
POLITECNICO DI TORINO

Corso di Laurea Magistrale in
INGEGNERIA INFORMATICA (COMPUTER ENGINEERING)

Medieval municipal buildings: development of

a digital atlas to support historical research

Supervisor

prof. Alessandro Fiori

co-Supervisor

prof. Silvia Chiusano

prof. Andrea Longhi

Candidate

Andrian Garaba

March-April 2020

iii

Contents

List of figures…...……………………………………………………………………………..v
List of tables….……...………………………………………………………………………vii
1. Introduction 1
2. Related works 3
 2.1 “Tecniche murarie tradizionali: conoscenza per la conservazione ed il

miglioramento prestazionale”...4
 2.2 Carta di Rischio...5
 2.3 THEMAS…………………………………………………………………………..6
 2.4 ResCult…………………………………………………………………………….6
 2.5 HERMeS…………………………………………………………………………...7
 2.6 Arches……………………………………………………………………………...7
 2.7 Conclusions...……………………………………………………………………...8
3. Information system technologies 9
 3.1 Deployment System………………………………………………………………..9
 3.2 Database Management System…………………………………………………...14
 3.3 Frontend development framework………………………………………………..18
 3.4 Backend development framework………………………………………………..22
4. Information System Architecture 29
 4.1 Database System………………………………………………………………….31
 4.2 Software infrastructure…………………………………………………………...36
 4.3 Platform functionalities…………………………………………………………...37
5. Use cases 39
 5.1 Configuration………………………………………………………………….….40
 5.2 Insert/edit of a new source…………………………………………………….….43
 5.3 Insert/edit of a locality……………………………………………………………45
 5.4 Insert/edit of the researched building or city building……………………………47
 5.5 Insert/edit of a new descriptive element………………………………………….49
 5.6 Translation process……………………………………………………………….53
 5.7 Users management………………………………………………………………..54
 5.8 Statistics dashboard……………………………………………………………….56
6. Conclusions 59
Bibliography 61

iv

v

List of figures

3.1 Containerized applications………………….…………………………………………….13
3.2 General structure of MongoDB collection………………………………………………..16
3.3 Aggregation pipeline……………………………………………………………………...18
3.4 MVC structure and interactions between components……………………………………23
3.5 Django Architecture………………………………………………………………………26
4.1 Docker container distribution of our platform…………………………………………….30
4.2 Conceptual Data Model of “Atlante dei palazzi comunali”..32
4.3 Navigation bar menu – contained in private_base.html…………………………………...36
4.4 Sitemap of our web application…………………………………………………………...37
5.1 Use Case UML Diagram………………………………………………………………….40
5.2 Configuration workflow………………………………………………………………….41
5.3 Entering in configuration page for inserting new type of source…………………………41
5.4 Inserting new type of source form………………………………………………………..42
5.5 List of already inserted Source types……………………………………………………..42
5.6 Sources management workflow…………………………………………………………..43
5.7 Entering in source page…………………………………………………………………...44
5.8 Inserting new source form………………………………………………………………...44
5.9 Form management buttons………………………………………………………………..45
5.10 List of introduced sources……………………………………………………………….45
5.11 Form for inserting new locality………………………………………………………….46
5.12 The list of already inserted localities……………………………………………………47
5.13 Entering in building or city building pages………………………………………………48
5.14 Form for inserting new building…………………………………………………………48
5.15 Entering in the building’s short description page………………………………………..49
5.16 Form for inserting the short description of the building…………………………………49
5.17 Entering into descriptive elements insertion/display pages……………………………..50
5.18 Descriptive elements management workflow…………………………………………...50
5.19 Descriptive elements insertion form…………………………………………………….51
5.20 Descriptive elements view page…………………………………………………………51
5.21 Block for defining descriptive element characteristics………………………………….52
5.22 How to enter the translation module…………………………………………………….52
5.23 Insertion form for new translations……………………………………………………...53

vi

5.24 The result of the search………………………………………………………………….53
5.25 Differences between the same piece of form displayed in French and Italian languages...54
5.26 Reset password form…………………………………………………………………….54
5.27 Login form………………………………………………………………………………55
5.28 User profile page………………………………………………………………………...55
5.29 Change password page…………………………………………………………………..55
5.30 Homepage dashboard……………………………………………………………………57

vii

List of tables

2.1 Comparison of functionalities between platforms ………………….……………………...8
3.1 Overview on aggregate operations………………………………………………………..17
3.2 The possible stages of aggregation pipeline………………………………………………17
3.3 Main characteristics of the compared frontend frameworks………………………………20
3.4 MVC components description……………………….………………………………...…23
3.5 The strengths of Django…………………………………………………………………..27
4.1 Location collection schema……………………………………………………………….33
4.2 Building collection schema……………………………………………………………….33
4.3 City_building collection schema………………………………………………………….34
4.4 Translation collection schema…………………………………………………………….34
4.5 Source_type/Elements_type collection schema…………………………………………..34
4.6 Source_type example……………………………………………………………………..35
5.1 Example of aggregate method…………………………………………………………….56

viii

1

Chapter 1

Introduction

 Nowadays, governments, business structures, and the scientific community face the task of

filling the registers and information systems with the necessary data to automate, accelerate,

simplify interaction, implement analytics and forecasting, while in parallel eliminating human

labor and the human factor from these processes. The digitalization of paper-based documents

is a significant part of this global process. But why paper information is a bad thing? Paper

archives require much space for themselves, special storage conditions; besides, documents

may be damaged, stolen, or destroyed due to natural or human-made disasters.
 Digitizing of paper archives provides access to the necessary information from anywhere

where it is possible to reach the Internet and to several users at the same time. Translation of

documents into electronic form is done with their simultaneous systematization, structuring,

and backup creation. The availability of backup copies of documents reduces the probability

of their destruction or loss. Also, by implementing security and logging policies, documents

with limited access can be viewed only by people with the appropriate authority, and all actions

on the information system are recorded. As well digitalization process affects paper archives

by themselves by the possibility of releasing the occupied space or by optimizing the human

activity in it.
 After the translation of paper documents into digital form and creating search fields, they can

be loaded into specialized systems - electronic archives. This approach provides several

improvements comparative with physical storages: fast documents search, secure documents

moving, protection against loss or damage to documents.
 Paper storages are becoming more expensive and less efficient every year. Searching

documents takes an unreasonably long time. Sometimes they can not be found due to the

absence, or the location is different than the place where the search is done. In contrast, a search

2

in electronic archives takes a matter of seconds.
 When the organization's structural units are physically removed from each other, this gives

rise to a long wait in line for viewing the necessary documentation: first, find it in the archive,

arrange paperwork for moving the originals, and then wait for the logistics process to complete.

There is no need to go anywhere for digital copies, and all interested parties get access to them

at the same time. And in the case that paper originals are required, finding them in the repository

and arranging a move is very easy.
 Long-term practice shows that not a single paper archive can be considered a 100% reliable

place of storage. It doesn't matter if the document was accidentally thrown away, lost in piles

of paper or destroyed - it all the same means that it needs to be restored, spending time and

money. Electronic archives are based on the fact that documents always have backup copies,

their restoration eliminates paperwork and is quickly performed.
 Such an electronic archive is also the subject of these thesis. The information system "Atlante

dei palazzi comunali" serves to collect heterogeneous information on historical buildings that

are the object of study, and to provide researchers with a digital tool for the analysis and sharing

of the collected material. In general, the platform structure can be divided in two parts: public

site and private site.
 The public part of the portal is used to present the project of the "Atlante dei palazzi

comunali", and to allow the visitor to perform some predefined searches, view statistics on the

collection of buildings or their characteristics, and acquire some information of detail on each

listed building.
The private part, which has the most complex requirements of the thesis, is described a little

more in detail. It has a multifunctional user interface, which includes management

(insert/edit/view) forms of all platform entities such as sources, locations, buildings, municipal

buildings, descriptive elements, and users. Some of them can be dynamic, based on the

selection of information to be inserted/displayed.
 In the next Chapter (2), it will be briefly described similar platforms and Information
Systems, focusing in particular on the similarities and differences with the "Atlante dei palazzi
comunali" and advantages and disadvantages of each over. In Chapter 3, it can be found
information about technologies used to create the information system "Atlante dei palazzi
comunali", their main features, pluses and minuses, and the reasons why each of it was chosen.
Chapter 4, instead, will contain a description of the architecture of the platform: detailed
information about the data model and Django architecture. In Chapter 5, we will present some
use-case scenarios to illustrate how the created product, meets the requirements and provides
the desired results. The last Chapter (6) conveys some final conclusions about the project and
its future evolving.

3

Chapter 2

Related works

 In general, given the history of humankind, the culture reproduces, improves, translates,

projects a range of things that correspond to familiar or innovative patterns and which ensures

the connection between past and future for present generations. It is believed that the structure

of culture is the most complex in the world. On the one hand, these are material and spiritual

values already accumulated by society: a stratification of eras, times and peoples, fused

together. On the other hand, it is today's human activity influencing, modifying, and

transmitting the heritage of the past generations to those who will replace the existing ones. To

identify tangible cultural features, the introduction of certain concepts is necessary. Such a

concept is the cultural heritage and its contents elements as cultural memory, cultural

monument, geographical environment, etc. The official content of the concept of cultural

heritage is recorded in UNESCO's "Convention concerning the protection of the world cultural

and natural heritage" [1]. UNESCO was founded in France in 1945, and one of its primary

functions until today remains the unification of states and nationalities to preserve and protect

the cultural and natural values of humanity.
 "Cultural heritage" is a relatively young term and is used today in national legislations and

international documents as a confirmation of the process of formation in modern society of a

systematic approach to world culture, cultural values, and environmental protection. In general,

the conceptual plan for the protection of cultural heritage is influenced by the development of

scientific ideas about monuments and by the changes in the political and ideological situation

in the country (government policy in the field of culture, expressed primarily in legislative acts

on the protection, restoration, and use of monuments). Until reaching the modern concept of

cultural heritage, over time, many cultural monuments were destroyed or damaged due to

4

ignorance, utilitarian attitude, interest in the material value of the goods, lack of national and

international organizations in the field, the imperfection of laws.
 There are many ways of preserving and transmitting the experience of the past. It is oral

language, writing, all types of art without exception. Also, as a part of this process are libraries,

museums, art galleries, exhibition halls, architectural structures, temples, monasteries, palaces,

garden and park ensembles, meaning, everything that keeps the history of the people and the

memory of the past. Thus, the translation of social memory occurs with the help of specific

systems, which we can call monuments. A monument is an object that is part of the cultural

heritage of the country, people, humanity, and it is created to immortalize the memory of certain

events and people.
 Today, thanks to the significant implication of international and national organizations for in-

depth studies and development of the classification of monuments, the concept of cultural

heritage is rebuilt and sounds like a combination of material and spiritual monuments. It

includes stationary monuments (monuments of urban planning, architecture, history,

archeology, monumental art, nature and so on), movable monuments (objects of pictorial art,

manuscripts, archives and so on) and the so-called spiritual monuments (specific forms of

housekeeping, beliefs, traditions, technologies, and so on).
 For the academic environment in the field of architecture and culture, for organizations
responsible for the protection of cultural heritage sites, for the state institutions responsible for
culture and even for the enthusiasts who care about the cultural environment of the region
where they work or live inventories of architectural and cultural objects are crucial tools. They
serves as an everyday information resource to analyze the risks of damage of some historical
buildings, to allow studying in more detail the history of a region based on its culture, to
intervene in time with the application of the rules and laws in the field of cultural heritage or
even to draw public attention to valuable cultural items created by humankind.

 Digital inventory platforms that use the capabilities of modern information technologies
have the potential to provide different needs and uses. While some put key on managing
internal processes for storing, checking, editing, and deleting data, others focus on the user
experience and granting controlled and secure access to information. Some platforms combine
the two approaches described above. In the majority of cases, there is not a single software that
can meet all project requirements. To choose the right platform is useful to consider all aspects
of the project and analyze all available tools thoroughly.

 Lately, a lot of advanced open-source software (a free license that allows developers and
users to study, modify, improve, and distribute software) has been created dedicated to cultural
heritage recordings. In the following sections we will describe the most relevant works that
represent the state-of-art in the cultural heritage field.

2.1 “Tecniche murarie tradizionali: conoscenza per la

conservazione ed il miglioramento prestazionale”

 The project [2] contains a spatial information system that aims to study building technologies

of the 13-19 centuries in the region of Sardinia (Italy) for their further knowledge, preservation,

and promotion. This architectural heritage is vast and heterogeneous in typology and function

and is characterized by a deep stratification of the transformations that have occurred over time.

5

Managing the massive amount of data obtained during the study requires the development and

implementation of a system for archiving, comparing data, and maintaining a relationship

between information and territory, such as allowing cross-reading of geographical distribution.
 The project was designed by the Department of Civil and Environmental Engineering and

Architecture, University of Cagliari. The implemented information system is a database

connected to the GIS and a WebGIS interface through the web map service (WMS). The entire

infrastructure is developed and implemented using open-source software components. The

database is created in PostgreSQL and PostGIS (PostgreSQL spatial extension), which allows

storing and managing object geometries and spatial data. Data entry is carried out through

HTML and PHP forms. Access to the database is done with Quantum GIS (QGIS), and WebGIS

was built using the open Leaflet Javascript libraries.
 Even though this project enfolds a narrow spectrum of research (building techniques) is very

similar to our platform, where its researched objects match with the descriptive elements in

ours. Other common features could be (i) determining the position and shape of the studied

object on the map using GIS and (ii) a detailed description of it.
 But having small purposes, this project also has some limitations compared to the

requirements of our platform. The sources which describe studied elements are missing from

it, and it is not possible to configure other types of descriptive elements for further research.

The possibility to view the buildings in 3D, direct use of latitude and longitude to determine

the position of the object and the simultaneous display on the map of all the neighboring

buildings are the main advantages over our platform. But all these improvements can be added

later in our project if necessary. Unfortunately, the system has not been published on the web

until this moment.

2.2 Carta di Rischio

 The “Risk Map” [3] is a territorial information system of scientific and administrative support

to state and regional bodies responsible for the protection of cultural heritage. It was developed

by the “Istituto Superiore per la Conservazione” (formerly ICR - Istituto Centrale per il

Restauro), and it is a system of experimentation and research on the territory, for knowledge

on the risk of damage to real estate. In fact, it is a system of alphanumeric and cartographic

databases capable of exploring, overlapping, and processing information around the potential

risk factors that can affect the cultural heritage.
 As the primary purpose of the “Risk Map” project differs from our project goals, they have

in common only the position on the map module of the study object and its detailed description.

In the rest, our attention was drawn only by the fact that it was one of the first projects in Italy

(the first version was elaborated between 1992 and 1996), which placed the buildings with

historical importance on the map. In the following years, some developments of the project

followed, by modifying the interface, by absorbing the information on the real estate fund from

other sources and databases, by creating similar regional projects, by diversifying the study

categories.

6

2.3 THEMAS

 Thesaurus Management System – "THEMAS" [4] is an open-source web-based system for

creating, managing, and administering multi-faceted multilingual thesauri. It was designed by

FORTH-ICS (Foundation for Research and Technology Hellas - Institute of Computer

Science), one of the six institutes of the major national research center in Greece.
 The main features of the system include the processing and management of semantic relations

of treasure terms, easy navigation between interlinked terms, extensive search capabilities, and

multiple presentation capabilities. "THEMAS" can be adapted to the requirements and needs

of any research area as it has customizable configuration settings (e.g., Languages management

– at the interface level and entity level with possibility directly to translate it in the platform,

customization of the graphical representation and others). The workflow of the system uses

well-defined user roles. It allows the collection of information from a large pool of users, with

the responsibility of accepting, correcting, or rejecting any records by smaller expert groups

specialized in the discipline of each studied entity, thereby ensuring the accuracy and

consistency of the inserted materials.
 The technical aspect of the project is as follows: the graphical user interface is a web

application implemented with JavaServlets technology. The data storage and management are

done using the open-source graph database Neo4j community edition. At the same time, for the

designing of the studied objects, the principles of the TELOS [5] representation language was

utilized. The Neo4j-sisapi library was used for communication between the web application

and the database. The whole system is based on Java technologies and, therefore, can be

installed on any operating system (Windows, Linux, Apple, etc.).
 Analyzing this project and comparing it with the requirements of our project, as a similarity,

drew our attention to the possibility of configuring in several languages the studied entities.

Also, the existence of the categories like researched elements and the sources where these

elements are mentioned can be treated as a typical particularity of both projects. As it is a

project dedicated only to the description of cultural elements, there is no positioning in the

building and the location of the studied object, and this can be treated as a big difference.

2.4 ResCult

ResCult [6] – is a project coordinated by Siti - Istituto Superiore sui Sistemi Territoriali, in

which PoliTo was one of the partners. It had as objective to create a tool called EID (European

Interoperable Database) for Cultural Heritage. It was designed to create a unique platform for

Civil Protection, European Union, national ministers of Cultural Heritage, local authorities.

Specifically, ResCult is working on the following three overall objectives:
1. Improvement of the Disaster Risk Reduction strategy (for prevention and resilience),

according to the principles of Sendai Framework.
2. Increase cooperation and interoperability between EU member states for the sake of

protecting Cultural Heritage (information sharing, interoperable protocols, best

practices dissemination, alignment with EU policies/standards
3. Enhancement of the capability of Civil Protection Bodies to

understand/prevent/mitigate disasters impacts on Cultural Heritage

7

 As it is described above, the ResCult platform is more related to the protection of architectural

buildings, but in this project was realized some features which can be found in our

requirements. Geolocation of the buildings, descriptive summary of the building, 3D-models

(future enhancement for "Atlante dei palazzi comunali"), possibility to insert information by

different researchers are the common elements of these two projects. Of course, comparative

with ResCult, "Atlante dei palazzi comunali" should contain more detailed information about

historical sources and descriptive elements of architectural monuments.

2.5 HERMeS

 HERMeS [7] – is a Digital Collection of Historic Buildings, appeared as a result of long

research conducted by the National Technical University of Athens and Municipality of

Hermoupolis. It was a local project (only within the borders of town), with the objective to

analyze and evaluate the vulnerabilities of historic buildings. A universal database was

designed to record information about historic buildings and their actual or possible damages in

order to achieve these goals. Apart from deteriorations, historic buildings are labelled in terms

of type, architecture style, historical value, and geolocation. It is based on Omeka Project – a

web publishing platform for sharing digital collections.
 As with the previous project, HERMeS practically has the same goals and objectives: to

prevent the deterioration process of the historic buildings and to focus on the restoration of

which needs more immediate attention. As it initially had a small range of functionalities, it is

hard to compare with "Atlante dei palazzi comunali". But some similarities can be found.

Again, it is about geolocation and descriptive summaries for the buildings, and as well as

ResCult Project, it is not possible to record details about architectural elements of the buildings.

2.6 Arches

 The closest to the "Atlante dei palazzi comunali" are the Arches Project [8]. It is a platform

for cultural patrimony inventory and management. It is open-source and was developed by

Getty Conservation Institute and World Monuments Fund. As an open-source project, Arches

is free to be used by any organization, and it can be customized without any constraints to face

the requirements of the final users. Mainly the Arches Project can be used for the identification

and inventory of heritage places and for the research and analysis of the physical structure and

cultural impact of the historical places with identification, monitoring, and mapping of risks.

Also, it can be useful in the process of identification of needs and priorities for investigation,

research, management, conservation, and detailed planning of further actions in these

directions. Therefore, it is an ideal instrument for raising attention and informing on a large

scale (citizens, scientific environment, governments, decision-makers) about heritage

patrimony, risks related to their physical damages, and possible conservation and management

modes.
 The default version of the platform is configured to record details about all types of historical

buildings, cultural landscapes, heritage areas, and archaeological sites. It includes six types of

resources which can be related to each other, as follows: Heritage Resource (building,

archaeological site), Heritage Group (district), Activity (survey, partial repair), Historical Event

8

(earthquake, war), Actor (architect, a celebrity who has some links with the building, or

organization which repaired the building), Information Resource (3d Model, photo, report). All

the resources can be renamed in the process of customization. Arches allow creating a network

of relationships between all Arches resource types, which permits, for example, to track several

roles of people or organizations. Meaning, a person could be the architect and the owner of the

researched building. This approach allows distinguishing such roles in the working process

clearly. Besides, Arches can store location information in several formats (e.g., text description,

address, cadastral data) and in different geolocation shapes (any combination of point, line, and

polygon data) at the same time.
 One of the main principles of Arches project design was the compliance with standards of IT,

heritage inventory, and management, which leads to the creation of advanced, configurable,

and content system. Arches' system architecture follows modern trends, using RESTful

interfaces and an MVC pattern to separate representation of the data and the way it is getting

from, or it is presenting to the user. Arches platform is built on python and Django and

implements the following core libraries: Require.js, Backbone.js, jQuery, and Bootstrap. Also,

it enables geospatial technology standards, like OGC standards, to support geospatial data

interoperability, like GeoJSON, KML, and traditional GIS data format for representation of

geolocation information.
 The Arches platform has the most common entities with the "Atlante dei palazzi comunali"

project specifications, as it also contains info about researched buildings (geolocation and

building summary especially) and some info about sources (not detailed one). As well as other

analysed platforms, Arches can't record information about elements of the researched historical

building and cannot link them to sources that mentioned them.

2.7 Conclusions

 Taking into account the above, we realize that there are a lot of projects that touch on the

topic of research and conservation of cultural objects. But none can be considered standard one

because it does not include all the possible functionalities that heritage protection organizations

or scientific community may need.

S
o
u

rc
es

m
a
n

a
g
em

en
t

D
es

cr
ip

tiv
e

el
em

en
ts

m

an
ag

em
en

t

G
eo

lo
ca

ti
o
n

3
D

 m
o
d

el
s

D
es

cr
ip

ti
v
e

su
m

m
a
ri

es
 o

f

b
u

il
d

in
g
s

M
u

lt
il

in
g
u

a
l

U
se

r
co

n
tr

o
l

m
a
n

a
g
em

en
t

Tecniche murarie tradizionali × ×
Carta di Rischio × ×
THEMAS × × × × ×
ResCult × × ×
HERMeS × ×
Arches × × × ×
Atlante dei palazzi comunali × × × × × ×

Tab. 2.1 Comparison of functionalities between platforms

9

 In Tab. 2.1 we can see the distribution of functionalities between the presented platforms and

the requirements of our project. Even if some similar projects are very close, we can conclude

with certainty that none of them meet the requirements of our project. None of them has tools

to configure researched entities directly by the user, very few support multiple languages and

user management. And that is why the design and implementation from scratch of the Atlante

dei palazzi comunali project is fully justified.

10

11

Chapter 3

Information system technologies

 Today, in the age of informatization and computerization, the basis for solving many

problems is information processing. Under the processing of information is understood any

transformation of data from one type to another, carried out according to strict formal rules. In

fact, in most cases, this process is carried out by information systems. An information system

is a software package whose functions are to support reliable storage of information in the

computer's memory, perform information-specific transformations and calculations specific to

a given application, and provide the user with a convenient and friendly interface. Usually, the

volumes of information that such systems have to deal with are quite large, and the information

itself has a rather complex structure. Typical examples of information systems are banking and

accounting systems, airline or train ticket systems, tax service systems, statistical systems, hotel

reservation systems, and others.
 In the process of developing an information system, after collecting the requirements from

the client and until the design of the system itself, it is necessary to analyze and choose the

technical tools with which the project will be developed. It involves choosing the programming

languages, Database Management System, and platforms and technologies based on which the

system will be designed, developed, and maintained. This chapter contains detailed information

about the features of the chosen technologies and the motivations behind the decisions.

3.1 Deployment System

 Deployment is a very important stage in the process of creating a software product. It includes
all actions that make a software system ready to use. In other words, deployment is a process

12

(one way or another organized) of translating project code into working conditions on a specific
machine. If it is to remember the beginnings of IT, all these operations were done manually by
the programmers. However, fortunately, at the moment, we can benefit from systems that
support automatic deployment, and because of this, it seems strange that many companies
continue to do it manually. One of the solutions to have automatic deployment is
containerization. It is a process of distributing and deploying applications in a portable and
predictable way. It is achieved by packing the components and their dependencies into small,
stand-alone, and lightweight execution environments called containers. They run in isolation
from one another but share OS kernel.

 Before using containers, virtual machines were one of the solutions to keep applications on
the same host or cluster, isolated from each other, so they don't unnecessarily interfere with
each other's operation or maintenance. But they have some drawbacks as each requires his
specific OS, usually needs Gigabytes size on HW space and are difficult to maintain and
upgrade. On the other hand, containers need few Megabytes on HW, uses much fewer
resources, and start-up almost instantly.

 Container's concepts have similar features with virtual machines, as independence and self-
sufficiency. The container can be moved to any OS with a docker service on board, and the
container works. It can perform its functions anywhere wherever it is launched. But containers
have some particular features as well. Inside the container is the minimum necessary set of
software used for the operation of the running process. This minimal software is not a full OS
and doesn't need to be monitored or keep track of the free space on hard drives. Also, a different
approach to virtualization is used - containers virtualize the operating system instead of
hardware.

 Docker [9] is a software platform for building applications based on containers (Fig. 3.1). It's
straightforward in management, upgrading, migration, and is suitable for a wide range of tasks
(from application development to testing). While containers as a concept have been known for
some time, Docker, an open-source project launched in 2013, led to the promotion of the
respective technology. Also, it contributed to the development of so-called cloud-native
development (use on large scale of containerization and microservices in software
development).

Before the creation of a Docker-containerized application, it is necessary to introduce some
Docker components: Docker File, Docker Image, Docker Engine, and Docker Registry.

 Docker File is a text file, which contains all the dependencies it needs to download and install
to run the application. A Dockerfile specifies the operating system that underlies the future
container. Also, it contains the languages, environmental variables, file locations, network
ports, and other components it needs—and, of course, what the container does once we run it.

 Docker Image is some set of layers. Each layer is the result of the work of the command in
the Dockerfile. In other words, image is a template based on which the container is launched.
From one image, it can be run several identical copies of this image, and as a result, several
containers are launched. Also, after some manipulations, can be created a template from a
container - a new image is obtained. In other words, a Docker image is an executable package
that contains all the range of information needed to run an application: the code, runtime,
libraries, environment variables, and configuration files. Docker container is a runtime instance
of an image. In fact, it is what the image becomes in memory when it is executed (an image
with the state, or a user process).

13

 Docker Engine is the core of Docker, and it is based on client-server technology. Its main
role is to create and run the containers.

 Docker Registry is a public or private repository where Images are stored. The most popular
one is Docker Hub – where can be downloaded containers from open-source projects and
vendors, or unofficial images form users.

Fig. 3.1 Containerized applications

 Creating and running containers is fundamental to modern software infrastructure,
development, testing, and deployment, but this is not the end of the story. It is obvious that
there is a need to coordinate containers somehow or other in order to work together in a single
system. Docker-compose was created by Docker to simplify the process of developing and
testing multi-container applications. It's a command-line tool that uses a specially formatted
file to compile apps from different containers and run them in a linked way on the host. Docker
Swarm and Kubernetes [10] offers more advanced behaviours in this direction and introduce a
new principle called Container Orchestration.

14

 Let's develop the Kubernetes topic in more detail and compare it with the tools offered by
Docker. Kubernetes is an open-source system designed to automate the deployment as well as
to scale and manage containerized applications. Automation is the keyword and one of the
reasons Kubernetes is becoming more and more popular among the engineers and other
professionals who are responsible for the operation of websites, infrastructures, and systems.
At first, organizations used one of several open-source tools, including Kubernetes, or created
their own to manage containers on a scale. However, the popularity of Kubernetes gradually
rises, and nowadays, it becomes for orchestration what Docker has already become for
containerization, the synonyms. In fact, Docker and Kubernetes do not exclude, but, on the
contrary, complement each other as part of a more extensive system, and the question of
choosing between them is simply not worth it. However, the Docker ecosystem has its own
container orchestration solution - Docker Swarm, a functional analog of Kubernetes. It is fully
compatible with Docker without needing special tools to manage containers. It is generally
accepted that Docker Swarm is easier to use, while for most users, learning Kubernetes is much
more difficult. Even from the moment of installation, Kubernetes needs increased attention and
requires serious planning to work. For an error-free installation, it is necessary to consider the
operating system and to know the IP addresses and roles of each node in advance. Because of
that in test environments, as usual, Docker Swarm is used. But when time is coming to move
huge containerized workloads into a production environment, Kubernetes becomes an
irreplaceable tool. Considering the small number of containers used in this project, it is not
cost-effective to use container orchestration tools (like Kubernetes) for such small projects, and
all deployment can be done using the standard Docker tools.

 In conclusion, Docker Containers permit to build enterprise applications that are easier to
assemble, maintain, and move around than applications created traditionally. The most
highlight advantages of Docker are isolation, portability, and composition. Docker containers
keep applications isolated not only from each over but also from the basic system, and in the
result is obtained a cleaner software stack and more control on system resources distributing.
It also permits to keep code and data separated. Also, Docker container runs on any machine
which supports containers runtime environment. Applications don't have to be adjusted related
to the OS of the host, so both the application environment and the OS environment don't need
additional configurations and installations. The application can be moved easily between
systems, or ported to the cloud environment or exported from the programmer's devices in the
process of developing, as long as on the target system, Docker and some third-party tools that
might be in use with it, such as Kubernetes, are installed. Not least, Docker containers make it
possible to create each component of business applications (web- server, database) into a
functional unit with easily changeable parts. A different container provides each piece of
application and can be maintained, refreshed, swapped out, and modified independently of the
others.

3.2 Database Management System

 Before starting this project, it was necessary to choose a DBMS, and the central dilemma

consisted of choosing a relational (SQL) or nonrelational (NoSQL) structure. Both options have

their advantages, as well as several key features that should be taken into consideration.
 Relational databases use Structured Query Language (SQL) to define and process data. SQL

is one of the most flexible and widespread query languages, so choosing it minimizes the

15

number of risks, and it is especially useful for complex queries. Also, SQL has some limitations

- building queries requires to have a predetermined data structure, and further changes in the

data structure can affect the entire system.
 Non-relational databases offer a dynamic data structure that can be stored in several ways:

column-oriented, document-oriented, in the form of graphs, or based on key-value pairs. This

flexibility adds some new features as it is not necessary to specify document structure in

advance when creating it. Also, fields can be added while working with data, and each

document may have a unique structure.
 Usually, SQL databases are vertically scalable, meaning that it is possible to increase the load

on a single server, by adding some CPU power or RAM. On the other hand, NoSQL databases

are horizontally scalable, and this means that it is possible to increase working traffic by

sharding (adding more servers to DBMS). In the second case, the system can become much

larger and more powerful with minimum effort. In relational DBMS, data is presented in the

form of tables, while in non-relational - in the form of documents, key-value pairs, graphs, or

wide-column storages.
 In general, there are no databases that are suitable for absolutely everyone. That is why many

projects use both relational and non-relational databases to solve various tasks. Although

NoSQL databases have become popular due to their speed and scalability, SQL repositories

may be preferable in some situations. One of the reasons would be the need for the database to

meet ACID requirements (Atomicity, Consistency, Isolation, Durability). This approach

reduces the probability of unexpected system behaviour and ensures database integrity. It is

achieved by rigorously determining exactly how transactions interact with the database. It

differs from the approach used in NoSQL databases, which focus on flexibility and speed,

rather than 100% data integrity.
 If there is a suspicion that the database may become the bottleneck of a specific project

because of large amounts of data, it is worth looking in the direction of NoSQL databases that

allow something that relational databases do not know how to do. Again, storing large volumes

of unstructured information is a crucial feature of Non-relational databases. Also, fast

development is a substantial property of NoSQL databases. If it is needed to develop a system

using agile methods, using a relational database can slow down the work. In order to model,

configure, and deploy a NoSQL database, less amount of time and operations are needed in

comparison with relational databases. Finally, the excellent scalability of non-relational

databases facilitates their integrations in cloud storage. Using, for testing and development,

local equipment, and then transferring the system to the cloud, where it works, is for what

NoSQL databases are created.
 Some examples of SQL databases include MySQL, Oracle, PostgreSQL, and Microsoft SQL

Server. NoSQL database examples include MongoDB, BigTable, Redis, RavenDB Cassandra,

HBase, Neo4j and CouchDB.
 In the end, we could conclude that in the modern world, there is no confrontation between

relational and non-relational databases. Instead, it’s worth talking about their joint use to solve

problems in which a particular technology performs best. Also, in the last years, the integration

of these technologies into each other is increased. To develop our platform, however, a choice

is necessary. Taking as a basis the requirements of the project, namely the heterogeneity of data

in the case of entities, it is evident that using NoSQL databases is the only viable solution. But

again, the question arises, from non-relational DBs what type of data storage is preferable for

our project. Taking into account the specific characteristics of the researched objects and the

operations to be performed on the data, most appropriate would be document-based databases.

16

And, of course, MongoDB, as the flagman of document-based, non-relational databases, is the

solution chosen within the project.
 MongoDB [11] is one of the next generation NoSQL-type databases disputing the dominance

of relational DBMS (Oracle, Microsoft). It is used now in most corporate data centres and by

some big players on the IT market, such as Craigslist, eBay, SourceForge, Viacom, and many

others. It is an open-source project that does not require a description of the table schema. As

well MongoDB is positioned as a High-performance, scalable DBMS that occupies a niche

between fast and scalable systems that operate on key/value format and relational DBMSs,

functional and convenient when using queries. MongoDB supports storing documents in a

JSON-like format, has a sufficiently flexible language for generating queries, can create

indexes for various stored attributes, effectively provides storage of large binary objects,

supports the logging of INSERT/UPDATE operations to the database, and can work following

the paradigm Map / Reduce, supports replication and building fault-tolerant configurations.
 MongoDB conceptually is the same as the usual, familiar DMBS. Inside MongoDB can be

zero or more databases, each of which is a container for other entities. The database may have

zero or more “collections.” The collection is so similar to the traditional “table” that can safely

be considered the same. Collections consist of zero or more “documents.” Again, a document

can be considered as a "row." A document consists of one or more “fields” that are similar to

“columns.” “Indexes” in MongoDB are almost identical to those in relational databases.

“Cursors” are an essential concept in MongoDB. When it is requested any data from

MongoDB, it returns a cursor (which can be counted or can skip a certain number of records),

without loading the data itself. The general structure of MongoDB collection is illustrated in

Fig. 3.2.

Fig. 3.2 General structure of MongoDB collection

 An interesting aspect of databases in general, and MongoDB in particular, is indexing. It
supports efficient query execution. When searching for documents in small collections, usually,
there are not experienced any particular problems. However, when collections contain millions
of documents, and the selection should be done by a certain field, then the search may take
some time, which may turn out to be critical for the task. Without indexes, MongoDB needs to
scan each collection document to select those documents that match the query. So, indexes are
special data structures that store small pieces of data in an easily recognizable form. They
contain the ordered values of a particular field or set of fields specified in the index.

17

 As MongoDB includes query operations with geospatial coordinates as GeoJSON objects, it
also offers specialized, geospatial indexes to facilitate these operations. There are 2 types of
geospatial indexes: 2d - which supports queries that calculate their values on a two-dimensional
plane and 2dsphere - which supports queries that calculate their data on an earth-like sphere.
They support the determination of the geo-position of one object in relation to another (their
intersection, the inclusion of the boundaries of one object in another, the determination of the
vicinity with the indication of the minimum distance between objects).

 Since MongoDB was also designed to support high-performance queries, it is significant to
mention the aggregation mechanism and pipeline concept, because it was used in the current
project. Aggregation is a grouping of the values of many documents. In MongoDB, it is done
using the aggregate() method. Aggregate operations allow the manipulations of such grouped
data. Tab. 3.1 illustrates all aggregate operations.

Operation Description
$sum Summarizes the specified values of all documents in the collection.
$avg Calculates the average value of the specified field for all documents in the

collection.
$min Gets the minimum value of the specified document field in the collection
$max Gets the maximum value of the specified document field in the collection
$push Inserts a value into an array in the resulting document.
$addToSet Inserts a value into an array in the resulting document but does not create

duplicates.
$first Gets the first document from the grouped ones. Commonly used with sorting.
$last Gets the last document from the grouped ones. Commonly used with sorting.

Tab. 3.1 Overview on aggregate operations

 On UNIX systems, the pipeline concept means that the operations can be performed on some
input and use the output as input for the next command. MongoDB also supports this concept.
In Tab. 3.2 is a list of possible stages, and each of them can have as a set of documents for
input and generate a set of documents obtained as a result of processing. The general schema
of aggregation pipeline are illustrated into Fig. 3.3.

Operation Description
$project Used to select some particular fields from the collection.
$match A filtering operation that can reduce the number of documents that are

submitted for input to the next step.
$group The aggregation itself.
$sort Sorts the documents.
$skip Ignores the list of documents in the existing set.
$limit Limits the number of documents to be output to the amount passed to the

method, starting from the current position.
$unwind Used to deconstruct documents that use arrays.

Tab. 3.2 The possible stages of aggregation pipeline

18

Fig. 3.3 Aggregation pipeline

 A real example of using an aggregate pipeline can be found in Chapter 5 of the present thesis.

 MongoDB uses so called “dynamic scheme” concept. It permits a flexible approach with the

data scheme without the need to change the existing data itself. Also, MongoDB is horizontally

scalable, which makes it easy to reduce the load on the server with large amounts of data, and

it is flexible as it allows adding fields or columns without harming existing data, their structure,

and database performance. Also, it is designed to take into account high performance for simple

queries. Due to its simplicity, it doesn't require DB Administrator and can easily be used by

any actor in software development and management processes. And last but not least, it is free

to use.
 Also, MongoDB has facilities for providing sharding - distribution of a data set among servers

based on a specific key. Combining it with replicating data, a horizontally scalable storage

cluster can be built. This type of "construction" ensures no single point of failure; automatic

recovery after failure; transfer of load from the failed node. Expanding a cluster or converting

one server to a cluster is performed without stopping the database operation by simply adding

new machines.

3.3 Frontend development framework

 In our time, with the advancement of IT technologies and the increase in the number of

complex web projects, there have been significant changes in the methodology and processes

of web programming. First of all, the exact roles for developers and technologies covering

different aspects of the project were defined. The entire process was divided into frontend and

backend development. And in modern companies, for large projects, rarely it can be meet a

development team which is responsible for both aspects at the same time.
 Let's try to define more briefly frontend and backend notions. The frontend is all that a

browser can read, display, and run. Backend is everything that works on the server. For the

programmer, frontend is all HTML, CSS, and JavaScript code, and for backend, any available

tools on the server can be used. It means that any universal programming language: Ruby, PHP,

Python, Java, or a database management system such as MySQL, PostgreSQL, MongoDB can

be used.
 In this paragraph, we are focused on the frontend. From the beginning of web programming,

all user interfaces were designed and developed manually using raw HTML and CSS. Later,

coding in raw JavaScript was the most obvious, but at the same time, not the easiest method to

19

give dynamism to web pages. Nowadays exists a bunch of frontend frameworks, behind which

are already preconfigured, a lot of styles and scripts for every component of the web page, and

the developer should only choose the right one to obtain a pleasant and well-functioning user

interface. The frameworks are designed to simplify the developer's lives and free them from

writing the same type of code. But, as the code base of some frameworks grows significantly,

they begin to add their share of complexity to the projects.
 In order to facilitate the elaboration of the frontend part of our project, it is necessary to

analyze and compare all the possible solutions among the existing frameworks and stop at one.

We focused our attention on the following frontend frameworks: Bootstrap, Vue.js, React.js,

Angular. From the beginning, it is worth mentioning that we chose Bootstrap. However, until

its detailed description, we need to specify the characteristics of each of the frameworks briefly.

And of course, it is necessary to state the reasons why they were not chosen.
 Let's start with Vue.js [12]. It is a progressive JavaScript framework for creating user

interfaces. Unlike monolith frameworks, Vue is made suitable for gradual implementation. Its

core primarily solves problems of the view level, which simplifies integration with other

libraries and existing projects. Vue.js provides extensive functionality for the presentation layer

and can be used to create powerful single-page web applications thanks to its core components,

such as Router and Vuex. Vue is suitable for small projects that need to add a bit of reactivity,

submit a form using AJAX, display values when entering user data, authorization, or other

similar tasks. It also allows us to create component templates, bind data to the DOM structure

with conditions and loops, and declarative rendering, with simple syntax based on the

specification of web components. On the other hand, Vue is easy to scale and well suited for

large projects, so why it is called a progressive framework.
 In conclusion, it should be noted that the main advantages of Vue JS are its simplicity and

ease of study. Instead of learning complex terminology and tools to create a simple application,

as is the case with React (short description of it are below), it is possible to start the

development immediately. This fact makes Vue JS the perfect choice for startups or any

development team that wants to build high-performance web applications with easy-to-read

code quickly.
 React.js [13] is a tool for creating user interfaces. Its main task is to ensure that what can be

seen on web pages is displayed on the screen. The working principle of React consists of

breaking each page into small fragments, which are called components. React has no

controllers, views, models, templates - everything is a component. Components can and should

be reused, inherited from each other, assembled. In fact, each component is a JavaScript

function that returns a piece of code representing a fragment of a page. In order to form a page,

these functions should be called in a specific order. Then we collect the results of calls together

and show them to the user.
 A significant feature of React is that absolutely everything should be written in JavaScript.

And it is not only about HTML structures, but recent trends also include CSS control inside

JavaScript. This approach has its advantages, but also makes compromises that may seem

ineffective for each developer.
 Angular [14] is a client application framework developed by Google. Firstly, it was created

to facilitate the development of the SPA (Single Page Application) solutions. In this regard,

Angular is the descendant of another framework - AngularJS. At the same time, Angular is not

a new version of AngularJS, but a fundamentally new framework. One of the main functions

of Angular is the ability to develop for several platforms: web, mobile devices, and native

desktop (AngularJS did not have mobile support by default). One of the key features of Angular

20

is that it uses TypeScript as the programming language. As TypeScript relies on JavaScript, it

is not needed to learn an entirely new language, and many functions like static typing,

interfaces, classes, namespaces, decorators are also available. Angular contains not only tools

but also design templates for creating a serviced project. If the Angular application is created

correctly, it is not possible to have any confusion in classes and methods that, in principle, are

hard to edit and even harder to test. The code is conveniently structured and quickly

understandable. But Angular is a fairly large and complex framework with its own philosophy.

It isn't very easy for beginners because of the large number of framework concepts to learn,

and it requires to know a lot of additional technologies. It is worth mentioning that sometimes

using Angular for an application is excessive. If the project is small or medium without a

sophisticated UI and interaction, it might be better to draw attention to other frameworks.

Therefore, it is very important to evaluate all the requirements, functions of the new

application, and deadlines before deciding on the use of this JS framework.
 Regarding the reasons why Bootstrap was chosen instead of the frameworks mentioned

above, only two words can be said: simplicity and style. In general, the purpose of our project

is to develop a lightweight and fast platform that fully covers the requirements regarding its

functional part. Mostly, the advantages of the above-described frameworks are the dynamicity

and reactivity of the web pages. These aspects greatly complicate the code, as well as affect the

work speed of the site. Bootstrap, however, offers the full range of tools needed to develop a

modern, functional, and well-designed interface without spending much time on configuration,

development, and testing. In other words, the most straightforward framework was chosen in

order to focus attention on the most critical part of the project – backend functionalities.

 Bootstrap Vue.js React Angular

Programming

language JavaScript JavaScript JavaScript TypeScript

Library size 187 KB 58.8KB 133KB 143KB

Coding speed Fast Fast Normal Slow

Complexity Low Low Medium High

Easy to Learn Easy Easy Medium
Difficult

because of

TypeScript

Community Huge Big Huge Huge

Good

documentation Yes Yes Yes Yes

Ideal for
Fast developing

of apps with

adaptive layout
Small SPA apps

Interactive and

fast apps with

high flexibility

Large-scale

apps with

complex

business logic

Google trend

(Search results -

last 12 months)
56 27 86 63

Tab. 3.3 Main characteristics of the compared frontend frameworks

21

 In Tab 3.3, one more time are briefly illustrated the main characteristics of the compared

frontend frameworks. A more detailed description of the Bootstrap framework is reported

below.
 Bootstrap [15] is an open and free HTML, CSS, and JS framework that is used by web

developers to make responsive website designs and web applications quickly. It consists of pre-

recorded styles and scripts for the use of which it is necessary only to choose the right style

classes and attributes to the HTML elements.
 The Bootstrap framework is used around the world, not only by independent developers but

sometimes by entire companies. The main area of its application is in the development of

frontend sites and admin interfaces. Among similar systems (Foundation, UIkit, Semantic UI,

InK, and others), the Bootstrap framework is the most popular.
 In general, CSS frameworks are built to make more accessible the site creation process for

other web developers. The fact is that if a web developer is going to develop a site from scratch,

he needs to take care of many things. All CSS styles, all web scripts, need to be written from

scratch, and as a result, it counts hundreds and thousands of lines of code to the project. Also,

many mistakes in layout can be made (for example, the resulted template looks different in the

main browsers, or it is not adaptive). To ensure an adaptive layout to the site, the web developer

has to deal with much more complicated tasks. He needs to make sure that the site displays

well on all screen resolutions. He has to use media queries for this. Large templates may require

a lot of such queries; in addition, it still has to be learned how to write them. In general, when

developing an adaptive template from scratch, web developers have to work hard, while his

layout skills should be quite high.
 In general, just for the adaptive layout, it is worth using Bootstrap. It significantly simplifies

the layout. Firstly, the framework takes care of cross-browser compatibility and adaptability,

and these are the main things that the developer must consider. But with Bootstrap,

implementing them is very simple. It allows creating an HTML template even by a person who

has previously worked very little with layouts and is not particularly familiar with CSS.

Secondly, the framework is ideal for teamwork. The layout creation on Bootstrap with the

proper skill and understanding takes 3-5 times faster, and the uniformity of the code allows any

member of the team to make corrections. If a layout without a framework is taken into

consideration, then each developer can have his style, and another person has to spend time

studying his code.
 Overall, Bootstrap consists of grids, classes for styling text, images, tables, and other content,

components designed to create buttons, various forms on the page, horizontal and vertical

navigation menus, sliders, drop-down lists, modal windows, tooltips, and other interface

elements, and classes for solving auxiliary problems most often faced by web developers

(aligning text, hiding or displaying an element, setting color and background for an element,

setting margin and padding indentation, and much more).
 As an advantage of the framework, it's worth mentioning a vast community, the availability

of proper documentation and a large number of articles, recipes, and videos; all this, if desired,

helps not only to understand the framework well but also to find answers to almost any

questions. Within this community, members recreated the design of framework components

and created new Bootstrap templates. Such templates could be used for creating sites, making

only small changes on the right template.
 Other advantages of the Bootstrap framework when developing the frontend part of sites and

admin interfaces on its basis, as mentioned before, is the high speed of creating high-quality

adaptive layout even for novice web developers (by using of ready components created by

22

professionals). Besides, cross-browser and cross-platform (correct display and operation of the

site in all browsers and operating systems supported by this framework) and well-designed and

consistent components (in Bootstrap, all components are in the same style) can be considered

as advantages. Also, the ability to customize components for a project is an essential feature of

the framework. It is achieved by changing CSS variables and using Bootstrap mixins (changing

the number of columns, colour, the radius of rounding of corners of elements, space between

columns, and much more). To work with the framework is not necessary to have in-depth

knowledge of HTML, CSS, JavaScript, and jQuery (it is enough to know only the basics of the

above technologies).
 In fact, Bootstrap doesn't have only positive characteristics. As negative ones, two of them

can be considered. The first one is that the framework libraries usually contain more code than

if web developers should write from scratch during development. It contains everything for all

occasions, even what, in a standard project, to cover necessary functionalities, only a small part

of scripts is useful. The possibility to choose components of the framework to be loaded into

the CSS file solves this problem quickly. For example, the developer can generally download

only the grid, and do the rest himself.
 The second drawback is the template design. Visiting different sites can be observed the

similar Bootstrap buttons there (or other framework elements). But this problem can be easily

solved by customizing the components of the framework during the developing process.

3.4 Backend development framework

 In the contemporary era, with the increase in the number of large-scale IT projects, the notion

of the architectural pattern was introduced. It is a description of the typical organization of the

system. In other words, it can be considered as a global range of methods and practices, tested

and verified on various systems and in different environments. Over time, numerous patterns

were developed to complete the tasks put in front of programmers and system designers. But

in the web development, the most popular was and remained MVC [16], which stands for

Model-View-Controller. It is a way of organizing code that involves the separation of the

application data model, user interface, and the logic of user interaction with the system in three

components. So, modifying one of these components has minimal or no effect on the others. A

brief description of MVC components is presented in Tab.3.4. In Fig. 3.4 is illustrated a

schematic structure of MVC and all interactions between pattern components. The user sends

a request to the controller (in the case of web applications, this is an address). The controller

processes the request, requests data from the corresponding model, receives data, maybe

performs some additional processing, for example, aggregates them with other data, and then

transfers the data to the view. The view generates data following the specified display template

and returns the result to the user.
 But why in general we should use in practice MVC principles? The answer to this question

is not obvious because each developer or project manager chooses the structure and method of

data transmission and processing by himself. For other programmers to understand this

structure (and not only it) is better to use generally accepted "standards." So, the work becomes

more productive, and the accumulated knowledge of these "standards" allows quickly include

them in the development process if necessary.
 The most evident benefit we get from using the MVC concept is a clear separation of

presentation logic (user interface) and application logic. Support for various types of users who

23

use different types of devices is a common problem today. The provided interface should be

different if the request comes from a personal computer or a mobile phone. The model returns

the same data, but the only difference is that the controller selects different types for data

output. Also, the MVC concept significantly reduces the complexity of large applications. The

code is much more structured, and thus the support, testing, and reuse of solutions are

facilitated.

 Description
Model It provides an object model that contains data and methods of working with

this data, responds to requests from the controller, returning data and/or

changing its state. Moreover, the model does not contain information about the

methods of data visualization or formats of their presentation and also does not

interact with the user directly.
View It is responsible for displaying information (visualization). The same data may

be presented in different ways and different formats. For example, a collection

of objects using different views can be represented at the user interface level

both in tabular form and in a list; at the API level, it can be exported in either

JSON or XML.
Controller It provides communication between the user and the system, uses the model

and view to implement the necessary response to user actions. As a rule, at the

controller level, the received data is filtered and authorized - the user’s rights

to perform actions or receive information are checked.

Tab. 3.4 MVC components description

Fig. 3.4 MVC structure and interactions between components

 Because the MVC concept has proven to be the ideal solution for developing web

applications with a very high level of complexity, it has not been long before the backend

24

frameworks have been designed, having as the main principle the MVC pattern. In the modern

struggle between MVC frameworks to implement the most efficient and high-quality web

products, two leaders can be found: Django and Ruby on Rails.
 Let's start with the description of Ruby on Rails [17], the not chosen one. Ruby on Rails is a

framework written in Ruby programming language for implementing the Model-View-

Controller scheme, which allows developers to structure the code and create applications of

any complexity. Ruby is an interpreted, fully object-oriented programming language with

explicit dynamic typing. It combines a Perl-like syntax with an object-oriented approach. Also,

some features are borrowed from the programming languages Python, Lisp, Dylan, and CLU.

The only problem with using Ruby was that it was not designed for the web until Rails (the

short name of the Ruby on Rails in the developer's community) appeared.
 Today, programmers opt for Ruby on Rails because, firstly, the Ruby language itself is so

clear, simple, and logical that it is often advised to beginners. Secondly, is the speed of

application creation. Thirdly, this software is in the public domain, and, as a result, there are

many communities where it is possible to find a standard solution or to get informational

support. The other important feature is the built-in testing solutions, which allows quickly to

detect errors. Internal testing can be complex as well as modular or functional. At the same

time, the framework is very flexible and allows to adapt applications to various updates, in

particular, related to the client's desire to upgrade or change it. But this flexibility can often be

a disadvantage as the multitude of ways in which a goal can be reached can lead to wasting

time to understand how the code works. Also, the same cause can lead to difficulties when

transferring the project to other teams. It is worth mentioning the limitations of the Ruby

language regarding new trends in the IT-sphere about data analysis and big data functionalities.
 But still the question of why Django and not Rails remains. Ruby on Rails and Django have

a lot in common (Django detailed description is below). MVC pattern, open-source, objected-

oriented languages are only a few shared features. Python, Django REST framework, build-in

security and user authentication tools are only a small part of particularities that characterize

Django as the perfect framework to quickly build performant web applications that are easy to

maintain. However, it should be mentioned that the competition between these two frameworks

only benefits everyone. Significant communities and permanent discussions about the

advantages of one over the other only lead to the development of new functionalities, and as a

result, they complement each other.
 Now let's discuss more in detail about Django [18]. It is a high-level web infrastructure

suitable for developing complex sites and web applications, written in the Python programming

language. Built by experienced developers, Django takes care of many web development

issues, so the developer can focus on writing an application without having to reinvent the

wheel. It is a free and open-source platform, has a vast and active community, excellent

documentation, and many options for free and paid support. It appeared in 2005, and gradually

became one of the best frameworks that have helped and is helping thousands of developers to

do this or that job within minutes.
 Initially, the development of Django was held to provide more convenient work with news

portals; a fact which had a significant impact on the architecture: the framework provides some

tools that help efficiently and quickly development of informative websites. For example, the

developer does not need to create controllers and pages for the administrative part of the site,

Django has a built-in content management application that can be included in any site made on

Django, and which can manage multiple sites on one server at once. The administrative

application allows the developer to create, modify and delete any content objects on the site, to

log all committed actions, and provides an interface for managing users and groups (with the

25

object-based assignment of rights). Django web framework is used in such large and well-

known sites like Instagram, Disqus, Mozilla, The Washington Times, Pinterest, and others.
 Django was designed to run under Apache (with the mod_python module) and using

PostgreSQL as a database. Currently, in addition to PostgreSQL, Django can work with other

DBMSs: MySQL (MariaDB), SQLite, Microsoft SQL Server, DB2, Firebird, SQL Anywhere,

Oracle or MongoDB. To work with a database, Django uses its own ORM, in which Python

classes describe the data model, and it generates the database schema.
 As the Django framework is based on Python, it is obvious to say some words about it too.

The number of Python programmers has been increasing very much in recent few years. This

is evidenced by the StackOverflow study for 2019[19]. It is one of the most used programming

languages, and in the opinion of some developers, it is an almost perfect programming

language. There are several reasons why it merits this epithet: easy to learn, cleanliness and

readability, versatility, coding speed, one pieced design. It is used to create different products,

from commercial to scientific. The system is aimed to simplify the logic of the code and

increase the productivity of the developer. The Python programming language has a concise

syntax, and its libraries provide a large stack of solutions. As a universal language, it is used in

web development, creating desktop and mobile applications, programming games, as well as

in analytics and machine learning.
 Python supports several programming paradigms: structural, object-oriented, functional,

imperative, and aspect-oriented. The language contains dynamic typing, automatic memory

management, full introspection, an exception handling mechanism, support for multi-threaded

computing, and convenient high-level data structures. Python code is organized into functions

and classes that can be combined into modules, and they, in turn, can be combined into

packages.
 Despite all the advantages, the language has its drawbacks. Programs on it are considered

one of the slowest. Python is not suitable for tasks requiring a large amount of memory - it is

better to solve them with inserts in C or C ++. Another disadvantage is the strong dependence

of the language on system libraries, which makes porting to other systems difficult.
 Django's architecture basically corresponds to Model-View-Controller (MVC). The

controller of the classic MVC model roughly corresponds to the level that in Django is called

the View, and the presentation logic of the View (from MVC) is implemented in Django by the

Templates level. Because of this, the layered architecture of Django is often called Model-

Template-View (MTV).
 In Fig.3.5, a schematic view of Django MTV is illustrated. URL Dispatcher (configured in

file urls.py) determines which resource should process the received request based on the

requested address. View (usually in views.py) receives the request, processes it, and sends a

response to the user. If it is needed to access the model and the database to process the request,

then View interacts with them. If caching is enabled, View can check if the requested page is

cached and bypassing the next steps, can return the cached version of the page. To conclude,

View contains the logic of how to access the models and apply the appropriate template. Model

(usually in models.py) describes the data used in the application. It knows everything about

data: how to access it, how to check it, how to work with it, and how the data is related.

Individual classes typically correspond to tables in the database. The template makes decisions

regarding the presentation of data: how and what should be displayed on the page or in another

type of document.

26

Fig. 3.5 Django Architecture

 One of the main principles of the framework is DRY [20] (don't repeat yourself). Web systems

on Django consist of one or more applications, which should be alienated and pluggable. This

is one of the most significant differences in the architecture of this framework from others (for

example, Ruby on Rails). Also, unlike many other frameworks, URL handlers in Django are

explicitly configured (using regular expressions), and are not automatically set from the

controller structure.
 In general, Django has many features with different degrees of usefulness. Its specific ORM

- transactional database access API is one of the most powerful features of Django, but at the

same time is the most criticized component of the framework because of its untraditional,

"pythonic" way to create queries. Also, it is worth mentioning the Django REST framework

[21], which is a convenient library for working with REST (Representational State Transfer)

web services [22] based on the ideology of the Django framework. Another often-used element

is built-in administrator interface, with existing translations into many languages. The

possibility of authorization, authentication, and connection to external authentication modules:

LDAP, OpenID, and others is a security requirement in modern IT projects and is supported by

the framework. Django includes a regex-based URL manager, caching system, and extensible

template system with tags and inheritance. Also, it has a filter system ("middleware") for

building additional request handlers, such as filters for caching, compression, normalization of

URLs, and support for anonymous sessions. In addition, it supports site internationalization

and incorporates a plug-in application architecture that can be installed on any Django sites.

Also, it has a library for working with forms (inheritance, building forms according to the

existing database model) and built-in automatic documentation for template tags and data

models, accessible through the administrative application.
 Some components of the framework are weakly related to each other so that they can be quite

simply replaced with similar ones. But with some (for example, with ORM) of them, this is not

easy. In addition to the features built into the core of the framework, some packages exist that

expand its capabilities.

27

 Let's describe some advantages of Django (Tab. 3.5), which is not only a quick solution in

web development, including everything web developers need for a high-quality code but also

an excellent platform for working with the clients of a particular business.

 Description

Speed Django was designed to develop applications as quickly as possible. During

the developing process of the project, Django saves time and resources at

each stage of it. Therefore, it is the ideal solution for projects where the

deadline issue is a priority.

Full options Django contains additional features that help a lot with user authentication,

site maps, content administration, RSS, and more.

Security Working in Django, protection against security-related bugs that threaten

the project is guaranteed. Some of the common problems like SQL

injection, cross-site forgery, clickjacking, and cross-site scripting are

avoided. It has its own user authentication system for the efficient use of

logins and passwords.

Scalability The Django framework is best suited for handling the highest traffic, and

many busy sites use it to meet traffic requirements.

Versatility Content management, scientific computing platforms, even large

organizations - all this can be effectively managed with Django.

Tab. 3.5 The strengths of Django

 Cons always go hand in hand with the pros. Django uses a routing pattern with URL

specifications. It is too monolithic and everything it's based on ORM Django. Components

deploy together. To be able to work it is needed to know the entire system. That's why Django

cannot be called flawless.
 Based on Django, a lot of ready-made solutions have been developed, distributed under a free

license, including systems for managing online stores, universal content management systems,

as well as more specialized projects. They facilitate the process of developing new projects

only by customizing some components of a ready-made application. In this way, the time and

effort required to develop the project are reduced.

28

29

Chapter 4

Information System Architecture

 Current software applications and information systems have reached such a level of

advancement that the term "architecture" as applied to them has not been surprising for a long

time. Nowadays, to build an information system competently, efficiently, and reliably operating

is not easier than to design and build a modern multi-purpose building. When it comes to

"information system architecture," there is usually no shortage of definitions, but they all have

a considerable degree of similarity. For example, most definitions indicate that architecture is

associated with structure and behavior, as well as only with significant decisions. Also, they

emphasize that the information system corresponds to some architectural style; it is influenced

by the people interested in it and its environment; it implements decisions based on logical

justification. The architecture of a software system covers not only its structural and behavioral

aspects but also the rules for its use and integration with other systems, functionality,

performance, flexibility, reliability, reusability, completeness, economic and technological

limitations, as well as a user interface issue. With the development of software systems, their

integration with each other in order to build a single enterprise information space is becoming

increasingly important and become an essential element of architecture. To build the correct

and reliable architecture and correctly design the integration of software systems is necessary

to follow modern standards in these areas strictly. Without this, it is possible to create an

architecture that is unable to evolve and meet the growing needs of IT users.

 It's worth mentioning the existence of the classification of software systems by their

architecture. It includes centralized architecture, "file server" architecture, two-tier "client

server" architecture, multi-tier "client server" architecture, distributed system architecture, web

application architecture, or service-oriented architecture. It is important to note that, like any

classification, it is not rigid. In the architecture of any particular information system, the

influence of several standard architectural solutions exists.

30

 As our project is classified as a web application, only this type of architecture raises more

interest. Web applications are a particular type of software built on a client-server architecture.

Their peculiarity lies in the fact that the Web application itself is located and runs on the server

- the client only receives the results of the work. The application is based on receiving requests

from the user (client), processing them, and issuing the result. The transfer of requests and the

results of their processing takes place via the network (in many cases through the Internet). A

browser usually does the display of query results, the data reception from the client, and their

transfer to the server. On the server-side, the web application is executed by special software

(the Web server), which receives client requests, processes them, generates a response in the

form of a page described in HTML, and transfers it to the client. During the processing of a

user request, the Web application compiles the response based on the execution of server-side

code, a Web form, an HTML page, and other content, including graphic files. As a result, it

dynamically generates a response using executable code - the so-called executable part.

 In other words, the Information System architecture can be defined as a bunch of models,

which, in their interaction, represents the purpose of the system. Each model describes various

components and views of the system. Components and views are basic units of the Information

System, with the difference that components can act as a system on their own. Usually, five

general types of components can be distinguished: Hardware Resources, Software, Databases,

Networks, and Human Resources. For particular projects, the creation of new types by mixing

or truncating the respective components is also not excluded. But, in the case of our Information

System, from a developing point of view, only two of them are of interest: Database System

and Software. Other components are more related to the deployment stage of Information

System creation.

 As our platform is deployed on Docker, it is worth mentioning the container's system inside

it. Fig. 4.1 illustrates the diagram that describes the container's structure of the "Atlante dei

palazzi comunali" project.

Fig. 4.1 Docker container distribution of our platform

 If to take a look at the container level of our Docker configuration, it can be divided into three

groups. The first would be MongoDB containers. We create three instances of them in order to

be able to use the replication technique. This technique involves special configurations at both

container and instance level of MongoDB by joining them in a common group called replica

set. It is done to keep the data safe, maintain their integrity, and ensure permanent access to

information in case one of the DB servers fails. The second one is the Django container. Here

the entire activity related to the project is carried out because, in this container, there are the

31

tools for developing the application. Django includes the full range of plugins, frameworks,

and libraries to develop both frontend and backend parts of our platform. The third one is

related to Nginx, which is a free, open-source, high-performance HTTP server and reverse

proxy, as well as an IMAP/POP3 proxy server. This web server is used to handle the requests

for images and static resources directly from the file system.

4.1 Database System

 Data models are the best way to describe a Database System. They establish how data is

stored, extracted, organized in the database, and the relationships and flows between each of

the data elements. Data modelling helps accurately implementing the requirements and visual

representing of the data. Also, it assures at early stages enforcement of business rules and

definition of system policies. Data models guarantee consistency in naming rules, semantics,

and security, which in result, increase data quality. Three types of data models are used in

practice nowadays. Conceptual Data Model is a high-level view of the system, usually

independent from a DMBS. Its primary goals are to define and organize business concepts and

rules. Logical Data Model describes information about entities stored in DB and the

relationship between them, regardless of the DMBS. The main goals are to define the data

structures of the DB and the rules among them. Physical Data Model describes the

implementation steps of the DB in specific DMBS. The main goal is the actual implementation

of the DB. A more straightforward explanation of these three models is that the business analyst

uses a conceptual and logical model to design the data required and generated by the system

from a business point of view. At the same time, the database developer exploits the physical

model to represent the physical structure of the database, ready for building.

 Now it is time to overlap project requirements with data types models described above. The

data model can be represented by a graph containing different types of nodes. Some common

type features characterize each node. Other features deriving from a specialization defined by

subcategories also identifies nodes. In fact, in Fig. 4.2 is represented the conceptual data model,

which summarizes the proposed model with the dependencies between the various entities.

 To cover the full range of requirements, we decided to define five types of entities: Location

(Localita), Building (Palazzo), City Building (Edifici comunali), Source (Fonte), Descriptive

Element (Elemento descrittivo). In Fig. 4.2, they are represented by circles of different colors

depending on the type, in order to easily distinguish them. Also, regarding the links between

entities, it is worth mentioning that the descriptive elements as the main object of study are

connected with the sources where they are mentioned and with the building where they are

located. Through building, they are also connected with the localities. Last but not least, it

should be noted that for a single descriptive element, it is characteristic of being mentioned in

several sources.

32

Fig. 4.2 Conceptual Data Model of “Atlante dei palazzi comunali”

 Since, for our project, MongoDB was chosen as DMBS, for data modelling, it must be

considered several additional particularities. It is all because data has a flexible scheme for

storing documents in a single collection. It means that documents should not have the same

structure or set of fields. Common fields in collection documents can store various types of

data. As mentioned above, for the good usability of the database, at the modelling phase, it is

necessary to follow a set of recommendations. Combine objects in one document if they are

planned to be used together. Duplicate the data since the computation time is “more expensive”

than disk space. Use complex aggregations in a scheme and optimize it for the most common

cases.

 Using a NoSQL DBMS, Physical Data Model is more representative than others for the
description of the Database System. Below, it follows the information about all MongoDB
collections one by one. Every document in the collection has its own ID. There are two types
of collections inside the database: uniform and heterogeneous.

 Uniform collections are characterized by a scheme that doesn’t change from one document
to another. However, heterogeneous collections don’t have a well-defined scheme for every
document. In the case of our project, heterogeneous collections have a range of predefined
structures, and each document corresponds to one of them. These structures as well are stored
in the database in separate collections and they are configured by the users in a special
configuration module of the project.

 Let’s start with Location collection, which is a uniform one. In this collection are stored
documents about the localities in which the researched buildings are located. Every document
has a name, previous names, geolocation shape, coordinates, and first attestation. In this case,
the most interesting information from the point of view of representation in DB is geolocation
data and previous names. Geolocation information contains two components: the shape of
representation and the list of geographical coordinates of each point of the shape. As an
example, if the shape is a 4-sided polygon, the list will contain the coordinates of all four

vertices. In traditional SQL DBMS’s representations of the lists involve creating additional
tables and connecting them with the main one, via foreign keys. While MongoDB allows the
storage of all information within the same collection, which simplifies querying and minimizes

33

the execution time. Tab. 4.1 presents a simplified schema of this collection with the necessary
conventions that can be used to represent a schema for the NoSQL database.

Location

_id : string
Name : string

Previous_names : list of strings
Geolocation_shape : string

Coordinates : list of pairs of floats
First_attestation : int

Tab. 4.1 Location collection schema

 In Building collection, documents are characterized by a name, old names, geolocation of

the building, short review, and location. It keeps the information about researched buildings,

architectural, and cultural elements of which are analyzed and mentioned in sources. As can be

seen from Tab. 4.2, which describes the building collection scheme, there are similarities with

the previous collection. Old_names and geolocation information have the same meanings and

the same implementation as the previous one. The most significant difference is the presence

of the Review field, which is a list. Every element of it is composed of three components:

language, text, and author. Again, comparing with traditional DBMS, the respective solution

permits framing all this information in a single collection, which makes the querying process

easier and faster. It is meriting noting that the field Location_id acts like a FOREIGN KEY in

SQL databases, and it is used for linking Building collection with Location. This approach

slightly contradicts the NoSQL database principles, which suggest avoiding this type of

constructions and duplicate information. It has been chosen because the project involves a

relatively small number of researched materials, and the right implementation would require

more time and effort than it is worth.

Building
_id : string

Name : string
Old_names : list of strings
Geolocation_shape : string

Coordinates : list of pairs of floats
Recognized : boolean

Review : list of objects
Location_id : string

Tab. 4.2 Building collection schema

 City_building collection is used for saving information about municipal buildings relevant

to the geopolitical context but not subject to detailed research. Its documents have the following

features (Tab. 4.3): name, geolocation, building type, and function. It is a simpler version of

the previous collection, storing only the strictly necessary information about the neighborhood

of the researched places.

34

City_building
_id : string

Name : string
Type : string

Geolocation_shape : string
Coordinates : list of pairs of floats

Function : string

Tab. 4.3 City_building collection schema

 The last uniform collection is Translation. It ensures the multilingual aspect of the project

by storing translations of platform expressions and messages in all languages defined in the

system. In Tab. 4.4 can be seen that it contains the initial message and a dictionary with the

translations (a list of key-value pairs, where the key is the language and value is the translation).

Translation
_id : string

Message : string
Languages : dictionary

Tab. 4.4 Translation collection schema

 Besides this, the system includes two heterogeneous collections and two “scheme”

collections, which describes the possible structure of the documents from the heterogeneous
collection. Let’s start with scheme collections, and the first one is Source_type. Here it is
stored information about all types of sources. As can be seen in Tab. 4.5, every document has
a name and a list of inputs. The main characteristics of input are name, type, the order in source
form, and if it is required or no. Based on the information stored in this collection, the structure
of each document in the Source collection is formed, as well as the HTML form of insert/edit
sources is designed.

 The second schema collection is Elements_type. It has the same structure (Tab. 4.5) as the
previous one, with the difference that it records information about the elements collection
structures. And respectively, through the information stored here, the HTML form for the
insertion/editing of descriptive elements is formed.

Source_type/Elements_type

_id : string
Name : string

Elements : list of objects

Tab. 4.5 Source_type/Elements_type collection schema

 For a better illustration of these specific collections of our platform, it is necessary to bring a

concrete example and to explain it in detail. Of course, the most interesting part is related to

the list of elements. As it was described above, the list of elements is a list of inputs that are

displayed on Source and Descriptive element insertion forms. As they have the same structure,

we focus only on one of them, namely Source_type. Tab 4.6 shows a part of the structure of

“Published Sources”, which includes the first 3 elements of it and the view of this structure on

35

the insertion form. It is enough to be able to describe the features and functionality of the chosen

approach. The usage of each of the four features of the elements in the list can be easily seen

in this table. The name is displayed before each input and identifies it. The type has five

possible values, and it defines the type of each input: textbox, text area, number, checkbox,

date textbox with validation. The required feature defines the compulsoriness of the form input.

The order is used to place the inputs in a user-defined order.
 And the last, but not the least, the time has come to describe heterogeneous collections. First

of all, there is Sources collection, which contains the records about the researched sources with

a detailed and customized description of it, using the structures defined in Sources_type

collection. On the other hand, Elements documents record information about the researched

element and link it with the building where it is present and with the source where it is described

— the detailed description of the element bases on the structure defined in Elements_type

collection. We choose this approach for the designing sources and descriptive elements

management, in order to create a customizable product and to allow the users to decide by

themselves what type and level of information should be contained in the DB. Of course, this

was not possible to do without MongoDB features, and the use of SQL DBMSes, for sure,

makes this part of the project more difficult and increases development time and effort.

Example of Source_type
MongoDB Document Insertion form of the new “Published Source”

{
…
 "name": "Fonti edite",
 "elements": [
 {
 "name": "Autori",
 "type": "text",
 "required": "on",
 "order": "1"
 },
 {
 "name": "Titolo",
 "type": "text",
 "required": "on",
 "order": "2"
 },
 {
 "name": "Tomo",
 "type": "number",
 "order": "3"
 }
…
]
}

Tab. 4.6 Source_type example

36

4.2 Software infrastructure

 In general, a modern application must combine a practical user interface and a healthy

functional. In turn, an effective user interface combines two components: a pleasant appearance

and ease of use. To create such an interface is crucial to understand the basics: how the user

interacts with the UI, what he expects, and what can become a source of potential problems.

As our project is not for mass use, and requests in considerable measure refer to the functional

part of the platform, UI design was focused on utilitarian project purposes and not on

presentation.

 Taking into account the above, as a web infrastructure for the project, was chosen the Django

framework. It has the right tools in order to reach all desired objectives and together with other

frameworks to design a well-looking and straightforward interface with minimal effort. Also,

Django allows the simple implementation of all functional requirements and ensures the rapid

and qualitative development of applications due to the well-known MVC principles. As the

Django has a well-defined architecture, the description of our project follows its structure. As

the project has two parts, the private one, which is the most complex, is described more in

detail.

 Let’s start with the bottom of Django, with templates. Each project page has its own Django

template. All the templates are designed using the Bootstrap framework to create a unique and

convenient style for the platform. As Django permits to use the same blocks of HTML for

different parts of the website, the standard part of the templates pulls into a separate file, called

private_base.html, and each template link with it by adding the tag “extends” in the start of the

file. It contains the navigation bar menu (Fig. 4.3).

Fig. 4.3 Navigation bar menu – contained in private_base.html

 Apart from templates, any page has a JQuery [23] script file. It is used to fill the template

with data and add dynamic functionalities to the page (e.g., Hide some buttons at a particular

stage, prepare the list of suggestions, define on click events, and much more). The data is

retrieved/sent from/to Django APIViews, performing asynchronous HTTP (Ajax) requests.

APIViews it's a REST framework implementation in Django. Regular views in Django are used

to render each page template. In other words, in our project, Views are used to display

templates, APIViews are used to make queries to MongoDB by asynchronous requests.

 Another way to define a web application structure can be considered sitemaps [24]. A sitemap

is the graphical or list representation of all the web application pages and the links between

them. We can distinguish three types of sitemaps: XML, page list, and diagram. Usually, XML

sitemaps are used for mapping sites in search engines, to facilitate the search process. List

sitemaps are published directly on-site in the form of links to each component of the web

application. They are used by users to understand the structure of the site and to navigate

directly from it. Diagrams are more used at the design stage of the web application in order to

show the global view of it to all actors who are involved in the development process. In Fig.

4.4 are illustrated exactly such a diagram.

37

Fig. 4.4 Sitemap of our web application

 If we look at the diagram above, some peculiarities can be observed. First of all, it is about

delimiting the platform in the private and public parts. Secondly, the presence of the main menu

with many options shows that we have in the web application a convenient navigation tool.

The presence of the configuration page is also worth mentioning, as it contains modules for

configuring several entities.

 In conclusion, the elaborated user interface covers all submitted requirements. It permits easy

and intuitive navigation through platform elements and provides, even to a novice user, a full

range of functionalities without doing any pieces of training. Once more worth to mention the

flexibility of the system in general and user interface customizability in particular. Also, the

use at this stage of standard tools of the frameworks leaves room for future improvements and

modifications.

4.3 Platform functionalities

 Before jumping to the next chapter, it is time to say some words about “Atlante dei palazzi

comunali” functionalities. According to the requirements, the platform should cover a large

number of entities. As it was designed and developed for a group of researchers, a part of these

entities was left to the discretion of the users. Of course, it is about the possibility of inserting

new types of sources and elements with dynamically generated forms. If these forms were

hardcoded from the beginning, then there was no possibility of developing the system in the

future. And with each new type of discovered source or researched descriptive element, it

would be necessary for the intervention of a software developer to insert the changes. But how

the project is designed, there are no limits in this direction.

 Another feature of the system is the possibility to determine the position and boundaries of

the researched localities and buildings directly on the map. This facilitates the insertion of data

38

and permits users to have a complete view of the researched region.

 Worth mentioning the multilingual aspect of the system. This feature was implemented as the

group of researches is multinational. The translation mechanism is a configurable subsystem

of the platform. It allows users to insert translations of each platform message in every

configured language and displaying the page corresponding to the chosen language. When a

translation is not inserted, it displays the default version of the message.

 The possibility of inserting a detailed and HTML stylized description of the researched

building is another interesting functionality. It allows the users to customize the style of the

description text in many ways and also keep this style when displaying it.

 Inside the project, a customized Django authentication system is implemented. It permits to

manage login and logout, change password, recover of forgotten password, and view profile

operations by any user in the system. Besides that, only authenticated users can access the

private part of the program. Also, together with authentication, authorization is realized in the

platform as dividing users into two groups: Admins and Researchers. The configuration page

and creation of the new users are accessible only to Admins. Researchers can insert/edit/view

all other entities of the project.

 In conclusion, the developed platform has a lot of configurable and customizable features.

This allows users by themselves to manage and develop the system without the help of a

software developer alongside.

39

Chapter 5

Use cases

 The purpose of this chapter is to demonstrate with real use case scenarios the functionality of

the system and the fulfillment of the requirements. The use case UML diagram can be found in

Fig. 5.1. In particular, it illustrates the processes of configuring a new type of source and

descriptive element. We can find in it the process of inserting/editing the following entities:

source, descriptive element, locality, building, city_building. Also, the management part of the

site that does not refer to the research itself is described: user management and translation

process. Last but not least, it shows the structure of the homepage of the private part, which

contains a little bit of statistical information. Below is a detailed description of all the

mentioned use cases.
 But first, because inside the platform, there are some common operations for different pages,

and not to specify the requests that go to the Django framework for the same operation at each

use case, we describe their general behavior here. It's about saving and retrieving the data

to/from the database. A detailed description of database collections is done in Chapter 4. It is

worth mentioning that JQuery scripts process all events on-page elements (clicks, change

values, and other). After clicking the save button, to store the data in the database, from JQuery

script, an asynchronous HTML POST request is sent to the server. The request is reaching the

View component of the Django (Model-Template-View architecture is mentioned in Chapter

3), where are described how this POST request should be treated. Usually, the request contains

the data, which is needed to be saved, and View matches it with the model of the collection and

inserts or replaces it in the MongoDB. It depends on whether a new entity is introduced or an

existing one is modified.

40

Fig. 5.1 Use Case UML Diagram

 Regarding retrieving the information from the database, it is almost the same behavior. But

this time, an asynchronous HTML GET request is sent to the Django. In the same way, it

reaches View component where are as well described GET requests too. Usually, the request

contains a list of parameters to specify the selection of the necessary information. Within the

View, depending on those parameters, a query is set, which returns the desired information

from the collection. Which later, the JQuery script arranges it on the page.
 Below for each webpage is described all possible use cases with the detailed description of

the workflow within it. The schematic version of workflows is also presented for the most

important and complex use cases, in order to highlight the use case actions.

5.1 Configuration

 First of all, it is necessary to start with the configuration unit because the subsequent use of
other parts of the application depends on it. As the first operation, we need to login to the
application in order to enter the private part of the platform. As user management is described

41

later in this chapter, let’s consider a successful login and display of the private site. A schematic
view of the configuration workflow is illustrated in Fig 5.2.

Fig. 5.2 Configuration workflow

 In order to enter the configuration page, from the main menu, we select Configurazione.
Then to set up a new type of source, we select the tab Tipo fonti and then press the
button Nuovo tipo di fonti. Fig. 5.3 illustrates all these actions. Like it can be observed on the
right side of the page, it is a blank card. There is a list of already inserted items.

Fig. 5.3 Entering in configuration page for inserting new type of source

 Subsequently, the form for the insertion of new source types opens (Fig. 5.4). First of all, it
is necessary to put a name for the type of source. Then by pressing the button Aggiungi
elemento form, the blocks for setting the fields of the source are added one by one. If it is
necessary to cancel a block, it can be done by pressing the red cross button. All these behaviors
are made possible by JQuery scripts. Each block is composed of four settings: name, input type,
a checkbox, which indicates if the field is mandatory or no, and the order in the form of source
insertion. The input type should be chosen between five possible values: text, text area, number,

42

data, and boolean. After compiling the form, we have the option to save the data (Salva button)
or to press the Cancella button and to lose all the inserted information. After saving the data,
all the information is stored in the Source_type collection. And of course, the block of the
page, which contains the information about already inserted entities are populated with new
information (Fig. 5.5). In case we want to make some modifications to an already inserted
entity, this can be done by pressing the Modifica button. In this case, the JQuery script sends
in GET request the id of the source_type as the parameter. As a result, it receives a response,
all the stored data about it and populates the form (from Fig. 5.4). And after making the
necessary changes, they can be saved or cancelled. This is general behaviour for
all Modifica buttons of the platform. As a particularity, each one sends the id of the entity that
wants to modify.

Fig. 5.4 Inserting new type of source form

Fig. 5.5 List of already inserted Source types

43

 The process of inserting/editing of descriptive elements types is identical to that of the source
types except that all the actions are done under the tab Tipo elementi descrittivi on the
configuration page. All the inserted documents are saved in the Elements_type collection.

5.2 Insert/edit of a new source

 After we have configured the source types, we can proceed to the insertion of a new source
that will be linked later with the researched descriptive element and the building in which this
element is located. Firstly, in Fig 5.6 the schematic workflow for managing sources is
illustrated. To deal with the sources in the main menu is necessary to access Fonti. Before
proceeding to the insertion, it is necessary to select the type of source with which we want to
work. It is worth mentioning that the previous paragraph of the chapter covered these source
types. It is interesting that in order to complete the list of source types, the JQuery script
performs the retrieval of the information from the DB (general operation described at the
beginning of the chapter). All previously described actions are illustrated in Fig. 5.7.

Fig. 5.6 Sources management workflow

 After selecting the source type, the displayed page acquires a familiar outline: on the left side,
the insertion form, and on the right side, the list of already inserted entities. It is important to
draw attention that the components of the form fully correspond to the configurations of the
source type covered in the previous paragraph of the chapter (Fig. 5.8). The JQuery script
performs this page layout. Firstly, it retrieves from DB configuration data about the fields of
the early selected type of source. Then with the returned result, it draws the form on the page
as it is described below. Each component of the form has a label that corresponds to the name

44

from the configuration and an input, type of which is taken from configuration too. Also, the
fact that the component is mandatory or not is extracted from configuration info. And lastly,
the order of the components in the form corresponds strictly to the order get from the
configuration.

Fig. 5.7 Entering in source page

Fig. 5.8 Inserting new source form

 After filling the form with the desired information, it can be saved by
clicking the Salva button located at the bottom of the form (Fig. 5.9). It is stored in
the Sources collection of our DB. Of course, this action also refreshes the list of already
introduced sources (Fig. 5.10). After saving, the platform proposes the user to jump directly to
the descriptive element configuration page, with the source field already completed with the
one which has only been saved.

45

Fig. 5.9 Form management buttons

Fig. 5.10 List of introduced sources

 The functionalities of the Modifica button described in the previous paragraph are also
identical for this page too. However, from the edit mode of this form, it is a possibility to jump
directly to the descriptive element configuration page, with the source field already completed
with the value of the current one by clicking Aggiungi nuovo elemento button (Fig. 5.9).

5.3 Insert/edit of a locality

 Before inserting the descriptive elements, it is necessary to configure other types of entities
that are used there. So, let's start with the localities. As usual, to enter the management page of
some entity, we need to access the main menu. To maintain localities, we should click the
Localita option of the menu. In this case, immediately appears the well-known template with
insertion form on the left and the table of inserted localities on the right side of the page. The
form is designed to gather information about the name, old names, and the year of the first
attestation of the locality. A special mention deserves the field of old names; it has attached the
amsify-suggestags plugin. It is a simple jQuery tag/token input plugin that converts the regular
input into a multi-select, auto-suggesting tagging system. Besides standard text inputs
described above, the current insertion form brings to our attention a new type of input: a new
interactive map that is used to locate the exact borders of the locality (Fig. 5.11). It is
implemented using the Leaflet JavaScript library. In general, it has many features, but in the

46

case of the described page, we use zoom in/out and the possibility to add the location on the
map. It supports different shapes, but we left only rectangle, polygon, and point. It also had the
possibility to modify the already drawn shape or to delete it.

Fig. 5.11 Form for inserting new locality

 After saving the data (click on the Salva button), it is evident that everything is saved in the
DB in Location collection. It is interesting to mention that in case the drawn locality has the
polygon or rectangle shapes, it saves the coordinates of all vertices as a list. The table (on the
right side of the page) containing the list of localities already entered is refreshed (Fig. 5.12).
The form also permits to reset all its inputs by clicking Resseta il modulo button. The list of
already inserted localities has the same functionalities as other pages described
before. Modifica button allows doing the same edit actions on inserted localities. It is worth
mentioning the navigation options of the list, like pagination or search input. This approach
improves visual effect on the page and, of course, makes it easier to navigate through the list.

47

Fig. 5.12 The list of already inserted localities

5.4 Insert/edit of the researched building or city building

 Because the concepts of researched building and city building have many common features
within the project, we present them in the same chapter. The main differences between them
are the played role of each in the project. Researched buildings are clearly to be the object of
study of the researchers who uses this platform, and city buildings are meant to determine the
neighborhood in which the researched objects are located. To display the insertion form for the
buildings and city buildings, on the main menu should be chosen Palazzi and Edifici
comunali options, respectively. Before the display of the forms, it is necessary to choose the
locality, which contains the building. This feature is implemented using the Typeahead.js
plugin, which adds to the input autocomplete search functionality. As the source dataset again
an asynchronous GET request is used, from the Location collection. Fig. 5.13 shows all
described above actions.

 Both forms have collective and individual inputs, depending on the information to be stored
about one entity or another. The building page can store the name of the building, previous
names, its recognizability, and of course, geolocation (Fig. 5.14). The city building page
contains more general information as the name of the building, type, functionality, and
geolocation. An essential feature of the interactive map used to determine the position of
buildings is the already displayed surface of the locality. It allows facilitating map navigation
and search of the building. JQuery script retrieves the list of coordinates of the current location
and draws on the map of the shape that includes the borders of the locality. After it
automatically zooms in and centers the map in order to cover in the window all the borders of
the locality.

48

Fig. 5.13 Entering in building or city building pages

 Also, here are the Salva and Resseta il modulo buttons described in the previous chapter,
which have the same functionality. The inserted into the form information is saved in Building
and City_building collections. The tables which contain already inserted data have the same
form, features, and functionalities like that from the location page, and it is not worth to repeat
the description.

Fig. 5.14 Form for inserting new building

 But for buildings, another feature is present in the project, the possibility to make a short
description of it. As this text appears on the public page of the site, it is necessary to stylize it
to ensure a coherent and beautiful display on the page. The description unit was moved to a
separate page in order not to hinder the original insertion form of the buildings. To access
it Sintezi Palazzo option from the main menu should be clicked. Before proceeding to edit the
description, it is obvious that firstly the researched building should be chosen. All presented
above actions are displayed in Fig. 5.15.

49

Fig.5.15 Entering in the building’s short description page

 As the project was designed as a multi-lingual platform, it gives the possibility to insert the
description in any platform languages. And, of course, the display on the public part is in that
language which is set by the user. The form also permits to indicate the authors, to format the
text, by applying different style features (colours, fonts, and others), and to insert a lot of HTML
entities (links, images, tables, paragraphs, headings, and others). In order to do all the above-
described stuff, we use the TinyMCE editor (free HTML editor written in JavaScript), which
permits to edit the text with all those features. Fig. 5.16 shows all the above functionalities.
Also, the Salva button is used for saving the description in the DB. It is also stored
in Building collection as a new field in already existing documents.

Fig.5.16 Form for inserting the short description of the building

5.5 Insert/edit of a new descriptive element

 Now it is time to see how the management of the platform's most complicated items is
designed and implemented. Of course, it is about the descriptive elements. We can call them
the most complex entities because, through them, the linkage is made between all the elements
described in previous paragraphs. Considering their complexity and for ensuring the best
organization and display of them, we decided to move from the well-known template with the
insertion form and the list of already inserted objects on the same page. The traditional template
was split into two pages. To enter on the insertion page, from the main menu Inserimento di
elementi descrittivi option should be chosen, for the display – Elenco di elementi
descrittivi should be clicked (Fig. 5.17). The schematic workflow of this process is presented
in Fig 5.18. It is also worth mentioning that the insertion of a new descriptive element can be

50

done directly after the insertion of a new source. Thus, the application jumps to the insertion
form described in Fig. 5.19 with the “Fonti” input already completed with the value inserted at

the previous stage. This approach was implemented to simplify the process of introducing
information by creating a pipeline that models the actual process of describing data
continuously within the research in the field of cultural heritage.

Fig. 5.17 Entering into descriptive elements insertion/display pages

Fig. 5.18 Descriptive elements management workflow

 Let’s start like always with insertion form. It was designed to permit the insertion of several
descriptive elements at a time. It can be divided into two blocks. In the first one, which remains
unchanged from insertion to insertion, can be compiled general information of elements: the
list of the sources where these elements are mentioned, location, and the building where the
descriptive elements are located. By the way, the list of sources is also attached to
amsify.suggestags and typeahead.js plugins. It combines the feature of both libraries because
the input should have as well as multi-select and autocomplete search functionalities. The
second block permits to define each element one by one, by selecting the type of element from
the last input on the form (Fig. 5.19).

 After picking the desired element type, a new block of inputs is added to the form (Fig. 5.21),
and the Combobox for selecting another type is moved to the bottom of the form. It contains
the form configured in paragraph 5.1 of the current chapter. The server part of the adding
process of the form in order to insert a new descriptive element is similar to that described at
source insertion.

51

Fig. 5.19 Descriptive elements insertion form

 In case we want to save the already completed elements, it is necessary to press
the Salva button. It is worth mentioning that even if we inserted more descriptive elements at
once, in the DB, they are saved as separate entities. All the descriptive elements are stored in
the Element collection. After the save process, the platform automatically redirects us to the
view page of already inserted elements, which is a big table containing all the information in a
brief form (Fig. 5.20). Like all other view pages described above, it can modify any existing
element by clicking the Modifica button from the table. In this case, it redirects us to the
insertion page with the already completed form. Saving the modifications updates the entries
in DB.

Fig. 5.20 Descriptive elements view page

52

Fig. 5.21 Block for defining descriptive element characteristics

5.6 Translation process

 Considering the fact that the platform is designed to be multilingual, the Django web
framework has been chosen because it allows the creation of sites in several languages. It has
a complete set of tools to solve this problem: translation of a text, formatting of date, time and
numbers, and support for time zones. But to ensure internationalization of the platform, Django
needs translations for every language estimated to be used in the project. To cover that inside
of the platform, a mechanism for translations and exporting them to Django was designed and
implemented. In other words, users by themselves can translate the content of the platform
during use. Besides this, to apply the translation, it is necessary to mark within the platform all
the messages which need to be translated. In our project, it is done at the template level. The
translation module could be reached from the main menu, under the Configurazione option
and select the tab Traduzioni (Fig. 5.22).

Fig. 5.22 How to enter the translation module

53

 In fact, it consists of a search textbox and three buttons. Aggiungi button opens a form to
insert a message and its translations in configured languages (Fig. 5.23). Clicking the
Save button, we store all the data to the DB in Translation collection. But in order to apply
the translation on the platform, we should click the Compila button, which exports all
translated expression to .po files, individually for every language, used by Django to display
the correct form of the message. These files are usually created by translators and then are only
attached to projects, but we allowed their creation directly from the application. In Fig. 5.25
are shown for comparison, the same two pieces of a form, one when the French language is set,
the other when the Italian one is set. Cerca button is used for searching among already
translated messages using the text from textbox as the search string. The result of the search is
displayed below as a list (Fig. 5.24). It allows editing translations by clicking Modifica buttons.

Fig. 5.23 Insertion form for new translations

Fig. 5.24 The result of the search

54

Fig. 5.25 Differences between the same piece of form displayed in French and Italian
languages

5.7 Users management

 Taking into account that the functionalities of the platform require differentiation between
categories of users, we decided to implement a user management module. In general, in the
system are 3 types of access: Guest, Researcher, and Administrator. For having granted Guest
access user doesn’t need to have any userID, but he has access only on the public part of the

platform. For having Researcher access type user should have a userID, and he is allowed on
private site to work only with researching stuff: like inserting/editing new sources, buildings,
descriptive elements. Administrator access provides all the possibilities covered by the
Researcher, plus it allows us to configure entities of the platform (source types, element types,
translations) and the creation of the new users.

 The user management system covers the entire range of operations with its user: login and
logout from the system, change password, recovery password. It also allows the creation of
new users with limited rights (Researcher access) by administrators. Let’s start with the login

process. In order to login user should type username and password in the form presented in
Fig. 5.27 and click the Submit button.

 In case of a successful login, the platform redirects the user to the homepage of the private
site. In case the user forgot his password and want to reset it, the Reset Password button should
be clicked. As a result, the user is redirected to the password reset page where he can insert his
email address and request a new password (Fig. 5.26). He receives an email with a hyperlink
to the password reset confirmation page, where the user should insert new passwords and
confirm.

Fig. 5.26 Reset password form

55

Fig. 5.27 Login form

 When the user is logged in the system, he can see his profile (Fig. 5.28). It can be done by
click on the username in the navigation bar. Also, from the navigation bar, the logout process
can be started by clicking on Logout. In the profile page is presented the button Change
password and clicking on it, platform redirects the user to the page where he can modify his
password (Fig. 5.29).

Fig. 5.28 User profile page

Fig. 5.29 Change password page.

56

5.8 Statistics dashboard

 The homepage of the private site is a dashboard that contains statistical information in graphic
form or as a simple list, which highlights the amount of data inserted in DB. The template of
the dashboard consists of two rows of bootstrap cards, with 3 cards in each. In detail, it can be
seen in Fig. 5.30. In the future, existing cards can be modified, or other ones can be added to
show new relevant data. At this moment, the following information is displayed: Number of
buildings in location, Number of elements in location, Number of elements of each type,
Number of sources of each type, List of last researched localities, List of last login users.
 In order to present statistical information in graphical form, Chart.js library was added to the
platform. It permits drawing many kinds of charts with a lot of options and features. It allows
us to choose the type of chart, to display or no title, axis, values, etc., to set the used colours.
Also, it requires as an input a dataset, which should be a list of id-value pairs. In order to
complete this dataset, all the information is retrieved on the fly, using the same asynchronous
GET request as in other cases. But here, the queries are a little more specific because we have
to display aggregated and grouped information. Even if non-relational databases are not
designed to perform such operations, MongoDB is one of the most performing and allows them
to use the aggregate method. In SQL count(*) and with the group by is an equivalent of
MongoDB aggregation. It matches with pipeline concept, which allows to execute an operation
on some input and use the output as the input for the next command and so on. In order to
obtain the desired results, it was necessary to configure the pipeline for the aggregate method
with the following methods: lookup - to link 2 collections; project - to select certain fields;
group - to group data; sort - to sort the result etc.

Code
pipeline=[{"$lookup":
 {"from": "building",
 "let":{ "palazzoid": "$palazzoid" },
 "pipeline": [{ "$match": { "$expr": { "$eq": ["$_id", "$$palazzoid"]
}}},{"$project": { "locationid": 1,"_id":0}}],
 "as": "locids"}},
 {"$replaceRoot": { "newRoot": { "$mergeObjects": [{ "$arrayElemAt": [
"$locids", 0] }, "$$ROOT"] } }},
 {"$project": { "locids": 0 } },
 {"$group": {"_id": "$locationid", "count": {"$sum": 1}}},
 {"$sort": SON([("count", -1), ("_id", -1)])}]
elements=db.elements.aggregate(pipeline)

Tab. 5.1 Example of aggregate method

 In Tab 5.1 is illustrated a real example of using MongoDB aggregate method in our platform.
It is worth mentioning the pipeline style of writing the function that reduces readability but
offers a wide range of possibilities in terms of combining different methods.

57

Fig. 5.30 Homepage dashboard.

58

59

Chapter 6

Conclusions

 In the contemporary era, as the pace of life increases, humanity begins to forget its links with
the past. In this context, in more and more cases, the cultural heritage is abandoned and
deteriorates in time either due to natural or human-made disasters. Therefore, the elaboration
of tools that will increase the level of knowledge in the cultural field will definitely stimulate
the interest of local communities in documenting and preserving their cultural riches.

 As has been pointed out in previous chapters, the primary purpose of our project was to
develop a platform for a group of researchers working in the architectural and cultural field.
"Atlante dei palazzi comunali" is a web application that fully corresponds to the submitted
requirements, namely, to ensure the configuration, storage, visualization, and linking of several
types of entities that are involved in the research. It is worth mentioning also the design of the
graphical interface, which fully corresponds to the functional part of the requirements, but also
has a pleasant and modern look.

 This thesis deals with some particularities of the platform. First of all, it would be the
positioning of the study objects in space, by determining their geographical coordinates and in
this way to establish their neighborhood. Second would be the storage of detailed information
about the documentary sources where the researched object is described. We must also mention
the possibility of developing or modifying some modules of the application directly by the user.
Of course, it is about the module of Configuration / Modification of the types of source and
descriptive elements. And last but not least, the possibility of transforming the platform into a
multi-lingual one, by the user, could be considered as an achievement of the platform. All the
above mentioned make this project very challenging.

 The process of developing the application can be divided into three stages. In the first
preliminary stage, the design of the future platform was carried out. Also, research was done
on the available technologies that would allow the implementation of the application in

60

minimum times and with maximum coverage of the requirements. Certainly, after this research,
all the necessary tools and frameworks were selected: Docker as deployment environment,
Django and Bootstrap as application development frameworks and MongoDB as Database
Management System plus other small libraries and plugins.

 In the second phase, all the requirements within the platform were implemented most simply
and efficiently. In particular, the collections from MongoDB were modeled, the templates and
views from Django were developed and customized with the active use of Bootstrap
components. Also, the Leaflet library was used intensively to implement an interactive map for
positioning the investigated objects in space. Not least, it is worth to mention the
containerization of all systems within the Docker.

 The last phase is the process of testing the application, where due to a series of test and use
cases, several bugs and disparities with the initial requirements were determined, and later
corrected.

 Even though the developed application covers a wide range of functionalities, it should be
treated as a starting point where there is room for future enhancements. First of all, the existing
modules could be upgraded to include more useful information about the researched entities
(especially buildings and localities). This would be useful to diversify the informational nature
of the platform and to create an advanced search for these entities. Secondly, besides the
information compiled within the application, it can be considered as an improvement, the
possibility of attaching to each type of entity the documents or photographs in electronic
format, which will significantly increase the credibility of the researched facts and will serve
as a proof.

 Another great enhancement would be 3D modeling. It would allow the visual contact of the
researcher with the building he is studying inside the neighborhood, or with the position of the
interesting descriptive element inside the building. It would also facilitate the creation of a 3D
map that can contain entire neighborhoods of buildings studied and, in combination with
previous improvements, would increase the interactivity of the graphical interface.

 Last but not least, the development of the public part of the site, by providing access to other
information contained within the platform, would increase the potential of the platform to be
useful not only to the group of researchers but also to the general public. Also, implementing
a feedback system with mass users would increase the possibility of discovering some
architectural and cultural treasures in areas where researchers do not have access or have little
information about it.

 Considering all the advantages of the application and its possible improvements, we can
conclude that the platform "Atlante dei palazzi comunali" has a future not only in the academic
environment but has the potential to become the leading tool for collecting and preserving data
regarding cultural heritage.

61

Bibliography

[1] UNESCO - Convention Concerning the Protection of the World Cultural and Natural
Heritage.
URL: https://whc.unesco.org/en/conventiontext/

[2] Giuseppina Vacca (04.02.2018). A Spatial Information System (SIS) for the
Architectural and Cultural Heritage of Sardinia (Italy).
URL: https://www.mdpi.com/2220-9964/7/2/49/htm

[3] Carta del Rischio.
URL: http://www.cartadelrischio.it/index.asp

[4] THEMAS - Thesaurus Management System.
URL: https://www.ics.forth.gr/isl/themas-thesaurus-management-system

[5] John Mylopoulos, Alex Borgida, Matthias Jarke, Manolis Koubarakis (October 1990).
Telos: Representing Knowledge About Information Systems.
URL: http://www.cs.toronto.edu/~jm/Pub/Telos.pdf

[6] ResCult - Increasing Resilience of Cultural heritage.
URL: https://www.rescult-project.eu/

[7] Hermoupolis Digital Heritage Management (HERMES).
URL: https://hermoupolis.omeka.net/

[8] Arches - An open source data management platform for the heritage field.
URL: https://www.archesproject.org/

[9] Docker: Empowering App Development for Developers.
URL: https://www.docker.com/

[10] Kubernetes: Production-Grade Container Orchestration.
URL: https://kubernetes.io/

[11] MongoDB: The most popular database for modern apps.
URL: https://www.mongodb.com/

[12] Vue.js.
URL: https://vuejs.org/

[13] React - A JavaScript library for building user interfaces.
URL: https://reactjs.org/

[14] Angular.
URL: https://angular.io/

[15] Bootstrap · The most popular HTML, CSS, and JS library.
URL: https://getbootstrap.com/

[16] The Principles of the MVC Design Pattern.
URL: https://coderwall.com/p/l-a79g/the-principles-of-the-mvc-design-
pattern

62

[17] Ruby on Rails.
URL: https://rubyonrails.org/

[18] Django: The Web framework for perfectionists with deadlines.
URL: https://www.djangoproject.com/

[19] Stackoverflow Developer Survey Results 2019. Programming, Scripting, and Markup

Languages.
URL: https://insights.stackoverflow.com/survey/2019?utm_source=so-
owned&utm_medium=blog&utm_campaign=dev-survey-2019&utm_content=launch-

blog#technology-_-programming-scripting-and-markup-languages

[20] The DRY Principle: Benefits and Costs with Examples.
URL: https://thevaluable.dev/dry-principle-cost-benefit-example/

[21] Django REST framework.
URL: https://www.django-rest-framework.org/

[22] RESTful web services.
URL: https://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html

[23] jQuery – JavaScript library
URL: https://jquery.com/

[24] Cos'è una Sitemap?
URL: https://www.rankingcoach.com/it-it/news/cos%27%C3%A8-una-sitemap-

