
POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

Data Analytics For Predictive Maintenance

Supervisor:
Prof. Tania Cerquitelli

Candidate:
HEMA BHANDARI

April 2020

Acknowledgments

First and foremost I am highly grateful and indebted to my supervisor, Prof.
Tania Cerquitelli, who was kind enough to let me pursue the thesis at Po-
litecnico Di Torino for my master’s studies.

I’m really thankful to her for her patience and her helpful comments and
observations.

I would also like to extend my gratitude to Francesco Ventura for sup-
porting and guiding me all along. The motivation and encouragement were
like the beacon of light, enlightening my path with wisdom and knowledge.
It would not be an exaggeration to say, that without the support I would not
have been able to complete my thesis.

Moreover, I would like to thank all the other people of Lab5 for the
welcoming working environment.

And lastly, a huge thanks goes to my family that supported me in all
those years that brought me at this point.

1

Abstract

Predictive maintenance is a technique that tries to predict imminent prob-
lems, forecast future failures and discovers criticalities when a piece of equip-
ment might stop working so that proactive strategies can be applied just
before that happens. These predictions can be done on the basis of equip-
ment’s condition which is estimated based on data collected with the help of
condition monitoring sensors and strategies.

To this aim, the predictive analytics has been measured to predict the
belt tensioning level and to further support robot cycle labelling. A machine
learning algorithm has been applied to smart data so as to forecast a ten-
sioning level as per a new cycle of data. This helped in identifying clusters
of production cycles through similar time independent features.

The best configuration has been selected after comparing various super-
vised and unsupervised metrics on different clustering algorithms.

And lastly, we talked about data distribution of patterns i.e. cluster char-
acterization. The most relevant features of our clusters has been extracted.
Cluster characterization helps domain expert in labelling of the data, in our
case to robot cycles.

Keywords: Predictive maintenance, machine learning, clustering algo-
rithms, Cluster characterization

2

Contents

List of Figures 5

List of Tables 6

1 Introduction 7

2 Related Work 9
2.1 Industry 4.0 . 9

2.1.1 Smart Data . 10
2.1.2 Experimental setting and Data exploration 10

2.2 Types of predictive models . 13
2.2.1 Supervised learning . 14
2.2.2 Unsupervised learning 16
2.2.3 Semi- supervised learning 17

3 Proposed Approach 18
3.1 Overview . 18
3.2 Clustering . 21
3.3 Clustering Algorithms . 23

3.3.1 k-means . 23
3.3.2 DBSCAN . 25
3.3.3 Agglomerative clustering 28

3.4 Clustering Validation . 32
3.4.1 Supervised indices . 32
3.4.2 Unsupervised indices 35

3.5 Cluster Characterization . 38
3.5.1 Decision Tree classifier 40

4 Implementation Tools 42
4.1 Python . 42
4.2 Pycharm . 43
4.3 Libraries . 44

4.3.1 Numpy . 44
4.3.2 Pandas . 45
4.3.3 JSON . 46
4.3.4 MatplotLib . 46

3

4.3.5 Scikit-Learn . 47
4.3.6 Joblib . 47

4.4 Google Colaboratory . 48

5 Experimental results 50
5.1 Model creation . 50
5.2 Cluster analysis . 53

5.2.1 Unsupervised metrics comparison 53
5.2.2 Supervised metrics comparison 61
5.2.3 Best Configuration Selection 66

5.3 Cluster characterization . 69
5.3.1 Feature selection . 69
5.3.2 Interpreting box plots 70

6 Conclusion and Future improvements 79

4

List of Figures

1 Washers per class . 11
2 Electric signal of a single robot cycle 12
3 Time domain feature computation 13
4 Different machine learning approaches 14
5 Application architecture . 18
6 The predictive analytics service 19
7 Data analytics architecture . 20
8 Data analytics processes . 20
9 Clustering architechture . 22
10 DBSCAN clustering with min-points 4 27
11 An example of Hierarchical clustering 29
12 Cluster charcterization architecture 39
13 An example of Decision Tree Classifier 41
14 An example with Minimum points 10 and 12 52
15 Silhouette scores vs n clusters (k) 54
19 CalinskiHarabasz scores vs n clusters (k) 58
20 Sum of Squared errors (SSE) vs n clusters (k) 59
21 Sum of Squared errors (SSE) for k-means 60
22 Adjusted rand scores vs n clusters (k) 62
23 Homogeneity scores vs n clusters (k) 63
24 Completeness scores vs n clusters (k) 64
25 V-measure scores vs n clusters (k) 65
28 Boxplot for k-means (k=5) . 71
29 Outlier cluster for k-means (k=5) 72
30 Boxplot for k-means (k=6) . 73
31 Outlier cluster for k-means (k=6) 73
32 Boxplot for Agglomerative-Ward (k=5) 75
33 Outlier cluster for Agglomerative-Ward (k=5) 75
34 Boxplot for Agglomerative-Ward (k=6) 77
35 Outlier cluster for Agglomerative-Ward (k=6) 77
36 Electric signal with relevant segments highlighted 78

5

List of Tables

1 Number of cycles per class (NumWashers) 12
2 Supervised vs Unsupervised indices 32
3 Model creation . 50
4 Dbscan for eps 13 and 14 . 51
5 Dbscan for various metrics 53
6 Silhouette scores of all algorithms 54
7 Calinski-Harabasz scores of all algorithms 57
8 Sum of Squared errors (SSE) of all algorithms 59
9 Adjusted rand scores of all algorithms 61
10 Homogeneity scores of all algorithms 63
11 Completeness scores of all algorithms 64
12 V-measure scores of all algorithms 65
13 Best scores of supervised and unsupervised metrics 67
14 Total points in each cluster 68
15 Top 10 most relevant features (IDs) for both algorithms . . . 70
16 Top 10 most relevant features for k-means (k=5) 71
17 Top 10 most relevant features for k-means (k=6) 72
18 Top 10 most relevant features for Agglomerative-Ward (k=5) 74
19 Top 10 most relevant features for Agglomerative-Ward (k=6) 76

6

1 Introduction

The advent of Industry 4.0 trend in data exchange and automation, leads
to evolution towards smart environments, including a thorough utilization
of Cyber-Physical System (CPS). Robust cyber-physical architectures are
becoming essential to analyze such huge amount of data, creating insight into
the process of production, and thus enabling improvement and competitive
business advantages.

Predictive maintenance helps in identifying imminent problems, forecast
future failures and discovers criticalities when a piece of equipment might stop
working so that proactive strategies can be applied just before that happens.
These predictions can be done on the basis of equipment’s condition which
is estimated based on data collected with the help of condition monitoring
sensors and strategies.

The main objective of this study is to implement the predictive main-
tenance on the Robot Box. The predictive analytics has been measured to
predict the belt tensioning level and to further support robot cycle labelling.
A machine learning algorithm has been applied to smart data so as to forecast
a tensioning level as per a new cycle of data. This helped in identifying clus-
ters of production cycles through similar time independent features. The goal
is to forecast correct configuration of parameters and clustering algorithms
through the estimation of cluster quality metrics. The best configuration has
been selected after comparing various supervised and unsupervised metrics
on different clustering algorithms. And lastly, the most relevant features of
our clusters has been extracted to characterize the clusters. Cluster charac-
terization helps domain expert in labelling of the data, in our case to robot
cycles.

The experiments have been done by using semi- supervised clustering
algorithms in Python language on a dataset imported as JSON file. Also,
Google Colaboratory notebooks and Pycharm framework both have been
used equally.

The work is organized as follows.
Chapter 2 discusses the related work focusing on Industry 4.0. The smart

data is extracted from time domain feature computation. Also, we will see
various well-differentiated techniques in Machine Learning approaches.

7

In chapter 3, we will talk about the proposed approach i.e. architecture
for predictive analysis. Also, several implementation steps are discussed. The
data pre-processing phase consists of extracting smart data. This phase is
important to understand correct initial parameters for further analysis and
therefore it lies on top of analysis phase. The data-aggregation phase dis-
cusses about various machine learning algorithms like K-Means, DbScan and
Agglomerative. The outputs of clustering algorithms have been evaluated
by the clustering validation phase and finally Cluster characterization phase
talks about data distribution of patters.

Chapter 4 provides information on the implementation tools used to de-
velop this work while chapter 5 discusses the preliminary results obtained by
previously mentioned methodologies.

Lastly, chapter 6 draws conclusions and lists possible future developments
for predictive analytics in Industry 4.0.

8

2 Related Work

2.1 Industry 4.0

Due to the huge amount of data generated by modern and connected indus-
tries, the essentiality of reliable and powerful architectures is becoming more
prominent.

The advent of Industry 4.0 trend in data exchange and automation, leads
to evolution towards smart environments, including a thorough utilization
of Cyber-Physical System (CPS). Robust cyber-physical architectures are
becoming essential to analyze such huge amount of data, creating insight into
the process of production, and thus enabling improvement and competitive
business advantages.

The authors in [1] presented a cloud-architecture designed for the Indus-
try 4.0 vision. It bridges the gap between the cyber space and the real world,
which provides raw data. The cyber space processes the raw data and creates
insight, which further aims to enable predictive analytics at the edge. This
data analytics architecture targets to anticipate failures and estimate the
remaining useful life (RUL) of physical equipment. It can identify the symp-
toms of approaching machine failure at any given time, through the features
of the current dynamics of the machine using on-line data collected. The
work in [3] presented a deep-belief network ensemble method with different
objectives to estimate remaining useful life.

The authors in [2] presented an integrated self-tuning engine for pre-
dictive maintenance in Industry 4.0. Specifically, a distributed architecture
which is based on Spark Streaming, Apache Kafka, Cassandra and MLlib
was proposed and discussed. This approach integrated the monitoring and
prediction task along with a self-tuning approach which dynamically selects
the best predictive algorithm and also provides interpretable knowledge to
end users.

Advanced ICT technologies and Internet of Things (IoT) allow linking
machines and physical manufacturing facilities in integrated applications.
The work in [4], presented a predictive maintenance approach involving wide
IoT capabilities and cyber-physical systems with complex event processing
features.

Articles [4] and [5], utilizes Big Data frameworks to handle with these
modern industrial scenarios. In [5], discussed techniques to improve health
monitoring services using Big Data frameworks, which is also useful for var-

9

ious application on an aerospace and aviation industrial. The authors in [2],
takes advantage of Big Data technologies and systems (like Apache spark,
kafka) and runs on top containerized Docker environment. Article [6] de-
scribes the potential of big data analytics in healthcare. The author discussed
the benefits and challenges, described examples reported in the literature and
outlined an architectural framework and methodology.

2.1.1 Smart Data

The massive data generated and captured by smart devices and appliances
contains important and valuable information that is useful in better decision
making and facilitating timely actions. In this study we focus on the belt
tensioning problem of a motor. The tensioning of the belt is necessary to
assure the correct functionality of a robot. Real data is collected by moni-
toring a motor from a medium sized robot. During data collection phase, a
cycle has been collected every 120 seconds. A cycle is the sequence of moves
that the motor has been coded to run in loop (in our case the cycle lasts for
24 seconds)

The smart data includes relevant static features from the raw data (in this
case raw data are time series), thus supporting the predictive maintenance
vision. Smart data represents the main characteristics of the raw data. It
also tells about the context information for example, how the data was col-
lected, and the operating conditions of the equipment it was collected from.
The model computes a huge variety of statistical indices including mean,
standard deviation, maximum, minimum, inter-quartile ranges, root mean
square, variance, peak to peak distance, kurtosis and skewness.

From the current raw data, 12 statistical features have been computed
and used to classify each cycle independently.

These features have proved to be effective and relevant to model a current
cycle.

2.1.2 Experimental setting and Data exploration

The target is to implement the predictive maintenance on the Robot Box.
This box has one electric motor, a belt, a gearbox, a mechanical structure and
an encoder. The acquired signals are angular position of the axes, electric
current of the motor and vibration data from one external sensor.

In a predictive maintenance perspective two major motor failures have

10

been defined. One is incorrect belt tensioning and the other is backlash. In
this study we will focus on the belt tensioning issue.

To study the belt tensioning phenomenon with a machine learning ap-
proach, six levels of tensioning have been defined. Each data point contains
the information provided from the Robot Box controller and from the user
setting connected to the choice of the belt tensioning degree. The later
includes time series data (position and current data), header information
(program number, machine id, cycle start time, cycle time) and label (level
of belt tensioning)

The tensioning of the belt is calculated by the number of washers used
to tension it. The effect of different belt tensions can be extracted from the
measured current. The washers have been used to discretize the belt ten-
sioning levels. A lower belt tensioning consumption corresponds to a higher
number of washers. Fig 1 shows different number of washer corresponding to
a different label i.e. divided by class, which means it has the ground truth
knowledge. The goal is to predict the correct number of washer corresponding
to the suitable belt tensioning for each incoming cycle.

Figure 1: Washers per class

11

Table 1: Number of cycles per class (NumWashers)

Table 1 shows number of cycles (robot cycles) distribution with respect
to washer number i.e. each washer represents label. The tensioning of the
belt is important to assure the correct functioning of the robot. An incorrect
configuration can cause malfunctioning of the system. Low tension causes
overheating, slippage and premature wear of the pulley and belt. Too much
tension causes excessive strain on shafts, belts and bearings. There is a vast
range of tensions that guaranties a good functioning. The loss of tension
occurs on all of the belts. Loss of tension goes from 50% to 70% with respect
to the original tension.

Figure 2: Electric signal of a single robot cycle

12

Fig 2 shows electric signal of a single robot cycle. It tells the electricity
consumption trend for various washer numbers required for belt tensioning.

Figure 3: Time domain feature computation

Fig 3 shows that the smart data is extracted from time domain feature
computation. The effect of different belt tensions can be extracted from the
measured current.

2.2 Types of predictive models

Predictive modeling is the concept of creating a model which is capable of
making predictions. This model uses machine learning algorithm to learn
certain characteristics from a training data set in order to make those pre-
dictions.

In Machine Learning approaches, we can see various well-differentiated
techniques (as shown in Figure 4).

13

Figure 4: Different machine learning approaches

2.2.1 Supervised learning

In supervised learning, the class labels in the dataset are known, which is used
to build the classification model. For instance, a dataset for spam filtering
would have spam messages as well as not-spam (=”ham”) messages. In a
supervised learning, we would already know which message in the training
set is ham or spam, and we would use this knowledge to train our model and
eventually classify new unseen messages.

Supervised learning is used by majority of practical machine learning.
For example, we have input variables (x) and one output variable (Y) and
we apply an algorithm to learn the mapping function from the input to the
output.

Y = F(x)

When we have new input variables (x), we need to predict the output
variable (Y) for that data so the objective is to approximate the mapping
function very well.

The process of a technique learning from the training data set is like a
teacher supervising the learning process and therefore this process is called

14

supervised learning. We know the right answers and the algorithm repeti-
tively makes predictions on the training data set and is then corrected by
the teacher. When the algorithm reaches an acceptable level of performance,
learning stops.

Supervised learning problems can be grouped into broad categories: clas-
sification and regression problems.

• Classification problem: when the output variable (Y) is a category, for
example “green” or “brown” or “Yes” and “No”.

• Regression problem: when the output variable (Y) is a real value, for
example “height” or “euros”.

Some types of problems are on top of regression and classification include
time series and recommendation prediction respectively. Some examples of
supervised machine learning algorithms:

• Linear regression for regression problems.

• Support vector machines for classification problems.

• Random forest for regression and classification problems.

• Artificial neural networks (ANN).

• Decision trees

• Random forests.

There are a few things that should be considered before choosing a su-
pervised learning algorithm. The first is the variance and bias that exists
within the algorithm since there is a fine line between being too flexible and
flexible enough. The second is the complexity of the function or model that
the system is trying to learn. Additionally, the accuracy, heterogeneity, lin-
earity and redundancy of the data should be analyzed before selecting an
algorithm.

15

2.2.2 Unsupervised learning

In unsupervised learning, the job deals with unlabeled instances. The classes
have to make decisions from the unstructured dataset. Typically, such a
learning employs a clustering technique to group the unlabeled instances
based on certain similarity measures (or distance). It can be seen as a prob-
lem where we only have input data variables (x) and no corresponding output
variable.

The objective for unsupervised learning is to model the underlying dis-
tribution or structure in the data in order to learn even more about the
data.

These problems are called unsupervised learning because there is no
teacher and no correct answers unlike supervised learning above. Algorithms
have to come up with their own to discover and present the relevant structure
in the data.

Unsupervised learning problems can be grouped into broad categories:
clustering and association problems.

• Clustering problem: when we want to find out the inherent groupings in
the data, for example grouping customers by their purchasing behavior.

• Association problem: It is an association rule learning problem where
we want to discover rules that can describe huge portions of our data,
for example people that buy product X also tend to buy product Y.

Some examples of unsupervised learning algorithms:

• Apriori algorithm for association rule learning problems.

• K-means for clustering problems.

There are some advantages of supervised learning models over the unsu-
pervised algorithms, but they also have limitations.

The models are more likely to make predictions that humans can relate to,
for instance, because humans have given the basis for decisions. However, in
retrieval-based method, supervised learning models have issues dealing with
new information. For example, if a system with categories for trucks and
cars is presented with a bicycle, it would have to be incorrectly merged in
one category or the other.

However, if the AI system was powerful, it may not know how the bicycle
is but would be able to identify it as belonging to a separate category.

16

2.2.3 Semi- supervised learning

In semi-supervised learning, some data is labeled and some is unlabeled. Typ-
ically, most of it is not labeled. It is a mixture of supervised and unsupervised
techniques.

It is a problem when we have a huge amount of input data variables
(x) and only few labeled output variable (Y). This problem lies between
supervised and unsupervised learning. For example, a photo archive where
only few images are labeled, (ex. cat, dog, person) and most of them are
unlabeled.

Many real world machine learning problems are semi-supervised learning
problems. It is because it can be time-consuming or expensive to label data
as it might require access to domain experts. Whereas unlabeled data is
cheap. It can be easily collected and stored.

We can use unsupervised learning algorithms to discover and learn the
structure in the new input variables. We can also use supervised learning
algorithms to make best predictions for the unlabeled data set, feed that data
back into the supervised learning algorithm as training data set and use the
model to make decisions on new unseen data.

In this study, we will be dealing with semi-supervised learning, using both
labeled and unlabeled data.

17

3 Proposed Approach

3.1 Overview

Industrial robots are deployed around the world and therefore there has been
an increasing demand to collect the data that monitors the health status of
its machines and avoid sudden failure. To handle this complexity, learning
about predictive maintenance approaches is important.

Figure 5: Application architecture

Fig 5 shows a prototype of the application architecture. RobotBox con-
troller acquires position and current data and transmits to the Gateway in
a JSON format i.e. log files. Then, the Gateway calculates some statisti-
cal characteristics i.e. smart data of the current time series. After that the
Gateway communicates with other two services to obtain classification infor-
mation about the RobotBox cycle. First service is neural network classifier
which is able to identify the belt tensioning level. Another is a classifier
capable of providing a qualitative backlash status and rough information of
the remaining useful life expressed in number of days.

18

At the end, all the data i.e. the output of the classifiers and the current
features are sent to the Borker service which is running on the cloud. The
Node-RED service inside the RobotBox controller, makes it possible to run
each block which implements the necessary functionalities remotely as the
operator has just to launch or connect the flow. The architecture uses NoSQL
database as a cloud storage layer.

HTTP and real time feed (MQTT) service has been deployed in a Docker
container for real time data streaming. This is located in the RobotBox
controller and it sends data to a MQTT broker in the cloud and this is how
data is made available to the visualization application.

The predictive analytics has been measured to predict the belt tensioning
level. A machine learning algorithm has been applied to smart data so as to
forecast a tensioning level as per a new cycle of data.

A predictive analytics service is used to forecast future failures of equip-
ment based on machine learning Techniques.

Figure 6: The predictive analytics service

The functional building blocks of the service is shown in fig 6. Based on
historical data, a prediction model is built by means of machine learning al-
gorithms and applying this model in real time to new incoming data-streams,
to recognize possible failures.

The smart data block includes relevant static features from the raw data
(in this case raw data are time series), thus supporting the predictive main-
tenance vision. Smart data represents the main characteristics of the raw

19

data. It also tells about the context information for example, how the data
was collected, the operating conditions of the equipment it was collected
from.

The model building block is executed on historical data. These data
include the smart data features computed over the real time series and their
respective class labels (e.g., failure absence or presence, category of failures).
The validation block evaluates the performance of the prediction block. This
block gives a 3D view of the relevant equipment by using the data collected at
the field. It also provides the results of the predictive maintenance techniques.

Figure 7: Data analytics architecture

As already discussed, in this study we focus on the belt tensioning prob-
lem of a motor. The tensioning of the belt is necessary to assure the correct
functionality of a robot. Fig 7 shows the data analytics architecture of the
overall process of this study.

Figure 8: Data analytics processes

20

The goal of this study is therefore focused on the subsequent processes
(as shown in figure 8):

• Data pre-processing

• Smart Data computation

• Clustering

• Cluster validation

• Top 10 feature selection

• Data characterization

3.2 Clustering

Clustering is a type of unsupervised learning method . An unsupervised
learning is a method in which we pull out references from data sets comprised
of unlabeled input data. Typically, it is a process to recognize meaningful
structure, generative characteristics, explanatory underlying processes, and
assembling inherent in a set of examples.

It is the process of dividing the data points into several groups such that
points in the same groups are more identical to other points in the same
group and different to the points in other groups. It is actually a collection
of objects based on similarity and dissimilarity between them.

Why Clustering?
Clustering [17] is important as it finds out the inherent grouping among the
without labeled data present. There is no specific standard for a good clus-
tering. It totally depends on the end user: what are the norms they can use
which satisfy their demands. For example, we want to find the representatives
for the homogeneous groups i.e. data reduction, in identifying real clusters
and mention their unknown features i.e. natural data types, in identifying
important and relevant groupings i.e. useful data classes, or in identifying
abnormal data objects (i.e. outlier detection). This method should make
some assumptions which account for the similarity of data points. Each and
every assumption should make different and well-founded clusters.

In this study, I have applied many different types of clustering algorithms.
In Fig 9, I have mentioned a small architecture of algorithms used in my work.

21

Figure 9: Clustering architechture

Types of clustering methods:

1. Partitioning Methods

2. Grid-based Methods

3. Density-Based Methods

4. Hierarchical Based Methods

Hierarchical Based Methods is further divided into two categories:

1. Agglomerative (bottom up approach)

2. Divisive (top down approach)

Applications of Clustering in various fields:

1. Marketing - It is used to discover & characterize user segments for
marketing goals.

2. Biology - It is used for classification among different kinds of animals
and plants.

3. Insurance - It is used to acknowledge the users, identifying their policies
and recognizing the frauds.

22

4. Earthquake studies – It can be used to learn about the areas affected
by earthquake and find out the dangerous zones.

5. City Planning - It can be used in making groups of houses and study
their rates on the basis of their geographical locality and few other
factors.

3.3 Clustering Algorithms

There are many types of clustering Algorithms. Here I would like the most
well-known examples of clustering algorithms that I used in my work.

3.3.1 k-means

Kmeans [18] is considered as the most used clustering algorithms because of
its simplicity.

This is an iterative method that partitions the data set into K distinct
non overlapping groups (clusters) where every data point is a member of only
one group. It makes the inter-cluster points as identical as possible and tries
to keep the clusters as far (different) as possible. It allocates the data points
to a cluster in such a way that the sum of the squared distance between the
points and the centroid, arithmetic mean of all the points belonging to the
same cluster, is minimum.

The data points within the same cluster are more homogeneous i.e. sim-
ilar if the variation within clusters is less.

Kmeans algorithm steps:

1. Choose number of clusters K.

2. First, shuffle the data set to initialize centroids and then select K data
points randomly for the centroids with no replacement.

3. Iterate until centroids are fixed and there is no need to change (alloca-
tion of data points to clusters is not changing anymore)

Next we can compute the sum of the squared distance (SSE) between
data points and all the centroids.

Kmeans follows Expectation-Maximization approach to solve the prob-
lem. The E-step is allocating the data points to the nearest cluster. The

23

M-step is calculating the centroid of every cluster. Let’s solve it mathemati-
cally: The objective function is:

where “wik=1” for point “xi” if it belongs to cluster k, else “wik=0”.
Also, the centroid of “xi” cluster is “uk”.

It’s a two part minimization problem. First, we minimize J w.r.t. wik and
consider ”uk” as fixed. Next, we minimize J w.r.t. ”uk” and consider wik as
fixed. Technically, we are differentiating J w.r.t. wik first and then updating
cluster assignments which is E-step. Then we differentiate J with respect to
”uk” and recalculate the cluster centroids after the cluster formations from
previous step, this is M-step.

Hence, E-step is:

In short, assign the point xi to the nearest cluster based on its sum of
squared distance from centroid.

And M-step is:

This is recalculating the centroid of each cluster to see the new cluster
assignments.

24

Elbow method:

Elbow method is a way to find out good number of clusters K. This calcu-
lation is based on sum of squared distance (SSE) between points and their
cluster centroids. We choose k at the point where SSE begins to flatten out
and making an elbow.

Drawbacks:

If clusters have a spherical kind of shape, it’s good to use Kmeans algorithm.
This algorithm is good in capturing this kind of data structure because it
always tries to form a nice spherical shape around the cluster centroid. This
also means, if the clusters have a complex geometric shapes, this algorithm
won’t work as expected and may result in a poor clustering of data points.

Key points to remember:

• Bigger clusters are given more weight.

• Always standardize the data when using kmeans algorithm.

• Elbow method in choosing number of clusters does not usually work as
the error function monotonically decreases for all values of k.

• Kmeans does not work well if clusters are in complex shapes for example
elliptical clusters because it’s based on centroid concept and assumes
spherical-like shapes of clusters.

• Kmeans still cluster the data which can’t be clustered for instance data
coming from uniform distributions.

3.3.2 DBSCAN

DBSCAN stands for Density-Based Spatial Clustering [19] with Noise. It
identifies core samples of high density and forms clusters from them. It is
good for data that contains clusters of same density.

DBSCAN groups together data points that are near to each other on
the basis of two parameters: first is distance measurement, which is usually
Euclidean distance, and second is a minimum number of points. Also, it
marks as outliers the data points which are in low density regions.

25

Two main parameters:

• Epsilon (eps): it tells how close data points should be to be considered
a member of a cluster. It means that these points are considered as
neighbors if the distance between two points is lesser or equal to this
value (eps).

• Minimum Points (minPts): it is the minimum number of points to build
a dense region. For instance, if we choose the minPoints as 5, then we
want at least 5 points to make a dense region.

Data points can be categorized into 3 types based on above parameters:

1. Core point: It is a core point if it has, within its eps neighborhood, at
least minimum MinPts including itself.

2. Border point: A point that is not a core point but is in the neighborhood
of a core point.

3. Noise point: A point that is neither a border point nor a core point.
This means they are outliers and doesn’t belong to any dense cluster.

Parameter estimation:

The parameter estimation is an issue for almost every data mining task. To
select good parameters we must understand how they work and should have
at least a basic knowledge about the data that will be used.

• eps: if the chosen eps value is too small, it won’t be able to cluster
a large part of the data and It will be considered as outliers because
it doesn’t satisfy the number of data points to make a dense region.
Also, if the value is too high, it will merge the clusters and majority
of points will be in the same cluster. Therefore eps should be chosen
keeping in mind the distance of the dataset. In general, small eps
values are preferable. However, a k-distance graph can be used to find
eps value.

• minPoints: In general, we can derive minPoints from a number of di-
mensions (D) in the data-set, as minPoints ě D + 1. Larger values
will make more significant clusters and are mostly better for data-sets

26

with noise. The minimum value for minPts must be 3, but it depends
on how large is the data-set. The larger the data-set, the larger the
minPts value should be chosen.

DBSCAN algorithm steps:

• First it divides the data-set into n dimensions

• Dbscan makes an n dimensional shape, for each point in the dataset,
around that point. Then it counts the number of data points that falls
within that shape.

• It counts this shape and assumes it as a cluster.

• It goes through each data point within the cluster and counts the num-
ber of other points nearby. This is how it iteratively enlarges the cluster.

Fig 10 shows an example of Dbscan with min-points as 4.

Figure 10: DBSCAN clustering with min-points 4

27

Why should we use DBSCAN??

The DBSCAN algorithm is used to identify association and structure in
datasets that are difficult to find manually but can be appropriate and use-
ful to find patterns and forecast trends. For example, recommendations in
websites.

Advantages:

• Good at separating high density clusters from low density clusters
within a given dataset.

• handles outliers within the data-set.

Disadvantages:

• Doesn’t perform well when dealing with different density clusters. It
struggles with similar density clusters.

• If data has many dimensions (high dimensionality data), it doesn’t
work well.

3.3.3 Agglomerative clustering

Hierarchical clustering algorithms [20] group identical objects into groups
called clusters. There are 2 types of hierarchical clustering algorithms:

Agglomerative — Bottom up approach. It starts with small clusters and
then merges them together to form bigger clusters.

Divisive — Top down approach. It starts with one single cluster and then
breaks it into smaller clusters.

28

An example of hierarchical clustering is shown in Fig 11

Figure 11: An example of Hierarchical clustering

The linkage criteria specifies how the distance between clusters is computed.There
are basically four types of linkage criteria:

Single Linkage

The distance between two clusters is computed as the shortest distance be-
tween two data points in each cluster.

29

Complete Linkage

The distance between two clusters is computed as the longest distance be-
tween two data points in each cluster.

Average Linkage

The distance between clusters is computed as the average distance between
each data point in one cluster to every data point in other cluster.

30

Ward Linkage

The distance between clusters is computed as the sum of squared differences
with in all clusters.

Distance Metric: It is a method used to measure the distance between
data points. This parameter can affect or eventually change the end result.

Euclidean Distance: The shortest distance between two data points. For
example: if x=(a, b) and y=(c, d) then the Euclidean distance between x
and y is sqrtppa´ cq2 ` pb´ dq2q

Advantages:

• Easy to implement

• Hierarchical clustering results in a hierarchy, i.e. a structure which is
more informative while k-means returns the unstructured set of flat
clusters. Hence, it is easy to decide the number of clusters by seeing at
the dendrogram.

Disadvantages:

• It’s not possible to undo the last step i.e. once the data points have
been assigned to a cluster, they can’t move around any longer.

• It is very conscious of outliers

• Time complexity. It is not good for big datasets.

• Initial parameters and order of data have a strong effect on the final
results.

31

3.4 Clustering Validation

The term clustering validation is used to create a process of evaluating the
outputs of a clustering algorithm. The goal of this section is to:

• Specify the various methods for clustering validation

• Compare the quality of results obtained from different clustering algo-
rithms

There are two types of evaluation:

• Supervised- it uses a ground truth class values for samples.

• Unsupervised- it doesn’t have any previous knowledge and measures
the quality of the model by itself.

We will be using following clustering metrics to evaluate our clustering
results (see Table 2).

Table 2: Supervised vs Unsupervised indices

3.4.1 Supervised indices

As discussed before, in supervised learning, the class labels in the dataset
are known, which is used to build the classification model.

It’s a machine learning approach which involves assigning labeled data
such that a certain sample or pattern can be taken out from that data. The
good thing about supervised learning is that the input data point is known
and thus labeled appropriately.

32

Let’s talk about few supervised metrics that I used to evaluate the outputs
of my clustering algorithms.

Adjusted rand score

The Rand Index does a similarity check between tw0 clusterings by consid-
ering all pairs of groups and counting pairs that are allocated to the same or
different clusters in the forecasted and true clusterings.

The adjusted Rand index is thus guarantees to have a value near to 0.0
for random labeling independently of the no. of clusters and groups and
exactly 1.0 when the clusterings are similar.

Similarity score is between -1.0 and 1.0. Random labelings (e.g. Bad or
independent labelings) have an ARI close to 0.0 or negative. Perfect labeling
is exactly 1.0.

ARI is symmetric which means swapping the records does not change the
score.

ARI needs information of the ground truth classes, contrary to inertia,
which is mostly never available or needs manual allocation (like in the su-
pervised learning setting).

However, ARI can also be helpful in a completely unsupervised setting
like a building block for a Consensus Index which can be used in clustering
model selection

Homogeneity Completeness and V-measure score

Given the prior information of the ground truth class labels of the samples,
it is quite possible to define some metric using conditional entropy analysis.

A clustering output satisfies homogeneity if all its clusters hold only points
that are members of a single class.

A clustering output satisfies completeness if all the points that are mem-
bers of a given class are associated to the same cluster.

33

Both scores have values between 0.0 and 1.0 and are positive. However,
larger value is more desirable. Score is between 0.0 and 1.0 where 1.0 stands
for best homogeneous and complete labeling.

V-measure is the harmonic mean of homogeneous and completeness. Score
is between 0.0 and 1.0 where 1.0 stands for best complete labeling.

MATHEMATICAL FORMULATION

Homogeneity: each cluster holds only members of a single class.

Completeness: all class members are allocated to the same cluster.

where H(C—K) is the conditional class entropy where the cluster assign-
ments, defined as:

and H(C) is the class entropy:

34

V-measure is defined as the harmonic mean of above two metrics:

Advantages:

• Bounded scores: 0.0 is a very bad score and 1.0 is a perfect score.

• Intuitive interpretation: Bad V-measure score can be statistically ex-
amined in terms of homogeneity and completeness to better understand
what type of mistakes was done by the project.

• No speculations about cluster structure

Disadvantages:

• The metrics are not normalized with respect to random labeling. This
means that depending on the number of clusters, samples and ground
truth classes, a whole random labeling will not always give the same
result for homogeneity, completeness and thus v-measure. In general,
random labeling will not give zero score especially in case of large the
number of clusters.

This issue can be ignored safely when the number of clusters is less than
10 and number of samples is more than thousand. For larger number of
clusters or smaller sample sizes, it is good to use any adjusted index, for
example the Adjusted Rand Index (ARI).

3.4.2 Unsupervised indices

We already discussed about unsupervised learning in previous section. Just
to give a brief, unsupervised learning is a machine learning approach in which
conclusions are made from unlabeled input data. The aim of unsupervised
learning is to grouping in data from unlabeled data or find out the hidden
patterns. The important thing to highlight is that in unsupervised learning
both input and output are not known.

35

Let’s talk about few unsupervised metrics that I used to evaluate the
outputs of my clustering algorithms.

Silhouette score

Computes mean Silhouette Coefficient of all the samples. The Silhouette
value of a single sample is defined as follows:

where:
a is the mean distance between a point and all other data points within

the same cluster
b is the mean distance between a point and all other data points in the

closest cluster
The range of Silhouette score is in [-1, 1].

• +1 Score – it indicates that the sample is very far away from the other
neighboring cluster. The best value is 1

• 0 Score – it indicates that the sample is either overlapping or very near
to the decision boundary which is separating two neighboring clusters.

• -1 Score – it generally indicates that the samples have been allocated
to the wrong clusters because different cluster was more similar. The
worst value is -1.

Silhouette samples

The Silhouette Coefficient is a metric of how well data is clustered with
samples that are identical to themselves. Clustering models are dense if they
have a high Silhouette Coefficient which means samples in the same group are
identical to each other and well-separated, whereas samples in other clusters
are not very identical to each other.

Silhouette analysis is used to learn the separation distance between the
predicted clusters. The silhouette plot shows a measure of how close each

36

data point in one cluster is to data points in the neighboring clusters and
hence it provides a way to evaluate parameters such as number of clusters
visually. This measure has a range [-1, 1].

For this to be a good value for a particular number of cluster, we must
consider the following points: First, the mean value should be as near to 1
as possible. Second, the plot of every cluster should be above, as much as
possible, the mean value. Plot region below the mean value is not preferable.
Last, the width of plot should be uniform.

Sum of squared errors

Sum of squared error (SSE) is a scale to measure dissimilarity within a cluster.
If all the cases with in a cluster are similar, the SSE would be equal to zero.

The mathematical formula for SSE is:

Where n is the no. of observations, “xi” is value of the “ith” observation
and zero is the mean of all observations.

If sum of squared errors (SSE) is zero, it means a perfect match and there
isn’t any error. This is performed by repeated calculations designed to bring
the samples tighter or closer.

This is very unlikely to happen with the real world data. Therefore, we
should look for an approach that has lower SSE. The lower the SSE, more
similar are the samples in that dataset. A high SSE value suggests that the
samples have a reasonable amount of differences between them and might
not be a usable cluster.

37

Calinski-Harabasz Index

The Calinski-Harabasz index can be defined as ratio between- the within-
cluster dispersion / the between-cluster dispersion.

The score is higher for dense and well-separated clusters, which is the
standard concept of a cluster.

If ground truth class labels are not known, Calinski-Harabasz index can
also called as the Variance Ratio Criterion which means it can be used to
evaluate the model. A higher Variance Ratio score means model has better
defined clusters.

For dataset E of size nE and k clusters, the Calinski-Harabasz score is
defined as:

where “tr(Bk)” is the trace of between group dispersion matrix and
“tr(Wk)” is the trace of within-cluster dispersion matrix.

Advantages

The score is higher for dense and well-separated clusters. Fast to compute.

Disadvantages

The Calinski-Harabasz index is usually higher for convex clusters than other
types of clusters for example density based clusters (DBSCAN).

3.5 Cluster Characterization

In this section, we will study about Cluster characterization. Basically, char-
acterization helps in identifying the type of cluster, its features and data
distribution of patterns. It also identifies outlier clusters. Cluster charac-
terization helps domain expert in labelling of the data, in our case to robot
cycles.

First, we extract top 10 most relevant features of our clusters, using
Decision Tree Classifier, and then individually characterize each group. This

38

helps domain experts to take better decisions about the data by going through
the most relevant features that better describes each group.

After choosing these most relevant features, their data distribution has
been shown using boxplots, which will help to identify the most character-
izing properties of a cluster in terms of relevant features and content. This
information may help experts to understand every group thoroughly because
it is impossible to inspect all the samples manually. Therefore, cluster char-
acterization is an important support to take better decisions.

As mentioned above the steps of cluster characterization, Fig 12 shows a
short architecture about the same.

Figure 12: Cluster charcterization architecture

Why Boxplot?

A boxplot is a graph that tells us about how the values in the dataset are
spread out. It is a helpful way to visualize dissimilarities among various
groups or samples. Also, they provide statistical information such as ranges,
medians and outliers.

39

3.5.1 Decision Tree classifier

Decision tree classifiers is a well-known classification approach in various pat-
tern recognition issues, for instance, character recognition and image classi-
fication. Decision tree classifiers [21] work more amazingly, specifically for
complex and complicated classification issues, because of their computation-
ally effective and high adaptability features. Apart from this, decision tree
classifiers are way better than numerous old supervised classification meth-
ods.

In particular, decision tree classifiers doesn’t need any distribution as-
sumption regarding the input data which gives it a higher adaptability to
manage with various kinds of datasets (numeric, categorical, even data with
missing values). Decision trees are also good for dealing with non-linear rela-
tions among classes and features. Besides, the classification procedure given
by a tree-like structure is always interpretable and natural.

The goal of a classification tree is to classify the input data. Given an
input data point, it should assign it to a specific class/label. A decision tree
is designed through a procedure known as binary recursive partitioning. It
is an iterative process of breaking the data into partitions, and then again
breaking it up on each branch.

A Decision tree has 3 main segments:

1. Nodes – test for the value of a certain feature.

2. Edges/ Branch - compare the outcome of a test and attach to the next
leaf or node.

3. Leaf nodes - Terminal nodes that forecast the outcome (mostly class
distribution or class labels).

40

Figure 13: An example of Decision Tree Classifier

To better understand the idea of Decision Tree consider the example
shown in Fig 13. Let’s say we want to know, given prior information such as
eating habits, age, physical activity etc., whether a person is fit or unfit.

The decision nodes can be the questions like ‘Does he exercise?’, ‘What’s
his age?”, ‘Does he eat a lot of burgers? And the leaf nodes represent outputs
like ‘fit’ or ‘unfit’.

41

4 Implementation Tools

This chapter provides information on the implementation tools used to de-
velop this work.

4.1 Python

To overcome the difference between C and shell programming, Python [11],
an uncomplicated but still robust tool is available in the plethora of pro-
gramming languages. It is a perfect fit to “Throw-away programming” and
rapid prototyping. Python’s syntax is made from constructs derived from
different languages like Icon, C, Modula-3, ABC etc. The Python interpreter
is extended with new function and data type implemented in C.

For highly customizable C applications such as editors or window man-
agers, python can serve as an extension language. It is available for many
operating systems like UNIX (including Linux), MS-DOS, Windows NT,
MS-Windows 3.1, and OS/2 the Apple Macintosh operating system. In the
Python Library Reference there is a description of the built in functions and
modules and of the non-essential built in object types.

With python you can separate your program into modules that may be
reused in other Python programs. It has a huge collection of standard mod-
ules that you can use as the basis of your programs — or as examples to start
learning to program in Python. Things like file I/O, sockets, system calls,
and even interfaces to graphical user interface toolkits like Tk are provided
by some of these modules.

Since Python is an interpreted language, there is no compilation and
linking is necessary and hence you can save considerable time during program
development. The advantages of such an interactive interpreter are that
we can easily experiment with features of the language, write throw-away
programs and even test functions during bottom-up program development.
Python allows programs to be written compactly and readably.

Python programs are usually much shorter than equivalent C, C++, or
Java programs because of several reasons:

• complex operations in a single statement are expressed by the high level
data types

• declarations of variables or arguments are unnecessary

42

• beginning and ending brackets are omitted and indentation is used for
statement grouping

4.2 Pycharm

The Czech company JetBrains created an integrated development environ-
ment (IDE) named PyCharm specifically for the Python language. It pro-
vides a graphical debugger, an integrated unit tester, code analysis, integra-
tion with version control systems (VCSes), and supports web development
with Django as well as Data Science with Anaconda.

PyCharm is cross-platform, with macOS, Windows, and Linux versions
[14]. The Community Edition is released under the Apache License, and there
is also Professional Edition with extra features – released under a proprietary
license.

Features:

• Code and project navigation: file structure views ,specialized project
views, and speedy jumping between files, methods ,classes and usages

• Coding analysis and assistance, with code completion, error and syntax
highlighting, linter integration, and quick fixes.

• Integrated Python debugger

• Google App Engine Python development [only in professional edition]

• Python refactoring: consists of rename, extract method, introduce con-
stant, introduce variable, push down ,pull up etc.

• web frameworks like Django, web2py and Flask are supported [only in
professional edition]

• Integrated unit testing, with line-by-line code coverage

• Version control integration i.e. unified user interface for Git, Mercurial
and CVS with change lists

• scientific tools like matplotlib, numpy and scipy are also supported
[only in professional edition]

43

Plugins

With the provision of API in PyCharm - developers can write their own
plugins .This helps to extend PyCharm features. Several plugins from other
JetBrains IDE can also work with PyCharm. PyCharm has compatibility
with more than 1000 plugins.

4.3 Libraries

Here I would like to mention about all the libraries that my work uses with
python files. There are several libraries that this project imports from.

4.3.1 Numpy

Numpy is a fundamental-package for array-computing with python. Nu-
merical Python, in short, NumPy, is a library including multidimensional
array objects and a collection of routines which help in processing those ar-
rays. Mathematical and logical operations on arrays can be performed using
NumPy [7]. It also discusses the several array functions, types of indexing
etc. An introduction to Matplotlib is also provided.

It contributes:

• an N-dimensional array object

• broadcasting (sophisticated) functions

• tools for integrating Fortran and C/C++ code

• useful Fourier transform, linear algebra, and random number capabili-
ties and a lot more

Other than its scientific uses, NumPy is also useful as an efficient multi-
dimensional container of generic data. Arbitrary data-types may also be
defined. This grants NumPy the ability to quickly and seamlessly integrate
with a wide variety of different kinds of databases.

44

4.3.2 Pandas

To make working with structured (multidimensional, tabular, potentially het-
erogeneous) and time series data both easy and intuitive we have a python
package named – pandas [9], which provides fast , flexible, and expressive
data structures. It aspires to be the fundamental high-level building block
for doing practical, real world data analysis in Python. Pandas can become
the most flexible and powerful open source data analysis or manipulation
tool available in any language at present.

Pandas is appropriate for a variety of data:

• Tabular data with mixed typed columns, as in an Excel spreadsheet or
in an SQL table

• Ordered or unordered time series data, not necessarily fixed- frequency

• Arbitrary matrix data (homogeneously typed or heterogeneous) with
column and row labels

• Any form of statistical or observational data sets. There is no need for
data to be labeled at all for the data to be placed into a pandas data
structure

Few main features of Pandas:

• missing data (represented as NaN) in floating point and non-floating
point data is easily handled

• Automatic and explicit data alignment in which objects can be explic-
itly aligned to a set of labels, or the user can just ignore the labels and
let DataFrame ,Series , etc. automatically align the data for you in
computations

• Size mutability - columns can be deleted from and inserted in DataFrame
and higher dimensional objects

• Great fancy indexing, label-based slicing and subsetting of huge data
sets

• Flexible group-by functionality to nicely perform split-apply-combine
operations on datasets, for both transforming and aggregating data.

45

• ragged, differently-indexed data in other Python and NumPy data
structures can be easily converted into DataFrame objects

4.3.3 JSON

JSON abbreviation for JavaScript Object Notation, [10] is a lightweight for-
mat for transporting as well as storing data. When we have to send data
from a server to a web page, JSON come in handy. Json is very easy to
understand and self-describing.

If we have data stored in a JavaScript object, first, we can convert the
object into JSON, and then we can send it to a server. If we have received
data in JSON format, we can simply convert it to a JavaScript object.

The advantage of JSON format being text only is that it can simply be
sent to and from a server and can be easily used as a data format by any
programming language.

If we have to convert a string, written in JSON format into native JavaScript
objects we can simply use the built in function- JSON.parse() provided by
JavaScript. Hence, data received from a server in JSON format can be used
like any other JavaScript object.

JSON Schema highlights a JSON-based format which defines the struc-
ture of JSON data for documentation, validation, and interaction control. A
contract is provided by it for the JSON data, required by a given application,
and the ways that data can be modified.

JSON Schema is derived from the concepts from XML Schema (XSD), but
it is JSON-based. Similar to XSD, the same serialization or deserialization
tools may be useful both for the data and schema; and is self-describing.

There have been suggestions of .schema.json being a standard filename
extension but as such, there are none.

4.3.4 MatplotLib

For 2D plots of arrays , we have Matplotlib, [12] which is a splendid visu-
alization library in Python. It is a multi-platform data visualization library
that has been built on NumPy arrays and is usually designed to work with
the broader SciPy stack. John Hunter introduced it in the year 2002.

Visualization is extremely useful as it allows us visual access to enormous
amounts of data in straightforward visuals. Line, bar, scatter, histogram etc.
are all different types of plots that Matplotlib consists of.

46

Windows, macOS and Linux distributions have matplotlib and the major-
ity of its dependencies are as wheel packages. Run the command matplotlib
to install the corresponding package.

Matplotlib has a comprehensive selection of plots. Plots helps to under-
stand patterns, trends and also to make correlations. They’re usually used
for reasoning about quantitative information.

4.3.5 Scikit-Learn

Python’s premier general-purpose machine learning library - Scikit-Learn
(abbreviation- sklearn) [16] is a Python module that integrates classical ma-
chine learning algorithms in the clannish world of scientific Python packages
(numpy, matplotlib, scipy).

Scikit-Learn is very versatile and hence bags the title as the best starting
place for most ML problems.

The aim is to provide simple and efficient solutions to learning problems
that are accessible to everybody and reusable in various contexts: machine-
learning as a versatile tool for science and engineering.

For beginners, It’s a great library because it offers a high-level interface
for many tasks (e.g. cross-validation, preprocessing data, etc.) allowing us
to better use the whole machine learning workflow and also understand the
big picture.

4.3.6 Joblib

Joblib is a tool which provides lightweight pipelining in Python.

In general:

• transparent disk caching of functions and lazy reevaluation

• very simple and easy parallel computing

Joblib [8] is optimized to be quick and robust on huge data usually. It
has certain optimizations for numpy arrays.

47

The goal of this library is to provide tools to quickly achieve better re-
producibility and performance when working with long running jobs.

• Avoid calculating the same thing twice: usually we rerun the code again
and again, for example when prototyping complex and computational
heavy jobs (such as in scientific development), but manual solutions to
remove these problems are error-prone and can lead to unreproducible
results.

• Persist to disk transparently: accurately persisting random objects con-
taining huge data is tough. Joblib’s caching mechanism removes man-
ually written persistence and automatically links the file on disk to the
runnable context of the original Python object. Hence, joblib’s persis-
tence is best for computational job or resuming an application status,
for example after a crash.

Joblib addresses these issues while leaving our code and flow control un-
modified (no new paradigms, no framework).

Features:

• Transparent and fast disk caching of resulting value: similar functional-
ity for Python functions that performs well for random Python objects,
including very huge numpy arrays.

• Embarrassingly parallel helper: Easy to write readable code in parallel
and debug it easily.

• Fast compressed Persistence: helps us to work efficiently on Python ob-
jects, especially objects containing huge data (joblib.load and joblib.dump
).

4.4 Google Colaboratory

Google Colaboratory, often referred to as “Google Colab” or simply “Co-
lab” [13] is a research project with which we can prototype machine learning
models on powerful hardware options such as TPUs and GPUs. A server
less Jupyter notebook environment is provided by Colab for interactive de-
velopment. Similar to other G Suite products, Google Colab is free to use
[15].

48

It can be very useful as a tool for improving your coding skills. It can also
allow anyone to develop deep learning applications with the help of popular
libraries such as PyTorch, Keras, TensorFlow, and OpenCV.

Although it supports Python 2.7 and 3.6, but it loses the race as it doesn’t
support R or Scala yet. Sessions and sizes are limited, but we can definitely
get around that if we simply re-upload our files.

In Colab we can create, upload, store, and share notebooks, we can mount
our Google Drive and use whatever we’ve got stored in there, upload our per-
sonal Jupyter Notebooks, import majority of our favorite directories, upload
Kaggle files, upload notebooks directly from GitHub, download our note-
books etc.

It provides high computational resources like:

• 13GB RAM

• 33GB Free Space

• 2vCPU @ 2.2GHz

• n1-highmem-2 instance

• 90 minutes of idle cut-off

• 12 hours maximum

• GPU instance upgraded to 350 GB

49

5 Experimental results

In this section we will talk about the model creation, analysis of the clusters
(by comparing supervised and unsupervised metrics), best configuration
selection on the basis of results obtained and lastly, data distribution of
patterns i.e. cluster characterization.

5.1 Model creation

Let’s first talk about the parameters used in the clustering algorithms, such
as input parameters, expected output parameter, number of models etc.

Table 3: Model creation

As shown in Table 3, we have used 3 different clustering algorithms in
this study.

1. K-means: n cluster (k) ranges from [2, 11] which is an input parameter
for this algorithm and we get a model corresponding to every value of
k.

2. Agglomerative: linkage criteria is an important input parameter for
this algorithm along with n cluster (k). We get models corresponding
to each linkage criteria against every value of k.

50

3. DBSCAN: Firstly, I tried with eps range [5, 25] and min samples [10,
30] to try with all possible permutations and combinations to get good
models to further analysis the data. Later, I tried with another com-
bination of eps and min samples to check if I could get some different
results with few more models.

Few facts about Dbscan:

1. Though we generated 435 models to observe all kinds of permutations
and combinations to get the best outcome but used only models falling
under Epsilon range(11, 14) because others were with silhouette score
either negative or NaN, or were producing very low/high number of
clusters(Ex 0,1, 70,80,100+)

2. We also observed that if Epsilon and number of clusters are constant,
then Noise (amount of outliers) increases when min samples is in-
creased. Outliers are the samples that do not satisfy the density factor
of the Dbscan algorithm. (For example, see records in Table 4)

Table 4: Dbscan for eps 13 and 14

Clustering data points are spread across some geography (for example
GPS coordinate points). The eps parameter is linked with the geo-
graphic scale of the study region. The min samples parameter defines
the minimum number of points needed to create a new cluster. A
smaller value may extract many clusters but the final clusters includes

51

noise as well. A bigger value of min samples produces a more robust
cluster. However, it may remove some potentially smaller regions as it
tries to merge them in a bigger one.

For example, let’s consider 2 clusters produced with min samples 10,
and later increase min samples to 12 keeping eps and k constant. (As
shown in figures 14)

Blue-cluster 0
Orange-cluster 1
Yellow- noise

Figure 14: An example with Minimum points 10 and 12

If we increase minPts from 10 to 12, we observed that few circles do
not satisfy the condition and can’t be a cluster member anymore of
that particular cluster and thus converts into noise.

3. Since we got many records against the same value of K (n clusters),
we selected the maximum score (highlighted in green) from the filtered
dataset i.e. considering only relevant data (discussed before). (For
example, see records in Table 5)

52

Table 5: Dbscan for various metrics

5.2 Cluster analysis

Here, we will interpret clustering algorithm results by analyzing and com-
paring various supervised and unsupervised metrics.

5.2.1 Unsupervised metrics comparison

Silhouette score

As we already discussed in previous sections that this metric specifies how
well samples are grouped with samples that are identical to themselves.

Table 6 shows Silhouette scores of all 3 clustering algorithms in numerical
figures while Fig 15 shows the same results graphically to better visualize,
understand and compare the scores.

53

Table 6: Silhouette scores of all algorithms

Figure 15: Silhouette scores vs n clusters (k)

Observations:

• We observed that Agglomerative (except linkage ward) gives a very
high Silhouette score, nearly equal to 1, for range (k=2 to 5) which also
means that these clusters are well separated from each other. However,
score gradually decreases from k=6 onward.

54

• Next best is K-means and Agglomerative Ward which is nearly constant
throughout all the values of K. However, k-means performed slightly
better than Agglomerative ward.

• Dbscan performed worst as compared to others. We can see negative
or zero silhouette score also after k=6 which means clusters are over-
lapping or samples are assigned to a wrong cluster, as different cluster
was more identical.

Silhouette samples

Below figures show Silhouette samples i.e. silhouette coefficient values for all
the data points against the cluster points (for all clustering algorithms)

(a) k-means (b) DBSCAN

55

(a) Agglomerative- Average (b) Agglomerative- Complete

(a) Agglomerative- Single (b) Agglomerative- Ward

Observations:

• We observed that for Kmeans, for almost all the data points, silhouette
coefficient is more than 0, and quite wide (a wide silhouette is better
than a narrow one). This behavior is similar for all the values of k
except for k=2 and 3 (even more better and wider).

• DBSCAN, for a lot of data points silhouette coefficient is less than 0,
less wider.

• Agglomerative (except for linkage ward) performed best only for k=2
to 5 (all data points more than 0) but performance decreases as k is
increased (after k=6).

• Agglomerative ward performed almost the same way as k-means

56

Calinski-Harabasz Index

A higher Calinski-Harabasz score shows that the clusters are dense and well
separated. It is considered to be higher for convex type clusters than other
concepts of clusters (For ex. DBSCAN)

Table 7 shows Calinski-Harabasz scores of all 3 clustering algorithms in
numerical figures while Fig 19 shows the same results graphically to better
visualize, understand and compare the scores.

Table 7: Calinski-Harabasz scores of all algorithms

57

Figure 19: CalinskiHarabasz scores vs n clusters (k)

Observations:

• K-means performs the best throughout all the values of K which means
clusters are dense and well separated. Also, clusters are more or less
spherical and compact in their middle (such as normally distributed).

• After k-means, next best is Agglomerative Ward behaving the same
way as k-means.

• For all other algorithms, CH score is quite low i.e. clusters formed are
not well compact.

Sum of Squared errors (SSE)

Just to give a brief, Sum of squared error (SSE) is a metric of variation with
in a cluster and is used to inspect the number of clusters.

Table 8 shows Sum of Squared errors (SSE) scores of all 3 clustering algo-
rithms in numerical figures while Fig 20 shows the same results graphically
to better visualize, understand and compare the scores.

58

Table 8: Sum of Squared errors (SSE) of all algorithms

Figure 20: Sum of Squared errors (SSE) vs n clusters (k)

Observations:

• K-means and Agglomerative ward, we can observe an exponentially

59

decreasing graph as the value of k decreased. And appropriate number
at the knee can be at (k = 4) or (k = 5) for both the algorithms, which
can be the appropriate number of cluster.

• About Dbscan, we observe a non-ideal behavior, SSE increases as k
increases (at k=6 and k=8).
Reason? Inertia calculates the internal cluster sum of squares (i.e. sum
of squares is the sum of all the residuals). Inertia mostly depends on
the assumption that the clusters will be convex i.e. of spherical shape.
DBSCAN doesn’t divide data into spherical clusters, hence inertia is
not a good index to use for evaluating DBSCAN type of models. Inertia
is mostly used in other type of clustering methods, for example K-means
clustering.

K-means (The Elbow method):

Inertia is more often used in K-means clustering because it always tries to
form a nice spherical shape around the cluster centroid, and also known as
The Elbow method. Considering the fact, if we look at Fig 21, it is observed
that appropriate number at the knee can be at (k = 5), which can be the
appropriate number of cluster.

Figure 21: Sum of Squared errors (SSE) for k-means

60

5.2.2 Supervised metrics comparison

Adjusted rand index

ARI does a similarity check between samples present in the cluster. A higher
ARI score means that the clusters are more similar.

Table 9 shows Adjusted rand scores of all 3 clustering algorithms in nu-
merical figures while Fig 22 shows the same results graphically to better
visualize, understand and compare the scores.

Table 9: Adjusted rand scores of all algorithms

61

Figure 22: Adjusted rand scores vs n clusters (k)

Observations:

• We observed that ARI score is best for Dbscan for all the values of k
which means good similarity in the clusters.

• Next best is again k-means and Agglomerative ward where k-means
performs better at k= 5 and 6 (just to highlight)

• All other algorithms gives bad results. (almost equal to 0 indicating a
bad cluster similarity)

Homogeneity, Completeness & V-measure

For all 3 scores, a larger value is more desirable for best homogeneous
and complete labeling.

62

Homogeneity

Table 10: Homogeneity scores of all algorithms

Figure 23: Homogeneity scores vs n clusters (k)

63

Completeness

Table 11: Completeness scores of all algorithms

Figure 24: Completeness scores vs n clusters (k)

64

V-measure

Table 12: V-measure scores of all algorithms

Figure 25: V-measure scores vs n clusters (k)

65

Observations:

• We observe that Dbscan gives the best results over other algorithms
for all the values of k, and for all three metrics.

• Next best is Agglomerative ward and K-means. However here Agglom-
erative ward performing better than K-means. But notice that only
for k=5 and k=6, k-means performs better than Agglomerative ward.
(following the same trend of unsupervised metrics)

• All other algorithms give poor results.

5.2.3 Best Configuration Selection

In previous section, we observed that though Dbscan gives good results for
supervised metrics but it performs the worst with unsupervised metrics i.e.
not even giving average results to consider.

Clustering is an unsupervised machine learning approach, we cannot con-
clude a solution on the basis of algorithms which are working well with su-
pervised metrics because in reality we might not be having labeled ground
truth to predict the outcome. In real world, labeled data is not very common
and therefore unsupervised metrics should be given preference to select best
configuration.

Also, high CH index states that there might be a possibility that the
clusters are more or less spherical, convex shaped.

After comparing all the results of different metrics, we can say that K-
means and Agglomerative ward can be a good solution for this particular
dataset especially at k=5 and 6. We shall now discuss about the same for
further analysis.

Table 13 shows the best scores (highlighted in green) of K-means and
Agglomerative ward for all the metrics together at k=5 and 6. We see that
somewhere k=5 score is higher than k= 6 or vice-versa.

66

Table 13: Best scores of supervised and unsupervised metrics

Though both Kmeans and Agglomerative ward gives consistently good
results through all the values of K, for all the metrics but they are more
consistent at (k=5) and (k=6). They are more stable and reliable.

However k-mean scores higher than Agglomerative ward and produces
best average results for both supervised and unsupervised metrics.

Hence, best configuration could be:

• 1st best solution:
K-means with (K=5) or (K=6)

• 2nd best solution:
Agglomerative Ward with (K=5) or (K=6)

Table 14 shows total number of data points in each cluster for both algo-
rithms.

67

Table 14: Total points in each cluster

Below figures show the Silhouette plot of both algorithms for the best
configuration selected.

For this to be a good value for a particular number of cluster, we must
consider the following points: First, the mean value should be as near to 1
as possible. Second, the plot of every cluster should be above, as much as
possible, the mean value. Plot region below the mean value is not preferable.
Last, the width of plot should be uniform.

The plot shows a comparison of the density and separation of each cluster.
For K-means, both the plots (k=5 and 6) looks quite similar. We need to
choose value of k yielding the highest average silhouette width, over all the
values of k. Considering the fact, K =5 seems more uniform. Also, the
density and separation is optimal. Similar observations with Agglomerative
ward.

Also, it is easy to identify the outlier cluster through the plot. For exam-
ple, for k-means, cluster 3 is the outlier cluster as it contains least number
of data point (see Table 14) and not able to form a dense region like other
clusters.

68

(a) Silhouette plot for k-means (k=5) (b) Silhouette plot for k-means (k=6)

(a) Silhouette plot for Agg-Ward
(k=5)

(b) Silhouette plot for Agg-Ward
(k=6)

5.3 Cluster characterization

Basically, characterization helps in identifying the type of cluster, its features
and data distribution of patterns. It also identifies outlier clusters. Cluster
characterization helps domain expert in labelling of the data, in our case to
robot cycles.

5.3.1 Feature selection

First, we extract top 10 most relevant features of our clusters, using Decision
Tree Classifier, and then individually characterize each group. This helps
domain experts to take better decisions about the data by going through the
most relevant features that better describes each group.

69

After choosing these most relevant features, their data distribution has
been shown using boxplots, which will help to identify the most character-
izing properties of a cluster in terms of relevant features and content. This
information may help experts to understand every group thoroughly because
it is impossible to inspect all the samples manually. Therefore, cluster char-
acterization is an important support to take better decisions.

Table 15 show the Top 10 most relevant features (IDs) and their fea-
ture values extracted using Decision Tree classifier, for both algorithms (best
configuration only).

Table 15: Top 10 most relevant features (IDs) for both algorithms

5.3.2 Interpreting box plots

K-means (k=5)

Table 16 shows Top 10 most relevant features for k-means (k=5), Feature
ID and the corresponding feature name. The data tells that these are the
main features or information that can help domain experts in measurement
to predict the belt tensioning level.

70

Table 16: Top 10 most relevant features for k-means (k=5)

Fig 28 shows the boxplot for k-means (k=5). Cluster 0 is more close to
limit (0, 2) , cluster 1 (-1,-2), cluster 2 (0,-1) and cluster 4 (1,-1). This tells
us that features are well separated.

Feature ID 206 (std 11) has higher distribution in cluster 1 than others.
Also, it can be easily identified that cluster 3 is an outlier cluster, more

closely shown in Fig 29

Figure 28: Boxplot for k-means (k=5)

71

Figure 29: Outlier cluster for k-means (k=5)

K-means (k=6)

Similarly, Table 17 shows Top 10 most relevant features for k-means (k=6),
Feature ID and the corresponding feature name.

Table 17: Top 10 most relevant features for k-means (k=6)

Fig 30 shows the boxplot for k-means (k=6). Cluster 0 is more close
to limit(1,-1) , cluster 1 (0,-2), cluster 2 (0,1), cluster 3 (0,-1) and cluster
5(1,-1). This tells us that features are well separated.

72

Feature ID 209 (mean 16) has higher distribution in cluster 1 and 3 than
others.

Also, it can be easily identified that cluster 4 is an outlier cluster, more
closely shown in Fig 31

Figure 30: Boxplot for k-means (k=6)

Figure 31: Outlier cluster for k-means (k=6)

73

Agglomerative-Ward (k=5)

Table 18 shows Top 10 most relevant features for Agglomerative-Ward (k=5),
Feature ID and the corresponding feature name.

Table 18: Top 10 most relevant features for Agglomerative-Ward (k=5)

Fig 32 shows the boxplot for Agglomerative-Ward (k=5). Cluster 0 is
more close to limit(1,-1) , cluster 1 (1,-1) and cluster 3 (1,-2) and cluster 4
(1,-1).

Feature ID 56 (skewness 2) has higher distribution in cluster 0 and cluster
1 than others.

Also, it can be easily identified that cluster 2 is an outlier cluster, more
closely shown in Fig 33

74

Figure 32: Boxplot for Agglomerative-Ward (k=5)

Figure 33: Outlier cluster for Agglomerative-Ward (k=5)

75

Agglomerative-Ward (k=6)

Table 19 shows Top 10 most relevant features for Agglomerative-Ward (k=6),
Feature ID and the corresponding feature name.

Table 19: Top 10 most relevant features for Agglomerative-Ward (k=6)

Fig 34 shows the boxplot for Agglomerative-Ward (k=6). Cluster 0 is
more close to limit(1,-1) , cluster 1 (1,-1) and cluster 3 (1,-2), cluster 4 (1,-1)
and cluster 5(1,-1).

Feature ID 178 (kurtosis 4) has higher distribution in cluster 0 than oth-
ers.

Also, it can be easily identified that cluster 2 is an outlier cluster, more
closely shown in Fig 35

76

Figure 34: Boxplot for Agglomerative-Ward (k=6)

Figure 35: Outlier cluster for Agglomerative-Ward (k=6)

77

Looking at figure 28, 30, 32 and 34 the most relevant segments corre-
spond to n between 11 to 17 and other portion between 20 to 24 where n is
the number of seconds for smart data extracted from time domain feature
Computation (see figure 36).

Figure 36 shows the electric signal of a single production cycle with rele-
vant segments highlighted in green.

Figure 36: Electric signal with relevant segments highlighted

The production cycle works as follows. In the beginning, the angle is
positioned at -500 degrees and later reaches +90 degrees after 20% of max
speed and maintains the position for about 5 seconds. Then, it comes back
to -500 degrees. Lastly, it keeps the position for another 5 seconds.

The highlighted segment blocks shows electricity consumption when mo-
tor reaches and maintains +90 degrees and then returns back to initial posi-
tion at -500 degrees.

78

6 Conclusion and Future improvements

This work presents a supporting solution to predictive maintenance analysis
and discussed deeply in previous chapters. The predictive analytics has been
measured to predict the belt tensioning level and to further support robot
cycle labelling. A machine learning algorithm has been applied to smart data
so as to forecast a tensioning level as per a new cycle of data. This helped
in identifying clusters of production cycles through similar time independent
features.

The goal was to forecast correct configuration of parameters and clus-
tering algorithms through the estimation of cluster quality metrics in the
semi-supervised context.

Clustering algorithm results have been interpreted by analyzing and com-
paring various supervised and unsupervised metrics. The experiments high-
lighted the best configuration selection on the basis of results obtained. The
solution is based on the fact that clustering is an unsupervised machine learn-
ing approach, we cannot conclude a solution on the basis of algorithms which
are working well with supervised metrics because in reality we might not be
having labeled ground truth to predict the outcome. In real world, labeled
data is not very common and therefore unsupervised metrics should be given
preference to select best configuration. Also, a more stable trend tested in
all possible different scenarios must be chosen.

Future activities of this study will focus on further research and investi-
gation which is important to recognize the most appropriate algorithms for
data driven predictive analysis and evaluating the outcomes. The predictive
model should be able to analyze the new incoming unlabeled data that does
not fit anymore the trained model with original distribution i.e. a model
re-training with different parameters.

Also, degradation of model performance can be implemented which means
triggering model updates in possibly all different scenarios. Our model should
be a generalize one for all Industry 4.0 cases.

79

References

[1] D.Bowden A.Marguglio L.Morabito C.Napione S.Panicucci N.Nikolakis
S.Makris G.Coppo S.Andolina A.Macii E.Macii N.O’Mahony P.Becker
S.Jung ”A cloud-to-edge architecture for predictive analytics”.

[2] T.Cerquitelli A.Macii E.Macii M.Poncino D.Apiletti C.Barberis and
F.Ventura. “iSTEP: an integrated Self-Tuning Engine for Predictive
maintenance in industry 4.0”.

[3] C. Zhang, P. Lim, A. K. Qin, and K. C. Tan. 2016. Multiobjective Deep
Belief Networks Ensemble for Remaining Useful Life Estimation in Prog-
nostics. IEEE Transactions on Neural Networks and Learning Systems
PP, 99 (2016), 1–13. https://doi.org/10.1109/TNNLS.2016.2582798

[4] Radu F. Babiceanu and Remzi Seker. 2016. Big Data and virtualization
for manufacturing cyber-physical systems: A survey of the current sta-
tus and future outlook. Computers in Industry 81 (2016), 128 – 137.
https://doi.org/ 10.1016/j.compind.2016.02.004 Emerging ICT concepts
for smart, safe and sustainable industrial systems.

[5] B.Xu and S.A.Kumar. “Big data analytics framework for system health
monitoring”. In: IEEE International Congress on Big Data (2015), pp.
401 –408.

[6] Raghupathi, W. & Raghupathi, V. Health Inf Sci Syst (2014) 2: 3.
https://doi.org/10.1186/2047-2501-2-3

[7] NumPy.org. url: https://numpy.org/.

[8] JobLib Developers. Joblib: running Python functions as pipeline jobs.
url: https://joblib.readthedocs.io/en/latest/.

[9] Python Data Analysis Library. url: https://pandas.pydata.org/.

[10] JSON encoder and decoder. url: https : / / docs . python . org / 3 /
library/json.html.

[11] Python Software Foundation. Python Language Reference, version 3.5.
url: https://docs.python.org/3.5/.

80

[12] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing
in Science & Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.
2007.55.

[13] Bisong E. (2019) Google Colaboratory. In: Building Machine Learning
and Deep Learning Models on Google Cloud Platform. Apress, Berkeley,
CA

[14] Quazi Nafiul Islam. ”Mastering PyCharm”. Use Pycharm with fluid ef-
ficiency.

[15] Google Colaboratory. url: https://colab.research.google.com/notebooks/intro.ipynb#

[16] SciKit-learn, Machine Learning in Python. url: https : / / scikit -
learn.org/stable/.

[17] P.Arabie, L.J.Hubert, G.De Soete ”Clustering And Classification”

[18] Shi Na, Liu Xumin, Guan Yong ”Research on k-means Clustering Al-
gorithm: An Improved k-means Clustering Algorithm”. In ”2010 Third
International Symposium on Intelligent Information Technology and Se-
curity Informatics”

[19] Thanh N.Tran, Klaudia Drab, Michal Daszykowski ”Revised DB-
SCAN algorithm to cluster data with dense adjacent clusters” url:
https://doi.org/10.1016/j.chemolab.2012.11.006

[20] Day, W.H.E. & Edelsbrunner, H. Journal of Classification (1984) 1: 7.
”Efficient algorithms for agglomerative hierarchical clustering methods”
https://doi.org/10.1007/BF01890115

[21] S.R. Safavian, D. Landgrebe ”A survey of decision tree classifier method-
ology”. In ”IEEE Transactions on Systems, Man, and Cybernetics (Vol-
ume: 21 , Issue: 3 , May/Jun 1991)”

81

	List of Figures
	List of Tables
	Introduction
	Related Work
	Industry 4.0
	Smart Data
	Experimental setting and Data exploration

	Types of predictive models
	Supervised learning
	Unsupervised learning
	Semi- supervised learning

	Proposed Approach
	Overview
	Clustering
	Clustering Algorithms
	k-means
	DBSCAN
	Agglomerative clustering

	Clustering Validation
	Supervised indices
	Unsupervised indices

	Cluster Characterization
	Decision Tree classifier

	Implementation Tools
	Python
	Pycharm
	Libraries
	Numpy
	Pandas
	JSON
	MatplotLib
	Scikit-Learn
	Joblib

	Google Colaboratory

	Experimental results
	Model creation
	Cluster analysis
	Unsupervised metrics comparison
	Supervised metrics comparison
	Best Configuration Selection

	Cluster characterization
	Feature selection
	Interpreting box plots

	Conclusion and Future improvements

