
Master’s Degree in Computer Engineering
Embedded Systems Track

Politecnico di
Torino

EURECOM
Télécom Paris

Implementation of Algorithms
for Synthesis of Digital

Circuits

Supervisors

Prof. Andrea Calimera
Prof. Ludovic Apvrille

Candidate

Alessandro Tempia Calvino

Industrial Supervisor
Dr. Patrick Vuillod, Synopsys

AY 2019–2020

Abstract

This thesis describes some techniques to be used in EDA synthesis tools to increase
the quality of results of digital circuits. We present circuit transformations able to
improve the delay by pushing critical signals forward in the logic. The algorithms
are applied to netlists of mapped or generic non-sized gates, without electrical
optimization. The elaborations we present are graph-based and can be used in
conjunction with generic algebraic methods. The first two algorithms rely on the
associative and distributive property which are used to restructure a cluster of few
gates to reduce the logic levels for critical paths. The last algorithm presents an
extension of the Global Flow algorithm. Global Flow is a rewiring algorithm that
minimizes a circuit by changing its set of connections to an equivalent one. The
new algorithm introduces the possibility of using global flow analysis on generic and
mapped gates. Moreover, we present a heuristic to optimize for delay rather than
for area. The algorithms have been implemented as part of the EDA tool Fusion
Compiler by Synopsys. We describe the results of some experiments showing the
potential improvement over the QoR.

ii

Acknowledgements

Firstly, I sincerely express my gratitude to my academic supervisors, prof. Andrea
Calimera and prof. Ludovic Apvrille, for their guidance and supervision during my
whole internship project.
I sincerely thank my industrial supervisor, Patrick Vuillod for his direction and
help throughout the project. A special mention goes to Luca Amaru, who always
helped me with his time and precious advice.
I would also like to express my gratitude to all members of the Synopsys’ office in
Montbonnot-Saint-Martins, in particular to the GDV team.
I thanks my mum Luciana, my grandparents Maria and Bruno, and my family
for their amazing support during this academic path. A special thanks go to my
friends and colleagues in EURECOM for the astonishing year spent together. In
particular, I thanks "Les Grillons", our family in Antibes. I thank all the friends in
my home town, in particular, Federico V., the "Casa del Nonno" members, and all
the musicians with whom I shared my passion for playing the guitar, in particular
Mario.
Moreover, I thanks my friends and colleagues in Torino for a great time spent
together. Finally, I would like to express all my gratitude to the academic institu-
tions I am enrolled in, Politecnico di Torino, Télécom-Paris and EURECOM, for
the knowledge I acquired.

iii

Contents

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Fusion Compiler . 8

1.2 Synopsys . 8

2 Pull Moves 9

2.1 Introduction . 9

2.2 Associative Property in Networks 11

2.2.1 Single Output Networks . 13

2.2.2 Multiple Output Networks 13

2.3 Pull-Level Move . 14

2.3.1 The algorithm . 15

2.3.2 Examples . 19

2.4 Distributive Property in Networks 23

2.5 Pull-Factor Move . 25

2.5.1 The algorithm . 30

iv

2.5.2 Examples . 35

2.6 Implementation . 39

3 Pull Results 43

3.1 Introduction . 43

3.2 Success rate . 44

3.3 QoR . 46

4 Global Flow 49

4.1 Introduction . 49

4.2 Global Flow Analysis . 49

4.3 Applications . 53

4.3.1 Global Flow Graph Example 54

4.3.2 A new Global Flow Graph 58

4.3.3 Rewire with a new method 59

4.4 Weights assignment . 64

4.5 Algorithm . 66

4.6 Implementation . 70

5 Global Flow Results 71

5.1 Introduction . 71

5.2 QoR . 71

5.3 Further improvements . 74

6 Conclusion 77

Bibliography 79

v

List of Tables

2.1 Logical effort of gates based per number of inputs with υ = 2 10

2.2 Parasitic gates based per number of inputs with simple layouts . . . 10

3.1 Success rate ex1 . 45

3.2 Success rate ex2 . 46

3.3 Delay QoR . 48

3.4 Area, power and runtime QoR . 48

5.1 Global Flow for delay . 72

5.2 Global Flow on mapped gates . 73

5.3 Global Flow on an already optimized design 73

vi

List of Figures

1.1 “Y”-chart of VLSI (Gajski-Kuhn, 1983) 3

1.2 Optimization space solutions for a Delay-Area trade-off 4

1.3 Generic logic with critical input signal s 6

1.4 Generic logic with critical signal s moved forward at the outputs . . 6

2.1 Not optimized network with associativity 12

2.2 Optimized network with associativity 12

2.3 Network before (a) and after pulling signal s (b) 15

2.4 Ex1: Not optimized network with associativity 20

2.5 Ex1: Optimized network with associativity 21

2.6 Ex1: Optimized network with associativity 22

2.7 Ex1: Optimized network with associativity 22

2.8 AND-OR network . 25

2.9 AND-OR network optimized . 26

2.10 AND-OR network optimized and collapsed 26

2.11 NAND-NAND network . 35

2.12 NAND-NAND network optimized 36

2.13 NAND-XOR network . 37

2.14 NAND-XOR network optimized . 38

vii

4.1 NAND decomposed circuit for rewiring example 55

4.2 Extracted Global Flow graph for s example 57

4.3 Final rewiring in circuit for s example 57

4.4 Initial rewiring in circuit for s example 60

4.5 New generated global flow graph and cut-set 61

4.6 Adding new connections to node 4 using corollary 3 61

4.7 Removing redundant connections using corollary 4 62

4.8 Final simplified circuit . 62

4.9 Initial circuit to optimize for signal s and its GF graph 63

4.10 Signal s is strongly connected . 63

4.11 Signal s is substituted with a constant 0 at the XOR gate 63

4.12 Final simplified circuit . 64

viii

Chapter 1

Introduction

Electronic Design Automation (EDA) is a category of tools used to accomplish the
design of integrated circuits. The exponential increase of requirements and design
complexity made the development of automated processes necessary to achieve a
better quality of results and productivity. EDA tools focus on the design, simu-
lation, analysis and verification, and the manufacturing preparation phases of an
integrated circuit production. EDA tools allow to lower the human interaction and
to manage large-scale designs in a reasonable time. EDA must cope with multiple
challenges: billions of transistors on a chip (VLSI), new emerging technologies, and
reduced time to market. Quality of results (QoR) is a performance indicator of
integrated circuits that is used as a quality assessment. Originally, it was mainly
based on the speed and area of a chip. Nowadays, with the needs of an evolving
industry, it is measured on several additional parameters, like power consumption,
routability, and testability.

The electronic digital design phase of the microelectronic production flow[1] is
mainly divided into three tasks:

• Modeling: hardware description (HDL)

• Synthesis and Optimization: create and optimize the logic structure

1

1 – Introduction

• Validation: check for correctness

Models can be classified into different abstraction levels:

• Architectural-level: the operations are represented by hardware resources
(adder, multiplier, register, etc.)

• Logic-level: the logic functions are represented by gates (nand, nor, xor, etc.)

• Geometrical-level: the circuit is implemented as a composition of geomet-
rical objects (layout)

Models can be described at different views:

• Behavioral or Functional: description as an abstract function

• Structural: description as an interconnection of logic elements

• Physical: description as a connection of physical objects with size, position,
and layout

The abstract levels and views can be summed up by the “Y”-chart of VLSI (Gajski-
Kuhn, 1983) in figure 1.1.

In this thesis, we will focus on logic synthesis which is the process of converting a
behavioral hardware model into an optimized structural representation[1]. Synthe-
sis creates the structure, through the interconnection of logic elements, it applies
cycles of optimization and it refines the model to a lower level of abstraction. This
process is clear if applied on the “Y”-chart in figure 1.1. The structure is created
when, starting from a behavioral view, the model is converted to a structural one at
the same level of abstraction. The optimization is an improvement of the structure
at the same level of abstraction. Finally, the refinement is the process that lowers
the level of abstraction.
Logic synthesis without optimization is meaningless. The main objective is to
find a good structure that optimizes performances, area, energy consumption, and

2

1 – Introduction

BehavioralStructural

Physical

Algorithmic-Level

RT-Level

Logic-Level

Circuit-Level
Processor,Memory,...

ALU, Register, MUX,...

Gate, Flip-Flop,...

Transistor

System Algorithm

Register Transfer Spec.

Boolean Equations

Differential Equations

Floor Plan

Block Layout

Cell Layout

Rectangle, Polygone

Figure 1.1. “Y”-chart of VLSI (Gajski-Kuhn, 1983)

testability. Optimization depends on trade-offs. For instance, the combination of
performance enhancement and area minimization creates different alternatives of
the same design as shown in the graph in figure 1.2. Faster structures tend to be
bigger due to a resource parallelization while smaller structures tend to be slower
due to a resource sharing. Constraints must be defined to guide logic synthesis
towards an implementation that satisfies, for how it is possible, the different needs.
In figure 1.2, the points in red represents sub-optimal solutions in the design space
with respect to other alternatives1. The optimal points in black are called Pareto
points.

A synthesis tool makes use of technology libraries to bind the structural design

1The solutions in black do not need to be the global minimums but they are better alternatives
that can be found with the same elaborations using different constraints or a better optimization.

3

1 – Introduction

Delay

Area

Area constraint

Delay constraint

Figure 1.2. Optimization space solutions for a Delay-Area trade-off

into a netlist of gates, and to focus on technology-dependent optimizations. The
binding process is called technology mapping.

Logic synthesis is a pretty mature topic of research, without considering the new
emerging technology applications, with several algorithms and approaches devel-
oped mainly in the last 40 years. The approaches are principally divided in two-
level and multi-level. The two-level algorithms’ goal is to find a minimal cover2

of a boolean equation, usually written in disjunctive normal form (DNF), to re-
duce the size of its representation. Those methods were particularly important
to reduce the size of programmable logic arrays (PLA). In multi-level, a circuit
is represented as a direct acyclic graph with logic equations at the nodes. This
configuration allows several additional degrees of freedom and optimization pos-
sibilities. The main methods are divided in algebraic (collapsing, decomposition,
substitution, extraction, simplification transformations), boolean (using don’t care

2A cover is a list of implicants sufficient to define a function. A cover is minimal when contains
a minimum number of irredundant implicants.

4

1 – Introduction

conditions), and graph-based. It is good to cite also the use of SAT solvers to prove
logic equivalence and simplify the logic. Moreover, different types of representation
of the circuit could be used: BDD (Binary Decision Diagram), AIG (AND-inverter
graph), MIG (Majority-inverter graph), etc. Into this mature stage of synthesis
methods, the development of new techniques is necessary to keep on improving the
quality of the digital circuits.

The typical design flow steps are the following:

1. Behavioral model description: HDL (Verilog, VHDL)

2. Floorplanning: schematic geometrical constraints for the placement of the
design

3. Synthesis: structure creation and technology-independent optimization

4. Technology Mapping: bind of the netlist to physical cells from standard
cell libraries

5. Synthesis: technology-dependent optimization

6. Placement and Routing: physical cells and interconnection optimization

7. Parasitic extraction, post-layout performance verification, and sign-
off

8. GDSII: format containing the geometrical description of the layout for fabri-
cation

In this thesis, we will present optimization algorithms applicable in steps 2 and 4.
Our research studies various graph-based transformations that improve the QoR.
We will focus especially on timing optimization, to enhance circuits’ speed, on
netlists of mapped or generic (NAND, NOR, XOR, etc.) gates but with no elec-
trical optimization, no sizing, and no buffering. This project wants to add some
transformations that could not be found with classical algebraic methods in order

5

1 – Introduction

to further improve the optimization efficiency. To better present the idea, let’s fo-
cus on figure 1.3 where one o more critical signals s are inputs to a cone of generic
logic3 with a certain property (in blue).

s

Logic

Figure 1.3. Generic logic with critical input signal s

Logic

s

s

s

Figure 1.4. Generic logic with critical signal s moved forward at the outputs

This property of the cone can be used to move signals s to the outputs of the cone
as shown in figure 1.4. Since, in the original configuration, signals s are criticals,
they are slowing down the speed of the whole cone of logic. Moving these signals
forward in the logic, after the cone, would decrease the logic levels which signals
s have to traverse improving the overall delay. The structure of the cone could be
possibly changed to allow the movement of s. The algorithms presented in this the-
sis born from this idea and from the different possible properties of the cone. The

3In figure 1.3 the AND gates represent generic gates or generic logic functions.

6

1 – Introduction

algorithm Pull-Level uses the associative property to move signals s. Pull-Factor,
instead, uses the distributive property. In the end, Global Flow[4] uses controlla-
bility conditions over the cone of logic.

The goal of the thesis is to develop the algorithms that use this idea and these
properties to show a beneficial improvement over the QoR once integrated inside a
synthesis flow. In particular, we will also demonstrate that these logic transforma-
tions are not covered by existing algebraic methods. This project contains many
challenges regarding the development of efficient algorithms, the identification of
properties in a mapped netlist and the integration inside an industrial framework.

The algorithms are implemented as a part of the tool Fusion Compiler by Syn-
opsys. Part of the framework has been adapted to support these algorithms. More-
over, optimization engines have been developed to run the algorithms over critical
parts of the circuit inside the synthesis flow. The main tasks of the engines are
the extraction of critical sections, the optimization of the structure, the costing of
the improvement, the re-mapping (if the netlist is mapped), and the re-integration
inside the circuit.

The Pull moves, based respectively on associative and distributive property, helps
to improve the total negative slack (TNS) of final optimized circuits of about 13%
in average keeping a constant area and a negligible impact over the runtime.
Due to integration challenges, Global Flow’s integration inside the synthesis flow
has not been finished. So, the QoR stats are not shown in this thesis as for the
other algorithms. But from an independent analysis of the algorithm applied to
already optimized netlists, Global Flow shows a direct potential improvement of
the worst negative slack (WNS) for deep designs which could not be flattened.

7

1 – Introduction

1.1 Fusion Compiler

Fusion Compiler is an EDA tool which is built on a single data model that allows
an RTL-to-GDSII implementation.

“The Fusion Compiler single data model contains both logical and physical infor-
mation to enable sharing of library, data, constraints, and design intent throughout
the implementation flow. The advanced data model is architected to support ultra-
large designs with the smallest possible memory footprint. The key innovation
of Fusion Compiler is synthesis and implementation tools access to each others
technology, including sharing of optimization engines between the two domains.
Fusion Compiler integrates all synthesis, place-and-route and signoff engines on a
single data model and eliminates data transfer delivering fastest design closure with
highest throughput.”[2]

1.2 Synopsys

The work has been developed during an internship of six months in Synopsys.
Synopsys is an electronic design automation company based in Mountain View,
California that focuses mainly on silicon design and verification, silicon IP, and
software security and quality. I worked in a research and development team that
works on the software Fusion Compiler. I was based in Montbonnot-Saint-Martin,
France, from the start of July to the end of December.

8

Chapter 2

Pull Moves

2.1 Introduction

Given a netlist of mapped or generic gates, but with no electrical optimization, no
sizing, no buffering, we want to optimize its structure for delay. In this chapter,
we will present two types of moves that use the associative and the distributive
property. With the term “move”, we refer to a logic transformation that affects a
small number of gates. For a delay estimation, we use logical effort based delay[3]
which is a good balance between generality, simplicity, and precision. Logical effort
estimates the delay of a gate using a delay technology model τ defined as an in-
verter driving another single identical inverter. The absolute delay is then defined
by dabs = d τ . The delay d of a gate s is described by ds = gshs+ps. g is the logical
effort of s, which is the ratio of the input capacitance of gate s and the one of an
inverter delivering the same output current. h is the electric effort of s, which is the
ratio between the input capacitance of the load and the capacitance of gate s. p is
the parasitic delay of s. Table 2.1 contains a reference of logical effort g with the
ratio υ = 2. υ is the ratio of an inverter’s pullup and pulldown transistor width1.
Table 2.1, instead, contains an estimation of the parasitic delay for simple layouts.

1Note that a n-input NAND can be implemented to have a n log(n) delay w.r.t. 2 inputs. In
practice, we do not see large input NAND/NORs in libraries but this may change in the future.

9

2 – Pull Moves

Number of Inputs
Gate type 1 2 3 4 5 n
Inverter 1
NAND 4/3 5/3 6/3 7/3 (n+2)/3
NOR 5/3 7/3 9/3 11/3 (2n+1)/3
Multiplexer 2 2 2 2 2
XOR (parity) 4 12 32

Table 2.1. Logical effort of gates based per number of inputs with υ = 2

Gate Type Parasitic Delay
Inverter pinv
n-input NAND npinv
n-input NOR npinv
n-input multiplexer 2npinv
XOR, XNOR 4pinv

Table 2.2. Parasitic gates based per number of inputs with simple layouts

Timing optimization is the most important aspect of logic synthesis. In the years,
many different techniques have been developed. In synthesis, circuits are modeled
as direct acyclic graphs (DAG’s). Every node represents a logic function or a signal,
and every edge represents a wire connection. In this representation, we can distin-
guish source nodes, which are the inputs, and sink nodes, which are the outputs
of the network. These nodes are not associated with a logic function but with a
signal. The internal nodes, instead, are represented by a boolean function or a logic
gate. In this thesis, we will use the term node or gate to refer to an internal node
of a network.

10

2.2 – Associative Property in Networks

2.2 Associative Property in Networks

In this first part, we will focus our attention on a specific cone of a network for which
the associative property is valid. In an associative logic function, the order of the
operations can be changed without modifying the logic functionality. For instance,
in the function a⊕ (b⊕ c), any permutation of the variables, like b⊕ (a⊕ c), does
not change the result of the function. In boolean functions, associative property
is valid for the operators AND, OR and XOR. In a network, each node can be
described by one or more boolean functions. Since we are working on multi-level
networks, we need to find when this property is true among a bunch of nodes in
order to reorder them to obtain a gain in delay. This operation is not trivial as it
might seem. Let’s take the following small network as an example:

g1 = ā ∨ b̄

g2 = ḡ1

g3 = g2 ∧ c̄

Doing some nodes simplification and collapsing, we can rewrite the network as:

g1 = a ∧ b

g2 = g1 ∧ c̄

This network has an associative property among signals a, b, and c̄, but, in the first
configuration, it was not easy to spot it as in the second one. In fact, in a multi-level
network, nodes can be represented by complex functions and they may exhibit this
property only when nodes are collapsed together to a unique logic function.

The associative property may be used to optimize the delay in a cone of logic.
Let’s take as example figures 2.1 and 2.2. For each node, the notation (a, r) rep-
resents the arrival time a and the required time r. Let’s suppose that the delay of
a AND2 gate, is 2. The load delay of each gate is neglected. The arrival time of a

11

2 – Pull Moves

a

b

c

d

e

(2,2)

(3,2)

(1,4)

(0,4)

(4,4)

(5,4) (7,6)

(6,6)

(9,8)

F

Figure 2.1. Not optimized network with associativity

a

b

c

d

e

(2,4)

(3,4)

(1,2)

(0,2)

(4,4)

(5,6)

(8,8)

F
(6,6)

(3,4)

Figure 2.2. Optimized network with associativity

node, or signal, is the time elapsed for data to arrive at the node. For a gate, it is
calculated as the worst arrival time among its inputs plus the delay of the gate. The
required time is the time within which data is required to arrive at some internal
node of the design. This value is originally specified by some timing constraints.
For a gate, it is calculated as the minimum required among its outputs minus the
gate delay. When, for a node, the arrival is greater than the required, the node is
considered critical. The sequence of critical nodes defines critical paths. In figure
2.1 we can see a not optimized network for which the required time at F is not
met. In figure 2.2, the same network is re-arranged using the associative property
for delay optimization. Now the required time at F is met.

In common netlists, the ordering of gates with associative property is often limited
by multiple outputs. Just imagine if, in figure 2.1, the gate connected to d and e

12

2.2 – Associative Property in Networks

has another output G. Clearly, the optimization in figure 2.2 would not be possible
as output G could not be represented in the network. The gate connected to d and
e cannot be removed. Aware of that, we will separate the analysis in two different
cases: for single-output and multi-output networks.

2.2.1 Single Output Networks

When a network is single-output, an optimal arrangement of the net can be found
using Huffman decomposition. Huffman decomposition creates an optimal ordering
of a tree of logic. Inputs are inserted in a priority queue of nodes ordered by arrival
time. Nodes with lower arrival time have higher priority. Each step, the two nodes
with the highest priority are picked and used to create together a new node. For this
node, the arrival time is calculated and, then, it is inserted inside the queue. The
algorithm ends when the queue contains only one node which is the root of a time-
optimal decomposed tree. This approach is simple and finds an exact solution. For
instance, figure 2.2 represents an application of a Huffman decomposition from the
network in figure 2.1. At the start, the priority queue contains nodes {d, c, a, b, e}.
After the first step, node dc is created. Its arrival time of max(dc, dd) + dand2 = 3
is calculated and it is inserted inside the queue {a, b, dc, e}. Proceeding with this
method, the network will be delay optimal.

2.2.2 Multiple Output Networks

When the network has multiple outputs, exact solutions are expensive and often
not solvable in a reasonable amount of time. Different types of elaboration may
be performed following some heuristics. Usually, algorithms are run on a small
cone of logic extracted by a critical driver. Here, we present an elaboration called
Pull-Level.

13

2 – Pull Moves

2.3 Pull-Level Move

The pull-level move is a timing driven logic restructuring trick whose goal is to
improve the delay across a cluster of nodes with associative property pushing some
critical signals forwards to the outputs of the cluster. Pull-Level is a graph-based
elaboration that is applied on a small sub-networks of depth 4 extracted by a
critical driver. Nodes are divided, based on the depth level, in the sets A,B, C, and
D. Some nodes at level A define a critical path through node D. The idea is to
move A nodes closer to D to reduce the number of logic levels that critical signals
have to traverse. When the associative property is blocked by multiple outputs,
nodes are duplicated in order to be able to pull critical signals up to the critical
output. An example of an application is shown below. For an understandable
notation, nodes’ names are assigned based on the set they belong to.

Inputs : a, b, g1, g2, e, f

Outputs : B, D

A = a ∧ b

B = A ∧ g1 ∧ g2

C = B ∧ e

D = C ∧ f

In this case A is critical and defines a critical path through D. D and B have
multiple outputs. The move will push the A’s fanin up to D. Here the network is
shown after the move is applied:

Inputs : a b g1 g2 e f

Outputs : B1 D

A = a ∧ b

14

2.3 – Pull-Level Move

B1 = A ∧ g1 ∧ g2

B2 = g1 ∧ g2

C = B2 ∧ e

D = C ∧ f ∧ a ∧ b

In this way critical A is moved 3 level of logic forward and the slack is improved.
The general rule, to have gain in timing, is that the associative property must
be valid at least for B and C nodes. If A and D are not associative, the pull
of one level of logic forward is anyway guaranteed. Differently from the Huffman
decomposition, this algorithm does not assure an improvement since some side
paths may be slowed down after the transformation. Each manipolation must be
tested before the commit.

2.3.1 The algorithm

The slack of a signal s can be significatly improved if s is pushed at least two levels
forward in the logic.

s
F1

F2

a
b

c
d

g s

F1

F2

s

a

b

c
d

a
b

g'

g

(a) (b)

Figure 2.3. Network before (a) and after pulling signal s (b)

In figure 2.3(a), signal s is critical and defines a critical path to F1. Since the
associative property is valid, s can be pulled closer to F1 in order to improve the
AND delay levels from two to one. But the first gate g, where s is connected, is

15

2 – Pull Moves

multi-output. To maintain the logic functionality of the network, g must be dupli-
cated to separate the critical path from non-critical. Then, in the critical path, s
can be disconnected from g and pulled up to the output F1 creating a new AND2
gate, figure 2.3(b). This is the base idea in Pull-Level to improve delay.

The move is applied on a node driver C contained in a cone of logic of size 4.
From C ∈ C, the other set of nodes A,B,D are extracted. Among the boolean op-
erators, three different types of associativity can be found: AND, OR, and XOR. To
start, let’s take into consideration networks where only these types of gates are used.

We said before that a signal s is generally improved if moved by 2 levels forward
in the logic. So we define that for the sets B and C, the nodes must have the same
associative property. For sets A and D we define three other sets:

• Same-critical: contains critical gates of the same associative type of C

• Miscellaneous-critical: contains critical gates of a different type of C

• Non-critical: contains non-critical gates

The Pull-Level move set is defined as PL = {A,B, C,D} where A = {As,Am,An},
B = B, C = C, and D = {Ds,Dm,Dn}. These sets are obtained based on the
following rules:

• C node is a critical driver of type t: AND, OR, or XOR.

• B node is a single critical fanin of C of type t. Also, B has a single critical
output through C. If these two conditions are not respected, some paths would
be slowed down once the pull move is applied. For instance, just imagine if, in
figure 2.3(a), another input of the gate connected to F1 is critical. From the
transformation in figure 2.3(b), that path would be slowed down.

• A nodes are fanin nodes of B. They are divided in same, miscellaneus and
non-critical sets. Critical nodes of type t are inserted in As, critical nodes of

16

2.3 – Pull-Level Move

different type are inserted in Am, and non-critical nodes in An. A nodes must
have one single critical output through B

• D nodes are fanout nodes of C. They are also divided in same, miscellaneus
and non-critical sets accordingly.

At the start, the algorithm executes a matching phase, starting from a node C,
where the PL sets are retrieved. This phase is run for all the critical internal nodes
in the network, in topological order, until one of them satisfies the properties. If
the right conditions are detected, the move is applied.
Nodes are considered critical when their slack is negative and within a defined
margin, small enough, from the worst one in the network. The worst negative slack
defines a path that is limiting the speed of the network.
When multiple outputs are present, some nodes must be kept in the network to
preserve its functionality. In this case, a flag don’t touch will be assigned.
The following rewiring options are detected:

• If Dn = {∅}, all D nodes are critical, the move will pull As and Am up to D

• If Dn /= {∅}, C is don’t touch

• If C is don’t touch or B has multiple outputs, B is don’t touch

• ∀a ∈ As, if B is don’t touch or a has multiple outputs, a is don’t touch

The transformation of the network consists in the following operations:

1. Select the set M = {Am ∪ fanin(As)}2. It represents all the signals to be
pulled up: Am and all the fanin of As nodes. Instead of As, we pull directly
fanin(As) because they are input to a gate with associativity t

2. ∀d ∈ Dm, create a new node CDd of type t with inputs C and M. Then
cennect CDd to d replacing C connection. Since d is not of type t, so we must
pull the signal before d creating a new gate CDd

2With the function fanin(x) we consider a set containing the input nodes of node x

17

2 – Pull Moves

3. ∀d ∈ Ds, substitute d with a node of type t with inputs {fanin(d)∪M}. The
critical signals are inserted in the fanin of d

4. Update B:

(a) If B is not don’t touch and An = {∅}, B is removed because it will remain
without inputs after the move

(b) If B is don’t touch and An /= {∅}, another node BÍ is created with An
inputs. In order to pull, the tree of logic is duplicated per B’s outputs

(c) If B is not don’t touch and An /= {∅}, B is replaced by a node of type t
with An inputs. The pulled inputs are removed from B

(d) If B is don’t touch and An = {∅}, nothing to do

5. Update C:

(a) If C is don’t touch and An = {∅}, another node C Í is created with
{fanin(C) \ B} inputs. Since BÍ, after the pull will remain without in-
puts, its input to C Í is not created. For all the CDd nodes and all the Ds
nodes, substitute C input with C Í. The optimized tree has been created

(b) If C is don’t touch and An /= {∅}, C is duplicated creating a new node C Í.
Then B fanin of C Í is substituted with BÍ. For all the CDd nodes and all
the Ds nodes, substitute C input with C Í. The optimized tree has been
created

(c) If C is not don’t touch and An = {∅}, B fanin of C is removed

(d) If C is not don’t touch, B is don’t touch and An /= {∅}, B fanin of C is
substituted with BÍ

6. ∀a ∈ As, if a is not don’t touch, a can be removed

After the move, the network is costed to verify delay improvement.

A mapped network may contain complex or generic gates as AOI21 or multiplexers.

18

2.3 – Pull-Level Move

Moreover, the mapper tends to use NAND and NOR gates instead of the less effi-
cient ANDs and ORs. So, to apply the pull-level, the gate type is not sufficient to
get the associative property type. The operation may be quite complex since it may
need to collapse all the logic into a single logic function which can be re-elaborated
using associative property. But, with this operation, it would be likely to lose the
logic structure of the network, already improved by other logic transformations,
and to be limited by multiple outputs. So, the idea is to decompose3 the circuit
accordingly to the associative property types:

1. Pull-level is applied to the original sub-network. It is likely to match a XOR
associativity (XORs are implemented, and mapped, as XOR gates)

2. The sub-network is decomposed using only AND gates and inverters. The
associative property of ANDs is matched

3. The sub-network is decomposed only using OR gates and inverters. The asso-
ciative property of ORs is matched

Since the network has a small size, more than one critical associative property
cannot be present. So, as soon as one move is successful, the algorithm returns the
optimized circuit.

2.3.2 Examples

Let’s focus now on some visual examples to understand how the network is trans-
formed by the move.
Picture 2.4, shows a network with AND associativity and a critical signal a. The
circuit can be described by the following equations:

Inputs : a, b, g1, g2, e

Outputs : F1, F2

3Rewrite complex logic functions using elementary gates

19

2 – Pull Moves

A1 = a

A2 = b

B = A1 ∧ A2

F1 = C = B ∧ g1 ∧ g2

F2 = D = C ∧ e

The retreived sets are:

A = {As = {∅},Am = {a},An = {b}}

B = {B}

C = {C}

D = {Ds = {D(F2)},Dm = {∅},Dn = {F1}}

*a

b

e

F1

F2g1

g2

Figure 2.4. Ex1: Not optimized network with associativity

First of all, we notice that a defines a critical path through F2. F1, instead, is
non-critical. The goal is to improve the delay only for F2. The only signal that
will be pulled up to F2 is M = {a}. From picture 2.5, we can notice how signal
a has be added as an input to the Ds. Morover, since both nodes B and C are
don’t touch, they have been duplicated to preserve the tree with root F1. Node C
has been duplicated creating node C Í. Node BÍ has not been created because it
would remain with a single input (it would be only a buffer). At the end of the
elaboration, we can notice how the delay of a is improved from three gate levels to

20

2.3 – Pull-Level Move

only one.

*a

b

e

F1

F2

g1
g2

Figure 2.5. Ex1: Optimized network with associativity

A network with XOR associativity and two critical gates is shown in picture 2.6.
It can be described by the following equations:

Inputs : a, b, c, d, e, g

Outputs : F1, F2

A1 = ā ∨ b̄

A2 = c̄ ∧ d̄

F1 = B = A1 ⊕̄A2

C = B ⊕ e

F2 = D = C ⊕̄ g

The retreived sets are:

A = {As = {∅},Am = {A1, A2},An = {∅}}

21

2 – Pull Moves

B = {B}

C = {C}

D = {Ds = {D(F2)},Dm = {∅},Dn = {∅}}

F2

F1

e

g

a

b

c

d

Figure 2.6. Ex1: Optimized network with associativity

In this example all the two gates A1 and A2 are critical up to F2, soM = {A1, A2}.
Moreover, B is don’t touch while C is not don’t touch. Since An = {∅}, node B is
disconneted from C to drive indipendently F1. Node C, then, remains with only
one input and so it is removed. At the end we will have a big XOR node D that will
drive the critical output, in picture 2.7. A Huffman decomposition may be applied
on D to decompose the XOR into multiple stages and optimize even further the
delay.

e
g

F1

F2

a

b

c

d

Figure 2.7. Ex1: Optimized network with associativity

22

2.4 – Distributive Property in Networks

2.4 Distributive Property in Networks

After having discussed some possible approaches for the associative property, we
now try to analyze the distributive property and how it can be used to delay
optimize a network. We define the distributivity of operator ψ over operator φ
when xψ (y φ z) can be rewritten as (xψ y)φ (xψ z) and (y φ z)ψ x can be rewritten
as (y ψ x)φ (z ψ x). In boolean algebra, operator ψ can be only an AND, while
operator φ can be an OR or a XOR. Thus, we have two possible scenarios: AND-
OR distributivity and AND-XOR distributivity.
Let’s start with an example to demonstrate how the distributive property may
improve the delay of a sub-network.

Inputs : a b c d e g

Outputs : D

A1 = a ∧ b

A2 = c ∧ d

B = A1 ∨ A2

C = B ∧ e

D = C ∨ g

This AND-OR network has a possible distributive move between C and B. If we
distribute C over B and we collapse some nodes, we obtain the following circuit:

Inputs : a b c d e g

Outputs : D

A1 = a ∧ b ∧ e

A2 = c ∧ d ∧ e

D = A1 ∨ A2 ∨ g

23

2 – Pull Moves

If an A nodes’ input is critical, its slack would be improved. Let’s try to demonstrate
it using logical effort. First we optimize the network mapping it to a NAND-INV
graph. In fact, (a ∧ b) ∨ (c ∧ d) = (a ∧ b) ∧ (c ∧ d): an AND-OR structure can be
mapped as a NAND-NAND which is more efficient. So we can rewrite the initial
network as:

Inputs : a b c d e g

Outputs : D

A1 = a ∧ b

A2 = c ∧ d

B = A1 ∧ A2

C = B ∧ e

D = C ∧ ḡ

So, for signal a we can calculate its delay to D. For simplicity, we will assume that
the input capacitance of a is equal to the load of D and all the NAND2 gates are
identical. Accordingly to table 2.1, the logical effort of a NAND2 gate is 4/3. From
table 2.1, instead, the parassitic delay is p = 2× pinv = 2. Using the logical effort
for multistage networks[3]: G = g0g1g2g3 = (4/3)4, H = Cout/Cin = 1, and the
branching effort B = 1 since there is no branching. The delay Dp at of the path
a → D is Dp = N(GBH)1/N + P = 4 × 4/3 + 4 × 2 = 13.3̄. If we use the same
method on the distributed optimized network, the delay Dp of path p = a→ D is
Dp = 2× 5/3 + 2× 3 = 9.3̄. For signal a, the delay is significatly improved.
In order to see also the other side of the medal, let’s do the same analysis for signal
e. In the not optimized network, its delay is Dp = 2 × 4/3 + 2 × 2 = 6.6̄. For the
optimized one, instead, Dp = 2 × 5/3 + 2 × 3 = 9.3̄. For signal e, as for g, this
transformation worsened the delay. Thus, to improve the delay of the network, we
must be carefull about which signals are critical.

24

2.5 – Pull-Factor Move

2.5 Pull-Factor Move

The Pull-Factor move is a timing driven logic restructuring trick whose goal is to
improve the delay across a cluster of NAND or XOR gates by pushing some signals
forward towards the outputs of the cluster. There are two types of pull-factor
moves, AND-OR and AND-XOR. As Pull-Level, it is applied to sub-networks of
depth 4 with distributive property between B and C. The idea is to pull C node
back to A level, for critical nodes, to reduce the levels of logic of critical paths.
Let’s take the following network showed in picture 2.8. In this case a and c are
critical and define a critical path through F1.

a

b

c

d eg

f

F1

Figure 2.8. AND-OR network

Inputs : a b c d g e f

Outputs : D

A1 = a ∧ b

A2 = c ∧ d

B = A1 ∨ A2 ∨ g

C = B ∧ e

D = C ∨ f

In this network, we will proceed with the method we have seen in the previous
section. The network, in picture 2.9, is obtained using the distibrutive property

25

2 – Pull Moves

of the AND over the OR. Collapsing the OR gates, we obtain the circuit in figure
2.10.

a
b

c
d

e

e

g

e

F1

f

Figure 2.9. AND-OR network optimized

a
b

c
d

e

e

g

e

F1

f

Figure 2.10. AND-OR network optimized and collapsed

Inputs : a b c d g e f

Outputs : B1 D

A1 = a ∧ b ∧ e

A2 = c ∧ d ∧ e

26

2.5 – Pull-Factor Move

C = g ∧ e

D = A1 ∨ A2 ∨ C ∨ f

The delay of signals a and c is improved. Of course, the delay of e and g is worsened
but, since these signal were not critical, the slack at F1 is improved.

If Pull-Factor is applied on a mapped network, it is very unlikely to find AND
and OR gates. Their implementation is particularly unefficient with respect to
NAND and NOR gates. Moreover, we saw in the previous section how easily the
AND-OR sequence may be rewritten as NAND-NAND. Thus, we decided to work
on a NAND, INV, XOR decomposed network which will give us enough general-
ization to apply the algorithm and to detect the distributive proprieties. The new
matching sequences will be NAND-NAND and NAND-XOR.

Let’s introduce another concept linked to a NAND-XOR structure. Distributive
property, is valid over XORs but not over XNORs. Also, inputs are NANDs which
cannot be distributed. But XOR gates have a parity property: a⊕ b̄ = ā⊕b = a ⊕̄ b,
and ā⊕ b̄ = a⊕ b. Also a⊕ b = a⊕ b⊕ 0, and a ⊕̄ b = a⊕ b⊕ 1.
So let’s see two cases of how the inverters can be simplified to show a distributive
property.
Example 1:

A1 = a ∧ b

A2 = c ∧ d

B = A1 ⊕ A2

C = B ∧ e

Using the parity property of XORs, we can push and simplify the inverters of the
NAND gate in A1 and A2. Moreover we can rewrite C as AND+INV.

A1 = a ∧ b

27

2 – Pull Moves

A2 = c ∧ d

B = A1 ⊕ A2

C = B ∧ e

C Í = C

Now, the distributive property is clear and we can distribute e over A.

A1 = a ∧ b ∧ e

A2 = c ∧ d ∧ e

B = A1 ⊕ A2

BÍ = B

After the move, we NAND decompose the network and we collapse the inverter BÍ

over the XOR gate.

A1 = a ∧ b ∧ e

A2 = c ∧ d ∧ e

B = A1 ⊕̄A2

Let’s take, instead, a network where the inverters’ parity around the XOR gate is
odd.
Example 2(a):

A = a ∧ b

B = A⊕ c

C = B ∧ d

Let’s move the inverter over the XOR.

28

2.5 – Pull-Factor Move

A = a ∧ b

B = A ⊕̄ c

C = B ∧ d

C Í = C

Since an inverter is still present over the XOR gate, we add one input at 1 which
substitute the inverter.

A = a ∧ b

B = A⊕ c⊕ 1

C = B ∧ d

C Í = C

Now, the distributive property is valid. Applying the move and simplifying the
logic:

A1 = a ∧ b ∧ d

A2 = c ∧ d

B = A1 ⊕ A2 ⊕ d̄

The inverter C Í has been simplified over the XOR after inserting back the inverters.

Another alternative could be to move the inversion over c.
Example 2(b):

A = a ∧ b

B = A ⊕̄ c

C = B ∧ d

29

2 – Pull Moves

C Í = C

A = a ∧ b

B = A⊕ c̄

C = B ∧ d

C Í = C

A1 = a ∧ b ∧ d

A2 = c̄ ∧ d

B = A1 ⊕̄A2

In example 2(b) we obtain less literals, thus a smaller network, than in example
2(a). The choice between the two is based on the nodes criticality and it will be
deepen in the next section.

2.5.1 The algorithm

In the previous section, we saw how we can use the distributive property to enhance
the delay in a network. Here we will define a strategy and a general approach to
restructure the logic. As for Pull-Level, the move is applied to a sub-network of
depth 4. Accordingly the same set of nodes are extracted: PF = {A,B, C,D}
where A = {As,Am,An}, B = B, C = C, and D = {Ds,Dm,Dn}. The matching
methodology, anyway, is different. We remind that the move works on a NAND-
XOR-INV decomposed network. All the inverters, input to XORs, are pushed
through using parity property. Here we define the matching rules:

• C node is a critical gate of type NAND

• B node is a single critical fanin of C, with only one critical output to C, of type
t: NAND, XOR or an inverter. If it is an inverter, its fanin must be a XOR

30

2.5 – Pull-Factor Move

gate. That XOR will be the B node, the inverter will be named Binv, and
the type t will be XOR. If B has multiple critical outputs or C has more than
one critical input, the algorithm could not be applied since some paths would
be slow down from the pull. This concept has been previously demonstrated
using logical effort.

• A nodes are fanin nodes of B. They are divided in same, miscellaneous and
non-critical sets. Critical nodes of type NAND are inserted in As, critical
nodes of different type are inserted in Am, and non-critical nodes in An. A
nodes must have one single critical output through B.

• D nodes are fanout nodes of C. They are also divided into same, miscellaneous
and non-critical sets. Critical nodes of type t are inserted in As, critical nodes
of different type are inserted in Am, and non-critical nodes in An

As for Pull-Level, when multiple outputs are present, trees of nodes are duplicated
in the network to preserve its functionality. The flag don’t touch will be assigned
to these nodes. If, during the B matching phase, an inverter is detected (NAND-
XOR case), the flag invx will be set. We need to be aware that also the inverter
might have multiple outputs. More conditions with respect to Pull-Level have to
be considered.
The following rewiring options are detected:

• If Dn /= {∅}, C is don’t touch

• If ∃invx, if C is don’t touch or Binv has multiple outputs, Binv is don’t touch.

• If C is don’t touch or Binv is don’t touch or B has multiple outputs, B is don’t
touch

• ∀a ∈ As, if B is don’t touch or a has multiple outputs, a is don’t touch

From now on, once the pull type and the PF sets are retreived, for simplicity, the
algorithm explaination will be sepatated for NAND-NAND and NAND-XOR.

Transformation for NAND-NAND pull factor type:

31

2 – Pull Moves

1. Define set N = {fanin(C) \B}

2. Update A:

(a) ∀a ∈ As if a is don’t touch, create a NAND node aÍ with inputs {fanin(a)∪
N}. C side inputs are distributed to As . Then, add node aÍ to setM

(b) ∀a ∈ As if a is not don’t touch, replace node a by a NAND with inputs
{fanin(a) ∪N}. C side inputs are distributed to As. Then, add node aÍ

to setM

(c) ∀a ∈ Am, create an inverter ia at the output of a. Then, create a NAND
node aÍ with inputs {N ∪ ia}. C side inputs are distributed to Am. aÍ is
added to setM

3. Update B and C if An /= {∅}:

(a) Create a new NAND node BÍ with inputs An. If B is not don’t touch, B
is replaced by BÍ

(b) If C is don’t touch, duplicate C creating a new node C Í. Substitute B
fanin of C Í with BÍ. C Í is a root of the non-optimized tree

(c) If C is not don’t touch but B is don’t touch, substitute B fanin of C with
BÍ. C is a root of the non-optimized tree

(d) If ∃C Í , then C Í is added to setM else C is added to setM

4. Update D:

(a) ∀d ∈ Ds, create a new NAND node dÍ with inputs {M \ {C,C Í}} and
replace d with dÍ

(b) ∀d ∈ Dm, a new NAND node dÍ with inputs M is created. Then dÍ is
inverted creating a node dÍ

inv. Finally, dÍ
inv is connected to d replacing the

connection with C

5. If An = {∅}, if C is not don’t touch, C is deleted

6. If An = {∅}, if B is not don’t touch, B is deleted

32

2.5 – Pull-Factor Move

When we have to apply a NAND-XOR logic transformation, we have to deal with
more complex operations. We saw some properties of XOR in the previous section
and we have to generalize and easily implement them. In particular, we focused on
how a NAND-XOR can be transformed into a AND-XOR and how we can manage
the inverters to be able to apply the distributive property. An inverter must be
moved if the number of A same critical plus a possible inverter after the XOR is
odd. This is simply using the parity property to see if the inverters can be simpli-
fied. If the value is odd, or the inverter is moved to A non-critical signals, or an
input at constant 1 is added to the XOR. Moreover, an inverter might be added
also at D level. In fact, the second possible section, XOR-NAND-XOR, can be
rewritten as XOR-AND-XOR-INV. This inverter can be simplified if the number
of NANDs and inverters inserted at its input after the transformation is odd.

Transformation for NAND-XOR pull factor type:

1. If ∃invx and Binv is don’t touch, Binv is removed from the network. It is done
because the inverter will be moved to another operator

2. If An = {∅}, the flag ta is set

3. If |As| + invx is odd, an inverter must be distributed. Save this inside a flag
cnst1.

4. If |As|+ |Am|+ (ta ∧ cnst1) + ¬ta + 1 is odd, an inverter must be inserted to
Ds outputs. Set the flag invd

5. Define set N = {fanin(C) \B}

6. Update A:

(a) ∀a ∈ As if a is don’t touch, create a NAND node aÍ with inputs {fanin(a)∪
N}. C side inputs are distributed to As . Then, node aÍ is added to set
M

33

2 – Pull Moves

(b) ∀a ∈ As if a is not don’t touch, replace node a by a NAND with inputs
{fanin(a) ∪ N}. C side inputs are distributed to As. Then, node aÍ is
added to setM

(c) ∀a ∈ Am, create a NAND node aÍ with inputs {N ∪ a}. C side inputs are
distributed to Am. Then, node aÍ is added to setM

(d) If cnst1 and An = {∅} (ta), create a new NAND node with inputs N and
add it to setM. Here a new input, at 1, is connected to the XOR and the
side signals of C are distributed over it (previous section, example 2(a)).

7. Update B, C if An /= {∅}:

(a) If cnst1, create a new XNOR node BÍ with inputs An. If B is not don’t
touch, B is replaced by BÍ

(b) If ¬cnst1, create a new XOR node BÍ with inputs An. If B is not don’t
touch, B is replaced by BÍ

(c) If C is don’t touch, duplicate C creating a new node C Í. If invx, substitute
Binv fanin of C Í with BÍ, else, substitute B fanin of C Í with BÍ. C Í is a
root of a non-optimized tree

(d) If C is not don’t touch but B is don’t touch, if Binv is don’t touch substitute
Binv fanin of C with BÍ, else, substitute B fanin of C with BÍ. C Í is a
root of a non-optimized tree

(e) If ∃C Í , then C Í is added to setM else C is added to setM

8. Update D:

(a) If invd, ∀d ∈ Ds, create a new XNOR node dÍ with inputs {M \ {C,C Í}}
and replace d with dÍ

(b) If ¬invd, ∀d ∈ Ds, create a new XOR node dÍ with inputs {M \ {C,C Í}}
and replace d with dÍ

(c) If invd, ∀d ∈ Dm, a new XNOR node dÍ with inputsM is created. Then
dÍ is connected to d replacing the connection with C

34

2.5 – Pull-Factor Move

(d) If ¬invd, ∀d ∈ Dm, a new XOR node dÍ with inputsM is created. Then
dÍ is connected to d replacing the connection with C

9. If An = {∅}, if C is not don’t touch, C is deleted

10. If An = {∅}, if B is not don’t touch, B is deleted

An important improvement of this move is in the NAND-XOR case. A network
with logic blocked between XORs is difficult to rearrange in a better way using
normal algebraic methods. This move can remove stuck logic from XORs so that
further optimizations can be activated.

2.5.2 Examples

Let’s try to analyze some examples of Pull-Factor applications. In the first figure
2.11, a NAND-NAND structure with two critical signals a and c is shown.

a

b

c

d eg

f

F1

Figure 2.11. NAND-NAND network

The circuit in the picture can be rewritten in an AND-OR structure as follows:

A1 = a ∧ b

A2 = c ∧ d

B = A1 ∨ A2 ∨ ḡ

C = B ∧ e

35

2 – Pull Moves

D = C ∨ f̄

From this structure, is clear that C can be distributed over B trying to gain logic
levels. We can so retreive the sets: The retreived sets are:

A = {As = {A1, A2},Am = {∅},An = {g}}

B = {B}

C = {C}

D = {Ds = {D},Dm = {∅},Dn = {∅}}

The nodes are not don’t touch. The set of signals to be distributed back is N = {e}.
A1 and A2 are simply updated with an additional input e. For An = {g}, the previ-
ous B gate, since it would remain with only one input, it is simplified as an inverter.
Then, D node can be update with the additional inputs A1 and A2. In picture 2.12,
we can see the final optimized structure. The logic leves of the critical paths has
been reduced.

a
b

c
d

e

e

g

e
f

F1

Figure 2.12. NAND-NAND network optimized

The second example, in picture 2.13, instead, explains the NAND-XOR distribu-
tivity. Signals a and b are critical. The circuit can be represented by the following
equations:

36

2.5 – Pull-Factor Move

A = a ∧ b

B = A⊕ g1 ⊕ g2

C = B ∧ e

D = C ⊕ f

e

f
F1

a

b
g1
g2

Figure 2.13. NAND-XOR network

So we can extract the sets:

A = {As = {A},Am = {∅},An = {g1, g2}}

B = {B}

C = {C}

D = {Ds = {D},Dm = {∅},Dn = {∅}}

All the nodes are not don’t touch and not ta. To start, we check if we need to
distribute some inverters over the XOR gates:

• |As|+ invx = 1 is odd. An inverter (flag cnst1) must be distributed over B

• |As|+ |Am|+ (ta ∧ cnst1) + ¬ta + 1 = 3 is odd. An inverter must be added to
D

Luckily, since An /= {∅}, the inverter cnst1 can be distributed to the B side non-
critical inputs, using the parity property of the XORs, without adding a constant
input at 1. The inverter, over D, transforms the XOR to a XNOR. The updated
equations will be the following:

37

2 – Pull Moves

A = a ∧ b

B = A⊕ (g1⊕ g2)

C = B ∧ e

D = C ⊕ f

In this configuration, signal e can be distributed over B to A and (g1⊕ g2). Con-
necting and distributing e we obtain the following structure:

A = a ∧ b ∧ e

B = g1⊕ g2

C = B ∧ e

D = A⊕ C ⊕ f

Then, we can restore the inverters over the ANDs to re-establish the initial con-
figuration. The final optimized circuit is shown in picture 2.14. In this example,
it is clear how critical signals are pushed forward in the logic using distributive
property, improving the delay.

e

e

f

F1

a

b

g2

g1

Figure 2.14. NAND-XOR network optimized

38

2.6 – Implementation

2.6 Implementation

The pull moves apply a simple logic transformation that can be used in small net-
works. A combinational part of a design contains usually thousands and thousands
of gates. These moves are inserted inside an optimization engine whose objective
is to extract small critical sections of a design hierarchy, apply some logic trans-
formations, and insert them back in the design. These moves work on an already
mapped design.
The main execution sequence is the following:

1. Compute the slack on the design

2. Select critical gates for each hierarchy based on the slack

3. For all the critical gates:

(a) Extract a small cone of logic

(b) Apply the moves to the cone

(c) Apply some further simple elaboration to prepare the network to the map-
per

(d) Re-map the cone

(e) Compute the cost per move based on a delay/area trade-off

(f) Apply the best move

4. Go back to point 1

Since the two pull moves work on a different specific property, and since it is
impossible to implement both of them on the same network of size 4, they are
executed in parallel. All the moves are competing to be applied.
The Pull moves can be inserted in three parts during the optimization flow:

• On a mapped but not placed design. The engine works on the worst critical
paths

39

2 – Pull Moves

• On a mapped and placed design. The engine works on the worst critical paths

• On a mapped and placed design. The engine works on the paths with negative
slack to improve the total negative slack

In the next chapter, we will discuss the results of these implementations together
with other existing algorithms.

When we presented the pull moves, we did not explicitly explain how a node or
signal is defined as critical. We said only that a signal is considered critical if its
slack is negative and within a threshold from the worst negative slack. In the im-
plementation, the threshold is described by a constant factor f , which is obtained
experimentally. It is used to multiply the NAND2 standard delay of the design
to obtain a delay value. So, a signal is considered critical if its slack is negative
and lower than wns+ f × dnand2. Previously, we saw how some signals may result
slowed down by the pull transformations. It is important to set a good threshold
value to mark as critical also those signals whenever they would be surely slowed
down.

Two slightly different implementation versions have been developed. The Pull
moves are effective on a very specific circuit topology. If an associative or dis-
tributive property is not found, the move cannot be applied. Moreover, as we said,
the delay improvement is not assured by the logic transformation. So we do not
expect the pull moves to be applied as often as generic algebraic methods. For this
reason, we might try to be more pedantic and to early bail out the pull moves,
before re-mapping, whenever an improvement is not detected, using a logical effort
based delay model. In the new alternative, the inner loop, for pull moves, works as
follows:

1. Extract a small cone of logic

2. Apply the moves to the cone

3. If a move is not applied, mark it as unsuccessful

40

2.6 – Implementation

4. If the move is applied, cost it. If the worst negative slack is not improved,
mark it as unsuccessful and return

5. If successful, apply some further simple elaboration to prepare the cone to the
mapper

6. Re-map the cone

7. Compute the cost for a delay/area tradeoff

8. Apply the best move

This modification can be seen as an improved version for runtime but, actually,
that filter could modify the resulting QoR. A good structure of the cone, even if
the network is not significantly improved after a pull move, can still be found during
the pre-mapping optimization and the re-mapping. But, furthermore, it is likely
that, if a change is not significantly successful, it will not carry over the change to
the following stages of optimization as it may be easily rewritten by another logic
transformation.

41

42

Chapter 3

Pull Results

3.1 Introduction

In this chapter, we will discuss the results of the pull moves inserted inside the
EDA tool Fusion Compiler. The used benchmarking system is the official internal
one in Synopsys. The published information are generalized and simplified due to
confidentiality reasons. We will analyze the average QoR in three points during the
whole flow, in order:

• PC: before initial physical optimization

• DC: after initial physical optimization

• IC: after final physical optimization

The pull moves are executed in the first part of the flow, before the initial physical
optimization. From the PC results, we expect more the influence of the pull moves
as the data is extracted a few steps after. But it will be interesting to see if the
changes will add a positive influence over the following steps of the optimization
flow.
It is particularly important to understand the contribution of each move. For
this reason, we are going to present two different reports. The first one will show

43

3 – Pull Results

and compare the success rate of the pull moves. Since moves compete to be imple-
mented, it is necessary to analyze how many times they are effectively implemented
on a design. This selection parameter will help to understand the potential improve-
ment that can be generated over the flow. The second report will present the QoR
results from the Synopsys benchmarking system.
During the tests, we compared two different types of execution:

• ex1: vanilla implementation

• ex2: optimized version for runtime, the move is costed also before mapping

As a reminder, we will apply the pull moves in three stages in the flow with different
optimization strategies:

• PC1: On a mapped non-placed design for WNS

• PC2: On a mapped placed design for WNS

• PC3: On a mapped placed design for TNS

3.2 Success rate

Study the success rate of a move is important to understand how much impact a
logic transformation may have on a final design and if it is worth it to use it. The
data has been collected from several combinational designs1 at PC1 stage. The
results in PC2 and PC3 are comparable to PC1. Different metrics are taken into
account:

• NumApp: the overall number of applications (executions) of the move over
the designs

1ex1 results are extracted from an average over 42 designs while ex2 on 63. Anyway, the
results can be compared since we are interested only at the ratios that are stable among the
test cases. That is why ex2 has a greater number of applications than ex1. The 42 designs are
included in the 63.

44

3.2 – Success rate

• NumSucc: the overall number of successful executions over the designs. A
move is considered successful if the delay improves

• NumFail: the overall number of not successful executions over the designs

• FailRate: percentage of failed executions: NumFail/NumApp

• Impl: the overall number of times the move is implemented over the designs

• Elapsed: overall elapsed time executing the move

In addition to Pull-Level and Pull-Factor, another existing move, which uses alge-
braic methods, has been inserted in the results for a comparison. Note that other
moves are applied in the engine.

The results for ex1 are shown in the table 3.1. The fail rate is comparable to
a general algebraic method while the number of implementations is only the 30%.
As we said before, we expect the pull moves to be applied fewer times than an
algebraic transformation. So why the failure rate is low? It is mainly due to the
pre-mapper optimization and the mapper which are always executed. We will refer
to this behavior with the name of false success. In fact, even if a move is not
successful, the logic can be slightly improved by the mapper. This behavior can
be noticed by the low number of implementations with respect to the success rate.
Moreover, if false successful moves are implemented, it is likely that the transfor-
mation they propose will not be significant over the flow.

Move NumApp NumSucc NumFail FailRate Impl Elapsed
PullFactor 68824 29337 39487 0.574 384 1039.25
PullLevel 68826 30791 38035 0.553 342 721.27
Algebraic 68823 31980 36843 0.535 996 1289.69

Table 3.1. Success rate ex1

Table 3.2, instead, contains the success rate for ex2. Here the failure rate is very

45

3 – Pull Results

high as the number of failures. Generally, the filter we have inserted is excluding
about the 85% of the moves that before were considered successful. The false suc-
cess happens often. If we compare also the number of implementations over the
number of success, we notice that, from a 1.1% for ex1, it grows up to 2.1% for ex2.
As a reference, for the algebraic method, it is 3.1%. Furthermore, the elapsed time
is considerably decreased. The final number of implementations is about the 11% of
the algebraic method. It is a good result considered the specific field of application
of the moves. Moreover, this 11% should be guaranteed as a good transformation.

Move NumApp NumSucc NumFail FailRate Impl Elapsed
PullFactor 146635 19284 127351 0.868 417 234.08
PullLevel 146642 12152 134490 0.917 345 117.71
Algebraic 146628 77323 69305 0.473 3367 1289.61

Table 3.2. Success rate ex2

Using a filter, may ex2 exclude some good elaborations? To answer this question,
we have to compare the QoR results.

3.3 QoR

The QoR has been extracted from a run over 52 industrial designs. We will show,
for each data, the mean value among the designs. For this purpose we select the
following data, extracted from the relevant stage PC, DC, and IC :

• WNS: worst negative slack

• TNS: total negative slack

• Area: total area, combinational plus non-combinational

• Tot Power: total power, dynamic plus leakage

• Runtime: compile execution time

46

3.3 – QoR

• Buf Area: area occupied by buffers

There is much more information that could be included, like wire length, congestion
or leakage power. But, to give an intuitive idea of the possible improvement that
can be obtained with the pull moves, we extract only the most relevant informa-
tion for our purposes. Moreover, all the other fields, not included in the following
results, do not contain statistically relevant information.

Another important aspect is the statistical significance which consider the standard
deviation of a result. In fact, some results can have a good average improvement
but an unstable distribution of values among the different designs. To represent
the data consistency, i.e. the statistical significance, the values will be colored
in green or red. A dark tonality represents a strong statistical relevance while, a
light tonality, represents a weak one. However, not colored values are still valuable
because they may describe a trend. Moreover, DC and IC results depend on the
optimization trajectory in the downstream flow. They can look different from one
build to another, especially during the development period when the overall code
is not frozen. To validate an algorithm, we usually rely on the best results found
and, for production, we tune the downstream flow so that we can leverage it and
consistently show benefit.

In table 3.3, the delay results are shown. If we focus our attention on PC TNS,
we can notice that the pull moves are actually improving the general delay of the
network. But this value tends to change often among the different builts. In fact,
usually, the PC delay is even better. The PC WNS, instead, is not really changed
because some endpoints in the design may not be significantly touched by these
moves. We expected, also, ex1 to be slightly better than ex2 since it is provid-
ing more alternatives. To understand if these transformations are significant, we
analyze the DC results. Here we see that the results are inverted and this trend
continues to IC. This can suggest that the false successful moves are not correlated
with significant results in the flow. Moreover, the network structure of ex2, without
false successful moves, seems to have a higher probability of improving the results

47

3 – Pull Results

further in the flow. The pull moves suggest, also, an optimization effect on the
designs. It is possible that the design may be more sensitive to further transforma-
tions over the flow. It is particularly true for pull factor which frees blocked logic
between XOR gates.

Flow DC WNS DC TNS PC WNS PC TNS IC WNS IC TNS
ex1 -0.17% -3.10% -0.19% -2.08% -0.57% -10.47%
ex2 -1.12% -6.42% +0.13% -0.50% -0.71% -13.72%

Table 3.3. Delay QoR

In table 3.4, other relevant results are shown. Even if, the PC Area is well con-
ditioned by the pull moves, they do not have much impact on the DC Area. One
important result is the big enhancement in run time of ex2 over ex1. The total
power is also moderately improved. The buffer area is instead worsened. It is un-
clear if this is a direct effect of the node duplication technique used by the pull
moves or an indirect effect caused by other moves in the flow. Also, we cannot have
a PC buffer information as the circuits are not yet buffered.

Flow DC Area PC Area DC Tot Power Runtime DC Buf Area
ex1 +0.09% -0.01% -0.29% +3.36% +1.77%
ex2 +0.09% -0.04% -0.17% +0.52% +1.44%

Table 3.4. Area, power and runtime QoR

From the results, we notice that actually, ex2 is generally better than ex1 and that
the pull moves increase the general quality of results.

48

Chapter 4

Global Flow

4.1 Introduction

In the previous chapters, we presented two methods that work on a few gates and
that are applied several times on a design. In this chapter, we will introduce a
move that restructures a whole combinational hierarchy, composed of thousands of
gates. Global Flow is a rewiring algorithm described in the paper "Global Flow
Optimization in Automatic Logic Design" [4]. The idea is to change the gates’ set
of connections to an equivalent one which optimizes the circuit. It uses techniques
of data flow analysis to summarize a circuit and to identify a class of circuits that
are equivalent. Global Flow reduces the problem of finding a connection set to a
cut in an associated summarized graph. In our work, we developed an extension
and generalization of the original algorithm. We want to extend the base idea to be
able to implement it on a mapped netlist for a delay improvement. The differences
from the original version will be explained in details over the next sections.

4.2 Global Flow Analysis

In this section, we will take some time to introduce the basic concepts to com-
prehend Global Flow. Global Flow’s original goal was to minimize a circuit by

49

4 – Global Flow

changing signal connections to another set of gates and by removing redundancies.
This is realize by obtaining global controlling information of a circuit and its wires.
In the following paragraphs, we will introduce some definitions needed to define the
algorithm. Most of the definitions are in accordance with [4].

Combinational circuits are modelled as direct acyclic graphs (DAG’s). Each node
is represented by a gate and each edge is a wire connection. Primary Inputs and
Primary Outputs are modelled also as special nodes: PI node for the former and
PO node for the latter.

“If a node i is a direct input of a node j, we will use the notation i → j. If,
instead, exist a path from node i to node j then j is reachable from i, written
as i ∗−→ j.” The set of input nodes of a node i will be referred as fanins(i) while the
set of output nodes as fanouts(i).

“Two combinational circuits C and C Í are equivalent if the corresponding out-
puts of the two circuits represent the same function.”

If x is a node in C and S is a set of nodes in C so that every path from x’s
output to the primary outputs contains a node in S, we say that x is blocked by
S.

The summary information is described by a composition of the controlling sets
of a node x ∈ C defined as

CC
ij (x) ≡ {s : if x = i then s = j}, for i, j ∈ {0,1} and x ∗−→ s. (4.1)

In few words, the set CC
ij (x) contains all the nodes s reachable from x for which a

value i on node x implies a value j on node s.

The following lemmas, from [4], will define when a connection to a gate can be

50

4.2 – Global Flow Analysis

added or removed without changing the global functionality of a circuit. For sim-
plicity of explanation, the nodes are supposed to be NAND’s. They will be next
generalized.

“Lemma 1: if i ∈ C01(s) then s may be connected as an input to node i without
changing the function.”

Proof : in a NAND gate any input at 0 can force a 1 at the output. So, if s can
control the output of i to 1, it means that it can control at least one of the inputs
to 0. So, connecting another input s, that when it is 0 the gate is already forced
at 1, and when it is a 1 it doesn’t influence the output, doesn’t change the gate
functionality. This is generally true, for simple gates1, when a node x ∈ fanins(i)
is included in Cnn(s) and the node i is included both in Cnm(s) and Cnm(x). So s
can be rewired to i without changing the global functionality of the circuit.

“Lemma 2: if s is connected to a node i and i is blocked by fanouts(s), then s
can be disconnected from i.”

Proof : if s is equal to 1, it is obvious that the circuit’s functionality remains the
same. In fact a connection removal, in a NAND gate, is equivalent to a replace of
the connection with a constant 1 since it is a non-controlling value. If instead s is
at 0, the difference in functionality will be extinguished, among all the paths, at
fanouts(s), before reaching the primary outputs.

These lemmas introduce a rewiring and a redundancy removal strategy. But this
approach, as described, is not very scalable since it can be applied only on simple
gates. The goal is to extend these lemmas on generic (AOI21, multiplexer, etc.)
and mapped gates, described by a Sum of Products2, in order to apply Global Flow

1With the term simple gates, we refer to general n-input NAND, NOR, AND and OR gates
2A SoP is a function expressed by a sum of terms (products of literals). For example: F =

51

4 – Global Flow

on mapped circuits.

We can define two types of implications. A weak implication occurs when a node
x cannot be controlled, to a value v, by a single value assignment to a fanin i ∈
fanins(x), but by only a combination of assignements to multiple fanins. In this
case v is a weak, or a non-controlling, value for x. This condition happens, for
instance, in an OR2 gate with inputs a, b, for v = 0 where both a and b must be at
0. A strong implication happens when a single value assignment to i ∈ fanins(x),
can control x to value v. Value v is a strong, or a controlling, value for x. For
instance, an OR2 gate, with inputs a, b, for a = 1 ∨ b = 1 assumes a strong value
1. Global Flow [4] restricts the rewiring to only strong controlled gates, but, ac-
tually, the idea can be extended also to the weak controlling type. The following
corollaries will extend the previous lemmas.

Corollary 3: if i ∈ Cnm(s), s can be connected as an input of i, modifying the
SOP of the node i as the following:

– Inserting an additional literal in OR with the SOP when m = 1, with positive
phase if n = 1, or a negative otherwise.

– Inserting additional literals in AND with all the cubes of the SOP whenm = 0,
with positive phase if n = 0, or a negative otherwise.

Proof: The corollary is derived from lemma 1 and easily verifiable. We will
present only two examples in order to avoid doubts. If applied to a AO21 gate,
described by the SOP i = (a ∧ b) ∨ c, where i ∈ C01(s), s can be connected to
the SOP as i = (a ∧ b) ∨ c ∨ ¬s without changing its functionality. If, instead,
i ∈ C00(s), s can be rewired as i = (a ∧ b ∧ s) ∨ (c ∧ s).

Corollary 4: If s is connected to a node i, i is blocked by a set of nodes B ∈
fanouts(s) and B ∈ {Cn0(s)∪Cn1(s)}, then the connection between s and i can be

(a ∧ b) ∨ (c ∧ d)

52

4.3 – Applications

substitute by a constant signal with value ¬n .

Proof: If s assumes the value ¬n the functionality of the circuit doesn’t change.
If instead s has the value n the difference will be extinguished at nodes in B since
they are controlled by s at n.

Corollary 3 and 4 are the base for applying the rewiring algorithm. But before
describing it entirely, a new definition must be introduced.
For a node s and a value n, we define the frontier of s F C (s, n) as the set of
nodes i such that:

• i ∈ {Cn0(s) ∪ Cn1(s)}

• ∃ path Pi : i→ j1 → j2 → · · · → PO, jl /∈ {Cn0(s) ∪ Cn1(s)}

We can also define F C (s, n) as the set of nodes i ∈ {Cn0(s) ∪ Cn1(s)} which are
not blocked by the same set {Cn0(s) ∪ Cn1(s)}.

Let’s define also the immediate fanout set IC (s, n) as the set of node i:

• i ∈ {Cn0(s) ∪ Cn1(s)}

• i ∈ fanout(s)

IC (s, n) contains all the controlled nodes which are at the fanout of s. These
nodes are blocked by F C (s, n), unless for the ones which are contained in both
sets. For instance, from the corollaries 3 and 4, we could connect s to the set
{F C (s, n) \ IC (s, n)} and substitute s with constant ¬n at {IC (s, n) \F C (s, n)}
without changing the functionality of circuit C .

4.3 Applications

In this section, we are going to understand how we can use this technique to improve
a circuit. We have defined some conditions that allow a signal to be rewired to

53

4 – Global Flow

another set of gates. In particular, to alter the connections of s, we must define a
set of node Ns so that the following conditions hold:

• Ns ∈ {Cn0(s) ∪ Cn1(s)}

• Set {IC (s, n) \ Ns} is blocked by Ns

The set of nodes Ns can be selected as a new connection set for signal s which
can be substituted for IC (s, n). It can be used to implement different types of
optimizations. For example, a minimal set of nodes decreases the number of con-
nections or, another set, more forward in the logic, can be selected to improve the
delay. The problem of finding the best set of nodes that satisfies an optimization
goal is NP-hard3. But, from the conditions we have defined, [4] presents a method
to reduce this problem using an efficient approximation by means of the min-cut
algorithm.

The information included inside the sets Cn0(s), Cn1(s), F C (s, n), and IC (s, n),
linked to the circuit topology, can be used to build a DAG which summarize the
rewiring possibilities. A cut of this graph extracts a valid set of gates Ns to whom
rewire.

4.3.1 Global Flow Graph Example

Before explaining the Global flow graph created in our implementation, let’s analyze
with an example the process proposed in [4] trying to understand how it works and
some possible improvements.
Let’s use the NAND decompose network in figure 4.1 as an example. We consider
the fanout cone of logic of signal s. Signal s is tested with the strong implication

3This follows since the satisfiability or tautology problem can be directly reduced to this
problem. It is unlikely that the problem is NP since it requires to solve an equivalence problem
between two sets of connections

54

4.3 – Applications

s
(0)

2

3

1

(1)

(1)

(0)

(1)

(1)

4

5

8 10

11

12

6

7 9

(?) (?) (1)

(1)

Figure 4.1. NAND decomposed circuit for rewiring example

value for NAND gates 0. This value is propagated through the network using
controlling conditions. As a reminder, if an input to a NAND gate is 0, the gate is
forced at 1, if all the inputs are at 1, the gate is forced to 0. In picture 4.1, we can
notice that, for every gate, an implication value is calculated. Value can be {0,1, ?}.
”?” means that the controlling value cannot be implied by the input assignement.
From the value propagation we can extract the set C01(s) (strong implication) that
will be used to build the Global Flow graph. We can also extract the set F C (s, 0)
with nodes i ∈ C01(s). The two sets contains the following nodes:

• C01(s) = {1, 2, 3, 6, 8, 9}

• F C (s, 0) = {8,6,9}

From this two sets, we can create a node inside the Global Flow graph as following:

• For each i ∈ C01(s) a node is created

• A source node is created. It represents signal s as the source of the connections

• A sink node is created. It represent the network beyond the frontier for s.
Only frontier nodes are connected to the sink

55

4 – Global Flow

Then the edges are assigned using the following strategy:

• ∀n ∈ F C (s, 0), create an edge from n to the sink

• Create SET = {F C (s, 0)}. Proceeding in a reverse breadth first order, extract
a node j from SET and find a node k ∈ fanin(j) so that k ∈ C00(s):

– If k exists, ∀i ∈ fanin(k), add an edge (i,j), add i to SET . Then remove
j from SET

– If a node k does not exists, add an edge from source to j

Let’s remember that the graph is built so that every cut is a valid reconnection set.
Then, a weight is assigned to each node. In fact, we can use the min-cut algorithm
to extract a minimal cut from the graph. For example, let’s use a strategy that
will help us to minimize the number of connections of s. In this case, is obvious
that we have to select a cut with a minimum number of nodes. So, we assign a unit
weight for each node. For the source and the sink nodes, an infinite value is set
because they are not a valid cut of the graph (source is signal s, sink represents the
network beyond the frontier). The generated graph is shown in picture 4.2. All the
possible cuts of the graph define a valid set of blocking nodes to rewire. The cut
in red {8,6,9} selects a possible min-cut of the graph. The other possible min-cut
is {2,3,9}.

Following lemma 1, s may be directly connected to nodes 8 and 6 (s was already
connected to 9) without changing the functionality of the circuit. Also, according
to lemma 2, since nodes {1, 2,3} are blocked by the cut {8,6,9}, the connection
with s is redundant and it can be removed. This will simplify node 3 and remove
it from the network. The final results is shown in figure 4.3. We can notice how
the number of connections has been reduced from 4 to 3 still maintaining the same
functionality at the primary outputs of the circuit.
By applying this method over the whole circuit, it will contribute to the decrease in
the number of connections and the overall area. But, actually, we can notice some
limitation of this approach:

56

4.3 – Applications

Src

2

1

3

9

Sink
6

8

∞ ∞

1

1

1

1

1

1

Figure 4.2. Extracted Global Flow graph for s example

s

2

1

5

8 10

11

12

6

7
9

4

Figure 4.3. Final rewiring in circuit for s example

• In this technique, especially for area, if we look for rewiring conditions only
at the fanout cone of signals, we could miss some opportunities. So would be
better to generate a dual global flow graph [6] both for the fanin (based on
observability conditions) and fanout cone

• It cannot be used for mapped gates without an extension (corollary 3, 4)

57

4 – Global Flow

• The global flow graph excludes rewiring to weak controlled nodes. This leads
to a loss in optimality when generating the graph. Moreover, some edges may
be redundant leading to bigger cutsets than necessary. In the following section,
we will see, how this can limit some optimizations

• A more flexible approach may allow us to use global flow for other optimiza-
tions as delay or wire length

4.3.2 A new Global Flow Graph

Here we try to generalize the concept of global flow trying to solve some of the
issues presented in the previous chapter. Without losing generality, our version is
mostly based on delay improvement. Thus, the dual global flow approach has not
been implemented as unnecessary for our goal.
From now on, we will proceed with a different global flow graph. It will include both
strong and weak implications as in [5]. But the weight assignment and the edges
creation strategy will be different. [4] underlines how some edges in the global flow
graph may be removed leading to a better cutset. [5] proposes an approach based
on implication graphs to remove these redundant edges obtaining good results. But
this approach is quite costly and not trivial to generalize. Our implementation fol-
lows the circuit topology.

Signal s is tested with value n and controllability values are propagated through
the network. The propagation is done also to the fanin cone of s using observability
conditions. Controllability checks if an assignment to the inputs gives information
at the outputs, observability checks, instead, if an assignment at the output gives
information at the inputs. A back-propagation is done because some observable
nodes in the fanin cone, connected somehow to the fanout cone, may reveal some
weak controllabilities. After this process, the sets Cn0(s), Cn1(s), and F C (s, n) are
extracted. Before explaining the method used for the graph generation, let’s define
another set C Í

n(s) which contains all the gates of {Cn0(s) ∪ Cn1(s)} which are not
buffers, inverters and primary outputs. C Í

n(s) will be the set used for the graph

58

4.3 – Applications

generation. Buffers, inverters, and primary outputs are excluded from the graph
since they would only increase its size without adding useful information. In fact,
it would make basically no difference to rewire to their predecessors instead. Also,
we will use the function gate(x) which returns the gate in the network linked to
the flow graph node x.
The nodes and edges are created with the following strategy:

• A sink nodes is created

• Starting from s, call a recursive function that goes through the network in
topological order and generates nodes and edges:

– For a gate g, a node i in the global flow graph is created if g ∈ C Í
n(s)

– An edge (i, j) is created if gate(i) → gate(j) or gate(i) ∗−→ gate(j) and
exists a path P : gate(i)→ b1 → b2 → · · · → gate(j) where bk is a buffer
or an inverter

– An edge (i, sink) is created if gate(i) is not blocked by C Í
n(s). To explain it

in another way, it exists a path P Í : gate(i)→ gate(j) or P ÍÍ : gate(i)→
b1 → b2 → · · · → gate(j) where gate(j) /∈ C Í

n(s) and bk is a buffer or an
inverter

• Possible edges (source, sink) are not included inside the graph. Non-controlled
fanouts of s will remain unchanged after the rewiring

4.3.3 Rewire with a new method

The new rewiring presented with corollaries 3 and 4 will be now used on the new
presented global flow graph. From now on, we will work on general networks in
order to show how the new connections can be added. Let’s introduce this method
with an example.
In figure 4.4, a small network containing generic types of gates is presented. Signal
s is tested at value 0. Then the value is propagated through the network assigning

59

4 – Global Flow

to each gate a controllability value. Thus we can extract the various sets that will
be used to build the Global Flow graph:

• C00(s) = {4}

• C01(s) = {1, 2, 3}

• C Í
0(s) = {1,2,4}

• F C (s, 0) = {4}

5

61
2

3
4

s
(0)

(1)

(1)

(1)
(0)

Figure 4.4. Initial rewiring in circuit for s example

Then the global flow graph is generated, in figure 4.5. It is based directly on the
controlling sets and the circuit topology. Signal s is connected to its immediate
fanout excluding 5 because it is a primary output. For simplicity, in this example,
a unit weight assignment strategy is used as in the original method. We can notice
that both strongly (1,2) and weakly (4) controlled nodes are both included in the
graph while the inverter 3 has been replaced by an edge. The min-cut extract {4}
as the best reconnection set.

The rewiring is based on corollary 3. Since gate 4 ∈ C00(s), we can rewire s to 4 by
adding a literal in AND with all the cubes of the SOP with positive phase. This
is equivalent to add by factorization an AND level of logic with s at 4’s fanout.
The additional connection is shown in figure 4.6. Let’s try to verify that the new
circuit is equivalent to the previous one. When s was at 0, the output of gate 4
was controlled at 0. 6 was also at 0. This characteristic is not changed in the new

60

4.3 – Applications

Src

2
1

Sink

∞ ∞

1
1

4

1

Figure 4.5. New generated global flow graph and cut-set

circuit. When s is 1, the new AND gate is positive sensitive4 to 4’s output. So,
even in this case, the circuit has the same functionality.

5

6
1

2

3
4

s

Figure 4.6. Adding new connections to node 4 using corollary 3

The controlled immediate fanouts of s, IC (s,0) = {1,3}, is blocked by node 4. So
we can apply corollary 4. The connection between s and 1 and s and 3 is subtitute
by a constant 1, the opposite of the tested value. Figure 4.7 represents this elab-
oration. If s takes value 1, the functionality remains the same. If s takes value 0,
the difference will be estinguished at the new AND node which is forced to 0.
The new optimized circuit is simplified with constant propagation, as shown in
figure 4.8.

A circuit may be optimized also if the cutset remains the same. In fact, if a gate

4The output is directly dependent by the value of 4

61

4 – Global Flow

5

6
1

2

3
4

1

s

Figure 4.7. Removing redundant connections using corollary 4

5

61
2

s

Figure 4.8. Final simplified circuit

g ∈ IC (s, n), it can be simplified using controllability conditions. Let’s see it with
an example. Figure 4.9(a) shows a sub-circuit where signal s is tested with value 1.
Logic, in blue, represents a generic part of the circuit with two outputs, inputs of
the sub-network under analysis. The tested value 1 of s, before being propagated
forward, it is propagated back through the network in Logic with observability im-
plications. Then for all the known nodes, a forward controllability implication is
executed (as we saw in the previous example). During this process, let’s suppose
that also the other fanin of 1 is known to take value 1. From the picture is clear
that the XOR gate can be controlled at 0. We proceed to generate the trivial global
flow graph associated with the sub-circuit, in figure 4.9(b). The cutset is obviously
gate 1.

In figure 4.10, we apply the corollary number 3. Signal s is strongly rewired with
an AND gate and a negative phase, since n = 1. Now s is relly controlling the
output 2 without using external conditions. This will allow us to simplify the XOR
gate.

62

4.3 – Applications

s(1)
L

o
g

ic

(1) 1
(0)

2

Src 1 Sink

∞ ∞
1

(a) (b)

Figure 4.9. Initial circuit to optimize for signal s and its GF graph

s(1)

L
o

g
ic

(1) 1

(0)
2

Figure 4.10. Signal s is strongly connected

In figure 4.11, corollary 4 is applied. Signal s is substituted with a constant 0 at
gate 1. Since s now has a direct control to the output, the circuit maintains the
same functionality.

s

0

L
o

g
ic

1
2

Figure 4.11. Signal s is substituted with a constant 0 at the XOR gate

At the end the XOR gate is simplified using constant propagation, in figure 4.12.

63

4 – Global Flow

From this example we noticed how, with controllability informations, we can op-
timize a circuit even maintaining the same cutset. This example brings a good
improvement both for delay and area since a XOR is substituted with an AND.

s

L
o

g
ic

2

Figure 4.12. Final simplified circuit

4.4 Weights assignment

Finding a better set of connections depends on a good heuristic in assigning nodes’
weights. In fact, the min-cut algorithm extracts a cut of the graphs which mini-
mizes the sum of the nodes’ weights. A new set of connections can be created to
improve the different characteristics of the circuit. If the number of connections
is lowered, the area decreases. If a critical signal is connected to a less critical set
of gates, the delay improves. If a signal is connected to a closer set of gates, in
physical placement and routing, the wire length improves. Other interesting types
of applications can be found.
The goal of this research project is to investigate methods to improve the delay in
a circuit. So, from now on, we will focus on how to adapt global flow for delay target.

From the previous sections, we can derive some conditions that affect the delay
in a circuit:

• A signal s is critical. If s is connected to a less critical set of gates, with higher
required time, the delay may improve

64

4.4 – Weights assignment

• Accordingly to corollary 3, connecting a signal to a gate is different based on
the gate type and the controllability condition. In some cases, only a literal is
added. In others, an additional gate level and an inverter must be added. We
noticed how easy was to rewire in the first example, in figure 4.3, with respect
to the second one, in figure 4.8. In general, rewire to strong controlled gate
is less expensive, in terms of area and delay, than rewire to a weak controlled
gate, exept for a node in the immediate fanout.

• We said that pushing signals forward helps the delay. We saw that also in
chapter 2 with the pull moves. An idea may be to describe how many levels
forward in the logic the signal may be rewired and to measure it in NAND2
delay units. We saw in logical effort how the unit delay was based on an
inverter driving another identical inverter. Here we do the same thing using a
NAND2 gate. We can define a number, calculated from the required time of
every gate, that will estimate how many NAND2 gate levels the signal would
be pushed forward in a rewiring involving that gate. This measure can be used
to assign the weights. Also, we can use this measure for another purpose. If a
signal is pushed forward enough, it will not be critical anymore. Pushing the
signal even forward, will not improve the delay. Thus, we can use this measure
to define a threshold where, if a signal is pushed forward enough, we decrease
the number of connections instead of the delay. This reasoning will help us for
two things:

– It helps limiting the area increase of the rewiring (delay/area tradeoff)

– Adding a connection to a gate (or path) will increase the criticality of
side inputs (or side paths). So, limiting the number of connections will
decrease this side effect.

• We saw in example 3, figure 4.9, how immediate weak controlled fanouts can
be simplified and substituted with a better gate. This new gate can improve
both delay and area. So this type of rewiring must be well considered.

Grouping all these conditions can give us a general way to assign the weights.

65

4 – Global Flow

Algorithm 1 is used to assign delay weights. G is the global flow graph while Wn is
the weight of a node n. In the algorithm, some parameters are used:

• L is a parameter that defines after how many NAND2 delay levels the rewiring
quality is independent from the delay. It is used also to linearly scale the delay
weight based on the delay level

• R is a constant used to scale the delay weight. The maximum delay weight
assignment is 2RL

• A is used as an additional weight that estimates the criticality of a connection.
It has also been tested with a dependency on the number of literals in the SOP
but it showed a worst quality of the rewiring.

4.5 Algorithm

The developed algorithm is executed for each critical input and gate s inside of
the network, excluding buffers and inverters, in topological order. The rewiring
conditions are extracted and s is rewired to a new set. These operations can be
synthesized by these following steps:

1. Test s at value v ∈ {0,1}

2. Propagate the value through the network

3. Check for conflicts

4. Extract a global flow graph based on the controlling conditions

5. Assign weights to the nodes

6. Extract the min-cut

7. Rewire s to the min-cut

(a) Connect s to the new set

66

4.5 – Algorithm

Algorithm 1 Weights computation
D = compute_depth_graph(G) ó compute nodes’ depth levels in the graph
dnand2 = get_delay_nand2()
min_req =∞
for all nodes n in G do ó Finds the minimum required time

if n is not sink then
req = min(req_time_rise(n), req_time_fall(n))
min_req = min(req, min_req)

end if
end for
Wsink =∞ ó Sink has infinite weigth
for all nodes n in G do ó Calculate weights

if n is not sink then
req = min(req_time_rise(n), req_time_fall(n))
δ = (req −min_req)/dnand2 ó Improvement in NAND2 levels
if δ > L then
Wreq

n = 0 ó Delay has not contribute
else

δÍ = 2δ ó Exponential dependancy weight
if δÍ > 2L then
Wreq

n = R ó Minimal delay weigth assignement
else
Wreq

n = R(2L − δÍ) ó Scaled delay weigth assignement
end if

end if
if Dn /= 1 and n is weakly controlled then
Wcrit

n = A ó Critical rewiring
else
Wcrit

n = 0 ó Rewiring is not critical or in the immediate fanout
end if
Wn = 1 +Wreq

n +Wcrit
n

end if
end for

67

4 – Global Flow

(b) Simplify redundant connections

8. Cost the move

9. Commit the change if successful

Now we will comment on all these operations in order to better understand how
this process works.

The first step consists in testing a value v on s. We assume that s is a constant at
value v in order to extract controllability conditions. It is mandatory to do it both
for value 0 and 1 since these values find different rewiring conditions.

In step 2, we need to propagate this assumption over the network to see how
the circuit reacts. It is based on a recursive function that implies values at the
fanin and at the fanout. But for signal s, we must separate the propagation step in
back-propagation and in a forward-propagation. The propagations are separated
because, during backward propagation, some external conditions, which may lead
to conflicts, might be found. A conflict happens when the tested signal s cannot
take value v. In this case, signal s is substituted by a constant signal at value ¬v.
One simple case is when a part of the network is a tautology. Let’s see it in a simple
example:

g1 = a ∧ b

g2 = ā ∧ b̄

g3 = g1 ∨ g2

F = g3 ∨ c

This network is a tautology. A global flow cycle is first successfully executed on
signal a tested at 0. The transformation leads the following network:

g1 = b

68

4.5 – Algorithm

g2 = b̄

g3 = g1 ∨ g2

F = g3 ∨ c ∨ ā

Now node g3 is tested at value 0. Doing a back-propagation, we notice that b is
suppose to take both value 0 and 1. This is absurd, so for g3 is impossible to
take value 0. The final optimized network, where g3 has been substituted with a
constant 1, is:

g3 = 1

F = g3 ∨ c ∨ ā = 1

At step 4, the global flow graph is generated as explained in the previous sections.
If the number of nodes in the graph is not higher than two, only source and sink,
the graph is discarted. If the graph is valid, the weight are assigned using algorithm
1 and the min-cutset of nodes is extracted.

Before executing the move at step 7, the slack of signal s is saved to check im-
provement later on. Then the new connections are created for all the gates in the
cutset:

• If the gate is an immediate fanout of s, excluding buffers and inverters, and it
is weakly controlled, s is reconnected to its output accordingly, creating a OR
or AND gate accordingly to corollary 3.

• If the gate is not an immediate fanout of s, it is connected using corollary 3.
If it is possible, s is connected as an additional input.

Then, the redundant connections are simplified using corollary 4. For all the im-
mediate fanouts of s, which are not in the cutset or are in the cutset but weakly
controlled, s is substituted with a constant value ¬v.

69

4 – Global Flow

In the end, if the slack of s is improved, the move is committed, else, it is dis-
carded.

4.6 Implementation

Global Flow is an elaboration that can be used for many purposes. Just changing
the weight strategy, many different optimizations can be achieved. In our imple-
mentation, we focused only on delay optimization. Global Flow gives the best
results on big networks since more rewiring conditions can be found. So, our im-
plementation will work directly on entire combinational hierarchies.

Global Flow is executed on all the critical hierarchies of the whole design. We
found out that the performances can be improved if the algorithm is executed two
times with different parameters. We explained, in section 4.4, how the weights
are assigned and which parameters can be used. For instance, incrementing L,
the weight depends more on the delay while, decrementing it, it depends more on
the area. The first run is the most important. It must find good connection as-
signments based on the delay. But, doing tests, we noticed that, if we do another
run to reduce the number of connections, the delay can be further improved. The
second run will have a higher A parameter. Even if the goal is to find less area
expensive connections in terms of area, the algorithm is anyway based on delay.
So the second run reduces the connections only if the delay can be improved. Of
course, the second run is executed fewer times than the first one since our global
flow rewires only on the fanout cone which results smaller after the first run.

After the algorithm is run, the modified gates of the circuit are re-mapped. Then
the move is costed and applied.

70

Chapter 5

Global Flow Results

5.1 Introduction

In this chapter, we will analyze the performance of Global Flow on different designs.
We claimed that our algorithm may be applied on a general type of gate for a delay
improvement. In the next section, we are going to present some results which
support this thesis. Unfortunately, due to a lack of time and technical challenges,
the algorithm has not been tested inside a Fusion Compiler flow. So, the results of
percentage gain at the end of physical optimization are not presented. However, we
are going to show some results on some netlists extracted from the synthesis flow,
after some initial optimizations, which could demonstrate an improvement in the
QoR.
At the end of this chapter, we will present some ideas to improve even further the
algorithm.

5.2 QoR

In this section, we will demonstrate how the quality of results of modern designs can
be improved by Global Flow. We will focus our attention on different combinational
designs characterizing them by the following parameters:

71

5 – Global Flow Results

• PI: number of primary inputs

• PO: number of primary outputs

• Nodes: number gates in the design

• Terms: number of products between literals in the design

• Lits: number of variables in the design

• WNS: worst negative slack of the design

We will look mostly for a WNS improvement but we will keep an eye also on the
number of literals and terms. The results will show the circuit’s parameters before
and after optimization. To all the designs, a zero required time has been set for all
the primary outputs in order to improve the circuit as much as possible. Thus, the
slack will be always negative. Closer the slack is to zero, faster is the circuit.

As a first example, let’s try to run Global Flow on a simple not optimize design.
All the nodes are represented by a single product of two variables. For instance, āb
is a possible node. The results, shown in table 5.1, determine how the slack can be
enhanced in a design by changing the connection set. In fact, the slack improved by
the 34%. Also, we can notice how the number of literals and terms is considerably
reduced due mainly to redundancy removal. But, on the other hand, we have also
to consider that gates with more than two inputs have been created which may
affect the decrease in the number of literals.

Stage PI PO Nodes Terms Lits WNS
Original Design 23 2 2773 2775 5546 -12.19
Global Flow 23 2 1171 1329 3068 -8.03

Table 5.1. Global Flow for delay

As we claimed that the algorithm can be used on a generic context, in the follow-
ing example, in table 5.2, we executed it on a design with generic gates, extracted

72

5.2 – QoR

from a mapped netlist. The network may contains gates as AOI22, AO21, XOR,
etc. Here the design is bigger with respect to the previous example. The WNS
is notably improved only with rewiring, without almost changing the number of
literals.

Stage PI PO Nodes Terms Lits WNS
Mapped Design 21232 21669 321413 571912 1152308 -27.43
Global Flow 21232 21669 321414 571912 1152315 -22.83

Table 5.2. Global Flow on mapped gates

As the last example, in table 5.3, we want to verify that Global Flow can be suc-
cessful also on already optimized designs. So, for this test, we will proceed with two
steps. First of all, we will apply delay-based optimizations to the original design.
Then, we will apply Global Flow on the optimized netlist. From the first pass of
optimization, we can notice a considerable delay improvement. Since a lot of oper-
ations have been parallelized, the number of nodes and literals is almost doubled.
From this optimized network, we run Global Flow. The worst critical slack of the
circuit has been further improved of about 7%.

Stage PI PO Nodes Terms Lits WNS
Original Design 1024 1231 46876 47403 93711 -79.53
Initial Opto 1024 1231 87374 133132 170258 -54.56
Global Flow 1024 1231 87286 132920 170363 -50.55

Table 5.3. Global Flow on an already optimized design

From these results, in particular from the last one, we saw how Global Flow can
apport some new logic elaboration which improves the delay. Of course, better
tests must be performed in order to show how much impact it can have on a full
optimization flow. We don’t expect it to produce noticeable improvements in flat-
tened optimized netlists. In shallow logic, it may not be able to find enough cuts

73

5 – Global Flow Results

to rewire. We believe, though, that Global Flow could improve the QoR on deeper
models.

5.3 Further improvements

During our analysis of Global Flow, we announced some limitations of the previ-
ous graphs and we focused our work to generalize the context of application. But
Global Flow loses its optimality during the creation of the graph. If some edges
are redundant, the extracted cutset may be bigger than needed. In this section, we
will introduce some improvements that may improve the quality of this algorithm.

In the graph creation section, we said how our graph is mainly based on the topol-
ogy of the circuit. All the connected implied gates in the netlist will be connected
also in the graph. This may lead to redundant connections and bigger cutsets. The
best approach would be to connect nodes only when they have a direct impact on
the controllability of the gate. Let’s take, for instance a AO21 gate with function
g = ab ∨ c. Let’s suppose that the gate g is controlled at 1 thanks to two of its
fanins: a = 1 and c = 1. In the global flow graph, both a and c nodes will be con-
nected to the g node. But we can notice that, in this assignment, the connection
between a and g is redundant as only the c assignment is sufficient to imply the
value. So, some tests must be executed to see how Global Flow performances can
be further improved.

Another similar case may lead to a bigger cutset. Let’s suppose that more than one
fanin can control by itself a gate. For instance, let’s take an OR gate g = a∨b∨c∨d.
Let’s suppose that both a and b are at one and control g to one. Only the edges
(a, g) and (b, g) are created. We can notice that only one of these two edges is
strictly necessary in order to guarantee the controllability and correctness of the
graph. Thus, a connection (a, g) or (b, g) may be removed to reduce a cutset. The
problem of selecting which edges are kept and which are discarded is mainly dis-
cussed in [5]. Some strategies and tests must be conducted to understand how

74

5.3 – Further improvements

much it may affect the quality of the min-cut, in particular for delay.

For a last point of reflection, the graph is created with only the controlled gates. We
know that we can simplify the connections when the nodes are blocked by another
set of controlled nodes. This check is realized only for the nodes in the graph. In an
alternative version, also non-controlling gates may be checked. In fact, if also other
non-controlled gates are blocked by the min-cut, their connection can be simplified
with a constant without changing the functionality of the graph.

75

76

Chapter 6

Conclusion

In this thesis, we presented some approaches to logic optimization. In particular,
the objective was to investigate methods to improve the delay on mapped or generic
netlists without electric optimization, which are not sized and not buffered.

In the first part, we focused on restructuring tricks that act on clusters of few
gates using the associative and distributive property. We built an approach based
on pushing critical signals forward in the logic and duplicating critical nodes under
multiple output trees. We inserted these algorithms into an engine responsible for
extracting sub-networks to be optimized and applying the changes whenever the de-
lay improves. From the results, we showed that these moves, in specific cases, may
find better transformations with respect to algebraic or other techniques. Moreover,
the pull moves add a valuable contribution to the QoR. In particular Pull Factor,
with its distributivity of ands over xors, can propose an elaboration that algebraic
techniques are often not able to find.

In the second part, we introduced a new approach to global flow analysis. This
approach changes, for each gate, its set of connections with an optimized equiva-
lent one. Earlier implementations were applied to circuits containing simple gates
to minimize the area. We extended the method to support mapped and generic

77

6 – Conclusion

gates. Moreover, the different graph model we use is specific for a delay improve-
ment. So, we developed a heuristic to extract a new set of connections based on
the gates’ criticality. We presented, also, some ideas for further research to create
a better graph model.
From the tests we run, global flow is effective both on generic gates and on already
optimized circuits. Compared to algebraic or other techniques, the improvement
that can be obtained varies from design to design. In particular, we do not expect
it to produce noticeable improvements on optimized flattened netlists. However,
supported by the tests we presented, we believe that on big and deep designs, which
could not be flattened, it is likely that global flow could help to improve the QoR.

78

Bibliography

[1] G. De Micheli, “Synthesis and Optimization of Digital Circuits”, McGraw-Hill,
1994

[2] Synopsys, Fusion Compiler Datasheet, 2018, https://www.synopsys.

com/content/dam/synopsys/implementation&signoff/datasheets/

fusion-compiler-ds.pdf, Accessed: 2019-09-30
[3] I. Sutherland, B. Sproull, D. Harris, “Logical Effort: Designing Fast CMOS

Circuits”, Morgan Kaufmann, 1999
[4] C.L Berman, L.H Trevillyan, “Global flow optimization in automatic logic de-

sign”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 10, No. 5, May 1991, pp. 557-564, DOI 10.1109/43.79493

[5] Shih-Chieh Chang, Zhong-Zhen Wu, He-Zhe Yu, “Wire reconnections based on
implication flow graph”, EEE/ACM International Conference on Computer-
Aided Design, Digest of Technical Papers, Feb 2000, pp. 533-536, DOI
10.1109/ICCAD.2000.896527

[6] R. Damiano, L. Berman, “Dual global flow”, IEEE International Conference on
Computer Design: VLSI in Computers and Processors, Nov 1991, pp. 49-53,
DOI 10.1109/ICCD.1991.139842

79

https://www.synopsys.com/content/dam/synopsys/implementation&signoff/datasheets/fusion-compiler-ds.pdf
https://www.synopsys.com/content/dam/synopsys/implementation&signoff/datasheets/fusion-compiler-ds.pdf
https://www.synopsys.com/content/dam/synopsys/implementation&signoff/datasheets/fusion-compiler-ds.pdf
http://dx.doi.org/10.1109/43.79493
http://dx.doi.org/10.1109/ICCAD.2000.896527
http://dx.doi.org/10.1109/ICCD.1991.139842

	List of Tables
	List of Figures
	Introduction
	Fusion Compiler
	Synopsys

	Pull Moves
	Introduction
	Associative Property in Networks
	Single Output Networks
	Multiple Output Networks

	Pull-Level Move
	The algorithm
	Examples

	Distributive Property in Networks
	Pull-Factor Move
	The algorithm
	Examples

	Implementation

	Pull Results
	Introduction
	Success rate
	QoR

	Global Flow
	Introduction
	Global Flow Analysis
	Applications
	Global Flow Graph Example
	A new Global Flow Graph
	Rewire with a new method

	Weights assignment
	Algorithm
	Implementation

	Global Flow Results
	Introduction
	QoR
	Further improvements

	Conclusion
	Bibliography

