurrently: the former data has been used for training data labelling and
inference testing, the latter data has been pre-processed with digital filtering,
then neural networks have been used to infer the correct position.

The obtained data set has been used in the thesis work that will focus on
different Machine Learning approaches to localise and evaluate the movement
of a person in a room.

The whole data set has been divided into three subsets used for the train-
ing, validation and testing steps.

For all the simulations TensorFlow and Keras Python libraries have been
used, training and validation error curves obtained during the training, vali-
dation and test phases have been monitored, to prevent overfitting or under-
fitting.

Different Neural Networks have been trained and tested to report location
estimation as a pair of X/Y coordinates and performance are evaluated in
terms of mean squared error (MSE) and Euclidean distance error (EDE).

Three main types of Neural Networks have been analysed:

• Fully Connected Neural Networks: made by a series of fully connected
layers, also known as Multilayer Perceptrons (MLP), used as a starting
point to better understand the general behaviour of a neural network

• 1D-Convolutional Neural Networks: used to derive features from short
segments of the overall data set. This can be useful to analyse time
sequences of sensor data and infer the movement from collected data.

• Long Short Time Memory (LSTM): they are recurrent neural network
(RNN) architecture able to process sequences of data, and hence poten-
tially useful for movement estimation of a person in a room

Initially, some experiments have been conducted on Neural Networks with
only fully connected layers to explore better the main tools used to develop
the network and evaluate the results.

Network hyperparameters, such as the learning rate, the number of hidden
layers and neurons in the hidden layers have been tuned to improve the
network performance. The loss function evaluated during the training and

5

validation suggested the net was overfitting the data, that means it is difficult
to make accurate predictions for new data. This aspect was confirmed in the
trend of predicted trajectories: they cannot approximate references curve
well.

Since during the design space exploration (DSE) the results with this kind
of network have been too high in term of root mean squared error (0.35 m)
and Euclidean distance error(0.45 m), the focus moved to the convolutional
neural network (CNN) to have a better path recognition.

Among all the types of CNNs, 1D-Convolutional layers have been chosen
to build the net, known also as "temporal convolution": the aim was to provide
the neural network multiple samples in a time window, to make the network
better infer the movement of a person in the room.

Multiple window sizes were considered and hyperparameters tuning has
been performed to find a good trade-off between the complexity of the net-
work and performance.

Results have improved over than the previous kind of network, reaching a
root mean squared error on the test set of 0.25 m and an Euclidean distance
error of 0.29 m. On the other hand, the loss functions suggested that also
this network was overfitting the training set.

Since the overfitting can be due to the small data set and a too complex
neural network, different tries on really small 1D-CNN have been performed
and it has been found that the results, in terms of MSE and EDE, are similar
to those achieved with more complex networks.
However, the overfitting remained even if it was attenuated. Indeed, the pre-
dicted curves were smoother but still could not match some parts of the
reference curves. This result suggests that the problem can be related to the
small and noisy data set used for the experiment.

As last step, a recurrent neural network has been explored by using the
Long-Short Term Memory network, known to be able to analyse data se-
quences: they provide a flexible model due to their internal self-connections,
so that current predictions can take into account the previous ones.

Design space exploration through hyperparameters tuning has been exe-
cuted as well, finding good results with a root mean square error on the test
of 0.24 m and an Euclidean distance error of 0.30 m. Overfitting remained at
a lower level and it was confirmed by the quality of the predicted trajectories.

In general, the results suggest that small networks, in particular the LSTM
ones, are good for movement recognition from noisy capacitive sensors read-
ings. The quality of the data set is very important, especially to have sufficient
samples for adequate neural network training and a high signal-to-noise ratio.

6

Future work can be devoted to collect less noisy sensor data to confirm
the quality of the networks analysed here, or by trying the sensor fusion
approach, which means processing data from several types of localisation
sensors to collect more information on position.

7

Contents

List of Tables 10

List of Figures 11

1 Introduction 13
1.1 Capacitive sensing . 13
1.2 Previous work . 15
1.3 Thesis contribution . 18

2 Machine Learning 20
2.1 Some basic knowledge . 20
2.2 Neural Networks . 23
2.3 Convolutional Neural Networks 25
2.4 Long Short Term Memory (LSTM) 27

3 Neural network optimization 29
3.1 Multilayer Perceptron Neural Networks 31

3.1.1 Analysis of a larger model 31
3.1.2 Analysis on smaller network 40
3.1.3 MLP Summary . 42

3.2 Convolutional Neural Networks 44
3.2.1 Larger Network results 45
3.2.2 Exploration on regularization 53
3.2.3 Simple Network analysis 60
3.2.4 CNNs summary . 65

3.3 Long-Short Term Memory (LSTM) 68
3.3.1 Small network with one LSTM layer 69
3.3.2 Analysis on a regularized LSTM network 72
3.3.3 LSTMs summary . 75

8

4 Result Summary 77

5 Conclusion and future work 82

Bibliography 84

9

List of Tables

3.1 Larger model MLP - first - results 32
3.2 Larger model MLP - second - results 34
3.3 Larger model MLP - third - results 35
3.4 Larger model MLP - fourth - results 37
3.5 Smaller model MLP - results 40
3.6 Summary table of MLP networks 42
3.7 Larger 1D-CNN - first - result pt. 1 46
3.8 Larger 1D-CNN - first - result pt. 2 46
3.9 Larger 1D-CNN - second - results pt. 1 48
3.10 Larger 1D-CNN - second - results pt. 2 48
3.11 Larger 1D-CNN - third - results 50
3.12 Larger 1D-CNN - fourth - results 51
3.13 Regularized 1D-CNN - first - results 54
3.14 Regularized 1D-CNN - second - results 56
3.15 Regularized 1D-CNN - third - results 57
3.16 Regularized 1D-CNN - fourth - results 59
3.17 Simple 1D-CNN - first - result 61
3.18 Simple 1D-CNN - summary table 63
3.19 Large structure - best results summary 66
3.20 Regularized structure - best results summary 66
3.21 Small structure - best results summary 67
3.22 Small LSTM - first - results 69
3.23 Small LSTM - second - results 71
3.24 Regularized LSTM - first - results 72
3.25 Regularized LSTM - second - results 74
3.26 LSTM - summary table . 76
4.1 Result summary table . 77

10

List of Figures

1.1 Natural capacitance . 14
1.2 Capacitive sensing modes . 14
1.3 Building blocks of the system 15
1.4 Organization of the first experiment 16
1.5 Organization of the the last experiment 17
2.1 Supervised learning scheme 22
2.2 Real and artificial neurons . 23
2.3 Neural network with one hidden layer 24
2.4 Convolutional neural network structure 26
2.5 Recurrent neural network structure 27
2.6 LSTM cell . 28
3.1 MLP network structure . 32
3.2 Larger model MLP network - first loss function 33
3.3 Larger model MLP - first - test trajectory and ground truth . 33
3.4 Larger model MLP - second - loss function 34
3.5 Larger model MLP - second - test trajectory and ground truth 35
3.6 Larger model MLP - third - loss function 36
3.7 Larger model MLP - third - test trajectory and ground truth . 36
3.8 Larger model MLP - fourth - loss function 38
3.9 Larger model MLP - fourth - test trajectories and ground truth 39
3.10 Smaller model MLP - loss functions 41
3.11 MLP networks DSE . 43
3.12 Larger 1D-CNN structure . 45
3.13 Larger 1D-CNN - first - best loss function 47
3.14 Larger 1D-CNN - first - best test trajectory and ground truth 47
3.15 Larger 1D-CNN - second - best loss function 49
3.16 Larger 1D-CNN - second - test trajectory and ground truth . . 49
3.17 Larger 1D-CNN - third - best loss function 50
3.18 Larger 1D-CNN - third - test trajectory and ground truth . . . 51
3.19 Larger 1D-CNN - fourth - best loss function 52

11

3.20 Larger 1D-CNN - fourth - test trajectory and ground truth . . 52
3.21 Regularized 1D-CNN structure 53
3.22 Regularized 1D-CNN - DSE results 54
3.23 Regularized 1D-CNN - first - best loss function 55
3.24 Regularized 1D-CNN - first - test trajectories and ground truth 55
3.25 Regularized 1D-CNN - second - best loss function 56
3.26 Regularized 1D-CNN - second - test trajectory and ground truth 57
3.27 Regularized 1D-CNN - third - best loss function 58
3.28 Regularized 1D-CNN - third - test trajectory and ground truth 58
3.29 Regularized 1D-CNN - fourth - best loss function 59
3.30 Regularized 1D-CNN - fourth - test trajectory and ground truth 60
3.31 Simple 1D-CNN structure . 60
3.32 Simple 1D-CNN - first - best loss function 61
3.33 Simple 1D-CNN - first - test trajectory and ground truth . . . 62
3.34 Simple 1D-CNN - DSE . 64
3.35 Simple 1D-CNN - second - best loss function 64
3.36 Simple 1D-CNN - second - test trajectory and ground truth . 65
3.37 CNN DSE . 67
3.38 LSTM network structure . 68
3.39 Small LSTM - first - best loss function 70
3.40 Small LSTM - first - test trajectory and ground truth 70
3.41 Small LSTM - second - best loss function 71
3.42 Small LSTM - second - test trajectory and ground truth . . . 72
3.43 Regularized LSTM - first - best loss function 73
3.44 Regularized LSTM - first - test trajectory and ground truth . 73
3.45 Regularized LSTM - second - best loss function 74
3.46 Regularized LSTM - second - test trajectory and ground truth 75
3.47 LSTM network DSE . 76
4.1 DSE final summary . 78
4.2 MLP final summary - Test trajectory and ground truth 78
4.3 CNN final summary - Test trajectory and ground truth 1 . . . 79
4.4 CNN final summary - Test trajectory and ground truth 2 . . . 79
4.5 LSTM final summary - Test trajectory and ground truth . . . 80
4.6 Best networks - Test trajectory and ground truth 81

12

Chapter 1

Introduction

There are different technologies capable to locate the position of a person
(some of them are pressure sensors, ultrasound wave sensors or infrared sen-
sor), among all the possible choices, a capacitive sensing system has been
chosen and in this section, the main reasons have been described.

1.1 Capacitive sensing
Capacitive sensing has been chosen to collect data in order to eventually
produce a simple and cheap product to localise people in a room.

This kind of technology has been used in the production of devices such
as capacitive touchscreen, that can locate the position of the finger in the
screen area thanks to the capacitance that is created between the screen and
the finger [11].

A capacitance exist between two electrodes separated by some distance,
defined as the charge ratio between the change of electrical Q and the change
of potential V:

C = Q

V
(1.1)

As explained in [8] human body is conductive, so capacitances exist nat-
urally between people and the environment (Figure 1.1), then to locate or
evaluate the proximity of users it is sufficient to measure the changes in ca-
pacitive coupling between sensor plane and human body.
There are three ways to sense the nearness of a body with capacitive sensors
as explained in [22]: shunt, transmit and load mode (Figure 1.2). For indoor
localization, the most interesting is the last one, because of its simplicity and

13

1 – Introduction

Figure 1.1: Typical capacitances in a room environment [8]

good measurement results. Indeed, the load mode uses one electrode, the hu-
man body loads the electrode and the proximity is evaluated by considering
that the capacitive coupling increases as the body gets close to the electrode.

Several studies have been conducted on this topic, so limitations and ad-
vantages have been found.

Figure 1.2: Main modes of capacitive sensing [22]

The [8] and [26] discuss some limitations, that consist mostly of the acqui-
sition and quality of data. The main problem is related to the limited tracked
range. The empirical model is:

C = ÔA

dx
(1.2)

where x depends on the environment, A is the capacitor plate area and d

14

1 – Introduction

is the distance between the sensor and the object to track. Since distance
sensing depends on the plate size of the capacitive sensor, distant objects
can be tracked by using more capacitive plates so that the object is always
close to a sensor [4].

The other important issue is the external influences such as temperature
and humidity changes or the presence of conductive objects that should not
be tracked but can change the dielectric properties leading to ambiguous or
erroneous measurements. The sensitivity to both signal and environmental
noise depends especially on A, the effective area of capacitor plates.

On the other hand, capacitive sensors can be used also in the presence of
non-conductive objects in the line-of-sight since their influence on dielectric
properties is low, so they can be installed in walls. Moreover, the cheap
hardware required (electrodes made by different materials and shape) and the
possibility to analyse the acquired data by a microcontroller make capacitive
sensors easy to produce and to install.

1.2 Previous work
The main project aims to develop a human localisation system to be installed
in an indoor environment for the assisted living of people, especially the
elderly ones.

As explained in [19] four capacitive sensors has been placed in a 3 m x 3 m
room to perform an indirect measurement of the capacitance by measuring
the frequency of a 555 timer-based relaxation oscillator. For each sensor the
frequency is evaluated on an Arduino board, then the measurement is sent
to a base station by a wireless module.

Figure 1.3: Building blocks of the system from [2]

15

1 – Introduction

The movement of a person in the room is translated into capacitance varia-
tions then converted to frequency variation through the following formula:

F = 1
0.7(R1 + 2R2)C

(1.3)

Several plate size have been analysed in [19], the resistance values have been
chosen to have a good trade-off between sensitivity and sensor size.

Once the frequency measurement has been sent to the base station, post-
processing of data and person localisation can be executed. The main building
blocks of the system are shown in Figure1.3.

In [2] different kind of Machine Learning classification algorithms taken
from Weka collection have been tested on the collected data to understand
how it can reduce the effect of the environment on the localisation.

Figure 1.4 shows the setup of the experiment: a person stood in each posi-
tion, changing the orientation of the body, for more than one samples. Several
samples have been collected among the 16 positions.

Figure 1.4: Organization of the experiment in [2]

It has been found that LogitBoost and AdaBoostM1 running on top of Ran-
dom Forest achieved the best results, with an average distance error of 0.06m

16

1 – Introduction

Figure 1.5: Sensor installed in the center of the walls to monitor the movement of
a person and anchor system on the roof from [23]

and 0.07m respectively.
The in the most recent experiment the position of the person within the

room has been monitored using two systems [23].
The first uses four capacitive sensors installed in the centre of a “wall” of

the virtual room, providing readings three times per second.
The other system (from Marvelmind Robotics [12]) is based on four ul-

trasound anchors that can localize a mobile tag with +/-2 cm accuracy at
15 Hz and has been used as reference for neural network training because of
its accuracy. The capacitive sensors are made with plates of 16 cm x 16 cm,
similarly to previous experiments [19], [2]. Figure1.5 shows the whole system.

The reference position and the capacitive sensors readings have been col-
lected concurrently to use the former data for training data labelling and
inference testing, while the latter data has been pre-processed with digital
filtering, then neural networks have been used to infer the correct position.

Since the capacitive sensor front-end is sensitive to environmental noise,

17

1 – Introduction

its range and stability over time are limited, so the collected are affected by
noise. Data processing includes the following steps [23]:

• translate the average of capacitive sensors reading to zero

• use a Median Filter with a wide window (50s) to extract slow drift

• use a Low-Pass Filter with a pass-band of 0.1 Hz and stop-band of 0.6
Hz to reduce high pitch noise.

• subtract the median filter from the low pass filter output

• normalize the obtained values to (0;1) range

Best values for the window and the cutoff frequency were found empiri-
cally. Sensor data tuples are composed of four values, one for each sensor,
collected at the same time at 3 Hz frequency. Each tuple is labelled with the
corresponding ultrasound sensor reading. The obtained data set has been
used in the thesis work.

1.3 Thesis contribution
Starting from the good results obtained in [2] and the work in progress
in Dipartimento di Elettronica e TelecomunicazioniI (DET) of Politecnico
di Torino [23], the thesis work will focus on different machine learning ap-
proaches to handle the noise in the collected data and infer the movement of
a person in a room.

Different Neural Networks have been trained and tested to report location
estimation and performance have been evaluated in terms of mean squared
error (MSE) and Euclidean distance error (EDE). Moreover, to prevent over-
fitting or underfitting, training and validation error curves obtained during
the training, validation and test phases have been monitored.

Three main types of data analysis based on machine learning approaches
have been explored:

• Fully connected Neural Networks

• 1D Convolutional Neural Networks

• Long Short Time Memory (LSTM)

18

1 – Introduction

The design space exploration (DSE) for all of these structures has been per-
formed to find a good trade-off between the complexity of the network and
the MSE.

In Chapter 2, some basic knowledge about Machine Learning and Neural
Networks have been discussed, then in Chapter 3 the main step in the design
space exploration (DSE) have been explained and some considerations on the
all different cases of study has been done in Chapter 4.

19

Chapter 2

Machine Learning

With experiments conducted in [2], it has been found that machine learn-
ing approaches are suitable for the sake of position identification in a room.
Indeed they can attenuate sensor data variability and noise due to environ-
mental conditions, obtaining good results in position estimation.

Then, this method has been used in this thesis to estimate the movements
of a person in a room. In this chapter, some of the main topics about Machine
Learning will be analysed to introduce basic concepts that have been used
in the thesis work.

2.1 Some basic knowledge
The term "Machine Learning" has been introduced by Arthur Samuel in
1959 in the article "Some Studies in Machine Learning Using the Game of
Checkers"[20]. He described the machine learning as:

"the field of study that gives computers the ability to learn without
being explicitly programmed."

A more formal definition has been provided by Tom Mitchell in [13] :

"A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its perfor-
mance at tasks in T, as measured by P, improves with experience
E."

Then, it can be said that a machine is learning if it can change its param-
eters to improve its performance.
As explained in [14] and [21], a machine learning problem can be faced as:

20

2 – Machine Learning

• Supervised learning: where inputs xi and output yi samples are given
to the learning algorithm that has to learn the function f that relates
input to output such that f(xi) = yi . Depending on the type of yi

values it can be distinguished in other two kind of supervised learning
problems:

– classification problem: yi are among a discrete and finite group of
values

– regression problem: yi is a continuous variable

For historical reasons, the function f is also represented as h and it is
called hypothesis [14]. When a new input set is given, the hypothesis h
obtained can be used to predict the output values.

• Unsupervised learning: only a collection of xi values is given to the
learning algorithm which has to derive the structure from them [14].
This can be done in two ways:

– clustering approach: used to group the samples in clusters that share
some regularities.

– non-clustering approach: used to find a structure in a chaotic envi-
ronment.

No feedback on the prediction results is present

Since supervised learning has been the approach used in the thesis work, more
explanations are given in the following, also a simple scheme is reported in
Figure 2.1.

In supervised learning there are two main steps:

1. train: a step in which the algorithm that has to learn the hypothesis
function that describes the data used. Sometimes also a validation phase
can be included during this step.

2. test: a step in which the generalization capability of the algorithm are
tested.

In the training step, a set of input and target samples (xi, yi), called train-
ing examples creates a collection called training data set that is provided
to the algorithm. The performance is evaluated through the cost function

21

2 – Machine Learning

Figure 2.1: Supervised learning scheme from [14]

Jtrain(θ), that measures the difference between the targets and the outputs
of the algorithm [14].

To minimize the cost function, several steps are performed by the algo-
rithm, in which parameters θ are tuned to reach the best result, so when
the target and the output values are the nearest. Then parameters values
are stored and the training step ends. When the validation is used, also a
validation set, smaller than the training one, is included in this procedure to
identify the minimum of the cost function by using validation error Jval(θ):
the model with the lowest validation error is selected.

In the testing step, a test set is used, made by a lower number of samples
respect to the previous training set. Since generalization is the capability of
the algorithm to act well on unknown data, this time targets are not shown
to the algorithm: it has to predict the output starting from input data using
the parameters saved at the end of the training [14][21].

Also in this step the cost Jtest(θ), called "error", is evaluated through the
comparison between the computed outputs and the known targets. The test
error is usually higher than the training one on which the model is calibrated.
Test error can be close to the training one only if the model has reached a
good generalization.

It is important to take into account the complexity of the model: it should
match the complexity of the function that describes the relation between
input and output data to have good performances.

Otherwise, as explained in [14], generalization will be poor and two situ-
ation can happen:

• underfitting the data: when model complexity is lower than the actual

22

2 – Machine Learning

function. The error on the training set and test set are both high.

• overfitting the data: when the model is too complex than the actual
function. The models fits the samples perfectly but it is not the same
for the test set, that results outside the fit curve.

Among all the available machine learning algorithms, neural networks have
been chosen to analyse the data collected from capacitive sensors, described
in the following section.

2.2 Neural Networks
Neural networks applications belongs to different fields such as speech recog-
nition, image recognition, and machine translation software [24].

This make them a suitable algorithm to use for the thesis objective: infer
the movements of a person in a room for assisted-living sake.

Neural network is a machine learning algorithm based on brain model [16]
: to model biological neuron (Figure 2.2a), non-linear elements are used that
use weighted sum of the outputs of other elements as their inputs.

The basic element of every Neural Network is a neuron that can be consid-
ered computational units that take inputs (dendrites) that are led to outputs
(axons). In Figure 2.2b a neuron with three inputs is shown.

(a) Biological neuron from [14] (b) Neuron model from [15]

Figure 2.2: Real neuron (a) and artificial neuron (b)

The circle is the computational part, made by two main part: the sum
between all the weighted inputs wT x and the bias b and the activation func-
tion, represented as the sigmoid function of the first part computation, that
evaluate the neuron output[15].

23

2 – Machine Learning

The structure presents two layers: the input nodes is the first layer, called
input layer, the computational node is the second layer, called output layer.

In the middle intermediate layers can be added, called hidden layers, an
example is reported in Figure 2.3. This type of structure is called feedforward
neural network.

By combining different neurons a neural network can be implemented.

Figure 2.3: Neural network with one hidden layer from [15]

Depending on the purpose of the network to be built, different activation
functions can be used, the most common are:

• Sigmoid function: defined as σ = 1
1+e−z is generally used in the hidden

layers

• ReLU function: Rectified linear unit, defined as a = max(0, z) is gener-
ally used in the output layers

After creating the network all weights and biases have to be initialized,
then they are tuned during the training to optimize network performance.
As introduced in Section 2.1, the performance of the network is evaluated
through the cost function or loss function, that shows how much targets and
outputs are different, in the best case they result as close as possible, make
the loss function reaching the 0.

Optimization algorithm are needed to minimize the cost function. They
are used in combination with the backpropagation algorithm that works by
computing the gradient of the loss function respect to each weight, computing
the gradient one layer at a time, iterating backwards from the last layer to
avoid redundant calculations of intermediate terms in the chain rule [15].

One interesting parameter of the optimization algorithm is the learning
rate, by changing its value the optimization algorithm converges in different

24

2 – Machine Learning

ways: in general its value should be nor too high (otherwise it can overshoot
the minimum and fail to converge) nor too small (otherwise it reaches the
minimum very slowly) [14].

In the thesis, Mean Square Error is used to estimate the error and two
main optimization algorithms have been used: Stochastic Gradient Descent
(SGD) and Adamax. Mean Square Error is defined as follows:

MSE =
NØ

i=1

(yi − ŷi)2

N
(2.1)

where y is target, ŷ is output, N is the number of samples. It can be gener-
alized also to multi-output problems.

As explained in [17] one of the main limitations of traditional forms of
feedforward neural network is related to the computational complexity. For
example, in coloured image analysis, the number of weights on just a single
neuron of the first layer significantly increases.

Indeed, the size of the image (for example, by considering a multidimen-
sional vector, the size can be 64x64 pixels), the number of feature of the image
(3 in the case of RGB images) and the computation have to be taken into
account: a simple multiplication between these parameters strongly increases
the size of the output (output will be 12’228).

This is bad for computational resources and time required, but also for
the overfitting problem: the model can easily overfit because of its huge com-
plexity.

2.3 Convolutional Neural Networks
CNN overcome some limitations of the feedforward networks and find nu-
merous applications, such as time series forecasting [3]: they perform well on
learning time sequence dependencies, making them suitable for trajectories
prediction.

The name of these networks derives from the mathematical operation
called convolution, used in their layers [6][25].

In [17] a good explanation of convolutional neural networks is presented by
outlining the basic concepts, the layers required to build this kind of network.
The convolutional neural network architecture is composed of three types of
layers:

• Convolutional layers: it computes the output of neurons by using the
scalar product between the input and the kernel, the result is processed

25

2 – Machine Learning

through an activation function and the output feature map is created
[10].

• Pooling: it performs downsampling of the given input to reduce the num-
ber of parameters and computational complexity.

• Fully-connected layers: it is used in the end for classification. ReLU is
used between these layers to improve performance.

A CNN architecture is shown in Figure 2.4.

Figure 2.4: Convolutional neural network structure example from [10]

In general, CNNs are trained in a supervised method similar to the fully
connected approach explained in Section 2.2. This time, the gradient of each
network (then both the convolution and fully-connected layers) parameters
are computed. The parameter are updated until a certain stopping criterion
is achieved [10].

The number of hidden CNN layers and kernel size per CNN layer can be
tuned to obtain the desired structure. These parameters, together with the
number of fully connected layers and the choice of activation functions are
the main hyperparameters of this type of networks.

In the thesis, 1D convolutional neural networks, also called temporal con-
volutional neural network, have been used. It is found that they are effective
with fixed-length sequences of data. In this kind of CNN, 1D arrays replace
2D matrices for both kernels and feature maps, leading to a low computa-
tional complexity CNN [10].

26

2 – Machine Learning

As explained in [6], even if convolution across 1D temporal sequences tries
to share parameters across time, this evaluation results superficial since only
of a small number of nearby segments of the input is considered in computing
the output. A more suitable neural network family that can analyze data over
time are Recurrent networks, they will be discussed in the next section.

2.4 Long Short Term Memory (LSTM)
Recurrent neural networks are known for their ability in finding correlations
between data, then they are used for tasks as speech recognition [7]. They
are also used in time series prediction [18], make them suitable for the main
task of this thesis.

Figure 2.5: Recurrent neural network structure and its unfold version from
[6]

In Recurrent Neural Networks (RNN) structure, each output is a function
of the previous members of the output and they are computed in the same
way. In this way, parameters are shared through a very deep structure

To understand better how RNNs work it is useful to "unfold" the generic
structure, as represented in Figure 2.5. With this representation, it can be
easily shown that the last state has information about the whole sequence [6].

A complete overview of RNNs types and structures is made in [6], among
them, Long Short Term Memory (LSTM) networks are the most used in
practical applications. They have been employed in the thesis work and will
be discussed in the following.

LSTM networks are a type of recurrent neural networks that have been
demonstrated to be particularly useful for learning from sequences of data
[9]. They are composed of LSTM cells (Figure 2.6) which use an internally
gated self-loop and three gating units that controls the information flow by
deciding what should be throw away. All these units have:

27

2 – Machine Learning

Figure 2.6: LSTM cell from [6]

• input gate: allows the accumulation of the input value into the state
depending on its value

• forget gate: controls the weights of the state linear self-loop

• output gate: can extinguish the output of the cell

A more detailed explanation of mathematics that manage this kind of net-
work and some variants can be found in [6].

Also LSTM networks, similarly to CNN and fully connected networks,
can be trained in a supervised way, with a training set and, an optimization
algorithm with backpropagation.

28

Chapter 3

Neural network
optimization

As explained before in Chapter 1 Section 1.3, the thesis work begins with
the data collected and used in [23], some studies about machine learning and
neural networks have been examined and finally, three main types of data
analysis have been explored:

• Fully connected Neural Networks

• 1D Convolutional Neural Networks

• Long Short Time Memory (LSTM)

The data set used in all the experiments is the same, composed by four values
that came from the capacitive samples and two values from the ultrasound
sensors, that are related to X and Y position in the room. In total, 1626
labelled samples have been collected and divided into 3 sets to execute a
supervised learning:

• Training set: composed of 976 training examples presented to the algo-
rithm in the learning phase

• Validation set: composed of 325 validation samples, used to choose the
best model

• Test set: composed of 325 test samples, used in the test phase to evaluate
the performance of the chosen model

29

3 – Neural network optimization

The training is executed for 1000 epochs and early stopping method has been
used to avoid overfitting: the model that performs better on the validation
set over the epochs is saved and used in the test phase. During the learning
some graphs have been produced:

• the loss function curve of learning and validation, to check the presence
of overfitting or underfitting

• the predicted trajectory and the ground truth curves, to visualize the
results of the prediction over the actual path

Moreover, some data to evaluate the network have been saved in a comma
separated values (CSV) format file:

• best MSE obtained in both the training and testing phase: evaluated as
explained in Chapter 2 Section 2.2 with the formula (2.1).

• the best epoch: the epoch in which the model used on the training set
is saved

• an estimation of the complexity of the network expressed in "number of
parameters"

• the estimation of the distance error as euclidean distance, as the length
of the line segment connecting the predicted and the actual points.
Then, given the reference trajectory and the predicted trajectory, each
described as n ordered points

R = (xr1...xrn; yr1...yrn), P = (xp1...xpn; yp1...ypn) (3.1)

the Euclidean distance between them is the sum of the Euclidean dis-
tance between each couple of points that composed the trajectories

DE =
nØ

i=1

ñ
(xpi − xri)2 + (ypi − yri)2 (3.2)

where n is the number of points that describes the curves

The design space exploration (DSE) of all the networks analysed is discussed
in terms of two of the previous parameters:

• Test MSE (m2)

• Neural Network Complexity (number of parameters)

30

3 – Neural network optimization

TensorFlow has been used to build and train models through the high-
level Keras API, which makes getting started with machine learning simple
[1]. The very starting point was to learn the usage of TensorFlow and Keras
to write the python code and conduct all the experiments.

In the following sections, all the steps of the experiments will be explained
and results will be discussed separately.

3.1 Multilayer Perceptron Neural Networks
Generally, fully connected networks made by multiple hidden layers are called
Multilayer Perceptron (MLP) Neural Networks. The main steps in MLP net-
works analysis are:

1. Analysis of a first larger model: the first model was the more complex,
some experiment have been conducted to study how it behaves on the
data set used. Starting from the results two approaches have been ex-
plored:

• Use a different optimizer: an optimizer with a higher learning rate
has been used

• Increase/decrease the number of neurons: the structure of the net-
work has been changed to check if prediction improves.

2. Analysis on smaller network: a smaller network with just one hidden
layer has been tested. Again the number of neurons in the hidden layer
has been changed to check if prediction improves.

It is known that the performances of the network depends also on weights and
biases, that are randomly generated at the beginning of the training. Since
this can lead to different solutions for the same network, each experiment has
been executed for 10 times, to be sure that results achieved on one execution
aren’t sporadic.

3.1.1 Analysis of a larger model
The first MLP network described and analysed was composed of an input
layer with 4 input neurons, each corresponding to one capacitive sensor read-
ing, five hidden layers with 64 neurons per layer and an output layer that
computes two values (Figure 3.1). The NN model is sequential, described
layer by layer in Keras. The optimizer Adamax has been used to train the

31

3 – Neural network optimization

Figure 3.1: MLP network structure

network. More information about models and optimizers can be found in
Keras Documentation [5].

The input layer receives four values from the data set and the output layer
computes the estimated X-axis and Y-axis values corresponding to human
presence in the room.

In the Table 3.1 the main results are reported. It can be noticed that the
distance error of ~0.44m can be too high for assisted-living. Moreover, neural
network learning seems to stop too early since the best epoch is the 9th out
of the 1000 available.

Neurons per
hidden layers

Best
Epoch

Test MSE
(m2)

Distance Error
(m)

Complexity
(number of
parameters)

64 9 0.126 0.443 17’090

Table 3.1: Results of MLP with 5 hidden layers with 64 neurons per layer

The resulting loss functions for training and validation set are shown in
Figure 3.2.

When the training and validation errors steadily decrease, the NN learns
useful information about the problem and it is able to generalize it. The
training should stop when the validation error starts to increase, which is an
indication of NN is overfitting the training data and loosing generalization
capability. It can be easily seen that there is a generalization problem: while

32

3 – Neural network optimization

0 200 400 600 800 1000
Epochs

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
ea

n
Sq

ua
re

 E
rro

r

Training and validation loss
training
validation

Figure 3.2: Loss function MLP with 5 hidden layers with 64 neurons per layer

0 50 100 150 200 250 300

1.0

1.5

2.0

2.5

Ground truth vs prediction for X axis - test set
prediction
reference

(a) X trajectory and X ground truth
0 50 100 150 200 250 300

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50
Ground truth vs prediction for Y axis - test set

prediction
reference

(b) Y trajectory and Y ground truth

Figure 3.3: Test trajectory and ground truth of 5 hidden layers with 64 neu-
rons per layer

the training loss decreases over the epochs, the validation loss curve does not
follow the train loss curve, on the contrary, it is noisy and it strays very soon
from the expected behaviour. This means that the model is learning from
the training set but it is not able to generalize well on the validation set.

The bad generalization on the training set is confirmed in the testing phase
by the graphs in Figure 3.3 where the X and Y axes prediction is shown.

It is clear that the predictions are not sufficiently accurate: too many

33

3 – Neural network optimization

spikes are present over a smoother reference curve.
Then, the model has been changed: SGD optimizer has been used that by

default provides a learning rate higher than the Adamax.
Obtained results are reported in the following.

Neurons per
hidden layers

Best
Epoch

Test MSE
(m2)

Distance Error
(m)

Complexity
(number of
parameters)

64 122 0.125 0.451 17’090

Table 3.2: Results of MLP with 5 hidden layers with 64 neurons per layer
and SGD optimizer

0 200 400 600 800 1000
Epochs

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
ea

n
Sq

ua
re

 E
rro

r

Training and validation loss
training
validation

Figure 3.4: Loss function MLP with 5 hidden layers with 64 neurons per layer
and SGD optimizer

Since the optimizer just describes the learning method network, its change
does not affect the number of parameters. However, results are close to the
previous ones, as can be seen from Table 3.2. The loss function has a better
behaviour in the beginning but it has a worse behaviour in the following as
it can be seen in Figure 3.4.

In Figure 3.5 it is shown that also the prediction curves are similar to
the previous experiment. Therefore, it can be said that this type of changes

34

3 – Neural network optimization

0 50 100 150 200 250 300

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Ground truth vs prediction for X axis - test set
prediction
reference

(a) X trajectory and X ground truth
0 50 100 150 200 250 300

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Ground truth vs prediction for Y axis - test set
prediction
reference

(b) Y trajectory and Y ground truth

Figure 3.5: Test trajectory and ground truth of 5 hidden layers with 64 neu-
rons per layer and SGD optimizer

is not very effective to reach better performances. This could be due to the
higher learning rate of the optimizer used, which results probably too high.

Then, the optimizer has been changed again to the Adamax and the fo-
cus moved on changes concerning the network structure, starting from the
number of neurons per layer.

The next structure used is the same as Figure 3.1 save for the number of
neurons that has been increased to 128. In the Table 3.3 the main values are
reported. Results on MSE and distance error are worse than the previous
ones.

Neurons per
hidden layers

Best
Epoch

Test MSE
(m2)

Distance Error
(m)

Complexity
(number of
parameters)

128 24 0.184 0.523 66’946

Table 3.3: Results of MLP with 5 hidden layers with 128 neurons per layer

Loss functions (Figure 3.6) seem to have a comparable behaviour to the
one in Figure 3.2 and the problem of bad generalization is not overcome with
these changes. Indeed, predicted trajectories, shown in Figure 3.7, confirm
the bad generalization.

Since increasing the number of neurons did not lead to better results,
other two network configurations with a lower number of neurons per layers
have been tried: one with 32 neurons per hidden layer and the other with 8

35

3 – Neural network optimization

0 200 400 600 800 1000
Epochs

0.0

0.1

0.2

0.3

0.4
M

ea
n

Sq
ua

re
 E

rro
r

Training and validation loss
training
validation

Figure 3.6: Loss function MLP with 5 hidden layers with 128 neurons per
layer

0 50 100 150 200 250 300

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50
Ground truth vs prediction for X axis - test set

prediction
reference

(a) x trajectory and x ground truth
0 50 100 150 200 250 300

0.5

1.0

1.5

2.0

2.5

Ground truth vs prediction for Y axis - test set
prediction
reference

(b) y trajectory and y ground truth

Figure 3.7: Test trajectory and ground truth of 5 hidden layers with 128
neurons per layer

neurons per layer.
Results for both of them are reported in the Table 3.4.
The distance errors are close to the results obtained in the network with

64 neurons per layer. This means that performances comparable to complex
networks can be reached with a lower complexity network.

However, the problem of overfitting is always present, as it can easily seen

36

3 – Neural network optimization

Neurons per
hidden layers

Best
Epoch

Test MSE
(m2)

Distance Error
(m)

Complexity
(number of
parameters)

32 27 0.135 0.446 4’450
8 120 0.129 0.435 346

Table 3.4: Results of MLP with 5 hidden layers with 32 and 8 neurons per
layer

in Figure 3.8: the validation loss of the network with 8 neurons per layer
has a slightly better trend respect to others, but still not sufficiently good to
avoid bad generalization.

Again the problem of generalization is confirmed by the prediction trajec-
tory curves: in both of the networks, the accuracy in the prediction is not
sufficient since the prediction curves do not approximate well the reference
values (Figure 3.9).

From these simulations resulted that less complex network performances
are similar to more complex ones.

37

3 – Neural network optimization

0 200 400 600 800 1000
Epochs

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
M

ea
n

Sq
ua

re
 E

rro
r

Training and validation loss
training
validation

(a) Loss functions for network with 32 neurons per
layer

0 200 400 600 800 1000
Epochs

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
ea

n
Sq

ua
re

 E
rro

r

Training and validation loss
training
validation

(b) Loss functions for network with 8 neurons per layer

Figure 3.8: Loss functions of 5 hidden layers with 32 and eight neurons per
layer

38

3 – Neural network optimization

0 50 100 150 200 250 300

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Ground truth vs prediction for X axis - test set
prediction
reference

(a) X trajectory and X ground truth
for network (32 neurons)

0 50 100 150 200 250 300
0.5

1.0

1.5

2.0

2.5

Ground truth vs prediction for Y axis - test set
prediction
reference

(b) Y trajectory and Y ground truth
for network (32 neurons)

0 50 100 150 200 250 300

1.0

1.5

2.0

2.5

Ground truth vs prediction for X axis - test set
prediction
reference

(c) X trajectory and X ground truth
for network (8 neurons)

0 50 100 150 200 250 300
0.5

1.0

1.5

2.0

2.5

Ground truth vs prediction for Y axis - test set
prediction
reference

(d) Y trajectory and Y ground truth
for network (8 neurons)

Figure 3.9: Test trajectory and ground truth of 5 hidden layers with 32 and
8 neurons per layer

39

3 – Neural network optimization

3.1.2 Analysis on smaller network
The model has been changed again: just one hidden layer has been used and
different simulations with different number of neurons have been executed.
The results are summarized in the Table 3.5.

Neurons per
hidden layers

Best
Epoch

Test MSE
(m2)

Distance Error
(m)

Complexity
(number of
parameters)

8 281 0.152 0.485 58
32 196 0.125 0.433 226
64 199 0.132 0.447 450
128 210 0.136 0.457 898

Table 3.5: Results of MLP with 1 hidden layers

It can be easily seen that the best result in terms of distance error is
obtained with an MLP network with 32 neurons in the hidden layer. This
result is really close to the one obtained in the beginning with a more complex
network which results are reported in Table 3.1.

Additionally, loss functions shown in Figure 3.10 present a behaviour close
to the previous simulations: the validation loss function diverge from the
training loss function soon, the generalization is poor.

Trajectory predictions show similar behaviour between the different net-
work analyzed, so they are not reported here.

40

3 – Neural network optimization

0 200 400 600 800 1000
Epochs

0.2

0.3

0.4

0.5

0.6

M
ea

n
Sq

ua
re

 E
rro

r

Training and validation loss
training
validation

(a) Loss function NN 8 neurons

0 200 400 600 800 1000
Epochs

0.15

0.20

0.25

0.30

0.35

0.40

M
ea

n
Sq

ua
re

 E
rro

r

Training and validation loss
training
validation

(b) Loss function NN 32 neurons

0 200 400 600 800 1000
Epochs

0.15

0.20

0.25

0.30

0.35

M
ea

n
Sq

ua
re

 E
rro

r

Training and validation loss
training
validation

(c) Loss function for network with 64
neurons

0 200 400 600 800 1000
Epochs

0.15

0.20

0.25

0.30

0.35

0.40

M
ea

n
Sq

ua
re

 E
rro

r

Training and validation loss
training
validation

(d) Loss function for network with 128
neurons

Figure 3.10: Loss functions of 1 hidden layers networks

41

3 – Neural network optimization

3.1.3 MLP Summary
To summarise, the main results of this kind of network has been reported in
Table 3.6. The design space exploration plot has been shown in Figure 3.11
as the MSE vs number of parameters plot.

Optimizer Hidden
layers

Neurons
per hidden

layers

Best
Epoch

Test
MSE
(m2)

Distance
error
(m)

Complexity
(N. of

parameters)
Adamax 5 64 9 0.126 0.443 17090
SGD 5 64 122 0.125 0.451 17090

Adamax 5 128 24 0.184 0.523 66946
Adamax 5 32 27 0.135 0.446 4450
Adamax 5 8 120 0.129 0.435 346
Adamax 1 8 281 0.152 0.485 58

Adamax 1 32 193 0.125 0.433 226
Adamax 1 64 199 0.132 0.447 450
Adamax 1 128 210 0.136 0.457 898

Table 3.6: Summary table of MLP networks analyzed

Then, it can be finally said that:

• this kind of network can not produce better results starting from this
data set

• in general, simple networks can produce results similar to those obtained
with complex network.

Another approach to analyze the data for movements recognition is to use
data collected in a certain window of time so that a correlation between data
can be found to infer movements. This method has been exploited by using
convolutional neural networks, in particular 1D-CNN, that will be discussed
in the next Section.

42

3 – Neural network optimization

Figure 3.11: Summary of the MLP networks analyzed

43

3 – Neural network optimization

3.2 Convolutional Neural Networks
The more suitable convolutional approach for this case of study consists of the
usage of the 1D convolutional layers. They are known for their effectiveness
on sequences of data analysis, such as audio processing.

The data set has been divided in sequences: after choosing the size of the
temporal window to be considered, the CNN receives all the tuples that be-
long to the temporal window, which are labelled with the position coordinates
of the window size middle.

The objective is to analyze these tuples in sequences and infer the position
coordinates. Because of the position refers to the middle of a window, the
predicted trajectories starts half a window after the beginning of reference
trajectory and half a window before its end.

The process is computed by the filters and the kernel that are defined in
the CNN: the kernel moves inside the window by one tuple at a time, filters
analyze the content of the kernel. When the edge of the window is reached,
the window "moves": the very first tuple is discarded and a new tuple is
taken into account. The new window obtained is analyzed in the same way
described before.

Initially, the window size used was set to 5 s, but later also some ex-
periments with a window size of 10 s have been conducted. All the networks
explored have been trained for 1000 epochs. Again, each experiment has been
executed for 10 times, to be sure that results achieved on one execution are
not sporadic.

The design space exploration on 1D-CNNs can be divided into three main
parts:

1. Larger 1D-CNN analysis: the starting point was a large 1D-CNN sug-
gested by the research team. Experiments to perform the DSE have been
conducted and results analysed. Main steps are:

• the study of the behaviour of the starting network
• increasing/decreasing number of CNN filters and kernel size to check

if prediction improves
• decreasing the number of neurons in the MLP layers: an optimiza-

tion on the last part of the network has been conducted to check if
prediction improves

• reduction of CNN layers: it has been chosen to reduce the complexity
of the network. Only two CNN layers have been used in this stage.

44

3 – Neural network optimization

2. Exploration on regularization: L1 and L2 regularizations have been added
to check improvements on performances

3. Smaller networks analysis: a network with one convolutional layer and
one MLP layer has been used to check if prediction improves.

3.2.1 Larger Network results

Figure 3.12: Larger 1D-CNN structure

The first convolutional neural network described and analysed has been
suggested by the research team, it is composed of two convolutional hidden
stages made by two convolutional layers each followed by a dropout layer of
0.5, a pooling layer and two fully connected hidden layers of 64 neurons each,
separated by a dropout layer (Figure 3.12).

Dropout is used for regularization to prevent overfitting. It randomly sets
a percentage of input data to zero: in this network, since the dropout is set
to 0.5, half of the inputs of the second convolutional stage are set to zero.

The pooling size is needed in every convolutional network to reduce the
number of parameters. While the last part of MLP networks is used to com-
pute the final outputs.

A complete design space exploration has been conducted by changing the
number of filters and kernel size. The network has been trained over 1000
epochs for 10 times with a window size of 5 s, the results are stored in the
Table 3.7 and Table 3.8.

Results are better than those obtained with the simple MLP, in part be-
cause the CNN analyzes sequences of data. On the other hand, the complexity
of the network has increased. Best results have been achieved with a kernel
size of 3 and the number of filters of 8 (highlighted in Table 3.7).

Given these good results, also a better behaviour of the loss function is
expected. Every loss function obtained for this network have been analysed

45

3 – Neural network optimization

Number of filters
8 16

Kernel
size

Test
MSE
(m2)

Distance
error
(m)

Complexity
(N. of

parameters)

Test
MSE
(m2)

Distance
error
(m)

Complexity
(N. of

parameters)
3 0.064 0.297 7618 0.078 0.354 12034
5 0.079 0.344 8066 0.079 0.341 13698
7 0.100 0.393 8514 0.093 0.369 15362
9 0.098 0.367 8962 0.069 0.323 17026

Table 3.7: Results of 1D-CNN 8 and 16 filters

Number of filters
32 64

Kernel
size

Test
MSE
(m2)

Distance
error
(m)

Complexity
(N. of

parameters)

Test
MSE
(m2)

Distance
error
(m)

Complexity
(N. of

parameters)
3 0.091 0.372 24322 0.084 0.358 62722
5 0.094 0.371 30722 0.090 0.374 87810
7 0.081 0.346 37122 0.083 0.361 112898
9 0.085 0.358 43522 0.091 0.367 137986

Table 3.8: Results of 1D-CNN 32 and 64 filters

and the general trend of the iteration that obtained the reported results has
been confirmed.

In Figure 3.13 the best loss function is represented. It can be easily seen
that the problem of the bad generalization is still present. On the other hand,
the validation curve seems to follow the training loss trend in a better way,
compared to the one obtained in the MLP experiments, hence the NN is able
to generalize better.

Then, the trajectory prediction curves have been observed, they are re-
ported in Figure 3.14.

In general, the prediction follows the reference more smoothly with less
spikes than those obtained in the MLP experiments. However, some parts of
the prediction curves do not follow closely the reference ones.

It seems that on the X-axis there is an underestimation of peaks, while in
Y-axis several incongruences are present in the initial and final parts.

Some changes in the convolutional stages have been executed to check

46

3 – Neural network optimization

0 200 400 600 800 1000
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
Sq

ua
re

 E
rro

r

Training and validation loss
training
validation

Figure 3.13: Loss function 1D-CNN with 8 filters and kernel size of 3

0 50 100 150 200 250 300

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Ground truth vs prediction for X axis - test set
prediction
reference

(a) x trajectory and x ground truth
0 50 100 150 200 250 300

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25
Ground truth vs prediction for Y axis - test set

prediction
reference

(b) y trajectory and y ground truth

Figure 3.14: Test trajectory and ground truth of 1D-CNN with 8 filters and
kernel size of 3

if prediction improves. New experiments have been conducted by changing
the number of filters and kernel size for each layer, but results were not
significantly better, so they have been discarded and are not discussed here.

Then, it has been decided to optimize the structure of the network. The
number of neurons in the first MLP layer of the network final stage has
been reduced from 64 to 32. The complete design space exploration has been
executed with different kernel sizes and number of filters. First results with
a kernel size of 9 were not promising, hence it has been excluded from the

47

3 – Neural network optimization

experiment.
The obtained results have been reported in the Table 3.9 and Table 3.10.

Number of filters
8 16

Kernel
size

Test
MSE
(m2)

Distance
error
(m)

Complexity
(N. of

parameters)

Test
MSE
(m2)

Distance
error
(m)

Complexity
(N. of

parameters)
3 0.073 0.322 4258 0.078 0.340 7394
5 0.098 0.370 4706 0.103 0.399 9058
7 0.087 0.351 5154 0.092 0.371 10722

Table 3.9: Results on 1D-CNN with 32 neurons in the first MLP - results
with 8 and 16 filters

Number of filters
32 64

Kernel
size

Test
MSE
(m2)

Distance
error
(m)

Complexity
(N. of

parameters)

Test
MSE
(m2)

Distance
error
(m)

Complexity
(N. of

parameters)
3 0.094 0.379 17122 0.095 0.384 50402
5 0.094 0.382 23522 0.089 0.365 75490
7 0.090 0.375 29922 0.110 0.407 100578

Table 3.10: Results on 1D-CNN with 32 neurons in the first MLP - results
with 32 and 64 filters

Again, the best results have been obtained with the kernel size of 3 and
the number of filters of 8, highlighted in Table 3.9.

Since results in terms of Test MSE are a bit worse than the previous try,
it is expected that both loss function and predicted trajectories are similar
or worse. All the loss functions of the network with the best results have
been analysed, the behaviour does not seem sporadic. The loss function is
reported in Figure 3.15. The validation loss curve stops following the training
loss trend earlier than the previous experiment in Figure 3.13.

They are similar to the previous experiment, with a slightly worse be-
haviour especially in the end part, between samples 250 and 300. The pre-
dicted trajectories are shown in Figure 3.16.

48

3 – Neural network optimization

0 200 400 600 800 1000
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
Sq

ua
re

 E
rro

r

Training and validation loss
training
validation

Figure 3.15: Loss function 1D-CNN with 32 neurons in the first MLP, 8 filters
and kernel size of 3

0 50 100 150 200 250 300

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Ground truth vs prediction for X axis - test set
prediction
reference

(a) x trajectory and x ground truth
0 50 100 150 200 250 300

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Ground truth vs prediction for Y axis - test set
prediction
reference

(b) y trajectory and y ground truth

Figure 3.16: Test trajectory and ground truth of 1D-CNN with 32 neurons
in the first MLP, 8 filters and kernel size of 3

Again, a reduction of the network complexity obtains slightly worse results
in prediction, as in the case of MLP networks analysed in Section 3.1.

In the next experiment also the last MLP layer was set with 32 neurons,
only kernel size of 3 and 5 have been considered and the number of filters has
been set to 4 and 8 since best results have been obtained with a low number
of filters. Results are reported in Table 3.11.

49

3 – Neural network optimization

Number of filters
4 8

Kernel
size

Test
MSE
(m2)

Distance
error
(m)

Complexity
(N. of

parameters)

Test
MSE
(m2)

Distance
error
(m)

Complexity
(N. of

parameters)
3 0.092 0.374 2002 0.083 0.350 3138
5 0.088 0.370 2130 0.088 0.363 3586

Table 3.11: Test trajectory and ground truth of 1D-CNN with 32 neurons in
the first MLP

Results are worse than previous experiment, best results are highlighted.
Loss functions presents a smoother trend, but the validation loss always seems
to flat around 0.4 m2 MSE (Figure 3.17).

0 200 400 600 800 1000
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
Sq

ua
re

 E
rro

r

Training and validation loss
training
validation

Figure 3.17: Loss function 1D-CNN with 32 neurons in MLP layers, 8 filters
and kernel size of 3

While predicted trajectories do not show any improvement, on the con-
trary, Y-axis prediction is worsened in the initial and final parts and X-axis
prediction underestimates peaks as noticed in the very first experiment (Fig-
ure 3.14). Prediction curves are shown in Figure 3.18.

Then, the next experiment is focused on the reduction of complexity: the
second two 1D-CNN hidden layers and dropout have been removed and the
number of neurons of MLP layers have been set to 32. Again, only kernel size

50

3 – Neural network optimization

0 50 100 150 200 250 300

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Ground truth vs prediction for X axis - test set
prediction
reference

(a) x trajectory and x ground truth
0 50 100 150 200 250 300

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25
Ground truth vs prediction for Y axis - test set

prediction
reference

(b) y trajectory and y ground truth

Figure 3.18: Test trajectory and ground truth of 1D-CNN with 32 neurons
in MLP layers, 8 filters and kernel size of 3

of 3 and 5 have been considered and the number of filters has been set to 8.
The network has been trained over 1000 epochs for 10 times and a window
size of 5 s, as usual. Results are shown in Table 3.12. Good results have been

8 filters

Kernel
size

Test
MSE
(m2)

Distance
error
(m)

Complexity
(N. of

parameters)
3 0.070 0.329 2738
5 0.090 0.362 2930

Table 3.12: Results of 1D-CNN with 32 neurons in the first MLP and a
window size of 5 s

obtained for the network with a kernel size of 3, they are slightly worse than
hose highlighted in Table 3.7 of the first network analyzed, but it seems a
good trade-off between number of parameters required and Test MSE.

The loss function is shown in Figure 3.19. The validation loss function
follows the trend of the training loss function for a short time, then it stays
around the 0.3 m2 MSE: this means that the validation loss function is closest
one obtained until now, but the generalization is poor.

The prediction curves (Figure 3.20) present some spikes, mostly in the
initial and last part of the Y-axis prediction.

51

3 – Neural network optimization

0 200 400 600 800 1000
Epochs

0.1

0.2

0.3

0.4

0.5

M
ea

n
Sq

ua
re

 E
rro

r

Training and validation loss
training
validation

Figure 3.19: Loss functions 2-layers 1D CNN and 32 neurons in MLP layers

0 50 100 150 200 250 300

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Ground truth vs prediction for X axis - test set
prediction
reference

(a) x trajectory and x ground truth
0 50 100 150 200 250 300

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25
Ground truth vs prediction for Y axis - test set

prediction
reference

(b) y trajectory and y ground truth

Figure 3.20: Test trajectory and ground truth of 2-layers 1D-CNN with 32
neurons in MLP layers, 8 filters and kernel size of 3

A way to reduce the overfitting can be the usage of other kinds of reg-
ularization. Starting from this last result, L1 and L2 regularizations have
been added to the convolutional layers to check if prediction improves. These
experiments are discussed in Subsection 3.2.2.

52

3 – Neural network optimization

3.2.2 Exploration on regularization
The network structure is shown in the Figure 3.21.

Figure 3.21: 1D-CNN structure used for regularization exploration

The regularization is a way to prevent overfitting or reduce the error in
the network, some basic information about different types of regularizations
can be found in [6]. Two kinds of regularizations have been applied to the
experiments yet: dropout (described in Subsection 3.2.1) and early stopping
(described in Section 3).

By reading about 1D convolutional layers on [5], it has been found that
L1 or L2 regularization are provided, then also these solutions have been
explored. The main difference between these two kinds of regularization is in
the way they act on the model to reduce computation complexity, a detailed
explanation can be found in [6]. Several experiments have been conducted:

• Adding L1 regularization to the structure with window size to 5 s

• Adding L2 regularization to the structure with window size to 5 s

• Adding L1 regularization to the structure without the dropout layer,
with window size to 5 s

• Adding L2 regularization to the structure without the dropout layer,
with window size to 5 s

• Increasing the window size to 10 s in all the previous listed experiments

Increasing the window size can lead to an improvement on predictions: since
more data are analysed inside the window, a better correlation between data
can be implemented.

53

3 – Neural network optimization

Figure 3.22: Main results of regularization exploration

Since controlling the model complexity is not related to only find the right
number of parameters, it is also possible that a large model is the best one
if well regularized [6]. Then, a complete design space exploration has been
conducted with different kernel sizes and number of filters.
The best results obtained are shown in the Figure 3.22. It can be noticed
that L2 regularization Pareto dominate the L1 one. In the following, the
highlighted Pareto points will be discussed, starting from the left side of the
graph.

The first results reported in Table 3.13, are those of L2 regularization
with the dropout layer. The kernel size and the number of filters of the best

8 filters

Kernel
size

Test
MSE
(m2)

Distance
error
(m)

Complexity
(N. of

parameters)
3 0.074 0.333 2738

Table 3.13: L2 regularization results with dropout - window size of 5 s

result obtained with L2 regularization are the same as the best results of the
networks analysed in Subsection 3.2.1. The MSE is worse than that obtained

54

3 – Neural network optimization

for this network structure without regularization. To have a better idea of
the prediction behaviour, also loss functions and prediction trajectories will
be analysed. They are shown in Figure 3.23 and Figure 3.24.

Figure 3.23: Loss functions with L2 regularization with dropout and window
size of 10 s

(a) x trajectory and x ground truth (b) y trajectory and y ground truth

Figure 3.24: Test trajectory and ground truth with L2 regularization. dropout
and window size of 10 s

No improvement can be noticed in the loss function. On the contrary,
it has a worse behaviour than the network without regularization, that is

55

3 – Neural network optimization

confirmed by the prediction trajectories. In fact, they present more spikes
than other experiments conducted on CNN structures and a very bad trend
on y-axis prediction.

The next network to analyse is that with only L2 regularization and a
window size of 5 s. Results are in Table 3.14. The Test MSE is slightly better

32 filters

Kernel
size

Test
MSE
(m2)

Distance
error
(m)

Complexity
(N. of

parameters)
3 0.069 0.317 9794

Table 3.14: L2 regularization results - window size of 5s

than previous results, but the number of parameters has increased because
of the higher number of filters employed.

The loss function is shown in Figure 3.25 The general trend is worse than

Figure 3.25: Loss functions with L2 regularization and window size of 10 s

previous one: the validation loss diverges soon, then it decreases and it flats
around 0.4 m2 MSE.

Predicted trajectories are shown in Figure 3.26.
It can be easily seen that trajectories are both smoother than previous

ones. In the X-axis graph, the general trend of predicted trajectory follows
the reference one, with some higher spikes in the last part of the curve.

56

3 – Neural network optimization

(a) x trajectory and x ground truth (b) y trajectory and y ground truth

Figure 3.26: Test trajectory and ground truth with L2 regularization and
window size of 5 s

In the Y-axis graph more spikes are present especially in the initial and
final part of predicted curve while, a better behaviour can be noticed in the
middle of the graph.

In general, it can be said that predictions are better than previous results.
The next Pareto point to be analysed is the L2 regularization with dropout

and a window size of 10s.
Results are reported in Table 3.15.

32 filters

Kernel
size

Test
MSE
(m2)

Distance
error
(m)

Complexity
(N. of

parameters)
5 0.053 0.274 17218

Table 3.15: L2 regularization results - window size of 10 s

This time both the number of filters and kernel size is higher, but results
in term of MSE are good.

Unfortunately loss functions evolution is suboptimal. They are reported
in Figure 3.27.

The validation loss function diverges immediately from the training loss
function, but it flats around 0.4 m2 MSE as in the previous experiments.

The trajectories are shown in Figure 3.28. It can be noticed that the trend
of the prediction is smoother than in the previous L2 experiments analysed

57

3 – Neural network optimization

Figure 3.27: Loss functions with L2 regularization and window size of 10 s

(a) x trajectory and x ground truth (b) y trajectory and y ground truth

Figure 3.28: Test trajectory and ground truth with L2 regularization and
window size of 10s

but do not predict peaks as well as in the experiments without this kind of
regularization.

Mispredictions are concentrated in the initial part of both predicted tra-
jectories. Indeed, the two prediction trajectories cannot follow the references
and underestimate peaks but they have a better trend in the final part.

Finally, the experiment with L2 regularization without the dropout is anal-
ysed.

58

3 – Neural network optimization

The results are reported in Table 3.16. This is the best result obtained in
term of Test MSE.

64 filters

Kernel
size

Test
MSE
(m2)

Distance
error
(m)

Complexity
(N. of

parameters)
3 0.047 0.273 34818

Table 3.16: L2 regularization without dropout results - window size of 10s

This time the number of filter is 64 and the kernel size is 3, that leads to
a significant increase in the number of parameters.

In the Figure 3.29 and Figure 3.30 loss functions and trajectory prediction
are presented.

Figure 3.29: Loss functions with L2 regularization without dropout and win-
dow size of 10 s

Despite the promising results on Test MSE, the loss functions present a
bad trend. The validation loss diverges soon as in the case of L2 regularization
with 10 s window and dropout. Nevertheless, it reaches a higher peak, then
decreases ands flat around 0.4 m2 MSE as before. Predicted trajectories have
a smoother trend than before, but mispredictions in peaks and around the
initial and final Y-axis curve remained.

59

3 – Neural network optimization

(a) x trajectory and x ground truth (b) y trajectory and y ground truth

Figure 3.30: Test trajectory and ground truth with L2 regularization without
dropout and window size of 10 s

To conclude this analysis, it can be said that L1 and L2 regularizations
add few improvements to the network, producing smoother trajectories. On
the other hand, some errors have been observed, especially in peaks predic-
tion. The last experiment conducted on 1D-CNNs focused on simplifying the
network as much as possible. This will be discussed in the Subsection 3.2.3.

3.2.3 Simple Network analysis

Figure 3.31: Simple 1D-CNN structure

The last step in 1D-CNNs analysis consists in experiments on very simple
networks to avoid overfitting the training data. The structure used is shown
in Figure 3.31.

60

3 – Neural network optimization

The first network analysed is composed of one layer 1D-CNN with a kernel
size of three, the number of filters equal to four and an MLP of two neurons.
Only early stopping is used as a regularization method. The number of repe-
tition has been increased to 100 for a more accurate analysis of loss functions.
The network has been trained over 1000 epochs for 100 times with a window
size of 5 s. Results are shown in the Table 3.17.

4 filters

Kernel
size

Test
MSE
(m2)

Distance
error
(m)

Complexity
(N. of

parameters)
3 0.079 0.343 100

Table 3.17: Results one layer 1D-CNN with kernel size of three, number of
filters equal to four and an MLP of two neurons

The saving in terms of the number of parameters is significant. Moreover,
it has similar results to the third network described in Section 3.2.1 (Table
3.11), but with less complexity. The loss function and trajectory predictions
are shown in Figure 3.32 and Figure 3.33.

Figure 3.32: Loss functions one layer 1D-CNN with kernel size of three, num-
ber of filters equal to four and an MLP of two neurons

The validation loss function is not sporadic and presents a better trend,
very similar to the training loss. Moreover, it flats around a 0.22-0.23 m2

61

3 – Neural network optimization

(a) x trajectory and x ground truth (b) y trajectory and y ground truth

Figure 3.33: Test trajectory and ground truth one layer 1D-CNN with kernel
size of three, number of filters equal to four and an MLP of two neurons

MSE instead of 0.4 m2 MSE obtained in previous experiments. Prediction
trajectories present some spikes, but in general, the behaviour is quite similar
to the predictions obtained in the Section 3.2.1. This means that a simple
network structure can infer trajectory in a similar way of a more complex
one. In the following, to refer to this first network the name "SimpleNet"
will be used. The complexity of this network has been gradually increased
to improve the results. Several experiments have been conducted, they are
listed in the order of execution:

• SimpleNet with lower learning rate: the same optimizer Adamax has
been used but with a lower learning rate. Since this lead to worse results,
an experiment on a different optimizer has been conducted

• SimpleNet and different optimizer: SGD has been used instead of Adamax,
with a different learning rate. The results were worse than the previous
step, then a different way has been followed in the next

• SimpleNet with 8 neurons in the MLP: because of previous worse results,
Adamax was chosen again as optimizer and the number of neurons in
MLP layer has been increased. Results were better than the previous
try.

• SimpleNet with 8 neurons in the MLP and 8 filters: since the incre-
mentation of neurons gave a good result, the number of filters has been

62

3 – Neural network optimization

increased as well. This led to a slightly worse result in terms of Test
MSE. Then, in the following experiments the number of filters has been
changed to 4 again

• SimpleNet with 16 neurons in the MLP: since increasing the number
of neurons led to better results, another experiment with 16 neurons in
the MLP layer has been conducted. Slightly worse results in terms of
Test MSE have been reached respect to the previous experiments in this
Subsection

• SimpleNet with 8 neurons in the MLP and window size of 10s: starting
from the good result with 8 neurons, it has been chosen to widen the
window size. This led to similar results to the previous ones in terms of
Test MSE.

All the results are summarized in the Table 3.18 and a resume graph shows
the Pareto curve Figure 3.34. The SimpleNet is a Pareto point of the design
space.

window
size

Kernel
size Filters

MLP
number of
neurons

Test
MSE
(m2)

Distance
error
(m)

Complexity
(N. of

parameters)
5 3 4 2 0.086 0.358 100
5 3 4 2 0.089 0.365 100
5 3 4 8 0.070 0.307 238
5 3 8 8 0.079 0.340 450
5 3 4 16 0.075 0.331 422
10 3 4 8 0.072 0.338 398

Table 3.18: Results of all the experiment on SimpleNet

The other network, with results highlighted in Table 3.18, will be analyzed
in the following. Again, the result obtained is close to the one obtained with
a complex network. This probably means that the real problem is related to
the data set: a lower complexity network matches the complexity of the data
set and produce results similar to the ones obtained with a more complex
and regularized network that tend to overfit and are not able to generalize
well on this data set.

In Figure 3.35 and Figure 3.36 the loss function of the second Pareto point
are shown.

63

3 – Neural network optimization

Figure 3.34: DSE of the experiment on SimpleNet

Figure 3.35: Loss functions one layer 1D-CNN with kernel size of 3, number
of filters equal to 4 and an MLP with 8 neurons

The validation loss function presents better results than the ones obtained
by the training in the beginning. Then, it flats around 0.25 m2 MSE, that is
a similar result to the SimpleNet.

Prediction trajectories follow the trend of the reference curves with some
spikes in the initial part of Y-axis prediction and the last part of the X-axis

64

3 – Neural network optimization

prediction.

(a) x trajectory and x ground truth (b) y trajectory and y ground truth

Figure 3.36: Test trajectory and ground truth one layer 1D-CNN with kernel
size of 3, number of filters equal to 4 and an MLP with 8 neurons

3.2.4 CNNs summary
To conclude, in the following a summary of all the experiments on CNNs is
presented in Table 3.19, Table 3.20, Table 3.21. In Figure 3.37 a graphical
representation is shown, with Pareto points highlighted. In the legend there
are the name of the networks analysed:

• 4conv-MLP64-MLP64-w5: the network with four convolutional layers, 2
MLP (both with 64 neurons) and a window size of 5 s

• 4conv-MLP32-MLP64-w5: the network with four convolutional layers,
2 MLP (the first with 32 neurons, the second with 64 neurons) and a
window size of 5 s

• 4conv-MLP32-MLP32-w5: the network with four convolutional layers, 2
MLP (both with 32 neurons) and a window size of 5 s

• 2conv-MLP32-MLP32-w5: the network with two convolutional layers, 2
MLP (both with 32) and a window size of 5 s

• L2-8filters-kernel3-w5: the L2-regularized network with two convolutional
layers (with 8 filters and a kernel size of 3), 2 MLP (both with 32 neu-
rons) and a window size of 5 s

65

3 – Neural network optimization

• L2-32filters-kernel5-w10: the L2-regularized network with two convolu-
tional layers (with 32 filters and a kernel size of 5), 2 MLP (both with
32 neurons) and a window size of 10 s

• L2-64filters-kernel3-w10: the L2-regularized network with two convolu-
tional layers (with 64 filters and a kernel size of 3), 2 MLP (both with
32 neurons) and a window size of 10 s

• 1conv-MLP2-4filters-kernel3-w5: the L2-regularized network with one
convolutional layers (with 4 filters and a kernel size of 3), 1 MLP with
2 neurons and a window size of 5 s

• 1conv-MLP8-4filters-kernel3-w5: the L2-regularized network with one
convolutional layers (with 8 filters and a kernel size of 3), 1 MLP with
8 neurons and a window size of 5 s

Window
size
(s)

1st
MLP

neurons

2nd
MLP

neurons

Kernel
size

N. of
filters

Test
MSE
(m2)

Distance
error
(m)

Complexity
(N. of

parameters)
5 64 64 3 8 0.064 0.297 7618
5 32 64 3 8 0.073 0.322 4258
5 32 32 3 8 0.083 0.350 3138
5 32 32 3 8 0.070 0.329 2738

Table 3.19: Large structure summary: all networks have four 1D-CNN layers
excepted for the last one that has two 1D-CNN layers

Window
size
(s)

1st
MLP

neurons

2nd
MLP

neurons

Kernel
size

N. of
filters

Test
MSE
(m2)

Distance
error
(m)

Complexity
(N. of

parameters)
5 32 32 3 8 0.074 0.333 2738
10 32 32 5 32 0.053 0.274 17218

10 32 32 3 64 0.047 0.273 34818

Table 3.20: 1D-CNN 2-layers structure with L2 regularization summary

66

3 – Neural network optimization

Window
size
(s)

MLP
neurons

Kernel
size

N. of
filters

Test
MSE
(m2)

Distance
error
(m)

Complexity
(N. of

parameters)
5 2 3 4 0.079 0.343 100
5 8 3 8 0.070 0.307 238

Table 3.21: Small structure summary with one 1D-CNN layer

Figure 3.37: Summary CNN DSE

67

3 – Neural network optimization

3.3 Long-Short Term Memory (LSTM)

Figure 3.38: LSTM network

Among recurrent NNs, LSTM has been chosen because they are largely
used in data sequences analysis, as described in Chapter 2 Section 2.4. The
structure of the network analysed is shown in Figure 3.38.

The main parameters changed during the design space exploration are:

• number of neurons in an LSTM stage

• number of LSTMs in the network

The data set has been divided in sequences as already done for CNNs, the
process has been explained in Section 3.2.

The initial window size has been set to 5 s, then also experiments with
a different window size of to 10 s have been conducted. The network has
been trained over 1000 epochs and early stopping regularization has been
implemented.

The number of runs on the same structure has been increased to 100, to
better check the general behaviour of the network.

The main steps executed during the optimization of this network for the
data set used are:

1. analysis of a small network with one LSTM layer:

• a simple experiment has been executed to study the behaviour of
the network.

68

3 – Neural network optimization

• the window size has been increased to allow the network to analyse
more data to create correlations between them and check if predic-
tion improves.

2. analysis on a regularized LSTM network:

• a dropout regularization between LSTM and output layer has been
used to check if the prediction improves.

• the number of LSTM layers has been increased to two to check if
the prediction improves.

A summary on the DSE in terms of Test MSE and the number of parameters
is presented at the end of this section.

3.3.1 Small network with one LSTM layer
A first experiment on a network with one LSTM layer has been conducted.
Results obtained are in Table 3.22.

Window
size

Neurons
in LSTM
layer

Test
MSE
(m2)

Distance
error
(m)

Complexity(N. of
parameters)

5 s 2 0.076 0.334 62
5 s 4 0.074 0.321 154
5 s 8 0.077 0.336 434
5 s 16 0.085 0.355 1387

Table 3.22: 1-layer LSTM results with a window size of 5 s

Test MSE results are similar to those obtained with 1D-CNNs, but the
general saving in terms of the number of parameters is significant. The best
result highlighted will be analysed in more detail in the following. Loss func-
tion is represented in Figure 3.39.

This time, training loss function keeps decreasing and validation loss func-
tion trend flattens around 0.27 m2 MSE.

General trend among the different execution has been analysed: all training
loss functions have a decreasing trend and the majority of validation loss
function flattens around 0.25-0.30 m2 MSE.

Predicted trajectories are shown in Figure 3.40. The X-axis prediction has
a good smooth trend over the reference, while the Y-axis trend presents more

69

3 – Neural network optimization

0 200 400 600 800 1000
Epochs

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

M
ea

n
Sq

ua
re

 E
rro

r

Training and validation loss
1LSTM(drop)-out-HL4

training
validation

Figure 3.39: Loss functions of one layer LSTM network with four neurons

0 50 100 150 200 250 300

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Ground truth vs prediction for X axis - test set
1LSTM(drop)-out-HL4

prediction
reference

(a) x trajectory and x ground truth
0 50 100 150 200 250 300

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Ground truth vs prediction for Y axis - test set
1LSTM(drop)-out-HL4

prediction
reference

(b) y trajectory and y ground truth

Figure 3.40: Test trajectory and ground truth of one layer LSTM network
with four neurons

spikes.
In the Y-axis graph, it can be noticed that the lower peak in the reference
curve is underestimated by the predicted trajectory.

Since results were good, then it has been chosen to increase the window
size to check if the prediction improves.

Results are in the Table 3.23. Test MSE results are better than previous
ones for all values of neurons in the LSTM layer. The highlighted best result

70

3 – Neural network optimization

Window
size

Neurons
in LSTM
layer

Test
MSE
(m2)

Distance
error
(m)

Complexity(N. of
parameters)

10 s 2 0.056 0.301 62
10 s 4 0.059 0.302 154
10 s 8 0.066 0.320 434
10 s 16 0.058 0.299 1387

Table 3.23: 1-layer LSTM results with a window size of 10 s

0 200 400 600 800 1000
Epochs

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
ea

n
Sq

ua
re

 E
rro

r

Training and validation loss
1LSTM(drop)-out-HL2

training
validation

Figure 3.41: Loss functions of one layer LSTM network with four neurons

loss function is shown in Figure 3.41.
The general trend is similar to the previous: despite some initial flat parts,

training loss keeps decreasing and the validation loss flattens around 0.30 m2

MSE.
This general behaviour is confirmed by other execution loss functions, a

worse prediction behaviour is expected.
The predicted trajectories are shown in Figure 3.42. Prediction trajectories

are both smoother than previous ones.
The Y-axis predicted trajectory trend presents less spikes, but the lower

peak is not approximated well. The X-axis prediction trajectory trend do not
present spikes but cannot approximate well the peaks.

Since the increase of the window size produced overall better results, it has
been chosen to keep it and use a simple dropout regularization immediately

71

3 – Neural network optimization

after the LSTM layer to reach better results.

0 50 100 150 200 250 300

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Ground truth vs prediction for X axis - test set
1LSTM(drop)-out-HL2

prediction
reference

(a) x trajectory and x ground truth
0 50 100 150 200 250 300

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Ground truth vs prediction for Y axis - test set
1LSTM(drop)-out-HL2

prediction
reference

(b) y trajectory and y ground truth

Figure 3.42: Test trajectory and ground truth of one layer LSTM network
with four neurons

3.3.2 Analysis on a regularized LSTM network
Dropout regularization has been added between the LSTM layer and output
layer. The experiment has been executed with a window size of 10 s. Results
are reported in Table 3.24. Results are similar to the ones without the dropout

Window
size

Neurons
in LSTM
layer

Test
MSE
(m2)

Distance
error
(m)

Complexity(N. of
parameters)

10 s 2 0.093 0.388 62
10 s 4 0.069 0.330 154
10 s 8 0.056 0.294 434
10 s 16 0.065 0.309 1387

Table 3.24: Results of 1-layer LSTM and dropout with window size of 10 s

layer, the best result has been reached with an LSTM number of neurons
equal to eight. Loss functions are represented in Figure 3.43.

Loss functions have a more regular behaviour: the training one has a de-
creasing trend, while the validation loss function has a diverging drift but it
keeps still around 0.25-0.30 m2 MSE in the final part of the graph.

72

3 – Neural network optimization

0 200 400 600 800 1000
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
Sq

ua
re

 E
rro

r

Training and validation loss
1LSTM(drop)-out-HL8

training
validation

Figure 3.43: Loss functions of one layer LSTM network with eight neurons
and dropout

0 50 100 150 200 250 300

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Ground truth vs prediction for X axis - test set
1LSTM(drop)-out-HL8

prediction
reference

(a) x trajectory and x ground truth
0 50 100 150 200 250 300

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Ground truth vs prediction for Y axis - test set
1LSTM(drop)-out-HL8

prediction
reference

(b) y trajectory and y ground truth

Figure 3.44: Test trajectory and ground truth of one layer LSTM network
with eight neurons and dropout

The predicted trajectories are shown in Figure 3.44. Both of them have
a smooth trend that follows the reference curves but they cannot predict
the peaks as well as previous experiments. It can be noticed that Y-axis
prediction is less accurate than the X-axis one.

Finally, it has been chosen to increase the size of the network by adding
another LSTM layer to the structure while maintaining the dropout layer.

73

3 – Neural network optimization

Results are stored in Table 3.25. In general, results are slightly worse than

Window
size

Neurons
in LSTM
layer

Test
MSE
(m2)

Distance
error
(m)

Complexity(N. of
parameters)

10 s 2 0.100 0.390 102
10 s 4 0.079 0.337 298
10 s 8 0.066 0.304 978
10 s 16 0.075 0.323 3490

Table 3.25: Results of 2-layer LSTM network with dropout and window size
of 10 s

previous ones. Best results have been reached by the network with 8 neurons
in the LSTM. The loss functions are reported in Figure 3.45.

0 200 400 600 800 1000
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n
Sq

ua
re

 E
rro

r

Training and validation loss
1LSTM(drop)-out-HL8

training
validation

Figure 3.45: Loss functions of one layer LSTM network with eight neurons
and dropout

Validation loss function presents a trend similar to the previous one: it
slightly diverges instead of flattening. In Figure 3.46 the predicted trajectories
are shown. Their trend is slightly smoother than the previous experiment,
but the generalization is poor.

74

3 – Neural network optimization

0 50 100 150 200 250 300

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Ground truth vs prediction for X axis - test set
1LSTM(drop)-out-HL8

prediction
reference

(a) x trajectory and x ground truth
0 50 100 150 200 250 300

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Ground truth vs prediction for Y axis - test set
1LSTM(drop)-out-HL8

prediction
reference

(b) y trajectory and y ground truth

Figure 3.46: Test trajectory and ground truth of one layer LSTM network
with eight neurons and dropout

3.3.3 LSTMs summary
To conclude LSTM network analysis, a summary is presented in Table 3.26
and a plot of the DSE executed is presented in Figure 3.47. In the legend
there are the name of the networks:

• 1LSTM(4)-w5: network with one LSTM layer of 4 neurons and a window
size of 5 s

• 1LSTM(2)-w10: network with one LSTM layer of 2 neurons and a win-
dow size of 10 s

• 1LSTM(8)-w10: network with one LSTM layer of 8 neurons, dropout
regularization of 0.5 and a window size of 10 s

• 2LSTM(8)-w10: network with two LSTM layer of 8 neurons, dropout
regularization of 0.5 and a window size of 10 s

75

3 – Neural network optimization

Window
size
(s)

N. of
LSTM
layers

Neurons
in LSTM
layers

Dropout
value

Test
MSE
(m2)

Distance
error
(m)

Complexity
(N. of

parameters)
5 1 4 n.d. 0.074 0.321 154

10 1 2 n.d. 0.056 0.301 62
10 1 8 0.5 0.056 0.294 434
10 2 8 0.5 0.066 0.304 978

Table 3.26: Summary table of LSTM best networks

Figure 3.47: DSE of LSTM best networks

76

Chapter 4

Result Summary

In this chapter, a general summary on all results obtained will be conducted,
with a particular focus on the predicted trajectories.

One network for each type analysed has been chosen according to the
following criteria based on the two main parameters used for the DSE:

• Test MSE: the network with the minimum MSE is chosen

• Complexity of the network: expressed in "number of parameters". In case
of equal MSE, the smallest network has been chosen

In Table 4.1 the best results for each kind of network are summarized,
while the final DSE is shown in Figure 4.1.

Network
Window

size
(s)

Test
MSE
(m2)

Distance
error
(m)

Complexity
(N. of

parameters)
MLP large n.d 0.125 0.451 17090
MLP small n.d. 0.125 0.433 226
CNN large 5 0.064 0.297 7618

CNN regularized 10 0.047 0.273 34818
CNN small 5 0.070 0.307 238

LSTM small 10 0.056 0.301 62
LSTM large 10 0.066 0.304 978

Table 4.1: Optimization network results summary

The best result on Test MSE has been obtained with the 2-layer 1D-CNN
that provides L2 regularization (called "CNN regularized" for simplicity),

77

4 – Result Summary

Figure 4.1: DSE summary with detail on lower number of parameters

while the smallest network obtained is the LSTM small, composed by one
LSTM layer without dropout regularization.

MLP networks are the worst in general, as it can be easily seen from
the DSE graph: as expected window-based networks can perform better on
trajectory prediction, and infer the movement of a person in a room. For
these reasons, MLP networks have been discarded for the final evaluation
on the best trade-off net between the number of parameters and Test MSE.
However, in Figure 4.2 a graph of the predicted trajectories of MLP reported

(a) x trajectories and x ground truth (b) y trajectories and y ground truth

Figure 4.2: Test trajectory and ground truth of two best MLP networks

78

4 – Result Summary

in the table is shown. In the figure it is confirmed their bad behaviour on this
task, as observed in Chapter 3 Section 3.1: the strong presence of spikes in the
inferred trajectories cannot allow a clear and good prediction on movements.
Better results have been achieved with other networks.

In Figure 4.3 and 4.4 the predicted trajectories of CNNs networks are
shown over reference. Because their window size is different they have to be
shown in different graphs to understand the behaviour. This is due to the
data set slicing needed to analyse this kind of network: the procedure has
been described in Chapter 3 Section 3.2.

(a) x trajectories and x ground truth (b) y trajectories and y ground truth

Figure 4.3: Test trajectory and ground truth of best CNN networks with
window size of 5 s

(a) x trajectories and x ground truth (b) y trajectories and y ground truth

Figure 4.4: Test trajectory and ground truth of best CNN network with
window size of 10 s

79

4 – Result Summary

The general behaviour is better than MLP networks: the predicted trajec-
tories are smoother and follow the reference trend. Spikes are still present in
CNN large and small, while they are attenuated in the CNN with L2 regular-
ization. This better results demonstrate that the 1D-CNNs are more suitable
than the MLP for person movement prediction.

LSTM prediction trajectories are shown in Figure 4.5. The general trend

(a) x trajectories and x ground truth (b) y trajectories and y ground truth

Figure 4.5: Test trajectory and ground truth of best LSTM networks

of these networks is smooth as the one obtained for CNNs. The main problem
is related to peaks detection: the predicted trajectories cannot infer well the
peaks of reference curve. However, it can be said that small LSTM can follow
better the reference with respect to large LSTM.

From this discussion on trajectories and obtained results, best network
are the regularized CNN and the small LSTM. To compare them directly a
common graph has been plotted in Figure 4.6.

Despite the good result obtained with the regularized CNN in terms of
Test MSE, it has to be taken into account the size of this network: this is the
largest one among all the best results.

Then it can be said that the LSTM is the best trade-off network that
can analyse the data set. Indeed, it reaches slightly worse results but with a
significant saving in terms of complexity.

80

4 – Result Summary

(a) x trajectories and x ground truth

(b) y trajectories and y ground truth

Figure 4.6: Test trajectory and ground truth of two best networks

81

Chapter 5

Conclusion and future
work

The main results of the neural networks optimization work are summarized
in the following:

• for all network analysed, small structures can reach results similar to
larger ones, as noticed several times in Chapter 3.

• networks able to analyse sequences of data can infer better the movement
of a person in a room, as noticed by comparing results between MLP
against 1D-CNN and LSTM

• smaller LSTMs can reach similar results as CNNs, with a significant
number of parameters saving, as remarked in Chapter 4

In general, the error distance obtained with the best networks is around
0.27-0.30 cm. Then, it can be said that the objective find a way to analyse
data for assisted-living is achieved. Indeed, this kind of error can be suitable
for a generic monitoring of person movements in a room since a fine precision
is not strictly required.

The error in the analysis can be related to the collected data set, which
was small and noisy despite the digital filtering applied. Therefore, it has to
take into account that better results can be achieved with a more accurate
measurement system. Future work can be devoted to:

• collect a new less noisy data set to confirm the quality of the networks
analysed

82

5 – Conclusion and future work

• try on sensor fusion approach, which means processing data from several
types of localisation sensors to collect more information on position and
better infer trajectories

83

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irv-
ing, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Man-
junath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems.
https://tensorflow.org, 2015.

[2] Osama Bin Tariq, Mihai Teodor Lazarescu, Javed Iqbal, and Luciano
Lavagno. Performance of Machine Learning Classifiers for Indoor Per-
son Localization With Capacitive Sensors. IEEE Access, 5:12913–12926,
2017.

[3] Anastasia Borovykh, Sander Bohte, and Cornelis W. Oosterlee. Condi-
tional time series forecasting with convolutional neural networks, 2017.

[4] Andreas Braun, Reiner Wichert, Arjan Kuijper, and Dieter W. Fellner.
Capacitive proximity sensing in smart environments. Journal of Ambient
Intelligence and Smart Environments, 7(4):483–510, July 2015.

[5] François Chollet et al. Keras. https://keras.io, 2015.
[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.

MIT Press, 2016. http://www.deeplearningbook.org.
[7] Alex Graves, Abdel rahman Mohamed, and Geoffrey Hinton. Speech

recognition with deep recurrent neural networks, 2013.
[8] Tobias Grosse-Puppendahl, Christian Holz, Gabe Cohn, Raphael Wim-

mer, Oskar Bechtold, Steve Hodges, Matthew S. Reynolds, and
Joshua R. Smith. Finding common ground: A survey of capacitive sens-
ing in human-computer interaction. In Proceedings of the 2017 CHI

84

https://tensorflow.org
https://keras.io
http://www.deeplearningbook.org

Bibliography

Conference on Human Factors in Computing Systems - CHI ’17, pages
3293–3315. ACM Press, 2007.

[9] S. Hochreiter and J. Schmidhuber. Long Short Term Memory. Neural
Computation, 9(8):1735–1780, 1997.

[10] Serkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef
Gabbouj, and Daniel J Inman. 1D Convolutional Neural Networks and
Applications – A Survey. arXiv preprint arXiv:1905.03554, page 20,
2019.

[11] Jeffrey Lee, Matthew Cole, Jackson Lai, and Arokia Nathan. An anal-
ysis of electrode patterns in capacitive touch screen panels. Display
Technology, Journal of, 10:362–366, 05 2014.

[12] Marvelmind. “starter set hw v4.9.”. https://marvelmind.com/
product/starter-set-hw-v4-9/.

[13] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.
[14] Andrew Ng. Machine learning. https://www.coursera.org/learn/

machine-learning.
[15] Andrew Ng. Neural networks and deep learning. https://www.

coursera.org/learn/neural-networks-deep-learning.
[16] N. J. Nilsson. “introduction to machine learning”. https://ai.

stanford.edu/~nilsson/mlbook.html, 1998.
[17] Keiron O’Shea and Ryan Nash. An Introduction to Convolutional Neu-

ral Networks. arXiv:1511.08458 [cs], December 2015.
[18] Gábor Petneházi. Recurrent neural networks for time series forecasting,

2019.
[19] Alireza Ramezani Akhmareh, Mihai Lazarescu, Osama Bin Tariq, and

Luciano Lavagno. A tagless indoor localization system based on capac-
itive sensing technology. Sensors, 16(9):1448, 2016.

[20] A. L. Samuel. Some studies in machine learning using the game of
checkers. IBM Journal of Research and Development, 3(3):210–229, July
1959.

[21] Jude W Shavlik and Thomas Glen Dietterich. Readings in machine
learning. San Mateo, Calif. : Morgan Kaufmann Publishers, 1990.

[22] J. Smith, T. White, C. Dodge, J. Paradiso, N. Gershenfeld, and D. All-
port. Electric field sensing for graphical interfaces. IEEE Computer
Graphics and Applications, 18(3):54–60, June 1998.

[23] Osama Bin Tariq, Mihai Teodor Lazarescu, and Luciano Lavagno. Neu-
ral network-based indoor tag-less localization using capacitive sensors.

85

https://marvelmind.com/product/starter-set-hw-v4-9/
https://marvelmind.com/product/starter-set-hw-v4-9/
https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/neural-networks-deep-learning
https://www.coursera.org/learn/neural-networks-deep-learning
https://ai.stanford.edu/~nilsson/mlbook.html
https://ai.stanford.edu/~nilsson/mlbook.html

Bibliography

In Proceedings of the 2019 ACM International Joint Conference on Per-
vasive and Ubiquitous Computing and Proceedings of the 2019 ACM In-
ternational Symposium on Wearable Computers - UbiComp/ISWC ’19,
pages 9–12, London, United Kingdom, 2019. ACM Press.

[24] P. D. Wasserman and T. Schwartz. Neural networks. ii. what are they
and why is everybody so interested in them now? IEEE Expert, 3(1):10–
15, Spring 1988.

[25] Wikipedia. Convolutional neural network. https://en.wikipedia.
org/wiki/Convolutional_neural_network.

[26] Raphael Wimmer, Matthias Kranz, Sebastian Boring, and Albrecht
Schmidt. A capacitive sensing toolkit for pervasive activity detection
and recognition. In Fifth Annual IEEE International Conference on
Pervasive Computing and Communications (PerCom’07), pages 171–
180, 2007.

86

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network

Acknowledgements

Scrivere la tesi sicuramente non è stato facile, ma chi mi conosce sa bene
che, per me, la parte più difficile da scrivere sono i ringraziamenti. Non per
una questione di ingratitudine, ma perché tendo ad essere sintetica in questo,
spesso mi limito a scrivere brevissime frasi, come "grazie a tutti".
Ebbene, è arrivato il momento di imparare a fare anche questa cosa!

Cominciamo dal principio, quando questo percorso di laurea magistrale
è cominciato. Ringrazio tutte le persone che mi hanno accompagnato negli
studi, colleghi speciali come Nico, Gianlu e Riki che ho conosciuto nei primi
mesi della magistrale e che mi hanno aiutata tanto nel percorso e nei labora-
tori affrontati insieme. Conoscenti che sono diventati cari amici da contattare
per provare qualche posto nuovo per mangiare.
Ringrazio anche Riccardo, una conoscenza della triennale che è diventata una
bella amicizia in un momento difficile... mi ha anche insegnato a saldare!

E poi, soprattutto Irene, con cui ho affrontato molti se non tutti gli esami!
Grazie per avermi sopportata nei mesi di sessione intensiva, in balia di crisi
esistenziali! Finalmente siamo arrivate al traguardo e non dovremo più ved-
erci... per lo studio! Non vedo l’ora di festeggiare anche con te, che ormai più
che una collega, sei una grande amica.

Ringrazio anche il mio relatore, il prof. Lazarescu e il mio correlatore il
prof. Lavagno, che mi hanno saputa indirizzare nello svolgimento della tesi,
rispondendo alle mie mail a qualsiasi ora del giorno e della notte!
Un ringraziamento ad Osama, che con pazienza ha risposto a tutte le do-
mande e dubbi che ho affrontato durante il percorso della tesi.
Grazie davvero, di tutto!

Vorrei ringraziare anche tutti gli altri professori che mi hanno accompa-
gnato in questo percorso, in particolare il prof. Passerone che si è sempre
dimostrato disponibile e pronto a supportare non solo me ma tutti i suoi
studenti.

Ma le persone più importanti da ringraziare sono quelle che mi hanno sup-
portato (o sopportato?) nel quotidiano e a distanza.

87

Bibliography

Inizio ringraziando la mia famiglia, tutti i miei parenti che mi hanno sup-
portata con infinito affetto, chiamandomi e ricordandomi sempre che la lon-
tananza non influisce sull’amore che può legare una famiglia. Quindi grazie a
tutti i miei zii, zie e cugini ma specialmente nonna Ninetta che rappresenta
da sempre il mio supporto spirituale e morale.

In particolare, vorrei ringraziare mamma e papà, che con tanti sacrifici mi
hanno permesso di studiare qui, al Politecnico di Torino, distante 1200 km
da casa, ma che sono sempre stati presenti come fossero con me. Mamma
Mariolina con il suo supporto da cheerleader che si può esprimere con due
motti peculiari: "se insisti e persisti, raggiungi e conquisti" e "piuttosto in
bicicletta, ma mia figlia sulla vetta". Papà Sandro con il suo essere sempre
fonte di supporto morale in maniera più silenziosa ma comunque efficace.

Un ringraziamento speciale va a mia sorella, che presto diventerà santa,
non perchè voglia farsi suora, ma perché deve sopportare il mio carattere
ansioso giorno e notte, dato che abita con me! Nei momenti di difficoltà di
questo percorso è stata la luce che mi ha aiutato ad andare avanti, anche solo
con un abbraccio poderoso o una mandata a quel paese, che tutto sommato
ci sta sempre.

Vorrei ringraziare di cuore le AoR, anche se non usiamo più tanto questo
appellativo, con cui ho condiviso un periodo ben più lungo della sola laurea
magistrale. Gi, "coinquilina" ma soprattutto amica/sorella acquisita, che non
perde l’occasione per creare scompiglio nella mia vita ma che mi propone
sempre nuove sfide da affrontare e sa ascoltarmi quando ne ho bisogno. Cesp,
che ha saputo starmi accanto in momenti difficili, standomi vicino o anche
solo autoinvitandosi a casa e preparando qualcosa di buono. Infine, Rossella,
che anche da lontano mi ha supportata, la sua è una di quelle amicizie che
non invecchiano.

Ringrazio anche le mie coinquiline, Candy amica ormai storica con cui si
può sempre parlare di argomenti interessanti e Giulia per la sua vivacità che
movimenta la casa e riesce a strapparti sempre un sorriso.

Un ringraziamento va anche a Raffaella, amicizia consolidata, che è sempre
presente e disponibile per pranzi e/o serate di giochi di società.
Grazie anche a Serena, una cara amica, con cui parlare sempre e organizzare
gite all’Ikea o smezzare una cesta di pollo al KFC.

Infine vorrei ringraziare il gruppo Taranto, composto da nuove e vecchie
amicizie che si sono consolidate in questi ultimi anni, che mi hanno support-
ato e aiutato a staccare nei periodi trascorsi a Taranto con le serate di gioco e
chiacchiere. Quindi un grande grazie a Serena, Giuseppe, Andrea, Veronica,
Alessandro, Valentina, Francesca, Frank ed Emanuele!

88

Bibliography

Concludo i ringraziamenti con un haiku di Kobayashi Issa, perché mi sem-
bra una buona idea!

Non scordare:
noi camminiamo sopra l’inferno,
guardando i fiori.

Ora, con questo non voglio dire che la laurea magistrale sia stata un in-
ferno, anzi, è stato un percorso più piacevole della triennale! Volevo solo dire
che voi tutti siete stati fiori che hanno abbellito questo percorso.

89

	List of Tables
	List of Figures
	Introduction
	Capacitive sensing
	Previous work
	Thesis contribution

	Machine Learning
	Some basic knowledge
	Neural Networks
	Convolutional Neural Networks
	Long Short Term Memory (LSTM)

	Neural network optimization
	Multilayer Perceptron Neural Networks
	Analysis of a larger model
	Analysis on smaller network
	MLP Summary

	Convolutional Neural Networks
	Larger Network results
	Exploration on regularization
	Simple Network analysis
	CNNs summary

	Long-Short Term Memory (LSTM)
	Small network with one LSTM layer
	Analysis on a regularized LSTM network
	LSTMs summary

	Result Summary
	Conclusion and future work
	Bibliography

