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Summary

Deep Neural Networks (DNNs) are systems resilient to numerical perturba-
tions and architectural imprecision. This is proven through a regular perfor-
mance even after aggressive pruning, quantization, and other compression
techniques [16], which significantly reduce either the number of parameters
in the network or their precision. However, recent works [41][40] have shown
that these networks are vulnerable to surgical bit-flips in specific locations.
In [34], fault-injection techniques are used to modify one bit or more than
one bit stored in SRAM or DRAM to bring the system to misclassification.
Moreover, system level threats called adversarial attacks [13] have shown
effective ability to induce behavioural anomalies in DNNs. In fact, DNNs
are vulnerable to modified inputs crafted to yield erroneous labels, while
being undetectable to human observers. In safety-critical applications such
as transportation systems, adversarial examples could be a non negligible
threat to public safety. For this reason, attacks and defences on adversar-
ial examples draw great attention in the scientific community. On the other
hand, due to the ubiquity of machine-learning, attacks from the supply chain
such as hardware trojans emerged as a threat to DNNs security.

Spiking Neural Networks (SNNs) constitute a biologically plausible alter-
native to DNNs, because the event-based communication model between
neurons resembles more inherently the human brain. The biological affinity
brings lots of advantages. SNNs can rely on the spiking times as a source
of information therefore naturally lend themselves to be used in temporally-
dependent contexts. Furthermore, learning methods suited for SNNs mimic
more coherently the learning processes in human brain and can be employed
on-line in state-of-the-art neuromorphic hardware implementations. More-
over, due to the asynchronous and spike-based propagation, the SNN neu-
romorphic hardware is naturally more energy-efficient than classical DNN
hardware, as shown with success by neuromorphic chips like Intel Loihi [9],
IBM TrueNorth [37] and ARM SpiNNaker [11]. An analysis of statistical
and then targeted fault-injection of soft-errors is carried on. The amount of
faults injected is minimized taking advantage of a gradient search algorithm
which is capable of finding few vulnerable weights among the huge amount
of weights of a neural network. Then, the point of view of an attacker with a
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white-box knowledge of the system has been assumed: the knowledge about
vulnerable weights is exploited to craft a new attack vector that threatens
the integrity of both DNNs and SNNs. A cross-layer and layer-wise attack
against neural networks that transforms a circuit level vulnerability to a
system level security flaw is proposed. Memory bit-flips in neural networks’
parameters are exploited, through a hardware trojan triggered using a sur-
gical adversarial attack. The work is organized as follows:

� Chapter 1: the introduction to the work is provided highlighting moti-
vations, scientific challenges and novel contributions of it.

� Chapter 2: the main concepts of Artificial Intelligence, Machine Learn-
ing and Deep Neural Networks (DNNs) are presented. A focus is made
on deep learning architectures and learning algorithms.

� Chapter 3: an overview of attack strategies is provided explaining which
are the sources of threaten for an integrated circuit (IC) in general and,
specifically, for neural networks architectures. State-of-the-art attack
techniques are provided.

� Chapter 4: the main concepts of Spiking Neural Networks (SNNs) are
shown. Motivations and advantages are highlighted. Finally, different
learning methods are discussed; weaknesses and strengths of each one are
discussed. SNNtoolbox operation, which is ultimately used in the present
work to simulate the behaviour of a SNN, is introduced.

� Chapter 5: an analysis of the resilience of DNNs and SNNs when subject
to errors in the network’s parameters is performed. Statistical and tar-
geted (through the gradient search algorithm), cross-layer and layer-wise
analysis are carried on on three different datasets and four networks and
results are discussed in a critical way.

� Chapter 6: the build up of a methodology for triggering a hardware tro-
jan attack remotely through an adversarial input pattern is performed.
Moreover, the built-up of methodology guidelines for crafting an input
trigger capable of yielding maximal stealthiness and effectiveness are taken
into consideration.

� Chapter 7: the results obtained are shown and analysed. Considerations
about the hardware overhead reduction are carried on.

� Chapter 8: the results obtained are summarized and possible future
work is discussed.
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Chapter 1

Introduction

1.1 Motivations

Nowadays, neural networks have been demonstrated to perform with out-
standing accuracy into many fields and are being integrated in many human
life tasks, pervading human lives. However, the assimilation of neural net-
works in safety-critical applications such as autonomous driving, healthcare,
IoT, etc... is raising clear concerns. It has been increased the worry that
these networks can be easily fooled to produce dangerous results, with un-
deniable consequences on security and final applicability. The attack of a
neural network can be deployed in different stages from training, through
production, to the final application, with different mechanisms.
An adversarial attack is a deliberate modification of the input of a neural
network which leads the neural network itself to misbehave (reduction in
accuracy or confidence). It has been demonstrated that neural networks
can be easily fooled by adversarial attacks [54] [57] [13], which consist of
imperceptible perturbations applied on the inputs. Attacks of this kind and
related countermeasures have been extensively investigated.
The more vivid interest in adversarial attacks with respect to attacks on
internal parameters of the network is justified by the fact that DNNs have
shown excellent resilience when internal parameters are subject to errors
or approximations (soft-errors, pruning, quantization), as demonstrated in
many works [46][47][17]. However, attack vectors against internal param-
eters should not be underestimated. Sources of errors like soft-errors are
unintended, rare and randomly directed, whereas pruning and quantization
are approximations intended to reduce the complexity but must be limited to
avoid the impairment of the system itself. On the contrary, an ill-intentioned
could, in some way, target specific sensitive weights, insert errors and crush
the reliability of a neural network. The targeted fault-injection of errors,
often used as a test vector for general ICs, when targeted to neural network’s
internal parameters is highlighting the weaknesses of neural networks when
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Chapter 1. Introduction

subject to targeted attacks in internal parameters. Both high-resilience of
DNNs-SNNs to random errors in parameters and low-resilience of DNNs-
SNNs to targeted errors in parameters will be demonstrated in Chapter 5.
Another potential worrying source of attack could be the hardware trojan
attack. Due to the current silicon production chain, when a neural net-
work is implemented in hardware, it undergoes different steps from design,
through fabrication, validation/testing until the final field application. Dif-
ferent parties are involved to shorten the production chain and to let each
part focus on their expertise. However, the fact that there are so many
parties involved, opens the way to malicious attackers from different sides.
It is clear that an attacker can target one or more of these steps to deploy
an attack to the network, reducing, for example, the classification accuracy
and compromising the reliability. If an attack is deployed during the supply
chain, by insertion of hardware, an hardware trojan attack is performed.
The hardware can be crafted to be undetectable during testing, and then be
activated by external means during the application phase. If this happens,
a hardware trojan backdoor attack is performed. The concern about
hardware trojan is severe, for example, “in 2007, a Syrian radar failed to
warn of an incoming airstrike; a backdoor built into the system’s chips was
rumoured to be responsible” [38].
On the other hand, Spiking Neural Networks (SNNs) have received an in-
creasing interest in neuro-science and deep-learning for many reasons. First
of all, SNNs are biologically-plausible implementations of DNNs, which try
to reduce the gap between computation science and neuroscience, providing
a more realistic model of operation of the human brain, as well as learning
models. Different models for biological spiking neurons have been devel-
oped and studied to both mimic the actual information transport of brain
cells, providing rich firing patterns, and to be computationally supportable.
Moreover, due to their spiking activity, SNNs can leverage the spike tim-
ings as an information source and can be successfully applied in intrinsically
time-dependent problems or being integrated with event-based sensors. Fi-
nally, for their intrinsic spiking activity, SNNs naturally lend themselves to
low-energy implementations [36] and are expected to gain more and more
interest in the future. Given these many advantages, SNNs are and are
believed to become even more a promising alternative to classical DNNs in
many AI fields. Hence, it is clear how the problem of SNN security must be
carefully addressed so that potential breaches can be detected and solved.
Although many studies have been devoted to the analysis of the security
of classical DNNs, few works have been carried on about security issues for
SNNs.
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Chapter 1. Introduction

1.2 Scientific Challenges

Perturbations of the data of an IC, stored in memory elements, can degrade
its performance and has to be carefully taken into account in some appli-
cations (servers, medical-equipments, etc...). In fact, since the output of an
Artificial Neural Network depends on both inputs and internal parameters,
keeping them as clean as possible is necessary to reach satisfactory accu-
racy and confidence, which are mandatory if the system has to be applied
on safety-critical tasks. However, as previously anticipated, perturbations
on internal parameters (soft-errors) are generally considered to be negligi-
ble since they are not affecting the system performances, due to the high
resilience shown by neural networks when subject to these kinds of errors.
Nevertheless, neural networks have been demonstrated to be far less-resilient
when targeted perturbations on the internal parameters are applied.
Studying the resilience of a network when subject to errors in internal pa-
rameters is not an easy task if, for example, a fault-injection analysis is
carried on. If it is wanted to highlight which are the sensitive weights, it
would be extremely time-wasting and eventually not feasible to inject faults
in each parameter and record accuracy variations. In the following, a sys-
tematic fault-injection attack, targeting the parameters of the network, will
be deployed. It will be shown, in section 5.2, how this setup can identify
which are the most vulnerable weights of the network. In Chapter 6, errors
in these sensitive weights are exploited as payload circuitry for a hardware
trojan; the methodology to deploy an effective hardware trojan is presented.
However, the initial hardware overhead is considered to be non-negligible.
Therefore, reducing the initial hardware trojan overhead as much as possi-
ble, both in terms of area and power consumption was mandatory. In this
way, the hardware trojan can escape sophisticated hardware trojan detec-
tion and diagnosis techniques. A non-trivial challenge has been to keep the
input trigger pattern imperceptible.

1.3 Novel Contributions

Much effort has been devoted to the study of security issues of DNNs, es-
pecially on adversarial attacks. Nevertheless, just a few works have been
carried on about security issues related to Spiking Neural Networks. At the
beginning, reliability of DNNs and SNNs is considered, carrying on experi-
ments to simulate both soft-error resilience and fault-injection resilience. In
particular a Statistical Fault-Injection is carried on in section 5.1, whereas a
targeted Fault-Injection is carried on in section 5.2. These last experiments
will show how targeted perturbations in some parameters of the network,
i.e. sensitive weights, can severely reduce the reliability. In the follow-
ing, the analysis is extended to many networks and three different datasets
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Chapter 1. Introduction

and a critical analysis is carried on to highlight differences, weaknesses and
strengths of them. Besides, the analysis is carried on both on a cross-layer
basis and on a layer-wise basis, underlining how a global analysis could be
not always sufficient to have a complete view of the weaknesses of a neural
network. Finally, the results obtained in section 5.2 are leveraged in Chapter
6 to craft a hardware trojan triggered by an input pattern. To the best of
my knowledge, the first tentative to threaten the security of a SNN through
a hardware trojan hidden in the supply chain triggered by an input pattern
added to the image is carried on. The main contributions of my work are
summarized and connected in Figure 1.1.

Cross-layer

Target Layer Target Neuron Pattern Design

Trigger 
Detection
Hardware

Payload
Circuitry

C
H

A
PT

E
R

 5

SNNs
resilience

Soft-error
analysis

Fault-injection

analysis
                    
                     

                           
                     

Layer-wise

Cross-layer

Layer-wise

Hardware 
Trojan Design

                
                     

Hardware 
Design

                  
                     

Trigger 
Pattern Design

                        
                     

Neural
Network 
Model

C
H

AP
TE

R 
5

C
H

AP
TE

R 
6

                         
                     

                         
                     

Figure 1.1: Structure organization of the thesis.
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Chapter 2

From artificial intellience to
deep learning

2.1 Artificial Intelligence

Oxford Dictionary defines Artificial Intellingence (AI) as “The theory and
development of computer systems able to perform tasks normally requiring
human intelligence, such as visual perception, speech recognition, decision-
making, and translation between languages”.

Artificial Intelligence

Machine Learning

Deep Learning

Artificial Intelligence

Machine Learning

Deep Learning

A technique which enables machines to 

mimic human behaviour

Subset of AI technique which use statistical

methods to enable machines to improve with 

experience

Subset of ML which makes the computation

of multi-layer neural networks feasible

Figure 2.1: Artificial Intelligence taxonomy [Source: edureka.com].

AI is an extended subject embracing many different science areas from biol-
ogy to electronics and targets many different tasks like autonomous driving,
IoT, videogames, etc... A crucial subset of AI is machine learning.
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Chapter 2. From artificial intellience to deep learning

2.2 Machine Learning

Arthur Samuel in 1959 defined machine learning as a “Field of study that
gives computers the ability to learn without being explicitly programmed”.
A more rigorous and recent definition from is the one from Tom Mitchell
in 1998 which states “A computer is said to learn from experience E with
respect to some task T and some performance P, if its performance on T,
as measured by P, improve with experience E”. Generally speaking, what
is wanted to do is to build up a model f(X,Θ) that has to predict some
particular result Y given a set of inputs features X and having some set of
parameters Θ, so that

Y = f(X,Θ).

The model is trained on a subset of X, XA, so that during the learning
process it can update parameters Θ to match the correct prediction. If
correctly trained, when the model is applied to the unseen dataset XB, it
can correctly predict the results.
A first differentiation for machine learning problems is on how the learning
phase is carried on:

� In supervised learning, each input data is associated with a particular
label, which is the final value for the prediction, which is known and
is used to drive the learning phase.

� Given an unsupervised learning algorithm, it is capable to find, without
any labels, a particular structure in the dataset. A clustering unsu-
pervised learning algorithm, for example, is capable to define clusters
of input data, given an unlabeled input dataset.

� Reinforcement learning procedure combined with a Neural Network
architecture enables the network itself to take the best decision in a
software environment. In practice, the agent, i.e. the neural network,
is put in a software environment, which is in a particular state St at the
time t, and take actions on it. The environment is calculating its next
state St+1 based on the action of the agent. The outputs from the
environment to the agent are the updated state of the environment
St+1 and the reward, that it’s a value that measures the success or
failure of the agent’s actions. This reward values are updating the
policy of the agent, which is the criterion for which the agent is deciding
which is the next action to take.

The problems that a machine learning algorithm addresses can be of two
types. When dealing with a regression problem, the outcomes, the values
to be predicted, are real numbers whereas in classification problems the
outcomes are discrete values. Classification is the process of categorizing a
given set of data into classes which are usually referred to as target labels or
categories.
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Chapter 2. From artificial intellience to deep learning

2.3 Deep Learning

The combination of high computational power and a large number of images
belonging to different datasets led to the outstanding development of deep
neural networks. GPUs, FPGAs or dedicated accelerators are extensively
applied to provide a significant speed-up for both the learning and inference
phase. The human brain is composed of tens of billions of neurons, which are
the basic computational units of the human brain. The artificial structure
that models the biological human brain structure is called Artificial Neural
Network ANN. A Deep Neural Network is created by stacking more groups
of neurons (layers) in a hierarchical way so that the output of one layer
is the input of the following one. This enables a network to build up more
levels of abstraction, which in turn gives the possibility to solve very complex
features recognition tasks.

2.3.1 From neuron structure to perceptron
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Figure 2.2: Biological neuron structure (left) [source: wikipedia.org] and artificial neural
network neuron representation (right).

As previously said, the biological neuron is the basic computational element
of the human brain. A biological neuron is composed by the soma, also
called body, dendrites and axon (Figure 2.2 left). The dendrites are the in-
puts of the neuron and the soma is the actual computing unit, which takes
the inputs and processes them to produce the output, that is sent through
the axon which is the output connection. Different neurons are connected
through synapses, so that, by convention, if two neurons are connected to-
gether a pre-synaptic neuron and a post-synaptic neuron can be defined. By
connecting multiple neurons via synapses, very complex patterns with high
computational capability can be created.
In an Artificial Neural Network (ANN) as well, the artificial neuron is con-
sidered the basic computational node and the same structure and taxonomy
is replicated (Figure 2.2 right). When the axons (outputs) of an amount N
of neurons are connected via dendrites to the soma of another post-synaptic
neuron, this whole computational unit is called perceptron. The output neu-
ron receives as input the signals multiplied by the synaptic weights; then
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the results are summed together and a bias b is added. Finally, a non-linear
function σ is applied to the result [12], so that the output of the neuron is:

y = σ

(
N∑
i=1

xi · wi + b

)
.

In Figure 2.2, on the right, a sketch of the neuron structure and its compu-
tations are shown.

2.3.2 Multilayer Perceptron

The Multilayer Perceptron (MLP) is given by the stack of multiple layers
of basic computational units named perceptrons, described in section 2.3.1.
The neurons are connected in a dense (or fully-connected) fashion, so that
each neuron in layer l receives, as inputs, the outputs of each neuron in the
previous layer l-1. A MLP is composed by, at least, one input layer and
one output layer plus one so-called hidden layer in between. The amount
of synapses and related weights connecting one layer to the previous one is
given by nl−1 · nl, where nl is the number of neurons in a given layer l. In
Figure 2.3 the structure of a MLP with two hidden layers is represented.

hidden layer 1 hidden layer 2

input layer output layer

x0

x1

xN

y0

y1

yM

Figure 2.3: Structure of a Multilayer Perceptron with two hidden layers.

2.3.3 Convolutional Neural Network

With Convolutional Neural Networks (CNNs), additional type of layers are
introduced: convolutional layers (Figure 2.4-a) to extract features from the
input image and pooling layers (Figure 2.4-b) to progressively reduce the
dimensionality of the data.
Convolutional layers, whose weights are updated during the learning phase,
exploit the convolution of filters with the input image. When a filter of size
f is applied to a region of the input image, each pixel value of the image is
multiplied by the corresponding filter value and the multiplication results
are summed together to produce the output pixel value. In Figure 2.4-a, the
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example of the computation of a kernel with size f=(3,3), applied to an 8×8
image is shown. In order to build deep neural networks one modification to
the basic convolutional operation that is needed to be used is padding. The
reasons to apply padding are mainly two:

� It is not wanted to down-size the image at each convolution layer because
for networks with a lot of layers the dimensionality in the last layers would
be reduced too much.

� The pixels at the borders (edges, corners) of the input image are included
in the convolutions much less than pixels in other areas of the image so a
lot of information about the edges of the images could be removed.

kernel

convolution result

input image
(3·-1) + (0·0) + (1·1) +

(2·-2) + (6·0) + (2·2) +

(2·-1) + (4·0) + (1·1) = -3

(a)

(b)

Figure 2.4: Example of the computation (a) for a 3×3 kernel of a Convolutional Neural
Network [source: towardsdatascience.com] and (b) for average and max pooling layer
applied on a 4×4 image.

Zero-padding an image by a factor p means adding a frame of thickness p
around the image. The filter is then moved on the image in steps defined
by the stride parameter to produce the so called feature map. In Figure 2.5,
four steps of convolution process for a 8×8 input image and a filter with
f=(3,3) and s=(1,1) is shown. It can be clearly seen that the output map
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Figure 2.5: Four steps of convolution for a 3x3 kernel of a Convolutional Neural Network
[source: towardsdatascience.com].

has a reduced dimensionality, in fact, in the example shown in Figure 2.5,
the output is a 6×6 image, since the zero-padding is not applied.
Generally, after a convolutional layer, a pooling layer is present in order
to reduce the dimensionality of the image and speed-up the computation.
Hyperparameters for the pooling layer are the filter size f and the stride s,
which are usually taken as f=s. There are mainly two types of pooling:

� Max Pooling: The image to pool is divided into regions and for each of
them the maximum value of the pixel is taken as output (Figure 2.4-b on
the right).

� Average Pooling: The image to pool is divided into regions and for
each of them the average of the values is taken as outputs (Figure 2.4-b
on the left).

Given an input image of nH ×nW ×nc, the size of the output image will be
given by: (

nH − f
s

+ 1

)
×

(
nW − f

s
+ 1

)
× nc,

where nH × nW is the dimension of the image and nc is the amount of
channels.
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The complete scheme of a LeNet-5 CNN [26] is shown in Figure 2.6. At the
second convolutional layer, the inputs are the feature maps from the first
convolution layer, after pooling. Each filter is applied on all the input feature
maps and the results are summed so that the amount of output feature maps
is equal to the number of filters.
Convolutional Neural Networks, leveraging the properties of the convolu-
tional layers, shown excellent capabilities of extracting features present in
the input images. This trait led to reach outstanding performances in
many image-recognition and classification tasks. The LeNet-5, for example,
achieved excellent performances in terms of accuracy in classifying images
belonging to the MNIST dataset. One image from each class of the MNIST
dataset is reported in Figure 2.7.

subsampling subsamplingconvolutionconvolution
fully connected

Figure 2.6: Structure of a LeNet-5 convolutional neural network [26].
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Figure 2.7: Sample images from the MNIST dataset with labels representing the corre-
sponding class.
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The outstanding results obtained by the CNNs in image-recognition tasks
are due to the capability of CNNs to recognize features in the input image.
In the first layers, simple features like lines, circles, edges, etc... can be
detected. In deeper layers, these features are combined together to detect
more complex features up to the end where the image is finally classified.
In Figure 2.8, features derived from a face recognition net in different layers
are displayed.

First layer features Second layer features Third layer features

Figure 2.8: Features learnt from a face recognition net [29].

2.3.4 Recurrent Neural Network

Recurrent Neural Networks, that is, neural networks with a recursive con-
nection, not only learn during training but also exhibit memory capabilities
that make them establish relationships between input data. The output re-
sults at a particular time t are not only a function of the inputs and internal
parameters but also of the vector representing the previous input-output
relation. In this way, the same input can produce different output results
depending on the different contexts.

2.3.5 Supervised Learning Methodology

The initial crucial step of a neural network is the learning phase. Supervised
learning can be applied through the gradient descent algorithm together with
a backpropagation mechanism for the error.

Gradient Descent

The Gradient Descent is an algorithm to find the minimum of a differentiable
function. Given a single variable function f(θ), to minimize its value, a
minimum must be found, so that

∂

∂θ
f(θ) = 0.

A random initialization of the parameter θ is applied and the derivative
in that point is calculated, then, as shown in Figure 2.9 left, the gradient
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descent algorithm proceeds by modifying the value of θ in the direction of

the negative value of
∂

∂θ
f(θ). The value of θ is updated proportionally to the

value of the derivative to prevent overshooting. After some iterations, the
gradient descent algorithm ends in a minimum, which could also be local,
depending on the starting value of parameter θ. For a bivariate function
f(θ0, θ1), the gradient descent algorithm is graphically presented on the
right in Figure 2.9. What is wanted to know in this case, given a starting
point for θ0 and θ1, is the direction, i.e. the value of the two parameters,
to take for which the value of the function is minimized. The direction and
the value of steepness is provided by ∇f(θ0, θ1).

θ

Cost

Minimum

Figure 2.9: Gradient descent for monovariate function (left) and bivariate function
(right) [source: www.datasciencecentral.com].

The concept can be extended to a multivariate function with an amount
P of parameters f(θ0, θ1, ..., θP ). The gradient descent algorithm is used
during the learning phase of a neural network for the minimization of the
cost function C by iteratively updating the set of weights and biases which
constitute the parameters of the network. For each image, given as input
during the training phase, a cost function can be calculated. The value of
the cost function, averaged over a number M of training images, is given by
the sum of the squared errors divided by the number of images

C =
1

M

M∑
k=0

(ek)
2,

where C is the cost function, M is the number of images and ek is the
error related to the k -th image. In supervised learning, the class of the
image is known and is defined by a label associated to the image. Given N
classes, hence N output neurons, a N -length zero vector y with 1 in position
corresponding to the class of the image is associated to each image. The
value ej is the error for each training image and can be therefore expressed
by the following formula:

ek =

N∑
j=0

(xj − yj)2,
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where xj is the activation of the j -th neuron and yj is the label of the j -th
neuron.

Learning through backpropagation

After the forward propagation of an image, that is the calculation of the out-
puts of the neural network when an input image is provided, the backward
propagation has to be applied. Backpropagation is a method to calculate
the gradient of the cost function C with respect to all the weights and bi-
ases of the neural network, so that it would be possible to finally apply the
gradient descent algorithm. Generally, the training set is divided in batches,
each one containing an amount of images defined by the batch size, which
are processed in parallel. The parameters of the network are updated af-
ter the forward propagation and backward propagation of each batch of the
training set. For each image in the batch it is possible to derive the cost
function Ck where h is the index of the image in the batch. Suppose k=0,
it can be derived:

C0 =

NL−1∑
j=0

(a
(L)
j − yj)2,

where a
(L)
j is the activation at layer L, that is the output layer, for neuron

with index j, and where yj is the label for the j -th neuron. The total number
of neurons at the last layer is NL and it equals the number of classes for the
classification. For each neuron of layer L the output would be

a
(L)
j = σ

(
z
(L)
j

)
,

where

z
(L)
j =

NL−1∑
i=0

wLji · aL−1
i + bj ,

so that a
(L)
j is the output z

(L)
j after the application of the activation function

σ. The derivative of the cost function with respect to the weights in layers
L is given by:

∂C0

∂w
(L)
ji

=
∂z

(L)
j

∂w
(L)
ji

·
∂a

(L)
j

∂z
(L)
j

· ∂C0

∂a
(L)
j

(2.1)

The derivative of the cost function with respect to the activations of layer
L-1 is

∂C0

∂a
(L−1)
ji

=

NL−1∑
j=0

∂z
(L)
j

∂a
(L−1)
i

·
∂a

(L)
j

∂z
(L)
j

· ∂C0

∂a
(L)
j

, (2.2)
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since the output of a neuron influences the cost function through different
multiple paths. These are the functions of the chain rule of the backpropa-
gation algorithm, which are applied one after the other to find the derivative
of the cost function with respect to the weights of that layer (equation 2.1)
and the derivative of the cost function with respect to the activation function
of the previous layer (equation 2.2).
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Chapter 3

Background and Related
Work

In this chapter, the description of background studies on threathens for
ICs is carried on. Reliability issues due to unintended soft-errors, inten-
tional fault-injections used as test vector for ICs and trojan attacks are
considered. This issue is then related to the case of neural networks’ hard-
ware implementation. Regardless the actual hardware implementation of
a neural network (FPGAs, GPUs, dedicated accelerators), large memory
elements, storing the networks’ internal parameters, are a must, and the re-
lated vulnerability will be analysed at system level in Chapter 5. Despite the
generally high resilience shown by neural networks concerning soft-errors on
network’s parameters, a well-targeted fault-injection may be very effective,
compromising the reliability of a Deep Neural Network as well as a Spik-
ing Neural Network. A reduction of classification accuracy in safety-critical
applications, such as automotive or healthcare, is not acceptable and could
yield to catastrophic situations.

3.1 Soft-errors

Bit-errors in ICs can occur for different reasons. If a bit-error is occurring
and is corrupting the data but not damaging the device in which the data
is present, then a soft-error is occurring. A soft-error can be temporary or
permanent. Soft-errors are caused by mainly two phenomena:

� Alpha particles emitted by the integrated circuit or by its package

� Cosmic neutrons generated when atoms in the Earth’s atmosphere get
hit by cosmic rays [20]

The ionization of the hit material by a highly-energetic alpha particle, can
generate charges, i.e. electron-hole pairs, along the path of the particle itself.
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Neutrons are devoid of charge but can deposit charges in their traces as well,
by nuclear interaction with the target material, leading to the same effect
of an alpha particle direct ionization. The two phenomena are shown in
Figure 3.1-a.
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Figure 3.1: Soft-error phenomenon for both alpha particles and neutrons colliding with
a silicon substrate of an IC (a), effect of soft-error on an inverter (b).

Radiations can affect electronic devices in several ways, however, the one
here considered is called Single Event Effect (SEE) and is caused by a single
event of a particle collision with the device, resulting in a permanent or
temporal failure [5]. SEE can, in turn, be divided into different categories

� Single Event Transient (SET): is a voltage spike occurring in an area
of an IC due to the collision of a particle with it.

� Single Event Latch-Up (SEL): is the result of a collision of a particle
with a CMOS structure, resulting in a current injected which sustained
by the positive feedback of CMOS parasitic structures.

� Single Event Burnout (SEB): caused when a self-sustained current is
generated by a particle strike and is entirely localized in a minimal
area and eventually melts or cracks the device itself.

� Single Event Gate Rupture (SEGR): is caused by a single high-energy
gitting particle generating the rupture of the gate oxide of a MOSFET,
with consequently increased gate leakage and the degradation or the
complete failure of the device itself [5].

Specifically, the SET is when the event is interacting with a combinational
circuit, whereas an event that is interacting with a memory element, ul-
timately flipping the content of a memory location, is called Single Event
Upset (SEU) [5]. If the memory location is not overwritten, this phenomenon
leads to a permanent error in memory.
When a cosmic neutron or an alpha particle is colliding with an IC, it is
generating charges due to photoelectric effect. These charges are then trans-
ported and collected by the structures of the IC, mainly p-n junctions, by
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drift and diffusion phenomena, so that a spurious current is generated, which
in turn generates a current glitch in a sensitive area of the chip. An injection
of charges in the substrate of the OFF transistor in an inverter, for exam-
ple, caused by a high-energy hitting particle, can temporarily flip the correct
output value. For example, as can be seen in Figure 3.1-b, if an inverter
with IN=‘0’ and OUT=‘1’ is considered, during correct operation, the nmos
is OFF and the pmos is ON. If the high-energy particle collides with the
p-substrate, the generated current can temporarily cause a switch-on of the
transistor. The inverter’s output value is consequently pulled-down; if this
happens in one of the inverters of a SRAM memory cell, it can eventually
flip the stored content of it [1].
DRAMs have been proven to be resistant to SEUs, differently from SRAMs.
A metric for SRAMs’ soft-error measurement is the Soft-Error Rate (SER)
measured as the number of failures per area per a certain amount of time.
SER is expressed in Failures In Time (FIT) units, where 1 FIT corresponds
to 1 failure in 109 device hours. In well-designed systems, the soft-error
rate is kept very low. For some applications which are making use of large
memory elements (high-end servers) or which need a high reliability level
(automotive, healthcare) the soft-error rate and its implications must be
carefully addressed. In fact, in the first case, also a minimal amount of soft-
error rate could lead to frequent system crashes, which, of course, must be
avoided while in the second case could lead to dangerous consequences for
human beings [19].
While the cell topology and layout significantly affect SER [5], it is quite
clear that with the Very Large Scale Integration (VLSI) driven by Moore’s
law, the concern about soft-errors in the hardware implementation is grow-
ing. This is primarily due to two reasons:

� smaller feature size and higher densities [20]

� reduction of the supply voltage, since the critical charge for which
the content of a memory cell is flipped is directly proportional to the
reduction of the supply voltage [10]

Soft-errors are typically measured through experimental setups (System
SER) which include the Device Under Test (DUT), for example a SRAM
memory, and a source of irradiation whose irradiation flux is known. The
sensitivity of a memory element to radiation is derived by exposing the de-
vice under test to a source of radiation and analysing the differences in data
stored in it afterward; of course, to calculate the sensitivity, the original
pattern written in the memory must be known, as well as the radiation flux
[5]. The neutron-induced SER is proportional to the neutron-flux which in-
creases as a function of the altitude (10× each 3 km and saturates at about
15 km) so that at high altitudes the neutron-induced effect dominates the
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alpha effect [20]. It is possible to measure the Accelerated SER (ASER)
with a high irradiation condition to drastically reduce the testing time. In
this case the neutron and alpha-particle component must be measured in
a separate way [5]. There is also the possibility to simulate the effect of
soft-errors via software simulations at device level [1].
When more than one adjacent cell is flipped, an event called Multiple-Bit
Upset (MBU) is taking place. This event is related to the incidence of some
particles which have such high energy to provoke the flip of two adjacent cells
or can be related to an increasing angle of incidence of the hitting particle
[20]. SEUs can be corrected with Error Correcting Codes (ECCs) which
are powerful since they can be applied at high level, with a compromise in
area overhead, without changing the production masks. However, MBUs are
nowadays the main problem for memory elements since these types of errors
cannot be corrected with ECCs like the Hamming code, which is supposing
that a single error per word can be corrected. Another technique that is
capable of inducing hardware errors is the fault-injection, described in the
next section.

3.2 Fault-Injection

Fault-injection is a testing technique applied to study how ICs behave when
subject to faults, how errors propagate in them and generally which is the
response of an IC when stressed to operate in unusual conditions. Fault-
injection attacks are also a popular attacks against cryptographic circuits
and can be applied to bypass security [21][2][15]. Many different fault-
injection techniques have been exploited that can be categorized as: software-
based, hardware-based, simulation-based, emulation-based or hybrids [58].
Even though many techniques have been developed, the underlying fact is
that it is not possible to apply all possible errors in all possible locations to
have complete knowledge of the response of the circuit. Consequently most
of the fault-injection techniques adopted in literature are statistical fault-
inections (SFI) [31]. Basic examples of hardware fault-injections are shorting
connections in boards (bridging faults), clock period variations or power
supply glitches. Electromagnetic fault-injections can be locally focused and
allows precise targeting of faults in memory, inducing spurious currents to
induce the soft-error phenomena.

In Chapter 5, a simulation-based approach which is simulating fault-injections
exploited as bit-flips in SRAM’s memory cells, storing the parameters of the
networks, is carried on. As explained, the outputs of a DNN depend on
both the input images and its internal parameters. By inserting errors in
the internal parameters of an image classification network (fault-injecting),
it is possible to lead the system to misclassify input images. Due to the de-
velopment of reliable and accurate state-of-the-art fault-injection techniques
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like laser beam fault injection [48] and row hammer attack [23], it is possible
to launch precise attacks against memory elements. Since the parameters of
a DNN are stored in these memory elements, precise fault-injection attacks
can be directed against them as well. The row hammer attack is capable of
flipping the bits stored in a DRAM targeting a whole word-line by rapidly
and repeatedly accessing (reading) that word-line and thus can be consid-
ered a hybrid attack, whereas the laser beam fault injection can provoke
soft-errors in SRAM cells with the high precision given by the laser beam.
Laser Beam Fault Injection is the state-of-the-art fault-injection technique,
capable to induce very precise bit-flips in SRAM locations, leveraging the
photoelectric effect in a silicon-based transistor. The main drawbacks are
the high cost and expertise and time needed to set all the parameters of
the laser beam (x, y position on the plane, laser spot diameter, laser beam
energy) so that the number of faults that can be realistically applied must
be kept low. Also, this is a semi-invasive attack since the package must be
removed by mechanical or chemical interaction, to gain access to the sili-
con. By carefully setting the diameter of the laser beam is also possible to
simultaneously flip different adjacent locations in the memory (MBUs, see
section 3.1).
Due to the time required to tune the parameters of the laser beam to apply
faults in different locations, the lowest amount of faults to test the relia-
bility of a particular hardware, must be applied. Therefore, shattering the
accuracy of a DNN in a significant way, with a low amount of faults, is a
challenging task. This is due to the high resilience of neural networks which
will be analysed in Chapter 5. To this aim, an efficient fault-injection tech-
nique will be used in section 5.2 and it will be shown that few tens of faults
(bit-flips), associated to network’s internal parameters, are sufficient to pro-
voke a considerable reduction of performances. This is a key point since, to
the best of my knowledge, just few works have been carried on about the
analysis of fault-injection on neural networks [21][45].
The results of this analysis will be used to build up an efficient attack
methodology through the hypothesis of a hardware trojan insertion in the
supply chain plus a well-crafted input trojan trigger pattern, which could,
jointly, heavily threaten the security properties of a DNN or SNN. The hard-
ware trojan threat is presented in the following section.

3.3 Hardware Trojan Attacks

“Hardware Trojans (HT) appeared to be a powerful hardware attack vector
against ICs in recent years, capable of altering or disabling the capabilities of
an IC, or leaking some sensitive information” [32]. The general HT scheme
can be the one depicted in Figure 3.2, in which some signals described as
trigger inputs activate the trojan trigger, which is detected and affects the
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behaviour of the IC through the payload circuitry.

HARDWARE
TROJAN
CIRCUIT

TROJAN 
TRIGGER PAYLOAD

TRIGGER
INPUTS

TROJAN 
EFFECT

Figure 3.2: Scheme of the general hardware trojan circuitry.

HTs are designed to be silent (stealthy) for most of the time, being active
just in presence of rare signals or events. These events should be chosen
to be rare and unlikely to rise during normal function or during the testing
phase so that the hardware appears to be completely functional. Hardware
trojans can be implemented as combinational or sequential, analog or digital
circuits. The hardware trojan threat is justified by the IC industry evolution
which allows many different parties to get involved in the development of
an IC from design through manufacture to the application phase. EDA
vendors, IP vendors, SoC designers, foundries and end-users cooperate in the
production of ICs and in each stage a hardware trojan can be inserted, by
the company itself or by an ill-intentioned employed, without the knowledge
of the other parties.

To detect or avoid the threaten of hardware trojans, different countermea-
sures have been developed. HT detection gives the possibility to understand
whether a hardware trojan is present or not and HT diagnosis can identify
where the hardware trojan is and identify the payload circuitry. Also HT
prevention mechanisms can be applied by IP or SoC vendors to prevent the
deployment of an HT from malicious instead of detecting it just after [32].
Advanced power measurement analysis, such as differential power analysis,
are available to detect potential hardware trojan. Inspection of signals’ de-
lays in the integrated circuit can be carried on as an useful method for HT
detection as well. Partition or segmentation based approaches have been
proposed for hardware trojan diagnosis: this is due to the reduced hardware
trojan overhead with respect to the total hardware of the circuit. The basic
idea is to increase the impact of the HT on the circuit so that it can be
easily detectable. Hardware minimization to reduce the hardware overhead
is fundamental to craft a stealth hardware trojan attack.
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3.4 Adversarial Attacks

An adversary, using information learnt about the structure of the classifier,
tries to craft the perturbations added to the input to cause its misclassifica-
tion, i.e. its incorrect classification. For explanation purposes, we consider
a generic DNN for image classification. Given an original input image x and
a target classification model C(.), the problem of generating an adversarial
example xadv can be formulated as a constrained optimization [57]:

xadv = arg min
xadv

D(x, xadv), s.t.

C(x) = l, C(xadv) = ladv, l 6= ladv

Where D is a distance metric used to quantify the similarity between two
images, and the goal of the optimization is to minimize the added noise,
typically to avoid the detection of the adversarial perturbations. l and ladv

are the two labels of x and xadv, respectively: xadv is considered as an ad-
versarial example if and only if the label of the two images are different
(C(x) 6= C(xadv)) and the added noise is bounded (D(x, xadv) < ε where
ε > 0). Given an input image, the neural network can be fooled by adding
a carefully crafted attack, called adversarial example, which is barely per-
ceptible, to the image. Different types of adversarials have been explored
(FGSM, JSMA [54], etc...).

3.5 Neural Networks attack taxonomy

A special taxonomy must be provided when considering attacks to neural
networks. In this context, attacks can be of many types as can it is shown in
Figure 3.3, depending on the combination of the phase in which the attack
is supposed to take place, the object of the attack, the scope or target of the
attack and the degree of knowledge that the attacker has about the attacked
network.
Attacks can be directed to the training phase, by modifying the training
algorithm or training set. For example, the training image set can be ex-
tended with tampered images and tampered labels so that a clean image is
correctly recognized, whereas a tampered image is misclassified. This kind
of attack is exploited in [14] having full knowledge of the training set. At-
tacks can be directed to the production, acting on parameters, operators or
the architecture itself. In [56] an attack is carried on with a trigger trojan in
the computational chain of the convolutional stage of a CNN implemented
on an FPGA. Finally, the inference phase can be also taken into account
to deploy an attack by modifying the input images with adversarials. In
Figure 3.3, the attack carried on in the following is circled in shaded green;
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Taxonomy of attacks on Neural Networks

Phase Objective

• Injection
• Modification

• Training Algorithm

Training:

• Parameters
• Architechture
• Operators

Production:

• Adversarial Example
• Enchanting

Inference:

• Training Data
• Parameters
• Input Data

Privacy:

• Integrity
• Availability

Reliability:

Scope

• Source
• Destination

Target:

• Misclassification
• Confidence reduction

Untagreted:

Knowledge

• No knowledge

Blackbox:

• Partial knowledge

Greybox:

• Complete knowledge

Whitebox:

Figure 3.3: Neural networks attack taxonomy scheme [8] in which the taxonomy adopted
in my work thesis is circled by a green line.

it can be seen how both production and inference phase are targeted. In
fact, the hardware trojan is placed during the production phase but exter-
nally triggered during the inference phase by an input pattern applied to
the image.
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Spiking Neural Networks

4.1 Introduction

Spiking Neural Networks (SNNs) are considered as the third generation of
neural networks. SNNs, inspired by biological communication between neu-
rons in the human brain, encode the information into spike trains, whereas
the previous generations employed continuous values for the output signals
of the neurons. Due to the temporal coding of spikes, SNNs are particu-
larly prone to recognize time-dependent patterns. Moreover, SNNs, for their
binary (spiking or no-spiking) operation, are suited for fast and energy ef-
ficient simulation on hardware devices [18]. In the following discussion, the
continuous representation of the activations, the ones of previous neural net-
work generations, will be also named with the term “analog” to distinguish
it from the spiking representation of values in the time domain.

DENDRITES

AXON

SOMA

Figure 4.1: Biological model of a neuron [source: wikipedia.org].
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4.2 Spiking Neuron Models

As explained in section 2.3.1, in case of ANNs the neuron is considered as
a simple computational node, regardless of the effective biological electrical
signals. In SNNs, the soma, sums the contributions of the input dendrites
and, if the result exceeds a particular threshold, a spike is emitted and
transmitted to the axon.
In a biological neuron, the soma is an enclosure delimited by a membrane:
charges are inserted into this membrane making the membrane potential
increase. When a spike coming from a pre-synaptic neuron arrives at the
input of the post-synaptic neuron, the associated synaptic weight wi will be
integrated on the membrane. Biologically speaking, a spiking current is in-
jected into the soma of the neuron and this contributes to raise its membrane
potential Vm. When the membrane potential overcomes a threshold Vt, the
neuron fires, emitting a spike on the output axon, and resets its membrane
potential to a value VR, which is the reset value for the membrane potential.
In addition, the charge inside the soma is not maintained for an infinite
amount of time: due to leakage, the membrane potential decreases continu-
ously at the leak rate τm between two input spikes [6]. However, if a certain
time, namely the refractory time TR, is not reached after a neuron spike, the
neuron cannot spike again. Many different models for the spiking neurons
have been studied. These models must be at the same time (1) biologically
accurate and (2) computationally simple. For example, the Hodgkin-Huxley
biologically-accurate model [3] is computationally prohibitive but capable
of providing rich mammal brain-like firing patterns, whereas, on the other
hand the simple Leaky Integrate and Fire (LIF) model [53] gives the oppor-
tunity, despite being unrealistically simple, to simulate lots of neurons in
real-time [22]. Other models have been developed to reach a compromise
between the two requirements. One above all is the Izhikevich model [22].
However, the simple LIF model is in the following considered to explain in
the details the working principles of a SNN. Due to its simplicity, the LIF
model is the most popular spiking neuron model and is supported by all
state-of-the-art SNNs’ hardware implementation architectures.
Looking at the electrical representation of the LIF model in Figure 4.2, it can

be seen that the presynaptic spike δ(t− t(f)j ) arrives as input at time tj and

is low-pass filtered, generating an input current α(t− t(f)j ). The soma of the
neuron is modeled as a capacitance in parallel with a resistance, in fact, when
a current is injected into the soma of the neuron, the membrane potential
rises; this effect is modeled as a capacitance charged by a current. Some
charges can leak through the soma and this effect is modeled as a leakage
through a resistance. The sub-threshold dynamics of the LIF spiking neuron
can be formulated as

τm
dVm
dt

= −Vm +R · I(t),
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Vt
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SOMA
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Figure 4.2: Leaky Integrate and Fire equivalent electrical circuit of a neuron.

where Vm is the membrane potential and τm = RC is the time constant for
the membrane potential leakage [28]. When the membrane potential across

the RC parallel exceeds the threshold Vt, a spike δ(t− t(f)i ) is generated at
the output at time ti. There are different ways in which continuous values
can be coded as spikes in time domain. The most commonly used are rate
coding and time coding. In the first case, an higher spiking rate (number of
spikes per second) refers to an higher value in the continuous representation
of the activation. In other words, the value for the activation is provided
by the spiking rate, which is the amount of spikes per second. Since the
spiking times are highly irregular but the mean rate, related to the mean
time between events, is fixed, the spiking rates, can be described as the
mean rate of a Poisson process [52]. The time coding can be implemented in
different ways; the most popular is the latency coding, in which the higher
activation is provided by the neuron which is spiking first, i.e. the activation
value is inversely proportional to the delay of the spike. Latency coding is
for sure less energy consuming since the spikes are sparser with respect to
rate coding.

In Figure 4.3, it can be seen how each incoming signal from an input neuron,
which is encoded in the SNN technology as a spike train, is multiplied by
the weight of the synapses. The results are added together (integration) to
produce the membrane potential expressed as

Vm =

N∑
i=1

wi · si,

where N is the number of input synapses. When the membrane potential
reaches a the threshold value Vt the output neuron “spikes”, or “fires”.

35



Chapter 4. Spiking Neural Networks

𝑊0

𝑊1

𝑊𝑁

Σ

𝑢0(𝑡)

𝑡

𝑢1(𝑡)

𝑡

𝑢𝑁(𝑡)

𝑡

Figure 4.3: Perceptron in SNN implementation: pre-synaptic neurons and related spiking
patterns (left) post-synaptic neuron (centre) and related membrane potential variation and
output spiking pattern (right).

4.3 SNN learning

SNNs try to reduce the gap between classical DNN operations and a more
biologically-plausible computing, trying to mimic how informations are ac-
tually represented and transferred in the human brain. Although the great
advantages that Spiking Neural Networks can offer, learning in SNNs is still
an open issue [51]. In this context, the conventional backpropagation mech-
anism used to train DNNs for supervised learning cannot be applied due to
the non-differentiabile nature of the spiking function [28]. In the following,
different strategies to solve or bypass the problem are presented.

4.3.1 Local Learning Rules for Unsupervised Learning

Local learning rules are derived from the study on animal and human brain
and can be applied to train a Spiking Neural Network. Moreover, local
learning rules:

� due to the time-dependent nature of spikes are capable to catch temporal-
related features which can be present in the input of the network.

� are particularly efficient to be deployed on dedicated hardware archi-
tectures so that an on-line training can be applied.

Spiking Time Dependent Plasticity (STDP) local learning rule is popularly
used to train SNNs. The goal of such a rule is to strengthen the synaptic
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weight of two neurons whose spiking activity happens in a highly-correlated
causal dependency order, and to weaken it otherwise [7]. The formal equa-
tion that states this unsupervised learning rule can be expressed as:

∆wSTDP = η ·

(
e
−
tpost − tpre

τ − STDPoffset

)
· (wmax − w)µ,

where ∆wSTDP represents the modification of the synaptic weight value,
η is the learning rate, tpre is the time instant of a pre-synaptic spike and
tpost is the time instant of a post-synaptic spike, τ is the time constant for
the membrane potential decay, wmax is the maximum value that the weight
can assume, and w is the current weight [7]. If the post-synaptic neuron
is spiking within a time defined by STDPoffset, then the synaptic weight
associated is increased or weakened otherwise [7].
Learning through unsupervised learning rules is found to be effective just for
shallow networks. That is mostly due to the close locality of such learning
rules, where each layer is changed with coordination to the output of the
previous layer [6]. How these close locality can be extended to other layers
in the network, so that the whole network can be effectively influenced by
the learning procedure is still an open issue. Local on-chip training can also
take advantage of the hardware accelerators Intel’s Loihi [9] neuromorphic
processor or SpiNNaker [11], which are both supporting STDP learning rule.

4.3.2 Spikes’ Approximate Derivative Method for Supervised
Learning

If supervised learning wants to be applied in Spiking Neural Networks, the
solution is to take advantage of an approximate derivative method for the
spike trains to apply backpropagation. This solution has been extensively
studied in many works [39][28][4][30], which provide different approxima-
tions for the derivative of the spike trains. The advantage of this type of
solution is that the temporality of spikes is maintained and the network can
learn features also accordingly to this information. On the other hand, this
approach is not aiming to be biologically plausible but, instead, to reproduce
and extend the consolidated results of the state-of-the-art of DNNs.

4.3.3 Off-line trained DNNs to SNNs conversion

Converting off-line trained DNNs to SNNs is a good choice to leverage the
state-of-the-art goals reached in the field of machine learning and image
recognition tasks. In fact, conventional DNNs shown excellent results accu-
racy in classification tasks on various datasets (MNIST, CIFAR-10, CIFAR-
100, ImageNet etc...). This approach is aimed at reproducing the mapping
of input/output signals of a DNN into a SNN.
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Most of the conversion approaches apply rate coding of continuous activa-
tion functions and weights rescaling according to SNNs neurons parameters
such as leak rates and refractory times, which must be specified as hyper-
parameters [42]. However, some problems arises if a conversion mechanism
is adopted.
The continuous values for the activations in DNNs can be either positive
or negative, nevertheless only positive values can be translated into spiking
rates. A proposed approach is to use employ separated spiking neurons
for positive and negative activations, starting from the fact that in biology
spikes associated to positive or negative values travel on different paths [43].
With the introduction of the ReLU function the importance of the problem
is reduced since the activations can assume just positive or zero values.
Another limitation is that the max pooling operation is non-linear and can-
not be readily implemented; in fact, just at the end of the simulation time,
the spiking rate would be known, i.e. the max pooling cannot be imple-
mented spike by spike [42]. Max pooling operations are usually substi-
tuted by average pooling operations, which can be easily implemented. If
latency coding is implemented, the max pooling operation can be easily im-
plemented: the max between the input neuron’s values is computed as the
first spike to arrive to the post-synaptic neuron. However, this approach is
not suited for the conventionally used rate coding conversion.

SNNtoolbox In the analysis carried on, the method described in this sec-
tion is exploited: The networks are off-line trained as DNNs and then con-
verted into SNNs, taking advantage of the useful SNNtoolbox [49]. SNNtool-
box’s workflow is shown in Figure 4.4: a neural network architecture is
described with some neural network library (e.g. Caffe, Lasagne, Keras),
SNNtoolbox parses the network, extracting useful information and creating
an equivalent Keras model. The parsed model serves as a common abstrac-
tions stage from the input and is internally used by the toolbox to perform
the actual conversion into a SNN [49].

Keras

Lasagne

Caffe

PyTorch

ANN SNN

pyNN

INIsim

Loihi

SpiNNaker

Brian2

MegaSim

TrueNorth

parse convert

simulate

deploy

Figure 4.4: Sketch of the work flow of SNNtoolbox [49].
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After the model is converted, the resulting SNN can be exported for sim-
ulation in a spiking simulator or deployed on dedicated spiking neuron
chips (e.g TrueNorth, SpinNNaker, Intel Loihi etc...). Provided simulators
are INI, MegaSim, Brian2, Nest. SNNtoolbox documentation shows the dif-
ferent capabilities of the simulators with respect to the features (layers) that
can be implemented on them. SNNtoolbox gives the possibility to impose
different specifications for the various steps from conversion to simulation.
In this work, networks are described taking advantage of the Keras library
and simulated exploiting the built-in INIsim simulator which implements
highly parallel computation reducing the simulation time; rate coding is cho-
sen as coding strategy, jointly with Leaky Integrate and Fire neuron model.
INIsim is, as well, the only simulator which implements constant input cur-
rents to convert the input image pixels into spikes, so that the Poisson input
generator can be turned off. Moreover, it is the only simulator which im-
plements softmax activation function (in the other simulators, softmax is
replaced by ReLU ) and max pooling.
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Bit-flip Resilience Analysis of
SNNs

In this chapter, the effect of errors in the parameters of some networks
operating on MNIST, CIFAR10 and GTSRB datasets, is analysed. As an-
ticipated in section 3.2, the experiments carried on are simulation-based
fault-injections in the memory elements (supposed SRAMs) storing the pa-
rameters of some neural networks. These experiments can be thought as the
simulation of an actual physical laser beam fault-injection testing. In the fol-
lowing experiments, the unique interest metric to quantify the resilience, i.e.
the response to the errors, is the high-level classification accuracy reached
on the overall test set. Therefore, the advantage with respect to a physical
hardware Laser Beam Fault Injection is clear as the testing time and cost
are drastically reduced.
The faults injected are modeled as permanent SEUs (see section 3.1), ex-
ploited as bit-flips in the memory units storing the parameters of the net-
work. Different networks have been chosen for the MNIST, CIFAR10 and
GTSRB datasets. After training, weights and biases are quantized to 8 bits,
with almost null reduction of accuracy.
Specifically, in section 5.1, a layer-wise analysis and then a cross-layer anal-
ysis of a statistical bit-flip insertion are performed. On the contrary, in
section 5.2, a gradient search algorithm is applied, both on a layer-wise and
cross-layer basis. This algorithm is capable to find out which are the most
critical weights, i.e. weights that, subject to a variation, contribute to a
drastic reduction of the accuracy with respect to the others.

Datasets The datasets analysed in my thesis work are:

� MNIST (Mixed National Institute of Standards and Technology):
dataset for image recognition of 28× 28 pixels grayscale images orga-
nized in 50 000 training images and 10 000 test images of handwritten
digits from 0 to 9 belonging to 10 different classes [27].
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� CIFAR10 (Canadian Institute for Advanced Research): dataset for
image recognition of 32 × 32 pixels RGB images organized in 50 000
training images and 10 000 test images from natural world belonging
to 10 different classes [24]. A sample image for each class is reported
in Figure 5.2.

� GTRSB (German Traffic Sign Recognition Benchmark): Security is-
sues in automotive field are nowadays of great interest, that is why it
has been decided to analyse on the German Traffic Sign Recognition
Benchmark (GTSRB). The GTSRB is composed of more than 50 000
images of different size belonging to 43 different classes. A sample
image for each class is reported in Figure 5.3. The training set is
composed by one directory per class. Training images are grouped by
tracks, each one containing 30 images. There is not an even distribu-
tion of tracks per class, as it is shown in Figure 5.1. First of all, since
each image is of a different size, they should be resized to match the
input layer of the CNN. Since the trigger generation and impercepti-
bility depends also on the input image size, different resizing of the
images have been tried to understand this aspect.

Class Class

Figure 5.1: GTSRB histogram for both training set (left) and test set (right).

Networks All networks have been trained for 150 epochs to reach the
maximum accuracy. The analysed networks which are classifying images
belonging to the MNIST dataset are

� a simple 4-layers Multilayer Perceptron (see section 2.3.2), whose struc-
ture is reported in Table 5.1, whose baseline accuracy is 95.54%,
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Figure 5.2: Sample images from the CIFAR10 dataset with labels representing the
corresponding class.

Figure 5.3: Sample images from the German Traffic Sign Recognition Benchmark.

� a CNN with a LeNet-like structure, shown in Table 5.2 (the number
of feature maps is increased both for first and second convolutional
layer), whose baseline accuracy is 99.05%.

Convolutional Neural Networks are used to classify both the CIFAR10 (struc-
ture reported in 5.3) and the GTSRB (structure reported in 5.4) datasets
reaching a baseline accuracy of 79.65% and 98.39% respectively.
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Table 5.1: Structure of the MLP classifying images belonging to MNIST dataset with
baseline accuracy of 95.54%.

Layer Output shape Activation

Input 784 -
Dense 1200 ReLU
Dense 1200 ReLU
Dense 10 ReLU

Table 5.2: Structure of the CNN classifying images belonging to MNIST dataset with
baseline accuracy of 99.05%.

Layer Output shape Features Kernel Stride Activation

Input (28, 28, 1) - - - -
Conv2D (28, 28, 32) 32 (5,5) (1,1) ReLU
MaxPool (14, 14, 32) - (2,2) (2,2) -
Conv2D (10, 10, 48) 48 (5,5) (1,1) ReLU
MaxPool (5, 5, 48) - (2,2) (2,2) -

Dense 256 - - - ReLU
Dense 84 - - - ReLU
Dense 10 - - - Softmax

Table 5.3: Structure of the CNN classifying images belonging to CIFAR10 dataset with
baseline accuracy of 79.65%.

Layer Output shape Features Kernel Stride Activation

Input (32, 32, 3) - - - -
Conv2D (32, 32, 32) 32 (3,3) (1,1) ReLU
Conv2D (30, 30, 32) 32 (3,3) (1,1) ReLU
MaxPool (15, 15, 32) - - (2,2) -

Dropout 0.25 (15, 15, 32) - - - -
Conv2D (15, 15, 64) 64 (3,3) (1,1) ReLU
Conv2D (13, 13, 64) 64 (3,3) (1,1) ReLU
MaxPool (6, 6, 64) - - (2,2) -

Dropout 0.25 (6, 6, 64) - - - -
Dense 512 - - - ReLU

Dropout 0.25 512 - - - -
Dense 10 - - - Softmax
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Table 5.4: Structure of the CNN classifying images belonging to GTSRB dataset with
baseline accuracy of 98.39%.

Layer Output shape Features Kernel Stride Activation

Input (32,32,3) - - - -
Conv2D (30,30,32) 32 (3,3) (1,1) ReLU
Conv2D (28,28,128) 128 (3,3) (1,1) ReLU
MaxPool (14,14,128) - - (2,2) -
Conv2D (12,12,128) 128 (3,3) (1,1) ReLU
MaxPool (6,6,128) - - (2,2) -

Dropout 0.25 (6,6,128) - - - -
Conv2D (4,4,128) 128 (3,3) (1,1) ReLU
MaxPool (2,2,128) - - (2,2) -

Dropout 0.5 (2,2,128) - - - -
Dense 128 - - - ReLU

Dropout 0.5 128 - - - -
Dense 43 - - - Softmax

5.1 Statistical Analysis of Random Bit-Flips

In this section the resilience of SNNs to random bit-flips in internal param-
eters is analysed. The bit-flips are simulated as a natural soft-errors source
is present, thus supposing there is a source of alpha particles or neutrons
as described in section 3.1. The amount of bit-flips is therefore taken as
a percentage of the complete amount of bits in the network. Then, also a
Statistical Fault Injection simulation is carried on; in this case the interest
is in the amount of bit-flips, taken as an absolute number. The simulations
are carried on both on a cross-layer manner and a layer-wise manner.

5.1.1 Cross-layer Analysis

The cross-layer (global) analysis of the resilience of the neural networks
is studied on a system level, by monitoring the variation of classification
accuracy, while the amount of soft-errors is increasing. Considering that
the area of the memory elements storing the parameters of the network is
constant, then an increasing soft-error rate is related to an increasing number
of faults in time, which can be caused, for example, by the increasing flux of
a radiating source. Both SEU and MBU are considered in a ratio 1/10. At
each step, the clean parameters are set, then, at the first step, an amount x0
of bits is flipped. At the next step, weights are reset and a higher amount
x1 of bits is flipped, and so on until an amount xN of bits is flipped. This
sequence is repeated 15 times per network and then the results are averaged.
What is important is to catch the point on the x axis where the curves start
to bend, so when the accuracy is starting to decrease.
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Multi Layer Perceptron The cross-layer resilience of the MLP to natu-
ral soft-errors is found to be affected also for smaller values of bit-flip prob-
ability, with respect to CNNs. That is because the amount of parameters
is very high, and therefore also a small percentage of soft-error is sufficient
to cause a larger amount of bit-flips, hence a bigger classification accuracy
drop. Moreover, this is perfectly physically plausible because a network
with more parameters has memories with a larger area and the soft-error
rate (hence bit-flips) is proportional to the memory area (see section 3.1).

Convolutional Neural Networks CNNs seems to be less affected by
natural soft-errors. That is because, as explained, the amount of parameters,
for each CNN is less with respect to the MLP. Plotting the result for each
different simulation for the same line, it can be highlighted an increasing
variance for intermediate values of bit-flip probability meaning that the effect
of the bit-flip is not only depending on the amount of errors but also on
which specific weight is subject to the error. With low amount of bit-flips,
the variance appears to be low since it is unlikely that the network accuracy
is affected in a severe way, wherever the error is applied. The same happens
when the amount of soft-errors is very high because the accuracy is probably
compromised for the effect of so many errors, regardless their positions. For
intermediate amount of errors, the position of them seems to be crucial.
This effect is clearly shown in Figure 5.5 just for the MLP case, for clarity.
In the simulation pointed by green arrow, the random bit-flips result to be
placed in more sensitive positions with respect to the other experiments,
yielding a lower accuracy.
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Figure 5.4: Cross-layer averaged accuracy with respect to the bit-flip probability for
MNIST MLP (blue), MNIST CNN (red), CIFAR10 CNN (yellow) and GTSRB CNN
(purple).
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Figure 5.5: Cross-layer accuracy results for the different experiments (dots) and averaged
accuracy (line and triangles) with respect to the bit-flip probability for the MLP.

Despite, realistic values for natual soft-error cannot be directly derived, since
the SER is measured over time, it is understandable how realistic values
of natural soft-errors are very low and can be considered to be in the far
left part of Figure 5.4, so that the accuracy reduction, in average is not
significant.

Table 5.5: Total amount of parameters and bits for each network.

Parameters Bits

MNIST MLP 2 953 424 19 161 680
CIFAR10 CNN 1 250 858 10 006 864
GTSRB CNN 494 267 3 966 424
MNIST CNN 369 174 2 953 392

These results show that there is no difference in resilience between different
architectures of neural networks or datasets. The only possible conclusion
is that networks with a larger amount of parameters are subject to a higher
amount of errors and the related classification accuracy is highly affected,
compared to smaller or shallower networks. The number of parameters and
bits for the nets are shown in Table 5.5.
The soft-error range for the simulation is stressed for most of the plot to
highlight variations of the response. Another analysis is conducted by con-
sidering the amount of soft-errors injected as an absolute number, not related
to the overall amount of parameters of the network. In fact, in the previous
analysis the lines started bending in dependence of the amount of the pa-
rameters of the network: first the MLP, then CIFAR10 CNN, then GTSRB
CNN and last the MNIST CNN, following the sequence in Table 5.5. Here
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the bending points are closer one to each other, as shown in Figure 5.6; it
can also be seen that for just a high number of bit-flips i.e. between ≈ 104

and ≈ 105. The high resilience of neural networks is therefore proven.
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Figure 5.6: Cross-layer accuracy results for the different experiments (dots) and averaged
accuracy (line and triangles) with respect to the bit-flip probability for the MLP.

5.1.2 Layer-wise Analysis

A layer-wise analysis of natural soft-error has been carried on. However,
such low values of bit-flip probability (soft-error rate) carry on two main
drawbacks:

1. For classification tasks of the datasets considered in this work, the
neural networks used, despite having from hundreds of thousands up
to two million parameters, are considered, anyway, small compared to
much bigger nets like AlexNet [25] or VGG-16 [50]. If realistic values
for soft-error are applied, placing bit-flips on the network’s weights
is possible just on a global (cross-layer) basis, therefore a layer-wise
analysis could not be possible due to the small number of weights of
each layer.

2. It could not be clearly pointed out the different resilience of each layer.
In fact, characterizing the difference in resilience when random bit-flips
are applied can steer the (targeted) fault-injection analysis.

In order to overcome these difficulties, the bit-flip probability range is ex-
tended to larger values. However, it can be clearly seen from this research
that differences arise when bit-flips are focused on the weights of a particular
layer. The results are averaged over 15 different experiments.
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Multilayer Perceptron Looking at Figure 5.7 on top, it can be seen that
the MLP is almost insensitive with respect to a random bit-flip in the biases,
regardless of the layer. On the other hand, the sensitivity is prominent when
bit-flips are applied to the weights. The accuracy curves for each layer show
almost the same trend, however, the network appears to be slightly more
robust with respect to bit-flips applied in the weights belonging to the last
layer.

Convolutional Neural Network In CNNs, the effect of random bit-flips
on the overall classification accuracy is depending also on the layer type.
What is clear from Figure 5.7 is that first convolutional layer is critical for
each network. In fact the first convolutional layer is, generally, the one
which has the lower amount of parameters. Moreover, its position is critical
because the associated parameters are related to the first feature maps. By
applying errors on them, there is a sort of chain reaction. For CIFAR10 CNN
and GTSRB CNN, also the second convolutional layer is critical. This is
due to the different sequence of layers of these last tow networks, where two
convolutional layers are placed one after the others in the first two layers;
on the other hand on MNIST CNN, the first convolutional layer is followed
by a pooling layer which is somehow mitigating the effect of the errors on
the second layer. Dense layers are generally more resilient, except for the
last one, due to its position, strongly related to the final classification task.

In summary, the previous analysis points out the high resilience of neu-
ral networks to random errors injected in internal parameters. The perfor-
mances, considered in terms of accuracy, are degraded just for huge amounts
of faults injected. However, these networks, as demonstrated in the follow-
ing section, are resilient only for probabilistic attacks, while showing very
different behaviour in case of well-targeted errors that can be applied by an
adversary.
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Figure 5.7: Layer-wise accuracy with respect to the bit-flip probability for (first row)
MNIST MLP, (second row) MNIST CNN, (third row) CIFAR10 CNN and (fourth row)
GTSRB CNN.
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5.2 Bit-Flip with Gradient Search Algorithm

As explained in section 3.2, the fault-injection technique is a powerful ex-
perimental testing technique for ICs. If the efficiency of a fault-injection
attack, for neural networks, is computed as the reduction of accuracy with
respect to the amount of faults injected, it is clear that a random placing
of faults is not the best solution. Starting from the assumption, gained by
the discussion of the results from the previous section, that in a NN there
are some connections which are more vulnerable than others, it could be
possible, in principle, to identify them by iteratively applying the fault on
each parameter of the network while recording the accuracy variation. How-
ever, due to the high amount of parameters in a NN, this approach would
be highly time-consuming and definitely not feasible.
In this section, a method to identify the most vulnerable weights, without
the need for an overwhelming amount of simulations, is described. Taking
inspiration from [44] and [34], the gradients of the loss function with respect
to the parameters of the network are computed in a similar way to what
is done during the learning phase (see section 2.3.5). The highest gradient
in absolute value is considered and the related parameter is taken as the
target parameter to apply the fault. Differently from the learning phase, the
value of the weights is modified in the direction of the positive value of the
gradient, since the aim is to identify the vulnerabilities of the net, therefore
to reduce the accuracy as much as possible. To reach the minimum accuracy
by varying the target parameter, each bit is flipped iteratively starting from
the original value and the accuracy is registered. The bit-flip leading to
the highest reduction is selected as the target and the value of the target
parameter is updated for the next iteration. The target parameter is then
masked, so that it is not considered at the next iteration.

5.2.1 Cross-layer Analysis

The results show that the accuracy is highly reduced for very low amount
of bit-flips for the MNIST MLP, blue line in Figure 5.8, and for the MNIST
CNN, red line in Figure 5.8, considering a global analysis of the parameters.
Note, only ' 30 bit-flips are sufficient to completely crush the accuracy of
the two considered networks.
Similar experiments have been obtained also for the CIFAR10 dataset. As
shown by the yellow line in Figure 5.8, the accuracy drop is far more em-
phatic. In fact, the accuracy reaches a plateau around 10% for just ' 4
bit-flips, which is a more critical result than the one obtained with the
MNIST MLP and MNIST CNN. The GTSRB CNN accuracy is also highly
reduced and reaches the minimum plateau for ' 15 bit-flips (purple line in
Figure 5.8).
The plateau is given by the fact that the algorithm applied, after some
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perturbations, is leading the network to classify each image as belonging
to a given class. Since this attack is not targeted, this class is not directly
chosen to be a specific one. For example the GTSRB CNN accuracy plateau
is (1/43) · 100 ' 2.3%, since there are 43 classes. With the proposed fault-
injection attack, when reaching the plateau, the neural network is classifying
each traffic sign as a general “attention” sign; a targeted attack which aims
to direct the misclassification to a specific choice (for example by aiming a
high speed limit, leading the car to accelerate) can increase the degree of
danger of the attack. However, such targeted attack scenario is left as future
work.
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Figure 5.8: Accuracy vs number of bit-flips for MNIST MLP (blue), MNIST CNN (red),
CIFAR10 CNN (yellow) and GTSRB CNN (purple).

5.2.2 Layer-wise Analysis

In Figure 5.9 on top left and Figure 5.9 on top right, the layer-wise clas-
sification accuracy values for the MNIST MLP and MNIST CNN network
are respectively reported. If there are some lines which are not composed
by 50 points it is due to the fact that they are related to errors in biases;
since it has been chosen to put one bit-flip per parameter, it has been not
always possible to insert the wanted amount of errors. For example, biases
in the last layer of MNIST net are only 10; same thing can happen for a low
amount of feature maps (Figure 5.9, top left, blue triangle line). The layer-
wise analysis of the bit-flip attack, however, is again showing, that there are
some layers that are more vulnerable to bit-flip attacks with respect to the
others.
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Figure 5.9: Layer-wise accuracy with respect to the amount of bitflips for: from top left
to bottom right MNIST MLP, MNIST CNN, CIFAR10 CNN and GTSRB CNN.

Multilayer Perceptron The last layer in the MLP seems to be the most
vulnerable, maybe because its strong connection with the classification layer.
Again, a high resilience is proven by the hidden layer. Fault-injections in
the first layer lead to results which are halfway between the two. The lower
resilience of the first and the last layer could be due to:

� the position of these layers, providing an higher correlation with input
image and with the classification stage respectively.

� the lower amount of parameters with respect to the hidden layer.

The analysis of the curve for the output layer is very interesting because
is showing that, focusing the bit-flip injection in the weights belonging to
the last layer, the amount of bit-flips to reach the plateau is ' 20. On
the contrary, a cross-layer attack on the same network, was reaching the
same plateau for ' 30 bit-flips (Figure 5.8). This result can be counter-
intuitive: however, it must be considered that the gradient descent is not
always capable of finding the local minimum.
On the other hand, the last layer was found to be the most robust one when
subject to random bit-flips (green line in Figure 5.7).

Convolutional Neural Networks The analysis of CNNs show that weights
and biases from the first convolutional layer are again the most vulnerable
to the attack. This is due to the fact that weights in the first layer are
the input image feature maps. When subject to surgical bit-flips, the first
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layer is not capable of recognizing features in the input image, causing an
avalanche effect degrading the final accuracy. Even the last (dense) layer
shows lower resilience, which is probably due, as in the case of the MLP, to
its deep correlation with the final classification stage.

From this chapter, it is clear that the resilience of the networks is depending
on the different layers’ type (dense or convolutional), the amount of param-
eters associated and on the position in the network as well. What is in
general found is:

1. The resilience of a layer of MLP when subject to random bit-flips,
generally depends on the amount of parameters in that layer with
direct proportionality; this is valid for surgical bit-flips as well.

2. The critical layer for CNN is the first convolutional layer since (1) it is
always the layer with the lowest amount of parameters (2) it is directly
related to the first features in the input image. The last (dense) layer of
a CNN is critical as well due to the generally low amount of parameters
related to it and due to its relationship with the final classification.

An important result is that the layer-wise fault-injection can be, in some
cases, more more effective than the cross-layer fault-injection. For exam-
ple in the case of the MLP is found that the maximum drop of accuracy
is reached for ' 20 bit-flips when targeting just the last layer, whereas is
reached for ' 30 bit-flips with layer-wise injection. This is due to the na-
ture of the algorithm applied that, analyzing just the gradients of the loss
function, is not always capable of reaching the minimum.
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Trojan Attack Methodology

In this chapter, a hardware backdoor trojan attack methodology is provided,
based on the results of the previous chapter. The idea is to craft and apply
a particular input pattern to the image that must be classified so that a
particular target neuron is overstimulated. This irregular behaviour is de-
tected and leveraged to be used as a trojan trigger. The payload circuitry
is modeled as few bit-flipping circuits in the memory elements storing the
parameters of the attacked NN. The attack can be directed against a DNN
or a SNN, just modifying some hardware.

6.1 Threat Model

The attack phase is supposed to lay within the supply chain, where a mali-
cious can insert hardware trojans. In fact, due to the modern ICs fabrication
chain, lots of different parties, each one focused on its own expertise, get in-
volved in the project of a hardware product to shorten the production chain.
This makes extremely difficult to control the goodness of the product itself
during the whole supply chain and opens door for hardware trojan attacks
to malicious companies or to ill-intentioned staff [8]. Moreover, the attack is
a white-box setting: the attacker has a complete knowledge of the system ar-
chitecture, internal parameters and low level implementation informations;
however it is not aware of the training set and training hyperparameters.

6.2 Hardware Trojan Design

The hardware trojan is designed to perform bit-flips in the network param-
eters to undermine its integrity and degrade its accuracy. The malicious
behaviour is triggered by the input through a specifically crafted input pat-
tern. Taking advantage of the analysis carried on in section 5.2, stealthy
hardware trojans are placed. Ideally, each trojan consists of a 2-way multi-
plexer with one input which is the original bit, whereas the other input is the
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Figure 6.1: Scheme of the trojan attack generation flow.

complemented bit obtained through an inverter. The multiplexer’s selection
signal is a signal which is at a high logic value only when a trigger is added
to the input image. In this way, the network will behave correctly, providing
the baseline accuracy for the original dataset, for example during test phase,
but, when a trigger is inserted in the image, the hardware trojans will be
activated and therefore the reliability will be highly degraded. The setting
is explained in Figure 6.2, in which the thickest orange arrows represent the
synapses with bit-flip applied and the grey neuron corresponds to the target
neuron.
To produce the selection signal of the multiplexers, the output of a selected
neuron is compared against a threshold, chosen accordingly to the results
of the simulation. Ideally, it is wanted that the output of the neuron is
exceeding the threshold just when the trigger is added to the image.
To transfer the methodology from the DNN to the SNN rate-based imple-
mentation, a counter, which accumulates the number of spikes, is needed at
the input of the comparator. Moreover, the threshold must be transferred
from its digital representation to spike representation, considered in this
work as spike rate. The counter is cleared at the end of the simulation time.
Some steps are followed to craft the attack. This is, however, just an idea of
how a trojan trigger can be implemented. In section 7.3, a deeper analysis
of how the trigger can be physically deployed is taken into account.
As a first step, the selection of a particular neuron to satisfy the wanted
behaviour has to be performed. Even though a methodology is provided
in the following discussion, results strongly depend on the datasets and
on the specific networks analysed for the classification task; some intuitive
deductions can shorten the process and lead to good results.
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6.3 Trigger Pattern Design

Since there can be found a direct relationship between the continuous output
value of a neuron and the corresponding spike rate, the knowledge obtained
through the analysis of a DNN can be transferred to the SNN implementa-
tion. Moreover, a good correlation between analog output value and spike
rate is a necessary condition for a coherent simulation in SNNtoolbox. The
goal is to embed the trigger inside one neuron of the network, namely the
target neuron. In other words, what is wanted is that such target neuron is
activated by a carefully designed pattern in the input image.
The goals that the pattern must satisfy are the following

� Effectiveness: the target neuron must be effectively overstimulated by
the trigger pattern when this is added to the input image.

� Stealthiness: the target neuron must not be unintentionally overex-
cited by the original dataset so that the trojan is not accidentally
activated.

� Imperceptibility : the trigger pattern must be as much imperceptible
as possible to the human eye.

To simultaneously satisfy all of these conditions has been found to be gen-
erally non-trivial; however, some promising results are obtained. The choice
of the target neuron and a methodology to generate the input pattern are
explained in the following.
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Figure 6.2: Scheme of the trojan attack for the MLP network with the counter added
present only in SNN implementation.

6.3.1 Choosing the target layer

Each neuron in a neural network is related in some way to the input image’s
pixels; the relationship between the activation of a particular neuron and
the input image can be expressed in terms of gradients. In the following,
the term gradient will be referred to as the relationship between activation
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of a neuron and the input image’s pixels. The pattern must be placed in
areas of the image which are covered by the gradients of the selected neuron,
otherwise, the activation of the neuron is not affected by the pattern itself.
Hence, the selection of the target pattern, strongly depends on the target
layer. In the case of MLPs, the gradients of each neuron cover the entire
image: if a smaller pattern is wanted, a mask, can be crafted to select a
particular area of the image.
In the case of a CNN, the choice of the layer is directly connected to the
choice of the size of the pattern. This is due to the fact that neurons belong-
ing to deeper convolutional layers are related to a larger area of the input
image. For example, by looking at Figure 6.3, the gradients of a neuron
belonging to the first and second convolutional layers are reported. The
deeper the layer, the larger the area of the image that will account for the
pattern. At the first convolutional level, the shape, position and value of the
gradients are quite clear and corresponds to the feature map of the neurons.
That is why in the following, the first layer will be often considered as the
target layer.

6.3.2 Choosing the target neuron

The target neuron is chosen as the one with the maximum between the sum
of absolute values of weights, connecting that neuron to the previous layer.
This is modeled by the following equation:

argmax
t

(
N∑
i=1

ABS(Wlayeri,t)

)
.

This is a wise choice, inspired by [35] since in this way, a powerful variation
of the output when the input is changed, is granted. However some consid-
ertions about the dataset can be carried on. For example, considering the
MNIST dataset, it can be found that, generally the value of the pixels at
the border of the images is low; placing the pattern in this area will provide
a good separation of activation between original and modified dataset.

Figure 6.3: Gradient representation of a random neuron from (left) the first and (right)
the second convolutional layer of a CNN.
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6.3.3 Choosing the triggering mask

A random initial image, of the same size as the input layer of the net-
work, is generated and the network is inferred with that image, leading
to a value initialOUTPUTk at the output of the target neuron. The value
targetOUTPUTk is chosen to be way much higher than initialOUTPUTk . A
cost function is then defined as follows:

cost =

∑N
i=1 δ

2
i

N
,

Where δi = targetOUTPUTi − initialOUTPUTi and i is the index of the i -th
neuron of the N neurons in the target layer. Being k the index of the target
neuron, we rewrite the expression as:

cost =
δ21 + δ22 + ...+ δ2k + ...+ δ2N

N

For each δi it is imposed that targetOUTPUTi = initialOUTPUTi except for
δk, where targetOUTPUTk 6= initialOUTPUTk . The derivative of the cost
function is computed with respect to the pixels of the random input image,
to find out which part of the input image influences the target neuron, that is
computing the gradients. Based on this, a mask M is created and a random
initial pattern is generated by the dot product between the mask and the
random initial image. The mask can also be chosen in a different way, but
it must have some overlap with the gradient matrix, otherwise the following
algorithm, is not effective.

6.3.4 Generating the trigger

The trigger generation algorithm (see Algorithm 1) is inspired by the work
of Liu and al. on trojan attacks on neural networks [35]. However, in the
work of Liu and al. the trojan is exploited in a different way, by retraining
the network with additional images created by the attacker. Here the loop
is exploited to trigger the over-excitation of the target neuron. In the first
rows of the code, some initialization parameters are set: valmin and valmax
are useful parameters to manage the imperceptibility characteristics of the
pattern; valmin and valmax boundaries are (0,1). The imperceptibility is
not measured in mathematical terms but just considered through a visual
inspection and checked to be quite low otherwise the result is discarded.
Crafting an imperceptible backdoor trojan attack is marginal with respect
to the scope of my work thesis and can be future work.
The gradients ∆ are first calculated and then limited by a mask that can be
suited for the gradients (in that case, line 4 of Algorithm 1 can be skipped)
or can be decided in another way; line 6 is added to limit the maximum and
minimum values for the pixels in the trigger. The loop proceeds until the
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cost is reduced under a particular threshold th or until a maximum number
of iterations epochs is reached.

Algorithm 1 Trigger generation loop

1: INIT(valmin, valmax, lr, epc, epochs, th, cost)
2: while cost < th and epc < epochs do

3: ∆ =
∂cost

∂x
4: ∆ = ∆ ·M
5: x = x− lr ·∆
6: x = clip(x, valmin, valmax)
7: epc = epc+ 1

8: return x;

At the end of the loop, a new pattern is generated with pixels’ values opti-
mized to provoke the saturation of the target neuron. In general, the target
neuron will not reach targetvaluek but a lower value, namely finalvaluek . A
threshold is chosen, such that if the neuron’s output value exceeds it, the
output of the comparator is set high and the multiplexers are switched so
that for each targeted weight, the selected bit is complemented.
The threshold is derived through the following formula:

threshold = finalvaluek − ξ,

where ξ is a parameter, that can be chosen accordingly to the method of
pattern application and the parallelism of the network (in case of a DNN)
or the rate encoding difference in normal and triggered execution (in case of
a SNN).

6.4 Trigger application

The trigger can be applied on the image in mainly two ways: (1) as a stamp
on the image or (2) as a noise on the image. In the first case, the values of
the pixel in the pattern area are exactly the optimal ones as generated by
the loop described in the previous section so that the wanted value for the
output of the target neuron is for sure reached. However, this solution could
be less imperceptible and in that case a careful choice of the layer and/or a
careful choice of the trigger mask parameters (position, dimension, maxval)
should be taken into consideration. This type of trigger patch can be easily
deployed on traffic signs.
The second mode of application produced good results, even if not as much
as the other solution, due to an increased imperceptibility, as will be shown
in the following Section 7. The variation in the image is, in fact, appearing
as an added noise. This noise, added to the image, can be applied to the

59



Chapter 6. Trojan Attack Methodology

camera vision system, as reported for example in [33], in which coloured
stickers are applied on the camera to act like an adversarial and to fool the
image recognition system.
Moreover, supposing to have some knowledge about the pixel intensity dis-
tribution on the image dataset targeted by the network, the choice of the
trigger parameters can rely also on these information.
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Results

7.1 Experimental Setup

Both the original and the modified datasets are inferred and the amount of
times for which both datasets make the target neuron exceed the threshold is
recorded. There is the possibility that some images from the original dataset
produce the saturation of the target neuron as well, hence an unwanted
activation of the hardware trojans for an exceedORIGINAL amount of times.
For a stealthy attack purpose, a carefully crafted trigger should lead to a
situation in which this value, if not nullified, is kept very low.
Therefore, the accuracy is not excessively reduced when the input trigger
pattern is not present, i.e., the presence of hardware trojans is stealthy. The
number of images in the dataset is dimDATASET , the number of images from
the original dataset for which the threshold for the target neuron is exceeded
is exceedORIGINAL and the number of images from the modified dataset for
which the threshold for the target neuron is exceeded is exceedMODIFIED.
The attack aims at being both effective and stealthy, and thereby to simul-
taneously satisfy the following conditions:

1. exceedORIGINAL << exceedMODIFIED

2. exceedORIGINAL << dimDATASET

3. exceedMODIFIED ' dimDATASET .

Although all these conditions should be jointly satisfied is more important
to have a stealthy attack which is less effective than a very effective attack
which is not stealthy, namely is considered mandatory to satisfy the second
condition. The conditions to be satified can be rewritten as:

1. exceedORIGINAL = 0

2. exceedMODIFIED ' dimDATASET

In the following, the results obtained on the MNIST, CIFAR10 and GTSRB
datasets are described.
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7.1.1 Results on the MNIST dataset

Convolutional Neural Network

Targeting the first convolutional layer of a CNN with parameters listed
in the first row of Table 7.1 the trigger shown in Figures 7.1-d, is produced.
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Figure 7.1: From top left to bottom right: (a) initial input trigger, (b) gradients of the
selected neuron, (c) mask created through gradients, (d) final trigger after loop, (e) and
(f) two images with applied trigger.

In Figure 7.1-a,b,c the random initial image, the initial gradients and the
mask M are respectively shown. In this case, the mask is crafted to fol-
low the shape of the gradients. The images from both the original and
the modified test set (two examples from this last image set are shown in
Figure 7.1-e,f) are inferred and the results, as reported in Table 7.1, are:
exceedORIGINAL = 0, exceedMODIFIED = 10 000. This is the better result
obtained.
Targeting the second convolutional layer, the produced results are sig-
nificantly different. In fact, the trigger is far more perceptible and highly
superimposed with the significant part of the images, as can be seen in
Figure 7.2. In this case, with the same simulation parameters, the ob-
tained statistics about the threshold exceeding are: exceedORIGINAL = 5
and exceedMODIFIED = 7 585, as also reported in Table 7.1. This points
out that targeting a neuron belonging to the second convolution layer leads
to a worse result. In fact, it can be pointed out that the gradients are, on
average, higher than the gradients referred to a target neuron belonging to
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Figure 7.2: From top left to bottom right: (a) initial input trigger, (b) gradients of the
selected neuron, (c) mask created through gradients, (d) final trigger after loop, (e) and
(f) two images with applied trigger.

the first convolution layer. We define the correlation between the target
neuron and the masked part of the image S as follows:

S =

∑N
i,j γi,j

M2
,

where γi,j is the gradient referred to the pixel with indexes i,j in the trigger
mask and M is the size of the side trigger, in case of a square trigger. It
can be seen that in the first convolution layer S = 2.21 · 10−5, whereas in
the second convolution layer S = 1.4 · 10−6. This clearly shows that, for a
neuron in the 2nd layer, the variation with the input pixel is much lower.
If we call ρ the value

ρ =
(exceedMODIFIED − exceedORIGINAL) · 100

dimDATASET
,

we can see that it is getting lower when choosing target neurons belonging
to deeper layers.
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Multilayer Perceptron

Taking into consideration the MLP, each neuron, also at the first layer, is
connected to each pixel of the input image. Therefore, the gradients of the
neuron with respect to the input image, spread all over the image itself.
Hence, a square mask is created to limit the area of the trigger. These
results can be applied to the dense layers of a CNN as well. The trigger is
added to the image in a way for which the right bottom corner of the square
matches the right bottom corner of the 28×28 image. The side size of the
square trigger is varied between 5 and 17 pixels, with steps of 2 pixels. As it
can be seen in Figure 7.3, with a trigger size of just 5×5 pixels, the value of
ρ is far from the optimal one. This is due to the fact that if the area of the
trigger is too small, the amount of pixels whose value has to be optimized
by the algorithm to reach the target value for the target neuron, is too low.
It should be underlined that, in the case of the MLP, the target neuron’s
output value is depending on all the pixels of the input image. The difference
between initialvaluek and finalvaluek results to be small. Moreover, a huge
number of images from the original dataset make the target neuron exceed
the threshold, leading to a small value of ρ. As previously said, this condition
is the critical one. A larger area of the trigger increases ρ as can be seen
in Figure 7.3 but, on the other hand, leads to a less imperceptible trigger
pattern.

Figure 7.3: Plot of ρ with respect to the trigger size.

In the case of the MLP network, an interesting result is obtained imposing
a lower value of maxval = 0.1. Even though we are targeting the first layer,
the gradients are covering all the image (Figure 7.5-b), since it is a fully
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connected layer. Hence, we create a mask suited for the gradients, which
spans across the whole image, as shown in Figure 7.5-c. In this case, the
second method described in section 6.4 is used to apply the pattern, hence
the pattern is applied as a noise on the image. Due to the low value of
valmax, the trigger results to be imperceptible, as shown in Figures 7.5-e,f.
We obtained a very high ρ, shown in Table 7.1, and higher imperceptibility.

Figure 7.4: Values of ρ for different values of trigger side dimension, maxval of pixels
and ξ.

It can be seen in Figures 7.4 that the lines are monotonically increasing with
increasing value of maxval. Having a smaller value of ξ is always better. It
can be also pointed out that having an higher area for the trigger is good
but, of course, a smaller trigger could be less perceptible even if we are
always talking about a stamp on the image.
These considerations on the MLP structure can be also extended to the
dense layers in CNNs. In fact, the structure of a CNN is always including
one or more dense layers after the convolutional and pooling layers for the
final classification stage.

7.1.2 Results on the CIFAR10 and on the GTSRB datasets

In this case, targeting the first convolutional layer, with parameters set
as shown in Table 7.1, the trigger shown in Figure 7.6-d is produced. The
superposition of the trigger on the original images (two examples) is shown
in Figures 7.6-f,h. For the GTSRB dataset, results are very good as well.
In fact, a deep separation of the activations (spiking activity) during clean
images and patterned images during inference is reached. Two examples
of clean and patterned images for the GTSRB are reported in Figure 7.7.
Results obtained for CIFAR10 and GTSRB are reported in Table 7.1.
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Figure 7.5: From top left to bottom right (a) initial input trigger, (b) gradients of the
selected neuron, (c) mask created through gradients, (d) final trigger after loop, (e) and
(f) two images with applied trigger.
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Figure 7.6: From top-left to bottom-right: (a) initial input trigger, (b) gradients of the
selected neuron, (c) mask created through gradients, (d) final trigger after loop, (e) first
image from the dataset (f) first image with trigger applied (g) second image from the
dataset (h) second image with trigger applied.
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Table 7.1: Dataset, type of the networks, parameters’ values and results.

Dataset Net Layer Parameters ρ

MNIST

CNN 1st Conv2D

valmax 0.3

100%
ξ 0.1

targetOUTPUTk 100
initialV ALk

0.04
finalV ALk

0.21

CNN 2nd Conv2D

valmax 0.3

75.8%
ξ 0.1

targetOUTPUTk 100
initialV ALk

0.08
finalV ALk

1.56

MLP 1st Dense

valmax 0.1

98.99%
ξ 0.1

targetOUTPUTk 100
initialV ALk

0.05
finalV ALk

1.21

CIFAR10 CNN 1st Conv2D

valmax 0.3

99.98%
ξ 0.1

targetOUTPUTk 100
initialV ALk

0.02
finalV ALk

0.23

GTSRB CNN 1st Conv2D

valmax 0.5

99.97%
ξ 0.1

targetOUTPUTk 100
initialV ALk

0.10
finalV ALk

1.01
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Figure 7.7: From left to right: (a) 20 km/h speed limit (b) 20 km/h speed limit with
pattern applied (c) 30 km/h speed limit (d) 30 km/h speed limit with pattern applied.
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7.2 Hardware Overhead

Given the amount M of bit-flips applied, the hardware overhead should be
constituted by:

1. M inverters, made of 2 transistors each;

2. M 2-way multiplexer, constituted by 16 transistors each in a 4 NANDs
implementation;

3. in the case of a DNN, a digital comparator, whose complexity depends
on the parallelism of the neuron’s output result, which is connected to
the target neuron’s output, or

4. in the case of an SNN, a counter, to count the spikes, plus a comparator
which is set when the counter reaches a particular value.

The overhead of multiplexers and inverters can be estimated as (2+16)×M .
From the simulations reported in section 5.2, it is clear that an amount of
about just 30 bit-flips is enough to completely crash the performances of
the DNN for the two networks operating on MNIST dataset, or 4 bit-flips
in the case of the CNN operating on the CIFAR10 dataset. The hardware
overhead of inverters and multiplexers, calculated in terms of transistors, is
about (2+16)×30 = 540 in the first case, whereas it is just (2+16)×4 = 72
in the second case. In the case of a SNN, a counter is added, whose mod-
ule should be at least as much as the maximum spiking rate a neuron can
have. The amount of transistors needed for a module N counter are given
by #transistors = (N − 2) × 6 + (N × 4) × 4, where the first addend gives
the contribution of the AND gates, whereas the second gives the contribu-
tion of the T-type flip-flops. The overhead in terms of transistors can be
considered low with respect to the large amount of transistors in a DNN or
SNN accelerator. However, as explained in section 3.3, sophisticated detec-
tion techniques are available and therefore this hardware overhead cannot
be considered as negligible and must be reduced.

7.3 Hardware Overhead Reduction

The considerations made on hardware must be revisited. In fact, different
problems raised when trying to figure out how the attack can be effectively
deployed on physical hardware. It must be updated due to two principal
motivations:

� the hardware overhead can still be too high so that the prescence of
the trojan can be highlighted, for example, by a simple differential
power detection technique;

� the hardware trojan can be optimized for the specific hardware.
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A complete knowledge of the low-level hardware implementation and related
mapping algorithms, by hypothesis, must be known to perform the attack.
An attack against a reconfigurable neuromorphic hardware (Intel Loihi, IBM
TrueNorth, ARM SpiNNaker) is difficult to be realized. The target must be
a known neuromorphic hardware suited for a specific application:

� the location of the target neuron axon (output) must be known to
introduce the detection circuitry;

� the locations and the content of the memory cells to flip must be
known.

Trigger Detection The ideal condition to deploy the detection circuit
would be the one for which each connection between neurons is hard-wired:
each synapses is mapped to a different conductive line in the hardware.
However,in general, this is not the real situation in the current hardware
implementations of SNNs, where the routing is multiplexed. This is not
only due to allow the reconfigurability of the hardware but is also mandatory
due to the huge amount of virtual synapses in a NN. In fact, synapses area
occupation is the major problem to be addressed in current neuomorphic
hardware implementation. Hence, to detect the spiking activity of the target
neuron, besides knowing which is the physical shared routing path in which
the target synapses is laying, it has to be known also the signal which is
transferred.

Spike Counter The main issue is that in SNNs no digital activation value
for the activation of the target neuron is present. Therefore, there is not
the possibility to directly compare the activation value with a particular
digital threshold to trigger the bit-flip. This could be also an advantage,
which allows for an additional overhead reduction. In fact, the use of a
comparator can be avoided and the amount of spikes at the output of the
target neuron could be counted instead. In addition, not only the counter,
but also the hardware overhead for a digital counter wants to be avoided.
Besides, the complete count would be ready just at the end of the time
duration of simulation for that image. This implies that the spike rate
cannot be directly considered as a trigger source. Anyway, an higher spiking
rate, caused by the input pattern applied to the image, is for sure providing
an higher amount of spikes.
All these considerations lead to take into consideration an analog solution.
In Figure 7.8 a simple detection circuit schematic for the trigger signals is
shown. When a spike travels on the synapses, the nmos transistor is turned
on for a tspike amount of time. Here the spike is considered as a square
pulse from GND to VDD; this choice (1) is due to a simplistic assumption
(2) details about spike shape are not clarified in literature on neuromorphic
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Figure 7.8: Schematic of the detection circuit.

hardware (3) is not a limitation, in fact, if spike communication is carried
on by actual spike signals, there are more sophisticated charge-sharing tech-
niques to measure them (one example is provided by Yang et al. [55]).
The RC parallel is charged to the supply voltage Vdd; the charge-discharge
curve depends on the parameters R, C and the turn-on time of the transistor,
which in turn depends on the pulse width tspike. To have a good trigger
detection circuit, the parameters R and C must be optimized taking into
consideration also tspike. What is wanted is that the output, namely the
trigger signal T is at high level after a certain amount of spikes, i.e. the
spiking activity threshold found through the methodology in Chapter 6, is
reached. The discharge curve is critical: what is wanted is that after a short
time after the triggered image, the trigger signal T returns to be low again
and consequently the correct logical value in the memory cell is recovered,
hence the trigger is stealthy again. For example, if a triggered image and
then a clean image are inferred, the trigger signal is wanted to be at high
logical level just for the first one. Therefore the discharge time of the RC
parallel must be adjusted to satisfy this requirement. In the case reported
in Figure 7.9, the specifications of a trigger circuit can be relaxed since the
spiking rate of the original image is null, i.e. the target neuron is spiking zero
times when the clean image is inferred. The output voltage can finally be
used to activate the bit-flip circuit, for example, by being directly connected
to one of the inverters in a 6T SRAM cell. What is also wanted is that the
RC parallel is quickly discharged after the triggering sequence is passed.
In Figure 7.9 the spiking activity of the target neuron of GTSRB CNN, for
a 50 ms long simulation, is shown. In particular, it is shown the spiking
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Figure 7.9: Spiking activity of the target neuron for one random image taken from the
MNIST dataset without (blue) and with the pattern applied (red).

activity of the target neuron of first convolutional layer, for a random image
of GTSRB dataset without the trigger pattern applied (clean image, blue
lines) and with the trigger pattern applied (trigger image, red lines). The
clean image is reported in Figure 7.7-a and the triggered one is in Figure
7.7-b.
In Figure 7.9, the deep difference in spiking rates can be clearly seen: the
triggered image makes the target neuron spike 41 times out of 50 possible,
whereas the original clean image was leading to 0 spikes so that the spike
rate is raised from 0 Hz to 820 Hz. This great difference in firing rates can
be used to activate the hardware trojan, as previously said.

Bit-flip in SRAM Many solutions have been considered to trigger the
bit-flip, however some of them have been discarded for different reasons.
It has been chosen to adopt solutions to, again, minimize the hardware
overhead and to avoid bit-flips triggered only during read operation of the
target bit due to the tight timing constrains of read operation in SRAMs.
Therefore, it has been decided to flip the content of the cell directly inside
the cell.
These solution is effective and highly stealthy, because no hardware is added
so that the area and power consumption can be kept almost unchanged.
Considering the original SRAM cell (Figure 7.10), from hypothesis it is
known where, so, in which particular cell, is stored the target bit and which
is the target bit stored in that cell. Considering Q as the correct stored
value

� if Q = ‘0’, Q = ‘1’, break the connection Q → QIN and make the
connection T → QIN (Figure 7.11, top)

� if Q = ‘1’, Q = ‘0’, break the connection Q → QIN and make the
connection T → QIN (Figure 7.11, bottom)

It can be clearly seen how, when the trigger is active, therefore T = ‘1’, the
correct content of the cell is flipped.

71



Chapter 7. Results

B
L

Q

WL

V
d
d

M6
NMOS

M4
PMOS

M2
NMOS

M1
NMOS

M5
NMOS

M3
PMOS

B
L

Q

QINQIN

Figure 7.10: Schematic of the original 6T SRAM cell.

72



Chapter 7. Results

B
L

Q=0

WL

V
d
d

M6
NMOS

M4
PMOS

M2
NMOS

M1
NMOS

M5
NMOS

M3
PMOS

B
L

Q T

T

T='0'
Q='0'

T='1'
Q='1'

T='0'
Q='1'

T='1'
Q='0'

QINQIN

QINQIN

B
L

Q=1

WL

V
d
d

M6
NMOS

M4
PMOS

M2
NMOS

M1
NMOS

M5
NMOS

M3
PMOS

B
L

Q

Figure 7.11: Schematic of the 6T SRAM cell (top) with trigger connection and original
condition Q = 0 (bottom) and with trigger connection and original condition Q = 1.

73



Chapter 8

Conclusion

In the thesis work, threatens on the reliability of DNNs and SNNs are dis-
cussed. As predicted, Statistical Fault-Injection is found to be not the best
solution when the response of a neural network, subject to parameters er-
rors, is wanted to be inspected. The coss-layer analysis confirmed that neu-
ral networks show high resilience in presence of random errors. A layer-wise
Statistical Fault Injection, however, shown that some layers are way less
robust than others. This difference in robustness between layers is found to
be due to a combination of sources like the type of the layer, the relative
position in the network, the amount of parameters.
On the contrary it has been demonstrated that a targeted Fault-Injection can
dramatically undermine the accuracy of a DNN or an SNN by applying bit-
flips on a few vulnerable parameters. These parameters are found through
a gradient search algorithm; despite being able to obtain excellent results, it
is not always capable of finding the best solution, which is, from an attacker
point of view, the most consistent reduction in accuracy with the lowest
amount of injections. This has been underlined by the fact that, following
a layer-wise approach, that is constraining the gradient search algorithm to
work on a selected layer, the attack is more effective. This is highlighting
how possible sources of threat can escape detection and how a layer-wise
analysis should be always applied for testing.
A hardware trojan, supposed to be placed in the supply chain, and trig-
gered externally by an adversarial input pattern, is deployed. It is supposed
to be a white-box setting since the attacker has complete knowledge, from
hypothesis, of the architecture, internal parameters and low-level implemen-
tation information. It has been shown how is easy for an attacker to leverage
its knowledge about the system and to craft a targeted stealthy attack. It
has been demonstrated how an attacker can easily target a few vulnerable
parameters by means of payload circuits of a hardware trojan, exploited
as bit-flipping circuits hidden in the hardware of a NN. Due to the linear
relationship between DNN activations and SNN spike rates, the attacker
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can indiscriminately target an SNN or a DNN with just a few adaptations
of the hardware. This proves that the attack represents a threat to both
SNNs and DNNs. The security issue is made more severe especially by the
stealthiness of the trojan attack because it is only effective when triggered
by the external adversarial noise, and practically imperceptible elsewhere.
Then, the hardware trojan overhead minimization is carried on, focusing
the attack on an SNN hardware accelerator. The added hardware is crafted
to minimize the overhead both in terms of area and power consumption to
escape trojan detection. The trigger pattern applied to the input image is
considered to be imperceptible just through visual inspection. Increasing
the imperceptibility of the trigger pattern and applying a metric to measure
its imperceptibility could constitute future work.
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