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Abstract

With the advance in silicon technology, recent electronic devices are becoming
deeply embedded in extremely dense silicon dies and are required to comply with
increasingly strict timing requirements. Under these circumstances, several faults
can be induced by different causes, like defects in the manufacturing processes,
process variations as well as ageing, workload, crosstalk and many others.
Some of these defects can only be detected by testing the delay characteristics of
the circuit, so delay fault models are assuming a much more relevant position in
fault analysis.

However, delay fault models require much more computational effort with respect
to simpler and more widespread fault models when producing and evaluating the
test. Applying the test is also a challenge due to the cost of ATE and the complexity
introduced by BIST techniques, which obliges to search for other options.
Software Based Self Test is desirable in this context because it allows to apply
at-speed tests with no hardware overhead and it can be used even in situations
where controllability and observability are reduced.
In the context of this thesis, new techniques for delay-oriented online functional
testing for embedded systems are proposed, focusing on path delay faults in
particular.

The study was conducted using a RISC-V based core as benchmark device and
has led to achieve a fast and optimized flow for functional test simulations.
It has been shown that, with the current implementation, in all case studies high
percentages of path delay faults detectable with scan techniques can be also detected
with functional tests. Additionally, efforts have been put to identify a relationship
among stuck-at, transition delay and path delay fault coverage.
Finally, some insights about the functional testability have been extracted by
analyzing statistically how many misbehaviours a path delay fault should produce
before being functionally observable.
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Chapter 1

Introduction

In the recent years the semiconductor industry is evolving very fast and pushing
hard on new technologies that allow noticeable improvements in performances of
the devices with respect to the past. In particular, the manufacturing phase of the
silicon dies is moving towards more complex and sophisticated processes. Most
of the added complexity is related to the shrinking of the channel length of the
transistors, currently set in the order of few tens of nanometers, that allow very
high working frequencies and very compact and dense designs.
This advantage comes at the price of more frequent physical defects and shorter
devices lifespan. ICs are nowadays more prone to manufacturing defects, pro-
cess variations, ageing effects, electromagnetic interference, parasitic effects and
overheating-related issues and are in general much more sensitive to degrading
than older generation devices.
In figure 1.1 the trend of a typical failure rate curve is represented. With the newest
technologies, infant mortality and wear out failures happen with an increasing
frequency, causing the curve ends to be narrower, assuming more of a "U" shaped
appearance.

This context poses new challenges in the matter of testing. Creating high quality,
cost-effective tests is very hard on these devices, for several reasons.
As an example, the cost of Automated Test Equipment (ATE) required for produc-
tion tests is growing exponentially, because of the increased precision, the stricter
timing requirements and the larger amount of storage capability required.
The increased density of VLSI devices forces controllability and observability limi-
tations and raises problems in power dissipation, crosstalk and line resistivity that
could result in a premature failure of the IC or temporary malfunctioning.
Commonly used fault models (e.g. the stuck-at-0/1) are starting to show their
limitations in representing the real defect coverage of a device, while more complex
models that are able to represent delay defects in the circuit are becoming far more
relevant and popular. Among these, it is worth mentioning:
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1 – Introduction

Figure 1.1: Typical failure rate curve, extracted from [2]

1. Transition delay fault: it models a delay defect affecting a single logical
node, that causes a state transition to be slower than expected.

2. Path delay fault: it models a distributed delay defect affecting multiple
logical nodes interconnected in sequence, that causes a state transition to
traverse those nodes slower than expected.

In particular, the Path Delay fault model is considered to be the most accurate
since it is able to catch both lumped and distributed delay defects [9].

At-speed testing is crucial for targeting these kinds of timing-related faults, but
at the same time it is harder to produce suitable testing patterns. In fact, testing
these faults involves finding couples of vectors able to launch a state transition and
to capture it, instead than requiring a single vector to force a single value on a
specific node, as it happens with the stuck-at fault model.
Moreover, since the number of faults to cover grows very fast with the size of the
circuit, it is possible that a very high number of patterns should be produced to
achieve high coverages; moreover, the probability of fault masking increases.

As already highlighted, external at-speed testers are not a suitable solution for
their cost, while BIST techniques are quite often discarded due to the excessive
area overhead, performance degradation and clock issues.
A suitable option to overcome these problems consists in relying on Software Based
Self Test solutions, that are reliable, affordable and applicable even in situations
where accessibility is reduced [9].
Currently, delay faults are usually tested resorting to scan techniques, which allow
to have higher controllability and observability of the circuit and to catch a good
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1 – Introduction

portion of these faults even in the case of sequential circuits. By the way, there
are several downsides of using these methods, like hardware and area overhead,
test-length overhead due to the time spent loading/unloading the scan chains,
overtesting.
It is easy to understand that using these delay fault models requires much more
efforts and innovative techniques are being developed to adapt to the industry
needs.

The work carried out in this thesis falls within this framework, suggesting new
ideas in matter of delay-oriented online functional testing for embedded systems.
Online testing, also called in-field test, is a testing technique that does not make
use of external testers and it is often performed without removing the system
under test from its operational environment. Two types on of online testing can be
distinguished: concurrent, when the device is tested without stopping its normal
functioning, or non-concurrent when the test is applied while the device is not
performing its normal operation.
Therefore, this particular testing technique is useful since it can be applied at
any time, monitoring the circuit during the whole lifespan and without requiring
any kind of Design for Testability that may affect the circuit behaviour and/or
performances.
Taking in consideration Path Delay faults, it is proposed a new approach for the
fault coverage analysis of Software Test Libraries (STLs), that relies on the usage of
different commercial software tools widespread in the industrial and academic fields.
This is aimed at providing an integrated tool set for path delay functional tests
simulations on both combinational and sequential netlists (with special emphasis on
processors) that is able to evaluate the fault coverage while cutting down simulation
time.

The tool has been evaluated using as benchmark device an open-source single-
core SoC platform based on a 32-bit RISC-V core, developed by ETH Zurich and
Università di Bologna, named PULPino. For the purpose of this thesis, PULPino
was configured to use the RI5CY core. RI5CY is an in-order, single-issue core with
4 pipeline stages, fully supports the RV32I, RV32C and RV32M instruction sets,
which respectively implement integer, compressed and multiplication instructions.
It can be configured to have single-precision floating-point instruction set extension
(RV32F). It implements several ISA extensions such as: hardware loops, post-
incrementing load and store instructions, bit-manipulation instructions, MAC
operations, support for fixed-point operations, packed-SIMD instructions and the
dot product. It has been designed to increase the energy efficiency in ultra-low-
power signal processing applications. PULPino has also been taped-out as an ASIC
in UMC 65nm technology in January 2016 [4].

This choice has been made to have the opportunity to evaluate how the flow

3



1 – Introduction

Figure 1.2: PULPino RI5CY core diagram, extracted from [1]

can be applied on a real commercial microcontroller device, whose architecture has
been adopted by several companies and academic research centers worldwide. In
particular, the main focus was put on testing the core by itself, isolated from other
boundary components such as peripherals.

The study conducted in this thesis has led to devise a fast and optimized flow for
path delay functional fault simulations, in which several arrangements have been
made in order to properly evaluate the fault coverage while minimizing simulation
time. It has been shown that in all case studies a very high percentage of the path
delay faults detectable with scan techniques at combinational level can be also
detected with functional tests. Additionally, efforts have been put to demonstrate
if a correlation between stuck-at, transition delay and path delay fault coverage
can be exposed.
Some insights about the functional testability have been extracted, also by analyzing
statistically how many times a path delay fault should produce its effects before
being observable on the Primary outputs.

In the following chapter the reader will find an overview on the delay fault
models, with particular emphasis on path delay faults, that outlines the main
theoretical aspects, distinctive features and state of the art.
In the third chapter the devised flow will be described, analysing the kind of tools
that are needed for each step, the functionalities used and how those are linked to
each other.
The fourth chapter is about an example of the actual implementation of the flow:
strengths and limitations will be described for each tool, explaining how those have
been integrated to automate the process.
The experimental results obtained through the implementation proposed in chapter
four are reported in the subsequent chapter. Several test programs are evaluated
on the benchmark device to measure the obtained fault coverage.

4



1 – Introduction

To summarize what has been obtained and how and where it can be improved,
chapter six reports the main conclusions that can be drawn from the practical
usage of the flow, together with some proposal on future improvements.
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Chapter 2

Delay test

In a generic sequential system, input and output signals are synchronized with
respect to a specific periodic signal, often referred as clock. All signals are supposed
to assume a steady value within a certain time frame marked by clock signal edges,
indicated as clock period. In real applications, signals may experience several
transitions within a clock period, that can usually happen within a shorter time
frame called transition region. For a manufactured circuit to function correctly, the
transition region must not extend beyond the clock period; if this does not happen,
the circuit is said to be affected by a delay fault [6].

This chapter is intended to give background on delay faults and context to
the discussion that will follow in the next chapters. It is possible to find some
fundamental concepts and definitions, an overview of the theoretical aspects of
PDF testing, and some insights on the currently most used testing techniques.

2.1 Relevant definitions
Before diving into it, it is worth to define some useful terms that will be recurring
during the course of dealing with the matter. To begin with, we can give the
following definitions:

1. Start point: Either a primary input pin or the output of a sequential element
of the design, that defines the beginning of a path

2. End point: Either a primary output pin or the input of a sequential element
of the design, that defines the ending of a path

3. Path: Set of elementary combinational gates connected in a chain, starting
from a start point and ending on an end point.

6



2 – Delay test

4. Propagation Delay: if referred to a path, it indicates the amount of time
that a signal transition takes to be propagated from a start point to an end
point traversing a path; if referred to a gate, it indicates the amount of time
that a signal transition takes to be propagated from the inputs to the output
of the gate itself.

5. Arrival time: time instant at which a state transition reaches the output of
a gate or path and the output state can be considered stable.

6. Slack: Difference in time between clock period and arrival time for a specific
gate or path. For the circuit to work correctly, it must always assume a
positive value.

7. Critical path: Circuit path that shows the slowest propagation delay, or in
other words the shortest slack.

Figure 2.1: Example of sequential circuit

In fig. 2.1 it is possible to see a slice of a sequential circuit. In blue, an example
of path is highlighted, connecting two flip-flops that act as start and end point. In
red instead it is indicated a critical path: since it runs through the highest number
of combinational cells in sequence, its arrival time will be one of the latest in the
represented netlist, exactly equal to the sum of the propagation delays of the cells,
considering flip-flops and interconnections as ideal.

Having clear these definitions, it is possible to introduce more appropriate
definitions of delay fault models:

1. Transition delay fault: defect which is lumped on a single gate, that affects
the nominal propagation delay of that gate causing a specific state transition to

7



2 – Delay test

happen later than the sampling edge of the clock. This usually causes incorrect
sampling on the sequential elements connected to that gate, preventing the
circuit from working at a specific clock frequency. In a circuit composed of n
gates, the number of possible transition delay faults is equal to 2n.

2. Path delay fault: defect which is distributed on the set of gates belonging
to a path, that affects the nominal propagation delay of that path causing a
specific state transition to happen later than the sampling edge of the clock.
This usually causes incorrect sampling on the sequential elements connected
to that path, preventing the circuit from working at a specific clock frequency.
In a circuit including m paths, the number of possible path delay faults is
equal to 2m.

3. Slow to rise: often shortened in str, it indicates a delay fault happening
when a rising transition is applied at the input of a gate or a path.

4. Slow to fall: often shortened in stf, it indicates a delay fault happening when
a falling transition is applied at the input of a gate or a path.

5. Controlling value: it is an input value that, irrespectively of the other input
values, determines the output value of a combinational element.

6. Non-controlling value: it indicates a value that, if present as input of a
combinational gate, does not determine by itself the output value.

7. On-path input: Considering a gate belonging to a path, it indicates its input
pin traversed by the path itself.

8. Off-path input: Considering a gate belonging to a path, it indicates one or
more input pins belonging to the gate that are not traversed by the path itself.

Referring again to the circuit in fig. 2.1, supposing to apply the path delay fault
model to the critical path in red, it is supposed that the propagation delay of each
of the traversed gates is increased. This prevents the signal transition to be on
time and causes the flip-flop to sample the wrong value.
In order to propagate the transition and test the path, it is needed that the on-path
inputs assume controlling values, while the opposite has to happen for off-path
inputs. In the next section, this concept is formally expressed and analyzed more
in depth.

2.2 Path Delay Test criteria
A circuit can pass a delay test if it is capable of producing correct outputs when
specific inputs are given and outputs are observed with a specific timing.

8



2 – Delay test

Since delay testing requires to generate and catch a state transition, test patterns
must be composed of pairs of test vectors to be applied in succession.

As an example, when dealing with transition delay faults the first test vector
shall be arranged such that it is able to force a certain value on the output (either
a 0 or a 1), while the second vector of the pair shall force the desired gate to
execute the transition while ensuring that the former is propagated up to the
output. Therefore the second vector is nothing but the same vector that should be
used to test a SA1 fault if a stf fault has to be tested, or a SA0 in case of a str
fault.

Concerning path delay test in particular, it is said that a test is considered valid
for a given fault if the value present at the output of the path at sample time is
only controlled by the transition on the input of the path. This means that all
off-path inputs must assume non-controlling value to make the test possible.
It is possible to define different types of tests, based on how loose the conditions
applied for detection are.

2.2.1 Non-robust test
It is a test that guarantees to detect a fault when no other fault is present. This
means that all off-path inputs assume non-controlling values only during the steady-
state following the application of the second vector (a condition known as static
sensitization), while during the application of the first vector they can assume
whatever value.
This is the loosest requirement for a fault to be considered testable, and unfor-
tunately it can be invalidated by the presence of other faults in the device or by
glitches that may occur.

Figure 2.2: Example of invalidation of a test, extracted from [8]

9



2 – Delay test

For the test to be an effective measure of the path delay, the expected output
value must be uniquely controlled by the transition propagating through the on-path
inputs [6].

Figure 2.3: Non-robust test example, extracted from [6]

If a non-robust test exists for a specific fault, it is indicated as a singly-testable
path delay fault.

2.2.2 Robust test
It is a test that guarantees to detect a fault even if multiple faults are present,
therefore the detection is guaranteed to be not influenced by the delay distribution
in the circuit.
To classify a test as robust, it has to produce real events, which basically means
that different steady-state values for first and second vectors should appear on all
on-path inputs and these events must produce controlling values for on-path inputs.

Figure 2.4: Robust test conditions for elementary gates [6]

If a robust test exists for a specific fault, it is indicated as a robustly-testable
path delay fault.

10



2 – Delay test

2.2.3 Untestable faults
If none of the above definition applies to a test for a fault, it is indicated as an
untestable path delay fault. They can be further divided into structurally untestable
faults or functionally untestable faults. The first definition is used when no vector
pair that allows detecting the fault can be generated; the second one is used when no
functional input stimuli (e.g. a sequence of two instructions) that allows detecting
the fault can be generated.
Therefore, structurally untestable faults appear to be a subset of the functionally
untestable ones.

Figure 2.5: Fault classification

Figure 2.5 graphically shows what has been explained in this paragraph.
Only for a subset of faults in the set of all possible path delay faults it is possible
to produce a test. Since the non-robust criteria are the least stringent in term of
requirements, a large portion of faults can be categorized as non-robustly testable.
Robust conditions are more strict, therefore only few faults can be defined as
robustly testable. This category of faults can be seen as a subset of the non-
robustly testable, since the robust test criteria can be intended as a sufficient (but
not necessary) condition for a fault to be non-robustly testable.

2.3 Fault list minimization
A very important aspect in delay fault testing is the generation of the fault list.
The whole process revolves around the choice of the paths that need to be tested:
a larger fault list results in a wider test set, harder test generation, increased
simulation times and efforts and many other side effects.
Since the number of paths in a circuit can be huge in the first place, efforts have
been put in the past to find systematic ways to identify a minimum set of faults to
test. Moreover, it is not rare to find a very high number of paths having comparable
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2 – Delay test

properties, hence a larger portion of paths should be included in the fault analysis.

It is common to extract a list of critical paths sorted by slack through static
timing analysis, but usually static analyzers perform a strongly pessimistic analysis
and do not consider the functionality of the design, but just its topology.
This means that a static timing analyzer may take into account paths that exist in
the circuit topology but do not allow the propagation of an event. Paths falling
into this category are, generally speaking, considered false paths. They do not
affect the operating working frequency, hence they should not be considered when
setting timing constraints on the design and also for testing purposes.
For some devices or modules false paths can represent the vast majority of the
paths in the circuit and may represent a great obstacle for tools, as highlighted
in the case if the ISCAS85 C6288 circuit in [15] and for several other ISCAS
benchmarks in [7].

There exist several methods to prune the list of faults that can be considered,
based on the analysis of the functionality of the design. Some of the most well-
established are listed in the following.

2.3.1 Static sensitization

This method classifies a path as statically sensitizable if it exists at least one set
of inputs that allows to propagate a transition on that path from startpoint to
endpoint, regardless of the propagation delay of the gates. In other words, the
input vectors can sensitize the path if in static conditions all off-path inputs assume
non controlling values.

2.3.2 Dynamic sensitization

While it is possible that a path may not meet the criteria for static sensitization, it
is also possible that due to propagation delays some statically unsensitizable paths
may enter in the condition of propagating an event (glitch) for a short period of
time. Hence, paths falling into this category are declared statically false paths, but
are at the same time also dynamically true paths. This shows the limitations of
static sensitization: it may underestimate the real timing requirements of a design,
hiding the presence of dynamically true paths.
From these assumptions, a path is declared dynamically false if those events that
may occur considering timing properties cannot be propagated through the path
and possibly captured by its endpoint. Otherwise, it is declared as dynamically
true.
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2.3.3 False paths
A structural false path is identified if it is not sensitizable by means of static nor
dynamic criteria because of some structural properties. An example is proposed
in figure 2.6 where a path is highlighted in red. For this path a test can never
be produced because no input combination exists for it to be sensitized, since the
selection signals show opposite polarity. However, it may be considered critical by
a static timing analyzer because the tool analysis is not aware of the functionality
of the design.

We define functional false paths, instead, those paths that will never be exercised
during the device mission because of some functional properties. As an example,
in a processor core some opcodes may happen to be not included in the ISA. Thus,
they may never be produced, preventing some structural paths to be excited.

Figure 2.6: Structural false path

2.4 Delay testing techniques
The most well-established testing techniques for delay testing are based on scan.
The basic idea of scan techniques is to put the design in a particular mode, often
referred as test mode, that reconfigures the circuit so as to have more controllability
and observability of the circuit.
In fact, it ideally allows to break down a single sequential circuit into several
combinational ones, to apply the desired test vector to each of them by shifting
it directly inside the sequential element thanks to a dedicated input pin and to
extract the result after test application by shifting it out from a designated output.
It is worth mentioning three different types of scan-based delay tests, which are
explained in detail in the next paragraphs.
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2.4.1 Launch-on shift
Often abbreviated as LOS it is a test that observes the following procedure:

1. The circuit is put in test mode and the scan chain is enabled; the first vector
of the pair is then shifted in the chain at slow clock speed.

2. Once the first vector is fully loaded, while the scan chain is still enabled, one
more shifting cycle is generated to produce the second vector of the pair.

3. The scan chain is disabled and an at-speed clock cycle is produced to capture
the response of the circuit.

4. The scan chain is enabled again so as to give the opportunity to download
the scan chain, while preparing the circuit for the next pattern application
uploading the first vector of the next pair.

Figure 2.7: LOS procedure, extracted from [5]

It offers the advantage of reusing the same hardware needed for other scan-based
tests and of having to store only one test vector per pattern, since the second test
vector is just a shifted version of the first one, allowing to cut the memory footprint
of the test set.
The disadvantage is that not all possible pairs of vectors can be generated and
that is difficult to produce the transitions on the signal that enables the scan chain.
Moreover, there is the possibility to produce overtesting, since the second vector
may assume values that cannot be generated in any condition by the device.

2.4.2 Launch-on capture
Often abbreviated as LOC, it is a test that observes the following procedure:

1. The circuit is put in test mode and the scan chain is enabled; the first vector
of the pair is then shifted in the chain at slow clock speed.

14
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2. Once the vector is fully loaded, the scan chain is disabled and a capture cycle
is generated to allow the combinational logic to respond to the first vector.
This response is sampled by the sequential elements and actually serves as
second vector of the pair.

3. An at-speed clock cycle is produced to capture the response of the circuit to
the second vector.

4. The scan chain is enabled again so as to give the opportunity to download
the scan chain, while preparing the circuit for the next pattern application
uploading the first vector of the next pair.

Figure 2.8: LOC procedure, extracted from [5]

It offers the advantage of reusing the same hardware needed in other scan based
tests and of having to store only one test vector per pattern, since the second test
vector is directly produced by the combinational circuit reacting to the application
of the first one, allowing to cut the memory footprint of the test set.
The limitation of this method is that not all possible pairs of vectors can be
generated.

2.4.3 Enhanced scan
The singularity of this test method is that it uses a particular hardware arrangement
that enables more freedom during the test application.
In addition to the basic scan chain, it introduces a layer of latches used to hold
one vector while the other is shifted in. This test observes the following procedure:

1. The circuit is put in test mode and the scan chain is enabled; the first vector
of the pair is then shifted in the chain at slow clock speed. It is immediately
applied and latched into the additional memory elements.
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Figure 2.9: Enhanced scan circuit

2. Then, the second vector is scanned in the scan chain. Once the upload phase
ends, the scan chain is disabled and an at-speed clock cycle applies the second
vector and captures the response

3. The scan chain is enabled again so as to give the opportunity to download
the scan chain, while preparing the circuit for the next pattern application
uploading the first vector of the next pair.

It offers the advantage of having the possibility to apply any of the possible test
patterns, thus maximizing the achievable fault coverage.
The limitation of this method consists in the larger memory footprint, since both
vectors need to be stored in memory, the overhead in hardware requirements and
the possibility to incur in overtesting, since it is possible to apply any value to the
combinational circuit, even those that may never be produced by the device itself.

2.4.4 Functional testing
The state of the art in path delay fault functional testing is still in its early stages.
The only consolidated methodologies to apply delay oriented tests are based on
the usage of ATE and BIST or other sort of DfT, which by the way are expensive
in terms of complexity, costs and performance.

Moreover, there exist articles [11] in literature that question the effectiveness
and quality of scan-based delay oriented tests. In the cited article in particular,
the author raises the question of what kind of defects LOC and LOS tests applied
on transition delay faults can effectively detect. Particular attention should be put
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in applying LOS because it can potentially lead to overtesting by activating paths
from non-functional states, causing unnecessary yield losses. It is then explained
how these tests mainly detect open defects, missing resistive defects in vias and
interconnections; the author proposes also that these kind of tests should explicitly
target open defects.

Software Based Self Test has been recognized as a valid alternative to these
techniques, because it can be used in stand-alone modules as well as when the
processors are deeply integrated and their accessibility is reduced and implicity
avoids overtesting issues, since the test vectors used can only be generated from
the subset of values that the circuit could assume during its normal functioning.
The three main issues encountered in this field are the lack of software tools that
allow to simulate relatively fast and effectively the test application on this fault
model, to which this thesis is proposing a solution, the problem of test program
generation and the problem generated by functionally untestable faults.

Some methodologies have been developed for test generation resorting to manual
or automated approaches, either deterministic or heuristic, and research is still
being performed on that [10].
In [9] both gate and rtl level descriptions are used to generate the test programs.
The first one is used to extract the list of paths and to obtain the fault excitation
conditions using Binary Decision Diagrams, while the second is used to run an
evolutionary algorithm and perform fast rtl simulations useful for the automatic
generation of a test program. The device used for evaluating the method was an
8051 microcontroller.
Another approach was proposed in [3], where the rtl description of two different
benchmark processors, namely the 16-bit VPRO and the 32-bit DLX processor,
were used to build a graph representing the pipeline behaviour with the purpose of
finding the right constraints for test generation. The former was then performed
resorting to ATPG techniques under those set of constraints.

The problem of test program generation is strictly bonded to the third one:
identifying functionally untestable faults and removing them from the fault list
may help in producing more effective and optimized self tests carefully tailored on
those faults that really need to be tested, as well as their correct fault coverage
evaluation.
The challenge comes from the restriction imposed from the Instruction Set Archi-
tecture, preventing some transitions to be exercised on some paths. In these cases
functionally untestable faults are originated, that never determine the performance
in normal operations of the circuit, and if detected during testing may lead to
discard functioning chips due to overtest.
An example of applicable methodology proposed in literature is reported in [10].
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Here the chosen benchmark device was the i8051 microprocessor, and the method-
ology was based on the analysis and simulation of the ISA to identify untestability
rules (e.g. unreachable states) starting from a list of structurally testable paths
and the relative test patterns.

Despite these new ideas in matter of SBST and the advantages it ensures, this
technique is still not very widespread in the industry fields, but it has the potential
to be employed more often in the next years.
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Chapter 3

Functional Delay Testing
flow

The proposed flow for path delay functional testing simulation comprises several
steps, necessary to set up different aspects of the fault analysis. The steps are
reported in the flowchart in figure 3.1. The purpose of this chapter is to describe
the approach generically, without referring to a specific implementation or tool.
Each of the phases will be explained in detail, considering how and why they should
be performed and giving an overview on the required tools.

3.1 Synthesis
Assuming to have available the rtl-level description of the device to analyze, a
preliminary step to apply the method is to synthesise it, which means to translate
a behavioural description of the circuit into a structural one.

This process can be carried out by using software tools that take the name
of synthesis tools and are able to produce as a result of the process a gate-level
netlist of the circuit to be examined. This category of tools are in fact able to
translate the high-level description of the device into a boolean network, that is
then simplified by means of technology-independent and technology-dependent
methods and mapped to the available set of cells. These are chosen among the
ones available in the technology library, that should also be provided to the tool.
The standard description languages for synthesis tools are VHDL, Verilog and
SystemVerilog, but many tools can also work with C and SystemC.

This structural description of the target device, properly optimized according to
the user constraints in terms of power, timing and area, will be necessary during
every step of the applied flow. Moreover, it is useful for simplicity to produce two
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Figure 3.1: Flowchart of the tool
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netlist files: one that groups purely combinational cells, the second containing all
components of the device, hence both combinational and sequential logic. The
former should then replicate what’s represented in figure 3.2, while the first netlist
should only comprehend the section of the picture highlighted in light green. In fact,
some steps of the presented approach require to work directly at the combinational
level, while other take in consideration the full functionality of the IC.

Figure 3.2: Huffman model

During the synthesis phase, once the tool has mapped the design to the standard
cells available in the library meeting the specified criteria, it is possible to create a
new cell group that collects all the combinational cells. Then, this can be used as
a lower-level hierarchical component in the design.

3.2 Static timing analysis
The generation of the fault list is related to the topological properties of the target
device. More specifically, for each path identified in the netlist, two faults will
be originated, described by the imposed transition on the startpoint of the path
(either stf or str).

The fault list is usually generated by running a Static Timing Analysis (STA)
in order to find which paths are the most critical in the design, or in other words,
which ones are to be considered in the analysis.
Software tools that serve this jobs are called Static timing analysers and are capable
of analysing the design with respect to the applied timing constraints and finding
the most critical sections of the design with respect to that specific metric.
The result of the STA will be a text file where topological properties of each path
are described: gates traversed by the path are listed in sequence, together with
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their start point and end point and the relative timing information. Paths are
usually sorted by slack in increasing order.

Keeping timing information such as clock period or slack is optional during fault
simulation, since the process can ignore this information to verify if the required
transition can be generated and propagated through the path.
As mentioned in section 2.3, a subsequent path list reduction may be needed to
minimize the number of faults that should be tested.

3.3 Logic simulation
Assuming to have the availability of different STL programs, either produced "by
hand" or automatically generated by using ATPG tools or any other means, these
need to be translated into patterns for the fault simulator.

Doing so requires to simulate the response of the fault-free circuit to the test
program execution, and annotate the state of internal registers, input and output
ports at each clock cycle. Suitable tools for this task are logic simulators, that have
the possibility to dump user specified signals on text files using Extended Value
Change Dump format (.vcde).
This kind of feature, more in detail, enables the user to record information about
the value assumed by the signals at specific simulation times: in fact, each time a
signal changes state, this is dumped on the file along with the time instant at which
the transition occurred. VCDE files can be easily interpreted by fault simulators
and translated into patterns.
Each pattern extracted from the file by the fault simulator will be no other than
the result of the execution of two neighbour instructions of the test program.

For this purpose then, the gate-level netlist of the circuit must be instantiated
within the testbench and signals of interest should be monitored while the simulation
is running and included on the .vcde file.
Also in this case it could be handy to produce two separate .vcde files, one including
all ports from for the combinational netlist and the other including the ports of
the full netlist, since the flow expects to perform fault simulations at both levels.

3.4 Combinational level fault simulation
Having performed all the preliminary steps just discussed, it is possible to move on
and perform the actual fault simulation. Specific software tools are required, which
are referred as fault simulators. These make it possible to simulate the behaviour of
the device responding to the input patterns in presence of a fault and to compare
it to the expected behaviour of the fault-free IC, to identify potential mismatches.
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Taking as input a structural description of the circuit, they build their own internal
representation which is replicated many times to parallelize the simulation effort.
For each fault it will be created one faulty replica of the device, such that only one
fault at a time is active during each simulation.
The signal transitions listed in the .vcde file are read by the tool and translated
into couples of test vectors; the path definition files is also read by the tool and
transposed into a fault list.
The tool will then classify each of the added faults according to the outcome of the
simulation. The most common classes to which a fault can be assigned to are:

1. Detected : the fault has been excited and has generated a detectable difference
at an observation point with respect to the fault-free circuit;

2. Not detected : the fault has been excited but has not generated a detectable
difference at an observation point with respect to the fault-free circuit;

3. Not controlled : the fault has not been excited by the test vectors used, but
it could possibly exist a combination of vectors able to excite and detect it;

4. Undetectable : the fault cannot be excited or propagated to the observation
point due to structural reasons.

In order to find all possible test patterns for the analyzed faults, it is useful
to enable the no fault-dropping feature during this fault simulation: enabling it
will ensure that, once a detecting pattern for a specific fault is found, it will not
be removed from the fault list, but it will be still considered in the analysis. In
case this option is not available, it is possible to implement some workarounds, as
shown in the implementation described further in this thesis.
It is important to point out the main purposes of the combinational level fault
simulation:

1. Identify whose paths can be sensitized by the test program.

2. Verify the fault coverage provided by the test program in use at combina-
tional level.

3. Identify which and how many patterns are able to detect each fault.

Achieving a detection, at this stage of the process, signifies that a mismatch has
been successfully propagated to one of the PPO primitives (e.g. a pipeline register
of the processor core) and that this has been captured by the former.
Unfortunately, this is not sufficient to classify the fault detected also at sequential
level, or in other words functionally detected. In consideration of the fact that
this test flow is structured for functional testing, the netlist is not supposed to be
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provided with scan chains at all, or at very least it is supposed not to use those.
This implies that the only opportunity to detect and observe faults is to experience
the misbehaviour caused by the fault on one of the PO (e.g. the main memory
port).

Since it is not given that a fault causing misbehaviour on a given PPO can
produce similar occurrences also when observing PO only, a further effort is
necessary to complete the process. It consists of propagating the fault through
the sequential elements, which in the case of a processor core means traversing the
pipeline stages, until reaching an observation point, that could be represented by
the main memory data or address port.
The reason for a fault to never be observable at PO can be found in how the test
program is devised (e.g. absence of load/store instructions, such that the fault can
never be observed in memory; data dependencies that cause fault masking) or to
device structural properties (e.g. structural fault masking).

3.5 Sequential level fault simulation
From what has been described in the previous paragraph, it is possible to understand
that propagating the fault effect until reaching the POs plays a very important
role in the functional fault simulation process. This can be done either with the
same fault simulator tool used at combinational level if possible, or with other fault
injecting methods.

Most of the currently available commercial fault simulators provide just a small
support over path delay fault testing, in particular when the target devices are not
provided with scan functionalities, since this model is not as popular as others. It
may be possible to work with a combinational slice of the circuit, but in most of
the cases the analysis boundaries can’t be expanded further.
Two working modes are generally supported: Basic Scan mode which implies
the use of scan-based procedures and the Fast Sequential mode, an emulation of
sequential circuits working just for small time windows composed of a limited
amount of clock cycles. In Fast Sequential mode, once both vectors have been
uploaded and applied, the circuit is able to work in operating mode for a fixed
amount of cycles; after that, data is download from the scan chain. Unfortunately,
this solution could result impractical when a full test program has to be simulated,
since their duration can reach hundreds of thousands of clock cycles.
At the current state of the art, no tool supports true Full Sequential mode, that is
a purely functional simulation in which every consecutive couple of instructions
(insti, insti+1) constitutes the vectors couple necessary to test path delay faults.

In case a different fault injection method is chosen, the fault detecting patterns
that have been individuated in the previous step can be used for this purpose:
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focusing on those faults that have been detected at combinational level, patterns
can be used for setting up multiple fault injections at several time instants, adding
up multiple fault effects and maximizing the probability to detect the faults on
the primary outputs. Different solutions can be used, based on software (fault
simulators) or hardware (FPGA) tools.
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Chapter 4

Flow implementation

In order to disclose a proof of concept of the devised flow, it has been decided to
implement it using well-established software tools that are cutting edge in their
field of application and are considered a standard in most of the cases.
This choice has given the opportunity to validate and optimize the flow obtaining
robust and trusted results. Moreover, it ensures the repeatability of the results.
The tool suite used is based on Synopsys softwares, which is one of the leading
companies in EDA tools when dealing with advanced IC design and verification.
Unless differently specified, in this chapter it is assumed that the mentioned tools
are produced by it.

The functional testing flow has been automated by integrating all these software
by means of Python and Bash scripts, which effectively allowed to wrap every-
thing as it was a single tool aimed at functional test of path delay faults. Several
measures have been taken in order to give a flexible and expandable shape to the
implementation.
As stated in chapter 1, the benchmark device chosen for validating the implementa-
tion is a single-issue in-order RISC-V based processor core, composed of 4 pipeline
stages.

In the paragraphs below some insights about the tools and how the implementa-
tion was done are given.

4.1 Synthesis : Design Vision
The PULPino core has been synthesized by means of Design Vision, a very popular
and de-facto standard synthesis tool. The design was mapped to standard cells
taken from the Nangate open cell library, which is an open-source standard cell
library produced by Silvaco. This technology library is one of the most used libraries
for independent EDA flow testing and academic research.
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The synthesis process follows this structure:

1. The design is analyzed by the tool, which checks for syntax errors in the
HDL description and translates each module in an intermediate representation.

2. The design is elaborated, meaning that all the analyzed modules are built
and connected together, mapping it to a generic gate library.

3. Timing constraint are applied to the design, setting the clock period,
uncertainty, flip-flop internal delays, cell loads and so on.

4. The netlist is ungrouped to remove the hierarchy levels and synthe-
sised. This is where the design is mapped to the Nangate open cell library
cells.

5. The netlist is then regrouped to create a module containing all the
combinational cells of the design, which is at the bottom of the hierarchy,
instantiated as a cell inside the top level module, that will comprehend also
sequential cells.

6. The verilog gate-level netlist is extracted for both combinational and
top level modules, together with .sdf and .sdc files.

A graphic representation of the obtained hierarchy can be evinced by figure 3.2.
The Standard Delay Format file (.sdf) and the Synopsys Design Constraint file
(.sdc) are used to annotate cell delays and the set of constraints that were imposed
during the synthesis.

4.2 Static Timing Analysis : Primetime
To perform static timing analysis on the core, it was chosen to adopt PrimeTime,
that is a suite of tools used not only for timing, but also for signal integrity,
power-aware and variation-aware analysis.

The flow used is fairly simple and linear:

1. The combinational gate-level netlist is read, together with the technol-
ogy library.

2. The .sdc and .sdf are read, to allow the tool to apply the same conditions
and constraints applied during the synthesis process.

3. A report of the most critical paths is generated for each path group in
the design.
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Since these reports have to be imported after by the fault simulator, a special
command is used to produce them in a compatible format for the fault simulator
without the need for post-processing, which is included in the PrimeTime distribu-
tion.
The list of paths has been taken as it stands, so no pruning or other advanced
techniques have been applied to recognize the presence of false paths. In any case,
the proposed flow accepts any paths list, hence every possible optimization or
subset extraction is allowed.

No specific target module was identified when performing the STA, but instead
the STA parameters have been set in order to have an homogeneus distribution of
paths through the whole core, ranging from the most critical to the least critical
ones.

4.3 Logic simulation : Questasim
Questasim is an HDL simulation environment produced by Mentor Graphics. It is
part of the Questa Advanced Functional Verification Platform. It supports multiple
HDL languages as VHDL, Verilog, SystemVerilog and provides very powerful and
advanced verification solutions.

For the purpose of this thesis, it was just used to simulate the core behaviour
when subject to the execution of various test programs and to dump the state of
the circuit at each clock cycle. The process is based on these steps:

1. Compile the test program.

2. Read the netlist and testbench files and build a model for the simulation.

3. Run the simulation until a stop condition is reached in the testbench.
Meanwhile, dump the input and output port values at both combinational
and sequential level.

This process has been performed each time a new test program had to be
analyzed, simply loading a new assembly file into the testbench and repeating the
previous steps.

4.4 Combinational fault simulation : Tetramax
For the fault simulation, it has been chosen to rely on Tetramax, which is a
fault simulator that provides different functionalities for this fault model. It is in
fact designed to work with scan-based devices; it also supports the different test
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procedures described in the previous chapters. It is able to provide very fast path
delay fault simulations with accurate results, and gives the opportunity to produce
several report that allow a deep analysis of the results.

Since no scan chains were included into the benchmark device, Tetramax was used
only to perform path delay fault simulations at combinational level. Unfortunately,
for this fault model the native no fault-dropping feature was not activable. This
limitation has been addressed applying the following strategy:

1. Perform a first fault simulation at combinational level in order to
identify which faults can be detected by the test program in use.

2. Divide the test program into sections, each of them containing a subset
of the whole patterns set, according to the detecting patterns found in the
previous step. This can be achieved by setting a breakpoint into the pattern
list for each detecting pattern found in the first simulation. Then, each section
will be identified by two successive breakpoints.

3. Implement a simulation manager in Python that, given each section, re-
simulates a subset of the detected faults within the range of patterns included
in the section. The set of faults to be included is based on the first pattern of
the section to simulate. In particular, only faults that have been detected by
a pattern previous to the start of the section in the first place are selected,
because later ones are certain to produce no detection within that range. If
detection is found, a new smaller section is produced and appended to the list
of simulations to perform. If no more detection is found, the process reaches
its end. This basically replicates the no fault-drop functionality.

4. After section simulation, collect all the detecting patterns and asso-
ciate them to faults in an appropriate data structure for future post-processing.

In algorithm 1 it is reported the pseudo-code for this phase that better explains
the procedure.

Since the no fault-drop feature plays such an important role in this context,
efforts have been put to highly optimize it and provide useful functionalities to the
final user.

In fact, the algorithm can be ideally portrayed as an exhaustive search based
on a divide and conquer approach. Even if the simulations are performed on
relatively few patterns, the algorithm may need thousands of those simulations
before completion.
To speed up the process, the user has the ability to spawn several concurrent
processes internally managed by the simulation manager script. Each of those can
access to shared memory objects and can run simulations independently from each
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Algorithm 1 No drop simulation
if dump_state_file is not(empty) then
current_state⇐ restore_state(dump_state_file)
flist⇐ current_state.f list()
sim_set⇐ current_state.sim_set()
next_sim_set⇐ current_state.next_sim_set()
fault_lut⇐ current_state.fault_lut()

else
flist⇐ read_paths(paths_definition_file)
first_results⇐ run_comb_sim(all_patterns)
splits⇐ list_detecting_patterns(first_results)
sim_set⇐ create_sections(splits)
fault_lut⇐ create_lut(flist, splits)

end if
child_procs⇐ create_procs(max_processes)
while sim_set is not(empty) do
for section in sim_set do
results⇐ child_procs.simulate(section, fault_lut)
if detection in results then
flist⇐ update_fault_list(results.detected())
splits⇐ list_detecting_patterns(results.new_sections())
next_sim_set⇐ create_sections(splits)

end if
if elapsed_time() > seq_sim_interval then
seq_results⇐ run_seq_sim(flist)
flist⇐ drop_faults(seq_results.detected())

end if
dump_state_file⇐ dump(flist, sim_set, next_sim_set, fault_lut)

end for
sim_set⇐ next_sim_set

end while

other, thus shaving a huge slice of simulation time from the total, proportional to
the number of processes used.
In order to minimize the overhead introduced by the management of large fault
lists, internal data are represented and organized as Pandas data frame objects.
Pandas is a python module dedicated to data frames management and in the
context of this thesis has allowed to use several optimized methods and functions
needed for searching, merging, updating and in general keeping track of the fault
record modifications throughout the simulations.
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Moreover, since a huge part of the simulation time is spent in reading the path
definition files and the fault definition files, a strategy has been implemented to
add the least amount of paths and faults in the fastest way.
This is based on the lower boundary of the set of patterns that has to be simulated:
when the simulation manager starts its analysis, it builds a lookup table where
each fault is matched to the pattern that has first detected it. This avoids to read
files at each simulation in favour of using internal variables, which is much faster.
Then, this table is used to add only those faults that have been first detected by a
pattern that precedes the start pattern of the current simulation, as outlined at
page 29.
Another interesting feature is that the algorithm is implementing checkpointing:
it is able to capture the state of some crucial internal variables and to store it at
regular intervals. Again, being such a time consuming task, this feature allows to
stop the simulation and recover it anytime automatically after restarting the tool,
both if the stop is intended or if it happens for some unwanted events.
Since as a general rule the more patterns are collected during this phase, the more
fault injections can be performed next, the higher the probability to detect the fault
at sequential (functional) level, faults are never dropped from the fault simulation.
Instead, a very peculiar strategy has been adopted.
The simulation manager script is capable of launching the fault injection of faults
detected at combinational level at regular intervals of time, parameter that can be
tuned by the user, and to drop faults from the combinational simulation in case
of functional detection. This allows to shorten the simulation time by avoiding
unnecessary overhead caused by resimulation of faults, dropping those at the first
occurence of functional detection.

4.5 Sequential simulation : Z01X
As mentioned in the previous chapter, the last task to perform to achieve a
functional coverage consists in propagating the fault effects to the PO. This task
has been implemented thanks to the adoption of Z01X fault simulator.

This is one of the newest software tool provided by Synopsys and it is designed
for functional fault simulations on safety-critical automotive electronic systems.
Its purpose is to enable its users to meet the fault injection testing requirements
listed in several safety standard, such as the ISO 26262 for automotive and the
IEC 61508 in the industrial field. It ensures very fast fault simulations, also when
dealing with thousands of multiple fault injections [13].
Its limitation in this context comes from the fact that it doesn’t support the path
delay fault model. Fault effects can, however, be replicated using the transient
fault model.
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Figure 4.1: Z01X flowchart, extracted from [13]

Assuming that the increase in delay resulting from the presence of a path delay
fault causes the endpoint of that path to sample the opposite value with respect to
the fault-free circuit, the fault effect has been modeled as a bit flip of the duration
of one clock cycle affecting the output of that specific endpoint. This replicates the
lack of transition at the end of the path, basically forcing the sequential element to
keep the value sampled at the previous clock cycle.

Applying this strategy has a downside: faults are described in a very different
manner and some post-processing needs to be applied to keep coherence between
combinational and sequential fault simulation.
In fact, a path delay fault in Tetramax is represented by the path topology by
itself, and could be derived in two possible transitions, namely slow-to-rise and
slow-to-fall. As indicated at page 29, to each fault is associated a set of functional
patterns, that represents a set of couples of vectors that test the fault. On the other
hand, a faultin Z01X, according to the implementation proposed, has a specific
syntax that is explained in the following:

<FS> <FT> (<IT>) { [<PT>] "<PN>.Q" + [<PT>] "<PN>.QN" }

More in details, regarding the syntax:

• FS: fault status. Within the fault list file has to be set as NA (not attempted).
Its status will change after simulation according to the results.

• FT: fault type. To specify a toggle transient fault, the syntax requires a "∼"
character.

• IT: injection times. It is a list of time instants in which injections will be
performed.
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• PT: primitive type. Sequential elements are identified by the keyword
"FLOP".

• PN: primitive name. The name of the sequential element on which injec-
tions are performed, according to what indicated in the netlist.

The part of the string that follows the "+" symbol is optional, and it is used
only in the case the sequential element has both direct and inverted output pins.

The fault list conversion requires to:

1. Associate paths to respective endpoints. An endpoint can either be a
PO, a latch or a flip-flop. It is important to also identify which input pin of
the endpoint is affected by the path: this is helpful in reducing the fault list.
For example, if the fault is affecting a PO of the circuit, it can be considered
functionally detected without simulating it, so happens if the path is feeding
an enable signal or a clock input.

2. Convert the patterns into time instants, since fault injection is time
based. This can be obtained by knowing the clock period applied in simula-
tion and the number that identifies the pattern. Beware that the injection
is performed on the output of a sequential element, so if the detection at
combinational level has occurred at clock cycle i corresponding to time j,
injection should be done at clock cycle i+1 corresponding to time j + clock
period.

3. Identify equivalent faults after conversion. It may happen, in fact, that
two paths share the same endpoint and are detected by the same patterns.
This produces two identical faults during the conversion, even if the faults
were originally distinguishable at combinational level.

4. Remove equivalent fault from the fault list. It can be assumed that the
detection of one of the replicas implies also the detection of all the others.

Therefore, the whole sequential simulation phase is conducted as follows:

1. Post-process the fault list inherited from the no fault-drop simula-
tion individuating the correct endpoints for injection and associate patterns
to time instants; then eliminate equivalent faults. Only faults detected at
combinational level are considered.

2. Create a new fault list according to the Z01X format, where a single
transient fault (bit flip) is injected multiple times on the output of each
primitive for the duration of one clock cycle.
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3. Simulate the faults on the target Top Level netlist monitoring POs only.
The top level .vcde file is needed for this fault simulation.

4. Post-process the output reports in order to match detected faults with
path delay faults.

In algorithm 2 it is reported the pseudo-code of the algorithm.

Algorithm 2 Sequential simulation
prim_list⇐ get_prim(Top_Level_Netlist)
timing_list⇐ get_timing(Report_pattern_file)
comb_flist⇐ read_comb_flist()
for fault in comb_flist do
endp⇐ prim_list(fault.path())
inj_times⇐ timing_list(fault.patterns())
seq_flist⇐ append_transient_fault(endp, inj_times)

end for
sequential_results⇐ run_simulation(seq_flist)
comb_flist⇐ drop_faults(sequential_results.detected())

4.6 Software tools integration
Since the flow expects to use such diverse tools and to perform many time-consuming
operations, as already briefly said it was needed to automate the process through
software integration.
This has been achieved by adopting scripting in Python language predominantly,
mostly used when dealing with large files, complex data structures and process
handling, but also in Bash language, used instead for text parsing and result
analysis.

The advantage of the integration comes also in form of modularity and reconfig-
urability, allowing the user to skip some sections of the flow if needed, to change
some process parameters very rapidly and to expand the flow fairly easy complying
with different netlists and tools.
Reconfigurability has been achieved through the use of YAML files. The former
is a human-readable data-serialization language which is widely used for writing
configuration files and in other kind of applications. It is very well supported with
dedicated libraries and packages by the most used programming languages [14].
Using Python, the module named PyYAML can be imported, which is a YAML
parser and emitter.
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Each phase of the flow can be managed as a separate thread, providing that it
receives the right inputs from the other sections of the flow and on its turn gives
the right outputs to the next ones. This is possible because a configuration file has
been structured for each phase, in addition to a global one that serves the purpose
of "master" configuration file.
To comply with the structure of the global configuration file it is needed to specify
three fields for each phase:

1. Enable: by setting or clearing this flag it is possible to perform the job or
skip it if not necessary.

2. Run folder: specifies which folder will be used as root folder for that specific
tool, so as to have separate work-spaces for each of those.

3. Scripts: specify a list of commands or scripts to be launched for that specific
phase of the flow. This allows not only to run tool scripts, but also user made
scripts for post-processing or result analysis and eventually to expand the flow
functionalities even further.

Algorithm 3 Root script
for flow_section in glob_set do
if flow_section.isenabled() then
section_var ⇐ import_config(section_file)
curr_dir ⇐ chdir(flow_section.run_dir())
env ⇐ set_environ(section_var)
for script in flow_section.scripts() do
run(script)

end for
env_var ⇐ unset_environ(section_var)
curr_dir ⇐ chdir(root_dir)

end if
end for

Then, for each phase, it is possible to specify in a separate .yaml file all the
internal variables used by the scripts, either if they are meant for use in tool-specific
scripts or other kind of scripts. These will be set as environment variables before
the execution of the commands or scripts required.

A root script written in Python is in charge to parse the global configuration file
and the tool-specific configuration file, according to algorithm 3. Then it instances
a separate process for each of the enabled features of the flow, executing scripts
one at a time.
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It is important to highlight that tool specific scripts are written in tcl language,
which is native (or in any case supported) for the EDA softwares used in the
implementation. Each of them has its own set of commands that can be issued to
perform tasks, produce report about the activities as well as output files written
according to specific formats.
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Chapter 5

Experimental results

In order to prove the efficiency and the effectiveness of the proposed flow, a small
set of self-test programs has been selected to be used as a source of input functional
patterns. These test programs were meant to be targeted at functional stuck-at
fault testing and were able to achieve a high fault coverage in that regard. One of
the test program used, instead, was obtained by random code generation targeting
the alu functionalities. Their coverage with respect of transition delay fault has
been evaluated as well, since this fault model is more similar to path delay, in
order to make comparisons among the results. The structure of each code will
be briefly described in the dedicated paragraphs, in order to highlight the main
characteristics and features.
By performing these fault simulations, the following objectives were then pursued:

1. Prove the functioning of the implemented flow.

2. Prove a correlation between stuck-at fault coverage and path delay
fault coverage.

3. Statistically derive insights on functional testability of path delay
faults.

4. Give indication in the matter of test generation.

Before listing the results extracted by the test programs simulation, some
general data and characteristics of the design are reported. In fact, in order to
allow comparisons among them, the test programs were run on the same netlist
and with the same fault list.
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5.1 Netlist data
In order to give an overview of the size and complexity of the synthesised RI5CY
core of the PULPino, in the table below it is presented a brief summary of the
most relevant characteristic of its gate-level representation.

Characteristic Value
Number of ports 9,076
Number of nets 34,258
Number of cells 25,144
Number of combinational cells 22,749
Number of sequential cells 2,325
Number of buffers/inverters 4,974
Number of gates 46,850
Combinational area 27,843.81 µm2

Buffers/inverters area 3,213.01 µm2

Noncombinational area 9,642.50 µm2

Table 5.1: Top level core info

It is important to highlight that the synthesised netlist has been obtained by
first flattening the design hierarchy, then regrouping the combinational cells avter
the issue of the compile command. This was necessary to apply the devised flow,
and has added the benefit of allowing the synthesis tool to have more space for
optimizations.

5.2 Fault list data
The fault list was generated through static timing analysis, imposing a constraint
on the clock period of 5.0 ns, and features the characteristics reported in table 5.2:

Characteristic Value
Total number of paths 17,738
Clock period 5.00 ns
Minimum slack 0.37 ns
Maximum slack 4.95 ns

Table 5.2: Report timing information

Since the purpose was to evaluate the coverage achieved across the whole core,
a large number of paths has been extracted, such that it could evenly represent the
device.
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In order to give an idea of how representative the fault list is and which are the
main targeted design modules, an analysis on where the paths are located has been
performed.
A total of 17,738 paths have been extracted, distributed as indicated in table 5.3
across the whole core. Note that each path could either traverse more than a single
module, not be entirely contained inside the traversed modules and, especially in
case of very short paths, it may not even go through a module but just through
combinational cells.

Design module N° of paths
ex_stage_i_alu_i_add_168 3,480
ex_stage_i_alu_i_add_182 3,480
load_store_unit_i_add_463_aco 997
load_store_unit_i_mult_add_463_aco 942
ex_stage_i_mult_i_add_109_2 790
ex_stage_i_mult_i_mult_109 790
r1589 434
ex_stage_i_alu_i_int_div_div_i_add_100 223
id_stage_i_add_531 80
cs_registers_i_add_775 66
ex_stage_i_alu_i_int_div_div_i_sub_100 6

Table 5.3: Number of paths per module

It is important to underline that the fault list used for the reported experiments
has been accepted as valid without further investigation on the nature of the paths
contained in it. Fault list minimization was not among the objectives of this thesis,
so no pruning or analysis with respect to functionally untestable faults has been
performed. Only the set of structurally untestable faults has been identified by the
fault simulator tool automatically during fault simulations.

5.3 Test programs information
In this paragraph the most relevant data about the test programs used are reported,
together with a brief overview of their structure. A total of five different test
programs have been used: four of those have been previously created for functional
stuck-at fault simulation specifically for the benchmark device (numbered from 1 to
4) while one has been produced by random generation specifically for the purpose
of the presented work, from now on referred as program random.
The coverage of these programs will be evaluated with respect to path delay faults,
so the effort here is to suggest a possible correlation between stuck-at and path
delay faults. This could be helpful also to give insights in regards of test program

39



5 – Experimental results

generation.

Program 1 is a medium-sized test program of the duration of 64502 clock cycles.
It is composed by a series of macros, each one targeting a separate functionality of
the core. From a brief look at the code, it can be seen that there are dedicated
macros for testing the alu, multiplier, load and store unit, together with those
meant for register file testing, branches and compressed instructions. Specific
macros to test the call of invalid instructions and the relative interrupt handling
are also included.
The macros were built using a similar structure, composed by multiple instructions
in series followed by multiple store in series.

Program 2 instead is a quite short test program, composed by only 36,500 clock
cycles.
In this case the code was organized for the most part as a series of couples of
instructions where arithmetic operations were immediately followed by a store
operation. The multiplier has been tested loading two registers with checkerboard
patterns and other random values and performing the same loop of operations after
each load. A similar approach has been used to test the alu, while the register
file has been tested resorting to march algorithms. Other part of the design like
hardware loops and csr registers have been tested with custom algorithms.

Program 3 is a very short test program, that lasts just for 17,269 clock cycles.
Again, basically all the functionalities of the processor core are targeted, with a
different strategy with respect to other programs. In this case also instructions
for vector operation, hardware interrupts and for reading the performance counter
have been used.
The code is structured for the most part as a series of groups of instructions,
composed by two loads on different registers, one operation based on the targeted
functionality, then one store instruction.

Program 4 has the characteristic to be the longest of those considered for this
comparison. It lasts for 181,370 clock cycles, approximately 10 times more than
program 3.
The approach applied in this program is similar to program 2 but with some
differences: at the beginning of each procedure the register file is cleared with a
series of xor operations; then, the program features couples of operations composed
by an instruction followed by a store. In this case also instructions for vector
operation, hardware interrupts and for reading the performance counter have been
used.
A distinctive feature of this program is that in each of the procedures several nested
loops are inserted, while in others loops were unrolled.

Program random, as the name suggest, was randomly generated targeting the
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alu only, using a very small subset of assembly instructions. Its structure is based
on groups of instructions repeated several times. Each of this groups follows the
same structure:

1. All the registers in the register file are loaded with random immediate
numbers.

2. A random number of arithmetic instructions are issued, chosen among
additions, multiplications and divisions. A subset of registers is dedicated
to each type of instruction. Operand and destination registers are chosen
randomly within the reserved subset.

3. All the registers values in the register file are stored in the main
memory.

In addition to that, a small portion of the test program was built reusing some of
the procedures featured in program 1, to test the hardware loops, exceptions and
jumps.
The structure was pretty linear and simplistic, since the purpose of evaluating this
program coverage was to demonstrate if a correlation among the path delay fault
model and the other two models considered could be emphasised. It was in fact
expected that this program would not perform well also for path delay faults.
It resulted in one of the shortest program, with only 32,455 clock cycles and the
observed performances towards stuck-at and transition delay are the weakest in
the set, since many functionalities have been deliberately neglected.

The functional fault coverage obtained by the test programs with respect to
stuck-at and transition delay faults are listed in table 5.4. This table will be also
reported at the end of the chapter to summarize what has been witnessed after the
functional path delay fault simulation, so that is possible to easily compare the
functional coverage on this fault models with the path delay one.

Parameter Program 1 Program 2 Program 3 Program 4 Random
Clock cycles 64,527 36,500 17,308 181,370 32,455
SAF FC% 86.77 81.79 81.37 82.97 59.44
TDF FC% 41.90 44.21 63.16 61.90 24.41

Table 5.4: Test programs functional fault coverages

As reported in table 5.4, all the programs show a similar fault coverage with
respect to stuck-at faults, with results ranging from 81.37% to 86.77%. Program
random is the only one out of this range, achieving a 59.44% across the whole
design.
With regard to transition fault instead, it is noticeable how less consistent results
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were obtained, with very low coverage in particular for the random test.

5.4 Fault simulation data
This section will be dedicated to the results obtained from the different fault
simulations performed. Intermediate results that have lead to the final functional
defect coverage will be also reported, explaining their importance and commenting
on what can be extracted from them.

5.4.1 Combinational level fault simulation
The flow has been executed with every of these files as input. The first data to be
reported are those relative to the initial fault simulation performed at combinational
level. The coverage obtained here represents the ideal coverage that could be reached
with functional techniques, if all faults could present the relative misbehaviours on
the PO.
Again, the fault coverage reported here is not to be intended as the true achievable
fault coverage, since that would require to remove untestable faults from the fault
list.

Parameter Program 1 Program 2 Program 3 Program 4 Pr. Random
Number of Patterns 64,502 36,394 17,269 118,098 32,416
Total faults 35,476 35,476 35,476 35,476 35,476
Undetectable 2,662 2,662 2,662 2,662 2,662
Not controlled 25,998 25,841 25,958 25,260 26,241
Total of detected 6,816 6,973 6,856 7,554 6,573
Detected by simulation 1,648 1,909 1,288 1,673 1,861
Robustly detected 5,348 5,064 5,568 5,881 4,712
Fault coverage 19.21% 19.66% 19.33% 21,29% 18,53%

Table 5.5: Combinational fault simulation results

As shown in table 5.5, program 1, 2 and 3 have performed almost identically in
terms of achieved fault coverage, differing by just few decimal digits.
This is of particular importance when considering that the test program have been
devised with different techniques and structures and are very heterogeneous in
terms of duration.

The number of robustly detected faults may pose questions on what has been
described in the previous chapter, appearing slightly contradictory.
It is important to highlight that faults indicated in table 5.5 as Detected by
simulation and as Robustly detected are classified by Tetramax respectively as class

42



5 – Experimental results

DS and DR.
A section of the tool manual [12] is quoted verbatim here in order to clarify the
definition of faults assigned to these fault classes.

" DT (Detected) = DR + DS + DI + D2 + TP
The "detected" fault class is comprised of faults which have been identified as "hard"
detected. A hard detection guarantees a detectable difference between the expected
value and the fault effect value. The detection identification can be performed by
simulation or implication analysis."

" DR (Detected Robustly)
DR faults are hard detected by the fault simulator using weak non-robust (WNR),
robust (ROB), or hazard-free robust (HFR) testing criteria to mark path delay
faults. During ATPG, at least one pattern that caused the fault to be placed in this
class is retained. This classification applies only to Path Delay ATPG."

" DS (Detected by Simulation)
DS faults are hard detected by explicit simulation of patterns. During ATPG, at
least one pattern that caused the fault to be placed in this class is retained."

Therefore we can justify this result by considering that the definition of the
criteria for which a fault is classified as DR is comprehensive of both the robust
and non-robust criteria listed in section 2.2.

Comparing the results of program random with the other ones, an important
consideration can be done: even if the test programs achieved very different
coverages on stuck-at and transition delay faults, for what concerns path delay
faults these differences are much more compressed and limited to more or less one
percentage point in three out of four cases.
This hints that no correlation may exist between the fault models. In fact, if it
existed, because of the large variation in coverage on stuck-at it was expected to
see a proportional variation also on path delays. This conclusion, by the way, can
only be confirmed after having evaluated the functional fault coverage.

This idea is also reinforced by the result achieved by program 4. In fact, it was
revealed to be the most well performing on path delays, even if it is only the second
best performing with respect to stuck-at.
These considerations, by the way, have to be observed also at sequential level in
order to give a better understanding of the kind of relation that intervenes between
the fault models.
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5.4.2 Fault list conversion
In order to perform fault injection, as depicted in paragraph 4.5, an analysis on the
endpoint affected by the detected fault has been performed, leading to the result
listed in table 5.6.
This is necessary to distinguish which faults have to be injected and which instead
can be considered already functionally detected. In fact, it can be assumed that if
a fault is directly affecting a PO there is no need to include it in the sequential
simulation, since PO are considered observation points and fault effects have not
to be propagated further.
The same goes for faults affecting very sensitive signals as clock gating or enable
signals: it can be assumed that in presence of a delay fault serious synchronization
issues would be caused that would most likely cause the whole circuit to fail
preventing the test itself to be executed, given its nature.

Primitive Program 1 Program 2 Program 3 Program 4 Random
FF (D) 440 409 209 623 188
Latch (D) 6,044 6,363 6,339 6,444 6,145
Prim. Out. 298 167 193 453 206
FF (CK) 1 1 1 1 1
Latch (EN) 33 33 33 33 33

Table 5.6: Number of faults per primitive class

Looking at table 5.6 we can recognize that the vast majority of the detected
faults are affecting latches: this is due to the fact that the register file in particular
and also other registers have been mapped to this kind of logic element during the
synthesis process.
In order to functionally detect these fault, after the injection their effect should
traverse pipeline registers and reach the address or data port of the memory,
requiring multiple clock cycles of execution.

It is possible to see how well program 4 has performed with respect to the
other considered. A total of 453 faults detected have their endpoint represented
by primary outputs, against the 298 listed in program 1 and the 206 in program
random. This signifies that program 4 has targeted better than others the data
and instruction interfaces.
This can be extended on a general level, since also the number of detected faults
affecting flip-flops and latches input is higher.

5.4.3 Sequential level fault simulation
As explained in the previous chapter, sequential simulations were launched on a
time-based schedule with the purpose of speeding up the process. For each time
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interval, a new fault list had to be converted and simulated. Even if the simulated
faults were the same from one sequential simulation to the next one, what changed
was the number of injections performed, since combinational simulation may have
produced new patterns for each of the fault in the assigned time window.
In table 5.7 it is reported a cumulative result of all the sequential fault simulation
performed. These data represent the results that can be obtained with SBST
techniques using these test programs.

Parameter Program 1 Program 2 Program 3 Program 4 Random
Injected 6,484 6,772 6,629 7,067 6,333
Det. by Sim. 4,797 5,420 4,781 6,660 5,011
Det. by Impl. 332 201 227 487 206
Relative FC 75.25% 80.61% 73.04% 94.59% 76.23%
Func. FC 14.45% 15.84% 14.11% 20.14% 14.12%

Table 5.7: Functional fault simulation results

Fault injections have revealed that, out of the whole list of faults to inject, in
case of program 1 a total of 4,797 faults have been successfully propagated to
one or more POs. These should be then added to those faults that have been
detected by implication, described in table 5.6, achieving a relative fault coverage
of 75.25%.Then this percentage was related to the full set of faults analyzed in the
first place, finding that it is equivalent to the 14.45% of the global fault list.
The same conclusions have been drawn also for the other test programs, as reported
in the table.

Concerning program 2 instead, the relative fault coverage statistic indicates that
the program was able propagate the misbehaviour to the primary outputs in more
than the 80% of the cases. Also, the global fault coverage is near to 16%, which is
a slightly better result with respect to other programs.
This result is good also because of the short duration of the test.

A total of 4,781 faults have been successfully observed on POs for program 3,
achieving a relative fault coverage of 73.04%. This leads to set the global fault
coverage at 14.11% of the global fault list. It can be noticed that this program is
the one that has produced the least satisfying results, both considering the relative
and the global fault coverage.
Even so, it is to be remembered that this is the shortest program among the
considered ones: if the clock period imposed during synthesis is considered, the
program would last only 86.3µs, approximately half of the second shortest program.

Going on in analyzing what has been obtained with program 4, it must be
emphasised that almost all of the path delay fault detected in the core have been
marked as functionally detectable, with a relative fault coverage of 94.59%.
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Considering that this program had already achieved the best overall coverage at
combinational level, it can be said that this is the best performing in the set,
achieving 20.14% of fault coverage, which is an increment of 4.3% with respect
to program 2 that was the better so far. It has to be said, by the way, that the
program duration is by far the longest in the set, approximately 10 times longer
that program 3.

Running instead program random some interesting results have been obtained
and some observations need to be done.
Remembering the considerations made before when discussing the combinational
level results it is possible to see that, despite the large gap in terms of stuck-at
and transition delay fault coverages, the results are comparable to what has been
achieved by running other test programs.
Moreover, it can be seen that the relative fault coverage and the absolute number
of detected faults are higher than program 1 and program 2, despite the lower
number of injections performed.
These considerations pull again in the direction of concluding that no correlation
among the considered fault models coverages can be exposed. In fact, it was
expected to find out a much lower functional path delay fault coverage from
program random, but it was not the case. This also exposes the possibility that the
structure of the program has been more adapt to assist the propagation through
pipeline stages of the faults. By the way, more in depth analysis are required to
confirm this hypothesis, which are out of the scope of this work.

5.4.4 Test programs effectiveness
After that, an analysis on the effectiveness and general performance of the test
programs has been performed. This is useful to understand how well critical faults
in the design have been covered and if there is the possibility to test critical faults
resorting to SBST techniques.

The detected faults were observed more in depth, evaluating their criticality and
reporting some features of the path that had originated those. These information
are reported in table 5.8.

For completeness, here are reported the modules traversed by the paths included
in the previous table.
Path 4323 and 4321 are located in the module named
ex_stage_i_alu_i_int_div_div_i_add_100, which is part of the divisor circuit
contained inside the alu. Path 10873 goes through two different modules, named
load_store_unit_i_add_463_aco and load_store_unit_i_mult_add_463_aco,
which appear to be part of the addressing logic of the memory stage.
Path 7158 is again found in ex_stage_i_alu_i_int_div_div_i_add_100, while
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Program 1
Sim. type Path Gates Slack Fault type

Combinational 4323 95 1.776067 str
Sequential 4323 95 1.776067 str

Program 2
Sim. type Path Gates Slack Fault type

Combinational 4321 95 1.770068 str
Sequential 4321 95 1.770068 str

Program 3
Sim. type Path Gates Slack Fault type

Combinational 10873 23 4.199069 str
Sequential 10873 23 4.199069 str

Program 4
Sim. type Path Gates Slack Fault type

Combinational 4321 95 1.770068 str
Sequential 4321 95 1.770068 str

Program random
Sim. type Path Gates Slack Fault type

Combinational 7158 38 3.542068 str
Sequential 11330 20 4.305068 stf

Table 5.8: Most critical detected faults per program

path 11330 is found in the two same modules of path 10873
load_store_unit_i_add_463_aco and load_store_unit_i_mult_add_463_aco.

It can be seen that from the point of view of criticality of the detection the
programs that have performed better are surely program 1, 2 and 4, since they
were able to catch and propagate to the PO faults originated by two of the most
critical paths of the design, composed by a total of 95 gates and with a relatively
small slack. Program 3 instead did not perform well even on this aspect, since it
was only able to provide detection only for very short paths.
An interesting example of fault masking can be observed by looking at what
reported for program random. In fact, fault str on path 7158 was observed on the
PPO, but the program failed to propagate that specific fault to the PO, as the
most critical fault observed after the sequential simulation is different.
More considerations about critical paths and program effectiveness can be found in
the next paragraph.

5.5 Result analysis and considerations
The pie chart in figure 5.1 shows the cumulative fault coverage obtained at combi-
national level by the full set of test programs used. In green it is reported the set
of faults excluded from the fault simulation due to untestability, while in blue it is
shown the ideal coverage achieved. In orange instead is shown the amount of not
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detected faults.

What can be evinced from this chart is that most probably it is not possible
to adapt stuck-at oriented test programs to achieve path delay fault detection,
both for what has been shown previously about the correlation between the two
fault models and more in general for the very low coverage achieved even when
combining multiple programs.
More about the reasons that has led almost 70% of the faults to result undetected
can be said only with a deeper analysis of the test programs and the fault list,
which is out of the scope of this work. What can be said is that the faults have
been classified as undetectable because they were not controlled, according to the
fault simulator analysis. Therefore, it is ideally possible to catch those faults if
more reliable and tailored techniques for test generation are adopted.

However, it can be assumed that compacting and properly arranging the in-
structions currently listed in all the test programs, the fault coverage achieved by
applying functional tests can be increased already at combinational level. Ideally,
a total of 8082 faults could be observed at this stage, which approximately corre-
sponds to an increment of 7% with respect to the maximum achieved coverage by
a single test program.
It can be said that it is possible, in that case, to achieve a total fault coverage of
22.78% at combinational level.

Figure 5.1: Cumulative combinational fault coverage

In figure 5.2 and figure 5.3 are displayed important information about the
performance that the considered test programs achieved, from which some ideas
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about testability and test program generation can be evinced.
In particular, figure 5.2 shows the number of faults that can be detected at
combinational level by one or more test programs. As it can be seen, the vast
majority of the detected faults (72.4%) can be detected by all the test programs.
The 7.0% of faults have been detected by 4 programs out of 5 and similar percentages
are evaluated if only 3 or 2 programs are considered. Only a very small percentage,
exactly the 7.5% of the total number of faults, are detected by just one out of the
set of test programs used.

Figure 5.2: Number of faults detected at combinational level shared by programs

From these information it can be evinced that many faults can be intended as
"easy-to-test". In fact, since the programs are very different from each other, it is
possible to assume that there exist multiple couples of instructions that are able to
catch those faults.
As expected, among those faults that have been caught by only one of the test
programs, it is possible to find faults originated by some of the slowest paths in
the circuit.
This is most probably due to the higher number of gates featured in those paths,
which makes harder to produce the appropriate values and conditions for the
transition to be propagated. Hence, it is possible to assume that those faults should
be targeted specifically when devising a test program to ensure coverage.

A similar analysis has been conducted also for the functionally detected faults.
In this case the amount of detections shared by multiple programs is distributed
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in a more heterogeneous fashion among the test programs. We can see that the
42.3% of the faults detected at combinational level has been successfully propagated
and observed on the primary outputs by all test programs; another 12.7% have
been detected by 4 test programs, while 10.4% and 19.4% have been detected
respectively only by 3 and 2 programs. Lastly, it is possible to see that 920 out of
8,082 faults have been functionally detected by only one test program and a very
small percentage, namely the 3.8% has not been functionally detected.

Figure 5.3: Number of faults detected at sequential level shared by programs

Again, it is possible to evince that the functional detection of most of the faults
can be achieved fairly easily, but still, ensuring the propagation for a relevant slice
of faults is an hard task.
Among those faults that were functionally detected by a single test program and
those functionally undetected, there are several faults originated from slow paths.
This problem can be caused by the fact that the test programs were not written
with the goal of detecting path delay faults, hence some necessaries code features
for propagation may lack (e.g. store instructions), or may be not sufficient. In
fact, among the undetected faults also paths that have an average slack are listed,
so the cause of not detection may not be just related to structural or functional
properties of the device but also to the code structure.

In order to give a statistical overview on faults testability, in figure 5.4 is shown
the cumulative number of faults detected, focusing on program 4.
More specifically, values on the x axis represent the number of injections performed,
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while on the y axis it is reported the cumulative number of faults detected with
less than "x" injections. This specific graph has been obtained without considering
equivalent faults for simplicity. Data reported represent a worst-case scenario, since
it is not said that all injection are strictly required for the detection.
The number of required injections has been evaluated by comparing the detection
time to the scheduled injection times and finding how many of those were scheduled
before the detection time.

Figure 5.4: Number of detected vs. number of injections

It is again clear that the most part of the faults is very easy to detect: a total
of 5,055 faults require 1 or less injections to be detected. The number of detection
keeps increasing with the number of injection, but with a much slower rate: 10
or less injection lead to the detection of 5,798 faults, while performing 30 or less
injections has led to achieve 6,122 functional detections.
Going on, very few faults require a number of injections higher than 40, in fact this
region of the curve is almost flat. In the end, the fault that has revealed harder to
detect has required a total of 64 injections before being observable at one of the
PO.

Surely, further investigation should be done to identify proper methods for test
programs generation, but these data may be of interest in narrowing the variables
to explore in that regard.
In table 5.9 are reported some characteristics of the most critical faults that have
been functionally detected. For each of those, from left to right are reported : a
number in the first column that serves as identifier; the number of gates included in
that path; the relative slack with respect to the imposed clock period (5.0 ns); the
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program number that has produced the detection at combinational level; the type
of the fault detected at combinational level; the program number that has produced
the detection at sequential level; the type of the fault detected at sequential level.
For simplicity, only a subset of faults is reported here.

Path N° Gates Slack (ns) Pr. (Comb) Type (Comb.) Pr. (Func.) Type (Func.)
4321 95 1.770068 2, 4 str 2, 4 str
4323 95 1.776067 1, 2, 4 str 1, 2, 4 str
4325 95 1.785068 1, 2, 4 str 1, 2, 4 str
4326 95 1.791067 1, 2, 4 str 1, 2, 4 str
4328 94 1.797068 2, 4 str 2, 4 str
4331 94 1.797068 2, 4 str 2, 4 str
4342 92 1.840068 2, 4 str 2, 4 str
4343 92 1.846068 1, 2, 4 str 1, 2, 4 str
4348 92 1.855068 1, 2, 4 str 1, 2, 4 str
4356 92 1.861068 1, 2, 4 str 1, 2, 4 str
4358 91 1.867068 2, 4 str 2, 4 str
4360 91 1.867068 2, 4 str 2, 4 str
4372 89 1.937068 2, 4 str 2, 4 str
4373 89 1.943068 1, 2, 4 str 1, 2, 4 str
4375 89 1.952068 1, 2, 4 str 1, 2, 4 str
4385 89 1.958068 1, 2, 4 str 1, 2, 4 str
4387 88 1.964068 2, 4 str 2, 4 str
4390 88 1.964068 2, 4 str 4 str
4402 86 2.025069 2, 4 str 2 str
4403 86 2.031068 1, 2, 4 str 1, 2 str

Table 5.9: Most critical functionally detected faults information

From table 5.9 it can be evinced that the most suitable test programs for path
delay functional fault testing are program 4, program 2 and program 1, since those
were able to detect the most critical paths. In particular, program 4 manages to
catch almost all of those even from a functional perspective.
For this reason, it is proposed to analyze it more in depth to understand what
characteristics of that program has allowed to achieve such results.

Instead, in table 5.10 are reported some characteristics of those paths that have
been detected at combinational level but have not been observed on the primary
outputs.

Again, it is possible to notice that program 4 has performed better than the
others even in terms of criticality of detected faults, covering those faults at least
at combinational level.

Still, with the current information available it is not possible to say if these faults
could have been detected functionally if the program was composed differently,
but it is relevant that path lengths and slacks are comparable to the ones in table
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Path N° Gates Slack (ns) Pr. (Comb) Type (Comb.)
4341 92 1.840068 4 str
4349 92 1.855068 4 str
4371 89 1.937068 4 str
4376 89 1.952068 4 str
4388 88 1.964068 4 str
4411 85 2.052068 2, 4 str
4471 80 2.210069 4 str
4474 80 2.225069 4 str
4481 79 2.237069 4 str
4512 77 2.307069 4 str
4515 77 2.322069 4 str
4520 76 2.334069 4 str
4621 68 2.580069 4 str
4625 68 2.595069 4 str
4638 67 2.607069 4 str
4661 65 2.677069 4 str
4666 65 2.692069 4 str
4679 64 2.704069 4 str
4772 56 2.950069 4 str
4785 56 2.965069 4 str

Table 5.10: Most critical functionally undetected faults information

5.9, element that suggest that detection on PO may be possible. Of course path
topology may be extremely different, so further investigation are required to have
a certain answer to the question.

The number indicated in the column Path N° in tables 5.9 and 5.10 refers to
the classification performed during the static timing analysis. Hence, if a path
is marked with the number x, it means that x-1 slowest (more critical) paths
exist, according to the STA. To properly evaluate the functional fault coverage
of the programs, it should be fundamental to find a method to evaluate if paths
are functionally testable or not, but this is a very complex task not considered
in this thesis, being its ultimate objective to provide the means of evaluating the
functional coverage of a test program.
For sure, what can be said is that a total of 1,331 undetectable redundant paths
have been found within the fault list during the fault simulation using Tetramax,
and 790 of those paths were slower than the most critical functionally detected path.
For these paths is not possible to produce tests because of structural properties
that block the propagation of a transition along them.
From this point of view then, the effectiveness of the programs can be considered
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higher than what may seem, since the undetectable redundant paths correspond to
false paths and thus they do not affect the timing of the circuit and should not be
tested.

Nevertheless, the tests used fail to catch several of the most critical paths not
only from a functional perspective, but already at combinational level, so effort
should be primarily put in producing new tests targeting those faults that have
not been observable even at that stage, provided that those faults can be identified
as functionally detectable.

To sum up what has been discussed in this chapter, table 5.11 collects the fault
coverage percentages for each program on the three fault models mentioned in this
thesis.

Parameter Program 1 Program 2 Program 3 Program 4 Random
Clock cycles 64,527 36,500 17,308 181,370 32,455
SAF FC% 86.77 81.79 81.37 82.97 59.44
TDF FC% 41.90 44.21 63.16 61.90 24.41
PDF FC% 14.45 15.84 14.11 20.14 14.12

Table 5.11: Fault coverage comparison

An information that can be extracted from this table is that it is hard to notice
a correlation among the three fault models, since the differences of what has been
achieved for stuck-at and transition fault models does not reflect a significant
variation with respect to the path delay fault model.
As already highlighted at page 46, program 3 and program random show a very
large gap in stuck-at fault coverage, but yet the path delay functional fault coverage
is almost the same. This happens again for the same two test programs but this
time for the transition delay, where the coverage gap reaches almost 40% but leads
to the same result relatively to path delay.
At the same time, program 4 achieves a lower coverage on transition delay with
respect to program 3 but manages to achieve the best path delay coverage. This
result may be dictated by the fact that program 4 is ten times longer than program
3 in terms of clock cycles, hence more couples of instructions can be extracted from
it, leading to a higher chance of detection.
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Chapter 6

Conclusion and future
improvements

The work carried out in this thesis had the primary goal of devising a flow aimed
at path delay functional fault test simulation and provide an example of its
implementation, based on the integration of several commercial software tools, that
could automate the process of functional fault coverage evaluation on a target
device.

In conjunction to this, two secondary objectives were pursued: expose a possible
correlation between stuck-at fault coverage and path delay fault coverage achieved
by the same test programs; provide some insights about the functional testability
of path delay faults.

6.1 Functional test flow
Concerning the main objective, it can be said that it was proposed a very general
and reproducible approach that can be tailored and reconfigured basing on the
availability of the tools and the requirements of the user.
Generality is ensured by the possibility of using different software produced by
different vendors, providing that the correct implementation adjustments are taken
in consideration.

The proposed implementation adds some interesting and useful features to the
basic flow in order to optimize it and produce the fault coverage evaluation with
the minimum cost in terms of simulation time.
Since the no fault-drop combinational fault simulation is the most time-consuming
phase of the proposed implementation, efforts have been put in optimizing it from
different perspectives.

55



6 – Conclusion and future improvements

The total duration depends on the test program used, since the more detection
are performed the more simulations will be scheduled. In case of the experimental
tests performed, the elapsed simulation time was in any case less than 48 hours,
during which thousands of fault simulations had to be run using five concurrent
processes. This by the way can be improved by simply increasing the number of
employed resources. Also, being the fault detection record and other important
variables (paths list, active fault list, simulation schedule etc.) managed with a
shared memory section, the necessary means of synchronization among the processes
could add overhead to the simulation time by keeping processes in a wait state,
especially when the number of child instances is large.
There is room for improvement in this, for example splitting simulations also by
faults and not only by patterns, assigning a portion of faults to each child process
ensuring independence among those and letting each one manage its own variables,
providing that results are merged at the end of computation.
Another option could be to manage simulations with pipes, avoiding to open/close
the fault simulator and repeat section of the simulation scripts like initialization or
paths addition, allowing to save time.
Moreover, an optimal time interval with which to call functional fault simulations
should be found, in order to balance the time spent in both of the phases: if this
interval is too narrow, the combinational fault simulation will have a smaller time
window to find new patterns and the probability to have fault injection with no
fault detection increases; instead, if the interval is too wide the number of patterns
found during combinational fault simulations may be higher than what is necessary
to achieve functional detection, increasing the time of both combinational (the
faults will be dropped later, leading to overhead and unnecessary complexity)
and sequential (more than the optimal number of injections will be performed,
increasing simulation time) fault simulations.

In order to ease future development, the proposed implementation of the flow
offers reconfigurability thanks to the possibility of including new scripts and new
variables when necessary by just modifying the provided configuration files according
to the user needs.
Repeatability of the experiments is ensured by the choice of using widespread and
proven software tools.

For what concerns the obtained results, it was shown that approximately from
73% to 94.6% of faults detected at combinational level, hence detectable with scan
techniques, are propagated to the primary outputs of the processor core proving
the effectiveness of SBST techniques.
However, the test programs used for the flow validation have proven to be not
optimal to cover all the faults included in the fault list, and also the fault list itself
has been taken raw, without performing any kind of analysis on possible untestable
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faults. So, in order to have a more representative result it is proposed to improve
both aspects in future.

6.2 Side goals
Analyzing instead what has been observed in direction of the side objectives, no
evidence of a correlation between stuck-at and path delay fault coverage has been
found. Highlighting a correlation between the two could have helped in terms of
test program generation and minimization, allowing to borrow techniques and even
code snippets used for that fault model.
However, test programs that have achieved very different fault coverages on the
stuck-at fault model have revealed a similar fault coverage on path delays. For the
same reasons, no relation can be evinced also with respect to the transition fault
coverage.

About the functional testability, by running fault simulations at combinational
level it has been shown that a large set of the detected faults is shared among all
the test programs.
Given that the programs have been composed using different techniques and feature
different sets of instructions, it appears that this set of faults is "easy-to-test",
since it is possible to find multiple patterns in multiple programs that allow their
detection. Unfortunately, faults contained in this set are usually originated by
non-critical paths, composed by few tens of gates and characterized by a large
slack.
A small but significative percentage (7.5% in the presented case study) of faults is
on the contrary detected by only one test program, meaning that their detection is
harder to achieve. As it might have been reasonable to expect, faults in this set
are usually (but not only) originated from longer paths, characterized by a number
of gates ranging from 80 to 100 resulting in a shorter slack.
Even if producing tests for these faults can be tricky, results have shown that it is
possible to detect them even with a functional approach. It is then suggested to
specifically target only this set of faults during test generation, in order to reduce
the complexity of code generation and to produce more effective tests (since these
are the paths that may fail earlier than others).
By extension, it is expected that a good portion of less critical faults will be also
covered because of their high testability, and if not, there is a chance to detect
them by random code generation, as shown in the results.

The downside of functional test is that, as it has been shown, some of the
faults have to cause misbehaviour several times at combinational level before being
functionally observable.
This may add complexity in test program generation since multiple test patterns
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for each fault should be included. It is proposed to analyze more in depth this
aspect since the estimation performed within this thesis was a worst-case scenario,
hence it is possible that the same faults could be functionally detected also when
performing less injections.
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