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Summary

In the past years, a wide field of research was focused on the possibility of exploring
new solutions for pushing artificial intelligence from the edge of technology to
cheap and handy platforms. Remarkable signs of progress have been reached, and
machine learning appeared in people’s everyday life.
This work aims to propose a new approach that allows deep convolutional neural
networks to be helpful in more IoT contexts, where the computational capability is
a limit, or even to alleviate constraints in data centers, where computers process a
massive stream of information continuously. In detail, this thesis provides a way
to speed up hardware design solutions. Timing surplus can be exploited to design
architectures that require less power while providing very high precision in image
classification and in many other problems.
Several techniques are available to improve such implementations. The cost is
often either the drop of output accuracy or a time-exhaustive computation for
tuning and re-training networks. In the first case, solutions can not be exploited
for safety-critical applications where even a slight inaccuracy in output can result
in unwanted effects; in the second case, the computational limit of many error-
resilient applications, which cannot perform in-place re-training, represents a critical
restriction.
This work collects positive contribution provided by all these solutions and proposes
a new versatile approach that combines hardware-aware software tuning and
approximate arithmetic, without performing any time-expansive computation, after
a specific configuration is chosen.
The idea consists of manually forcing to zero, or masking, specific bits of the kernels
inside networks’ layers. Every layer will have sets of weights that are forbidden
depending on the underlying hardware they will be mapped to. In this way, it is
possible to commit an architecture where time constraints are more relaxed then
reference models, and remaining slack time can be exploited for low energy/power
designs.
For balancing masking operation and preventing any degradation on accuracy
caused by parameters alteration, three low computational cost techniques are
proposed: the optimal fast substitution of weights for minimizing the impact of
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masking process, a quantization-range correction for excluding the last forbidden set
of values and improving parameters’ distribution, and the neurons bias compensation
for masks’ effect mitigation.
Choosing the optimal mask to apply layer-wise can improve the distributions of
feature maps across the network significantly. However, since the number of possible
configurations scales exponentially with the complexity of the model, it is unfeasible
to explore the solution space thoroughly. A heuristic approach was preferred to
minimize in parallel the accuracy drop caused by masks and the delays of dataflows.
The NSGA-II genetic algorithm was exploited for this purpose. Masks fit as the
genes and the mutations applied to neural network structures.
Thanks to the optimization, a close-to-true Pareto front of solutions can be obtained:
which configuration should be preferred from this set, it is up to the designer’s
choice depending on the target application.
Both safety-critical and error-resilient scenarios can largely benefit from this simple
flexible approach.
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Introduction

Talos, the bronze man, ... was given by Zeus to Europe as guardian of the Island
(Crete), which he walked down three times a day with his bronze feet. His body
and limb were made of unbreakable bronze, but on his ankle, under the tendon,
he had a blood vein, covered by a thin membrane, which was for him both life
and death.

Argonautica
Apollonius of Rhodes

Talos was a mythological giant automaton whose task was to protect the Crete
island from pirates and invaders. We have traces of his myth since 400 B.C.
Even in ancient Greece, inventors have dreamed of creating the machine capable
of thinking, of solving a task on his own with human-like intelligence. Today the
will of having an artificial brain for everyday life support hasn’t faded: Machine
Learning is a very broad field that is gaining strength in many applications and it
interests a wide number of researchers all over the world; artificial intelligence can
safely recommend cesarean delivery, play difficult Atari games, and recognize most
of the spoken languages on Earth. One of the most powerful branches of ML is
Deep Learning.

Artificial Intelligence

Machine Learning

Brain-Inspired

Spiking Deep
Learning

Figure 1: Deep learning in the wider context of artificial intelligence [1].
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Deep convolutional neural networks are one of the most important tools created
so far in the field of computer science. A vast spectrum of applications benefits
from deep learning employment, which was amplified thanks to nowadays massive
stream of data provided by a society always connected to the internet. In many
contexts, computers overcame human precision and several modern studies aim to
expand known approaches to medicine, economics, and environment areas.
The main advantage brought by this branch of artificial intelligence is the capability
of networks to learn autonomously the fundamental features needed to complete a
particular task. The programmer doesn’t have to program the algorithm explicitly,
but he has to designing a structure that adapts the most to the target application.
The most critical aspect of DNNs is the computational load that has to be satisfied
to achieve high levels of accuracy; deeper networks can map many more details,
hence they perform remarkably better at the cost of powerful and energy-consuming
platforms.
This work aims to propose a new approach that allows neural networks to be
helpful in more IoT contexts, where the computational capability is a limit, or
even to alleviate constraints in data centers, where computers process a massive
stream of information continuously. More specifically, this thesis provides a way to
speed up application specific hardware designs. Timing surplus can be exploited to
commit architectures that require less power while providing very high precision in
classification problems.
Some state-of-the-art works [2][3][4][5] show how DNNs’ resilience to processing
errors allows approximate computing solutions. Other researches have also exploited
software tuning in light of underlying hardware [6]. These papers, even if they
provide significant improvement in performance, they accept some output quality
loss, which can’t be tolerated in safety-critical applications where even a slight
inaccuracy in output can result in unwanted effects.
Several techniques have been perfected to improve accuracy in such implementations.
Hardware aware training and fine-tuning network’s parameters are two examples
that worked very well in many cases [7]. The cost is time-exhaustive computation:
often approximate computing models require long simulation time, and, if combined
with heuristic approaches for tuning configurations, they may lead to unfeasible
waiting time. Moreover, in some contexts re-training is also not possible due to
the lack of backward process implementation or because training set may not be
available.
This work collects positive contribution provided by all these solutions and proposes
a new versatile approach that combines hardware-aware software tuning and
approximate arithmetic, without performing any time-expansive computation when
a specific configuration is chosen.
The idea came from the possibility to analyze which set of weights, from each layer,
triggers the slower paths during execution; if those values are then excluded from
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the inference process, it’s possible to design a contracted architecture that works
at a faster frequency without incurring in any timing error. Systolic array of MAC
units is the most common solution for deep learning acceleration and it will be the
hardware at the base of this analysis.
Knowing which values are allowed, multiplier architecture can be redesigned with
shorter critical paths. Accumulation is then performed with accurate arithmetic
since addends can’t be controlled a priori, and the literature demonstrated that
approximating adders has a high impact on DNN accuracy[8]. For example, if one
of the i-th bit of the control-operand for the multiplication is known at design
time to be never 1, the circuitry required for performing the i-th partial product
addiction can be dropped, allowing faster and equally accurate hardware. For
pursuing this possibility, quantized network’s layers are masked at evaluation time,
forcing specific weight bits to zero.
For balancing masking operation and preventing any degradation on accuracy
caused by parameters alteration, three low computational cost techniques are
proposed:

• optimal fast substitution of weights for minimizing the impact of masking
process

• quantization-range correction for excluding the last forbidden set of values
and improving parameters’ distribution

• neurons bias compensation for masks’ effect mitigation

From the hardware side, the carry-save tree multiplier was chosen as the case study
to analyze improvements on delays; all possible contracted configurations, allowed
by the software approach, were automatically generated and synthesized for timing
classification.
Choosing the optimal mask to apply layer-wise can improve the distributions of
feature maps across the network significantly. However, since the number of possible
configurations scales exponentially with the complexity of the model, it is unfeasible
to explore the solution space thoroughly. A heuristic approach was preferred to
minimize in parallel the accuracy drop caused by masks and the delays of dataflows.
The NSGA-II genetic algorithm was exploited for this purpose. Masks fit as the
genes and the mutations applied to neural network structures.
Thanks to the optimization, a close-to-true Pareto front of solutions can be obtained:
which configuration should be preferred from this set, it is up to the designer’s
choice depending on the target application.
Both safety-critical and error-resilient scenarios can largely benefit from this simple
flexible approach.
The drawback is that the size of the Pareto-front highly depends on how many
models the genetic algorithm explores. An extensive heuristic analysis requires, of
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course, some computational time.
The work is examined in this paper as follow: Chapter 1 quickly reviews deep
learning and present the algorithm at the foundation of this work, Chapter 2 presents
the most common hardware solutions and necessary procedures for increasing
network sparsity, Chapter 3 presents related works that inspired the proposed
approach, Chapter 4 describes masks from the software side and all the techniques
that mitigate their effects on the classification accuracy, Chapter 5 shows results
from hardware analysis, Chapter 6 pictures how the optimization problem was
modeled and solved through the NSGA-II genetic algorithm; results are there also
provided.

Evaluation

Accuracy

Genetic optimization
algorithm

Mask-aware 
training

Post-training
Masking

Hardware
Analysis

Contracted
Design

Network

Hardware 
design

Timing Reports

Pareto Front
of Solutions

H
A

R
D

W
A

R
E

Optimal Substitution

Quantization-range Correction

Bias Compensation

START POINT

END POINT

Figure 2: Overall scheme of the thesis work.
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Chapter 1

A review on Deep Learning

According to Goodfellow at al. [9], machine learning is the only AI we have today to
let computers act in complicated, real-world environments. Deep Leaning is a kind
of learning that achieves excellent flexibility and robust deployment in many fields
thanks to the capability to represent the world as a nested hierarchy of concepts
autonomously.
DNNs are organized into sequential layers, every one different from the others;
simple tasks are solved in the early stages, while complexity grows going more
in-depth in the architecture. For understanding better this point, one can consider
image recognition context: given a fixed number of objects, called classes, input
images must be labeled according to what they represent. The neural network
assigns a probability for each class that expresses how close is the processed data to
that particular tag; this process may be done starting to detect edges in the image,
then corners and so on with more complex shapes. After the first steps, object
parts can be detected like ears, a nose, or eyes if "dog" is one of the possible labels.
The complexity of feature analysis will continue to grow until the machine will be
able to tell, with good accuracy, to which class the subject of the picture belongs.
What makes this approach so powerful is that the programmer does not need to
specify the features of each class, such as how many legs, arms, eyes each object
has. But all these, and even more complex and abstract information are contained
in the weights learned during training. Figure 1.1 shows the differences between
programming approaches.
It is possible to think about this concept as data representation problem. Everybody
is capable of solving faster arithmetic on Arabic numerals rather than on Roman
numerals even if in the end the same operation has to be performed [9].
However, in many tasks, giving a correct representation or knowing which feature
the machine should extract to make a correct prediction is not trivial. It is common
to know how an eye looks like, but how is it possible to indicate it in pixel values?
It is even harder if all possible variations in all possible pictures of a dataset must
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1 – A review on Deep Learning

be taken into account, since objects will appear cropped, rotated, flipped and so
on.
In DNNs, this is not a problem, as it was already said: representation of classes is
dissolved into the weights; a simple network example is provided by Figure 1.2.

Program

Mapping
from
features

Hand-
designed
features

Mapping
from
features

Additional
abstract
features

Learned
features

Learned
simple
features

Mapping
from
features

INPUT

OUTPUT

Figure 1.1: The graph shows the basic difference between approaches used
for solving a task. The leftmost represent the classical programming paradigm.
The second was firstly used for cesarean delivery recommendation, in which the
programmer hard-coded features and users were giving several relevant information
to the neural network, such as the presence of shocks or problems in the uterus
[10]. The third refers to shallow networks in which only one hidden layer is used for
retrieving object features. The last one represents DNN where deep architecture
leads to a more abstract and complex representation of data [9]

.
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1.1 – Artificial and human intelligence

Hiddel layer 1
Edges

Input layer

Output layer

Hiddel layer 2
Combination of 
edges, corners

Hiddel layer 3
Object models

Figure 1.2: Typical architecture of a Deep Neural Network.

1.1 Artificial and human intelligence
Within machine learning, as shown in Figure 1, there is a trend indicated as brain-
inspired. Since the best "tool" known so far for learning, analyzing, and solving
problems is the human brain, these kinds of algorithms find inspiration on what
we know about how human beings learn and execute tasks. There are many limits
in this emulation since the technology used inside computers is fundamentally
very different from the biological processes of living beings: models of artificial
intelligence try to duplicate the functionality of the brain rather than providing a
realistic shape of it. Greater neural realism has not led to improvements in machine
learning performance.
Deep learning, as a subclass, finds inspiration from the essential computation
element of the brain: the neuron.
Neurons are connected through two types of "channel":

• dendrites provide multiple input signals to the central elaboration system.

• axon carries a single result.

Input and output connections are usually referred to as activations. The link
between one neuron axon and the next one’s dendrite is called a synapse. Figure
1.3 pictures the artificial neuron. There are around 86 billion neurons and 1015

synapses on average in the human brain.
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1 – A review on Deep Learning

0 0

0 0

1 1

2 2

Neuron

axon
Synapse

dendrite

axon

Figure 1.3: Scheme of the model of a neuron.

The main task of synapses is to scale the signal crossing itself, which can be seen
from a mathematical point of view as a multiplication by a factor, called weight.
Scientists believe that we learn by changing these weights associated with neurons’
connection: different scale corresponds to a different response to inputs. All
these signals, received by the central cell, are then summed and a non-linear
transformation is applied to the result. Equation 1.1 resumes what has been just
described.
This algorithm is then executed by every neuron or, for artificial intelligence, by
every layer. As already said, a deeper structure corresponds to more complexity
and abstraction. Today DNNs can have even up to one thousand layers.

yj = f(
k∑
i

wixi + b) (1.1)

Scientists think that probably mammalians use a single procedure to complete
everyday tasks; the brain is made of multiple units that, if analyzed alone, are just
biological cells, but connected all together, they become intelligent. Similarly, some
DNNs structure, made of primary PE, can be used in different applications.
For what concerns learning, there would always be a set of weight applied to
the architecture that minimizes the distance between the expected behavior and
the actual behavior. This problem can be solved with algorithms that find the
minimum of a given n-variable cost-function. Most used algorithms today are
modified versions of the stochastic gradient descent.
How the human brain applies his learning capability, it is today far to be known
[11].
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1.2 – History

1.2 History

Despite what one may think, machine learning roots settle down in the middle of
the last century. Three primary waves of interest characterized the topic: between
the 1940s-1960s, the artificial intelligence research was known as cybernetics, then
in the 1980s-1990s, it had the name of connectionism, while deep learning started
in 2006. Early attempts on machine learning were simple linear models based on
neuroscientific studies, in which weights of the network had to be set by hand by
an operator [12].
At the end of the ’60s, two important works set up the capability of learning weights,
elaborating labeled data [13] [14]. Adaptive Linear Element (ADALINE) was the
first one using stochastic gradient descent for finding the best network configuration;
another breakthrough was reached with discovering that linear models did not
match precisely the brain-behavior, non-linearity was added inside the artificial
neuron for improving the overall outcome.
In the 90s, connectionism brought the idea of using a large number of simple
computational units to achieve intelligent behavior when all connected. In this
context, Geoffrey Hinton provided the concept of distributed representations: all
input of a system should be represented by many features, where these features
must not be valid only for those specific data used for training, but should be
involved in the representation of all possible coherent inputs [15].
Other noteworthy accomplishments were the successfully use of the back prop-
agation algorithm [16] for training, and the introduction of the long short-term
memory for modeling long sequences of data [17], today used in many natural
language processing tasks at Google.
Algorithms set up before 2000 were proved to work well, but all had a simple issue:
they required computationally high cost, which was satisfied only with modern
machines from 2006. "Deep learning" was used the first time for indicating the
importance of depth in artificial intelligence, that could be achieved thanks to
high-performance architectures.
Nowadays, the trend is to use supervised learning algorithms (e.g., providing labeled
data) and to exploit the ability of DNN to leverage large datasets. The increasing
amount of information was possible thanks to the digitization of society. Most of
the activity in which people are involved is recorded. Facebook and Google lead
in storing images, voice recordings and videos that can be labeled and used for
machine learning research purposes. But deep learning extends its capabilities to
medical, economic, weather forecasting and many more application fields, where
today there is not a leader in the market.
Artificial network match or even exceed human performance when trained with
datasets containing 10 million labeled examples, but there are important research

9
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areas that focus on working with smaller datasets or unlabeled data through unsu-
pervised or semi-supervised learning.
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Figure 1.4: Number of connections between elementary units of neural network
have been always limited by hardware capabilities. Here they are compared with
the complexity of the brain of some living beings [18]

.

Here follow the references for data in the plot above:

1. Adaptive linear element [14]

2. Neocognitron [19]

3. GPU-accelerated convolutional network [20]

4. Deep Bolzmann Machine [21]

5. Unsupervised convolutional network [22]

6. GPU-accelerated multilayer perceptron [23]

7. Distributed autoencoder [24]

8. Multi-GPU convolutional network [25]

9. COTS HPC unsupervised convolutional network [26]

10. GoogLeNet [27]
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From 2006, even if Moore’s law slowed down because of technology limits, the
performance of computational units are increasing in a close-to-exponential trend.
This opens the possibility of deeper and broader neural networks that achieve
higher accuracy on more complex tasks. The most complicated architecture today
can be compared to the nervous system of frogs (Figure 1.4), which is already an
important goal. By 2060, human brain complexity may be reached.
The impact of the progress of artificial intelligence is evident. ImageNet Large
Scale Visual Recognition Challange is every year won with a lower top-5 error [28].
Alex-net scored 15.3% in 2012 [25] while today the record is 3.6%. In pedestrian
detection and traffic sign classification, AI reached superhuman accuracy in the
context of autonomous driving; sequence of characters from an image can be easily
detected, rather than just identifying a single object. The most recent application
includes even prediction on how molecules may interact in the pharmaceutical
design of new drugs [29].
What can be said is that deep learning is gaining strength in many more applications
and years ahead will be full of challenges to bring it to another level, delivering
improvements in many aspects of everyone’s everyday life such as security, health,
and assistance.

1.3 The Deep Learning algorithm
Supervised deep learning algorithm, as already said, is one of the most important
and well employed in the machine learning field. It opens up many deployment
contexts, supporting hardware solutions for better performance. This is the one
chosen as the case study for finding improvements in this thesis work.
For a better understanding of the matter, here follows a fast review of the basic
recipe selected as the starting point for the analysis.
Only training (Algorithm 1), that is the procedure through which the network
learns, will be examined. Processing test or real-world data is referred to as
inference; this operation is also performed during the off-line training, a stand-alone
explanation is hence omitted.
DNNs come in different shapes and sizes according to the application are designed
for. Input will be a set of values representing the information to be elaborated.
Image-classification networks are used as in the following chapters for studying any
possible improvements.
Before beginning the elaboration, training data must be fetched. Networks are
designed to work for specific inputs, even though they can keep almost the same
inner structure with different datasets. For instance, if an AI is supposed to label
28x28 pixels black and white images, then it cannot be used for 32x32 ones.
The most famous dataset is the MNIST database [30] (Modified National Institute of
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Algorithm 1 Deep Neural Network training algorithm
epoch=0
while epoch < EPOCH_NUMBER do

batch_count=0
while batch_count < TOTAL_MINIBATCHES do

data, labels = fetchData(dataset, batch_count)
predictions = forwardpass(batchData)
loss = lossFunction(predictions, labels)
gradiants = backwardpass(loss)
network.weights = optimizer(network.weights,gradients,learning_rate)
batch_count = batch_count + 1

end while
epoch = epoch + 1

end while

Standards and Technology, Figure 1.5). It is an extensive collection of handwritten
digits, which has been used for training and benchmarking many neural networks
in the past. Today it does not represent a challenge anymore since it is common to
reach very high accuracy with simple architectures. An alternative was provided
by Zalando with the Fashion MNIST database [31], a new collection in the exact
frame of the first one but with pictures of clothes instead of numbers. It keeps the
same amount of samples (50000 for training and 10000 for testing) of the same
shape, divided into ten different classes.
Other well-known datasets are the CIFAR-10 and the CIFAR-100 that respectively
are labeled into 10 and 100 classes[32]. While the one used today for the Large
Scale Visual Recognition Challenge is Image-Net [28].
Once data is fetched, the forward-pass is performed. This step is identical to a
normal inference process. A sequence of arithmetic operations is repeated between
different layers, which do not keep any memory of previous evaluations.
Neurons between stages may be fully connected between each other, or in case
some links are missing, the stage will be referred to as a sparsely connected layer.
The operation performed by each unit is a convolution of the results obtained by
the "neighbors" that are connected to it. Convolution consists of the weighted
sum of each input data; weights remain always the same for processing a specific
output feature map of a layer. Figure 1.6 and Figure 1.7 show an example of
high dimentional convolution for the LeNet network, used for MNIST dataset
classification.
After each section, other transformations can be performed on data for improving
network performance or for reducing computational load, this depends mainly on
the designer’s choice.
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Figure 1.5: Digit MNIST and Fashion MNIST compared.

28x28 input image 6 channels 
28x28

Convolutional layer

Pooling

6 channels
14x14

Convolutional layer Pooling

16 channels
10x10

16 channels
5x5

Figure 1.6: High dimensional convolutions requires a set of filters for each output
channel of a certain layer. In every set, weights change for each input channel.
Feature maps size depends both on the kernel width and the stride, which indicates
the amount of pixels the filter is shifted after each convolution. The picture shows
convolutional layers of a LeNet [33].

Possible transformations are:

• A nonlinear activation function. The most used is the rectified linear unit
(ReLU), but there exist other similar versions. Sigmoid and the Hyperbolic
Tangent were also employed for this purpose in the past.

• Pooling is used for reducing the dimensionality of the activation feature map.
This makes computation lighter and the network more robust to small shifts
and distortions.
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Input
Feature Maps

Single
Output

Activation
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Figure 1.7: In this detail of a high dimensional convolution a set of 6 different
kernels is needed for the computation of each output channel.

• Activations may be normalized for achieving zero means and a unit standard
deviation to speed up training and improve accuracy.

After propagating inputs through the network, the predictions must be checked with
true labels. For this purpose, several loss-functions can be employed to represent
how far the results are from the real ones. Then weights should be updated for
minimizing this quantity.
The most used algorithm to compute new values for the weights is still a modified
version of the stochastic gradient descent used in the 60s.
This whole process is known as back-propagation, which uses the chain rule for the
gradient computation of each weight, from the output back trough the data-path.
Starting from the forward pass formula

ylj =
m∑
k=1

wljka
l−1
k + blj (1.2)

where:

• ylj is the output of a certain j neuron in a l layer.

• wljk is the weight k out of m, where m is obtained by the kernel size squared.

• al−1
k is the output activation of the previous layer.

• blk is the bias, unique for every neuron.

The chain rule can be written as

δC

δwljk
= δC

δylj

δylj
δwljk

(1.3)
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C represents the loss. In this way, it is possible to link the cost function with
the variation of the weights. Kernels will then be updated through an optimizer.
Convergence to the cost’s minimum is ensured and the set of weights that produced
the most accurate result will be stored in the network structure.
It must be noticed that gradients are not directly subtracted to the weight’s value,
but they are tuned through a learning rate (α), a hyperparameter used to speed
up the training and to increase the sharpness in reaching the minimum.

w′ = w − αδC
δw

(1.4)

The forward-pass is performed for every set of inputs, called batches or mini-batches,
from the training set. After this first step gradients are computed, evaluated and
weights will be hence updated. The whole data-set is processed as many time as
the number of epochs specified by the programmer.
One of the problems ANN designers must face is the over-fitting of the training data.
For prevention, a common technique is data augmentation; it consists of slightly
modifying input data to increase network capacity to correctly label inputs in a real-
world scenario. A test must be performed without computing the gradients to check
whether the training is incurring into over-fitting. The test accuracy is then com-
pared with training one; if values are not coherent, the algorithm can be interrupted.
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Chapter 2

Accelerating Deep Learning
algorithm

2.1 Why specific hardware?
Machine learning was confined in the research field for many years due to the com-
putation and storage complexity of networks. Then, improvements on technology
allowed the rising of new studies focused on the possibility to implement artificial
intelligence in several and heterogeneous platforms.
For understanding how complex is machine learning elaboration, Table 2.1 shows
the characteristics of most known networks designed for ImageNet classification.
Typical CPUs perform 10 to 250 GFLOPS with less than 1 GOP/J of efficiency

DNN Year # Parameters # Operations Top-1 Accuracy
AlexNet [25] 2012 60M 1.4G 61.0%
VGG19 [34] 2014 144M 39G 74.5%

ResNet152 [35] 2016 57M 22.6G 79.3%
MobileNet [36] 2017 4.2M 1.1G 70.6%
ShuffleNet [37] 2017 2.36M 0.27G 67.6%

Table 2.1: Examples of modern deep neural network complexity [38].

(e.g. Intel i9 9900K reaches 236 GFLOPS).
Running classification for most complex networks will require some time with signif-
icant energy consumption. Performing training on CPU would be then prohibitive.
This is the main reason why GPUs, which reach 14TFLOPS at a lower power
budget, are widely used and supported by many frameworks such as Caffe[39],
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2 – Accelerating Deep Learning algorithm

TensorFlow[40] or Pytorch[41]. The Nvidia Pascal architecture can even feature two
16-bit brain floating-point operations on a single-precision core as an otimization
for DNNs.
FPGA based platforms are also possible for facing challenges in performance and
power budget flexibility. But specific design requires heavier work than developing
a CNN model with existing deep learning frameworks[38].
Examples of systems with a dedicated hardware for DL are the Facebook’s Big
Basin custom server[42] or the Google TPU based Cloud; there are even mobile
platforms such as Nvidia Tegra and Samsung Exynos that support machine learn-
ing.
Unfortunately it is often required to design architectures according to specific
needs, trying to minimize as much as possible non-recurring engineering costs.
Specifications strongly depend on targets, and safety-critical contexts have to be
taken into account. For example, for autonomous driving cars detecting a red
light is fundamental, while the energy budget can be less relevant. Different is
the situation in which AI must help tiny drones to avoid obstacles. In this case
long-lasting life of the supply batteries is preferred, while for detecting impediments
is enough a less accurate DNN elaboration [43].
Hence a broad solutions space is needed for fulfilling the possible needs. Fortunately,
along with the classical approaches, machine learning allows brand new schemes.
Frameworks provide inference in single or double-precision floating-point. Back-
propagation algorithm can be modified to train the wieghts in such a way they will
result aware of the final architecture.
Intel [44], Xilinx [45] and others are providing new open source frameworks for
supporting hardware-level design constantly updated to the state-of-the-art. This
allows a fast analysis of the newest approaches and it contributes to create a
standard way of designing neural networks for embedded systems.
In this work, Distiller by Nervana was chosen as support of analysis.

2.2 Hardware solutions for DNNs

This section will provide a fast overview of classical approaches for efficiently
mapping neural networks in hardware, with a closer focus on specific structures of
systolic arrays.
The kernel operation of DNN processing is the multiply and accumulate operation
(MAC). Within the hardware perspective, such computation can be performed with
high parallelism, exploiting both temporal and spatial architectures.
The order of operations in deep-learning algorithm can be modified for adapting to
both different types of target platforms:
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Figure 2.1: Systolic array is used for mapping network layers. In the bottom
right there is an example showing computations performed in the second coloumn
when kernel dimension is 3 and input feature map is 5x5 pixels[46].

• by reducing the number of multiplications it is possible to increase the through-
put in temporal architectures like CPUs and GPUs.

• by introducing data reuse can be the key to energy-efficient spatial architectures
(e.g. systolic structures in Figure 2.1).

The bottleneck in NNs is the memory bandwidth. Three different input must be
fetched for each MAC operation, then the result must be stored back, as shown in
Figure 2.2. For reducing the energy required in memory interactions, data must be
reused as much as possible.
The simplest approach comes from the fact that, within the same channel of

the same layer, the output feature-map is always the combination of the same
input-map with the kernel filter. Figure 2.3 shows this and others possible solutions
for avoiding memory access at the algorithmic level.
For exploiting data reuse from the hardware side, it’s possible to implement a
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Operand 1
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Updated Partial Sum

Memory 

Figure 2.2: Data exchange during a MAC operation.

hierarchical memory system with buffers and local memories included in each
arithmetic circuit. An ALU linked with a local memory of 0.5 to 1 kB is referred
to as a processing engine. Several PE connected will create a systolic array.
Common ways to reuse information are:

• keep the same input feature-map stored and apply the different channel filters
to it

• keep in local memory the filters and apply them to batches of input data.

It is also possible to introduce a global buffer connected to all the PE that works as
a memory and as an interconnection. Distributing the available chip area between
local memory and buffer can provide several design solutions. Policies can be
resumed into 4 categories.

• Weight Stationary approach minimizes energy consumption required for read-
ing weights, storing them in the local register file. Activations are fetched from
global buffer and output partial sums are accumulated letting them propagate
through adjacent PEs.

• Output Stationary approach stores partial sums in local memory, streams
input feature-map, and broadcasts weights from the buffer to PEs.

• No Local Reuse reallocates area used for local RF to global buffer to increase
its capacity.
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Figure 2.3: Common approaches for data reuse [1]. Convolutional Reuse is
possible only for CONV layers with sliding windows: if local memory is enough
both activations and filter can be reused for computing a single output channel.
Feature-map Reuse can be exploited in all type of layers. The same happens for
Filter Reuse as long as multiple input feature maps are available (e.g., batch size is
greater than 1).

• Row Stationary approach maximizes the reuse and accumulation at the local
memory level for all types of data. Kernel’s rows are kept stationary inside RF,
activations are streamed between PEs and the partial sums are accumulated
inside the elaboration unit, then are passed to neighbor processing elements.

Hardware implementation and how layer are mapped depends on the policy chosen.
From the solutions shown above, RS is more relevant since it allows the design of

ordered structures where DNN’s layers can be automatically mapped by a (software)
optimization compiler[1].

2.3 Sparsity
DNN’s kernels can be more generally referred to as tensors. A tensor is by definition
a mathematical object represented by an array of components that are functions of
the coordinates of a space.
The concept of sparsity indicates how many entries of such structures are zero; a
tensor without any null value is defined as dense.
Working with sparse kernel requires lower computational effort than with dense
ones, and methodologies for increasing such property inside DNNs during training
are nowadays under study.
Considering it from the software level, more weights are zero fewer multiplications
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Figure 2.4: Different types of dataflows according to the chosen policy for design-
ing the hierarchy of memories[1]. (a) Weight stationary. (b) Output Stationary.
(c) No Local Reuse.

and additions would be required for completing the task. This can be translated
into lower latency and less overall energy consumption. If we consider the hardware
side, the intensive use of memories can be also restricted, opening new possible
challenges in mobile environments.
It’s hence manageable to obtain a compressed version of a model that acts exactly
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as the original one but bringing more advantages in terms of performance and
energy. These perks come at the price of more difficult software and hardware
co-design, which becomes often application-specific.
Sparsity can be measured by the following formula.

‖S‖0 =
N∑
i=0
|xi|0

1
N

(2.1)

where xi is the i-th element, out of a total N, in the tensor. Then density becomes:

D = 1− S (2.2)

2.3.1 Pruning

A common methodology for achieving higher weights’ sparsity is pruning [47] [48]
[49] [50]. It consists of the application of binary flag to kernel’s elements to decide
which one to force to zero. This process, performed during training, lets the network
adapt over the lack of some connections between neurons. A single or entire sets of
close weights can be pruned.
Link trimming can be definitive or in some cases temporary to let the optimization
algorithm find the best trade-off between sparsity and accuracy, and learn which
connections are more important over the others.
Pruning can be applied both to weights and bias, but major advantages come with
working with the first ones.
Clearly, deleting too many links will result in a loss of accuracy, while a less
aggressive approach brings some extra benefits: it reduces redundancy and avoids
over-fitting. The procedure may be also performed on an already-trained network,
recent works show how it is possible to obtain the same accuracy halving the number
of weights without any fine-tuning afterwards [51]. However, iteratively pruning
connections during the training may lead to higher sparsity without any significant
accuracy loss, furthermore, fine-tuning criteria and scheduling of the pruning
operation make the network itself learn which connections are more significant. At
every iteration, more weights are set to zero and the algorithm stops when either a
target sparsity level is reached or accuracy decreases under a certain unacceptable
value for the target application.
How connections should be deleted is chosen through a criteria; the most simple sets
to zero all weights below a certain threshold; this procedure is known as magnitude
pruner. It is possible to increase weights threshold more and more at each step
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achieving a higher sparsity.

wi =

wi if |wi|>λ
0 if |wi|<λ

Moreover, it’s possible to choose a threshold λ for each layer that will represent
the output sensitivity from each different level.
But since weights have different average absolute-values along with the layers, it

Image imported from pruning documentation of Distiller 

Figure 2.5: AlexNet top5 error plot with the increase of sparsity level through
layers[44].

requires some effort to find a single threshold for everyone of them.
To simplify and increase efficiency it’s possible to exploit the common distribution
of the kernel’s values using the standard deviation as a sort of normalizing factor
between the different tensors. The threshold is set multiplying σ to a sensitivity s
value, known by performing the analysis with empirical methods as it was done in
Figure 2.5 on AlexNet.

λ = σ ∗ s (2.3)
Sensitivity can be computed one time before pruning or can be updated at every
training step. Other pruning approaches are the "Splicing Pruner" [52] and the
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"Automated Gradual Pruner" [53], that won’t be here analyzed in detail.
Pruning shows how networks are usually overparameterized. It was presented here
for complete picture of modern newtwork design approaches, but it is not directly
related with this thesis work.

2.3.2 Quantization
Frameworks implement deep learning with data in standard 32-bit floating-point
format requiring high bandwidth and computational effort. Implementing a mo-
bile accelerator in floating-point would be prohibitive. Fortunately, it has been
extensively demonstrated that both weights and activations can be represented in
a lossy 8-bit integer without effecting a significant accuracy drop.
Both inference and training can be implemented using integers but quantization is
here studied just for the classification process.
Problems arise in the representation of wide distributions of data. For accurately

Energy Saving
INT8 vs FP32

Area Saving
INT8 vs FP32

Add 30x 116x
Multiply 18.5x 27x

Table 2.2: Comparison between 8-bit Integer and 32-bit Floating Point convolu-
tional operations[54].

handling these issues, scale factors must be associated with each tensor. These
values are usually represented in floating-point 32-bit, even though there are ways
to proficiently approximate them [55].
Hardware design with integers number must be carefully sized for avoiding overflows.
Therefore, accumulators must be implemented with higher bit-widths respect to
activations and weights. Neurons’ output is the result of c ∗ k2 additions, where
c is the number of channels and k is the kernel dimension. Hence partial sum
parallelism, m, is given by the following formula:

m = 2n+ log2(ck2) (2.4)

n represents the parallelism of the weights and the activations.
Bias and weights can be processed offline, but activations distribution unfortu-
nately changes run-time, so they must be approached differently: range limits
can be collected offline by obtaining statistics during the training or running few
calibration batches on the trained floating-point model. This method, if statistics
aren’t exhaustive, won’t adapt to possible distribution of new data and the model
accuracy will decrease in real-world application (Figure 2.6). A possible solution is
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to compute run-time the actual range of feature-maps on each layer at the price of
extra resources.
There are many techniques to mitigate the effects of quantization. One can re-train
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Figure 2.6: Example of activation distribution exceeding the statistic range
computed offline, during real-world inference.

the network and fine-tune the result, or, in another way, improve the resolution of
value representation by clipping the data close to the minimum or the maximum,
as shown in Figure 2.7. An efficient clipping strategy is using an average of the
actual min/max values, or, for example, statistically clip the range to preserve
more information.
Quantization-Aware training remains, as when performing pruning, the best way
for achieving almost the same accuracy of reference FP networks. It comes with a
heavier computational burden just in the training algorithm.
Functions used for quantization are discrete-valued, their derivative would then be
zero almost everywhere and including it in the back-propagation will degrade the
learning process. A straight-through estimator approximation is used for passing
the gradient through quantization function as it is [56].

Algorithms used in this thesis work lay on a Range-Based Linear Quantization:
linear means that float values are quantized through multiplication with a numeric
constant (the scale factor), range-based means that scale factor is obtained by
looking at the range of original tensor values. There exist two methods to go:
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Figure 2.7: Example of unsigned range mapping with the clipping of outer data.

asymmetric and symmetric. In asymmetric mode, the minimum and the maximum
of the float range are mapped to zero and 2n − 1, where n is the number of bits
used for the final representation. In this case, zero is mapped with an integer in the
new range. The formula for quantizing tensors asymmetrically is

0

0 max(xf)min(xf)

2n-1

Figure 2.8: Quntization with unsigned asymmetric range mapping.

aq = round

(af −min(af )
)

2n − 1
max(af )−min(af )

 (2.5)
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The scale factor can be indicated simply with sf and the zero point as zp.

sfa = 2n − 1
max(af )−min(af )

(2.6)

zpa = min(af )sfa (2.7)

Transformations applied to the data must be propagated through the network as
well. Using a light notation is possible to write

yf =
∑

afwf + bf =
∑ aq + zpa

sfa

wq + zpw
sfw

+ bq + zpb
sfb

= (2.8)

= 1
sfasfw

(∑
(aq + zpa)(wq + zpw) + sfasfw

sfb
(bq + zpb)

)
Therefore the quantized output would be

yq = round

 1
sfasfw

(∑
(aq + zpa)(wq + zpw) + sfasfw

sfb
(bq + zpb)

) (2.9)

By means of some arithmetic transformations, it’s possible to come up with a
standard version of multiply and accumulate algorithm that can be executed by
architectures described before.
In symmetric mode, the zero-point is always mapped with zero. For mapping the
range then it is chosen the maximum absolute value xf of the floating-point tensor
Xf . As already done for the previous case, let’s derive the output formula.

0

0-max(|xf|)

2n-1-12n-1

max(|xf|)

Figure 2.9: Quntization with symmetric range mapping.

aq = round

(
2n−1 − 1
max(|Xf |)

xf

)
= round(sfaxf ) (2.10)

yf =
∑ aq

sfa

wq
sfw

+ bq
sfb

= 1
sfasfw

(∑
aqwq + sfasfw

sfb
(bq)

)
(2.11)
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The quantized velue is then obtained by rounding

yq = round

 1
sfasfw

(∑
aqwq + sfasfw

sfb
(bq)

) (2.12)

Many frameworks such as TensorFlow, NVIDIA TensorST and Intel DNNL
use a restricted range that doesn’t include the most negative value −2n−1 like the
Equation 2.10.
If the two methods have to be compared, the symmetric mode is easier to implement
in hardware but the quantized range may be less utilized resulting in a less accurate
value mapping. For example, after ReLUs tensors are entirely positive, thus the
negative range is never used and half of the available bins are wasted. On the other
hand, asymmetric mode requires extra logic for zero-point handling that affects
latency, power and/or area of the resulting design.
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Chapter 3

Related Works

This chapter will introduce state-of-the-art related work, that provided fundamentals
and inspiration for this thesis. Researches addressed deep neural networks’ resilience
and capability to positively adapt to some type of correction; the goal was improving
AI in terms of energy consumption and portability. A brief description of research
paper will be here presented, highlighting contributions to this work.

• Deep Compression [57] and Clip-Q [7] focus on the possibility to reduce
redundancy inside networks and compress their size mainly at the software
level

• AxTrain [6], CANN [58] try to implement approximate hardware in DL
acceleration

• ALWANN [5] provided an approach to populate Pareto optimum curve when
a big space solution has to be explored

All images and data shown are taken from the respective work.

3.1 Deep Compression
"Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding"[57] proposes what was a novel approach to deep
neural network distillation. The target is to reduce as much as possible the memory
size of network parameters. For this purpose three steps were manly elaborate on
the paper:

• pruning is used for removing the connections that are not considered important
for the classification [51]

31



3 – Related Works

• quantization then is applied for clustering weights and reduce the overall size
of the kernels

• lastly for further compress the network, the Huffman code is used for addressing
parameters

The main focus is set on how to store weights in memory. Connectivity of network
is at a first step learned normally, then magnitude pruner is used for removing
all weights below a certain threshold. Finally, retraining is performed for fine-
tuning the weights of remaining sparse connections. Non-zero values are stored in
compressed sparse row or column, recording indexes difference instead of absolute
position. This allows using 8-bit addresses for convolutional layers and 5-bit ones
for fully connected.
Quantization is then applied to find centroid of clusters that can collect as many
weight as possible. Each bin is then fine-tuned uploading the centroid with the sum
of the gradients of the weights related to that specific bin. An example (Figure
3.1) of a 4x4 kernel tensor is provided.
The compression rate reached in this way can be expressed as

Image imported from Figure 3, Section 2 of
"Deep Compression: Compressing Deep Neural Networks with 

Pruning, Trained Quantization and Huffman Coding",
Song Han et al., ICLR 2016  

Figure 3.1: Weight sharing by scalar quantization (top) and centroids fine-tuning
(bottom)[57].
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r = nb

n log2(k) + kb
(3.1)

Where n is the number of original connection and b the number of bits required
to represent each one of them. nb is the size of the reference network. k is the
number of effective number of centroids, which take kb bits of memory; n log2(k) is
then required for storing the addresses.
To minimize the sum of the distance between weights and their representation,
the paper shows that cluster centroids should be initialized linearly spacing them
between the minimum and the maximum value of the original tensor. This will
result in a more versatile and scattered distribution.
As the last step, weights are coded using Huffman approach, which is out of scope
for this work.
Results achieved with this methodology are interesting, since FC layers of VGG-16
were reduced by up to 98.9% of their original memory size (Table 3.1).
Looking at the results obtained by Han et al. is clear that deep neural networks

Network Top-1 Error Top-5 Error Parameters Compress Rate
LeNet-300-100 1.64% - 1070 KB
LeNet-300-100 Compressed 1.58% - 27 KB 40x
LeNet-5 0.8% - 1720 KB
LeNet-5 Compressed 0.74% - 44 KB 39x
Alex-Net 42.78% 19.73% 240 MB
Alex-Net Compressed 42.78% 19.70% 6.9 MB 35x
VGG-16 31.50 % 11.32 % 552 MB
VGG-16 Compressed 31.17 % 10.91 % 11.3 MB 49x

Table 3.1: The deep compression pipeline can save 35× to 49× parameter storage
with no loss of accuracy.

are typically over-parametrized. Their technique targets different mobile platforms,
but other ways can be explored if design space is restricted to ASICs.

3.2 CLIP-Q
Another work that more deeply tries to reduce the degree of parameter redundancy
in deep neural networks is "CLIP-Q: Deep Network Compression Learning by
In-Parallel Pruning-Quantization" [7].
Novelty represented by this work are three:

• pruning and quantization are here included in the same framework

• decision for both connection trimming and quantization aren’t permanent but
they adapt overtime in the training as network structure changes
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• the two techniques are performed in parallel in such a way one adjusts to the
other, achieving better result in terms of accuracy, loss and sparsity.

The paper proposes a training which allows the network to learn not only to perform
a specific task but also it’s own shape progressively. Connections may be removed
and then restored, bit range may decrease and then adapt again to new structures,
all these for minimizing both the loss and the density.
The training algorithm consists of three steps: clipping, partitioning and quantizing.
During the whole process, a back-up of the full-precision model is updated during
back-propagation, while the distilled one is used only for forward-pass. Once
learning is completed only the compressed network is saved and used for inference.
The structure of the algorithm is explained in Figure 3.2.
Clipping step is performed by setting the percentage p of weights (between 0 and 1)

Image imported from Figure 1, Section 1 of
"CLIP-Q: Deep Network Compression Learning 

by In-parallel Pruning-Quantization",
Frederick Tung et al., CVPR 2018  

Figure 3.2: Overview of CLIP-Q algorithm. It combines weight pruning and
quantization in a single learning step. The pruning-quantization adapts overtime
with the changing network[7].

that will contribute as zeros in the forward pass of a minibatch of data. According
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to this target, two thresholds are set, one for negative and one for positive range.
It is important to notice that weights are not set to zero, but prediction, and then
gradient and loss, are computed as they were zero. At the next step, given the
same hyperparameter p, new thresholds are set and more connections are pruned.
During partitioning weights are divided into quantization intervals depending on a
precision budget b. Linear partitioning is then performed mapping values into 2b
bins. First one will be addressed by 0, while last one with 2b − 1.
In the end, the quantized value, that substitues all the wieghts falling into a
specific cluster, are computed by averaging the full-precision vlaues within the
corresponding quantization interval. Quantization applies only in the forward-pass
as already said for pruning.
The hyperparameters p and b determine the sparsity and the accuracy of the
network. In the paper, they are set layer-wise through a Bayesian optimization,
which acts on a black-box objective function defined as

minθε(θ)− λci(θ) (3.2)

θ represents a couple of hyperparameters, ε the top-1 error and ci is

ci(θ) = mi − si(θ)∑
imi

(3.3)

that express the gain we have for each layer i. mi is the number of bits requires
to store the weights of layer i in the original network, while si(θ) the bits used for
the commpressed one.
λ indicates how much compression is important in the optimization process. This
methodology provides a reduction of 51 times the AlexNet overall memory size,
with a drop of 0.7% in the accuracy of ImageNet classification (from 57.9% to
57.2%).
The important contribution provided by this work is that it is possible to shape
the network while learning the parameters.

3.3 Ax-Train
"AxTrain: Hardware-Oriented Neural Network Training for Approximate Infer-
ence"[6] proposes a way to increase the intrinsic error tolerance of DNNs. A more
resilient network allows the application of approximate computing for energy-
efficient computation.
Resilience is developed by pursuing a set of parameters in the network highly
error-tolerant and incorporating the expected noise distribution of approximate
hardware in the forward pass during the training phase. The technique is thus
orthogonal, providing improvements for both the software and the hardware side
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Image imported from Figure 1, Section 1 of
"AxTrain: Hardware-Oriented Neural Network

 Training for Approximate Inference",
Xin He et al., ISLPED 2018  

Figure 3.3: Different type of minimum of the loss function[6].

to avoid or reduce as much as possible accuracy drop. Once again, acting during
the training is fundamental to exploit awareness of the target hardware; moreover,
AxTrain provides an active method that biases the network to a noise insensitive,
accurate, minimum.
Considering the robustness of the network as

Etot = E + γS(w) (3.4)

Where E is the original output error, γ is a preference factor that is used for
fine-tuning the optimization process. Sensitivity S(w) can be then defined for each
layer l as:

S(w) =
∑
k

(∑
ij

|wij|
∣∣∣∣∣ δOk

δwij

∣∣∣∣∣
)

(3.5)

where the absolute value takes into account the worst-case scenario. The derivative
indicates each output k (Ok) response concerning weight perturbation, while |wij|
represents the fact that noise is proportional to value’s magnitude. S(w) has to be
taken into account during back-propagation as it is commonly done for the loss
function.
For what concerns learning the noise distribution from inaccurate hardware, approx-
imate multipliers and near to threshold voltage memory are considered. AxTrain
models NTV induced flips in the forward pass as stochastic noise, while approximate
arithmetic by performing computations with the software counterparts. Gradients
in the backpass don’t take into account these modifications, a straight to estimator
approach is instead preferred.
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With this methodology, up to 75.61% of errors are reduced for the most aggressive
approximation, with close to half of the power dissipated.
This work underlines how different sets of parameters, that provide almost the
same accuracy, can be significantly distant in terms of error tolerance (Figure 3.3).

3.4 CANN
Yet another approach to DNN with approximate hardware is represented by
"CANN: Curable Approximations for High-Performance Deep Neural Network
Accelerators"[58]. The paper points out several lacks of other previous approaches
in the context of safety-critical applications, where it is still needed a high level of
energy-efficiency. Accuracy drop in such scenarios is prohibitive, preventing the
use of classical approximate arithmetics.
Even AxTrain approach won’t be feasible in this case since additional constraints on
the training process limit the learning capabilities of the network and will prevent
to reach tolerable error in many applications.
For what concerns reconfigurable hardware design, the overhead introduced by
multiplexers and the area taken by multiple architectural solutions may overcome
IC constraints and prevent practicability.
The solution provided exploits the structure of the systolic array: at every PE an
approximate result is transmitted to the next one along with a correction bit, that
can be easily handled at the next step by a Wallace tree multiplier. Differences
between the proposed design and classical ones are shown in Figure 3.4, along with
analyzed characteristics in Table 3.2.
With this approach, critical paths of the architecture are significantly reduced and
the clock frequency can be lowered for important energy savings. The power-delay
product of the proposed hardware is close to half of the conventional one.
What is important here is not the solution provided, yet the problem itself. The

Latency [ps] Cell Area Power [µW ]
Accurate MAC (Merged) 1871.1 746 66.56

DAx MAC 1214.2 744 66.3
C&DAx MAC 1214.2 746 68.13

Accurate MAC (Conventional) 2470.9 889 62.73
Approx MAC (Truncating 3 LSB) 2274.2 822 61.14

Table 3.2: Hardware characteristics of different types of MAC units.

challenge is to commit an architecture with shorter paths, thus allowing energy
savings, without any impact on the accuracy of the network.
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Image imported from Figure 6, Section 3 of
"CANN: Curable Approximations for High-Performance Deep Neural Network Accelerators",

Muhammad Abdullah Hanif et al., DAC 2019  

Figure 3.4: Design of different types of MAC units based on Bough-Wooley
multiplication algorithm and Wallace tree architecture. The multiplicand and
the multiplier are assumed to be 8-bit wide and the partial sums are assumed to
be 19-bit wide.(a) Accurate Merged MAC. (b) Deterministic Approximate (DAx)
MAC. (c) Cure amd Deterministic Approximate (C&DAx) MAC[58].

3.5 ALWANN
"ALWANN: Automatic Layer-Wise Approximation of Deep Neural Network Accel-
erators without Retraining"[5] proposes a way to avoid time-exhaustive retraining
of networks designed with approximate arithmetics. They provided an approach
that orthogonally optimizes the model, taking into account both the classification
error and the energy consumption.
The paper proposes two contributions to the automatic design of hardware neural
networks:

• the tuning of weights according to the properties of the approximate multiplier
used in the design

• the automatic generation of a Pareto front of solutions through a multi-
objective optimization NSGA-II algorithm

Approximate computing affects more or less aggressively the outcome of the network.
Knowing a priori the structure and the value of weights, it is possible to mitigate
these errors. Through a set of offline mapping functions, kernel’s entries can be
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tuned for minimizing the sum of absolute differences between the output of a
specific approximate multiplier and the accurate one. In other words, functions are
chosen such that

∀w ∈ W : fMi
(w) = min

w′∈W

∑
a∈I
|Mi(a, w′)− a · w| (3.6)

where w is general weight of the kernel W,Mi is an approximate multiplier solution,
and a is an input of the I set.
For what concerns the solution space exploration, the genetic algorithm finds
specific network configurations, evaluates them in terms of accuracy and energy
consumption, and then saves only the non-dominated ones.
Each solution found maps the layers of the network model into the IC’s tiles.

Image imported from Figure 6, Section 3 of
"ALWANN: Automatic Layer-Wise Approximation ofDeep Neural Network Accelerators without Retraining",

Vojtech Mrazek et al., ICCAD 2019  

Figure 3.5: Example of an encodings of approximate neural network with 7 layers
and 3 tiles. mapTM indicates which multiplier solutions have been assigned to
each tile, while mapLT presents the mapping of layers into the different section of
the integrated circuit. The timing diagram shows the execution of an inference
according to network’s dataflow[5].

Every tile employs a specific approximate multiplier from a library provided by
the user. An example is the Figure 3.5. In this way, a set of valid configurations is
automatically provided, and the designer can choose the one that fits the most for
his target application.
With the ALWANN approach applied to ResNet-50 for CIFAR-10 dataset classifi-
cation, they obtained 30% energy saving with less than 0.6% drop in the network
accuracy.
A relevant aspect of the work is that the optimization algorithm provides not just a
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single solution but a set of configurations that may be equally valid if the contexts
of deployment changes.
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Chapter 4

Bit-level masking of weights
and software analysis of the
effects on network accuracy

4.1 Masks: forcing kernels’ bit to zero

As previously said, this work aims to provide and to analyze a new approach to
reduce timing delays of PE in deep learning accelerators.
Timing is a crucial factor in most applications, from data centers to those in the
edge of mobility. [1] Many techniques target the design of the datapath in order
to speed up the execution, but, since network accuracy has a big impact on the
final application, it is challenging to set up a new approach that allows better
performance to be compliant with very low error rates.
Delay constraint is directly linked with the critical path timing: if it is not taken
into account at design time, execution may incur in timing errors. Most of the
classical technique, as pointed out in [46], result in an energy loss or a significant
degradation of the network precision.
How can the critical path be shortened to avoid clock violations?
Let’s consider a common PE for DNN, with 8-bits weights, 8-bits activations, and
32-bits partial sums. It’s easy to detect that longest propagation happens through
the multiplier and then the adder (Figure 4.1).
Fast arithmetic solutions and approximate designs have been widely exploited in
many previous works [6][5][3].
The concept presented found inspiration from the possibility to analyze which
weights of each layer-set trigger the slower paths during execution; if those values
are then excluded from the inference process, it’s possible to design an architecture
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Figure 4.1: Critical paths in a MAC unit.

working at a faster frequency without incurring in any timing error.
By looking at the circuit, it is not trivial to detect which values activate exceding
paths. The solution found does precisely the opposite process: it generates a design
depending on which set of numbers is chosen to be "free to use" for performing the
multiplication. It must be noticed that it’s not essential to know the activation
value to proceed in this direction: only the weight is needed.
In 8-bits tree multipliers, eight partial products must be generated and then
summed. But if one of the i-th bit of the control-operand for the multiplication is
known at design time to be never 1, the hardware required for performing the i-th
addiction can be dropped, allowing faster and equally accurate hardware. Figure
4.2 pictures an example of how a mask changes the computation of products at
hardware level.
The operation of forcing a specific bit to 0 is be called masking. An n-bits weight
with k of its digit masked will require a hardware comparable to the one needed as
if it had (n− k)-bits. The benefit comes from the fact that different masks can be
applied layer-wise, setting different ranges of forbidden values. Weights’ distribution
will be modified (Figure 4.3 shows a possible outcome), but the oscillations can
then be balanced and optimized.

4.2 Masking algorithms
Masking must be applied after the quantization of deep neural networks. A complete
software analysis is needed to understand and inspect how the models will behave
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Accurate p.p. tree

x0
x1
x2
x3
x4
x5
x6
x7

x0
x1

0
x3
x4

0
x6
x7

Masked p.p. tree

6 partial products

Mask

x0x1x2x3x4x5x6x7

8-bit weight

x0x10x3x40x6x7

New weight

8 partial products

Figure 4.2: An example on how a possible mask changes the computation of a
product at the hardware level.

once deployed on a real platform.
As a first approach, the technique was used on networks previously trained on full
precision floating point data, for CIFAR-10 image recognition. Then an algorithm
for mask-aware training was implemented.
Before going into the details of when to replace the weights, it was fundamental
to understand how this operation should be done; parameter distribution, layer
by layer, determines the overall performance of the artificial intelligence, hence
reducing the impact of any modification on the network is fundamental.
It’s possible to describe the replacement mathematically as

∀wi ∈ WF ∃ w′i = f(wi) | w′i /∈ WF (4.1)

where WF indicates the complete set of forbidden values and wi is the i-th weight
of the network to be masked.
The distance between the two numbers is then

e = |wi − f(wi)| = |wi − w′i| (4.2)

For minimizing e, a proper replacement function f(·) must be selected.
Another essential aspect that must be taken into account is the computational
load that this operation requires. If an hardware-aware training is preferred, the
masking algorithm must be executed N time during a whole learning process, where
N is:

N = nepochs
nsamples
bs

(4.3)
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Figure 4.3: Weights’ distribution before (in grey) and after masking (in red). The
represented layer is the first convolutional of a LeNet-5 [33] trained on CIFAR-
10 and quantized asymmetrically. The applied mask sets to 0 the last two least
significant bits. It is easy to notice that the red distribution has "white bands" where
values are forbidden, and spikes (higher occurencies) for those that are allowed.

nepochs is the total amount of epochs that must be performed, nsamples refers to the
number of samples in the training set and bs is the batch size. A parallel approach
is mandatory, that must also be compliant with the underlying framework and it
can run both on CPUs and on GPUs.
The simplest implementation of the substitution is to apply a mask through logical
AND. If, for example, the k-th bit of a value has to be forced to 0, a bit-wise AND
operation must be performed with the "flipped" integer value 2k−1.

t′i = ti ∧ ¬(
N∑
k=0

mk2k−1) (4.4)

ti indicates a tensor of numbers, while t′i its masked counterpart. mk is a control
binary value that tells if the k-th bit has to be masked (1) or not (0).
Unfortunately analysis on AND-masking revealed a very high drop in the accuracy
of DNNs. Let’s consider the case in which the value 16 is not allowed. The direct
substitution would be 0 with an absolute distance of 16. With another approach,
15 or 17 can be chosen as a new weight, with a much lower error.
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For every number that must be replaced, there is always a set of two allowed, one
higher, and the other lower in value as shown in Figure 4.4. It is always preferred to
choose the closest one, but a faster policy can also be used for lower computational
load.
Three parallel substitution methods have been implemented:

Unmasked weight

Upper allowed  weight

Lower allowed weight

eu=wi'-wi

el=wi'-wi

Figure 4.4: For every weight that must be replaced, there is always a set of two
allowed numbers that are one higher and the other lower in value. Each one gives
a different error distance eu and el.

• Always "round" down (ARD): all the forbidden values are replaced with the
closest smaller one.

• Always "round" up (ARU ): all the forbidden values are replaced with the
closest upper one. An exception is made for the cases that overflow the allowed
dynamic. In such instances, the smaller is preferred.

• Always "round" to the closest (ARC ): forbidden values are replaced with the
one that provides the smaller error distance. Algorithm 2 presents the pseudo
code of a possible implementation of this policy.

What happens if the upper and the lower distance are equal in ARC policy? To
prevent bias towards one or the other direction, that may be very harmful to the
network accuracy, the chosen number for the substitution is obtained through a
random function. A complete version of the algorithm implemented in Python is
aveilable in the Appendix.
As just said, the critical point while masking is to reduce as much as possible

the bias produced by the replacement process. A masked weight w′i is used for
several multiplications before producing a single neuron output. The error distance
that contributes in a convolution is then counted once for each input channel; if
multiple parameters have a bias that tends in the same direction, feature maps can
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Algorithm 2 Always round to the Closest (ARC) masking algorithm.
Input: tensor, bit_to_mask_list, dynamic, signed
Output:masked_tensor

1: mask=generateNegMask(bit_to_mask_list)
2: booleanTensor= int(bool(tensor & mask)) . forbidden values are highlited
. generate upper bound tensor

3: up_tensor=tensor+booleanTensor . forbidden values are incremented by 1
4: while booleanTensor.sum() do
5: booleanTensor= int(bool(up_tensor & mask))
6: up_tensor+=booleanTensor
7: end while
. generate downer bound tensor

8: booleanTensor= int(bool(tensor & mask))
9: down_tensor=tensor-booleanTensor . forbidden values are decremented by 1

10: while booleanTensor.sum() do
11: booleanTensor= int(bool(down_tensor & mask))
12: down_tensor-=booleanTensor
13: end while

. detecting overflows in upper bound tensor
14: MAX_INT=2**(dynamic-int(signed))-1
15: overflowTensor=int(up_tensor>MAX_INT)

. computing distances
16: diff_up = up_tensor - tensor
17: diff_down = tensor - down_tensor

. mapping the substitutions into Boolean tensors
18: toUpper = int(diff_up < diff_down)*(overflowTensor ⊕ 1)
19: toDowner = int(diff_down <= diff_up) | overflowTensor
20: masked_tensor = toUpper*up_tensor + tensor*(toUpper⊕1)
21: masked_tensor = toDowner*down_tensor + masked_tensor*(toDowner⊕1)
22: return masked_tensor

be significantly differet from the reference ones. Simulations with aggressive masks
result in highly biased prediction (e.g., it doesn’t matter the input, the network
always prefers a particular class).
The optimal approach to this problem would be to characterize layer-wise every
policy, then try to choose the one that balances more the output distribution of
weights. For sake of simplicity and for reducing the computational load required
for network processing, policies are chosen unifromely. Moreover, it may be more
efficient, as it will be shown in Section 3, to improve the network comparing each
layer output activations.
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4.3 Masking approaches
As previously mentioned, there are mainly two possible approaches to process
neural network models:

• The architecture can be fully trained using floating-point with common frame-
works, and only after it is quantized and subjected to masking.

• The training algorithm can be modified to let the network adapt both to
quantization and masking.

There exist also mixed solutions in the literature. Applying a mask to a floating-
point model and retrain it with a hardware-aware algorithm can be one possibility.
Inceasing the aggressivness of masking across the layers with the increasing number
of epochs can be another solution. The proposed approach opens to many scenarios
that can be explored depending on waht is the target.
In this work, only the post-training masking is entirely explored since it offers a
fast solution space population and a prediction on how DNNs behave along with
masks.
All the analysis done lay on the Nervana Distiller framework [44], which is built on
top of Pytorch as shown in Figure 4.5. The open-source code of the tool has been
modified for handling masking operations.

Pytorch

Distiller

Masks

Figure 4.5: Mask framework is based on Distiller [44] and modifies functions
and algorithms implementation. Distiller is itself based and settled into the most
known Pytorch [41] framework for deep neural network design.

4.3.1 Mask-aware learning algorithm
As pointed out in the introduction chapters, training a network in such a way it
will respond optimally to the target hardware is often the best way.
Building from scratch a specific framework for simulating the target hardware is
time demanding and, in most cases, prohibitive. The trade-off is to modify existing
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deep learning algorithm implementation to introduce awareness during the software
execution.
Distiller from Nervana provides a coherent, hardware-aware overriding of the
Pytorch framework to implement quantization in all the state-of-the-art proposals.
The loss of resolution of values representation due to hardware restriction is
simulated by applying the quantization of parameters before the forward-pass.
Then they are de-quantized to avoid any conflict during the computation of the
gradients by the Pytorch algorithm. The masking operation is performed between
these two steps when tensor values are in a known range, and the behavior will
be as close as possible to real hardware execution. A scheme representing the
mask-aware training steps can be found in Figure 4.6

Forward 
pass

Backward 
pass

Pytorch

Predictions

QuantFP32 
weights MaskDnn layer

Grad

FP32
quant.
weights

FP32
quant. 
weights

Distiller FP32 
weights

Figure 4.6: Graphical representation of mask-aware training.

4.3.2 Post-training masking algorithm

Post-training masking also happens after quantization. What changes is that
after weights have been substituted with the allowed set of values, forward pass is
executed keeping them, along with quantized versions of activations and bias, in an
n-bit integers format. This approach ensures a more close to hardware behavior.
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4.4 Experiments set up and accuracy issue
For testing mask effects on image recognition application, the CIFAR-10 dataset
was chosen since it requires a tolerable computational effort with some challenges
in achieving high accuracy. Network used as benchmark is the VGG11, in Figure
4.11, with batch normalization.
The first step in the analysis is to train the network for achieving state-of-the-art
accuracy on the test set (Table 4.1). For this purpose, the training set must be
augmented by means of random crop and random horizontal flips; the process took
300 epochs.
The optimizer used was the Stochastic Gradient Descent with a momentum equal
to 0.9 and a weight decay of 5 ∗ 10−4. A learning rate scheduler was also set for
0.1-decay every 90 epochs with a starting value of 0.1.

Network Accuracy
VGG11 92.4%

Table 4.1: State-of-the-art network accuracy on 32 bit floating-point data.

After training, an evaluating loop was used for applying each possible mask to all
the layers of the network uniformly to understand which ones were affecting more
the performances. The asymmetric unsigned policy was chosen for the quantization.
The results, in Figure 4.7 clearly showed that masking the least significant bits hits
less the accuracy while processing MSBs leads to a sharp drop in the classification
capability.
By comparing masks’ performance with the one obtained through "aggressive"

quantization (Figure 4.8), it was possible to notice that the new approach was
giving worse results with comparable expected hardware performances. The gain
obtained wasn’t be enough to justify the effort of proposing a specific architecture.
Three methods were perfected to recover the accuracy drop of masked weights:
a quantization range correction, the bias compensation, and layer-wise optimized
masking.

4.4.1 Quantization Range Correction
As shown in Figure 4.3, assigning forbidden areas into the weights’ distribution
results into a band pattern. The values that can be represented are less, and also
the range conversion from floating-point to integers suffers from this operation.
A possible improvement in this direction can be modifying the mapping range in
the quantization step to cut off the last forbidden set of weight and increase the
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Figure 4.7: Accuracy of masked VGG11 with ARC policy. ’1’ in the mask string
indicates that the bit in that position was permanently fixed to zero.
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resolution of the output tensor. Mathematically speaking, if the initial quantization
formula was:

wq = round

(wf −min(wf )
)

2n − 1
max(wf )−min(wf )

 (4.5)

where 2n − 1 was the highest representable value, now it is substituted with the
highest allowed number by the mask.
For example, in a 8-bit quantized layer where the fifth and the third bit are forced
to zero, the value in the formula, from 255 is reduced to 235. Unfortunately, this
approach doesn’t always improve the model. There are cases in which correcting
the quantization range reduces the accuracy or even bias the output toward a
specif class prediction. Configurations must be evaluated one by one, and only
after checking the accuracy, best solution can be selected.

4.4.2 Bias Compensation
The set of parameter learned during training were those that reached the expected
minimum of the loss function. Weights substitution moved the network from the
minimum, creating a difference from the reference floating-point model. If kernel’s
adjacent values are considered, their contribution to the output of each convolution
imply an unacceptable difference between the original resulting feature map and
the masked one.
To avoid this issue, it was proposed to use a mixed policy in the weight substitution
for achieving a zero average error distance. However, it would require extra
computation, an ad-hoc optimization algorithm for choosing the right substitution
policy at weight level, and an optimal result is still not guaranteed.
The solution adopted, instead, was to use a batch of input data for retrieving
layers’ activation from both the reference and the masked network. Then the error
distance is computed on average for each channel’s feature map, and this value is
added to the neuron’s bias.

bck = brk + ek (4.6)

bck is the compensated bias applied to the modified model for a specific channel k,
brk is the original value and ek is the average error distance between all the output
computed with the same bias value. It can be obtained with a specific number of
inputs from the test set. From empirical proof network’s accuracy doesn’t increase
over a threashold, which depends on how aggressively the weights have been masked.
The optimal number for obtaining the distances was found to be around 500 images,
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Figure 4.9: Bias compansation. In the first step, activations are both computed
with the reference bias value. From their difference, the correction value is computed
and used for updating the bias in the masked model.

which was the value used for all the experiments.

ek =
N∑
i=1

M∑
j=1

(arefij − amaskij ) 1
NM

(4.7)

Equation 4.7 shows how the correcting error is computed. M is the number of
activations in the output feature map, while N indicates how many input samples
have been used in the forward pass.
When, for example, biases in the first layer are compensated, input featuremaps of
second layer will change. To make this technique effective, layers must be processed
one after the other, recomputing the activations at every step, such that every
"correction" is aware of all the others done on previous layers.
Acting on the bias can provide significant improvements in the network classifica-
tion capabilities. In some cases, it increases the accuracy of around 70 percentage
points, raising a baseline value of 19% to 88%.
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Algorithm 3 Bias compensation algorithm.
Input: reference_model, masked_model, test_batch
Output: compensated_model

1: layer=0
. All layer must be compensated

2: while layer<getNumLayers(reference_model) do
3: ref_act = getActivations(reference_model[layer],test_batch)
4: mask_act = getActivations(masked_model[layer],test_batch)
5: channel=0
. Cycling through each output channel bias

6: while channel < getNumChannels(masked_model[layer]) do
7: ref_act_chs = ref_act[:,channel,:,:]
8: mask_act_chs = mask_act[:,channel,:,:]
9: e = elementSum(ref_act_ch - mask_act_ch)

10: e = e/ref_act_ch.size(0) . batch size
11: e = e/ref_act_ch.size(2) . fmap rows
12: e = e/ref_act_ch.size(3) . fmap columns
13: masked_model[layer].bias = masked_model[layer].bias + e
14: channel +=1
15: end while
16: layer+=1
17: end while
18: return masked_model

Furthermore, this trick avoids any retraining of the network, which can be time
expansive, if several solutions have to be analyzed, or impossible to perform, if
the training set is not available. Figure 4.9 shows a graphical representation of
the compensation process at neuron’s level, Algorithm 3 provides, instead, all the
computations required for tuning the whole network biases.

4.4.3 Layer-wise optimized masking

Every mask modifies the weights’ distribution differently. Even with correction
techniques, layers output may be biased towards a positive or negative direction.
Force to zero the same bits uniformly in the whole network is not the best approach.
An optimization algorithm that is aware of masks savings and output accuracy is
described in Chapter 6.
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4.5 Software accuracy results
Figure 4.10 shows some results of uniform applied masks to the VGG11 network.
Correction techniques are also highlighted to show the improvements that have
been achieved in classification accuracy.
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Figure 4.10: Accuracy results on masked VGG11. From the analysis it is clear
that correcting the range is not usefull for aggressive masking. For the mixed
approach the fully connected and the first convolutional layer have been excluded
from the masking process.
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Figure 4.11: VGG11 network description.
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Chapter 5

Timing analysis of
approximate solutions for
the MAC hardware

5.1 MAC Hardware

After improving the accuracy of masked networks, it was fundamental to understand
the benefits from the hardware side.
As already said in Chapter 2, state-of-the-art architectures for accelerating con-
volutional neural networks exploit the systolic array with several layer-mapping
approaches. Every PE, independently from the design of memory hierarchy, per-
forms a MAC operation. If the multiplication and the addition are not pipelined,
the critical path is the one shown in Figure 4.1.
The choice for this case study was a MAC with unmerged operations: for first data
propagate through a carry-save tree multiplier (Figure 5.1), and then the result is
passed to the adder, for which the implementation is not specified in the design.
Baseline architecture receives 8-bits weight and activation, then accumulates the
product into a 32-bits partial sum.
With tree-like multipliers, it is straightforward to design specific hardware for a
given mask. If the n-th bit of the parameters of a layer is forced to 0, that layer
can be mapped into a tile where the logic for handling the n-th partial product
is missing in all the multipliers. This without causing an unexpected drop in the
network accuracy. An example is provided in Figure 5.2.
Of course, masked models can be mapped into accurate architectures. The same
happens between related masks with a different level of aggressivity, allowing more
flexibility in case specific designs, made for the proposed approach, are already
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5 – Timing analysis of approximate solutions for the MAC hardware

available.

5.2 Timing analysis
The goal is to perform a timing analysis for each hardware solution allowed by
masks.
Synthesis tools like Synopsys Design Compiler or Cadence Genus can automatically
provide optimized solutions if specific inputs are fixed 1 or 0 through a gate-level
design by contraction.
For a first analysis, the tool for automated synthesis was used only for choosing the
adder implementation, while multiplier architecture was "hand-designed" for every
mask solution. The motivation behind this choice was the necessity to control the
hardware description given as input of the tool.
Since the solution space counted 218 combinations, a Python script was used for
producing an ad-hoc CSA tree multiplier for each one of them. Verilog code was
then completely verified and sent to synthesis for the timing analysis.
The library used was the "uk65lscllmvbbr_120c25_tc" with the Synopsys Design
Compiler. The only constraint set was the clock at 0 ns. The flow is pictured in
Figure 5.3, while a qualitative plot of the obtained hardware delays is shown in
Figure 5.4.

5.3 Network weighted average delay (WAD)
Thanks to the timing analysis, it was possible to characterize the effect of masks,
in terms of data delay, whit respect to the chosen MAC implementation.
But how can these time values be related to the design of the whole neural network?
And is it possible to define a function that evaluates the overall gain obtained
thanks to masking?
Every layer can be associated with a different configuration, which provides an
individual timing improvement. It’s also essential to "weight" this benefit with the
computational load associated with the layer itself. The number of multiplications
required for elaborating a complete output feature map is in this case the perfect
way to evaluate the impact of every layer configuration on the network performance.
It is possible to define a weighted average delay (WAD) of a model as

WAD =
N∑
i=0

diMk

nimult
ntot

(5.1)
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5.3 – Network weighted average delay (WAD)

where diMk is the characteristic delay of the mask k associated with the i-th layer,
nimult is the total amount of multiplications performed by this layer, while ntot is
the total number of products that the network elaborates for the classification of
an image.
The nimult value can be obtained for convolutional layers with

nimult = k2
s ∗ ic ∗ o2

cs
∗ oc (5.2)

ks is the kernel size and ic is the number of input channels. k2
s ∗ ic will be the

amount of products computed by a single neuron. ocs is the size of an output
feature map. k2

s ∗ ic ∗ o2
cs

is the number of multiplications needed for producing a
complete output feature map; this value has to be counted oc times, once for each
output channel.
The size of output feature maps is given by

ocs = ics − ks
s

+ 1 (5.3)

where s is the stride of the slidings of the kernel.
For fully connected layers, the formula becomes

nimult = i2cs
∗ oc ∗ ic (5.4)

WAD function must be minimized to achieve better performance, but this process
can’t be done without taking into account network accuracy.
The problem is now a multiobjective optimization, that will be discussed in the
next chapter.
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Figure 5.1: CSA tree multiplier architecture.
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Figure 5.2: Approximate CSA tree multiplier architecture with third and sixth
bits masked.
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Chapter 6

Hardware-Software
optimization through the
NSGA-II genetic algorithm

6.1 The Multi-objective optimization problem
Every neural network configuration, according to the proposed approach, can be
defined with a set of different masks, one for each layer. Accuracy evaluation and
WAD function, then, characterize the quality of every solution.
Masks propose a trade-off between accuracy and performance. A decision-maker has
to choose which configuration fits most the target application. However, manually
exploring the solution space is not trivial.
Let’s consider, for example, the VGG11 network, which has eight convolutional
layers and a classification one, fully connected. A possible number of masks
to choose as candidates for each layer is 32, which is the amount of possible
combinations obtained if only the five least significant bits can be masked. If the
possibility of correcting the quantization range is taken into account they become
64.
Solution space will be populated by

s = lm = 964 (6.1)

which, in this case, offer more than 1061 elements. Considering 30 seconds for
evaluating each configuration, it would take around 1054 years for exploring the
whole space. Which, of course, is not feasible and also useless.
Taking a step back, the described problem is a multi-objective optimization where
multiple functions, 2 in this case, have to be minimized: top-1 error and WAD.
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6 – Hardware-Software optimization through the NSGA-II genetic algorithm

A variable xl can be assigned to each layer to express that a mask has to be linked
to it. The set of variable is indicated with XL.

f1(XL) = forward(network, test_set) (6.2)

f2(XL) = WAD(network) (6.3)

Multi-objective optimization, or Pareto optimization, is generally a multiple criteria
decision that tries to minimize (or maximize) more than one objective function
simultaneously. The optimal choice needs to be taken in case of trade-offs between
conflicting objectives, as in this case.
It does not exist a single trivial solution but a set of Pareto optimal configurations.
A solution is called non-dominated if none of the objective functions can be improved
without degrading the other ones. All the points on the Pareto front are considered
equally good and must be evaluated by a decision-maker.
Another restriction has to be applied here: values for the layers’ variables must
belong to a confined set of integers, whose dimension corresponds to the number
of available masks. Layer l will be assigned to the variable xl, that will be used
as an index to access a look-up table where all masks are stored. Entries of such
list will be ordered by increasing characteristic arrival time, that was obtained as
described in Chapter 5, Section 5.2. Lower addresses will result in a shorter WAD
and, probably, in a more consistent top-1 error.
For a complete solution inspection, each mask configuration can be accessed by
two contiguous indexes: even numbers will tell the network mapping function that
quantization range, for that specific layer, has to be corrected. The opposite is the
case when the address is odd. An exemplification on how this works is provided in
Figure 6.1
For a better understanding of how the problem was modeled, a simple example
with the LeNet-5 for CIFAR-10 is proposed here in Figure 6.2.
For the sake of simplicity, the last five masks of the table were assigned randomly
to a layer. Accuracy is evaluated through the normal inference process, while WAD
is obtained as shown in Section 5.3.
For fast exploring space solution to find the Pareto front, the non-dominated

sorting genetic algorithm II (NSGA II) was used.

6.2 NSGA-II for network optimization
A fast solution space exploration is needed to:

• evaluate what the real potential of masks is, and if they provide a robust
alternative to other low-power approaches to CNN design
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Figure 6.1: The variables associated with layers determine the configuration of
the network. Delays will be used for estimating the weighted average dealy, while
the model, along with the test set, will be evaluated for obtaining the accuracy.

• understand if valid configurations can be obtained in a reasonable amount of
computational time

The option of implementing from scratch an ad-hoc optimization algorithm was
avoided. Any a priori hypothesis on how to exclude classes of solutions may result
in eliminating potentially suitable candidates.
Heuristic algorithms achieved consistent results in similar circumstances [5], so
the choice fell on the NSGA-II genetic algorithm [59]. The implementation can
be found on the GitHub repository of pymoo [60] and a simple working scheme is
shown in Figure 6.3.
Genetic algorithms are based on Darwin’s principle "survival of the fittest", where
fittest, in this case, are the solutions with the best accuracy and lower delay.
The starting point is a population of different configurations Pt. The fittest indi-
viduals from Pt are chosen through a tournament selection; mixing the genes of
higher rank solutions, a second set Qt is obtained; this operation is called crossover
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Figure 6.2: Evaluation of a masked example for LeNet-5 on CIFAR-10 dataset.
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or mating. In the last step before sorting, mutations are applied to the offspring to
produce a third set of individuals Rt.
Tournament Selection analyzes the population: individuals that have a high rank
are allowed to reproduce in couples. In case rank is equal between two or more
solutions, a parameter called crowding distance is evaluated, this tells how "unique"
is that solution, or better, how far it is from all the others. Once the parents are
selected, crossover takes, according to the mating policy, genes from both and
produces child solutions. Lastly mutations may modify some genes of the offspring
through a specific procedure, chosen by the programmer.
Rt individuals are evaluated and sorted into three different Pareto fronts with a fast
non-dominated approach; this step requires O(MN2) computational load, where
M is the number of objective functions, while N is Rt population size.
Since NSGA-II is an elitist approach to genetic evolution, the first front is directly
propagated to the new population along with some solutions of the second and the
third, until the number of the Pt individuals is reached. The new set will be called
Pt+1.
To avoid process to be stacked on local minima or maxima, a crowding distance

Pareto Fronts

Pt

Qt

Rt

Simulated Binary
Crossover

Polynomial
Mutation

Non-dominated
Sorting

Crowding 
distance sorting

1st

2nd

3rd

Figure 6.3: Non-dominated sorting genetic algorithm II. Circular scheme of a
generation.

sorting is also used to choose the individuals with higher crowding distance from
the pool of solutions that doesn’t entirely fit in the next surviving population.
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6 – Hardware-Software optimization through the NSGA-II genetic algorithm

Each cycle is known as generation. The algorithm can be stopped when the first
Pareto front has enough solutions for filling the whole population, or when a definite
amount of generations is analyzed.

6.3 Final results
In the execution of NSGA-II for optimizing masks applied to VGG11 network a
population of 50 individuals was randomly chosen for the start-up; 100 offsprings
were produced each cycle for 200 generations with a total of 19950 models analyzed
during the whole algorithm.
For the mating process, the Simulated Binary Crossover policy was used, while
Polynomial Mutation was adopted for the child variations.
Results obtained with this parameter configuration is shown in Figure 6.4.
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Figure 6.4: Resulting population of layer-wise optimized masked solutions com-
pared with uniformly quantized networks with decreasing number bits used for
the weights. RM indicates the Reference quantized Model, while QM the closest
Quantized Model.
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Conclusion and future work

This thesis provides a versatile yet effective approach to the design of fast PE in
deep convolutional neural network hardware architectures.
One of the significant features of this technique is the possibility of mitigating the
effects of the approximate hardware with low computational-load tunings, which
deliver a broad spectrum of solutions. These sets of configurations are suitable
either for safety-critical applications or for several levels of error-resilient contexts.
Masks can be applied during the training or, as proposed in this work, after
the network has obtained state-of-the-art accurate parameters. Furthermore,
other techniques for network distillation, such as pruning and memory access
reductions, can be exploited in parallel allowing a further drop in energy and power
consumption.
As future work, we would like to link delay surplus with actual energy/power
savings as done in [46]. Exploring different PE hardware solutions, along with the
use of more network models on different datasets for disparate applications (e.g.,
object detection, speech recognition, etc.), can also increase the robustness of the
proposed technique and demonstrate its validity.
The multi-objective optimization problem of masked networks also created a case-
study where different algorithms can be tested and related in order to find the true
Pareto-front.
As the last step, we would like to compare our approach with those recognized
today as the most effective in the context of deep learning hardware acceleration.
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Appendix A

Parameter masking
function.

Here is reported the implementation in Python code of the parameter masking
function. All the tensor used are of type torch.tensor.
_make_mask function returns a number used for forcing to zero the binary digits
in all the positions specified in a list passed as an argument.

1 def mask_param(quant_param, bit_to_mask, mask_type=MaskType.SIMPLE_MASK,
2 dynamic=0 , signed=None):
3 if bit_to_mask==[]: #case in which nothing has to be done
4 return quant_param
5 if (dynamic==0 or signed==None) and (mask_type==ARC):
6 error_string="'dynamic' and 'signed' parameters must be specified"
7 raise ValueError(error_string)
8

9 #operations are defined for integer tensors,
10 #but input may be of a different data type
11 ty=quant_param.dtype #save original input data type
12 quant_param = quant_param.to(torch.int) #cast to int
13 if mask_type==MaskType.SIMPLE_MASK: #SIMPLE_MASK case
14 mask=_make_mask(bit_to_mask)
15 quant_param = quant_param & mask
16 elif mask_type==MaskType.ARC: #ARC case
17 mask=~_make_mask(bit_to_mask)
18 #generate up_tensor
19 #entries of boolTensor will be '1' where number has to be masked
20 boolTensor=(quant_param & mask).to(torch.bool).to(torch.int)
21 up_tensor=quant_param + boolTensor
22 while (boolTensor.sum()): #while there are still velues not allowed
23 boolTensor=(up_tensor & mask).to(torch.bool).to(torch.int)
24 up_tensor += boolTensor
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A – Parameter masking function.

25

26 #generate down_tensor (similar to up_tensor)
27 boolTensor=(quant_param & mask).to(torch.bool).to(torch.int)
28 down_tensor=quant_param - boolTensor
29 while (boolTensor.sum()):
30 boolTensor=(down_tensor & mask).to(torch.bool).to(torch.int)
31 down_tensor -= boolTensor
32

33 #exclude overflow numbers
34 max_int = 2**(dynamic-int(signed))-1
35 #entries of overflow tensor will be '1' where number overflows dynamic
36 overflow = (up_tensor>max_int).to(torch.int)
37

38 #computing differences (all positive)
39 diff_up = up_tensor - quant_param
40 diff_down = quant_param - down_tensor
41

42 #boolean tensors for mapping the substitutions
43 #overflows on upper bound tensor must be forced to excluded
44 #NOT is not implemented, ^1 (XOR 1) is used instead
45 up = (diff_up < diff_down).to(torch.int)*(overflow ^ 1) #XOR inverts
46 down = (diff_down < diff_up).to(torch.int) | overflow
47

48 #equal distance mapping, randomly assigning to upper or lower tensor
49 random = torch.ones(quant_param.size()).random_(-10,10).to(torch.int)
50 #converting 0s in 1s, since 0 means here to upper but will be then
51 #interpreted as no need to be masked
52 random = random + (random == 0).to(torch.int)
53 equal = (diff_up == diff_down).to(torch.int) * random
54 up_e = (equal > 0).to(torch.int)*(overflow ^ 1) #0 is not included
55 down_e = (equal < 0).to(torch.int) | overflow
56

57 #executing the actual substitution with boolean tensors.
58 quant_param = up_e*up_tensor + quant_param*(up_e^1)
59 quant_param = down_e*down_tensor + quant_param*(down_e^1)
60 quant_param = up*up_tensor + quant_param*(up^1)
61 quant_param = down*down_tensor + quant_param*(down^1)
62

63 quant_param = quant_param.to(ty)
64 return quant_param
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