
POLITECNICO DI TORINO
Master Degree course in Communications and Computer Networks Engineering

Master Degree Thesis

Data-plane assisted state replication with
Network Function Virtualization

Supervisors
Prof. Paolo Giaccone
Prof. Andrea Bianco

Candidate
Iman Lotfimahyari

Academic Year 2019-2020

Acknowledgements

I would first like to thank my thesis advisors professor Paolo Giaccone and professor
Andrea Bianco for their patient, guidance, and useful evaluations of this master thesis.
The doors to their offices were always open whenever I ran into a trouble spot or had a
question about my research or writing. They consistently allowed this paper to be my
own work, but steered me in the right direction whenever they thought I needed it. I
would like to show my very great appreciation to German Sviridov for his constructive
professional hints at the beginning of this thesis. Many thanks to Politecnico di Torino
for giving me the opportunity and also providing me the proper situation to do the
master degree. Finally, I must express my very profound gratitude to my parents and to
my beloved wife Mahboobeh for supporting me in all the steps and for their continuous
encouragement throughout my whole years of the study and also through the process of
researching and writing this thesis. These accomplishments could not be possible without
them. Thank you.

3

Abstract

Nowadays, the continuous progression of NFV transformation is due to considering it as
the platform for 5G. NFV based on SDN can extend the programmability and flexibil-
ity features of advanced network functions. Many of these network functions, however,
need concrete state information to effectively process network flows. In this work we
introduced a protocol to replicate the states between the VNFs in an SDN network,
then we implemented two sample solutions with a slight difference in their schemes as the
POC. Furthermore, we evaluated the amount of memory resources needed inside the SDN
switches for successfully replicating the states between the VNFs through our protocol,
and at last, we demonstrated by using the means of P4 programming language, we can
efficiently reduce this value.

Contents

1 Introduction 5

2 Background 7
2.1 Overview . 7
2.2 SDN . 7

2.2.1 Open Flow protocol . 11
2.2.2 Stateful SDN . 14

2.3 Data-plane programmability . 15
2.3.1 Overview . 15
2.3.2 PISA architecture . 16
2.3.3 Programming Protocol-independent Packet Processors (P4) 18
2.3.4 P4 Runtime . 23

2.4 NFV and 5G network . 25

3 NFV state sharing 29
3.1 The proposed approach . 29
3.2 Publish-Subscribe Model . 29
3.3 State sharing protocol . 31

3.3.1 State sharing phases and general packet structure 31
3.3.2 Initializing phase . 33
3.3.3 Data Replication phase . 35

3.4 Protocol algorithms and scenarios . 36
3.4.1 The main algorithm . 36
3.4.2 The protocol scenarios . 38

3.5 Scalability analysis . 43

4 Implementation and experimental validation 49
4.1 Tools and Components . 49

4.1.1 Mininet . 49
4.1.2 BMV2 . 50
4.1.3 bm_CLI . 50
4.1.4 Open vSwitch . 50
4.1.5 RYU Controller . 51
4.1.6 Traffic generators . 51

2

4.1.7 Measurement tools . 51
4.2 Architecture . 52

4.2.1 The Middle-ware . 53
4.3 Software implementation . 54

4.3.1 NF design structure . 54
4.3.2 Middle-ware design structure . 60

4.4 Experimental results . 64
4.4.1 Remote Controller-based scenario with OpenFlow Switch 68
4.4.2 Switch memory consumption comparison 72

5 Conclusion 81

Bibliography 83

3

4

Chapter 1

Introduction

Nowadays, the continuous progression of the Network Function Virtualization(NFV)
transformation is due to considering it as the platform for the 5G. The NFV based
on SDN can extend the programmability and flexibility features of advanced network
functions. Many of these network functions, however, need concrete state information
to effectively process network flows. In this work, we have proposed a solution for shar-
ing the states between different Virtual Network Functions(VNF) with the help of the
data-plane programmable switches, while the generality of the proposed solution makes
it applicable on the vanilla SDN switches as well. In the second chapter of this work, we
briefly recalled the Software-Defined Networking and its most successful protocol. Then
we took a look at a new approach for programming the data-planes of the new SDN
switches. Furthermore, we reviewed the Network Function Virtualization, the state-full
VNFs, and their important role in the 5G networks. In the third chapter of this work,
we described our solution for the state sharing between the VNFs. Then we explained
the whole protocol and its parts in detail and two different methods of implementing the
solution. Finally, we evaluated theoretically the solutions and checked their scalability
for the number of the NFs or the servers and the number of variables that can be par-
ticipated in our solutions. In the fourth chapter, after introducing the needed tools for
implementation and measurement, we implemented both solutions. Then for comparison,
we implemented a vanilla SDN based structure with our proposed protocol and compared
the three of them in terms of the switch resource consumption.

5

6

Chapter 2

Background

2.1 Overview

The traditional IP networks will not separate the control-plane from the data-plane.
These planes usually are inside the same network device, making network structure highly
decentralized to guarantee network resilience. They usually have a static architecture with
a high degree of complexity, which makes their control even more complex and sometimes
very hard. Because not efficient configuration will cause the network to behave not op-
timized and under the expectations, which can lead to having unwanted behaviors like
loops, losing the packets and even more erroneous behaviors. Therefore, the vendors
have to propose their proprietary management solutions for supporting network manage-
ment. This includes the specific operating systems, and the network applications as well.
Because of the proprietorship of these solutions, and considering that most of the time
the network operators have no choice but to use different devices in different parts of
the network, they need to maintain separate solution for different equipment of different
vendors, they even have to separate supporting teams, which increases maintenance com-
plexity and costs of the networks. For solving the lack of functionality problem within
the network, the operators of the network have to use some middle-boxes, such as load-
balancers, firewalls and other equipment, which the number of them, even if not larger,
is comparable to the number of basic network devices. By using these middle-boxes,
one will increase the complexity of the design and decreases the flexibility of network
operations.

2.2 SDN

Software-Defined Networking (SDN) is an approach to network management that en-
ables dynamic, programmatically efficient network configuration to improve network per-
formance and monitoring. It is somehow a new paradigm to solve the limitations of
traditional IP networks. Because the static architecture of traditional networks is decen-
tralized and complex, current networks require more flexibility and easy troubleshooting.
SDN attempts to centralize the intelligence of the network in one network device with the
help of separating the packet forwarding process of the network or the data-plane from

7

Background

the control-plane or the routing part. Figure 2.1 gives a general view over the difference
between SDN and traditional IP networks. Separating the control-plane from a network

Figure 2.1. Traditional networking paradigm versus Software-Defined Networking (SDN)
paradigm (reproduced from [1]).

device has several advantages:

• It gives us an affordable and non-complex test-bed to be used for developing SDN
applications. The possibility to share or move the abstractions of the network
programming languages and the platform of the control-plane, it will be easier to
program the related applications.

• Different applications can integrate into each other in more straightforward ways.
As an example, routing applications and load balancing ones can be used at the
same time, where the load balancing decisions more priority over routing policies.

• The global network view can be shared between all applications, which by using this
information by the control-plane software modules, policy decisions can be made
more effectively.

The control-plane usually is made of one or sometimes more controllers which act as
the brain of the SDN network. The intelligence centralization has its drawbacks when it
comes to security [1], scalability [1], and dependability [1], which are some of the main
concerns about the SDN. In Figure 2.2 we can see a tri-fold perspective presentation of
the SDN.

Compared to a traditional network, an SDN infrastructure is made of several network-
ing devices like switches, firewalls, and middle-box appliances. Their main difference is
that the physical traditional devices are replaced with some simple forwarding devices

8

2.2 – SDN

Figure 2.2. Software-Defined Networks simplified in (a) planes, (b) layers, and (c) system
design architecture (reproduced from [1]).

without having an embedded control-plane or software to make autonomous decisions.
As shown in Figure 2.2(a), the SDN helps by solving the problem related to the vertical
integration, with separating control logic form the controlled hardware, which is respon-
sible for forwarding the data. The control logic has been moved to a network operating
system or a controller which is logically centralized, to simplify the network configura-
tion and policy enforcement. An SDN architecture can be represented as a mixture of
different layers, as illustrated in Figure 2.2(b). As illustrated, each of the layers has its
special functions, while some of them are always used in an SDN deployment, like the
southbound API(Application Programming Interface), the network operating systems,
and the northbound API and even the network applications, others may participate only
in special deployments, such as a hypervisor or maybe a language-based virtualization.
Figure 2.2(c) depicts the integration of the layers in Figure 2.2(b) into a system design
perspective, while the intelligence of the network is moved from the data-plane devices
to a logically centralized control system, i.e., the applications and the network operating
system. It is important to mention, that a logically centralized model does not signify
a physically centralized system, Instead, control-planes of the industry SDN controllers
are physically distributed, while they have a centralized logical structure. Separation of
the control-plane from the data-plane requires a well-defined API between the SDN con-
troller and the switches, as shown on the Figure 2.2(c). It is notable that, we can benefit
more when the control logic becomes logically centralized. First of all, the modification
of the network policies becomes less error-prone and much simpler, by using software
components and high-level languages, when compared to the vendor-specific low-level de-
vice configurations. Second, a control program can automatically react to changes in the
state of the network and maintain the high-level policies in any circumstances, including
device/link outages and spikes of the data traffic. Finally, the control logic centralization
in a controller gives global knowledge of the state of the network and therefore simplifies

9

Background

the development of sophisticated networking functions, services, and applications. One
can generally define the SDN by these abstractions:

• Forwarding: Any forwarding behavior which is desired by the control program
should be allowed by the forwarding abstraction, while at the same time, it should
hide the details for the hardware underly. E.g., OpenFlow has been one of the
most successful realizations for such abstraction, which is considered equivalent to
a device driver in an operating system.

• Distribution: The distribution abstraction should protect SDN applications from
the problems of the distributed states. It will turn the distributed control problem
into a logically centralized problem. For realizing it, you will require a common
distribution layer, that in SDN it is placed in the Network Operating System (NOS).
The two essential functions of this layer are:

– 1. to be responsible for installing any needed control commands on the for-
warding devices, as requested.

– 2. should gather the information about the forwarding layer, to be able to
provide for the network applications, a global network view.

• Specification: The specification abstraction allows a control program to indicate
the desired behavior of the network without about implementation of that behavior.
This goal can be reached with virtualization solutions or network programming
languages.

Recalling in Figure 2.2(b) layers, two of the always present layers were the southbound
API and the northbound API, which are mentioned again in Figure 2.3. In Software-
Defined Networking (SDN), Northbound and Southbound APIs are used to describe how
interfaces operate between the different planes (data-plane, control-plane and application
plane).

Northbound interfaces define the way the SDN controller should interact with the
application plane. Applications and services are things like load-balancers, firewalls, se-
curity services, and cloud resources. The idea is to abstract the inner-workings of the
network so that application developers can hook into the network and make changes to ac-
commodate the application needs without having to understand exactly what that means
for the network. Common examples include Representational State Transfer (REST) [2],
Common Object Request Broker Architecture (CORBA) [3] and Simple Network Man-
agement Protocol (SNMP) [4]. Southbound interfaces define the way the SDN controller
should interact with the data-plane (aka forwarding plane) to make adjustments to the
network, so it can adapt better to changing the requirements. Common examples in-
clude OpenFlow [5], Network Configuration Protocol (NETCONF) [6] and Extensible
Messaging and Presence Protocol (XMPP) [7] which is a communication protocol for
message-oriented middleware based on XML (Extensible Markup Language), which the
most recognizable of these interfaces at the moment is OpenFlow.

10

2.2 – SDN

Figure 2.3. Simplified view of the SDN architecture (reproduced from [1]).

2.2.1 Open Flow protocol

The OpenFlow was the enabler of software-defined networking (SDN). It enabled the net-
work controllers to determine the path of network packets across a network of switches.
The separation of control from the forwarding allows for more sophisticated traffic man-
agement than is feasible using access control lists (ACLs) and routing protocols. Also,
OpenFlow allows switches from different vendors, often each with their proprietary in-
terfaces and scripting languages, to be managed remotely using a single, open protocol.
The idea of the OpenFlow was initially proposed in 2006 at Stanford University. Open
Networking Foundation(ONF) which promotes the adoption of SDN through open stan-
dards, released the OpenFlow v1.0 proceeding December 2009, as the first version of a
communications protocol that gives access to the forwarding plane of a network switch
or router over the network. It was started in a simple format, by having a single rules
table which can match packets on a small number of header fields (e.g., MAC addresses,
IP addresses, protocol, TCP/UDP port numbers, etc.). With different sets of rules, in-
stalled by the controller, an OpenFlow switch can behave like a router, switch, firewall,
load-balancer, traffic-shaper, and any other middle-box. An OpenFlow-enabled switch is
called an OpenFlow Switch [5]; Figure 2.4 shows a simple architecture for an OpenFlow
switch.

OpenFlow switch is characterized by three components [5]:
• Flow table.

• Secured channel.

• OpenFlow protocol.
An OpenFlow switch may contain one or more flow tables, a secured channel that

connects it to the controller, and OpenFlow protocol as the way for it to communicate

11

Background

Figure 2.4. OpenFlow switch architecture (reproduced from [5]).

with the controller. A flow table is filled with the flow entries. The structure of the flow
entry in OpenFlow 1.5 is shown in Figure 2.5.

Figure 2.5. Usual components of a flow entry in the OpenFlow 1.5 (reproduced from [5])

Each flow entry contains:

• Match fields: They are used to match against packet headers data.

• Priority: It clarifies the matching superiority of any of the flow entries.

• Instructions: A set of instructions that will be executed when a packet header
data matches an entry.

• Timeouts: It is the maximum amount of idle time.

• Cookie: A non-transparent data value that is been chosen by the controller.

• Flags: They alter how the flow entries are managed.

When a packet arrives from a switch port, it is compared with the match fields in the
flow entries. If the packet is matched, it will be processed as indicated in the instructions.
The OpenFlow messages usually are transported on Transport Layer Security(TLS) or
Transmission Control Protocol(TCP) connections. The simplest and most common mes-
sages in the OpenFlow protocol are Packet-in, Packet-out, and Flow-mod, which do the
most of the job in this protocol. The Packet-in messages are originated from the switch
and are destined to the controller, containing a copy of the packet (or possibly just the
header), encapsulated as a packet-in message, to transfer the control of that packet to
the controller. They are generated in the case of forwarding table misses. The Packet-out
messages are made in the controller and will be sent to the switches, carrying the full
packet or the buffer-ID of the switch that the original packet is held in it, to determine
the action(s) that should be applied to the packet. The Flow-mod messages are again
originated from the controller and are destined to the switch to modify the Flow-tables

12

2.2 – SDN

Figure 2.6. OpenFlow Packet-in, Packet-out and Flow-mode example diagram
(reproduced from [8]).

while they carry the match-action rule(s) to be installed in the switch. An example of
the above-mentioned messages is shown in the Figure 2.6.

The numbers before the packets show the order of the procedure.

• (1) By entering a packet that does not match any previously defined matches inside
the switch tables.

• (2) The packet (or just the headers) is encapsulated inside a Packet-in message
containing the information on the switch port the was entered from .e.g port P1,
and will be sent to the controller.

• (3) The controller will examine the packet and will send a Packet-out message
containing the packet or the Buffer-ID of the switch where the original packet is
stored in (in the case of just headers) and the determined action e.g., (send to port
P2).

• (4) A Flow-mod message then will be sent from the controller to the switch, to
install a match-action rule for the similar packets .e.g (send to P2).

• (5) The switch then will send the packet out of port P2.

• (6), (7), (8) and (9) Now the packet enters to the port P3 of the second switch,
which does not match to any previously defined matches inside the switch tables
again, so the steps (2), (3), (4) and (5) Will be repeated.

• (10), (11) and (12) Now if a packet with those matches which previously was
installed in steps 4 and 8 enters the switch, without any further communications
with the SDN controller, through the related actions will be forwarded through
ports P2 and P4

Considering the fact that there are many ways to program the forwarding elements,
but having a common, open and vendor-independent interface (like OpenFlow) which
allows a control-plane to control forwarding devices from different hardware and software
vendors, will be more convenient. Nonetheless, the need for supporting the new header
fields is increasing(see Figure 2.7). As an example, if the operators of a Data-Center

13

Background

network, need to add to OpenFlow protocol new forms of packet encapsulation (e.g., STT
[9], VXLAN [10], and NVGRE [11]), for which they resort to deploying the more flexible
case, which is the software switches that are easier to extend with new functionality.

Figure 2.7. Header fields grow in the OpenFlow (reproduced from [8]).

Over almost a decade, the specifications have become more complicated and the match
fields have been grown,(see Figure 2.8) so that with much more header fields and multiple
stages of rule tables, allow switches to expose more advanced capabilities to the controller
plane.

Figure 2.8. OpenFlow growing road-map (reproduced from [12]).

2.2.2 Stateful SDN

The very first big step of the SDN was to separate the control-plane from the data-plane.
Introducing the Open-Flow, the separation results in having the forwarding plane repre-
sented as Dumb switches, which are processing packets by the match/action rules (flow
entries) installed by the controllers as the Brain. The controller is responsible to change
these rules due to needs and rewriting them to make the switches for reacting properly
to changes of the states of the network. Anytime a switch is unable to match a flow or

14

2.3 – Data-plane programmability

packet to its table rules, it will send it to the controller and waits for the orders. This ap-
proach allows simple network programming, and a simplified view of the network as a one
distributed big switch, but it has some drawbacks. especially, there can be a relatively
long processing delay, caused by information exchange between switch and controller,
which can be critical in cases of, for example, network outages or traffic management
applications. In stateful Software Defined Network (SDN) data-planes, network switches
hold some local flow-related states thanks to which they can perform decisions by locally
executing simple algorithms. Stateful data-planes provide better reactiveness comparing
to vanilla SDN. In stateful data-planes, switches are provided with the ability to take
some local decisions based on the internal states, without any need for interaction with
the SDN controller. This ability enables an enhanced level of programmability of the net-
work comparing to standard SDN paradigms such as the ones based on OpenFlow. One
of the possible ways of the advancement of the OpenFlow, according to [13], is to intro-
duce a switch-driven adaptation of forwarding rules, based on the switch-local events. In
OpenState [14] proposed a minimal architectural extension to the OpenFlow data-plane
and control-plane to identify the flow to which a packet belongs to and to retrieve/up-
date the associated state while it keeps the central SDN controller completely in control
of all assigned tasks. The goal of the Open-State is to move some simple controlling
tasks, which only needs local knowledge from the switch, out of the controller, while the
controller remains responsible only for decisions that need network-wide knowledge. In
OpenState, some custom states can be configured inside the switch, which is triggered
by packet arrivals, measurements, and timers. SNAP [15] is a novel network program-
ming abstraction, which allows defining quite complex network applications for stateful
SDN and solves the problem of how to optimally place the states across the network
switches, taking into account the dependency between states and the traffic flows. By
design, SNAP is limited to just one replica of each state within the network. Another
relevant work to the state replication in the stateful data-planes is described in Swing
State [16], which introduces a mechanism providing state migrations entirely in the data-
plane but, similarly to SNAP, assumes only one state that is on-demand migrated across
the network. Regarding the implementation of stateful SDN, Open Packet Processor
(OPP) [17] extended OpenState by adding additional features that allow the executions
of Extended Finite State Machines (EFSM) directly in the data-plane. Forwarding meta-
morphosis [18] proposes a switch chip implementation based on the Reconfigurable Match
Tables (RMT) model that permits, even if with some limitations indicated by the same
authors, to manipulate some state within its pipeline. Finally, LODGE [19], which is a
model according to which distributed network applications can make local decisions at
each switch, based on some global variables shared across other switches, enables multiple
replicas of the state, extending the single replica approach in SNAP.

2.3 Data-plane programmability

2.3.1 Overview

It is better to make future switches to support flexible mechanisms for parsing packets and
matching header fields, allowing controller applications to use these capabilities through a

15

Background

common, open interface, rather than extending the OpenFlow specification. This general,
extensible interface would be much simpler and more future-proof than the OpenFlow
standards. Modern chip designs demonstrate that such flexibility can be reached in
custom ASICs at terabit speeds.

2.3.2 PISA architecture

By taking a look in the OpenFlow protocol and the current switching chips, one can
see that the current hardware switches are completely rigid, which allow the process of
the Match-Action rules on only a fixed set of fields, while the OpenFlow specifications
have only defined a limited collection of packet processing actions. To overcome these
limitations one article [18] proposed the re-configurable match tables (RMT) model, as
a new RISC-inspired pipelined architecture, used for switching chips that identified the
indispensable minimum set of the action primitives for specifying that, how headers are
going to be processed in the hardware. As an advantage in the RMT model, one can have
a set of pipelined stages, while in each stage, it can have a match table of arbitrary depth
and width. Regarding the reconfigurability, field definitions can be changed or new fields
can be added, new actions can be defined(similar to creating new fields) and with some
consideration in resource limits in the hardware; number, depths, widths, and topology
of the match tables can be specified. All of this process of the configuration is managed
by the SDN controller. The RMT model as a sequence of logical match-action stages is
shown in Figure 2.9

Figure 2.9. RMT model as a sequence of logical Match-Action stages (reproduced from [18]).

An entered packet to the switch will enter the programmable parser, where a vector
of the packet header is separated from the payload. The word metadata is been used
for all the information provided by the switch which that information is not available
inside the packet header vector, such as the input port of the packet or the information
on switch queues, etc. The packet header vector with the mentioned metadata will flow
through a sequence of logical match stages, where each of them abstracts a logical unit
of packet processing (e.g., IP processing), while the untouched payload with the packet
header vector outputted from the last logical stage is merged to build the outgoing packet.
The implementation of the RMT resulted in an architecture called Protocol-Independent
Switch Architecture (PISA) [20], which allows modifying packet header vector through
a wide instruction (VLIW - very long instruction word) that can operate on all fields in

16

2.3 – Data-plane programmability

the header vector concurrently, resulting in very high speed. Then by flexible resource
allocation, they minimized the waste of resources knowing that a physical pipeline stage
has some resources (e.g., CPU, memory) that it really needs, e.g., a firewall may require
all ACLs, a core router may require only prefix matches, and an edge router may require
some of each.(see Figure 2.10)

Figure 2.10. Flexible match table configuration and VLIW action architecture
(reproduced from [18]).

The Portable Switch Architecture (PSA) is a target architecture that describes com-
mon capabilities of network switch devices that process and forward packets across multi-
ple interface ports. The Portable Switch Architecture (PSA) Model has six programmable
blocks and two fixed-function blocks, as shown in Figure 2.11.

Figure 2.11. PSA: Portable Switch Pipeline (reproduced from [21]).

The behavior of the programmable blocks is specified by using the P4 language (will
be described later in section 2.3.3). The Buffer Queuing Engine (BQE) and the Packet
buffer and Replication Engine (PRE) functional blocks are target-dependent and they can
be changed for some fixed set of operations. For each incoming packet, the headers are
parsed and then validated, then they will be passed to an ingress match action pipeline,
that can make some decisions on the path the packets will move on. An ingress deparser
P4 code clarifies the contents from the packet that should be sent to the packet buffer and
also determines which metadata of the packet should be carried with it. After the ingress
pipeline, if needed the packet can be replicated for different reasons, and lastly, it will be

17

Background

stored in the packet buffer. For each such egress port, the packet should pass through an
egress parser and match action pipeline before it becomes deparsed and queued to leave
the pipeline.

2.3.3 Programming Protocol-independent Packet Processors (P4)

Programming these kinds of switch chips, mentioned in section 2.3.2 is not very easy. The
article [22] proposed a higher-level language for protocol-independent Switch Architecture
(PISA) with the name Programming Protocol-independent Packet Processors or
P4. P4 was used to configure the switch, by teaching it to know how packets should be
processed, while the previously designed APIs (such as OpenFlow) is for populating the
forwarding tables in fixed-function switches(see figure 2.12. According to the article [22],
the authors’ opinion is that the P4 can increase the level of abstraction for programming
the network devices. Also, P4 language allows the SDN controller to be able to program
the switch even on the switch itself, which makes the controller independent of the fixed
function design of OpenFlow switches, and by this advances flexibility of operations of
the network.

Figure 2.12. P4: a language to configure switches (reproduced from [22]).

The authors of the P4 language, tried to follow three goals in their design [23]:

• Re-configurability: The mentioned controller should be able to redefine the
packet parsing and processing of already deployed switches, right in the field.

• Protocol independence: The target switch should not be designed just for spe-
cific packet formats. Indeed, the controller should be able to specify:

– A kind of packet parser to extract the header fields with particular names and
types.

18

2.3 – Data-plane programmability

– A collection of the typed match plus action tables that are needed to process
these headers.

• Target independence: As a C programmer does not need to know the specifics
of the CPU, the controller programmer should not need to know the details of
the switch. Instead, a vendor-supplied compiler should take care of the switch
capabilities during the compilation of a target-independent description, written in
P4, into a target-dependent program (used to configure the switch).

P4 is a language that describes how packets should be processed with the data-plane
regarded to a programmable forwarding element free from being a hardware or a software
switch, network interface card, router, or network appliance. P4 seems to be designed
for only programming the switches, but its final goal has been grown to cover a diversity
of network devices, such as ASIC, FPGA and in general any kind of network elements
that can implement both a control-plane or a data-plane functionality. It was designed for
clarification of the data-plane functionality for a target. As an example, Figure 2.13 shows
the differences between a fixed-function regular switch with a P4-programmable switch.
In a regular switch, the data-plane functions are constantly defined by the manufacturer,
and the control-plane by managing entries in the tables will control those functions, might
configure specialized objects (e.g., counters), and by means of some packets that are called
the control-packets (e.g., routing protocol packets) or even other events, like changing the
link states. In Figure 2.14 is illustrated a logical abstract for how the switches forward the

Figure 2.13. Difference between traditional and programmable switches (re-
produced from [23]).

packets through a programmable parser which is followed by multiple stages of match-
action, arranged in series, parallel, or a combination of both.

The difference between a traditional switch and a P4-programmable switch can be
described in two things [23]:

• There are no predefined fixed functions in the data-plane, but they will be defined
by the P4 program, at the time of the initializing the device. For building the
functionality described by the P4 program, the data-plane that has no built-in

19

Background

Figure 2.14. The abstract forwarding model (reproduced from [22]).

knowledge of existing network protocols will be configured, which is shown by the
long red arrow.

• Then the control-plane can communicate with the data-plane with the same struc-
ture exists in a fixed-function device, while there is no longer any fixed tables and
other objects in the data-plane, as they are defined by a P4 program. Then the
control-plane will communicate with the data-plane through the API that the P4
compiler will generate.

There are some core abstractions that are provided by the P4 language [23]:

• Header types: They will describe the set of fields and their sizes of each header
existing inside a packet.

• Parsers: THey will describe the allowed sequences of headers inside the received
packets and describe how to identify their sequences and their fields to extract from
the packets as well.

• Actions: They are some codes that describe how a packet header fields and their
metadata should be manipulated. They can have some data, which will be supplied
at the runtime by the control-plane.

• Tables: They will relate some user-defined keys to some actions. P4 tables are a
general version of the traditional switch ones; they can be used to implement any
user-defined table types, even including complex multi-variable decisions over the
packets.

20

2.3 – Data-plane programmability

• Match-action units: They will perform these tasks:

– They build lookup keys from computed metadata or the packet fields.
– They do the lookups inside the tables with the help of the previously built

keys, then they choose an action with the associated data (if any)to execute.
– At last, they will execute the selected action.

• Control flow: THey will indicate an authoritative program that describes the way
of the packet-processing for a network target, as well as the sequence of match-
action unit invocations which are data-dependent. The deparsing can be done by
using the control flow.

• Extern objects: They are the architecture-specific constructs that the P4 pro-
grams can change them through well-defined APIs, of course, their internal behavior
is hard-wired and can not be programmed using P4.

• User-defined metadata: They are the user-defined data structures that are as-
sociated with each packet uniquely.

• Intrinsic metadata: THey are the metadata that has been provided by the ar-
chitecture that is associated with each packet.

Any manufacturer that builds the targets will provide the software implementation
framework or the hardware plus an architecture definition, and a specific P4 compiler for
their target. Then the programmer will write its P4 program for one specific architecture,
that explains a set of components that are P4-programmable for the target plus their
external data-plane interfaces. Figure 2.15 illustrates a general workflow for programming
a target using P4 language.

Figure 2.15. Programming a target with P4 (reproduced from [23]).

The P4(16) which is the second released version for the P4 language (v1.1), com-
paring to the previous version of the language (v1.0), so-called P4(14), made some big
backward-incompatible changes to the syntax and semantics of the language. One can
see the evolution from the previous version (P4 14) to the current version (P4 16) as is
demonstrated in Figure 2.16.

21

Background

Figure 2.16. P4 Runtime: API Reference Architecture (reproduced from [23]).

Some of the language features have been moved into some libraries and the language
itself, rather than a complex language has become a small core language. More than
70 keywords have been reduced to less than 40 keywords. The P4(16) language has a
library of fundamental constructs that are needed for writing most P4 programs. The
v1.1 version of P4 introduced a language construct called extern that can be used to
describe library elements. Many constructs defined in the v1.1 language specification
will thus be transformed into such library elements (including constructs that have been
eliminated from the language, such as counters and meters). P4(16) also introduces and
re-purposes some v1.1 language constructs for describing the programmable parts of an
architecture. These language constructs are parser, state, control, and package. The
revision of the P4 language was an effort to ensure that all programs written in P4(16)
will remain syntactically correct and behave identically when treated as programs for
future versions of the language. Compared to state-of-the-art packet-processing systems
(e.g., based on writing microcode on top of custom hardware), P4 has some important
advantages:

• Flexibility: The P4 language can express packet-forwarding rules as some pro-
grams, in comparison to the traditional switches, which show fixed-function for-
warding rules to their users.

• Resource mapping and management: P4 programs describe in an abstract
way the storage resources, the compilers will map these user-defined fields to avail-
able hardware resources and will handle low-level details such as scheduling and
allocation.

• Expressiveness: The P4 language can do complex packet processing algorithms
by using only the general-purpose operations and look-up tables. These programs
are portable across devices that have similar architectures.

• Software engineering: The P4 program has significant benefits like hiding the
information, checking the type, and reusing the software.

22

2.3 – Data-plane programmability

• Component libraries: The component libraries which are supplied by some man-
ufacturers can be used to convert some hardware-specific functions into the portable
high-level P4 constructs.

• Decoupling hardware and software evolution: Using the abstract architecture
by the target manufacturers can help to more decoupling the evolution of high-level
processing from low-level architectural details.

• Debugging: Providing software models of architecture by the manufacturers can
help the debugging and development of P4 programs.

2.3.4 P4 Runtime

P4 Runtime is an API, which provides a new way by which, the control-plane software is
capable to control the forwarding plane of a network device like switches, load-balancers,
firewalls routers, etc. Maybe, the most fascinating aspect of the P4 Runtime is its ability,
to allow us to control any forwarding plane, independently of whether it is built from
a fixed-function or programmable switch ASIC, an FPGA, NPU or a software switch
running on an ordinary x86 server. The framework of P4 Runtime stays unchanged and
remains independent of forwarding plane capabilities, which of protocols and features
the forwarding plane supports. The same API can be used to control a huge variety of
different switches, whilst, as new protocols and features may be added to the forward-
ing plane, the P4 Runtime API will be automatically updated by changing the control
scheme to describe how the new feature is to be managed, without restarting or reboot-
ing the control-plane itself. P4 Runtime is completely independent of the placement of
the control-plane. The control-plane could be a protocol stack running on a local switch
operating system (switch OS), or a remote control-plane, running on x86 servers. The
representation of the P4Runtime Reference Architecture is illustrated in Figure 2.17.

The target which is meant to be controlled is illustrated at the bottom of the pic-
ture, one or more controllers are shown at the top. A multi-master protocol allows more
than one controller to participate, and a role-based arbitration scheme ensures only one
controller has the write access to each read/write entity, or the pipeline configuration
itself. Any controller may perform read access to any entity or the pipeline configu-
ration. The P4Runtime API defines the semantics and the messages of the interface
which is in the way between the server and the client. The API will be defined by
the (p4runtime.proto) Protobuf [25] file, which is available on GitHub as a part of the
standard [26]. It can be compiled by the Protobuf compiler, to generate implementa-
tion stubs for both the client and the server in a variety of languages. It will be the
target implementer’s responsibility for instrumenting the server. A future goal of the
p4 consortium is to produce a reference gRPC [27] server which can be instrumented
in a generic way, to reduce the burden of implementing P4Runtime. The controller can
have access to the P4 entities which are defined in the P4Info metadata. The P4Info
format is defined by the p4info.proto file, which is another available Protobuf file. The
controller has also the ability to set the ForwardingPipelineConfig, which is used to
install the compiled P4 program output and is included in the p4-device-config Protobuf
message field, with installing the related P4Info metadata. At last, the controller can

23

Background

Figure 2.17. P4 Runtime: API Reference Architecture (reproduced from [24]).

check the target device for the ForwardingPipelineConfig to have the device config
and the P4Info. The P4Runtime is able to handle more than one controller at the same
time. Its mechanisms are explained well in its official document,(P4 Runtime: API Refer-
ence Architecture) [24]. Each of those use-cases shows a different aspect of the flexibility
regarded to the P4Runtime. The different cases might mix different techniques and can
be more complex. Here we show some use-cases. The Single Embedded Controller is
shown in Figure 2.18. The Embedded Controller case, reminds us of the device or tar-
get, which has an embedded controller, that can communicate via P4Runtime with the
on-board switch chipset. This might look appropriate for an embedded appliance that
is not intended for SDN. P4Runtime is claimed to be a feasible embedded API that can
operate as an ideal RPC and if needed as a viable IPC.

Now, the switches are generally being controlled by their proprietary APIs, that their
owners prefer them to be closed and most of them have a set of predefined functions.
These APIs are baked to the target chip of the device and to cover the needs, while there
is almost no need for extending the API by passing the time. The software distribution
ways, especially, license agreements and NDAs mostly forbid sharing their API with the
others, which leads to being impossible to control switch ASICs from another chip vendor
by using different APIs. So, adding new features and protocols becomes difficult, as one
network owner cannot benefit from different features of another vendor, resulting in feeling
constrained for innovation. By specifying the behavior of a switch in the P4 language,
the P4 Runtime API is capable to be used for controlling any switch from any vendor.
P4 Runtime can even be used for controlling the existing switches even with the fixed-
functions. The developer needs to write the P4 program so that it documents the behavior
of the switch, by using the P4 language. Then, the P4 compiler will automatically identify

24

2.4 – NFV and 5G network

Figure 2.18. Single Embedded Controller (reproduced from [24]).

elements which are needed to be controlled, like the lookup tables defined in the P4
program and to which we need to delete and add the needed entries. The programming
process of the network devices is possible with P4 language and the P4 Runtime API,
they even increase the flexibility of this process to a new higher level.

2.4 NFV and 5G network
The Network Function Virtualization (NFV) and Virtualized Network Function (VNF)
are very close terms in the modern network paradigms. As said above, the VNF is used
for the virtualized network function, and generally is the software form of the network
tools. it can act as a router, firewall or even a load-balancer. They are most of the
time as some virtual machines on Linux KVM or hypervisors, on commercial off-the-shelf
hardware. A physical network function refers to the traditional network tools on some
proprietary hardware. The NFV means network function virtualization. It is about the
operational framework which is automated and orchestrate the VNFs on some virtual-
ized infrastructure on the commercial of the shelf hardware while managing VNF tools
through their whole lifecycle. The NFV strongly depends on software-defined networking
concepts. Those concepts are the separation of the control-plane from the data-plane
plus the Management and Orchestration plane or the MANO. The Linux Foundation
and the European Telecommunications Standards Institute actively trying to develop the
standards and the reference architecture for the NFV framework. The most important
open-source NFV projects are the Linux Foundation Open Network Automation Platform
(ONAP) and the ETSI Open Source MANO (OSM). Following ETSI NFV Framework
provides a great illustration of the relationship between VNF and NFV(see Figure 2.19).

NFV MANO is responsible for:

• interacting with operations and business support systems (OSS/BSS) to deliver
business benefits to service providers, such as rapid service innovation, flexible net-
work function deployment, improved resource usage, and reduced CapEx and OpEx

25

Background

Figure 2.19. ETSI NFV Architectural Framework (reproduced from [28]).

costs;

• orchestrating VNFs into network services (NS), deploying and operating the VNF
and NS instances on the virtualized resources, and managing the lifecycle of VNF
and NS instances to fulfill the business benefits for service providers;

• interacting with element management (EM) to manage the logical function and
assure service levels of the VNFs spanning across the management of VNF fault,
configuration, accounting, performance and security (FCAPS);

• interacting with network function virtualization infrastructure (NFVI) to allocate,
manage and orchestrate the virtualized resources including compute, storage and
network, where VNFs are deployed.

One of the important needs for 5G networks is high flexibility. This means that it
should be able to make new services and launch them without the need for changing the
physical network, e.g., cables for connections, servers, and other network resources. The
network should have the flexibility to adapt to the traffic patterns changes for day and
night, weekends and weekdays, etc. By considering some IoT sensors like gas, electricity
or water meters, that report their data at the end of the last day of each month, causing
huge traffic over links, while they will generate very little traffic in all other times. So e.g.,
every month, at a specific hour, we need the 5G network to provide a huge capacity for
these reports, while at the other times the common resources will be used for other needs.
It is somehow attractive, but the need for managing a large variety of physical resources
over different locations makes it again complex. By making a network virtualized and
programmable, it will allow us to handle very well the complexity of the network orches-
tration and management. NFV and SDN are the best means to create different flexible

26

2.4 – NFV and 5G network

logical networks consisted of some virtualized network functions that are connected with
some virtual links while installing on top of a programmable infrastructure. A fundamen-
tal and elemental change would be happened to the Telecom industry by this, from both
the business and operational point-of-view. This kind of scalability and flexibility are the
very important requirements in 5G networks, and along with ultra-low latency, the ultra-
high capacity, and even the ability for supporting a huge number of concurrent sessions
and users/things. To this end, Radio Access Network (RAN) Cloudification, Multi-access
Edge Computing (MEC) and Network Slicing, are the most important enablers, which
all of them are based on the capabilities of the SDN and the NFV. At present, the NFV
framework is undergoing rapid development because of 5G business opportunities, and
its ecosystem is growing with strong support from service operators and all varieties of
solution providers.

27

28

Chapter 3

NFV state sharing

3.1 The proposed approach
There are some NFs, that are placed all over a network inside some servers, and we want
to have an arbitrary composition of the state sharing among them. Each server may host
more than one NF, while none of them are aware of the existence of the other NFs, and
they have no specific information about the placement of the other NFs in the network.
The variables, which their data is going to be shared, will be mapped to some unique
variable-IDs. Each NF that wants to have access to any variable, will express its interest
in that variables by using the corresponding variable-ID and some instructions embedded
inside some special packets. In our proposed solutions, through a protocol, that will be
explained in the next sections, the NFs will subscribe for data of the variables on the
P4-programmable switches, publish data on variables and eventually share their local
data on the variables. We decided to use the concept of the publish/subscribe as the
key rule player for our proposal communication way between the NFs and the network.
In our proposed schemes, the Broker task of the publish/subscribe paradigm, has
been entrusted to the P4-programmable switches, where they record the requests by a
procedure similar to what is done in a MAC learning algorithm. In the MAC learning
paradigm when a packet enters a switch, the switch maps the source MAC Address of it
to the input port of the packet in a key-value respectively. The switch can use that port
number later for forwarding another packet which enters the switch with the destination
MAC Address equal to this key. The differences in our case are:

• Our switch uses the variable-ID, which will be explained in the next sections, as
a key for mapping information, instead of using MAC addresses.

• It uses a MultiCast-Group-ID, as will be explained in the next sections, as the
value for the corresponding variable-ID key, instead of the port number.

3.2 Publish-Subscribe Model
Nowadays, Networking technologies enable a very high degree of connectivity among a
large number of computers, applications, and users. In such environments, it is very

29

NFV state sharing

important to provide asynchronous communications for the group of distributed systems,
that works in a loosely-coupled and autonomous way, where they need to have immunity
from the network failures. One of the answers to this important need is the publish-
subscribe model. The Publish/subscribe scheme is a pattern by which the exchange way
of the messages between publisher and subscriber clients is done. Subscribers express
interest in receiving messages and publishers simply publish messages without specifying
the recipients for a message. In a same manner, the receiving applications or subscribers
must receive only those messages that they have registered an interest in. The exchange
of the publish/subscribe messages is anonymous and decoupled. This decoupling between
senders and recipients is done by an entity that is placed in the route between the pub-
lisher and the subscriber, and the anonymity means, the publishers, should not know the
subscribers identity or if any subscribers with matching interests does exist at all. This
structure can support the many-to-many communication paradigm, where some sources
are publishing the data and some receivers that needs those data will subscribe on them.
Many types of the publish/subscribe schemes are explained. They mainly differ in the
way that subscribers show their interest in some data, in the format and the shape of
the messages which carry the data, in the architecture, and the degree of decoupling that
they usually support. A simple example case for the publish/subscribe model is shown
in Figure 3.1.

Figure 3.1. MQTT: Message Queueing Transport Telemetry scheme, a sample of pub-
lish/subscribe model (reproduced from [29]).

Here the broker or queue in some contexts is responsible to register the subscriptions
requested by the subscribers, for requested topics. It also should deliver the published
messages from the publishers to the subscribers over those published topics. The concept
of the publisher and subscriber is logical. It means that a subscriber can be a publisher
at the same time, on a different topic. The broker or queue capabilities depends on the
design goals and can be very simple or very complex. Most of the simple design cases are
used for constrained devices in the IoT frameworks, as they have limitations on power,
and for the low-bandwidth or unreliable networks. In the simplest form, the publishers
are publishing anytime they wish, by sending their messages to the broker. Any message
from a publisher has an identification data, which we call it topic identification data, to
be recognized and distinguished by the participants in the system. Anytime a subscriber
wants to receive messages on one specific topic, it will send a registration request with

30

3.3 – State sharing protocol

the topic identification data and some data about itself, that already been agreed on
its structure previously in that system, to the broker. If already agreed in that system,
those self introducing data can be sent by the publisher through the publish phase too.
Anytime the broker receives a published message, it will check its registered subscriptions
and will deliver the published message to those subscribed on that message through its
topic identification data. The qualitative and quantitative characteristics of the scenario,
including the publish, register, subscribe, deliver and any other customized steps, is
completely design dependent. For example, the broker can store publishes for probably
future subscription on them or simply discard them if no subscription is registered for
them, It can make sure the subscriber is received the publishes by some algorithm, or
just try one attempt without any further information about correctness of the delivery
process.

3.3 State sharing protocol

In this section, we will describe our proposed protocol with the standard needed
information for the steps and the algorithms of each step.

3.3.1 State sharing phases and general packet structure

Our state sharing protocol is recognized by two main phases:

1. Initializing phase

2. Data Replication phase

Every NF starts with the Initializing phase including an initial information request,
which if succeeded, then it will move to the Data Replication phase, which due to the
conditions might need to do the information request again. The information request
can be considered as a sub-phase merged into both the Initializing phase and the Data
Replication phase. The overall life-cycle diagram for an NF in our scheme is shown in
Figure 3.2 and Figure 3.3.

Figure 3.2. NF Life-cycle Diagram1. Figure 3.3. NF Life-cycle Diagram.2.

31

NFV state sharing

For the packet structure, we selected the standard IPv4 with UDP as the Transport
layer. In the destination field of IPv4 Address, we used IP class D, dedicated for Multi-
Cast purposes, and especially it‘s third group, Locally-Scoped MultiCast Address range,
starting from 239.0.0.0 to 239.255.255.255. This is due to carry some special informa-
tion about our data, to later be used by some special parts of the network, including the
REPLICA controller, the NFs and those REPLICA switches which are part of our pro-
posed solution. In this Sub-Class the first 8-bits are constant, so we used the next 2-bits
as the flags part for our design and the remaining 22-bits will be used as the variable-ID.
We chose UDP for the Transport layer to support MultiCast for our publish packets.
In the next sections, the reason for our choices will become more clear. The port number
65432 (0xff98) is chosen as the destination port in the UDP header for recognition of our
special packets in the NFs and in the network. We defined seven(7) message kinds for
this design due to different tasks:

1. INIT-NF-ID request

2. INIT-PUB-VAR-ID request

3. PUBLISH

4. SUB-VAR-ID request

5. SUB-Register

6. SUB-Remove

7. RECOVER

The INIT-NF-ID request, the INIT-PUB-VAR-ID request and the SUB-VAR-ID request
are used in the Initializing phase and it is a sort of Information request from NF to the
REPLICA controller. The SUB-register, SUB-remove, PUBLISH, and RECOVER packets
are used in the Data Replication phase. They will be described in the section 3.3.2.
The partitioning shape of the IPv4 IP-destination format for the protocol is described in
Figure 3.4.

Figure 3.4. IPv4 IP-destination format for the protocol .

The bit usage of the IPv4 IP-destination format for the protocol is described in Ta-
ble 3.1.

The destination for the IP layer will be generated from the variable-ID and FLAGS,
based on the structure described above. The mac destination of the Ethernet layer will be
set to ff:ff:ff:ff:ff:ff, differentiating our special packets from normal IP-MultiCast
packets.

32

3.3 – State sharing protocol

Bit Number Description
0 to 7 Constant:

(1110,1111)
PubSub-Flags:

11 = SUB-register
10 = SUB-remove

8, 9 01 = (INIT-NF-ID-request,
INIT-PUB-VAR-ID request,

SUB-VAR-ID Request,
or RECOVER)

00 = PUBLISH
10 to 31 variable-ID

Table 3.1. IP Destination fields in details.

3.3.2 Initializing phase

In the Initializing phase, anytime an NF starts, it needs to be identified in the network
by the REPLICA controller, and itself with a Global-ID, while the Global-ID will be
assigned by the REPLICA controller to be unique for each NF in that network. This
Global-ID will be added to the internal data structure of the NF as well as the REPLICA
controller. The Initializing phase can be considered as the main information request in
our system, and the reason of why we separated it from the Information Request phase,
is its importance and that it happens once in the life-cycle of the NF.

Information Request

As mentioned before, it can be considered as a sub-phase merged in the other two phases,
or as a different separate phase in relation with them. In the Information Request phase,
the NF sends a request to the REPLICA Controller and will receive a response containing
the information on its request. The NF will update its internal data structure based on
the response from the REPLICA controller. The NF then, will be able to use these data in
it’s tasks e.g., Subscribe or PUBLISH in the Data Replication phase. The INIT-NF-ID
request, INIT-PUB-VAR-ID request and SUB-VAR-ID Request are different kinds of the
information requests.

Packet format

The NF uses the INIT-NF-ID request to ask for it’sGlobal-ID from the REPLICA
controller, or ask for a variable-ID through a INIT-PUB-VAR-ID request or a SUB-VAR-ID
Request as explained in the Table 3.1. In both cases they are distinguished in the
REPLICA switches through the PubSub-Flags, and will be forwarded to the REPLICA
controller. Their data should carry some information about the variable names or other
information that may be needed in the REPLICA controller and can be in any format,
e.g., JSON. On the other hand, the replies from the REPLICA controller should contain
the same information and the assigned values to the requested information.

33

NFV state sharing

Information request algorithm for Initializing phase

Depending on the INIT-NF-ID-request or the VAR-ID requests, the Time-Space Dia-
gram for Information Request phase is shown in Figure 3.5 and Figure 3.6 respectively.

Figure 3.5. Time-Space Diagram for Information Request phase for Initializing phase.

• (1) Newly started NF wants to initialize, so it will send an INIT-NF-ID request
to the REPLICA controller.

• (2) The REPLICA controller will assign a Global-ID in its data structure to the
NF while updating its internal data structure, and replies to the request with the
Global-ID added to the information were supplied on that request, to the NF.

• (3) The NF will store the received information inside its data structure.

Figure 3.6. Time-Space Diagram for Information Request phase Initializing phase.

34

3.3 – State sharing protocol

• (4) The initialized NF wants to PUBLISH the data of a variable or wants to SUBSCRIBE
on data of a variable, so it needs to know the corresponding assigned variable-id
in the network for the variable (if any). It will send a VAR-ID request to the
REPLICA controller, containing its Global-ID.

• (5) The REPLICA controller receives the request, if it is asking for a variable-ID
to publish on it, the REPLICA controller will assign a variable-ID to that variable
and after updating its data structure, it will send the reply to the NF. If it is asking
for a variable-ID to subscribe on it, the REPLICA controller will search its data
structure for any matches and will respond with the answer to the NF.

• (6) The NF will update its data structure with the received information.

3.3.3 Data Replication phase

In Data Replication phase, if the NF wants to publish a variable or subscribe for a
variable, it will use the variable-id instead of the variable name, and will publish the data
or will subscribe on it, through the procedure which will be explained in the next sections.
Through the rest of this thesis, we will presume that the variable-IDs are predefined by
the REPLICA Controller.

Packet format

• SUB-register and SUB-remove packets: As is clear from the Table 3.1, the
Subscribe packet has two kinds, SUB-register and SUB-remove. After UDP
header, they carry no data and are just pure header packets. The variable-ID is used
to fill the bits number 10 to 31 of the IP address destination of these packets(see
Figure 3.4), while the PubSub-Flags are set through the Table 3.1.

• Publish packets: We defined an Application layer header after the UDP layer to
provide some extra information on the PUBLISH packets destined to the NFs. This
extra header which has implementation-dependent A-bits length, is been called from
now the Publish-Header. The position of the Publish-Header header is shown in
Figure 3.7.

Figure 3.7. Publish-Header position.

Publish-Header is divided into four parts. The first a-bits length part after the
UDP header is used to carry again the variable-ID for the NFs, while the length is
implementation-dependent and should be enough to carry the variable-ID infor-
mation, the next b-bits length part is for the update-Number, which been used to
identify the set of packets that the publisher is sending in one PUBLISH attempt. The

35

NFV state sharing

next two c-bits length parts are used to show the Total number of the Fragments
for this package and the fragment-ID of this PUBLISH packet. The description of
the Application layer header for PUBLISH packets, is shown in Table 3.2.

Bit Number Description
0 to a-1 The variable-ID

a to a+b-1 The update-number
a+b to a+b+c-1 The tot-fragments

a+b+c to a+b+(2 ∗ c)-1 The fragment-ID

Table 3.2. Publish-header in details.

If the data due to some limitations or consideration has to be fragmented, then the
update-number that has been decided by the NF, is constant for all of those data
fragments, while the fragment-ID is started from 0 to the last fragment number,
due to the order of the fragments. It is notable that the length of the update-number
and the fragment-ID are design-specific and is not constant in other cases.

• RECOVER Packets: For the RECOVER packet, the Application Layer Header
is implementation-dependent. The purpose of this packet kind is to aware the sys-
tem (mainly the REPLICA controller) from the incomplete delivery of the requested
publish packets as we are using UDP and the multicast in our protocol. The mech-
anism of the response or how to RECOVER the data is implementation-dependent.
The position of the RECOVER-header is shown in Figure 3.8 .

Figure 3.8. RECOVER-Header position.

3.4 Protocol algorithms and scenarios

3.4.1 The main algorithm

We presume that the NF has been done the Initializing phase , so the NF is aware
of it’s NF-Global-ID and we presume that the NF is already done the Information
request sub phase for being aware of it’s PUB-variable-IDs corresponding to the vari-
ables it wants to publish their values. At this point, the NF will start to publish on it’s
variables. Any time this NF wants to subscribe for a variable data, it will prepare the
SUB-register packet through the previously explained packet formats and will send the
request to the network. The same procedure is repeated for an the SUB-remove request
for a variable from an NF, the difference with the previous case is in the PubSub-Flags.
When the switch receives these packets, it will register or remove the subscription inside

36

3.4 – Protocol algorithms and scenarios

its data structure. As we are using UDP, one can define a reply mechanism in the network
for the SUB-register and SUB-remove packets, such that after sending the SUB-register
and the SUB-remove, the NF may wait to receive back a subscription-reply, to make sure
that the switch is alive and received the request, and after a time out if no reply is re-
ceived from the switch, it can resend the request to the switch. Anytime an NF decides
to publish on a variable, it will prepare the data to send through the previously explained
publish packet format, and it will start to send the packets into the network. In the case
of receiving a PUBLISH packet, the switch will read its data structure to check for the
existence of subscriptions on the corespondent variable-ID. If subscription exists, the
switch will send publishes to subscribers, otherwise, this packet will be dropped. Each
NF that is receiving the published data, will check if there are any lost packets and if it
finds lost fragments, it will prepare a RECOVER message and will send it to the REPLICA
controller. If by any reason, it did not receive all the fragments, it has two choices:

• Keeping the received fragments related to that package.

• Discarding all received fragments related to that package.

In both cases, the PubSub-Flags bits will be set according to the table 3.1, to be
recognized by the network. The switch will forward this packet to the REPLICA con-
troller for further decisions. In the cases in which the NF needs to send the variable-ID
request, the NF will set the PubSub-Flags according to the table 3.1, and the switch
will forward this packet to the REPLICA controller too. Considering that for each step,
the packets are already prepared, and the data transfer between NFs and the network is
lossless, the time-space diagram for the general algorithm is illustrated in Figure 3.9.

the Figure 3.9 is described as:

• (1) and (5) The NF(m) with the Global-ID equal to (m) from the server(k),
publishes data on the variable(X).

• (2) As no subscriptions on variable(X) is registered inside the P4-switch, so it
will discard those packets.

• (3) The NF(n) with the Global-ID equal to (n) from server(l), sends a SUB-register
request or SUB-remove request for the variable-ID of the variable(X) to the
P4-switch.

• (4) The P4-switch will store or remove the registration of the incoming port of this
request packet, over the variable-ID mentioned in the request packet.

• (6) As there is a subscription about that variable-ID from NF(n) of the server(l),
the switch will forward a copy of the packet to the port that eventually is destined
to the NF(n) of the server(l).

• (7) The NF receives the publish packets of an update.

• (8) If all fragments of the Update is not delivered or some data is corrupted, the
NF(n) will send a RECOVER message to the P4-switch.

37

NFV state sharing

Figure 3.9. Time-Space Diagram for the main algorithm.

• (9) The P4-switch will forward the packet to the REPLICA controller.

• (10) The REPLICA controller receives the request and will decide about it.

It is notable to remind that, as described in section 2.3.3, the P4-switch header-parser
acts like a state machine. So it can easily be programmed to do the normal tasks of
an L2-switch, router or any other tasks done by the network devices, through separately
defined pipelines, which will be selected by the header parser state machine, while it is
serving for our special proposed task too.

3.4.2 The protocol scenarios

In this section, by considering our defined Packet formats and the P4-switch abilities, we
proposed two different scenarios:

• Register-based scenario with P4 switch

• Embedded Controller-based scenario with P4 switch

38

3.4 – Protocol algorithms and scenarios

Register-based scenario with P4-Switch

A simple topology for this scenario is shown in Figure 3.10.

Figure 3.10. Register-based scenario with P4 switch.

As described in the P4 section of chapter Background, the switch sequentially parses
the headers. If it finds an IP header in which the first 8-bits of its IP-destination address
is not equal to (1110,1111), then it will check the packet for other instructions defined
in our P4-switch, e.g., as a normal IPv4 packet. Otherwise, if the first 8-bits of its
IP-destination address is equal to (1110,1111) and the switch parser reaches the UDP
header and the destination port for the UDP was equal to a special port predefined in
our protocol, e.g., 65432, then it will recognize it as a packet of our design kind.(see
Figure 3.11 The P4-switch, then from the next 2-bits of the IP-destination address, will
decide if this packet is meant to learn from it, e.g., the SUB-register and the SUB-remove
packets in a way similar to the MAC learning key-value paradigm, where it uses those
key-values for forwarding the PUBLISH Packets, or to be sent to the REPLICA controller,
or should be done a multicast on it, due to existing subscription. In this scenario, for
holding the key-values, the switch will use its internal registers. These registers are
defined through the first programming step of the switch. The index of each register is
used as the key, and the number saved inside the register will be the value. The switch
may need to do a multicast on a received publish packet, as it may have more than one
registration for that variable.

We defined the MultiCast-Group-IDs as an N-bit number, where N is the number of

39

NFV state sharing

Figure 3.11. The parser logic states of P4 switch for the PubSub protocol.

the switch ports, such that in the binary shape they can show exactly which ports are
involved. We defined a port-mask for each port, which is an N-bit all zero number, except
only k-th bit equal to one, where N is the number of the switch ports, and k is the port
number plus 1.

Let‘s clear this part with an example. Assume that we want to define a MultiCast
group that is related to ports 2, 5 and 7 of a switch with 8 ports. The corresponding
MultiCast-Group-ID will be 01010010, while in this 8-bit length id, equal to the number
of the switch ports, the second, fifth and seventh bits are one, showing the port num-
bers involved, so the MultiCast-Group-ID value becomes 162 and vise Versa. The P4
language has its limitations, for example, it does not support loops or some arithmetic
operation like division and power calculation. The simplest way to map the input port
number to the binary position of the bits is to shift a 1 by a value equal to that number
minus 1, e.g., We know (3 = 0011) in a 4-bit system and we need to have 0100 as 3, so:

0001 ≪ (3 − 1) ⇒ 0100

In Figure 3.12 a sample structure of our registers in the P4-switch is demonstrated. Each
time a SUB-register packet enters the P4-switch, it generates the input-port bit-mask,
then it reads the value of the register that its index is 1 times lower than the variable-ID
in the packet header, after that it makes a bit-wise OR between the value and port-mask for
adding the port-mask, and writes back the result into the register again. It will swap the
IP-source and IP-destination fields of the packet, and will mirror it back to the port

40

3.4 – Protocol algorithms and scenarios

Figure 3.12. The sample structure of our registers in the P4-switch for the PubSub protocol.

it was entered. This packet will be act as a subscribe-reply message for the subscriber
NF in the corresponding middle-ware related to that NF. The same process is repeated
when a SUB-remove packet arrives, with one difference, by replacing the bit-wise OR with
a bit-wise XOR to remove the port-mask. These two packet kinds are the only ones in our
protocol, which make a change inside the P4-switch. For the case of a PUBLISH packet, if
there is a registration for that variable-ID inside the corresponding register, the switch
will consider that value as the destination multicast-group-ID and will send a copy of
the packet to each port which was participating in that multicast-group. For the case of
RECOVER packet, variable-ID request or INIT-NF-ID request packets, the switch will
forward them through the port which is eventually destined to the REPLICA controller.
The last three packet kinds mentioned here, make no changes inside the switch logic.

Local Controller-based scenario with P4-Switch

A simple topology for this scenario is shown in Figure 3.13. In this scenario, the switch
will use an empty Match-Action table predefined by the P4 program of the P4-switch,
instead of using registers for holding the subscriptions as key-values. The empty structure
of this table is made once through the first programming step of the switch, then entries
for this table will be added, modified or removed, dynamically through a local embedded
controller inside the switch. The P4Runtime API is used for controlling the table which
was defined by our P4 program. It uses the gRPC protocol for communication between
the P4 target and the P4 controller as discussed in section 2.3.4(see Figure 3.14).

Anytime a SUB-register or a SUB-remove packets arrive at the switch ports, the
switch will add a controller header to the packet, containing the input port of the packet,

41

NFV state sharing

Figure 3.13. Register-based scenario with P4 switch and no Controller topology.

Figure 3.14. The sample structure of our table in the P4-switch for the PubSub protocol.

and sends it to the local controller. The controller will extract and saves the needed
information from the packet headers, then it will modify the entries in the switch table
through P4Runtime API (e.g., adding or removing a port number from the action list of
the table entry which has a match field equal to this Variable-ID), and will save the
results of such operations for later needs. All the other definitions and procedures, e.g.,
the shape of the key-value or the format for the MultiCast-Group-ID, if not described
here, are similar to the previously proposed scenario. There is an extended part between

42

3.5 – Scalability analysis

the P4-switch and the local P4-controller(see Figure 3.15), which shows :

Figure 3.15. Time-Space Diagram for the Local-Controller part.

• (1) When a SUB-register or a SUB-remove packet arrives at the switch ports,
it will be sent through P4Runtime API to the local Embedded-controller with an
extra Packet-In header containing the input port of the packet.

• (2) The controller will use the information of the packet header fields, the input
port and its previous data structure on table entries and defined multicast groups
of the switch, and will send proper instructions to the switch. The instructions also
include the request for the report after finishing the switch configuration.

• (3) Switch will report the configuration procedure and results to the local Embedded-
controller.

• (4) The local Embedded-controller will update its data structure with the switch
report and will send the Subscribe packet it was received at (1) after swapping
the IP-destination and IP-source fields, removing the Packet-In header and
adding a Packet-Out header containing the same input port existed in Packet-In
header, as the new output port for the switch.

• (5) The switch will remove the Packet-out header after extracting its information,
and will send the packet to the NF, through the port mentioned in that information.

3.5 Scalability analysis
In this section, we try to theoretically evaluate the scalability of our proposed schemes
in terms of the number of servers and the number of NFs living inside each server. Then

43

NFV state sharing

we evaluate the effect of changing the number of variables that each NF may publish on
it or subscribe for it and at last, we will consider the effect of these factors on the switch
internal resource consumption.

Scalability analysis as a function of the number of servers and NFs

As a matter of fact, in our evaluation, we will take into account only the servers, which
has at least one NF in it, and in our scenario, the NF will be the one which is publish-
ing or subscribing on at least one variable. In general, the number of physical servers
indirectly connected to a switch is not bounded to the number of switch physical ports.
By considering a group of physical servers that are eventually connected to one port of
the P4-switch, the traffic of the multiple physical servers can be aggregated to one link
that is destined to one port of our P4-switch.(see Figure 3.16). In this case, from the

Figure 3.16. Physical servers and their NFs with physical connection to the P4-Switch.

P4-switch point of view, for each of its physical ports, if connected, the switch only sees
its next hope, while the packets coming from the next hope are carrying the variable-ID
(see Figure 3.17). From now for simplicity, we presume that only one physical server is
directly connected to each port of the switch. Figure 3.16 demonstrates two problems.
Assume that in this figure, more than one NF has subscribed to one specific variable in
the P4-switch, no matter from the same or different physical servers. If only one of them
tries to unsubscribe, due to have only one subscription per each variable, the switch will
remove the subscription on that variable destined to that port. It will cause to starve the
remaining NFs that had a subscription on that variable and through that port but are

44

3.5 – Scalability analysis

Figure 3.17. P4-Switch point of view from physical connection to it.

on different physical servers connected to the same port. The solution has two steps:

• (1) For NFs inside one server, we need a mechanism to have a trace of the local
registrations of its NFs inside the server. The SUB-remove request will leave the
server, if and only if, there is no other existing registration for that variable inside
the server. The SUB-register request will leave the server, if and only if, there
is no existing registration for that variable inside the server. This will eliminate
sending non-necessary SUB-register request to the switch. Other than that, we
did not cover all the combinations, like when there is a need to share data locally
and inside one server. The developer of this protocol should consider these steps
into account.

• (2) A similar mechanism should be used in the aggregation points of the physical
server through the path to the switch port. This will solve the problem for NFs
inside separate physical servers.

While providing a solution for the first case is completely implementation-dependent,
providing a solution for the second case would be out of the scope of this thesis and can
be considered as future work. In the next chapter as a Proof Of Concept (POC), we
implemented our solution for the first case.

Scalability analysis as a function of the number of variables

For the case of the different number of variables inside each NF, in theory, due to having
22-bit for defining variable-IDs, we are limited to a maximum number of (222 ≈ 4 × 106)
for maximum different variables. For the Register-based solution, as the number
of needed registers inside the switch is exactly equal to the number of the variables, by
increasing the number of variables, the number of needed registers inside the switch grows
linearly, and this number is limited by the available memory inside the switch for defining
registers. It is notable that, if changing the number of variables leads to having more
variables than already defined registers, the switch should be completely re-programmed.
Nonetheless, this procedure, if needed, can be done very fast. In the case of Embedded
controller-based instead of the registers, we use a match-action table. Except for the

45

NFV state sharing

available memory inside the switch, there is no other limitation on real-time changing of
the number of variables, as the definition of variables inside the switch is done dynamically
and in real-time upon request and by the local Embedded-controller and there is no need
to reprogram the switch. The scenario with the registers is fast and simple but scalable
for small cases with limited variables and barely changing structures or the cases that the
maximum number of the variables barely crosses the number of defined registers. The
scenario with Local P4Runtime is fast, dynamic and scalable for any structure. Both
schemes make the scenario needless for the standard REPLICA remote Controller to
be involved in the major parts of the registration of or distribution of the publishing
variables, by offloading some duties of the REPLICA controller to the P4-switches. The
two scenarios with P4 switches are briefly evaluated in Table 3.3, Table 3.4.

SCALABILITY THEORETICAL LIMITATIONS
IN TERMS OF UPPER OR

THE NUMBER OF: BOUND CONSIDERATIONS

SERVERS Unlimited —

NETWORK FUNCTIONS Unlimited —

Definable variables are
Upper Bounded by the

VARIABLES 222 ≈ 4 × 106 number of the registers
which are defined at the

compile time.

Table 3.3. Register-based with P4-switch

• Pros: Fast, Simple, Stable.
• Cons: Static number of Registers, change in number of registers, Needs recompiling and installing

new P4 program inside the P4-switch .

The P4-switch only uses the variable-ID and the port numbers for the subscriptions,
then our scenarios are only dependent on the number of switch ports and the number of
variables. For each rule, the variable-ID is a unique key, while the combinations of the
participating ports, forms the corresponding value. So, the number of rules needed to
be installed inside the P4-switch in both scenarios is only proportional to the number of
variables.

Rules to be installed ∝ # Variables

Furthermore, recalling on section 2.3.2, as the P4-switches use Reconfigurable Match
Tables (RMT), we expect to have less internal memory consumption for installing the
needed rules for the subscriptions, with respect to OpenFlow switches.

46

3.5 – Scalability analysis

SCALABILITY THEORETICAL LIMITATIONS
IN TERMS OF UPPER OR

THE NUMBER OF: BOUND CONSIDERATIONS

SERVERS Unlimited —

NETWORK FUNCTIONS Unlimited —

VARIABLES 222 ≈ 4 × 106 —

Table 3.4. Embedded Controller-based with P4-switch.

• Pros: Dynamic, No Register-Limited.
• Cons: More delay, More complexity and More activity by the switch than Register-based scenario.

47

48

Chapter 4

Implementation and experimental
validation

In this chapter, we will describe our simulation methodology, the tools we used to emulate
our network environment, network components and our evaluation method for comparing
our schemes described in chapter 3. Then as a Proof Of Concept(POC), we build a
simple test configuration, and we run the solution to prove the correctness of it. After
that we implement our proposed protocol with OpenFlow switch, to show its applicability
in the vanilla SDN. At last, we tried to simulate the behavior of the internal resource
consumption of the three implementations to show the excellence of our solutions.

4.1 Tools and Components

In this section we describe in brief , the tools we used for emulating our schemes.

4.1.1 Mininet

Mininet is a powerful network emulator, which is very convenient to be used for prototype
and test almost any SDN solution, by having a virtual experimental Network inside our
PC. Mininet creates a realistic virtual network, running real kernel, switch and application
code, on a single machine (VM, cloud or native), in seconds, with a single command.(See
Figure 4.1).

Figure 4.1. Mininet Diagram (reproduced from [30]).

49

Implementation and experimental validation

4.1.2 BMV2

BMV2 is just a prototype virtual switch, recently made and introduced to show the main
capabilities of the P4 language. It is the abbreviated form for (Behavioral Model Version
2). It is a software switch that is emulating a P4 data-path, written in C++(11) language.
It takes as input a JSON file generated from your P4 program by a P4 compiler and
interprets it to implement the packet-processing behavior specified by that P4 program
[31]. Figure 4.2.

Figure 4.2. BMV2(Behavioral Model Version 2) (reproduced from [32]).

4.1.3 bm_CLI

It is a very handy process, written by the developers of the BMV2. By connecting to a
thrift port that is defined in the BMV2 through the compile phase, it gives a very powerful
and easy command-line interface to the P4 switch for reading the internal externs of the
switch and manipulating its tables.

4.1.4 Open vSwitch

Open vSwitch is a production quality, multilayered virtual switch licensed under the
open-source Apache 2.0 license. It is designed to enable massive network automation
through programmatic extension, while still supporting standard management interfaces
and protocols (e.g., NetFlow, sFlow, IPFIX, RSPAN, CLI, LACP, 802.1ag) [33]. The
Open vSwitch has been developed for some years and has been supported and debugged
by a vast community. In many ways, Open vSwitch targets a different point in the design
space than the hypervisor networking stacks which use the built-in L2 switch (the Linux

50

4.1 – Tools and Components

bridge), by focusing on the need for automated and dynamic network control in large-
scale Linux-based virtualization environments. The goal with Open vSwitch is to keep
the in-kernel code as small as possible (as is necessary for performance) and to re-use
existing subsystems when applicable (for example Open vSwitch uses the existing QoS
stack). As of Linux 3.3, Open vSwitch is included as a part of the kernel and packaging
for the userspace utilities, which are available on most popular distributions [34].

4.1.5 RYU Controller

Ryu which is pronounced as (ree-yooh), means flow in Japanese language. It is a
component-based software defined networking framework written in python language,
that provides some software components with a well defined API, which makes it very
easy for developers to control applications and to create new network management. It
supports many protocols such as OpenFlow, Netconf and OF-config to manage network
devices. Ryu supports fully the OpenFlow versions 1.0, 1.2, 1.3, 1.4 and 1.5. All of its
code is freely available under the Apache 2.0 license.

4.1.6 Traffic generators

In order to build our specific packet shapes for our tests we used some tools:

• SCAPY [35]: It is a very flexible and powerful Python library, which is capable of
packet, creation, manipulation, forging and even doing many network tasks includ-
ing network discovery, testing, trace-routing, and many others. In our experiments,
we use widely some power of this library to debug our codes.

• Socket Generator and Listener [36]: After testing many packet shapes we
decided to use standard Python socket library, as our needs were satisfied by using
the standard network protocol headers and there was no need to use Scapy library.

4.1.7 Measurement tools

For measuring the memory resources used by the proposed schemes, we used the Resident
Set Size(RSS) measurement. RSS is used to show approximately, how much of the mem-
ory is assigned to a process and is existing in the RAM. It does not include the memory
part that is swapped out, but it does include all the stack and heap memory, and at last,
it includes the memory used by the shared libraries as long as those libraries pages are
actually in the memory. There is another measure factor which is called Virtual Memory
Size(VSZ). It will include all the memory parts that a process can have, including the
allocated memory which is not used, the swapped out memory, and the shared libraries
memor. As an example, if a process has 1000K binary and is linked to some shared
libraries of size 2000K, while it has allocated 500K of stack/heap, which 200K from it
is actually in memory, and it has only actually loaded 800K of the shared libraries and
300K of its binary then we have:

TheV SZ : 1000K + 2000K + 500K = 3500K

51

Implementation and experimental validation

TheRSS : 300K + 800K + 200K = 1500K

Since part of the memory is shared, many processes may use it, so if you add up all
of the RSS values you can easily end up with more space than your system has. The
memory that is allocated also may not be in RSS until it is used by the program. So if
your program allocated a bunch of memory upfront, then uses it over time, you could
see RSS going up and VSZ staying the same. The RSS measurement can give us a much
realistic measurement over the actual memory resources consumption of a process than
the VSZ. To measure the RSS we used:

• ps(Process Status): The ps program is a process, which in most Unix and Unix-
like operating systems, displays the information about a selection of the active
(currently-running) processes. It gives us information on the Resident Set Size
(RSS). This process does not indicate precisely how much of the shared libraries
are used exactly by our process, because it divides the size of the shared libraries
over the number of running processes that are using those shared libraries. IN this
way it gives us an approximation over the RSS for that process.

• time: time is a process which runs the program command with any given argu-
ments, when the command finishes, time displays information about resources used
by the command (on the standard error output, by default), and it gives us some
information on the command including the maximum RSS. So it gives us an upper
bound for the RSS measurement.

both of them give us an upper-bound approximated measure on the memory usage for
installing the rules inside the switches. It means the values are like:

Measured(RSS) = Actual(RSS) + error

We used ps for the Local Embedded-controller scenario and the Time for the Register-
based scenario.

4.2 Architecture
As we are using a virtual environment and virtual components, there are some limita-
tions to check the efficiency of the two mentioned methods. While it is not possible
having the correct results for cases such as end-to-end delays that need to be tested in
a real physical environment, it is possible to check the correctness of the proposed algo-
rithms in such environments. As a Proof Of Concept(POC), we emulated both proposed
schemes with a simple topology. For our experiments we used components placement for
the Register-based and the Embedded controller-based solutions according to the
Figure 4.3.

The only difference between the two solutions is in the way they keep the records
of the subscriptions inside the P4-switch, which results in a small structural difference
in the P4 programs and having an extra controller process for the Embedded-controller
scenario. The hosts shown in the topology, (H1, H2, H3, and H4), are virtual samples of
the physical servers in the Mininet, where H1, H2, and H3 are hosting our sample NFs

52

4.2 – Architecture

Figure 4.3. Experimental topology with P4 switch.

and a simple controller has been placed inside the H4 to play the role of the REPLICA
controller in our solutions.

4.2.1 The Middle-ware

The fact that there could exist more than one NF inside one server, crystallizes the need
for an internal mechanism inside the server to handle efficiently and correctly the com-
munication between the internal NFs and between NFs and the network. As an example,
in the case of two NFs inside one host, that both are subscribed on the variable(X),
if one of them decides not to receive any further updates for the variable(X), as it is
unaware of the possible existence of other NFs and their subscriptions, so it will send
a SUB-remove request to unsubscribe from the variable(X), then the switch will not
forward any PUBLISH data of the variable(X) to that host and the second NF will no
longer receive the updates from the variable(X). Another example is the case of two
NFs inside the same host, which one of them is publishing on the variable(X) and the
second one wants to subscribe to variable(X), which is more reasonable to have state-
sharing being handled locally. To cover the above-mentioned situations, either we need
to have direct communications between the NFs, or using an outside mechanism that is
shared between all of them, which can be another process that is discover-able for all of
them and is able to communicate locally with all the NFs inside the same host. The NFs
are distinct processes, which are not aware of each other existence, which means the first
approach is not applicable to our case as there is not enough primitive information to

53

Implementation and experimental validation

start the communication between them. So to implement the second approach, we intro-
duced a process as a Middle-Ware inside each host which is placed in the way between
the NFs and the host. By using Middle-ware, they do not need anymore to take care
of consensus between them and they will be separated from the outside network, which
results in simplifying the NFs internal structure, and lighter in terms of resource usage
and programming complexity. For the communication between this new process and the
NFs, we need Inter Process Communication(IPC). The well known approaches are us-
ing the Un-named Pipes, the Named Pipes, the Shared memory and the Sockets. The
Un-named Pipes needs a hierarchical parent and child paradigm, which by considering
the fact that our NFs should be completely unrelated and distinct processes, even from
our Middle-Ware, will be eliminated from the choices. The choice between the Un-named
Pipes(also known as FIFOs), the Shared memory and the Sockets is dependent on the
application of the protocol, which here we decided to use the Sockets, as they are the
clearest concept of the communication for the network. We decided to use TCP sockets,
as they are reliable for ensuring the data transfer between the endpoints. We will discuss
in detail all the parts and all the steps for the proposed scheme in the next sections. For
running our implementations, we needed to build a special virtual machine or installing
several dependencies in our Linux Operating System to use the BMV2 virtual switch,
so for the sake of simplicity we used the special virtual machine which is prepared by
the P4 Language Consortium [37]. In our implementation, first of all, the REPLICA
controller will be started in the H4, then in each of the H1, H2 and H3 hosts, one
Middle-Ware will be started to listen for the NFs messages, then the NFs will be started
in all hosts except the H4. By adding the Middle-Ware to our structure, an example
view of our architecture inside the hosts can be shown as Figure 4.4.

In the next section, we will describe in detail our designs for the Middle-Ware and
the NFs.

4.3 Software implementation

The NFs and the Middle-ware are written with the python language.

4.3.1 NF design structure

By using the Middle-ware, we are separating the NF from the real network, so for commu-
nication with the Middle-ware, we just need to define the data part of the packet formats
described in the section 3.3.

Message format

All messages have two parts, a common part that has the same structure in all the
messages, and a specific part which is message dependent:

• Common part: It is the first 6-bytes of the message, and is divided into three
parts:

54

4.3 – Software implementation

Figure 4.4. An internal view of our hosts architecture.

– Message length: It is the first 2-Bytes of each message and contains an
unsigned integer number which is the length of the message including itself in
bytes. It is used in the TCP sockets for recovering the messages.

– Message kind: It is the second 2-Bytes of each message and contains an
unsigned integer number between zero and six, which is showing the message
type:

∗ Type (0): It is an INIT-NF-ID request message.
∗ Type (1): It is an INIT-PUB-VAR-ID request message.
∗ Type (2): It is a PUBLISH message.
∗ Type (3): It is a SUB-register message.
∗ Type (4): It is a SUB-remove message.
∗ Type (5): It is a SUB-VAR-ID Request message.
∗ Type (6): It is a RECOVER message.
∗

– NF-Global-ID: It is the third 2-Bytes of each message and contains an un-
signed integer number between 0 and 65535. The 0 is only being used for
asking the INIT-NF-ID from the REPLICA controller and in the rest of the
cases it is a constant non-zero number distinguishing the NF from the others.

• Specific part: It contains the rest of the message, the details and the positions
are described for each kind as bellow:

55

Implementation and experimental validation

– Kind (0): It carries the NF-name(m-Bytes). The m is the length of the
NF-name. This message will have a reply similar to the request, while the
number 0 in the Global-NF-ID field has been replaced with the assigned
Global-NF-ID by the REPLICA controller.

– Kind (1): It carries the Variable-name(n-Bytes). The n is the length of the
Variable-name. This message will have a reply similar to the request, while a
part with 2-Bytes length is inserted between the Global-NF-ID field and the
Variable-name, containing the INIT-PUB-VAR-ID.

– Kind (2): It carries the Variable-ID(2-Bytes) + the Update-number(2-
Bytes) + the Total-fragments(2-Bytes) + the Fragment-ID + the Published
data(k-Bytes). They are based on definitions on the Table 3.2.

– Kind (3): It only carries the Variable-ID(2-Bytes).
– Kind (4): It only carries the Variable-ID(2-Bytes).
– Kind (5): It carries the Variable-name(n-Bytes). The n is the length of the

Variable-name. This message will have a reply similar to the request, while a
part with 2-Bytes length is inserted between the Global-NF-ID field and the
Variable-name, containing the SUB-VAR-ID. There are two kinds of replies to
this request, if the SUB-VAR-ID in the reply is a non-zero number, the request
was successfully answered, otherwise, zero means the Variable-name was not
assigned before, so the NF will retry its request after a back-off time. This
procedure will be repeated until receiving a non-zero SUB-VAR-ID.

– Kind (6): It carries the Variable-ID(2-Bytes) + the Update-number(2-
Bytes) of the lost message parts.

Communication steps

Figure 4.5 demonstrates how our implementation is using the steps described above .

• (1) Newly started NF wants to initialize, so it will send an INIT-NF-ID request
containing Length = 15, Kind=0, Global-NF-ID: 0 and NF-name=’scanner-1’,
to the middle-ware.

• (2) The Middle-ware replies to the NF with the same message format while rewrit-
ing the Global-NF-ID: 5001.

• (3) The NF needs to publish on its variable with the name e.g., ’a’. So it will
send an INIT-PUB-VAR-ID request containing Length=9, Kind=1, Global-NF-ID:
5001 and PUB-VAR-name=’a’, to the middle-ware.

• (4) The Middle-ware replies to the NF with the same message format while rewrit-
ing the Variable-ID: 35.

• (5-a) till (5-b) The NF wants to publish on variable with the PUB-VAR-name=’a’
and the Variable-ID: 35, so after generating the update, it breaks the data into
the chunks with the maximum size equal to e.g., 1400 Bytes, then it calculates the

56

4.3 – Software implementation

Figure 4.5. The time-space diagram for the NFs.

number of the fragments and will send sequentially the fragments one after each
other with the Kind=2, the Update-number=1, the Total-fragments=(e.g., 25)
and theFragment-ID following by the DATA.

• (6) The NF decides to subscribe on a variable that it is already aware of its

57

Implementation and experimental validation

name. So it will send a SUB-VAR-ID request containing Length=9, Kind = 5,
Global-NF-ID: 5001 and SUB-VAR-name=’b’, to the middle-ware.

• (7) If there is no previous id assignment for the variable ’b’, then the Middle-ware
replies to the NF with the same message format while rewriting the Variable-ID:
0 as an ’ERROR’ message.

• (8) By receiving this ’ERROR’ message, the NF will wait for 10 seconds and will
repeat the step (6).

• (9) The Middle-ware replies to the NF with the same message format while rewrit-
ing the Variable-ID: 45.

• (10) The NF sends a SUB-register request with the Kind=3 and the Variable-ID:
45 to the Middle-ware

Internal structure

Inside each NF, five threads will be made and started sequentially:

• 1.Receive thread: When the Receive thread starts, it tries to connect to the
address tuple (’localhost’, special-port-1). This thread will act as a blind
receiver and tries to receive in an infinite loop and write the received data in a
queue made for it.

• 2.Send thread: When the Send thread starts, if any, it tries to pop messages from
a queue made for it, and send them to the socket connection made previously by
the Receive thread.

• 3.Msg-handlr thread: When the Msg-handlr thread starts, if any, it continuously
pops items from the output queue of the Receive thread, and rebuild the received
packets by the NF through some information that we already put in the original
messages. After that it decides what to do with the messages, based on the message
kinds explained in the previous chapters as below:

– INIT-NF-ID reply: It will store the INIT-NF-ID and will change the flag re-
lated to the Init-publish thread for moving to the INIT-PUB-VAR-ID request
step.

– INIT-PUB-VAR-ID reply: It will store the INIT-PUB-VAR-ID and will change
the flag related to the Init-publish thread for moving to the PUBLISH step.

– SUB-VAR-ID reply: It will store the SUB-VAR-ID reply for the Subscribe
thread to decide whether resend the request after some waiting, or making the
SUB-register message.

– PUBLISH messages: it will check for the possible packet losses, if there is no
packet loss, it will store the PUBLISH messages in a file, otherwise it will make
a RECOVER message and will add it to the input queue of the Send thread.

58

4.3 – Software implementation

• 4.Init-publish thread: When the Init-publish thread starts, it tries to do the
initializing phase by making the INIT-NF-ID request message and adding this
message to the input queue of the Send thread. It waits until receiving the proper
answer, then it makes the INIT-PUB-VAR-ID request message and adding this
message to the input queue of the Send thread. It waits until receiving the proper
answer, then it will start to make the PUBLISH packets and will add them to the
input queue of the Send thread. It also stores a copy of the PUBLISH packets it is
making in a file for further possible needs.

• 5.Subscribe thread: When the Subscribe thread starts, it tries to do information
request sub-phase, by making the SUB-VAR-ID Request message and adding this
message to the input queue of the Send thread. If it receive an ERROR message, it
waits for 10 seconds and will retry by making the SUB-VAR-ID request message
and adding this message to the input queue of the Send thread, until receiving
the proper answer, then it will make the SUB-register message, and will add this
message to the input queue of the Send thread.

The internal diagram of our NF is demonstrated in the Figure 4.6.

Figure 4.6. The internal diagram for the NFs.

59

Implementation and experimental validation

4.3.2 Middle-ware design structure

Message format

The Middle-ware does not create any messages from zero by itself. If it receives the
messages from the NFs, based on the Middle-ware internal data structure, if this message
is needed to be sent to the network, then the Middle-ware will send the message to
the proper address tuple (e.g., ((’239.0.0.35, 65432))) on the network. On the other
hand, if it receives a message from the network, then based on the message kind and the
Middle-ware internal data structure, it will forward the message to the proper NF/s.
The Middle-ware, except in the cases of the INIT-NF-ID request and the INIT-NF-ID
reply, will not change any field of the received messages. In those mentioned cases,
for mapping the received INIT-NF-ID reply to the proper NF, the Middle-ware will
assign a LOCAL-NF-ID to each of the NFs once it receives a INIT-NF-ID request in its
internal data structure. Then it will add this value as a 2-Bytes length field after the
GLOBAL-NF-ID field in the message so that it can be recognized in the reply message. The
Middle-ware will eliminate this field when it received the INIT-NF-ID reply message,
the NF will be completely unaware of this process.

Communication steps

Figure 4.7 demonstrates how our implementation is using the steps described above .

• (1) The Middle-ware adds the already assigned LOCAL-NF-ID to the INIT-NF-ID
request as mentioned previously, then it sends the message as a Unicast UDP
packet to the UDP port number=(65432) and the IP address of the REPLICA
controller.

• (2) The P4-switch forwards the received packet based on its IPV4.lpm routing
table.

• (3) The REPLICA controller will replace the Global-NF-ID field of the message
with the one it assigned to the NF, and sends back the INIT-NF-ID reply message
as a Unicast UDP packet to the UDP port number=(65432) and the IP address
of the server which is hosting the Middle-ware.

• (4) The Middle-ware removes the LOCAL-NF-ID field and sends the message to the
related NF.

• (5) The Middle-ware sends the INIT-PUB-VAR-ID request message as a Unicast
UDP packet to the UDP port number=(65432) and the IP address of the REPLICA
controller.

• (6) The REPLICA controller will replace the Global-PUB-VAR-ID field of the mes-
sage with the one it assigned to the Variable, and sends back the INIT-PUB-VAR-ID
reply message as a Unicast UDP packet to the UDP port number=(65432) and
the IP address of the server which is hosting the Middle-ware.

60

4.3 – Software implementation

Figure 4.7. The time-space diagram for the Middle-ware.

• (7) The Middle-ware sends the INIT-PUB-VAR-ID reply message to the related
NF.

• (8-a) to (8-b) The Middle-ware will send the PUBLISH messages as UDP packets

61

Implementation and experimental validation

to the UDP port number=(65432) and the IP address of the corresponding IP-
Multicast group.

• (9-a) to (9-b) The P4-switch through its internal data structure will forward them
to the registered ports, otherwise it will drop the packets.

• (10) The Middle-ware sends the SUB-VAR-ID request message as a Unicast UDP
packet to the UDP port number=(65432) and the IP address of the REPLICA
controller.

• (11) The REPLICA controller will check its internal data structure to see if any
Variable-ID has already been assigned to this variable. If the answer is posi-
tive, then the REPLICA controller will put this number in the Variable-ID field
of the message, otherwise, it will put ’error’ in the message. At last, it sends
the SUB-VAR-ID reply message as a Unicast UDP packet to the UDP port num-
ber=(65432) and the IP address of the server which is hosting the Middle-ware.

• (12) The Middle-ware sends the SUB-VAR-ID reply message to the related NF.
But as it was a reply containing ’error’ message, after almost 10 seconds The
Middle-ware will receive a repeated SUB-VAR-ID request message, and will send
it to the REPLICA controller again. Steps (10) to (12) will be repeated until
instead of the ’error’ message, a Variable-ID is received by the NF.

• (13) The Middle-ware will send the SUB-register messages as UDP packets to the
UDP port number=(65432) and the IP address of the corresponding IP-Multicast
group.

• (14) The P4-switch will register the request inside its internal data structure.

Internal structure

Inside the Middle-ware, four main threads will be made and started sequentially, and for
each NF connecting to the Middle-ware, it will make three threads specifically for han-
dling the communication with that NF. The number of threads inside the Middle-ware,
n, is calculated from:

n = 4 + m + (3 × k)

where the k is the number of the connected NFs and m is a value equal to the number
of subscribed variables divided by the maximum IGMP membership limitation of the OS.
They can be described as bellow:

• 1.INITIAL thread: The Middle-ware starts by making the first thread, which
is responsible to make a server for a TCP socket, listening on a specific port (e.g.,
65431 in our case) for incoming connections from the NFs. This port is predefined
in all NFs, and is used to start the primary connection between each NF and the
Middle-ware. After accepting the connection from the NF, three threads will be
made, responsible for the communications related to this NF:

62

4.3 – Software implementation

– SEND thread: It is responsible to send messages to the connection of that
NF. There is a queue assigned to this thread, which continuously is checked
by this thread to see if any message is available for sending.

– RECEIVE thread: It is responsible to receive messages from the connection
of that NF. There is a queue assigned to this thread. It continuously adds the
data it receives from the NF connection to this queue.

– MESSAGE-HANDLER thread: For each NF connected to the Middle-ware,
a third thread will be made and will be responsible to read from the output
queue of the receiver thread and if needed, rebuild the original message sent
by the NF by using the Length field of the messages. This thread based on the
message kind and the available information inside the internal data structure of
the Middle-ware, may update the internal data structure of the Middle-ware
or add a copy of this message into the queue for the send thread of the other
NFs, but for sure, it adds the original message to the main outgoing queue of
the Middle-ware destined to the network.

• 2.MAIN SEND thread: This thread is responsible to make a UDP socket and
if there is a message in the main outgoing queue of the Middle-ware, the thread
will make an IP packet, and based on the message kind it will make a proper
destination for the IP layer, sets the UDP layer destination port to another special
port (e.g., 65432 in our case), and will send the packet to the network. In the case
of subscriptions, it will do the membership in the proper IP-multicast group in the
OS and if reached the maximum IGMP membership limitation of the OS, will build
a new thread for a new range of the IGMP membership.

• 2.MAIN RECEIVE thread: This thread is making another UDP socket and
will bind this socket to an address tuple made of the server IP address and the
second-mentioned spacial port (e.g., ((’ ’, 65432)). It is responsible to receive from
this socket and will add whatever it receives to the main incoming queue of the
Middle-ware.

• 3.MAIN MESSAGE-HANDLER thread: This thread is responsible to read
from the main incoming queue of the Middle-ware, updating the internal data
structure of the Middle-ware, and adding a copy of the message to the input queue
of the proper NFs.

The internal diagram of our Middle-ware is demonstrated in the Figure 4.8.

63

Implementation and experimental validation

Figure 4.8. The internal diagram for the Middle-ware

4.4 Experimental results

For simplicity we presumed that the channels are lossless, the PUBLISH packets are se-
quential and there is a long enough free time between two consecutive updates for each
variable-ID. For simplicity, we start only one NF in each of the three first hosts(H1, H2,
and H3). Each of these three NFs supposed to publish only one variable and not subscribe
to any variables.

• (1). The REPLICA controller is started in the H4.

64

4.4 – Experimental results

• (2). One Middle-ware is started in each of the H1, H2 and H3.

• (3). One NF from the H1 starts and sends an INIT-NF-ID request for the NF-
name: ’/onem2m/torino_5g/libeliumscanners/wifi/scanner1’ to the REPLICA
controller.

• (4). The REPLICA controller will assign the Global-NF-ID: 5001 for the NF in
the H1.

• (5). One NF from the H2 starts and sends a INIT-NF-ID request for the NF-
name: ’/onem2m/torino_5g/libeliumscanners/wifi/scanner2’ to the REPLICA
controller.

• (6). The REPLICA controller will assign the Global-NF-ID: 5002 for the NF in
the H2.

• (7). One NF from the H3 starts and sends a INIT-NF-ID request for the NF-
name: ’/onem2m/torino_5g/libeliumscanners/wifi/scanner3’ to the REPLICA
controller.

• (8). The REPLICA controller will assign the Global-NF-ID: 5003 for the NF in
the H3.

• (9). The NF(5001) sends a INIT-PUB-VAR-ID request for the Variable-name:
’logs/wifi/scanner1’ to the REPLICA controller.

• (10). The REPLICA controller will assign the Variable-ID: 1 for the NF(5001).

• (11). The NF(5001) starts to publish on the Variable-name: ’logs/wifi/scanner1’
with the Variable-ID: 1.

• (12). The NF(5002) sends a INIT-PUB-VAR-ID request for the Variable-name:
’logs/wifi/scanner2’ to the REPLICA controller.

• (13). The REPLICA controller will assign the Variable-ID: 2 for the NF(5002).

• (14). The NF(5002) starts to publish on the Variable-name: ’logs/wifi/scanner2’
with the Variable-ID: 2.

• (15). The NF(5003) sends a INIT-PUB-VAR-ID request for the Variable-name:
’logs/wifi/scanner3’ to the REPLICA controller.

• (16). The REPLICA controller will assign the Variable-ID: 3 for the NF(5003).

• (17). The NF(5003) starts to publish on the Variable-name: ’logs/wifi/scanner3’
with the Variable-ID: 3.

• (18). Another NF from the H2 starts and sends a INIT-NF-ID request for the NF-
name: ’/onem2m/torino_5g/libeliumscanners/wifi/scanner4’ to the REPLICA
controller.

65

Implementation and experimental validation

• (19). The REPLICA controller will assign the Global-NF-ID: 5004 for the sec-
ond NF in the H2.

• (20). The NF(5004) sends a INIT-PUB-VAR-ID request for the Variable-name:
’logs/wifi/scanner4’ to the REPLICA controller.

• (21). The REPLICA controller will assign the Variable-ID: 4 for the NF(5004).

• (22). The NF(5004) starts to publish on the Variable-name: ’logs/wifi/scanner4’
with the Variable-ID: 4.

• (23). The NF(5004) sends a SUB-VAR-ID request for the Variable-name:
’logs/wifi/scanner1’ to the REPLICA controller.

• (24). The REPLICA controller will reply with the Variable-ID: 1 for the
’logs/wifi/scanner1’ to the NF(5004).

• (25). The NF(5004) sends a SUB-register request for the Variable-ID: 1.

• (26). The NF(5004) sends a SUB-VAR-ID request for the Variable-name:
’logs/wifi/scanner1’ to the REPLICA controller.

• (27). The REPLICA controller will reply with the Variable-ID: 1 for the
’logs/wifi/scanner1’ to the NF(5004).

• (28). The NF(5004) sends a SUB–register request for the Variable-ID: 2.

• (23). The NF(5004) sends a SUB-VAR-ID request for the Variable-name:
’logs/wifi/scanner1’ to the REPLICA controller.

• (29). The REPLICA controller will reply with the Variable-ID: 1 for the
’logs/wifi/scanner1’ to the NF(5004).

• (30). The NF(5004) sends a SUB–register request for the Variable-ID: 3.

Each NF generates a random table to PUBLISH, whit the Variable-ID: X, similar
to:✞ ⊵

1 {RSSI :-75, Vendor : Intel Corporate , TimeStamp :2019 -06 -05 19:20:43 , MAC:
E305A17508E4C60070513C08A3A7134E715FED1C49AAF4C679B37744 },

2 {RSSI :-75, Vendor :Unknown , TimeStamp :2019 -06 -05 19:20:43 , MAC :42914
BBC0E3BEC2D0F5107A6F2D68964C5F235CA2B445E2824CBEA58 },

3 {RSSI :-69, Vendor :Unknown , TimeStamp :2019 -06 -05 19:20:43 , MAC :1532
B055C9FFD6D3A45B4AE9A71091F70DFD49203AB95C20D9A6D768 },

4 {RSSI :-69, Vendor :Google , TimeStamp :2019 -06 -05 19:20:43 , MAC :0
E04268AAFCC8D52DD640ADFECF0B2C43D400CD04DDCA2AABC4B222E },

5✝ ✆
Where for each NF the X is determined by the REPLICA controller as explained in

the previous steps. The tables are filled with randomly generated values, sorted by the
time and in a Comma Separated Values (CSV) format. Generating the tables is started
after receiving the reply to the INIT-PUB-ID request from the REPLICA controller,
and every 20 seconds, a random number of lines (between 10 and 50) will be added to

66

4.4 – Experimental results

the end of each table. By using the bm_CLI process, we can see the current values of the
registers and entries of the tables for the BMV2.

• The results for the Register-based:

✞ ⊵
1 $ bm_CLI --thrift -port 9090 --json build / pub_sub .json --pre SimplePreLAG

2 Control utility for runtime P4 table manipulation
3 RuntimeCmd : register_read subIndxPort
4 register index omitted , reading entire array
5 subIndxPort= 0, 0, 0, 0
6 RuntimeCmd : register_read subIndxPort
7 register index omitted , reading entire array
8 subIndxPort= 2, 0, 2, 0
9 ✝ ✆

The subIndxPort is the name of the registers array defined in our P4 program with
indexes from 0 to 4, for four variable-IDs, to hold the corresponding bitmask of the
input port of the requests. Their first values are all 0, while after the subscription
phase, they are 2, 0, 2 and 0 respectively, while the lower indexed register is shown
on left and the higher indexed one is on the right. It means through our definitions
in chapter 3.4.2, subscriptions are:

– First register value is 2, or ′b0010′, which means on variable_ID=1, a sub-
scription is made from port 2.

– Second register value is 1, or ′b0001′, which means on variable_ID=2, no
subscription is made from any port.

– Third register value is 2, or ′b0010′, which means on variable_ID=3, a sub-
scription is made from port 2.

– Forth register value is 3, or ′b0000′, which means on variable_ID=4, no
subscription is made from any port.

• The results for the Embedded Controller-based:

✞ ⊵
1 $ bm_CLI --thrift -port 9090 --json build / pub_sub .json --pre SimplePreLAG

2 Control utility for runtime P4 table manipulation
3 RuntimeCmd : table_dump MyIngress . pubsub_forward
4 ==========
5 TABLE ENTRIES
6 ==========
7 Dumping default entry
8 Action entry : MyIngress .drop -
9 ==========

10 RuntimeCmd : table_dump MyIngress . pubsub_forward
11 ==========
12 TABLE ENTRIES
13 **********
14 Dumping entry 0x0
15 Match key:
16 * scalars . local_metadata_t . pubsub_indx : EXACT 000001
17 Action entry : MyIngress . set_mcast_grp - 02

67

Implementation and experimental validation

18 **********
19 Dumping entry 0x1
20 Match key:
21 * scalars . local_metadata_t . pubsub_indx : EXACT 000003
22 Action entry : MyIngress . set_mcast_grp - 02
23 **********
24 ==========
25 Dumping default entry
26 Action entry : MyIngress .drop -
27 ==========
28 ✝ ✆

The pubsub_forward is the empty table defined to keep the corresponding bitmask
of the input port of the requests. Before subscriptions it is empty and after the
subscription phase, it has three match-action rule, which means there exists only
subscription for 3 variable_ID out of 4. Each rule has an EXACT match check
on the variable_ID and will return an integer as the multicast_group_ID. The
subscriptions are:

– First rule is an EXACT match on value 1, which return the 02 or ′b0010′ as
the multicast_group_ID, which means on variable_ID 2, a subscription is
made from port 2.

– Second rule is an EXACT match on value 3, which return the 02 or ′b0010′ as
the multicast_group_ID, which means on variable_ID 3, a subscription is
made from port 2.

As mentioned in section 3.5, the Embedded Controller-based seems to be more efficient
than the Register-based in resource usage. In both solutions, the P4 switch will drop
all received PUBLISH packets of the Variable-ID: 2, and the Variable-ID=4, due to not
received theSUB-register for any of them from the NFs. It is notable that, nevertheless
the NF(5004) which is running in the H2 has send a SUB-register request for the
Variable-ID: 2, which is being published by the NF(5002) that is also running in the
H2, there is no subscription for the Variable-ID: 2 in the switch for both solutions. The
file records for received publishes by the NF(5004) show that it is receiving the PUBLISH
updates for the Variable-ID: 2. This is due to the Middle-ware running in the H2,
which recognized that an internal PUBLISH for the requested Variable-ID exists, so it
did not send the request to the network and is handling a local state sharing inside the
H2.

4.4.1 Remote Controller-based scenario with OpenFlow Switch

In this part, we implemented our scenario by using the traditional SDN OpenFlow-enabled
switches and OpenFlow protocol. Considering the descriptions mentioned in section 4.1.4
and section 4.1.2, it is clear that, comparing BMV2 and Open vSwitch for speed test or
the throughput, will not give us any real picture of the physical OpenFlow switches versus
P4-programmable switches. So, while showing the applicability of our proposed protocol
in the vanilla SDN, we tried to make a point of view for comparing the internal memory
consumption, between P4-switches and a traditional OpenFlow switch in our scenario.

68

4.4 – Experimental results

Figure 4.9. Remote Controller-based scenario with OpenFlow switch.

A simple topology for this scenario is shown in Figure 4.9.
This scenario needs to have two rules pre-installed inside the Open vSwitch, as the

initialization phase, so at the start time, the controller will install those two initial rules
inside the OpenFlow-enabled switch. After pre-install these two rules, the switch will
send the all controller related packets to the controller and will drop Non-Registered
Publish packets.

• The first rule is to recognize the SUB-register request and the SUB-remove
request packets. By this rule, the switch will send them to the remote SDN
controller, so that the controller can install proper rules inside the Switch for for-
warding the requested publish packets. Its match rule in the simplest form should
contain:✞ ⊵

1 OXM_OF_ETH_DST = ff:ff:ff:ff:ff:ff // MAC destination ,
2 OXM_OF_ETH_TYPE = 0x800 // Ethernet protocol =(IPv4),
3 OXM_OF_IPV4_DST = ’239.128.0.0/9 ’ //IP - destination ,
4 OXM_OF_IP_PROTO = 0x11 // IP - protocol =(UDP),
5 OXM_OF_UDP_DST = 65432 // UDP - destination -port
6 ✝ ✆

while the other fields should be wild-carded. The Action will be (send to the
OFPP_CONTROLLER port). Similar to the previous two scenarios, we presume that the
route to the REPLICA controller for reply to the NF with the proper NF-Global-ID
(for the INIT-NF-ID request and the variable-ID (for the SUB-VAR-ID Request
and the INIT-PUB-ID Request) has already pre-installed by the remote SDN con-
troller.

69

Implementation and experimental validation

• The second rule is for dropping the Publishes that there were no registrations for
them and so there are no Match-Action rules installed for them. This rule is Open-
Flow version and switch configuration dependent and makes backward compatibility
for OpenFlow before v1.3. In those versions default action for table-miss is, send to
the controller, which floods the controller with unwanted publish packets. In higher
versions, the default Action for this situation is Drop the packet. This matching
rule in the simplest form should contain:✞ ⊵

1 OXM_OF_ETH_DST = ff:ff:ff:ff:ff:ff // MAC destination ,
2 OXM_OF_ETH_TYPE = 0x800 // Ethernet protocol =(IPv4),
3 OXM_OF_IPV4_DST = ’239.0.0.0/10 ’ // IP - destination ,
4 OXM_OF_IP_PROTO = 0x11 // IP - protocol =(UDP),
5 OXM_OF_UDP_DST = 65432 // UDP - destination -port ,
6 priority = 0 //(using a very low priority)
7 ✝ ✆

and other fields wild-carded. The Action will be Drop.

The Algorithm and the controllers role

Anytime a Pub-Sub packet other than PUBLISH arrives at the switch ports, due to
the pre-installed Match-Action rules, in the case of the SUB-register request or the
SUB-remove request, the switch will encapsulate these messages and will send them to
the remote SDN controller for inspecting and installing the necessary rules inside the
Open vSwitch.

The general time-space diagram for this situation is demonstrated in Figure 4.10.

Figure 4.10. Time-Space diagram for Remote Controller-based scenario with
OpenFlow switch.

70

4.4 – Experimental results

The other steps including the communication between the NFs and the Middle-ware
is topology independent and similar to the previously described one.

• (1) When a SUB-register or a SUB-remove packet arrives at the switch ports,
it will be sent through OpenFlow API to the Remote SDN controller with an
OFP-Packet-In header.

• (2) Due to the definition structure of the match fields in the OpenFlow SDN
switches, if it is a SUB-register, the Controller will install a match rule inside
the switch to forward any further publishes of this Variable-ID(e.g.15), to the
port that this request already comes from it, with the priority higher than the pri-
ority of the default dropping rule, pre-installed for the publishes at the start of
the controller (e.g., 2). This matching rule in the simplest form should contain:✞ ⊵

1 OXM_OF_ETH_DST = ff:ff:ff:ff:ff:ff // MAC destination ,
2 OXM_OF_ETH_TYPE = 0x800 // Ethernet protocol =(IPv4),
3 OXM_OF_IPV4_DST = ’239.0.0.15/10 ’ // IP - destination (for var -id =15) ,
4 OXM_OF_IP_PROTO = 0x11 // IP - protocol =(UDP),
5 OXM_OF_UDP_DST = 65432 // UDP - destination -port ,
6 priority = 2 //(using a very low priority)
7 ✝ ✆

and other fields wild-carded. The Action will be send to port k, where k is the
port number that the SUB-register packet enters the switch. If the match already
exists, the controller just updates the Action part by adding this port to the previous
ones. In the case of Remove, the controller will update the Action part of the
corresponding match rule by removing the mentioned port from the Action list if it
exists or will remove the rule if no other actions remain for that rule. The controller
will use the information of the packet header fields, the input port and its previous
data structure on table entries, and will send proper instructions to the switch for
installing new rules or updating previous ones.

• (3) Switch will report the configuration procedure and results to the SDN controller.

• (4) The Remote SDN controller will update its data structure with the switch
report and will send the Subscribe packet it was received at (1) after swapping
the IP-destination and IP-source fields, removing the Packet-In header and
adding a Packet-Out header containing the same input port existed in Packet-In
header, as the new output port for the switch.

• (5) The switch will remove the Packet-out header after extracting its information,
and will send the packet to the NF, through the port mentioned in that information.

If the incoming packet to the switch is one of the INIT-NF-ID request, the INIT-PUB-ID
Request or the SUB-VAR-ID Request, the switch will send the packet to the REPLICA
Controller.

71

Implementation and experimental validation

4.4.2 Switch memory consumption comparison

In this section, we compared the behavior of the BMV2 and Open vSwitch for the internal
resource consumption as an estimated picture of their physical switches. Considering the
descriptions in sections 4.1.2 and 4.1.4, one should expect to have a better approximation
to the physical switch for the Open vSwitch. But due to the very efficient usage of
memory that is clear from the structure of the RMT used in P4 switches in comparison
to the structure of match tables in OpenFlow, the not efficiently developed BMV2 should
use fewer resources than the well-optimized Open vSwitch. It means in a real physical
comparison, the difference could be even more. As discussed in section 3.5, in our designs
number of the rules is proportional to the number of the variable_IDs subscribed for.
Knowing that each NF can subscribe on as many variable_IDs as we want, we can simply
use only one NF for testing the switch memory consumption per each rule installation.
For this part, the structure is simplified to the switch and one host containing only
one NF. Following the description of the RSS in section 4.1.7, it sounds like a proper
metric for us to measure the proportional memory consumption in the switches per each
subscription, as an upper-bound estimation for the memory consumption of our proposed
solutions, using the real switches. All the measurements start with one subscription and
will end with 2049 subscriptions.

Registered-based with P4 switch

In this scenario, as we are using registers, so theoretically for each rule registration, we
will occupy at list one register and some memory for the index of the register. Regarding
the P4-16 language documents and our implementation, each register will be mapped
to a 32-bit length memory area after compilation, regardless of the programmer register
length definition in the main P4 program. Also, it will use a 32-bit number as indexing
the mentioned register. So as a minimum lower band for the needed memory we expect
that in the experiments we occupy at least 64-bits for each rule. We used one NF inside
one host of the Mininet and one P4 switch. For this part of the experiment, we used the
ps Linux command. After the initializing part, the subscription part of the NF program
was changed to do the measurement. Regarding the architecture of the P4-program of
the switch described in the section 3.4.2, we defined 2049 registers inside the P4 program
at the compile time, to have enough pre-defined registers for the tests. The test algorithm
is described in the below pseudo-code:✞ ⊵

1 For i in range (2049) :
2 MEASURE the RSS of the BMV2 process
3 SEND subscribe packet for (VARIABLE_ID = i)
4 WAIT for (1) second # To receive the reply
5 WHILE no subscription confirm received:
6 SEND subscribe packet for (VARIABLE_ID = i)
7 WAIT for (1) second
8 i = i+1✝ ✆

The measurement phase is done inside the NF, through the steps are shown in the Fig-
ure 4.11:

• (1) The NF will measure the RSS of the BMV2.

72

4.4 – Experimental results

Figure 4.11. Time-Space diagram for the Register-based RSS measurement steps.

• (2) The NF will send the subscription-register packet for i-th variable_ID
and waits 1 second for receiving the reply. If it does not receive the reply it will
resend the same packet.

• (3) The P4-switch generates the bit-mask of the input port of the packet and will
save the bit-mask inside its i − 1-th internal register. Then it mirrors the received
packet, back to the sender NF as a register-reply.

• (4) If the NF receives the reply, it increases the value of the i to the i + 1 and goes
to the step (1).

The result of the measurement is shown in the Figure 4.12:
It is clear from the Figure 4.12 that the RSS size of the switch is not showing any

changes. By checking the register’s value of the switch with the help of the bm_CLI
process, it becomes clear that the registration was done correctly and completely as all
the registers had non-zero and equal values. By repeating several times the whole test,
only from one total test to another total one, the total RSS size was changing. From
the definition of the RSS, the variation of the measured RSS, in the case of recompiling
and restarting the switch at the beginning of each total test was reasonable, as, in each
start, the amount of the shared libraries inside the memory was changing. But the
constant value for the RSS during our rule installations, which is a kind of writing in
the memory, may have only one explanation: That part of the memory assigned to
the Registers is occupied somehow by the BMV2 at each start!, this might be
due to how the developers of the BMV2 defined the registers. If this assumption is right,
then in this scenario, we expect that the effect of defining each of the registers inside
the program, to be equal to what we expect from installing one rule inside the switch
in terms of the memory occupancy increment. So for simulating the effect of the rule
installation, instead of just sending a SUB-register request and wait for the reply from

73

Implementation and experimental validation

Figure 4.12. Register-based RSS measurement with the ps command.

the switch, we needed to repeat some more steps. We needed to change the amount of
the registers inside the P4 program of the switch, compile the program, prepare and start
the needed Mininet environment, start the switch, measure the RSS, shutdown properly
the switch and the Mininet environment, for each test value. For automation the test
steps we used the time -v command. Due to the RSS definition, and its behavior inside
the Linux, for different runs with the same number of the registers, we will have different
measured values, we decided to repeat the test several times for each value of the registers
and calculate the 95% confidence interval for the measured values. The test algorithm is
described in the below pseudo-code:✞ ⊵

1 for i in range (1, 129): # Number of the test steps (128)
2 SET the number of registers equal to i
3 for j in range (10): # Number of the measurements per each test step (10)
4 RUN the scripts of starting the switch as an argument of the time -v command
5 STORE the RSS upper - bound measurement of the BMV2 process by the time

-v command
6 j = j+1
7 i = i+1✝ ✆

To have a better view of the memory occupancy behavior, we added a linear regression
over the mean values of the calculated 95% confidence intervals. For showing the stability
of our results, we repeated the whole tests with three different numbers of the test steps
and three different numbers of the measurements per each test step. The result of the
measurements is shown in the Figures 4.13, 4.14 and 4.15:

The linear regressions of the results have the same slope, which shows the stability of
our measures.

74

4.4 – Experimental results

Figure 4.13. Register-based RSS measurement using time command, with 128 steps
and 10 measures for each step.

Figure 4.14. Register-based RSS measurement using time command, with 64 steps
and 20 measures for each step.

Embedded controller-based with P4 switch

In this scenario, as we are using a Match-Action table instead of registers. By considering
the fact that, we are using the RMT(Re-configurable Match Table), so theoretically for
each rule registration, at least we need to store a Key for the Match, and a value for the
Action. Because we are using the Exact matching on an IP address, so 32 bits are needed,

75

Implementation and experimental validation

Figure 4.15. Register-based RSS measurement using time command, with 32 steps
and 50 measures for each step.

and action is an integer number representing our Multi-cast group id, that adds another
32 bits. While as a minimum lower band for the needed memory we expect that, in the
experiments, we occupy at least 64-bits for each rule, the more complex structure of the
tables gives the sense that it would need more memory than the register-based solution
as it needs at least more mapping steps and for defining the table structure. We used one
NF inside one host of the Mininet and one P4 switch. For this part of the experiment,
we used the ps Linux command. After the initializing part, the subscription part of the
NF program was changed to do the measurement. The test algorithm is described in the
below pseudo-code:✞ ⊵

1 for i in range (2049) :
2 MEASURE the RSS of the BMV2 process
3 SEND subscribe packet for (VARIABLE_ID = i)
4 WAIT for (1) second # To receive the reply
5 WHILE no subscription confirm received:
6 SEND subscribe packet for (VARIABLE_ID = i)
7 WAIT for (1) second
8 i = i+1✝ ✆

The measurement phase is done inside the NF, through the steps are shown in the Fig-
ure 4.16:

The steps in the Figure 4.16 are described as bellow:

• (1) The NF will measure the RSS of the BMV2.

• (2) The NF will send the subscription-register packet for i-th variable_ID
and waits 1 second for receiving the reply. If it does not receive the reply it will
resend the same packet.

• (3) If the NF receives the reply, it increases the value of the i to the i + 1 and goes

76

4.4 – Experimental results

Figure 4.16. Time-Space diagram for Embedded Controller-based RSS measurement steps.

to the step (1).

The result of the measurement is shown in Figure 4.17:

Figure 4.17. Embedded Controller-based RSS measurement.

77

Implementation and experimental validation

Remote controller-based with OpenFlow and the Open vSwitch

In this scenario, due to the OpenFlow definitions, we are using an MMT(Multiple Match
Table) Match-Action table instead of registers or RMT tables used with the P4. At least
we need to store a Key for the Match, and a value for the Action. Because we are using
the Exact matching on an IP address and we are using the MMT tables, so theoretically
for each rule registration, we need to match the MAC destination address(48 bits), the
Ether-type(16 bits) for IPv4, theIPv4 destination address(32 bits), the IP protocol(8
bits) for the UDP, and the UDP destination port(16 bits). It means at least 120 bits
are needed for the matching part, and the action is an integer number representing our
Multi-cast group id that adds another 32 bits, which ends in 152 bits. While as a
minimum lower band for the needed memory we expect that, in the experiments, we
occupy at least 152 bits for each rule, the more complex structure of the tables gives
the sense that it would need even more memory. For this part of the experiment, we
used Open vSwitch(version 2.5.5), which supports OpenFlow versions 1.0, 1.1, 1.2 and
1.3 completely, and the 1.4 and 1.5, which are supported, but missing some features until
be enabled by the user. We used the RYU controller, which by default supports all the
OpenFlow protocols including 1.0, 1.1, 1.2, 1.3, 1.4 and 1.5. Because we are using a
rule which has only one changing part, (IPv4 Destination Address, so using different
OpenFlow versions (e.g., 1.0 and 1.3) should not make much difference between using
SMT(used in OpenFlow v1.0) and the MMT(used in other OpenFlow protocols)due to
their structural definitions. To begin the test, we used one NF inside one host of the
Mininet and one Open vSwitch. After the initializing part, the subscription part of the
NF program was changed to do the measurement and we used the ps Linux command as
the measurement tool for the RSS. The test algorithm is described in the below pseudo-
code:✞ ⊵

1 for i in range (2048) :
2 MEASURE the RSS of the OVSK process
3 SEND subscribe packet for (VARIABLE_ID = i)
4 WAIT for (1) second # To receive the reply
5 WHILE no subscription confirm received:
6 SEND subscribe packet for (VARIABLE_ID = i)
7 WAIT for (1) second
8 i = i+1✝ ✆

The measurement phase is done inside the Remote SDN controller, through the steps are
shown in the Figure 4.18:

• (1) The NF will measure the RSS of the Open vSwitch.

• (2) The NF will send the subscription-register packet for i-th variable_ID
and waits 1 second for receiving the reply. If it does not receive the reply it will
resend the same packet.

• (3) If the NF receives the reply, it increases the value of the i to the i + 1 and
repeats the scheduler from step (1).

The measurements for both OpenFlow V1.0 and V1.3 showed the same behavior,
while the measured values for the OpenFlow V1.3 were slightly bigger than the OpenFlow

78

4.4 – Experimental results

Figure 4.18. Time-Space diagram for Remote Controller-based RSS measurement steps.

v1.0. It can be due to the probable existence of extra wild-carded header fields before
the UDP destination port in the OpenFlow V1.3 (16 bits). It is worthy to recall that
OpenFlow V1.3 has 40 match fields, while OpenFlow V1.0 has only 12 match fields. Due
to their slight difference in their results we just used one of the results. The result of the
measurement is shown in Figure 4.19:

Figure 4.19. Remote Controller-based RSS measurement.

79

Implementation and experimental validation

Overall comparison

By using the linear regression of the above results, it is possible to see the estimated
behavior of the three scenarios in switch internal resource consumption for 2048 rule
installation.(see Figure 4.20)

Figure 4.20. The upper-bound measured memory consumption comparison.

The upper-bound measured and the lower-band estimated memory occupancy per
rule installation in the switch for the different scenarios are shown in the Table 4.1

Upper-bound measured Lower-bound estimated
SCENARIO memory occupancy memory occupancy

(Bytes) (Bytes)

Register-based 237×1024
2048 ≈ 118.5 64

8 = 8

Local Embedded 368×1024
2048 ≈ 184 64

8 = 8
Controller-based

Remote 1309×1024
2048 ≈ 654.5 152

8 = 19
Controller-based

Table 4.1. The upper-bound measured and the lower-band estimated memory
occupancy per rule installation

80

Chapter 5

Conclusion

In this work, we have proposed a solution for sharing the states between different Vir-
tual Network Functions(VNF) with the help of the P4 language programmable switches,
while the generality of the proposed solution makes it applicable on the OpenFlow en-
abled switches as well. The flexibility of the P4 programmable switches and the P4
language made us capable to have two different implementations in terms of switch
pipeline structure for the solution, and each of the implementations has some advan-
tages for different applications. In the second chapter of this work, we briefly recalled the
Software-Defined Networking and its most successful protocol, OpenFlow. Then we took
a look at the new approach for refining the Multi-Match Table(MMT), by introducing
the Re-configurable Match Table(RMT) as an efficient less resource-demanding approach.
The Re-configurable Match Table(RMT) led to the birth of a new, novel and state of the
art language for programming the data-planes of the new switches, the P4 language. Fur-
thermore, we reviewed the P4Runtime, an API like OpenFlow, but made for providing
the controllers with the ability to communicate with the P4-programmable switches for
different purposes, while allows them to remotely reprogram partially or the whole P4
program of the P4-programmable switches by acting as a Remote Procedure Call(RPC)
tool, or even locally by acting as an Inter-Process Communication(IPC) tool too. After
that, we talked about Network Function Virtualization, the state-full VNFs, and their
important role in the 5G networks. In the third chapter, we described our solution for
state sharing between the VNFs, which is using the Publish/Subscribe scheme. We ex-
plained the whole protocol, the phases, the general message formats, and we derived two
ways of implementing the solution, by two different methods of storing the subscriptions
inside the P4 switches, thanks to the flexibility of the pipeline programming and state
storing provided by the P4 programming language. Finally, we evaluated theoretically
the solutions and showed that their scalability in terms of the number of the NFs or the
servers is not bounded, while the P4 programmable switches internal resources is the
only upper-bound limitation for the number of variables that can be participated in our
solutions if the number of the variables do not cross the 222 variables. In the fourth chap-
ter, as a Proof Of Concept(POC), we implemented both solutions by using the Python
programming language. Then we described the possible problems or inefficiencies that

81

Conclusion

might occur due to sharing a virtual machine or host by two or more VNFs, and as a solu-
tion, we introduced and implemented a middle-ware, placed as a node between the VNFs
and their virtual machine. Finally, for comparison, we implemented a vanilla SDN based
structure with our proposed protocol and compared our solutions with it in terms of the
switch resource consumption. We showed that our solutions have more flexibility with
the help of the P4 language compared to the OpenFlow. We also showed that with the
help of the P4 language compared to the vanilla SDN using OpenFlow enabled switches,
the amount of the internal switch resources needed to successfully store the instructions
for state sharing, can be efficiently reduced to less than one third.

82

Bibliography

[1] Diego Kreutz, Fernando M. V. Ramos, Paulo Esteves Veríssimo, Christian Esteve
Rothenberg, Siamak Azodolmolky, and Steve Uhlig. "Software-Defined Networking:
A comprehensive survey". IEEE, 2014.

[2] REpresentational State Transfer (REST). https://www.ics.uci.edu/~fielding/
pubs/dissertation/rest_arch_style.htm.

[3] Common Object Request Broker Architecture (CORBA). https://www.ibm.
com/support/knowledgecenter/en/SSMKHH_9.0.0/com.ibm.etools.mft.doc/
bc22400_.htm.

[4] Simple Network Management Protocol APIs (SNMP. https://www.ibm.com/
support/knowledgecenter/en/ssw_ibm_i_74/apis/unix6.htm.

[5] OpenFlow switch specification: version 1.5.1 (Protocol version 0x06). https://
www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.
5.1.pdf.

[6] Network Configuration Protocol (NETCONF). https://tools.ietf.org/html/
rfc6241.

[7] XMPP : The open standard for messaging and presence. https://xmpp.org/.
[8] OpenFlow messages example. https://www.telematica.polito.it/app/

uploads/2018/07/sdn-switches.pdf.
[9] Stateless transport tunneling protocol for network virtualization. https://tools.

ietf.org/html/draft-davie-stt-08.
[10] Virtual eXtensible Local Area Network (VXLAN). https://datatracker.ietf.

org/doc/rfc7348/.
[11] Network Virtualization Using Generic Routing Encapsulation (NVGRE). https:

//datatracker.ietf.org/doc/rfc7637/.
[12] Chang Ching-Hao and Dr. Ying-Dar Lin. "OpenFlow version roadmap". Semantic-

Scholar, 2015.
[13] Masoud Moshref, Apoorv Bhargava, Adhip Gupta, Minlan Yu, and Ramesh Govin-

dan. "Flow-level state transition as a new switch primitive for SDN". ACM SIG-
COMM ’14, 2016.

[14] Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer Rexford, and
David Walker. "OpenState: programming platform-independent stateful OpenFlow
applications inside the switch". ACM SIGCOMM, 2016.

[15] Giuseppe Bianchi, Marco Bonola, Antonio Capone, and Carmelo Cascone. "SNAP:
Stateful Network-wide Abstractions for Packet Processing". ACM SIGCOMM, 2014.

83

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ibm.com/support/knowledgecenter/en/SSMKHH_9.0.0/com.ibm.etools.mft.doc/bc22400_.htm
https://www.ibm.com/support/knowledgecenter/en/SSMKHH_9.0.0/com.ibm.etools.mft.doc/bc22400_.htm
https://www.ibm.com/support/knowledgecenter/en/SSMKHH_9.0.0/com.ibm.etools.mft.doc/bc22400_.htm
https://www.ibm.com/support/knowledgecenter/en/ssw_ibm_i_74/apis/unix6.htm
https://www.ibm.com/support/knowledgecenter/en/ssw_ibm_i_74/apis/unix6.htm
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc6241
https://xmpp.org/
https://www.telematica.polito.it/app/uploads/2018/07/sdn-switches.pdf
https://www.telematica.polito.it/app/uploads/2018/07/sdn-switches.pdf
https://tools.ietf.org/html/draft-davie-stt-08
https://tools.ietf.org/html/draft-davie-stt-08
https://datatracker.ietf.org/doc/rfc7348/
https://datatracker.ietf.org/doc/rfc7348/
https://datatracker.ietf.org/doc/rfc7637/
https://datatracker.ietf.org/doc/rfc7637/

Bibliography

[16] Marco Bonola, Roberto Bifulco, Luca Petrucci, Salvatore Pontarelli, Angelo Tu-
lumello, and Giuseppe Bianchi. "Swing State: consistent updates for stateful and
programmable data planes". ACM SOSR ’17, 2017.

[17] Marco Bonola, Roberto Bifulco, Luca Petrucci, Salvatore Pontarelli, Angelo Tu-
lumello, and Giuseppe Bianchi. "Implementing advanced network functions for dat-
acenters with stateful programmable data planes". IEEE, 2017.

[18] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeowna nd Mar-
tin Izzard, Fernando Mujica, and Mark Horowitz. "Forwarding Metamorphosis: fast
programmable match-action processing in hardware for SDN". ACM SIGCOMM
’13, 2013.

[19] German Sviridov, Marco Bonola, Angelo Tulumello, Paolo Giaccone, Andrea Bianco,
and Giuseppe Bianchi. "LODGE: LOcal Decisions on Global statEs in pro-
grananaable data planes". IEEE, 2018.

[20] Pisa: Protocol-independent switch architecture. https://
events19.linuxfoundation.org/wp-content/uploads/2018/08/
P4-based-Programmable-Forwarding-Plane-1.pdf.

[21] P4(16) Portable Switch Architecture (PSA). https://p4.org/p4-spec/docs/PSA.
pdf.

[22] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rex-
ford, Cole Schlesinger, Dan Talaycoa nd Amin Vahdat, George Varghese, and David
Walker. "P4: Programming Protocol-independent Packet Processors". ACM SIG-
COMM ’14, 2014.

[23] P4-16 Language Specification version 1.2.0-rc. https://p4.org/p4-spec/docs/
P4-16-v1.2.0.pdf.

[24] P4Runtime Specification version 1.0.0. https://p4.org/p4runtime/spec/master/
P4Runtime-Spec.pdf.

[25] What are protocol buffers? https://developers.google.com/
protocol-buffers/docs/overview.

[26] p4lang/p4Runtime repository:P4Runtime protobuf definition files and specification.
https://github.com/p4lang/p4runtime..

[27] gRPC ducumentation. https://grpc.io/docs/guides/.
[28] ETSI NFV MANO. https://sdn.ieee.org/newsletter/july-2016/

opensource-mano.
[29] MQTT: message queueing transport telemetry scheme. https://

randomnerdtutorials.com/what-is-mqtt-and-how-it-works/.
[30] MININET An instant virtual network on your laptop (or other PC). http:

//mininet.org/.
[31] BMV2 Behavioral Model Version 2. https://github.com/p4lang/

behavioral-model.
[32] BMV2 Behavioral Model Version 2. https://github.com/p4lang/tutorials/

blob/master/P4_tutorial.pdf.
[33] OVSK Open Virtual Switch. https://www.openvswitch.org/.
[34] Open-vSwitch: Why OVS? https://github.com/openvswitch/ovs/blob/

master/Documentation/intro/why-ovs.rst.

84

https://events19.linuxfoundation.org/wp-content/uploads/2018/08/P4-based-Programmable-Forwarding-Plane-1.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2018/08/P4-based-Programmable-Forwarding-Plane-1.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2018/08/P4-based-Programmable-Forwarding-Plane-1.pdf
https://p4.org/p4-spec/docs/PSA.pdf
https://p4.org/p4-spec/docs/PSA.pdf
https://p4.org/p4-spec/docs/P4-16-v1.2.0.pdf
https://p4.org/p4-spec/docs/P4-16-v1.2.0.pdf
https://p4.org/p4runtime/spec/master/P4Runtime-Spec.pdf
https://p4.org/p4runtime/spec/master/P4Runtime-Spec.pdf
https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/overview
https://github.com/p4lang/p4runtime.
https://grpc.io/docs/guides/
https://sdn.ieee.org/newsletter/july-2016/opensource-mano
https://sdn.ieee.org/newsletter/july-2016/opensource-mano
https://randomnerdtutorials.com/what-is-mqtt-and-how-it-works/
https://randomnerdtutorials.com/what-is-mqtt-and-how-it-works/
http://mininet.org/
http://mininet.org/
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/tutorials/blob/master/P4_tutorial.pdf
https://github.com/p4lang/tutorials/blob/master/P4_tutorial.pdf
https://www.openvswitch.org/
https://github.com/openvswitch/ovs/blob/master/Documentation/intro/why-ovs.rst
https://github.com/openvswitch/ovs/blob/master/Documentation/intro/why-ovs.rst

Bibliography

[35] SCAPY Packet crafting library for Python2 and Python3 . https://scapy.net/.
[36] SOCKET Low-level networking interface for Python2 and Python3 . https://docs.

python.org/3/library/socket.html.
[37] P4 Tutorial: acm sigcomm august 2019 tutorial on programming the network data

plane. https://github.com/p4lang/tutorials.

85

https://scapy.net/
https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/socket.html
https://github.com/p4lang/tutorials

	Introduction
	Background
	Overview
	SDN
	Open Flow protocol
	Stateful SDN

	Data-plane programmability
	Overview
	PISA architecture
	Programming Protocol-independent Packet Processors (P4)
	P4 Runtime

	NFV and 5G network

	NFV state sharing
	The proposed approach
	Publish-Subscribe Model
	State sharing protocol
	State sharing phases and general packet structure
	Initializing phase
	Data Replication phase

	Protocol algorithms and scenarios
	The main algorithm
	The protocol scenarios

	Scalability analysis

	Implementation and experimental validation
	Tools and Components
	Mininet
	BMV2
	bm_CLI
	Open vSwitch
	RYU Controller
	Traffic generators
	Measurement tools

	Architecture
	The Middle-ware

	Software implementation
	NF design structure
	Middle-ware design structure

	Experimental results
	Remote Controller-based scenario with OpenFlow Switch
	Switch memory consumption comparison

	Conclusion
	Bibliography

